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 I 

Preface 

 

The foundation of the Master’s Thesis 

Colaborating with Optoscale 

Optoscale is a company located in Trondheim which delivers the product BioScope, a 

measurement tool tailored to estimate the biomass of fishes in a pen through a stereo camera 

setup, to the fish farming industry. The company wanted to investigate if their current stereo 

correspondence algorithm used to estimate the disparity map could be out performed by deep 

learning stereo matchers. This information provided the basis for the paper. 

 

Project description 

The project description was created after a meeting between the author, Storm Westlie, his 

supervisor, Annette Stahl, and the contact from Optoscale, Ingar Nerbø. The description 

consisted of three main parts. 

 

1. Investigate the field of deep learning stereo matchers. 

2. Create a stereo image dataset with accompanying disparity map ground truths. 

3. Choose a subset of the deep learning stereo matchers found and use the dataset created in 

point 2 to compare them to Optoscale’s current algorithm. 

 

 

Essential requirements 

Equipment and drivers 

• Nvidia GeForce GTX 1080 Ti 

o Nvidia Graphics Driver 384.130 

• Intel Core i7 @ 3.7 GHz 

• Optoscale’s BioScope 

• Freshwater pool in a controlled environment provided by Optoscale 

• Fish model provided by Optoscale 
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Operating systems and software 

• Ubuntu 16.04 LTS 

• MATLAB R2018b 

 

Implementations, platforms and frameworks 

• MATLAB’s Semi-Global Block Matching method (2011) 

• Luo, W. et al.’s “Efficient Deep Learning for Stereo Matching” method (2016) 

• Žbontar, J., and Lecun, Y.’s “Stereo Matching by Training a Convolutional Neural 

Network to Compare Image Patches” fast method (2015) 

• CUDA 9.0 

• cuDNN 7.0.5 

• Torch 7 

• OpenCV 3.4.1 
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Abstract 

In this paper, an overview of different techniques used to create ground truth disparity maps has 

been provided focusing on their accuracies and general requirements. The field of well-

established deep learning stereo matchers in literature has been dissected by providing an 

overview of their accuracy results on the stereo evaluation contest KITTI 2015 and including 

details of their implementations focusing on the completeness of the code repository and its 

runtime requirements. Furthermore, a stereo image dataset of a fish model in a freshwater tank 

with empirical accuracy deemed to be 3 pixels has been created using MATLAB’s Semi-Global 

Block Matching at core and optimizing the disparity range on each image pair individually by 

measuring the smallest disparity. The dataset was used to compare the accuracy results of two 

deep learning stereo-matching algorithms, MC-CNN-fst and Content-CNN, without their post-

processing steps, to the accuracy results of a stereo-matching algorithm used by the Norwegian 

company Optoscale. Finally, the results showed that the deep learning methods managed to out-

perform Optoscale’s algorithm in terms of accuracy. 
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Sammendrag 

En oversikt over ulike metoder som kan bli brukt til å lage et “riktig” disparity-kart har blitt 

laget, der fokuset lå på deres nøyaktighet og generelle krav for at metoden skal være gyldig. 

Videre har det blitt laget en oversikt over veletablerte metoder innenfor dyp læring som kan 

brukes til å estimere det “riktige” disparity-kartet, der fokuset lå på deres nøyaktighetsresultater 

som man fant gjennom stereobildekonkurransen KITTI 2015. Oversikten inkluderte også detaljer 

rundt hver dyp læring metodes implementasjon, der fokuset lå på fullkommenheten til 

implementasjonens kodearkiv og dens krav til kjøretid. I tillegg har det blitt laget et 

stereobildedatasett av en fiskemodell i en ferskvannstank med empirisk nøyaktighet som anses å 

ligge rundt 3 piksler, med en metode som bruker MATLAB’s Semi-Global Block Matching i 

kjernen som optimerer disparity-rekkevidden ved å måle den minste disparity-verdien for hvert 

enkelt stereobildepar. Datasettet ble brukt til å sammenligne nøyaktigheten til to dyp læring 

metoder for «stereo-matching», MC-CNN-fst og Content-CNN, uten deres 

etterbehandlingsteknikker, mot nøyaktigheten det norske selskapet Optoscale sin «stereo-

matching»-algoritme produserte. Til slutt viste resultatene at dyp læring metodene klarte å slå 

Optoscale sin metode når det kommer til nøyaktighet. 
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1 Introduction 

1.1 Motivation 

The monitoring of a fish population is a vital aspect when it comes to fish farming. Through knowledge 

of the fish population’s general state of health, operators can make better decisions crucial to the well-

being and growth of the fish. One piece of technology which enables the measuring of a fish 

population’s health is underwater stereo cameras. The images such cameras provide, can be used in 

determining a fish’ biomass through algorithm’s that solve the stereo correspondence problem, and by 

estimating the biomasses of several fish, one gets a clear picture of whether the conditions in the fish 

pen are optimal or needs to be changed. 

The stereo correspondence problem is that of finding the disparity between pixels in two image pairs, 

one from the left camera and the other from the right, which are shifted horizontally and have been 

captured almost simultaneous in time. Disparity is the horizontal difference in location between two 

pixels, one in the left image and the other in the right, which correspond to the same 3D-point on an 

object in the cameras’ field of view. By knowing the disparity 𝑑, one can establish the depth 𝑧 to the 

object through the formula 𝑧 =
𝑓𝑏

𝑑
, where 𝑓 is the camera’s focal length and 𝑏 the baseline which 

denotes the distance between the two cameras’ centers (Žbontar & LeCun, 2016, pp.1-2). From the 

depth, one can compute a 3D-point cloud of the object, and if the object in question were a fish, be able 

to estimate its biomass. 

To solve the stereo correspondence problem, several stereo-matching algorithms have been proposed. 

(Konolige, 1997) extracted small patches centered about pixels in the left and right image and used the 

pixel intensities within the patches to find corresponding pixels. (Hirschmuller, 2007) transformed the 

image by finding each pixel’s entropy and used the mutual information between pixels of the left and 

right image to match corresponding pixels. These algorithms were state-of-the-art at the time they were 

conceptualized, however, in the recent years deep learning stereo-matching algorithms have shown to 

out-perform them in every aspect as illustrated by the upper part of the well-renown stereo evaluation 

contest KITTI 2015 (Geiger et al., 2015a)’s leaderboard being dominated by deep learning stereo 
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matchers. Although their performances are state-of-the-art, deep learning methods do come with a 

drawback; they require data of the disparity values in advance to be able to learn. 

A company located in Trondheim, Norway which uses stereo cameras to estimate the biomass of fish is 

Optoscale. Optoscale wanted to know if their current stereo-matching algorithm could be out-

performed by deep learning stereo matchers. Consequently, the focus of this paper is to compare their 

current stereo-matching algorithm’s accuracy to state-of-the-art deep learning algorithms through 

creating a stereo image dataset of a fish model in a freshwater tank; as there are no publicly available 

datasets that cover the underwater environment. 

 

1.2 Contribution 

The contributions made by this report are the following. 

1. An analysis which focuses on practical considerations, and accuracies of well renown 

methods which may be used in the creation of ground truth stereo datasets.   

2. An analysis which focuses on the results and runtime performances of trustworthy state-

of-the-art Deep Learning methods for stereo-matching, and an analysis of their code 

repositories with respect to the completeness of the repository’s code and its runtime 

requirements.   

3. A method which may be used to improve the results of a given stereo matcher by 

manually estimating the disparity range and visually controlling the results.  

4. A stereo image dataset of a fish model in a fresh water tank with ground truth disparity 

maps of empirical accuracy. The images captured are of a fish model in a freshwater tank 

at different viewpoints, and distances. 

5. A comparison of accuracy results obtained between Optoscale’s stereo-matching 

algorithm, (Luo et al., 2016)’s Content-CNN without post-processing, and (Žbontar & 

LeCun, 2016)’s MC-CNN-fst without post-processing on a stereo image dataset of a fish 

model in a freshwater tank. 

6. Insight into why it is advantageous to create stereo image datasets with corresponding 

ground truth disparity maps with a method of mathematical accuracy.  
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1.3 Outline 

Chapter Purpose 

2 The theory chapter which introduces the reader to the concepts and details of the 

methods and techniques used to create the dataset and evaluate stereo-matching 

algorithms on it.  

3 The method chapter which describes how the author proceeded when searching for 

information, creating the dataset and training the deep learning methods chosen. 

4 The experiments section which outlines the hardware and software used, which metrics 

where chosen for the accuracy results and what kind of experiments were conducted. 

5 The results chapter which shows what information was found, and the accuracies the 

various stereo-matching methods got on the dataset.   

6 The discussion chapter which discusses the results found, focusing on strengths and 

weaknesses, what could be improved and why possible reasons to why some results 

differ from others. 

7 The conclusion which highlights the most important findings of the report. 

8 The future work chapter, which describes paths that may be taken forward in the light of 

this report. 

9 The bibliography containing all the sources used. 

10 The appendix which contains the table of figures and the scripts that were either 

produced or edited. 

 

The reader might notice that the usual chapter “related work” is missing. The author would argue that 

the report as a whole gives insight into related work. Especially when it comes to the theory described 

on deep learning stereo matchers and overviews of them created in the results section. 
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2 Theory 

 

2.1 Pinhole camera model, calibration, image rectification and depth to disparity 

2.1.1 Mapping a 3D-point from the camera reference system to the digital image plane 

The following explanation is based on (Hata & Savarese, n.d.). It is included in the report to 

better understand the camera model used to transform disparity values to 3D-coordinates, and in 

the process understand the values present in disparity maps. Pixel skew and distortion has been 

ignored to simplify the equations. The model assumes that no lens is present within the camera 

and that the aperture is a single point. 

The pinhole camera model is a widely used mathematical model for transforming real world 

coordinates onto an image plane and vice versa. The model tries to replicate the inner workings 

of an actual camera. Before jumping into the math behind it a few aspects will be explained. 

Consider Figure 1 below. 

 

Figure 1: Flow of reflected light rays from object into camera. Source: Figure 1 in (Hata & Savarese, n.d., p.1). 

Light rays reflect of the object onto the barrier of the camera. Light will only pass through the 

opening or aperture of the camera and all other rays are blocked from entering. Finally, light rays 

that do pass through the aperture are captured by the camera in its image plane (film). This is the 

basic concept of any color imaging camera. Furthermore, the scene will be broken down into 

mathematical parts. See Figure 2 below. 
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Figure 2: The main parts of a simple pinhole camera model with one reference frame. Source: Figure 2 in (Hata & 

Savarese, n.d., p.2). 

 

The orthogonal coordinate system with origin 𝑂, [𝑖, 𝑗, 𝑘], is known as the camera reference 

system where k is perpendicular to the image plane, j points upwards relative to k and i points to 

the left of k’s positive direction.  

The point 𝑃 = [𝑥, 𝑦, 𝑧]𝑇 is a vector in the camera reference system describing the 3D-coordinate 

of a point on a 3D object visible to the camera. 𝑃′ = [𝑥′, 𝑦′]𝑇, which we will denote 𝑃′𝑖 =

[𝑥′𝑖 , 𝑦′𝑖]
𝑇
, describes the projection of point 𝑃 onto the camera’s image plane ∏′. 𝑂 denotes the 

position of the aperture, also known as the pinhole, of the camera and 𝐶′ is its projection onto the 

image plane known as the camera’s principal point. The line between 𝑂 and 𝐶′ is the camera’s 

optical axis. 𝑓 is the camera’s focal length, and describes the length between the camera’s 

pinhole and its image plane.  

If we extract the z coordinate of 𝑃 and insert it in a new point 𝑃𝑧 = [0,0, 𝑧]
𝑇 , The triangles 𝑃′𝐶′𝑂 

and 𝑃𝑂𝑃𝑧 are similar. Thus, after rearranging the two equations we find by the law of similar 

triangles the following relations between the components of 𝑃 and 𝑃′𝑖 as seen in equation 1 in 

(Hata & Savarese, n.d., p.3), and shown in equation 1 below with slightly different notation. 

 𝑃′𝑖 = [𝑓
𝑥

𝑧
, 𝑓
𝑦

𝑧
]𝑇 1 

These coordinates are described relative to the image plane reference system. We also want to 

see how 3D-coordinates relative to the camera reference system are mapped to the digital image 
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plane, namely the point 𝑃′ = [𝑥′, 𝑦′] 𝑇. After applying positive scaling factors, 𝑘 and 𝑙, to 𝑥′𝑖 and 

𝑦′𝑖 that change their unit inherited from the camera reference system to pixels and by shifting the 

origin of the coordinate system to the upper left corner of the digital image plane by adding the x 

and y coordinate of the principal point 𝐶′, we get the following equation as seen in equation 4 in 

(Hata & Savarese, n.d., p.6), where 𝛼 and 𝛽 have been replaced with 𝑓𝑥 and 𝑓𝑦 respectively 

following the terminology of (Szeliski, 2010, p.52), Equation 2.57. 

 

 

 𝑃′ = [𝑓𝑘
𝑥

𝑧
+ 𝑐𝑥,𝑓𝑙

𝑦

𝑧
+ 𝑐𝑦]

𝑇 = [𝑓𝑥
𝑥

𝑧
+ 𝑐𝑥, 𝑓𝑦

𝑦

𝑧
+ 𝑐𝑦]

𝑇  2 

 

2.1.2 Moving from disparity to depth and vice versa 

The following theory is based on (Bolles et al., 1987, pp.9-10). It is included to shed light on the 

mathematics which allows one to compute the depth to a point on a 3D-object via stereo cameras 

and disparity. By having such knowledge, one can derive how the disparity values of a 3D-object 

should transition along its shape. The depth found will be relative to one of the cameras’ 

reference system. The theory assumes identical cameras that are either parallel or their images 

have been stereo rectified, and inherits the assumptions of the pinhole model. 

First off, we take a look at Figure 3 illustrating the most important aspects of the theory from a 

bird’s view of the parallel camera setup. The figure is based on figure 4 in (Bolles et al., 1987, 

p.9). The image plane where 𝑥1
′𝑖 and 𝑥2

′𝑖 reside has been moved in front of the pinhole of the 

camera to simplify the observation of similar triangles. All coordinates and distances are in the 

camera reference system of either camera 1, 𝑐𝑎𝑚1, or 2, 𝑐𝑎𝑚2, and thus share its unit. D is the 

depth to the point 𝑝, 𝑏 is the baseline between the cameras, 𝑓 is the cameras’ focal length, 𝑥1
′𝑖 is 

the x-coordinate of the projection of p onto the image plane of 𝑐𝑎𝑚1 , 𝑥2
′𝑖 is the x-coordinate of 

the projection of 𝑝 onto the image plane of 𝑐𝑎𝑚2 and 𝑙𝑝 is the horizontal distance between 

𝑐𝑎𝑚2and 𝑝. The points 𝑖1−6 are auxillary points which will be used to define similar triangles. 

There are two unknown values, namely D and 𝑙𝑝.  
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Figure 3: The geometry of a parallel stereo camera setup. 

 

We notice that the triangle 𝑐1𝑖1𝑖2 is similar to 𝑐1𝑖3𝑝 and that the triangle 𝑐2𝑖5𝑖6 is similar to 

𝑐2𝑖4𝑝. This observation yields the following two equations. 

 

 

 𝐷

𝑓
=
𝑏 + 𝑙𝑝

𝑥1
′𝑖 

 3 

 𝑙𝑝

𝑥2
′𝑖 
=
𝐷

𝑓
 

4 

 

We define the disparity measured in the image plane as  𝑑𝑖 = 𝑥1
′𝑖 − 𝑥2

′𝑖 and the disparity 

measured in the digital image plane as 𝑑 = 𝑥1
′ − 𝑥2

′ . By solving Equation 4 for 𝑙𝑝, inserting the 

result into Equation 3, and rearranging it to solve for D we find the formula which relates the 

disparity in the image plane to the depth. 

 

 
𝐷 =

𝑓𝑏

𝑥1
′𝑖  − 𝑥2

′𝑖 
=
𝑓𝑏

𝑑𝑖
 5 
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However, Equation 5 only relates the disparity values in the image plane to the depth. We want 

insight into how the depth changes with regards to the disparity in the digital image plane. Under 

the assumption that the cameras are identical, we see through Equation 1, and the definition of 𝑑𝑖 

and 𝑑 that the difference between the two is the scaling factor 𝑘 from Equation 2. Finally, we 

insert Equation 6 into Equation 5 which yields the relation between the depth and disparity in the 

digital image plane. 

 

 
⟹ 𝑑𝑖 =

𝑑

𝑘
 6 

 
𝐷 =

𝑓𝑏𝑘

𝑑
= 𝑓𝑥

𝑏

𝑑
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Finally, we want the relation between the position 𝑃 = [𝑥, 𝑦, 𝑧]𝑇 of a point in the camera 

reference system and its disparity in the digital image plane. By rewriting Equation 2 to solve for 

𝑥 and 𝑦, and defining 𝑥1
′  and 𝑦1

′  as the x- and y-coordinate of the point in the digital image plane 

of 𝑐𝑎𝑚1, in addition to denoting 𝑐𝑥 and 𝑐𝑦 as the coordinates of the camera’s principle point, we 

get the following relation between the disparity in the digital image plane and the 3D-coordinates 

of the point in the camera reference frame of 𝑐𝑎𝑚1. 

 

 
𝑧 = 𝑓𝑥

𝑏

𝑑
 8 

 𝑥 = (𝑥1
′ − 𝑐𝑥)

𝑧

𝑓𝑥
  9 

 𝑦 = (𝑦1
′ − 𝑐𝑦)

𝑧

𝑓𝑦
  10 

 

From the equation 8-10 we see that the position, especially its depth z, of a point on a 3D-object 

is inversely proportional to the disparity found in the digital image plane. Thus, one may 

conclude that the 3D-points closest to the camera have a higher disparity value than those further 

away. As a side note, from here on when “disparity” is mentioned, it is in reference to the 

disparity measured in the digital image plane. 
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2.1.3 The camera’s intrinsic matrix and equations on matrix-vector form 

The camera’s intrinsic matrix is a matrix concatenating all the parameters needed to perform the 

steps of projecting a 3D-point in the camera reference system to the digital image plane. This 

section will outline how one converts the set of equations in the section above into a products of  

matrices and vectors.  

Firstly, the coordinate systems are augmented into homogenous coordinate systems, by adding 

an extra dimension with value equal to 1, and from there on we may convert Equation 2 as seen 

in Equation 5 in (Hata & Savarese, n.d., p.7). 

 

𝑃ℎ
′ = [

𝑓𝑥𝑥 + 𝑐𝑥𝑧
𝑓𝑦𝑦 + 𝑐𝑦𝑧

𝑧

] = [
𝑓𝑥 0 𝑐𝑥 0
0 𝑓𝑦 𝑐𝑦 0

0 0 1 0

] [

𝑥
𝑦
𝑧
1

] 11 

 

Furthermore, equation 11 may be decomposed into the following terms as seen in Equation 7 in 

(Hata & Savarese, n.d., p.7). 

 

𝑃ℎ
′ = [

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [𝐼      𝟎] [

𝑥
𝑦
𝑧
1

] = 𝐾[𝐼    𝟎]𝑃ℎ 12 

 

Where the matrix 𝐾 is known as the intrinsic matrix, I is a 3x3 identity matrix and 0 a 3x1 vector 

with all entries having the value 0. We also notice that if we want to recover 𝑃′ one simply 

divides 𝑃ℎ
′   by its third coordinate and extracts the two first. 

 

2.1.4 Expanding the concept to 3D-points defined in the world reference system 

Finally, we want to be able to map a point 𝑃𝑤 in a 3D-world reference system to the digital 

image plane. We do so by defining the transformation from the world reference system to the 

camera system as seen in Equation 9 in (Hata & Savarese, n.d., p.8). 
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 𝑃ℎ = [
𝑅 𝑡
𝟎 1

]𝑃ℎ
𝑤 13 

 

where R is a 3x3 rotation matrix, t a 3x1 translation matrix, 𝟎 a 1x3 vector with all entries set to 

zero. [
𝑅 𝑡
𝟎 1

] is of size 4x4 and known as the homogeneous transformation matrix. Finally, by 

inserting equation 13 into 12 we find the mapping from an arbitrary 3D-world reference system 

to the digital image plane as seen in Equation 10 in (Hata & Savarese, n.d., p.8). 

 

 𝑃ℎ
′ =  𝐾[𝑅    𝑡]𝑃ℎ

𝑤 = 𝑀𝑃ℎ
𝑤 14 

 

where [𝑅    𝑡] is the camera’s extrinsic matrix of size 3x4 and 𝑀 is known as the camera matrix 

with size 3x4. Thus, by finding M one can project any point in the 3D-world coordinate system 

to the digital image plane as long as it is within the cameras field of view. 

 

2.1.5 The general idea behind calibration 

Usually, the parameters that go into the camera’s intrinsic and extrinsic matrices are not known. 

Camera calibration is the process that determines these. Several methods of doing so exist, and in 

this paper the focus will be on the simple method of using a calibration rig as it explains the most 

important parts.  
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Figure 4: Calibration rig and its world reference system. Source: Figure 7 in (Hata & Savarese, n.d., p.9). 

We consider Figure 4 which shows a camera calibration rig with a checkerboard pattern and the 

definition of the world reference system as seen. In order to calibrate, one needs to determine the 

locations of key points, such as the corners of the squares in the checkerboard, in the world 

reference system 𝑃1
𝑤 , 𝑃2

𝑤 , … , 𝑃𝑛
𝑤, for instance by doing measurements on the rig itself. 

Furthermore, by detecting all corners in the digital image of the scene, one can link those points 

𝑃1
′, 𝑃2

′ , … , 𝑃𝑛
′ in the digital image plane to their corresponding points in the world reference 

system. 

 

2.1.6 Calculating the unknown variables of the camera matrix 

Before stating the equation used to find the unknown variables in 𝑀, we will look at the number 

of unknowns in it. (Hata & Savarese, n.d., p.8) states that 𝑅 has 3 degrees of freedom (DOF). 

Then the number of unknowns in t is 3, and in this paper the intrinsic matrix has 4 unknowns as 

we have ignored the effects of pixel skew. In total that leaves us with 10 DOF.  Furthermore, we 

will have a look at equation 11 in (Hata & Savarese, n.d., p.9) on a slightly different form. 

 

 

𝑃ℎ
′ = [

𝑥ℎ
′

𝑦ℎ
′

𝑧

] = 𝑀𝑃ℎ
𝑤 = [

𝑚1𝑃ℎ
𝑤

𝑚2𝑃ℎ
𝑤

𝑚3𝑃ℎ
𝑤
] 15 

 



 

 12 

 

Where equation 15 simply is equation 14, where the rows of M, 𝑚1, 𝑚2, 𝑚3, have been 

extracted. Next, we divide by 𝑚3𝑃ℎ
𝑤, as it is a scalar, and remove the last coordinate to recover 

our original digital image plane coordinate system as seen in equation 16, and get equation 17 by 

multiplying equation 16 with 𝑚3𝑃ℎ
𝑤 and move every term to the left side. 

 

 

⇒ 𝑃′ = [
𝑥′

𝑦′
] =

[
 
 
 
 
𝑚1𝑃ℎ

𝑤

𝑚3𝑃ℎ
𝑤

𝑚2𝑃ℎ
𝑤

𝑚3𝑃ℎ
𝑤]
 
 
 
 

 16 

 
[
𝑥′𝑚3𝑃ℎ

𝑤

𝑦′𝑚3𝑃ℎ
𝑤] − [

𝑚1𝑃ℎ
𝑤

𝑚𝟐𝑃ℎ
𝑤] = [

0
0
] 

17 

 

We notice that Equation 17 applies two constraints and so by gathering 5 pairs of corresponding 

points we may determine the value of every unknown in the camera matrix. However, common 

practice is to gather several corresponding pairs to shield against degenerate points and solve the 

resulting minimization problem with a constraint as seen in Equation 12 and 13 in (Bolles et al., 

1987). 

 

2.1.7 Stereo calibration through MATLAB and a measure of calibration accuracy 

MATLAB provides an easy way (Mathworks, n.d. e) to calibrate camera’s in a stereo camera 

setup. One simply provides several images of a checkerboard, with known board and square 

sizes, captured with the stereo camera setup, and through it the method outputs the components 

of the camera matrix for each camera, and other useful matrices. MATLAB’s implementation 

differs from the method described above in that the world coordinates of points does not have to 

be known in advance, and so it is highly popular. 

To measure the accuracy of the calibration, one considers the reprojection error. The algorithm 

has found the world coordinates of the corners of the checkerboard, and so via the camera 
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matrices found, these points are projected into image coordinates in the digital image plane. 

Subsequently, the projected points are compared to those detected by the app by finding the 

distance between them with. Additionally, (Mathworks, n.d. b), “Examine Reprojection Errors”, 

mentions that a projection error of less than a pixel is considered to be acceptable. Moreover, the 

app has several images which may be used in determining reprojection errors, and so the mean 

reprojection error would be a better measure of the calibration’s accuracy. 

 

2.1.8 Stereo image rectification 

As cited from the chapter “Description” of MATLAB’s documentation page on the rectification 

of stereo images (Mathworks, n.d. f). 

“Stereo image rectification projects images onto a common image plane in such a way 

that the corresponding points have the same row coordinates. This image projection 

makes the image appear as though the two cameras are parallel.”. 

In other words, if a point in the world reference system has been projected to the digital images 

of two stereo camera’s with different viewpoints, the rectification makes sure that both points 

may be found on the same row index in their respective images. It also enables the theory from 

section 2.1 to be used. 

Furtheremore, the rectification has positive effects for stereo matchers, in that when attempting 

to match two pixels of the same 3D-point that are present in the images of camera 1 and camera 

2 respectively, the search space for a match is limited to a single row (Monasse et al., 2010, p.1). 

 

2.2 Image processing techniques 

2.2.1 Grayscale image thresholding and binary images 

Consider a grayscale image 𝐼𝑔𝑟𝑎𝑦. We want to set all intensities below a certain threshold in 𝐼𝑔 to 

zero, and at the same time remember which values in the image had intensities above the 

threshold. We create a binary image 𝐼𝑏𝑖𝑛 of the same size as 𝐼𝑔𝑟𝑎𝑦 with one alteration. It can only 

contain two values, 0 and 1. Next, we iterate over every entry in 𝐼𝑔𝑟𝑎𝑦 and check if the intensity 
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value is below the threshold. If it is below the threshold, we set the entry to zero and do the same 

in 𝐼𝑏𝑖𝑛. If it is above or equal to the threshold, we do not change the value in the grayscale image 

and set the corresponding entry in the binary image to 1. In the end, we have thresholded the 

grayscale image and created a binary image which denotes every position in the grayscale image 

that had an intensity value above or equal to the threshold. 

 

2.2.2 Gray level morphological operations 

This theory assumes a grayscale image. We start off by defining the structural element, 𝑠(𝑖, 𝑗), 

which is a shape such as a rectangle, disk or octagon of fixed size centered at a pixel location 

(𝑖, 𝑗) of image 𝐼(𝑖, 𝑗). The structuring element can be viewed as a support region in that only 

values within it are used in morphological operation (Mathworks, n.d. c). A morphological 

operation would be an image processing technique that process images based on a structural 

element.  

Furthermore, we will have a look at the definition of gray level morphological erosion and 

dilation as described in (Albregtsen, 2013, p.26) with slightly different notation. 

 

 [𝐼 ⊖ 𝑠](𝑖, 𝑗) = min
(𝑠,𝑡)∈𝑠

𝐼(𝑖 − 𝑠, 𝑗 − 𝑡) 18 

 [𝐼 ⨁ 𝑠](𝑖, 𝑗) = max
(𝑠,𝑡)∈𝑠

𝐼(𝑖 − 𝑠, 𝑗 − 𝑡) 19 

 

Equation 18 describes the gray level morphological erosion operation, where the entry (𝑖, 𝑗) of a 

new image  [𝐼 ⊖ 𝑏] is set to the smallest intensity value present within the bounds of the 

structuring element. Equation 19 describes the gray level morphological dilation, where the entry 

(𝑖, 𝑗) of a new image [𝐼 ⨁ 𝑏] is set to the largest intensity value present within the bounds of the 

structuring element. 

Next, we will look at gray level morphological opening. Gray level morphological opening is a 

combination of dilation and erosion as seen in (Albregtsen, 2013, p.15).  



 

 15 

 

 𝐼 ∘ 𝑠 = (𝐼 ⊖ 𝑏) ⨁ 𝑏 20 

 

Consequently, morphological opening extracts the “largest of the smallest” intensity values 

present in the image 𝐼. 

Second to last, we will look at gray level morphological closing. Morphological closing is 

morphological opening in reverse order as seen in (Albregtsen, 2013, p.28). 

 

 𝐼• 𝑠 = (𝐼 ⨁ 𝑏) ⊖ 𝑏 21 

 

Consequently, morphological closing extracts the “smallest of the largest” intensity values 

present in the image 𝐼. 

 

Finally, we will look at the gray level white Top-hat filter. Its operation is defined as follows 

(Albregtsen, 2013, p.34). 

 

 𝐼 = 𝐼 −  𝐼 ∘ 𝑠 22 

 

The same source mentions that using the white Top-hat filter detects light objects on a dark 

background. In other words, the intensity of dark background pixels is reduced, and so the light 

objects come better to view.  

 

2.2.3 Median filters 

A median filter operates via support regions on an image. The support region is defined as a 

window of size 𝑚𝑥𝑛, where both 𝑚 and 𝑛 are positive odd whole numbers. The median filter, 
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when applied to grayscale images, superimposes the window on every location (𝑖, 𝑗) of the 

image. Since both its height and width is odd, there is a center pixel within the window, and the 

median filter sets the value of the center pixel equal to the median of the intensity values its 

window has captured. Say our window is of size 1x5 and is superimposed on a grayscale image 

of size 1x5 with center at location (1,3). The intensity values within the window are 

[1, 10, 17, 7, 68] and by sorting it from low to high we get [1, 7, 10, 17, 68]. Consequently, the 

median filter sets the intensity value at location (1,3) to 10. 

Furthermore, the median filter is useful in removing random noise, salt-n-pepper noise, periodic 

patterns (Huang et al., 1979, p.1), and outliers in the form of extremals. 

 

2.2.4 Connected components in the context of binary images 

The general outline of the connected components algorithm for binary images is shown in the 

chapter “Algorithms” of (Mathworks, n.d. a), and cited as follows. 

“ 

1. Search for the next unlabeled pixel, p. 

2. Use a flood-fill algorithm to label all the pixels in the connected component containing p. 

3. Repeat steps 1 and 2 until all the pixels are labeled. 

“ 

The labeling is done by specifying a connectivity. The connectivity can for instance be 8 or 4 

connectivity. In the 8 connectivity, all pixels enclosing a pixel that is to be labeled is considered. 

In the 4 connectivity, only the next pixel in vertical and horizontal direction are considered.  

The algorithm creates labeled clusters of pixels with the same intensity, and by defining that 

clusters containing less than a specific number of pixels should be removed, one is able to 

remove smaller clusters that are not of interest. 
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2.2.5 Sobel Operator 

The Sobel operator was introduced as a way of estimating the intensity gradient at a given 

location (𝑖, 𝑗) in a grayscale image, and is a discrete differentiation operator. It consists of two 

matrices which when superimposed on the grayscale image approximate the components, 𝑔𝑥 and 

𝑔𝑦 ,  of the intensity gradient in the horizontal and vertical direction respectively. They are 

defined as follows as seen in (Vincent & Folorunso, 2009, p.102). 

 

 
𝐺𝑥 = [

−1 0 1
−2 0 2
−1 0 1

] 23 

 
𝐺𝑦 = [

1 2 1
0 0 0
−1 −2 −1

] 
 

24 

 

After imposing the matrices on a given pixel location (𝑖, 𝑗), we find the value of the gradient |𝑔| 

and its angle 𝜃 as. 

 

 
|𝑔| = √𝑔𝑥2 + 𝑔𝑦2 25 

 𝜃 = tan−1
𝑔𝑦
𝑔𝑥

 26 

 

Consequently, estimating the intensity gradient at a given pixel location (𝑖, 𝑗). 

 

 



 

 18 

2.2.6 Canny edge detector 

The canny edge detector is a popular method used when one wants to isolate the edges of an 

object. The detector’s method consists of four stages as mentioned in (OpenCV tutorial, n.d.), 

and assumes a grayscale image as input. 

1. Noise reduction. If noise is present in the image, an approximation of the gradient will be 

affected by it, most likely giving a worse approximation. Consequently, a filter is applied 

to reduce the noise. 

2. Gradient approximation. Edges symbolize a jump in intensity, for instance when moving 

from a light object to a dark one. Thus, by finding an approximation of the gradient at 

every pixel, one can use it to determine if a pixel represents the edge of an object. This 

can be done through for instance the Sobel operator, which produces an image of the 

gradient’s magnitudes. 

3. Non-maximum suppression. To find the most suited candidates to be edges, every pixel 

in the magnitude image is checked to see if it is a local maximum. Local means the two 

closest pixels along the direction of a pixel’s gradient. If the pixel is not a local 

maximum, then it is not considered to be part of the edge.  

4. Hysteresis thresholding. The final step is to define two thresholds, one high, and one low. 

If the magnitude of the gradient is larger than the high threshold, the pixel is considered 

to be an edge. If the magnitude is lower than the low threshold, the pixel is not 

considered to be an edge. Finally, if the magnitude is in between both thresholds, and the 

pixel is connected to another pixel known to be an edge, it is considered to be an edge 

itself. 
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2.3 Disparity maps and disparity range 

A disparity map, 𝐷𝑏(𝑥, 𝑦), is the primary output of a stereo matcher and shares dimensions with 

the image it is in reference to, i.e. the base image, which usually is the left image of a stereo 

image pair. Each entry (𝑥, 𝑦) of the disparity map contains the believed disparity between a point 

in the base image and the corresponding point in the match image, which usually is the right 

image of a stereo image pair, which when projected to the world reference system has the same 

coordinates.  

 

2.3.1 Expected values in the disparity map 

Owing to Equation 8 we know that the disparity is inversely proportional to the depth of an 

object in 3D-space. Consequently, one expects parts of an object that is close to the cameras to 

yield higher disparity values and vice versa.  

 

2.3.2 Disparity range 

The disparity range decides the values disparities can have in the disparity map, and 

consequently the search space for a stereo matcher. Consider a grayscale base, and match image 

𝐼𝑏  and 𝐼𝑚  of the same size. We assume the images have been perfectly rectified. Point 𝑝1 =

(𝑥1, 𝑦1) resides in 𝐼𝑏 , and its match 𝑞1 = (𝑥1 − 𝑑, 𝑦1) in the match image, where 𝑑 is the 

unknown integer disparity. Without having chosen the range, or interval, of the disparity, the 

matching algorithm has to consider every pixel in row 𝑦1 as a possible match. However, by 

assuming the smallest and largest disparity possible between the two points, 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥, is 

known, one can restrict 𝑑 to the interval 𝑑 ∈ ℤ ∶ 𝑑 ∈ [𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎𝑥]. Owing to the disparity range, 

points similar to 𝑞1 that are outside the disparity range have been excluded from the search, thus 

diminishing the probability of choosing a wrong match. Additionally, the error between the true 

disparity and the estimated has been bounded to the range. 
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2.4 Dense two-frame stereo-matching algorithms 

 

2.4.1 The general steps of a two-frame stereo-matching algorithms 

We start by looking at the various aspects of a stereo matcher. Firstly, a dense stereo matcher 

seeks to find all possible matches and disparities between the pixels of two stereo images. 

Secondly, the search for a match is normally limited to the rows of the image after having stereo 

rectified them (Szeliski, 2010, p.538). Thus, saving computational time and limiting the search 

space from all pixels in an image to only one of its rows. Thirdly, the steps taken by a stereo 

matcher usually consists of four steps or a subset of those. Lastly, a stereo matcher can either be 

local, global or a mix of the two called semi-global as seen in (Scharstein & Szeliski, 2001, pp.4-

5) and (Hirschmuller, 2007, p.2). 

(Scharstein & Szeliski, 2001, p.3) outlines the four steps a dense two-frame stereo matcher 

usually makes (or a subset of those). The four steps as seen in the paper are: 

 

1. Matching cost computation 

2. Cost (support) aggregation 

3. Disparity computation/optimization 

4. Disparity refinement 

 

2.4.2 Matching cost 

Firstly, the matching cost, or in other words finding a measure of dissimilarity between two 

pixels, is described. The concept relies on finding a descriptor of a pixel and subsequently using 

a metric to compare how dissimilar the pixel’s descriptor is to another. The most common 

descriptors for a pixel would be the pixel and its neighbor’s intensity values or transforms of the 

intensities such as the Census Transform (Zabih & Woodfill, 2005) and image gradients (Klaus 

et al., 2006, p.2). To finalize the calculation of the matching cost and find a measure of the 

dissimilarity, metrics such as the squared or absolute sum of difference or the Hamming Distance 

could be used. The dissimilarity between position (𝑥, 𝑦) in the base image and position 
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(𝑥 − 𝑑, 𝑦) of the match image are stored in a 3-dimentional space known as the disparity space 

image 𝐶(𝑥, 𝑦, 𝑑) (Scharstein & Szeliski, 2001, p.4). Thus, the volume 𝐶 contains all matching 

costs between pixels in the base image and the associated pixels in the match image for every 

disparity in the disparity range. 

 

2.4.3 Cost aggregation 

The next step is the “cost (support) aggregation”. As described in (Scharstein & Szeliski, 2001, 

p.4) the costs in the disparity space image are aggregated by the use of support regions. An 

example of using support regions to aggregate the matching costs would be 2D or 3D convolving 

a window or block of fixed size over the disparity space image. The operations performed within 

the window could for instance be to set the value of the cost the window is centered on to the 

average of all costs within the window’s reach. In essence this step exploits local information 

about a position in the disparity space image to aggregate the costs.  

 

2.4.4 Disparity optimization and computation 

The “disparity computation/optimization” step branches out in two directions. For a local 

method, the step consists of using the “winner-take-all” strategy to find the disparity of a point. 

For each pixel at position (𝑥, 𝑦) the disparity associated with the lowest cost is chosen. On the 

other hand, a global method looks to use information about all matching costs in addition to 

imposing smoothness constraints on disparities and their neighboring disparities before coming 

to a final conclusion (Scharstein & Szeliski, 2001, p.5). Consequently, the “winner-take-all” 

strategy will not necessarily define the final disparity map for global methods as violations of the 

constraints are penalized as seen in Equation 11 in (Hirschmuller, 2007, p.3).  

 

2.4.5 Disparity refinement 

Finally, there is the “disparity refinement” step, also known as the post-processing of the 

disparity map. In this step, the first draft of the disparity map is available and thus it is concerned 

with refining it. Such refinition techniques could be to include sub-pixel accuracy and the 
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detection of occluded areas (Scharstein & Szeliski, 2001, pp.5-6) or the removal of outliers by 

convolving a median filter over the disparity map (Hirschmuller, 2007, p.5). 

 

2.4.6 Evaluation of Dense two-frame stereo-matching algorithms 

Disparity maps denote the distance, or number of pixels, between two pixels in their respective 

two images, which have either been captured by parallel cameras or been rectified. 

Consequently, the standard evaluation metric is the “n-pixel” error metric. As an example, we 

will look at the 3-pixel error metric used by the KITTI 2015 stereo evaluation contest (Menze & 

Geiger, 2015, p.5). If the “true” disparity in the ground truth is 15, and the predicted 12, then the 

predicted is deemed correct. However, if the predicted is say 11, the distance would be larger 

than 3, and it would be marked as wrong. Thus, by counting the number of pixels that were 

marked as wrong and divide it by the number of valid disparities in the “true” disparity map, one 

gets a value quantifying the percental amount of wrong predictions a stereo-matching algorithm 

made with respect to the “true” disparity map. Furthermore, as seen on KITTI 2015’s stereo 

evaluation webpage (Geiger et al., 2015a), accuracies are given in different categories such as 

“foreground”, “background”, “occlusion”, and “all” depending on which category one is 

interested in. 

 

2.5 MATLAB’s Semi-Global Block Matching 

Semi-Global Block Matching (SGBM) method is available in MATLAB (Mathworks, n.d. d), 

and uses OpenCV’s “StereoSGBM” class (Opencv StereoSGBM, n.d.) which may be seen by 

typing ‘open disparity’ in MATLAB’s console, and follow the implemenation’s code. The theory 

is included in the report as it is at the core of Optoscale’s stereo-matching algorithm. The method 

will be described in terms of a subset of the four steps which give the general outline of a dense 

two-frame stereo matcher.  
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2.5.1 The matching cost used 

Before finding the matching cost, the grayscale image intensities are transformed by estimating 

their gradients in the x-direction through the first Sobel derivative and clipping them to a 

predefined range (Kaehler & Bradski, 2017), i.e. the result are bounded to the range [-clipping 

value, clipping value]. Consequently, the matching cost is based on image gradients which can 

be robust against differences in camera gain, and bias (Klaus et al., 2006, p.2). Furthermore, the 

matching cost is found by computing the sum of absolute difference between two support regions 

in the base image and matching image respectively, in combination with the sampling insensitive 

Birchfield-Tomasi subpixel metric (Birchfield & Carlo, 1999). The final result is the disparity 

space image 𝐶(𝑥, 𝑦, 𝑑 ) = 𝐶(𝑝, 𝑑 ).  

 

2.5.2 Disparity optimization by a semi-global energy function 

In (Hirschmuller, 2007) the next step falls under what is called the “cost aggregation” category, 

however following the definitions introduced in the subchapter “Dense two-frame stereo 

matchers” of this paper it lands in the “Disparity computation/optimization” category. Before 

jumping into the equations, a few variables are defined. 𝑟 is a small integer directional step, for 

instance [−1,0]. 𝑃1 and 𝑃2 are scalar parameters penalizing changes in disparity when moving 

from one disparity estimate at a location to a neighboring location found by moving from 𝑝 to 

𝑝 − 𝑟. 𝑃1 penalizes a change of 1 in disparity, and 𝑃2 larger changes. 𝐶(𝑝, 𝑑 ) is the initial 

disparity space image. Thus, we can define the semi-global energy function, semi-global because 

it does not include all paths leading to 𝐶(𝑝, 𝑑𝑑  ), as the following recursive function as seen in 

equation 13 in (Hirschmuller, 2007, p.4). 

 𝐿𝒓(𝑝, 𝑑 ) =  𝐶(𝑝, 𝑑 ) + min(𝐿𝒓(𝑝 − 𝑟, 𝑑), 

𝐿𝒓(𝑝 − 𝑟, 𝑑 − 1) + 𝑃1, 

𝐿𝒓(𝑝 − 𝑟, 𝑑 + 1) + 𝑃1, 

min
𝑖
𝐿𝒓(𝑝 − 𝑟, 𝑖) + 𝑃2) − min

𝑘
𝐿𝒓(𝑝 − 𝑟, 𝑘)  

27 
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The algorithm does the following. 𝐿𝒓(𝑝, 𝑑 ) is set to the sum of the initial cost plus the smallest 

path cost associated with a step in direction 𝑟 from 𝑝, and subtracts “the minimum path cost of 

the previous pixel from the whole term” (Hirschmuller, 2007, p.4) . The final term is included to 

bound the maximum value a given point in the semi-global energy function can have without it 

growing too large. Consequently, discontinuities in the disparity map are penalized, however 

since the penalty is constant, natural discontinuities in the disparity map may still be preserved 

given the choice of the penalty parameters (Hirschmuller, 2007, p.3).  

 

2.5.3 Disparity calculation by finding the match with the smallest cost 

The final step in finding the disparity map is to join the costs of the paths in a final disparity 

space image 𝑆(𝑝, 𝑑) as seen in, and create the disparity map 𝐷𝑏  associated with the base image 

by choosing the disparity corresponding with the minimum cost at each location 𝑝 as seen in 

equation 14 in (Hirschmuller, 2007, p.4). 

 𝑆(𝑝, 𝑑) =∑𝐿𝒓(𝑝,

𝒓

𝑑) 28 

 𝐷𝑏(𝑝) = min
𝑑
𝑆(𝑝, 𝑑) 29 

   

 

2.5.4 SGBM’s three steps of disparity refinition 

Three methods of “disparity refinement” are included in the method. Firstly, a contrast threshold 

is introduced to define the boundaries of the first derivative of the Sobel operator. The interaction 

between the threshold and clipping values is defined in the source code of MATLAB’s 

“disparity” function (Mathworks, n.d. d) at line 168 which one may read by entering “open 

disparity” in MATLAB’s console. Via the code, one reads that the clipping value which defines 

the range of the first derivative is equal to 63 ∗ 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.  
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Secondly, a measure of a match’s uniqueness is used to determine the reliability of the match. 

The procedure is paraphrased from the description of “UniquenessThreshold” in (Mathworks, 

n.d. d). Let 𝐾 be the best disparity estimate, and 𝑉 be the corresponding SAD (sum of absolute 

difference) value. Consider V as the smallest SAD over the whole disparity range, and 𝑣 as the 

smallest SAD value over the disparity range excluding 𝐾 − 1, 𝐾, and 𝐾 + 1. If 𝑣 < 𝑉(1 +

0.01 ∗ 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), then the function marks the disparity for the pixel as unreliable. 

Consequently, by setting the uniqueness threshold high, more emphasis is put on the SAD 

calculations alone. Furthermore, when looking at the interaction between the contrast and 

uniqueness thresholds, a smaller “contrast threshold” value most likely leads to fewer pixels 

being marked as unreliable. The cause is most likely the range of the values coming from the 

first derivative of the Sobel operator being truncated by a clip value which is proportional to the 

“contrast threshold”, leading to SAD values being more equal given enough first derivatives 

having initial values that exceed the range. 

Lastly, the final method of the “disparity refinement” step checks if the disparity map found, 

when using for instance the left image as base, is in alignment with the disparity map found 

when using the right image as base. Firstly, one finds the best disparity estimate from a point 𝑝1 

in the base image which leads to the corresponding point 𝑝2 in the match image. Secondly one 

turns the table and finds the best disparity estimate from the same point 𝑝2 in the match image 

which leads to the corresponding point 𝑝3 in the base image. If the distance between 𝑝1 and 𝑝3 

differ more than “DistanceThreshold”, the pixel is marked as unreliable as seen in the description 

of “DistanceTreshold” in (Mathworks, n.d. d). The search for a match is performed on rectified 

images, and so the distance would be the absolute value of the difference between both points’ x-

coordinates as they share the same y-coordinate. (Banks & Corke, 2001, p.4) mentions that the 

technique’s primary function is to detect occlusions.  
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2.6 Convolutional Neural Networks 

2.6.1 Neural network terminology 

Inference 

When running inference with a CNN, one simply asks the network to make its prediction by 

having it processing the input given. 

Hyperparameter 

A hyperparameter in the context of neural networks are parameters set before training or 

inferring that control the structure of the network, for instance how many convolutional layers it 

should contain, what the filter size should be, and in general variables which determine how the 

network trains.  

Epoch 

An epoch is how many times the network has processed a subset, or the set, of training examples. 

For instance, an epoch could be defined as 50 iterations of mini-batches or having processed all 

available training data. 

Ground truth 

The ground truth contains the values the neural network tries to predict. If we’ve got two points 

of the same object in 3D-space in separate images, and we know the disparity between them are 

100, that would be the ground truth. 

 

2.6.2 The concept of Convolutional Neural Networks 

A convolutional neural network is a specialized neural network meant to operate on images. In 

essence, a convolutional neural network is a sequence of layers consisting of learnable weights 

and biases that “transforms one volume of activations to another through a differentiable 

function”. The citation is from the chapter “Layers used to build ConvNets” in (Stanford 

University, n.d. a) .  
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The cascading structure of a convolutional neural network consists of convolutional layers taking 

a volume as input and outputting a new, transformed, volume. Each individual convolutional 

layer can be looked at as a module taking an input volume, transforming the input volume via 

convolutional filters, methods such as normalization techniques and activation functions until 

finally outputting an output volume. Together, the convolutional filters and activation functions 

mimic the function of neurons in the brain (Stanford University, n.d. a). To understand the 

general flow from input to output in a layer we will have a look at Figure 5. 

 

Figure 5: Illustration of the input volume (red) and the output volume the filters create (blue). Source: Example 2 

from (Stanford University, n.d. a). 

 

The 32x32x3 input volume in light pink would be a color image of 3 channels, and the dark pink 

area in it is the subset of the input volume the filters are currently considering. Finally, the blue 

box is the output volume of the convolutional layer. Each circle represents a filter’s result when 

operating on a particular subset of the input volume. In this example, there are thus five 

convolutional filters. Furthermore, in a deep convolutional neural network several convolutional 

layers are added to a cascade, and the layers that are not the first one in the cascade take the 

output volume from the previous layer as input. Given certain hyperparameters which will be 

discussed later on, one can control the size of all output volumes (Stanford University, n.d. a). 
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2.6.3 Rectified Linear Unit activation function 

Rectified Linear Units (ReLU) is commonly used as the activation function in between 

convolutional layers due to it accelerating the process of training when using the stochastic 

gradient descent scheme compared to other non-linear activation functions, and its formula is as 

seen in the description of “ReLU” in (Stanford University, n.d. c).  

 

 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 30 

 

2.6.4 Convolutional filters 

We start off by describing theory on filters in the context of convolutional neural networks, it is 

based on (Stanford University, n.d. a) and (Westlie, 2018, pp.17-19).  One filter is in general a 3-

dimensional array which size depends on its spatial extent F and the depth D of its input. 

Consequently, the full size of the filter becomes FxFxD, and the area it covers, not the volume, 

its receptive field. Additionally, each element of the array is known as a weight, and every filter 

has a bias connected to it. The values of both its weights and biases are learned when training the 

convolutional neural network. In Figure 6 below, the value of F is 2, and D is 1, and the filter 

may for instance encode a diagonal feature.  

 

Figure 6: A simple 2x2x1 filter without its bias. Source: Figure 3 in (Westlie, 2018, p.17). 

Moreover, a filter has two hyperparameters associated with it, namely its size which depends on 

𝐹 and its stride. To understand the concept of stride, we will have a look at a simple example 

which is based on the example “Convolution Demo” in (Stanford University, n.d. a). Consider a 

convolutional layer that takes a volume of size 4x4x1 as input and has a single filter of size 2x2 

with bias equal to 0, and uses ReLU as the activation function. Firstly, the filter is superimposed 
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on the input volume in for instance the top left corner, and then the dot product is made. Figure 7 

depicts the operations made by the filter on a 4x4x1 input volume that encodes a diagonal line.  

 

 

Figure 7: A filter superimposed on the input volume. Source: Figure 4 from (Westlie, 2018, p.18). 

 

The result of the dot product is 30, we add the bias, which is 0, and pass the value through the 

activation function. Thus, 30 is the final output of the filter at this particular location. Next, the 

filter needs to slide over other values of the input. This is usually done by sliding the receptive 

field of the filter a number of places along the row dimension, which is known as its stride (S). 

“… when the filter reaches the end of the row, it moves down S rows and starts from left to right 

yet again.” (Westlie, 2018, p.18). Figure 8 illustrates the process with a stride of 2, and Figure 9 

the resulting output volume of the convolutional filter. 

 

 

Figure 8: The convolutional operation of a filter with stride 2. Source: Figure 5 in (Westlie, 2018, p.18). 
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Figure 9: The output volume of the convolutional layer with 1 filter where the depth is 1. Source: Figure 6 in 

(Westlie, 2018, p.19). 

As a result of the filter’s operation, our 4x4x1 input volume has been downscaled to 2x2x1 while 

still containing enough information to tell us that a diagonal line was encoded in it (Westlie, 

2018, p.19), due to the weights of the filter.  

Moreover, a convolutional layer usually consists of several filters with depth equal to the depth 

of the input volume, depending on how many features one needs to detect on an object before 

being able to state with high confidence which class the object belongs to. If the task was to 

simply determine whether a diagonal exists, then one could suffice. However, if the task is to 

determine if the object in question is a fish, one would most likely need more information on 

different features before making a decision. 

 

2.6.5 Determining the size of a convolutional layer’s output 

We would like to look at the size of the output volume of a convolutional layer. We assume that 

filters are the only module within the layer that may change the size of the input volume and that 

zero padding is used. If the input volume is of size 𝑊1𝑥𝐻1𝑥𝐷1, the number of filters being 𝐾 

with spatial extent 𝐹 having stride 𝑆, the formulas for the width 𝑊2, height 𝐻2 and depth 𝐷2 of 

the output volume become as seen in the summary of convolutional layers in (Stanford 

University, n.d. a). 

 
𝑊2 =

𝑊1 − 𝐹

𝑆
+ 1 31 

 
𝐻2 =

𝐻1 − 𝐹

𝑆
+ 1 

32 

 𝐷2 = 𝐾 33 
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2.6.6 Multiclass loss functions and the Softmax classifier 

The multiclass hinge loss is defined as follows as seen in the chapter “Multiclass Support Vector 

Machine loss” of (Stanford University, n.d. b): 

 

 𝐿(𝑠) = ∑ max(0, 𝑠𝑗 − 𝑠𝑦𝑖 +△)

𝑗≠𝑦𝑖

= ∑ max(0, (𝑠𝑗 +△) − 𝑠𝑦𝑖)

𝑗≠𝑦𝑖

 34 

 

Where 𝑠𝑗 denotes the scores outputted from the classifier that are not the “true” score, and 𝑠𝑦𝑖 the 

“true” score we want to predict. △ is a hyperparameter ensuring that the loss is non-zero 

whenever the “true” score is larger than the sum of the predicted score and △. Moreover, we see 

that the multiclass support vector machine loss is a measure of distance between the “true” score 

and the predicted plus some margin. Consequently, by minimizing it with respect to the 

network’s parameters, which is possible since both 𝑠𝑗 and 𝑠𝑦𝑖 are outputs of network which have 

been processed by the network’s parameters, we minimize this distance leading the network’s 

estimated score closer to the “true” score. We also see that only when (𝑠𝑗 +△) is smaller than 

the true score will the loss be zero and thus we can assume that the loss function wants the 

network to output small scores for bad matches, and higher scores for good matches. 

Furthermore, we will take a look at the multiclass cross-entropy loss function. We start of by 

looking at the definition of information entropy. Information entropy was defined in (Shannon, 

1948) as a measure of how uncertain one can be on the outcome given “a set of possible events 

whose probabilities of occurrence are 𝑝1, 𝑝2, …, 𝑝𝑛” (Shannon, 1948, p.10) with unit bits. Its 

formula is given just below theorem 2 in (Shannon, 1948, p.11), where the symbol 𝑆 has been 

chosen in this paper to represent the information entropy. 

 
𝑆(𝑝) = −∑𝑝𝑖 log(𝑝𝑖)

𝑛

𝑖=1
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Another interpretation of information entropy which aligns better with the cross-entropy loss is 

how uncertain we are on the outcome of a set of events given its probability distribution. 

Moving into the framework of convolutional neural networks, we need to define the Softmax 

classifier before the cross-entropy loss. Consider 𝑧 as the vectorization of the output volume of 

the convolutional neural networks final layer before classification, for instance a convolutional 

layer, with length equal to the number of classes the convolutional neural network is set to 

predict, and 𝑧𝑗 as the value of entry 𝑗 in 𝑧 belonging to a particular class. A Softmax classifier 

interprets this value as the unnormalized log probability of the correct class being 𝑗 and turns that 

unnormalized log probability into a normalized probability, with value in range < 0,1 >. Its 

formula, which converts the log probability 𝑧𝑗 to a normalized probability, is as seen in the 

chapter “Softmax classifier” of (Stanford University, n.d. a). 

 

 
𝑓𝑖(𝑧) =

𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑁
𝑗=1
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where 𝑁 denotes the number of classes. It is important to note that the vector 𝑓(𝑧) outputs an 

estimated probability distribution over the set of all classes. 

This leads us to the multiclass cross-entropy loss function. It is defined in Equation 37 according 

to (Stanford University, n.d. b) from the source’s section “Information theory view”, and put into 

context with the Softmax function in Equation 38. 𝑆(𝑝, 𝑞) represents the cross-entropy given the 

“true” probability distribution 𝑝(𝑥) and the estimated probability distribution 𝑞(𝑥),  and 

𝐿𝐶𝐸(𝑝, 𝑓) when it is used as a loss function where the Softmax function is used to estimate the 

probability distribution. 

 

 𝑆(𝑝, 𝑞) = −∑𝑝(𝑥)log (𝑞(𝑥))

𝑥

 37 
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𝐿𝐶𝐸(𝑝, 𝑓) = −∑𝑝(𝑖)log (𝑓𝑖(𝑧))

𝑁

𝑖=1
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𝑓𝑖(𝑧) is the output from the Softmax function for class 𝑖, and 𝑝(𝑥) normally is the Kronecker 

delta Dirac function putting all its mass on the correct class, and 𝑁 is the number of classes. Say 

the correct class is 𝑘, then only when 𝑖 equals 𝑘 would 𝑝(𝑖) be non-zero and set to 1. Finally, if 

we look at 𝑝 as a vector with one entry being 1, the rest set to 0, containing the “true” probability 

distribution over the set of classes and 𝑓(𝑧) as the estimated, (Stanford University, n.d. b), in the 

source’s section “Information theory view”, mentions that 𝐿𝐶𝐸(𝑝, 𝑓) becomes a measure of 

distance between the two distributions. Consequently, by minimizing it with respect to the 

network’s parameters, which is possible since 𝑓𝑖(𝑧) depends on the parameters of the network, 

one minimizes the distance between the “true” and the estimated probability distribution. 

 

2.6.7 How Deep Learning methods learn through mini-batch gradient descent  

The following theory is based on (Keskar et al., 2017, pp.1-2). The learning process of neural 

networks can be formulated as a non-convex optimization problem as seen in equation 39, which 

has been written with slightly different notation than as seen in equation 1 from (Keskar et al., 

2017, p.1). 

 

 

min
𝑥∈ℝ𝑛

𝐿(𝑥) ≔
1

𝑀
∑𝐿𝑖(𝑥)

𝑀

𝑖=1

 39 

 

Where 𝐿𝑖(𝑥) is a loss function for the data samples 𝑖 ∈ {1,2,… ,𝑀}. Furthermore, to minimize the 

function, the mini-batch gradient descent may be used as seen in equation 2 from (Keskar et al., 2017, 

p.2). 

 



 

 34 

 

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘 (
1

|𝐵𝑘|
∑ ∇𝐿𝑖(𝑥𝑘)

𝑖∈𝐵𝑘

) 40 

 

Where 𝑥𝑘 and 𝑥𝑘+1 are the values of the weights before and after the update, 𝛼𝑘 the learning 

rate, 𝐵𝑘 the mini-batch, |𝐵𝑘| the number of samples in the mini-batch, and ∇𝐿𝑖(𝑥𝑘) the gradient 

of the loss function evaluated at 𝑥𝑘. In essence, the network learns by processing all samples 

within the mini-batch, and then updates the weight’s according to equation 40. The method is 

called mini-batch gradient descent as it uses only a subset of the data samples available in the 

dataset to estimate the gradient of the loss function at every step. 

 

2.6.8 Batch normalization 

The following theory is based on (Ioffe & Szegedy, 2015). Batch normalization, if chosen to be 

included in a convolutional neural network, is a part of its convolutional layers, and may be used 

when the network trains on mini-batches. Batch normalization facilitates the usage of higher 

learning rates, negates the effects weight initialization may have on the convolutional neural 

network and reduces the risk of overfitting (Ioffe & Szegedy, 2015, p.1).  

The following citation from (Santurkar et al., 2019, p.2) summarizes the most important aspects 

of batch normalization. 

Broadly speaking, BatchNorm is a mechanism that aims to stabilize the distribution (over 

a minibatch) of inputs to a given network layer during training. This is achieved by 

augmenting the network with additional layers that set the first two moments (mean and 

variance) of the distribution of each activation to be zero and one respectively. Then, the 

batch normalized inputs are also typically scaled and shifted based on trainable 

parameters to preserve model expressivity. This normalization is applied before the non-

linearity of the previous layer. 
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2.6.9 Aspects to consider when training neural networks with mini-batch gradient descent 

Overfitting 

Overfitting occurs when the dataset used to train a neural network is limited in for instance size 

or diversity. Then, neural networks will not learn the complicated relationships between the input 

and output, but rather the relationship between the sampling noise present in the training data and 

the output. Consequently, the network will struggle to generalize on new data, as the noise in the 

new data might vary from that present in the training data (Srivastava et al., 2014, p.1).  

Several methods have been introduced to combat this issue. (Srivastava et al., 2014, p.1) 

mentions splitting the dataset into a training and validation set, which is a technique called cross-

validation. When the accuracy of the validation set diverges from that of the training set, 

especially when the training accuracy increases, and validation decreases, one should stop 

training as it is a clear sign that the network is overfitting. Another method would simply be to 

create a large training set that covers most aspects of the data, so that the network gets new 

inputs and does not learn the patterns of the sampling noise. 

Learning rate scheme 

In the introduction of (Brownlee, 2019a) it is mentioned that using a large learning rate can lead 

to unstable performances, while small learning rates may lead to the network being stuck, i.e in a 

sub-optimal solution yielding low prediction accuracy. Furthermore, if opting for a fixed learning 

rate scheme one needs to choose a small learning rate that finds a compromise between having 

unstable performance results and not failing to train. Choosing such a scheme would make the 

learning process slow. To gain good results while still training relatively quickly, one could 

introduce a parameter of “patience”. Meaning that the learning rate stays fixed for a number of 

epochs before being decayed at the every “patience” epoch as seen in the chapter “Drop 

Learning Rate on Plateau” of (Brownlee, 2019b). For instance, one could opt to lower the 

learning rate every 5th epoch. 

Furthermore, if one simple does not want to bother with finding the exact optimal learning rate, 

there exists learning rate optimizers (Ruder, 2017) that make educated guesses as to what the 

learning rate should be at every iteration of the training process when for instance using mini-

batch gradient descent to train the network. 
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Batch size 

(Keskar et al., 2017, pp.2-3) defines the typical size of a mini-batch 𝐵𝑘 used with mini-batch 

gradient descent as |𝐵𝑘| ∈ {32,64,… ,512}. The same source mentions that larger mini-batch 

sizes tend to decrease a network’s ability to generalize due to the network converging to sharp 

minimizers of the loss function. Smaller batch sizes, however, tend to find flat minimizers which 

gives the network a better ability to generalize to new data. Consequently, by training a network 

with a batch size of say 256, the network could produce worse results when inferring on new 

data than if one were to use a smaller batch size. 

Finally, (Bengio, 2012, p.5) reports that an increase in the batch size allows one to slightly 

increase the learning rate because the gradient found will be less noisy due to averaging over the 

batch size. 

 

2.7 Convolutional Neural Network stereo-matching algorithms 

2.7.1 Why can convolutional neural networks be stereo matchers 

A key concept of stereo matchers is the calculation of a matching cost, or in other words finding 

a measure of dissimilarity between two pixels. Following the development of Convolutional 

Neural Networks which learn distinctive features of an object by training on heaps of data, a new 

way of creating descriptors from pixel intensity values was discovered. Essentially, the 

convolutional neural network’s output after having operated on the image patch, is an output 

volume where each entry quantifies whether a specific feature was present or not. The features in 

question are specific to an object such as parts of its shape or color information. Consequently, 

the output of the convolutional neural network may be viewed as a descriptor of a pixel and its 

surroundings (Zagoruyko & Komodakis, 2015, p.5). Furthermore, common ways to measure the 

dissimilarity, matching cost, between two patches centered about a pixel would be to input both 

descriptors to an artificial neural network (Žbontar & LeCun, n.d., p.6) or join them by the dot 

product or cosine similarity as seen in (Žbontar & LeCun, 2016, p.5). 
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2.7.2 Using Convolutional Neural Networks to estimate disparity 

We will begin the description by looking at Figure 10, a workflow diagram which shows the 

general steps taken from inputting a pair of rectified stereo images to outputting a disparity 

estimate. 

 

 

Figure 10: Workflow diagram depicting the general steps a convolutional neural network takes when estimating 

disparity. 

 

The right and left branch are realized by a siamese convolutional neural network, which means 

that the filters in each branch shares weights. The difference between each branch would be the 

size of their input and output volumes. We consider a grayscale image as input to the network, 

with 𝐾 filters in the final layer before classification, and that the disparity range is [0,170]. The 

goal of the left branch is to output a volume which describes a patch centered about an arbitrary 

pixel in the left image with size 1𝑥1𝑥𝐾. 1𝑥1𝑥𝐾 denotes the branch has created a descriptor for 

one pixel and its surroundings with the output of the final K filters. The goal of the right branch 

is to output a volume describing all pixels within the disparity range of the right patch, centered 

about the pixel location chosen in the left image. Consequently, the final size of the output 
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volume becomes 1𝑥(170 + 1)𝑥𝐾 ⟺ 1𝑥171𝑥𝐾. 1𝑥171𝑥𝐾 denotes that the branch has created a 

descriptor for 171 pixels and their surroundings with the output of the final K filters covering the 

entire disparity range. Furthermore, the two output volumes are joined, leading to a matching 

cost volume of size 1x171x1 which is flattened to a vector of length 171. Finally, this vector is 

used in classification to decide which of the 171 disparities got the best score. 

 

2.8 The specifics of MC-CNN-fst’s Convolutional Neural Network part 

2.8.1 Inside MC-CNN-fst’s convolutional layers 

MC-cnn-fst’s convolutional layers consist of a spatial convolution module implementing the 

filters and biases. Furtheremore, ReLU is used as the activation function at every convolutional 

layer except the last one to not lose “information encoded in the negative values” (Luo et al., 

2016, p.5697).  

 

2.8.2 Loss function and classification 

The last layer of the network before classification is a “StereoJoin” layer which computes the 

cosine similarity for every pair of patches associated with a distinct disparity by normalizing and 

taking the dot product. This serves as a measure of similarity between both patches, however the 

assumption that a score of 1 is perfect (parallel vectors) is not true in this case as we will see 

shortly. 

MC-CNN-fst uses the following variant of the multiclass hinge loss function, 𝐿𝑀𝐶 . 

 

 𝐿𝑀𝐶 = max(0,△ +𝑠− − 𝑠+) 41 

 

△= 0.2 is the margin, 𝑠− is the score of a negative sample and 𝑠+ a positive. Exactly how  𝑠− 

and 𝑠+ are derived is described in the following citation from (Žbontar & LeCun, 2016, p.4). 
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A positive example is a pair of patches, one from the left and one from the right image, 

whose center pixels are the images of the same 3D point, while a negative example is a 

pair of patches where this is not the case. 

 

In addition, the same source mentions that the center pixel of the right patch leading to 𝑠+ is 

randomly chosen to be within 1 pixel of the “true” pixel, i.e. one shifts the right center pixel’s 

location 1 position to the right or the left. The reason being is that the method’s “disparity 

refinement” operations perform better when not only the best match is assigned a low score by 

the network, but also matches close to it. The center pixel of the right patch leading to 𝑠− is 

chosen the same way, however, stays within for instance 10 pixels of the “true” pixel. 

Moreover, owing to equation 41 we see that the loss is zero only when 𝑠+ ≥ 𝑠− +△. Both 𝑠− and 

𝑠+ are outputs of the network. We update the parameters of the network by minimizing its loss, 

and so what defines the value of 𝑠+, and 𝑠− is the network itself and not the natural way of 

thinking that 𝑠+ should be 1 because then vectors are parallel. We can however say that the 

network optimizes its weights to give a good match higher score than a bad plus the margin. 

Finally, MC-CNN implements a simple classifier as the final stage of the network. The classifier 

assumes we have got similarity scores for every disparity in the disparity range (that is not 

outside the bounds of the image) and chooses the disparity associated with the highest score.  

 

2.9 The specifics of Content-CNN’s Convolutional Neural Network part 

2.9.1 Inside Content-CNN’s convolutional layers 

The convolutional layers of Content-CNN contain the following methods. First of there is a 

spatial convolution module implementing the weights and biases of the filters, then a batch 

normalization module. ReLU is used as the activation function on all convolutional layers except 

the last one to keep the information the negative values encode.  
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2.9.2 Classification method and loss function 

Furthermore, Content-CNN uses the Softmax classifier as part of the final stage of the network. 

As we recall, the Softmax classifier outputs a probability distribution over the entire disparity 

range. Consequently, the disparity that is chosen as the best estimate is associated with the 

highest probability.  

Finally, the loss function used is the multiclass cross entropy loss with some interesting 

nuisances. It is shown below and extracted from (Luo et al., 2016, p.5697). 

 

 𝐿𝐶𝑜𝑛𝑡𝑒𝑛𝑡 =∑𝑝𝑔𝑡(𝑦𝑖)log (𝑝𝑖(𝑦𝑖 , 𝑤))

𝑖,𝑦𝑖
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Where 𝑝𝑔𝑡(𝑦𝑖), the “true” probability distribution, is not the Kronecker delta function, but rather 

a smooth target distribution, and 𝑝𝑖(𝑦𝑖 , 𝑤) the output of the Softmax classifier. The entry of the 

target distribution related to the “true” disparity is set to 0.5. At the entries 1 and 2 pixels away 

from the “true” disparity, a probability of 0.2, and 0.05 is present respectively. Finally, all other 

disparities are deemed to be bad and therefore their entries are set to 0.0. The reasoning behind 

incentivizing matches that are not entirely on point is due to two aspects. Firstly, by rewarding 

matches close to the true match, one opens the network to capture correlations between the 

“true” disparity ± 2. Thus, there is some leeway in the network in that it does not have to strictly 

differentiate between the perfect match and all others. Secondly, the network is optimized with 

the 3-pixel-error in mind, and so rewarding matches within this accepted range of the “true” 

match is beneficial. 
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3 Method 

 

3.1 Gathering information on methods for ground truth disparity map creation 

3.1.1 Finding methods for ground truth disparity map creation 

Google Scholar, GitHub and Google were used in finding methods for ground truth disparity 

map creation. Searches on keywords such as “stereo dataset”, laid the foundation of the search, 

and the resulting papers and descriptions found through it were skimmed for new sources. 

NTNU’s ORIA was used to determine whether a paper had been peer-reviewed, and Google to 

determine the papers’ citation count.  

 

3.1.2 Determining the methods’ accuracy and general requirements 

When it comes to the accuracy, the paper’s associated with each method was skimmed over and 

searches on keywords “accuracy”, and “error” was performed. Moreover, when looking for their 

general requirements the same process was repeated and the following keywords used in the 

search: “assumption”, “allow”, “static” and “dynamic”. 

 

3.2 Gathering information on deep learning stereo matchers 

3.2.1 Finding methods and their implementations  

Google and the KITTI 2015 stereo evaluation’s leaderboard (Geiger et al., 2015b) were the main 

sources of information. The leaderboard included references to the method’s paper and its 

implementation, and so it became the main source used in finding other methods and their 

implementations. NTNU’s ORIA was used to determine whether a paper had been peer-

reviewed, and Google to determine the papers’ citation count. 
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3.2.2 Dissecting the details of each implementation’s code 

To find whether the code for training, inferring, preparation of data, data augmentation and post-

processing/disparity refinement was available or not, the repositories “usage” chapter was 

consulted. Additionally, the code files used in inferring and training were read in order to 

determine if they cover one of the mentioned categories. Finally, the paper of each 

implementation was skimmed over and a search using the keywords “code”, “train”, “pre”, 

“preprocess”, “inferring”, “data”, “augmentation”, “post” and “refine” was conducted for each 

paper.  

 

3.2.3 Finding the requirements needed to run each implementation 

When looking for the specifications needed to run each method, the following method was used. 

The papers and code repositories were skimmed over, and a search on relevant keywords such as 

“gpu”, “amd”, “nvidia”, “cuda”, “cudnn”, “operating system” was conducted. In addition, when 

having found the frameworks, drivers and libraries needed, their required specifications were 

found by Googling for instance “torch requirements”. 

 

3.2.4 Finding the methods’ accuracy results and runtime  

The KITTI 2015 Stereo Evaluation (Geiger et al., 2015b) was consulted when looking for 

accuracy results and runtime, as all methods found had been compared to one another through it. 

Only the accuracies of the “D1-all” metric was included, as it is a measure of how many 

disparity estimates were wrong when considering all disparities in the ground truth disparity 

map. Additionally, the papers of each method were read if the accuracy or runtime was missing 

from the leaderboard. 
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3.3 Capturing the images for the dataset 

The images were captured at Optoscale`s facilities. A fish model attached to a rod as seen in 

Figure 11 was lowered in front of  Optoscale’s BioScope (Optoscale AS, n.d.) in a freshwater 

pool as seen in Figure 12. The pool was enclosed by curtains in order to reduce the illumination 

coming from the outside. Figure 13 shows the scene as it was when the cameras were capturing. 

The cameras captured a series of 200 image pairs taken at 1 second intervals, and used a software 

trigger to synchronize the capture. The fish model was slowly moved while recording to get 

images of different angles and distances. Figure 14 shows an example of the color images 

captured. In total 3 series were captured making the dataset consist of 600 image pairs.  

 

 

Figure 11: A picture of the fish model. 
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Figure 12: A picture of the setup in the freshwater tank. Optoscale’s BioScope is at the bottom of the image. 

 

Figure 13: Picture of the setup when its capturing image. The source of the strong illumination seen in the upper 

right corner was not present when the real images were taken. 
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Figure 14: A picture captured by Optoscale's BioScope. 

 

3.4 Choosing method which will be used to create ground truth disparity maps 

Optoscale and the author agreed that ground truth disparity maps would be created by optimizing 

their algorithm which uses MATLAB’s SGBM stereo matcher. The decision has consequences 

which is discussed in section 6.3. 

 

3.5 From raw images to ground truth disparity map 

3.5.1 Stereo rectification 

Stereo rectification was the first step needed to be performed in order to limit the search for a 

match to the horizontal axis, and to enable stereo-matching algorithms which assume this had 

been done. Optoscale provided the stereo parameters for the cameras, which had a mean 

projection error of 0.1924 pixels over 136 images of a checkerboard at different angles and 

distances in the freshwater pool. Finally, the image pair was passed to MATLAB’s 

“rectifyStereoImages” function along with the stereo parameters.  
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3.5.2 Removing stripe patterns when converting to gray scale 

A traditional RGB to grayscale conversion would result in an image which preserves the striped 

structured light pattern as seen in Figure 15. The darkened stripes may cause issues when for 

instance thresholding the image later on as their intensities are lower and thus closer to the 

background pixels’ intensity values. The issue is fixed by using the following “gray scale” 

conversion, which was received from Optoscale, and described with permission. 𝐼𝑟𝑔𝑏(𝑖, 𝑗, 𝑘) is 

an RGB image, and 𝐼"𝑔𝑟𝑎𝑦"(𝑖, 𝑗) the “gray scaled” image of same size, where 𝑖 denotes the row 

index, 𝑗 the column index and 𝑘 the channel. Remove the effects of structured light by setting the 

intensity of 𝐼"𝑔𝑟𝑎𝑦"(𝑖, 𝑗) according to the following formula. 

 

 
𝐼"𝑔𝑟𝑎𝑦"(𝑖, 𝑗) =

∑ 𝐼𝑟𝑔𝑏(𝑖, 𝑗, 𝑘)
3
𝑘=1

3
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 The result of the conversion is shown in Figure 16. 

 

 

Figure 15: Result when using standard grayscale conversion. 
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Figure 16: Result when using the “gray scale” method. 

 

3.5.3 Outlining a method to find the binary image masking the pixels belonging to the fish 

Finding the mask of the fish present in each image is an important step in creating the disparity 

map that will serve as ground truth. The mask enables the removal of disparity estimates that do 

not belong to the fish, in addition to allowing the cropping of images. To do so, a filtering 

pipeline consisting of 8 filter modules and a control module was created to identify the pixels in 

the image which belongs to the fish and not the background or other noise elements. The entire 

pipeline is summarized by the workflow diagram in Figure 17, and the script implementing the 

filter modules may be found in section 10.2.1. 
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Figure 17: Workflow diagram depicting the process of finding the fish’ binary image. 

 

 

3.5.4 White Top-hat filtering to reduce the non-uniform noise 

White Top-hat filtering is effective in separating bright objects from dark ones, and thus it is the 

first step of the filtering pipeline. Figure 18 shows the binary image of the grayscale image 

before top-hat filtering, and Figure 19 shows the binary image after the filtering. Binary images 

were used to show the result of the operation, as it better illustrates the effects of top-hat filtering 

than showing the top-hat filtered grayscale image. The white pixels in the binary image 

correspond to pixels in the grayscale image with intensity above zero. The structuring element 

was chosen as a disk with radius 60 pixels. 
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Figure 18: Binary image of the grayscale where all white pixels coincide with intensity values in the grayscale 

image being above zero. 

 

 

Figure 19: Result of the Top-hat filter. 
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3.5.5 Removing background pixels not colorized by the structured light 

In Figure 14 the fish is clearly colorized, whereas the background is in essence different tones of 

gray. This observation was confirmed by using the “Digital Color Meter” app available in 

MacOS (Apple, n.d.). Consequently, one should be able to remove some non-fish related pixels 

by checking if they are tones of gray. One can check if the difference between the red and green, 

green and blue and blue and red channel values of each pixel is within 1 value of each other. If 

so, they make out a tone of gray and may be removed from the binary image. The method is 

described below, and its result is shown in Figure 20. 

• Let 𝑖 = 1,2,… , 𝐼ℎ, 𝑗 = 1,2,… , 𝐼𝑤  and 𝑘 = 1,2,3 be the row, column and channel numbers 

of an RGB image. 

• Let 𝐼(𝑖, 𝑗, 𝑘) be the value of a pixel at location (𝑖, 𝑗) and color channel 𝑘. 

• Let 𝐷12
𝑎𝑏𝑠(𝑖, 𝑗), 𝐷23

𝑎𝑏𝑠(𝑖, 𝑗) and 𝐷31
𝑎𝑏𝑠(𝑖, 𝑗) denote the absolute value of the difference 

between the image’s red and green, green and blue and blue and red channel’s value at 

pixel location (𝑖, 𝑗). For instance, 𝐷12
𝑎𝑏𝑠(𝑖, 𝑗) = |𝐼(𝑖, 𝑗, 1) − 𝐼(𝑖, 𝑗, 2)|. 

• Let 𝑀(𝑖, 𝑗) be an empty binary image with the same width and height as 𝐼. 

• Iterate through every value of 𝑖 and 𝑗 and set the entry in 𝑀(𝑖, 𝑗) according to equation 

44.   

  

 
𝑀(𝑖, 𝑗) = {

0
1
  𝑖𝑓  𝐷12

𝑎𝑏𝑠(𝑖, 𝑗) ≤ 1 ⋀  𝐷23
𝑎𝑏𝑠(𝑖, 𝑗) ≤ 1 ⋀  𝐷31

𝑎𝑏𝑠(𝑖, 𝑗)  ≤ 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                              
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• Finally, set 𝐼(𝑖, 𝑗, 𝑘) to the result of the element wise multiplication of 𝐼(𝑖, 𝑗, 𝑘) and 

𝑀(𝑖, 𝑗) for every channel k to remove gray toned pixels from the image. 
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Figure 20: Result of removing pixels that are tones of gray. 

 

3.5.6 Thresholding to remove low intensity noise 

The top-hat filter has laid the foundation for thresholding to take place. Since small blobs of 

nonuniform lighting has gotten its values greatly reduced or set to zero, the first step of the 

thresholding procedure is to set all pixels below a certain threshold to zero. By experimenting on 

certain images of the dataset which contained the highest and lowest intensity values, it was 

determined that the optimal threshold value should be the mean of all pixel intensities in the 

grayscale image divided by 
1

3
. Thus, all pixels with intensity less than or equal to this value was 

set to zero. The result of the operation is shown in Figure 21. 

 

Figure 21: Result of mean thresholding. 
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Furthermore, a form of column thresholding was introduced to remove most of the illumination 

noise that was resilient to the previous filters. As the structured light emitter emits vertical color 

beams, one would assume that most pixels that belong to the fish in a column of the image would 

have a relatively small variation in intensity values compared to for instance the variance in 

intensity of all pixels belonging to the fish or even the rows of pixels. The method consists of 

finding the mean intensity value of a column where all column pixels with value 0 are excluded 

from the calculation of the mean and then scale the mean by a factor with value less than 1 to not 

remove values below the mean that still belong to the fish. By experimenting on images from the 

dataset with small and high pixel intensities it was found that when scaling the column mean by 

1

10
, pixels that belong to the fish were preserved and non-fish related pixels were excluded. 

Furthermore, the output of the thresholding filter is a binary image. The result of the operation is 

shown in Figure 22. 

 

 

Figure 22: Result of the specialized column thresholding method. 
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3.5.7 Median filtering to remove salt-n-pepper noise and repair gaps in the binary image 

The median filter is needed to remove the scattered small blobs of non-fish related pixels left, in 

addition to repairing small pixel gaps along the edge of the fish’ body that were caused by the 

previous filters. The filter size was set to 5x5, and the result is shown in Figure 23. 

 

 

Figure 23: Result of the median filter. 

 

3.5.8 Blurring and thresholding to smooth edges and fill gaps 

The previous filters have in some instances caused the border of the fish to appear rough. From 

our knowledge of the fish’ shape, the borders should be smooth. Moreover, it was discovered 

that the filter also serves as a gap filler. The method blurs the binary image by a filter of size 7x7, 

and slides over the image through 2D-convolution. The resulting image was thresholded at 0.5. 

The result of the operation is shown in Figure 24. 
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Figure 24: Result of the edge smoothing operation. 

 

3.5.9 Filling larger holes within the binary image 

Hole filling is needed as previous filters are not perfect and thus some pixels within the border of 

the fish have been set to 0. As the border of the fish has been established by the former filters, 

the following hole filling algorithm was used. The algorithm defines the background pixel as the 

intensity value at the edge of the image, so in this instance it would be 0. Then it checks if it can 

pave a path along background pixels from the edge of the image to a certain pixel. If this is not 

possible for a given pixel, its assumed to be a hole within an object and its value is set to 1. As 

not all images are affected by every filter, a new image that is outputted from the blurring 

module is shown in Figure 25.  The result of the operation is shown in Figure 26.  
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Figure 25: The binary image before hole filling. 

 

Figure 26: The binary image after hole filling. 
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3.5.10 Removing smaller blobs of pixels through connected components 

The eight step is to remove all clusters consisting of 20,000 or less pixels with value 1. As we are 

quite confident that we have found the majority of pixels belong to the fish, all other smaller 

blobs can be removed. A new image where the connected components module became relevant 

is shown in Figure 27, and the result of the operation is shown in Figure 28. 

 

 

Figure 27: Example of a binary image where a cluster of pixels not belonging to is present. 

 

 

Figure 28: Result of the cluster size threshold method. 
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3.5.11 Manually mark where to fill gaps and crop unwanted parts 

This step allows the user to manually choose sections of the image were a filter should operate 

and to remove certain parts of the binary mask if it was uncertain that it captured the pixels 

belonging to the fish. A script was created in MATLAB, which may be seen in section 10.2.2, 

that allows the user to manually set the range of columns a filter should operate on. The binary 

image was plotted, and the user may interactively choose two ranges of columns, [𝑐1, 𝑐2] and 

[𝑐3, 𝑐4],  on which MATLAB’s morphological “imclose” method, with a structuring element in 

the form of a line with length 19, will operate on by choosing points with the mouse cursor. 

Additionally, the user may choose two additional points which define the left and right sector 

where all pixel’s values within those sectors will be set to zero. To exemplify the latter part, the 

fifth point denotes column 𝑐5, the sixth 𝑐6 and 𝐼𝑤 denotes the image width. Then all pixels 

within columns [1, 𝑐5] and [𝑐6, 𝐼𝑤] will be set to zero. The latter part of the method is useful as 

sometimes it was hard to tell whether the most left or right region of the image belonged to the 

fish or not. Consequently, by truncating the image at a safe location, one can be more certain that 

only fish related pixels are included. Figure 29 shows the operation of interactively choosing 

points, and Figure 30 shows the result. 

 

 

Figure 29: The interactive process of marking the gaps that should be filled and areas to truncate. 
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Figure 30: Result of the interactive process. 

 

3.5.12 Controlling how well the binary image fits the original fish image 

The final step of the procedure was to control the fit of the binary mask. To do so, the boundary 

of the binary masked fish was found through MATLAB’s “canny edge” detection method as 

shown in Figure 31. Subsequently, the boundary image was imposed onto the “grayscale” image 

that coincided with the binary mask. To separate the pixels belonging to the fish and the pixels 

that are part of the boundary of the binary mask, the boundary pixels were set to the highest 

value 255. Figure 32 depicts the left and right images after the boundary of the binary mask was 

imposed. Furthermore, the control phase consisted of visually inspecting if only pixels belonging 

to the fish were present within the boundary or if it captured background pixels as well. If It was 

obvious that the boundary included background pixels far from the borders of the fish, the image 

pair was discarded. It was paid special attention to the left binary mask fit, as this is the most 

important when it comes to creating the ground truth disparity map. Figure 32 also shows an 

example of an accepted binary mask, whereas Figure 33 shows an example of a discarded one. In 

total, 598 image pairs were accepted and 2 discarded. The script implementing the method may 

be found in section 10.2.3. 
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Figure 31: The result of the canny edge detector. 

 

 

Figure 32: Imposing the border on the grayscale images of the fish and checking if it fits. 

 

 

Figure 33: An example where the binary image did not fit the fish. 
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3.6 Cropping the fish’ images 

In order to reduce training time and memory usage of the GPU, the fish images were cropped to 

a smaller size. The requirements for the crop will be that the disparity ranges stay as is, in 

addition to having as many fish related pixels as possible available for stereo matching. As the 

binary images define the pixels that belong to the fish, they will be used to find the crop region. 

Two separate algorithms were created to define the crop regions parameters. The script executing 

the cropping algorithm may be found in section 10.2.4. 

 

3.6.1 Finding the height of the crop region 

Finding the height of the crop region is slightly easier than finding its width. The images have 

been rectified, consequently the same point on the fish in both left and right image can be found 

along their respective x axes. Thus, the maximum height found will not lead to data loss directly 

unless the rectification failed. However, the stereo matching algorithms mentioned in this report 

rely on a square sized window imposed on a pixel to use the neighboring pixels in both x and y 

direction to describe it.  Consequently, an offset must be added to the maximum height found. 

The offset, ocrop, was chosen to be 36, as the largest number of neighboring pixels in a given 

direction used by any of the stereo matching methods is 18. When accounting for the opposite 

direction, offset must be double that. 

The crop height, Hcrop, was found through the following procedure. Let 𝐼ℎ denote the image 

height. 

• Iterate through each row of the fish’ left and right binary image from top to bottom until 

the row contains a pixel with value 1. Define the row numbers as 𝑦𝐿
𝑚𝑖𝑛 and 𝑦𝑅

𝑚𝑖𝑛. 

• Repeat step 1 except iterate from bottom to top. Define the row numbers as 𝑦𝐿
𝑚𝑎𝑥  and 

𝑦𝑅
𝑚𝑎𝑥. 

• Calculate the crop region’s height, 𝐻𝑐𝑟𝑜𝑝, and top left y-coordinate, 𝑌𝑚𝑖𝑛, from the 

equations below. 
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Let 𝑌𝐿
𝑚𝑖𝑛 and 𝑌𝑅

𝑚𝑖𝑛 be candidates to the smallest y-coordinate and 𝑌𝐿
𝑚𝑎𝑥 and 𝑌𝑅

𝑚𝑎𝑥 be candidates 

to the largest y-coordinate.  

 

 𝑌𝐿
𝑚𝑖𝑛 = 𝑦𝐿

𝑚𝑖𝑛 −
𝑜𝑐𝑟𝑜𝑝
2
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 𝑌𝑅
𝑚𝑖𝑛 = 𝑦𝑅

𝑚𝑖𝑛 −
𝑜𝑐𝑟𝑜𝑝
2
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 𝑌𝐿
𝑚𝑎𝑥 = 𝑦𝐿

𝑚𝑎𝑥 +
𝑜𝑐𝑟𝑜𝑝
2
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 𝑌𝑅
𝑚𝑎𝑥 = 𝑦𝑅

𝑚𝑎𝑥 +
𝑜𝑐𝑟𝑜𝑝
2
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Let 𝑌𝑚𝑖𝑛 be one of the candidates for smallest x-coordinate or 1 and 𝑌𝑚𝑎𝑥 be one of the 

candidates for largest x-coordinate or 𝐼ℎ given the conditions. 

  

𝑌𝑚𝑖𝑛 =

{
 
 

 
 min(𝑌𝐿

𝑚𝑖𝑛 , 𝑌𝑅
𝑚𝑖𝑛)  

𝑌𝐿
𝑚𝑖𝑛                        

𝑌𝑅
𝑚𝑖𝑛                       
1                              

𝑖𝑓  𝑌𝐿
𝑚𝑖𝑛 > 1 ∧ 𝑌𝑅

𝑚𝑖𝑛 > 1        

𝑖𝑓  𝑌𝐿
𝑚𝑖𝑛 > 1 ∧ 𝑌𝑅

𝑚𝑖𝑛 < 1        

𝑖𝑓  𝑌𝐿
𝑚𝑖𝑛 < 1 ∧ 𝑌𝑅

𝑚𝑖𝑛 > 1        
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                   
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𝑌𝑚𝑎𝑥 = {

max(𝑌𝐿
𝑚𝑎𝑥 , 𝑌𝑅

𝑚𝑎𝑥)  

𝑌𝐿
𝑚𝑎𝑥                        

𝑌𝑅
𝑚𝑎𝑥                        
𝐼ℎ                              

𝑖𝑓  𝑌𝐿
𝑚𝑎𝑥 < 𝐼ℎ ∧ 𝑌𝑅

𝑚𝑎𝑥 < 𝐼ℎ  

𝑖𝑓  𝑌𝐿
𝑚𝑎𝑥 < 𝐼ℎ ∧ 𝑌𝑅

𝑚𝑎𝑥 > 𝐼ℎ  

𝑖𝑓  𝑌𝐿
𝑚𝑎𝑥 > 𝐼ℎ ∧ 𝑌𝑅

𝑚𝑎𝑥 < 𝐼ℎ  

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                 
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Let 𝐻𝑐𝑟𝑜𝑝 denote the height of the crop region. 

 𝐻𝑐𝑟𝑜𝑝 = 𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛 51 
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3.6.2 Finding the width of the crop region 

When finding the width of the crop region, one needs to account for the following issues. Firstly, 

both cropped images need to be of the same size. Secondly, the stereo-matching algorithms used 

in this report truncates the left edge of the disparity map by the largest value of the chosen 

disparity range, namely the max disparity or 𝑑𝑚𝑎𝑥. To exemplify, let 75 denote the max disparity 

value. If one were to crop precisely at the first fish related pixel from the left of the image, the 

stereo algorithm would truncate 75 of the most left columns in the image by marking the pixels 

defined by those columns as unreliable. Thirdly, the preprocessing part of the deep learning 

methods exclude 𝑑𝑚𝑎𝑥 columns of pixels from the left and right edges of an image. 

Consequently, if a fish related pixel is less than 𝑑𝑚𝑎𝑥 pixels from one of the edges of the image, 

it is not included in the training data which is of disadvantage as data gets lost if not accounted 

for. Lastly, one needs to account for the square window size issue mentioned in the section above 

about finding the height of the crop region.  

The width of the crop region was found through the following procedure. Let 𝐼𝑤 denote the 

image width and 𝑑𝑚𝑎𝑥 denote the maximum disparity.  

• Iterate through each column of the fish’ left and right binary image from left to right until 

the column contains a pixel with value 1. Define the column numbers as 𝑥𝐿
𝑚𝑖𝑛  and 𝑥𝑅

𝑚𝑖𝑛 

respectively. 

• Repeat the step above except iterate from right to left. Define the column numbers as 

𝑥𝐿
𝑚𝑎𝑥  and 𝑥𝑅

𝑚𝑎𝑥 respectively. 

• Find an estimate to 𝑑𝑚𝑎𝑥 by plotting the stereo anaglyph of left and right image pairs 

where the fish is close to the cameras and measure the disparity between points believed 

to be the closest to the cameras. Add an error margin of 10 to 𝑑𝑚𝑎𝑥 in case the true 𝑑𝑚𝑎𝑥 

was missed. 𝑑𝑚𝑎𝑥 was found to be 170.  

• Calculate the crop region’s width, 𝑊𝑐𝑟𝑜𝑝, and top left x-coordinate, 𝑋𝑚𝑖𝑛, from the 

equations below.  
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Let 𝑋𝐿
𝑚𝑖𝑛 and 𝑋𝑅

𝑚𝑖𝑛 be candidates to the smallest x-coordinate and 𝑋𝐿
𝑚𝑎𝑥 and 𝑋𝑅

𝑚𝑎𝑥 be candidates 

to the largest x-coordinate. 

 

 𝑋𝐿
𝑚𝑖𝑛 = 𝑥𝐿

𝑚𝑖𝑛 −
𝑜𝑐𝑟𝑜𝑝
2

− 𝑑𝑚𝑎𝑥 
52 

 𝑋𝑅
𝑚𝑖𝑛 = 𝑥𝑅

𝑚𝑖𝑛 −
𝑜𝑐𝑟𝑜𝑝
2

− 𝑑𝑚𝑎𝑥 
53 

 𝑋𝐿
𝑚𝑎𝑥 = 𝑥𝐿

𝑚𝑎𝑥 +
𝑜𝑐𝑟𝑜𝑝
2

+ 𝑑𝑚𝑎𝑥 54 

 𝑋𝑅
𝑚𝑎𝑥 = 𝑥𝑅

𝑚𝑎𝑥 +
𝑜𝑐𝑟𝑜𝑝
2

+ 𝑑𝑚𝑎𝑥 55 

 

Let 𝑋𝑚𝑖𝑛 be one of the candidates for smallest x-coordinate or 1 and 𝑋𝑚𝑎𝑥 be one of the 

candidates for largest x-coordinate or 𝐼𝑤 given the conditions. 

  

𝑋𝑚𝑖𝑛 =

{
 
 

 
 min(𝑋𝐿

𝑚𝑖𝑛 , 𝑋𝑅
𝑚𝑖𝑛)  

𝑋𝐿
𝑚𝑖𝑛                        

𝑋𝑅
𝑚𝑖𝑛                       

1                              

𝑖𝑓  𝑋𝐿
𝑚𝑖𝑛 > 1 ∧ 𝑋𝑅

𝑚𝑖𝑛 > 1        

𝑖𝑓  𝑋𝐿
𝑚𝑖𝑛 > 1 ∧ 𝑋𝑅

𝑚𝑖𝑛 < 1        

𝑖𝑓  𝑋𝐿
𝑚𝑖𝑛 < 1 ∧ 𝑋𝑅

𝑚𝑖𝑛 > 1        
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                    
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𝑋𝑚𝑎𝑥 = {

max(𝑋𝐿
𝑚𝑎𝑥 , 𝑋𝑅

𝑚𝑎𝑥)  

𝑋𝐿
𝑚𝑎𝑥                         

𝑋𝑅
𝑚𝑎𝑥                         

𝐼𝑤                               

 

𝑖𝑓   𝑋𝐿
𝑚𝑎𝑥 < 𝐼𝑤 ∧ 𝑋𝑅

𝑚𝑎𝑥 < 𝐼𝑤   

𝑖𝑓   𝑋𝐿
𝑚𝑎𝑥 < 𝐼𝑤 ∧ 𝑋𝑅

𝑚𝑎𝑥 > 𝐼𝑤   

𝑖𝑓   𝑋𝐿
𝑚𝑎𝑥 > 𝐼𝑤 ∧ 𝑋𝑅

𝑚𝑎𝑥 < 𝐼𝑤   

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                   
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Let 𝑊𝑐𝑟𝑜𝑝 denote the width of the crop region. 

 𝑊𝑐𝑟𝑜𝑝 = 𝑋
𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 58 
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Finally, the images 𝐼𝐿 and 𝐼𝑅 ,  𝑋𝑚𝑖𝑛, 𝑌𝑚𝑖𝑛, 𝑊𝑐𝑟𝑜𝑝 and 𝐻𝑐𝑟𝑜𝑝 were passed to MATLAB’s 

“imcrop” function to complete the cropping of the images.  

 

3.7 Details of Optoscale’s stereo-matching algorithm 

The following section describes the details of Optoscale’s stereo-matching algorithm, with 

permission from Optoscale to do so. The core of Optoscale’s algorithm is MATLAB’s Semi-

Global Block Matching method. The method is run independently on every channel of the color 

images to produce three disparity maps of the same scene. To concatenate the three disparity 

maps into one, the median between the three estimates is chosen. The script implementing it may 

be found in section 10.2.5. 

 

3.8 Optimizing Optoscale’s algorithm used to find disparity maps  

The parameters in Table 1 were used in the optimized algorithm. They were found through trial 

and error by controlling the disparities found by the optimized algorithm as a whole. “Distance 

threshold” was deactivated as the dataset created does not include occlusions. 

 

Parameter Value 

Method SemiGlobal 

Disparity range See chapter 

3.8.1 

Block size 11 

Contrast threshold 0.5 

Uniqueness threshold 1 

Distance threshold Disabled 

Table 1: Parameters of MATLAB's SGBM used when optimizing Optoscale's method. 
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3.8.1 Setting the disparity range manually by measuring the smallest and largest disparity 

In order to make the matches as accurate as possible, the disparity range was found manually to 

make it as small as possible. The process is summarized by the workflow diagram in Figure 34, 

and the script implementing it may be found in section 10.2.6. 

 

Figure 34: Workflow diagram depicting the process used to find the disparity range of each image pair. 

 

The stereo anaglyph of the right and left image was plotted in MATLAB and manual 

measurements were taken from spots on the fish as seen in Figure 35 to find an estimate of the 

smallest disparity present, 𝑑𝑚𝑖𝑛. The maximum disparity was set to 𝑑𝑚𝑖𝑛 + 𝑜𝑓𝑓𝑠𝑒𝑡. As stated on 

MATLAB’s disparity documentation page (Mathworks, n.d. d), the difference between 𝑑𝑚𝑖𝑛 and 

𝑑𝑚𝑎𝑥, 𝑜𝑓𝑓𝑠𝑒𝑡, must be divisible by 16. Thus, 𝑜𝑓𝑓𝑠𝑒𝑡 was defined as  16 ∗ 𝑛, where 𝑛 is a 

parameter that can be adjusted and has default value 1. Finally, the disparity range was set to 

[𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥]. Before arguing why this method detects wrong matches, it should be noted that 

the binary image was imposed on the disparity map, and so the method only checks disparity 
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estimates within the fish body. This method weeds out wrong matches due to the following 

reasons. Firstly, if the disparity range is slightly off, the best match found is most likely the 

closest pixel to the real one as their neighborhoods overlap, however the true match is outside the 

disparity range. As a result, the disparity found will saturate on either 𝑑𝑚𝑖𝑛 or 𝑑𝑚𝑎𝑥 . Secondly, 

roughly 100,000 pixels are matched per image pair, and if the disparity range is completely off, 

then the probability of all those matches being within the disparity range is low as the true match 

is not present. Consequently, by controlling that disparity values have not saturated, one can be 

more confident in the matches found.  

 

Figure 35: Measuring the smallest disparity through the stereo anaglyph of the image pair. 

 

The method has two parameters, namely 𝑑𝑚𝑖𝑛 and 𝑛. These had to be tuned for each image. The 

parameters were tuned according to the rules found in Table 2. 

 

Situation Rules 

First iteration 𝑑𝑚𝑖𝑛: set to estimated minimal disparity. 

n: set to 1 

Estimated disparities saturate only on 𝑑𝑚𝑎𝑥 𝑑𝑚𝑖𝑛: increase slightly by 1 or 2 

n: unchanged. 

Estimated disparities saturate only on 𝑑𝑚𝑖𝑛 𝑑𝑚𝑖𝑛: decrease slightly by 1 or 2 
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n: unchanged 

Estimated disparities saturate in one direction, 

and increasing or decreasing 𝑑𝑚𝑖𝑛 by 1 leads 

to saturation in the other direction. 

𝑑𝑚𝑖𝑛: decrease until values only saturate on 

𝑑𝑚𝑎𝑥.  

n: increase by 1 

Estimated disparities have saturated in both 

directions.  

𝑑𝑚𝑖𝑛: decrease until values only saturate on 

𝑑𝑚𝑎𝑥. 

n: increase by 1. 

Estimated disparities do not saturate on the 

disparity range. 

End of tuning. 

 

Table 2: Tuning scheme of the two parameters n and 𝑑𝑚𝑖𝑛. 

The value of n was not increased on any image pair, and as a result the largest difference 

between 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 was 16. 

 

3.8.2 Removing disparity estimates that do not belong to the fish 

MATLAB’s SGBM is a dense stereo matcher, and so it attempts to provide as many matches as 

possible within the disparity range. We are only interested in the pixels that belong to the fish, 

and not the background. As a result, the binary image is in this stage imposed on the estimated 

disparity map to extract only the disparity estimates that belong to the fish. Figure 36 shows the 

disparity map before the binary image is imposed, and Figure 37 after. Note that the change in 

color comes from the change of scale in “Disparity colors” as many disparity estimates have 

been removed. 
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Figure 36: Disparity map before imposing the binary image. 

 

 

Figure 37: Disparity map after the binary image was imposed. 

 

3.8.3 Median filtering to remove outliers and periodic patterns 

Following the tuning phase, a square median filter was used to remove extremals within a local 

area of the fish and periodic changes in the disparity. Due to the shape of the fish, one would not 

expect altering values of disparity in for instance the midst of the fish body and close to its snout, 

or large differences in disparity in a small local area. Thus, a median filter of variable size 

depending on the size of the fish in the image was introduced. If the fish appeared to be large the 

filter size was chosen to be 13x13 and this size was gradually reduced down to 5x5 for the 

smallest. Figure 38 shows an example of altering disparities in areas such as the midst of the fish 

and a small area of disparities along the back of the fish which are correct, and Figure 39 shows 

the results of median filtering. We also notice that smaller areas with discontinuous disparities 

are kept along the borders of the fish. 
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Figure 38: Disparity map before applying the median filter. 

 

 

Figure 39: The result of the median filter's operations. 

 

3.8.4 Visually controlling disparity estimates  

Following the filter operation, the disparity map was plotted as seen in Figure 39 above in order 

to look for abnormal disparity values. If any abnormal disparities were detected and it was 

deemed that those could be fixed, the process of creating the disparity map was repeated. 

Elsewise the image pair and ground truth were discarded. Furthermore, once pleased with the 

outlook of the disparity map, the user can interactively mark recognizable spots on the left 

image, for instance the reference bars in its midst as shown in Figure 40, and then the stereo 

anaglyph of both images would be plotted in addition to a line representing the disparity as 

illustrated in Figure 41. If it was difficult to see whether the disparity matched or not as seen at 

the fish’ tail part in the figure, the image would still be kept if the ground truth looked sound and 

all other points observably looked correct. If the line’s start and end point coincided with the 

same spots in the left and right image, the disparity map and its respective image pair was saved 

and accepted as ground truth.  It is recommended to perform this stage on a rather large monitor 
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with high resolution, as on smaller screens with lower resolution it becomes harder to see darker 

areas of the fish. The script implementing the method may be found in section 10.2.7. 

 

 

Figure 40: Interactively marking spots were the estimated disparity should be checked. 

 

 

Figure 41: The image visualizing disparities between the left (red) image and the right (blue) image. 

 

3.8.5 Deciding on error metrics for the dataset 

The accuracy of the dataset has been empirically controlled and is not bounded by mathematical 

proof. Consequently, the precedent set by KITTI 2015 Stereo Evaluation, who also empirically 

controlled their disparity values (Menze & Geiger, 2015, p.5), will be followed. They chose the 

3-pixel error, which is deemed as a fair metric to use given the level of accuracy the empirical 

controls used in this paper give. 

Furthermore, it is interesting to see how close the methods predictions come to the values of the 

ground truth, and so a second error metric will be used. Thus, the second error metric is the 1-

pixel error. 
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Finally, pixels have not been annotated into categories, and so the accuracies we find will be 

related to the “all” category. In other words, we will only consider entries in the ground truth 

disparity map that have a value larger than zero when calculating a prediction’s accuracy. 

 

3.9 Deep Learning stereo-matching algorithms 

3.9.1 Deciding which Deep-Learning stereo-matching algorithms to test 

The code repositories of the methods found in Table 12 were downloaded and tested. In the end, 

MC-CNN-fst, and Content-CNN were the implementations the author managed to get working 

after quarrelling with Linux Ubuntu.  

Due to Content-CNN’s code repository not containing the scripts used in post-processing, and 

the removal of post-processing from MC-CNN-fst in section 3.9.5, the results obtained in this 

paper will not reflect the results the full version of these methods would have shown. As a result, 

the methods without postprocessing will from here on be called “Content-CNN-nopost” and 

“MC-CNN-fst-nopost”, to not misguide the reader into thinking that the results were obtained 

using the full version of the methods. 

 

3.9.2 Creating a dataset for training, validation and testing 

The image pairs and their respective ground truths are now available to be trained on, however 

they need preprocessing. First off, the images were stored in the “png” format and the ground 

truth was converted from a matrix of type double to an image matrix of type uint16, as both deep 

learning implementations use the “png16” format for the ground truth, and subsequently saved to 

“png”. Furthermore, the images had to be divided into a training, validation and testing dataset. 

All 469 images were loaded into a struct array which was randomized in order to remove any 

bias present in the dataset, which there was in this case is as the images were taken from a video 

and so image 0 and image 1 are in close relation to each other before randomizing.  

Furthermore, it was noticed that when in trial runs on Content-CNN-nopost that a batch size of 

128, max epoch of 50, and 50 iteration per epoch would mean the method would be able to 
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process 128 ∗ 50 ∗ 50 = 320 000 pairs of image patches. Each image pair in the dataset 

contains about 60,000 valid patch pairs which means even with 10 images in the dataset, 

Content-CNN would not be able to process them all. Moreover, the network only validates on 

about 20,000 image pairs chosen at random from the validation set due to memory consumption. 

When it comes to MC-CNN-fst, it trains on every patch pair in the training set per epoch, and 

validates on all patch pairs in the validation set. Consequently, the division shown in Table 3 was 

used, were the number of valid pairs was extracted from the preprocessing script of Content-

CNN-nopost when setting “psz” to 18. 

 

Dataset Number of images Number of valid patch pairs 

Training 10 632 697 

Validation 5 325 363 

Testing 454 31 841 774 

Table 3: Division of samples into training, validation and testing sets 

 

The division serves as a compromise between the data Content-CNN-nopost and MC-CNN-fst-

nopost can handle. The number of valid patch pairs in the training set is about double what the 

Content-CNN is able to process given the hyperparameters mentioned to enable testing with 

larger epochs and have some diversity in the samples for MC-CNN-fst-nopost. Furthermore, the 

number of validation patch pairs certainly accommodates Content-CNN-nopost’s demand of 

only 20,000 patch pairs while still having more pairs available for MC-CNN-fst-nopost which 

evaluates on all of them.  

Finally, the images were stored and named according to the format used by the KITTI 2015 

Stereo Evaluation as both implementations already have code that supports this. In essence, the 

format consists of storing left images in the folder “image_2” and right images in the folder 

“image_3”. Finally, the ground truth disparity map is stored in the folder “disp_noc_0”. Naming 

wise, the first picture has a six-digit ID equal to “000000_10” and the following image gets the 

ID “000001_10”, where the former part of the ID has been incremented by 1.  
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3.9.3 Preprocessing script for Content-CNN-nopost 

The original script present in the code repository of the implementation was edited to suit the 

new dataset. The script randomized the images before separating them into the training and 

validation set, and since we already have randomized the images, this feature was removed. The 

parameter “half_range” which defines the disparity range as [−ℎ𝑎𝑙𝑓_𝑟𝑎𝑛𝑔𝑒, ℎ𝑎𝑙𝑓_𝑟𝑎𝑛𝑔𝑒] was 

set to 170 and “psz” which defines the patch size was set to 18 when the filters spatial extent was 

5, and 9 when the spatial extent was 3. Additionally, the script only includes patches it deems 

valid. A valid patch means that the x-coordinate of the center pixel of the patch minus the 

“half_range” and “psz”, or plus, does not exceed the bounds of the image the patch is extracted 

from. The script is included in the zip-file that is described in section 10.3. 

 

3.9.4 Preprocessing script for MC-CNN-fst 

The original script present in the code repository of the implementation was edited to suit the 

new dataset. The script contained code which cropped an image’s width to its height. Our images 

are of varying size, and as a result this feature was removed, and the script edited to 

accommodate images of different sizes. Furthermore, the script converted images to grayscale. 

This function was removed, and the grayscale version of the images shown earlier in the method, 

in Figure 16, was used in its place. The script is included in the zip-file that is described in 

section 10.3. 

 

3.9.5 Changes made to MC-CNN-fst 

The following aspects of the original MC-CNN-fst code were removed. 

1. Postprocessing steps. When using the postprocessing steps with the dataset, the disparity 

maps would look wrong and the shape of the fish not captured. Consequently, these steps 

were removed after attempting to fix them. Additionally, the parameter deciding the 

range of the positive sample 𝑠+ was removed, since the theory mentioned that it was 

introduced to give better postprocessing results. 
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2. Evaluation method. After the training had finished, the network would load validation 

samples and output the accuracy on them, and while training it showed the loss on the 

training samples at each epoch. Such information does not tell us how well the network 

will generalize to new samples, and we have no way of knowing when the network 

begins to overfit on the training data. Consequently, the evaluation method was removed 

and replaced with another evaluation method which is described below. 

 

The following additions were added to MC-CNN-fst’s code. 

1. Evaluation method. Instead of considering the network’s loss, the script was edited to 

show the average accuracy over the training samples and the average accuracy over the 

validation samples at every epoch. Such a scheme makes it possible to evaluate whether 

the network is becoming better at predicting the ground truth, if it is overfitting on the 

training data and when it is optimal to stop the training. The evaluation method was 

implemented by moving and adapting code already present in the “main.lua” file of MC-

CNN-fst.  

2. Logging method. MC-CNN-fst outputted the evaluation metrics in the console and did 

not store them in a convenient way for documentation. Consequently, code was borrowed 

from the Content CNN’s code repository to allow the logging and plotting of training and 

validation accuracy at each epoch. 

3. Learning rate scheme. In the original code, the learning rate would we lowered at the 

fixed epoch of 12. Such a scheme leaves little leeway in adjusting the learning rate as the 

network trains, and so a patience parameter was introduced allowing for the network to 

scale its learning rate at every epoch specified in the parameter. 

4. A parameter was added to choose the number of epochs the network should train for. 

Finally, the original code had a fixed epoch of 14. Leaving little room to investigate the 

effects of training over more epochs, and so a parameter was introduced that specifies the 

epochs the number of epochs the network should train over. 

The script is included in the zip-file that is described in section 10.3. 



 

 75 

3.9.6 Learning rate scheme, number of epochs to train for and related hyperparameters 

The learning rate scheme was chosen by considering the plots of training and validation accuracy 

as seen in Figure 42 of the networks when using batch size 128.  

 

Figure 42: Mean training and validation patch accuracy per epoch plot from Content-CNN-nopost. 

 

If the graph showed stable convergence towards a high mean accuracy, the learning rate scheme 

would be kept. If it showed unstable characteristics, or converged to lower mean accuracy, the 

learning rate scheme would be changed. If the training ended while the graphs had not flattened 

out, the number of epochs to train for would be increased. In the end, the max epoch was chosen 

to be 50 for both MC-CNN-fst-nopost and Content-CNN-nopost. The learning rate scheme used 

for MC-CNN-fst-nopost may be seen in Table 4, and the scheme used for Content-CNN-nopost 

may be seen in Table 5. 
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Epochs Learning rate 

1-14 0.002 

15-29 0.001 

30-44 0.0005 

45-50 0.00025 

Table 4: MC-CNN-fst-nopost’s learning rate scheme. 

 

Epochs Learning rate 

1-24 0.02 

25-34 0.004 

35-44 0.0008 

45-50 0.00016 

Table 5: Content-CNN-nopost’s learning scheme. 

 

Additionally, Content-CNN-nopost was trained with the learning rate optimizer “adam”. Its 

parameters were chosen to be the standard parameters shipped with the implementation, and may 

be seen in Table 6.  

 

Parameter Value 

Weight decay 5e-4 

Momentum 0.9 

Learning rate 

decay 

1e-7 

Table 6: Parameters used for the "adam" learning rate optimizer in Content-CNN-nopost. 
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4 Experiments 

All experiments were conducted in Linux Ubuntu 16.04 with the GPU Nvidia GTX 1080 Ti. Furthermore, 

MATLAB R2018b, Torch 7, CUDA 9.0 and cudNN 7.0.5 were the software, libraries and drivers used. 

 

4.1 Accuracy definitions 

4.1.1 Optoscale’s original algorithm 

The “Mean test accuracy” was the mean accuracy over all valid disparity values in the ground 

truth disparity maps. In these results, the 3-pixel and 1-pixel error was used to determine if a 

disparity estimate was correct. The script used to perform the evaluation of Optoscale’s 

algorithm may be found in section 10.2.8. 

 

4.1.2 MC-CNN-fst-nopost 

The “Mean training accuracy”, “Mean validation accuracy” and “Mean test accuracy” of MC-

CNN-fst-nopost was the mean accuracy over all valid disparity values in the ground truth 

disparity maps of the training, validation and testing dataset respectively. For the training and 

validation results, the 3-pixel error was used to determine if a disparity estimate was correct or 

not, while on the test accuracy both the 3-pixel and the 1-pixel was used. The scripts used to 

perform the evaluation of MC-CNN-fst-nopost may be found in the attached zip-file that is 

described in section 10.3. 

 

4.1.3 Content-CNN-nopost  

The “Mean training accuracy” was the mean accuracy over a subset of the training set processed 

at the epoch the weights were extracted, the network processed 320,000 image pairs per epoch. 

“Mean validation accuracy” was the mean accuracy on 20,000 patch pairs from the validation 

dataset chosen at random when the training was started. The accuracies on the training and 
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validation used the 3-pixel error to determine if a disparity estimate was correct or not. Finally, 

“Mean test accuracy” was the mean accuracy over all ground truth pixels in the test dataset. In 

these results, both the 3-pixel and 1-pixel error was used. The scripts used to perform the 

evaluation of Content-CNN-nopost may be found in the attached zip-file that is described in 

section 10.3. 

 

4.2 Implementation details 

4.2.1 Optoscale’s algorithm 

Table 7 shows the parameters Optoscale’s algorithm uses. 

 

Parameter Value 

Method SemiGlobal 

Disparity range [65,145] 

Block size 11 

Contrast threshold 0.5 

Uniqueness threshold 15 

Distance threshold Disabled 

Table 7: Parameters of MATLAB's SGBM used by Optoscale. 
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4.2.2 MC-CNN-fst-nopost 

 

Table 7 shows the general aspects of the network which were not changed in any experiment.  

Aspect Value 

Disparity range [0, 170] 

Input data 3-channeled color images 

Max number of 

epochs when training 

50 

Learning rate scheme See Table 4 

Learning rate 

optimizer 

None 

Number of filters in 

the convolutional 

layers 

All layers contained 64 filters 

Filter stride 1 

𝑠+ deviation 0 

𝑠− deviation [-4,10] 

Data augmentation None 

Post-processing None 

Table 8: The general aspects of MC-CNN-nopost’s that were held constant during experiments. 
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4.2.3 Content-CNN-nopost 

 

Table 7 shows the general aspects of the network which were not changed in any experiment.  

Aspect Value 

Disparity range [0, 170] 

Input data 1-channeled “grayscale” 

images converted according 

to section 3.5.3. 

Max number of 

epochs when training 

50 

Learning rate scheme See Table 5 

Learning rate 

optimizer 

“adam”, see Table 6 for its 

hyperparameters. 

Number of filters in 

the convolutional 

layers 

The first two layers contained 

32 filters, the rest 64 

Filter stride 1 

Data augmentation Disabled 

Post-processing None 

Table 9: The general aspects of Content-CNN-nopost that were held constant during experiments. 
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4.3 Comparing Optoscale’s original algorithm and the optimized version 

The original algorithm used by Optoscale was run on the test dataset. Its accuracy was recorded 

and plots illustrating the differences between the two algorithms were made. Additionally, the 

“uniqueness threshold” of Optoscale’s original algorithm was lowered to the value of the 

optimized version to see the effects this choice has.  

 

4.4 Testing different batch sizes 

4.4.1 MC-CNN-fst-nopost 

In these experiments, the batch size was chosen to be 128 and 32 for MC-CNN-fst-nopost as 

lower batch sizes would lead to the training of the network taking too long.  

4.4.2 Content-CNN-nopost 

For Content-CNN-nopost, the batch size was chosen to be 128, 32, and 2. Moreover, Content-

CNN-nopost only trains and validates on a subset of the data per epoch. As a result, whenever 

the batch size was lowered for Content-CNN-nopost, the number of iterations per epoch was 

increased so that the same amount of data would be processed. 

 

4.5 Testing different network structures 

4.5.1 MC-CNN-fst-nopost 

For MC-CNN-fst-nopost, the following network structures were trained and tested. 

1. 9 convolutional layers, and a filter size of 3x3xD yielding a patch size of 19x19. 

2. 4 convolutional layers, and a filter size of 3x3xD yielding a patch size of 9x9. 

4.5.2 Content-CNN-nopost 

For Content-CNN-nopost, the following network structures were trained and tested. 

1. 9 convolutional layers, and a filter size of 5x5xD yielding a patch size of 37x37. 

2. 4 convolutional layers, and a filter size of 5x5xD yielding a patch size of 17x17. 
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5 Results 

 

5.1 Methods used by popular stereo contests to create stereo image datasets with 

ground truth disparity maps 

In order for the methods found to be considered, they have to adhere to one of the following 

criteria. Their papers or webpages must either have been cited by 50 or more sources, not all 

being the main authors, or have been peer-reviewed or lay the foundation for a popular stereo 

evaluation contest. 

 

5.1.1 Methods found, criteria validation and code availability 

Table 10 sums up the seven methods found which might be used to create a ground truth dataset 

for stereo matching. The symbol “*” in the abbreviation column symbolizes that no official 

abbreviation was found and so one was created to better the formatting of tables. Only methods 

which mentioned an estimate of its accuracy were included. 

 

Abbreviation Method’s papers  Criteria match Accuracy 

estimate 

TSUSET* (Martull et al., 

2012) 

Citations 1 pixel 

MIDDLESET* (Scharstein et al., 

2014) 

Peer-review, contest 1

5
 pixel 

KITTISET* (Geiger et al., 

2013; Menze & 

Geiger, 2015) 

Citations, contest 3 pixels 

(empirical) 

Table 10: Methods which may be used in the creation of a stereo image dataset with ground truth disparity maps. 
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5.1.2 The methods’ general requirements 

Table 11 lists the general requirements of each method found. Said requirements include if any 

special equipment is needed, whether the setup has any assumptions and so forth.  

 

Abbreviation General requirements 

TSUSET • 3D-modelling of the scene via for instance Autodesk Maya 

2012. This includes digital models of objects and cameras  

MIDDLESET • A source of structured light using maximum min-stripe-width 

gray-codes projecting the code pattern and its inverse 

• A stationary stereo rig with option to move projector of 

structured light to different locations and two translatable 

cameras. 

• A series of images captured with different projector positions. 

• Static indoor scene 

KITTISET • A stereo rig with IMU/GPS, LIDAR, 2 grayscale cameras and 

2 color cameras. 

Table 11: The general requirements of each ground truth disparity map method. 

 

5.2 Deep Learning Stereo Matchers 

In order for the methods found to be considered, they have to adhere to the following criteria. 

Their papers or webpages must either have been cited by 50 or more sources, not all being the 

main authors, or have been peer-reviewed. In addition, the implementations must have code 

available.  

 

5.2.1 Methods found, criteria validation and code availability 

In Table 12 the relevant information for each implementation found has been summarized. The 

first column indicates the paper of the implementation and its code repository. Sub-columns of  
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the “Code” column indicates whether the code repository contains code for training (Train), 

inferring (Infer), preprocessing (Prep), data augmentation (Aug) and post-processing/disparity 

refinement (Post). Note that Table 12 is the result of the author’s interpretation of the code and 

its corresponding paper, and as a result some details of the implementations may have been 

missed. Additionally, as of March 2019, the code repository of Content-CNN has been 

unavailable.  

 

Abbreviation Method’s 

paper and code 

repository 

Criteria 

match 

Code 

Train Infer Prep Aug Post 

Content-CNN (Luo et al., 

2016; Luo et al., 

n.d.) 

Citations Yes Yes Yes No No 

SegStereo (Yang et al., 

2018; Yang et 

al., n.d.) 

Peer-

review 

No Yes No No Yes 

SCV (Lu et al., 2018; 

Lu et al., n.d.) 

Peer-

review 

Yes Yes Yes Yes No 

CRL (Pang et al., 

2017; Pang et 

al., n.d.) 

Citations No Yes No No Yes 

MC-CNN-

ACRT/ 

MC-CNN-fst 

(Žbontar & 

LeCun, 2016; 

Žbontar & 

LeCun, n.d.) 

Peer-

review 

Yes Yes Yes Yes Yes 

Table 12: The Deep Learning stereo-matching methods found, and the extent of their code repositories. 
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5.2.2 The methods’ accuracy and performance results 

Table 13 summarizes the accuracy results, and which GPU was used when the performance 

runtime was recorded. Whenever a column contains values such as “67/0.8” it represents that the 

implementation has two variations. Thus, the former value belongs to the first variation, and the 

latter to the second. The “Error all (KITTI 2015)” is the “D1-all” metric used by the KITTI 

2015 stereo evaluation (Geiger et al., 2015b). It is the average of erroneous disparity estimates 

over all ground truth pixels on the KITTI 2015 stereo image dataset. In this case, an erroneous 

disparity estimate is within 3 pixels of the ground truth.  

 

Abbreviation GPU used Runtime Error all (KITTI 2015) 

Content-CNN Nvidia GTX Titan X 1 second 4.54 % 

SegStereo Nvidia GTX Titan 

Xp 

0.6 seconds 2.25 % 

SCV Nvidia GTX 1080 Ti 0.36 seconds 2.61 % 

CRL Nvidia GTX 1080 0.47 seconds 2.67 % 

MC-CNN-

ACRT/ 

MC-CNN-FST 

Nvidia GTX Titan X 67/0.8 seconds 3.89/4.62 % 

Table 13: Performance details related to each Deep Learning stereo-matching method found.  
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Table 14 below summarizes the requirements needed to run the implementations with GPU-

accelerated computation. “OS” is short for operating system and “GPU” for graphical 

processing unit. Whenever an entry contains “…”, the author did not find information on the 

topic.  

 

Abbreviation OS GPU, GPU 

memory 

Frameworks, libraries and drivers 

GPU specific Miscellaneous 

Content-CNN Linux 

Ubuntu 12+ 

64 bit or 

MacOS 

Nvidia GPU, … CUDA 8+, 

cuDNN v5+ 

  

Torch 7 

SegStereo Linux 

Ubuntu 14+ 

64 bit or 

MacOS 

Nvidia GPU, … CUDA 8, 

cuDNN v5.1 

 

Caffe, FlowNet 2.0, 

PSPNet, 

OpticalFlowToolkit 

SCV Linux 

Ubuntu … or 

MacOS 

Nvidia GPU, 6 GB 

or more memory 

Cuda 7.5+, 

cuDNN 

Python 3.6, PyTorch 

0.3.0, 

torchvision 0.1.8, 

 

CRL Linux 

Ubuntu 12+ 

or MacOS 

Nvidia GPU, … Cuda 7+, 

cuDNN v6 

MATLAB R2015a,  

Matcaffe, BLAS, Boost 

1.55+ 

MC-CNN-

ACRT/ 

MC-CNN-

FAST 

Linux 

Ubuntu 12+ 

or MacOS 

Nvidia GPU, 6 GB 

or more memory/ 

NVIDIA GPU, … 

Cuda 8+, 

cuDNN v5+ 

Torch 7, OpenCV 2.4+, 

png++ 
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Table 14: Requirements needed to run the implementation of each Deep Learning stereo-matching algorithm. 

 

5.3 Details of the stereo image dataset 

5.3.1 Accepted image pairs, smallest and largest disparity 

Table 15 summarizes some important aspects of the final stereo image dataset, such as how 

many image pair and corresponding ground truth disparity maps were accepted and discarded, 

and the smallest and largest disparity value in the entire dataset. 

 

Aspect Value 

Accepted image pairs 

and disparity maps 

469 

Discarded image pairs 

and disparity maps 

131 

Smallest disparity 66 

Largest disparity 132 

Table 15: Numbers of the final stereo image dataset. 

 

5.3.2 A subset of image pairs and ground truth disparity maps from the stereo image dataset 

Figure 43-Figure 54 illustrate a small subset of the cropped RGB image pairs and their 

corresponding ground truth disparity maps. Furthermore, the full dataset will not be released as 

requested by Optoscale who own the rights to it. Black colors in the plotted disparity map denote 

disparity values equal to zero. 
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Figure 43: The first example showing an average left image in the stereo image dataset. 

 

Figure 44: The first example showing an average right image in the stereo image dataset. 

 

Figure 45: The first example’s ground truth disparity map. 

Figure 43-Figure 45 shows us that the ground truth disparity map does include small regions 

belonging to the background. For instance, there is a gap between the fin above the start of the 

tail which belongs to the background. In the disparity map, this gap has been included and given 

disparity estimates. Additionally, some parts of the fish’ edge look rough. 
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Figure 46: The second example showing a dark left image in the stereo image dataset. 

 

Figure 47: The second example showing a dark right image in the stereo image dataset. 

 

Figure 48: The second example’s ground truth disparity map. 

Figure 46-Figure 48 shows us that in some cases, the method used to create the stereo image 

dataset does not include disparity values for all pixels of the fish. Additionally, they illustrate the 

smaller disparity values present in the stereo image dataset. 

 

 



 

 90 

 

Figure 49: The third example showing a bright left image in the stereo image dataset. 

 

 

 

Figure 50: The third example showing a bright right image in the stereo image dataset. 

 

 

 

Figure 51: The third example’s ground truth disparity map. 

Figure 49-Figure 51 shows us that in some cases, the method used to create the stereo image 

dataset does manage to find disparity estimates for all parts of the fish. 
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Figure 52: The fourth example showing a bright and dark left image in the stereo image dataset. 

 

 

Figure 53: The fourth example showing a bright and dark right image in the stereo image dataset. 

 

 

Figure 54: The fourth example’s ground truth disparity map. 

Figure 52-Figure 54 shows us an example of the larger disparity values present in the stereo 

image dataset.  
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5.4 Results of Optoscale’s original algorithm on the test dataset 

All results below are in regard to how many disparity values in the grounds truths the method 

managed to predict correctly. Furthermore, since stereo-matching algorithms do provide 

disparity estimates at locations not considered by the ground truth, for instance the background, 

the masks which define the valid disparity values in ground truths are imposed on every 

estimated disparity map before calculating the accuracy. The mask was found by thresholding 

the ground truth disparity maps at a value of 0, i.e. 𝑚𝑎𝑠𝑘 = 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 𝑚𝑎𝑝 > 0, which creates 

a binary image that may be imposed on the predicted disparity map to remove estimates 

belonging to the background. 

 

5.4.1 Mean accuracy results over the test set 

Table 16 shows the results of the experiments. The “uniqueness threshold” value of 15 belongs 

to Optoscale’s original stereo-matching algorithm, while the value of 1 was introduced to see the 

effect it had. 

 

“Uniqueness 

threshold” 

value 

Mean test accuracy [%] 

3-pixel 1-pixel 

15 92.071  91.990  

1  92.411  92.323  

Table 16: Mean accuracy of Optoscale's original algorithm over the test set at different error and “uniqueness” 

thresholds. 

 

We see that Optoscale’s algorithm does not replicate the results of the optimized algorithm 

perfectly. In addition, the mean accuracy increases slightly when changing the value of the 

“uniqueness threshold” to the one used in the optimized version.  
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5.4.2 A plot of an erroneous prediction and the corresponding ground truth disparity map 

Figure 55 and Figure 56 show the predicted disparity map from Optoscale’s algorithm and the 

corresponding ground truth disparity map.  

 

Figure 55: A wrongly predicted disparity map from Optoscale's original algorithm. 

 

Figure 56: The corresponding ground truth disparity map. 

We see that the original algorithm has failed to find all disparities, and that many disparities do 

not adhere to the known shape of the fish model. 

 

 

 

 



 

 94 

5.5 Accuracy results of MC-CNN-fst-nopost and Content-CNN-nopost 

All results below are in regard to how many disparity values in the grounds truths the methods 

managed to predict correctly. Furthermore, since stereo-matching algorithms do provide 

disparity estimates at locations not considered by the ground truth, for instance the background, 

the masks which define the valid disparity values in ground truths are imposed on every 

estimated disparity map before calculating the accuracy. The mask was found by thresholding 

the ground truth disparity maps at a value of 0, i.e. 𝑚𝑎𝑠𝑘 = 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 𝑚𝑎𝑝 > 0, which creates 

a binary image. 

 

5.5.1 Results gathered from MC-CNN-fst-nopost 

Table 17 shows the relevant information regarding all results gathered from MC-CNN-fst-nopost 

with 9 convolutional layers, a filter size of 3x3, and a patch size of 19x19. The networks’ 

training and validation accuracy results used the 3-pixel error. The best results have been marked 

in bold. 

 

Weights 

from 

epoch 

Batch 

size 

Mean 

training 

accuracy 

[%]  

Mean 

validation 

accuracy 

[%] 

Mean test 

accuracy [%] 

3-pixel 1-pixel 

48 128 99.192 99.400 98.307 90.572  

49 32 99.305 99.533 98.490 91.049 

Table 17: All results from MC-CNN-fst-nopost with 9 convolutional layers and a patch size of 19x19. 

 

We see that for this particular structure of MC-cnn-fst-nopost, with 9 convolutional layers, the 

best accuracy result within every category was achieved when using a batch size of 32. However, 

the improvements to accuracy it made are marginal at best. 
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Furthermore, Table 18 shows the relevant information regarding all results gathered from MC-

CNN-fst-nopost with 4 convolutional layers, a filter size of 3x3, and a patch size of 9x9. The 

networks’ training and validation accuracy results used the 3-pixel error. The best results have 

been marked in bold. 

 

Weights 

from 

epoch 

Batch 

size 

Mean 

training 

accuracy 

[%]  

Mean 

validation 

accuracy 

[%] 

Mean test 

accuracy [%] 

3-pixel 1-pixel 

47 128 87.508 87.775 84.912 75.493 

50 32 85.899 86.119 83.091 73.991 

Table 18: All results from MC-CNN-fst-nopost with 4 convolutional layers and a patch size of 9x9. 

 

We see that for this particular structure of MC-CNN-fst-nopost, with 4 convolutional layers, the 

best accuracy result within every category was achieved when using a batch size of 128. This 

particular choice of batch size did seem to have a noticeable impact, as the result within each 

category increased by about 1.6-1.9 %.  
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5.5.2 Results gathered from Content-CNN-nopost 

Table 19 shows the relevant information regarding results gathered from Content-CNN-nopost 

with 9 convolutional layers, a filter size of 5x5, and a patch size of 37x37. The network’s 

training and validation accuracy used the 3-pixel error. The best results have been marked in 

bold. 

 

Weights 

from 

epoch 

Batch 

size 

Mean 

training 

accuracy 

[%] 

Mean 

validation 

accuracy [%] 

Mean test accuracy 

[%] 

3-pixel 1-pixel 

50 128 99.734 99.780 96.391 95.614 

45 32 99.953 99.995 99.864 99.620 

45 2 24.328 24.410 18.745 11.160 

Table 19: All results from Content-CNN-nopost with 9 convolutional layers, 5x5 filters and a patch size of 37x37. 

 

We see that for this particular structure of Content-CNN-nopost, with 9 convolutional layers and 

a filter size of 5x5, the best accuracy result within every category was achieved when using a 

batch size of 32, showing significantly better accuracy on the test set. 
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Moreover, Table 20 shows the relevant information regarding results gathered from Content-

CNN-nopost with 4 convolutional layers, a filter size of 5x5, and a patch size of 17x17. The 

network’s training and validation accuracy used the 3-pixel error. The best results have been 

marked in bold. 

 

Weights 

from 

epoch 

Batc

h size 

Mean 

training 

accuracy 

[%] 

Mean 

validation 

accuracy 

[%] 

Mean test accuracy [%] 

3-pixel 1-pixel 

50 128 97.141 98.630 93.019 91.441 

50 32 98.297 99.380 96.325 94.858 

50 2 20.469 30.235 24.326 18.062 

Table 20: Results from Content-CNN-nopost with 4 convolutional layers, 5x5 filters and a patch size of 17x17. 

 

 

 

 

 

5.5.3 The methods’ best results on the test set 

Table 21 shows the best results of each method. The best result of MC-CNN-fst-nopost was 

obtained with a batch size of 32, 9 convolutional layers, 3x3 filter size, and a patch size of 

19x19. The best result of Content-CNN-nopost was obtained with a batch size of 32, 9 

convolutional layers, 5x5 filter size and a patch size of 37x37. Both methods followed the 

learning rate schemes shown in section 3.9.6. The best result for each category has been marked 

in bold. 
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Method  Mean test accuracy [%] 

3-pixel 1-pixel 

Optoscale’s algorithm 92.071  91.990  

MC-CNN-fst-nopost 98.490 91.049 

Content-CNN-nopost 99.864 99.620 

Table 21: Best results of Optoscale's method, MC-CNN-fs-nopost and Content-CNN-nopost. 

 

We see that the particular structure of Content-CNN-nopost out-performed the other methods 

both when using the 3-pixel and 1-pixel error metric, and that its prediction accuracy is close to 

100 % in both error categories. Additionally, both Optoscale’s algorithm and MC-CNN-fst-

nopost had significantly lower accuracy than Content-CNN-nopost when using the 1-pixel error, 

and when using the 3-pixel error, MC-CNN-fst-nopost’s results improved. 
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6 Discussion 

6.1 Methods used in the creation of ground truth disparity maps 

6.1.1 Assessing the methods accuracy 

The accuracy of each method is also an important aspect to consider. According to the creators 

of TSUSET, the accuracy is 1 pixel. As the creators are in full control of every pixel in the scene, 

and its location, this error could simply stem from the fact that pixel locations stored in memory 

only accepted whole numbers. Furthermore, the MIDDLESET method claims an accuracy of 
1

5
 

pixel, which is the best accuracy reported by the methods found. Finally, the creators of the 

benchmark for the KITTISET has “empirically found that for most parts our ground truth is at 

least 3 pixels accurate” (Menze & Geiger, 2015, p.2). Which is interesting, as there is no 

mathematical proof of it being that accurate, yet the contest is still highly popular.  

5.1.2 Comparing the methods’ general requirements  

The MIDDLESET dataset relies on a rig which keeps all its parts static at the moment of capture. 

It also has the assumption that the scene captured is static. Consequently, the method seems to 

perform at best in a fully controlled environment were all movement is under the control of those 

capturing the set, and it would require the creation of a stereo camera rig. Furthermore, the 

KITTISET tackles a dynamic environment where both the rig itself, and the scene can shift by 

introducing measurement equipment such as a LIDAR and an Inertial Measurement Unit. The 

method does however rely on several sensors that need to be integrated and does not promise the 

most reliable accuracy. The TSUSET on the other hand, creates a synthetic dataset and thus 

effectively avoids the issue environment presents as the entire environment is controlled by the 

modeler. The method does rely on correctly modelling every object in the scene, which requires 

knowledge of the software used to do so.  
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6.2 The search for deep learning stereo-matching algorithms with code 

implementations  

5.2.1 Assessing the implementations’ performance and accuracy results  

When looking at the accuracy results of each method SegStereo, CRL and SCV seem to be the 

strongest candidates. Runtime wise, SCV is the fastest however the implementations have been 

run on different GPUs, and for instance a Nvidia GTX 1080 Ti is more powerful than a Nvidia 

GTX 1080. Consequently, one has to take the GPU used into account when deciding which 

implementation has the fastest runtime. Finally, all implementations found have been tested and 

compared against each other on the KITTI 2015 stereo evaluation dataset. As a result, it is 

unknown what the results might be when testing them on a different dataset.  

5.2.2 Comparing the requirements of the implementations  

When it comes to compatible GPUs, all GPU-based implementations share the requirement of 

the GPU coming from the brand Nvidia. Additionally, two implementations required the GPU’s 

memory to be of size 6 GB or larger. When it comes to frameworks, drivers and libraries a 

version of CUDA, and cuDNN is required to enable GPU-accelerated computations. All 

implementations seem to be compatible with CUDA 8+. If one opts to use cuDNN v5, all 

implementations but CRL become compatible. If one opts to use cuDNN v6, all but SegStereo 

become compatible. Finally, the OS of choice would be Linux Ubuntu or macOS.  
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6.3 Consequences of creating the stereo dataset with an optimized version of 

Optoscale’s algorithm 

6.3.1 The ground truth disparity map’s accuracy can only be determined empirically 

When creating the ground truth disparity map with a stereo matcher of unknown accuracy, one 

will not be able to mathematically prove the accuracy of the disparity maps unless a new method 

with proven accuracy is used, and the results compared. Consequently, one can only give an 

estimate of the dataset’s accuracy based on empirical observations and assume that most 

disparity estimates lie within this accuracy. Furthermore, the decision causes implications for the 

generality of the results found. In essence, the results obtained may not be used in deciding if one 

stereo-matcher is better than another in general, only on the dataset created given that the chosen 

3-pixel error captures the inaccuracies present in the disparity maps. 

 

6.3.2 Optoscale’s algorithm will have a natural bias towards the dataset 

Optoscale’s original algorithm will have a natural bias towards the created dataset since they 

both share the same stereo-matching algorithm at core. As a result, one can expect Optoscale’s 

algorithm to yield many of the same disparity estimates as those found in the dataset. This should 

be taken into account when discussing which method got the best accuracy results. 

 

6.4 The subset of images from the stereo image dataset 

6.4.1 Example 1 

Example 1 showed that the binary images does not fit perfectly on when the disparity is small, 

the reason being is most likely the size of the median filters used in refining the binary image and 

the ground truth disparity map. Whenever the depth to the fish increases, the gap which belonged 

to the background shrinks. As a result, the median filters could have essentially joined the 

regions belonging to the background with the region denoting the pixels related to the fish.  This 

could have impacted the accuracy of the ground truth disparity maps. However, the areas that are 

in question are close to the pixels belonging to the fish and have been given disparity values that 
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coincide with the disparity values that do belong to the fish in the same area. This is most likely 

due to the Semi-Global energy function, which penalizes discontinuities in disparity values. 

Consequently, we are quite certain that the estimates are mostly correct and note that the method 

used to finds the binary images does have room for improvement. For instance, by creating a 

function for the size of the median filter which takes into account the area of the full-sized image 

the fish covers, which may be estimated by using the binary image outputted after thresholding. 

The same proposal may be used in deciding the size of the median filter used in refining the 

disparity map. 

 

6.4.2 Example 2 

Example 2 showed that not all disparity maps contain disparity values for every part of the fish, 

which is most likely caused by the fish not being illuminated by the structured light and the 

thresholding method used. This tells us one of two things. Firstly, this may illustrate a weakness 

in the method used to find binary images as it has not captured all the pixels that belong to the 

fish. However, this is most likely not true, as the left region of the images become successively 

darker, until the point where there is no data of the fish. Secondly, it may illustrate a strength of 

the method used to find binary images in that when the intensity of the pixels become too small, 

i.e. it would be hard to separate them from the intensities of the dark background, the method 

makes sure the disparity estimates in the disparity map belonging to those areas are not included. 

Furthermore, one needs to discuss if a disparity map only covering parts of a fish should be 

valid. If one for instance wanted to know the 3D-shape of the fish, such a disparity map would 

not work. However, in this report the focus is not on finding the entire 3D-shape of the fish, it is 

on evaluating if deep learning stereo-matching algorithms manage to beat Optoscale’s algorithm 

when it comes to finding good matches and disparity estimates. Consequently, the disparity maps 

that do not give estimates to every pixel belonging to the fish do contain valuable data which is 

worth keeping in the dataset. 
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6.4.3 Example 3 

Example 3 showed us that some of the ground truth disparity maps do contain estimates for all 

parts of the fish. This tells us that the results from the methods used to predict the ground truth 

disparity maps do also reflect the methods’ ability to find matches on all parts of the fish, and 

that the method used in finding binary images does not always capture only certain regions of the 

fish. 

 

6.4.4 Example 4 

Example 4 showed us that the method used to create the binary images is more precise when the 

disparities between the image pairs are larger. This tells us that the median filter size used has 

been optimized on image pairs with larger disparities. 

 

6.4.5 The diversity of the dataset 

All examples illustrate the diversity of the dataset, from smaller and larger disparities, to darker, 

brighter and a mix of the two intensities. Additionally, an observation to be made is that all 

fishes are “swimming” from right to left and do not show a wide range of orientations. This is 

the result of the setup and method used to capture the images. At different orientations, the 

intensities’ patterns on the fish may change due to its shape. Consequently, the results on the 

stereo image dataset do reflect the evaluated stereo-matching algorithms’ ability to match images 

of fish within the narrow range of orientations and range of disparities present in the dataset. 

Another point to be made is that the dataset does not include challenging scenes including 

occlusions, and difficult lighting conditions. As a result, the dataset represents a simpler 

environment than that in for instance fish pens, and so the results obtained in this paper may be 

better than the results would be on images from a fish pen. 
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6.5 Optoscale’s original algorithm and the optimized version 

6.5.1 Assessing if the optimized version is better than the original one 

Owing to the results seen in table Table 16, and Figure 55 and Figure 56 it seems that the 

optimized version is more accurate than the original, and provides a more dense disparity map. 

The disparity map created by the original method tells us that the original algorithm struggles on 

some of the images. The main reason why has to be the larger disparity range, as a median filter 

would not be able to correct the errors present in it. Furthermore, the original version did show 

an accuracy of 91.99 % when using the 1-pixel error. This tells us that many of the estimates 

found by the original algorithm are very close to the disparities in the ground truth disparity map, 

and that not all the disparity maps are as wrong as the one in Figure 55. Finally, due to the 

empirical controls used by the optimized method and the fact that the original method did not 

manage to get 100 % accuracy when sharing the same stereo-matching algorithm at core, we do 

conclude that some improvement, in terms of finding more valid disparity estimates that are 

“close” the true disparity value, has been made by the steps taken in the optimization. 

 

6.5.2 Did the choice of “Uniqueness threshold” in the optimized version have an impact? 

By choosing a lower “uniqueness threshold” the results slightly improved, however they did not 

come close to 100 % accuracy as seen in Table 16. This means that the choice of lower 

“uniqueness threshold” had a marginal impact in the optimization of the algorithm. 

 

6.6 Training and validation accuracies differ from the test accuracies 

In general accuracies of the deep learning stereo-matching algorithms are better and more similar 

on the training and validation set than the test set. Such a result suggests that the number of 

training samples in the training and validation set does not capture the diversity of the data in the 

stereo image dataset. Consequently, it would be recommended to increase the size of the training 

and validation set. 
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6.7 Effects of Different Network Structures 

6.7.1 Differences in results for MC-CNN-fst-nopost 

When training with 9 layers, the test, training, and validation results, are better. One explanation 

could be that a bigger network gets to process the data extracted through the patch more 

thoroughly, and in doing so captures more complex features of the pixel and its surroundings 

making it easier to distinguish pixels from each other. Another explanation could be the smaller 

patch size of 9x9 compared to 17x17, as the convolutional filters trained to activate on features 

are given less data to work with. The shape of the fish is smooth, and there are no other objects 

present than the fish model in the images. Consequently, the scene as seen from both cameras 

does not change much, and so capturing more data with a bigger patch size could yield a better 

descriptor of a particular pixel.  

 

6.7.2 Differences in results for Content-CNN-nopost 

Peculiar results were obtained when it comes the differences in results when varying the number 

of convolutional layers. The smaller network would show training and validation accuracies 

close to those of the larger networks, while the test accuracy would drop significantly. By 

chance, the smaller training and validation sets may contain similar data, while the bigger test set 

contains data with more diversity. The smaller network learns to detect simpler features, and 

those may have been enough to properly predict the ground truth disparity maps in the test and 

validation set. However, in the larger test dataset they may have come short. On the other hand, a 

larger network learns to detect more complex features, and so those complex features may have 

generalized better to the new data in the test set.  

 

 

 



 

 106 

6.7.3 Differences in training and validation accuracy between MC-CNN-fst-nopost and 

Content-CNN-nopost 

When using 4 layers with Content-CNN-nopost, the accuracy results obtained did not drop by 

the same amount as with the 4-layered version of MC-CNN-fst-nopost. One explanation may be 

that Content-CNN-nopost’s filters are of a bigger size 5x5 and not 3x3, thus they are able to 

detect bigger, more complex features. Another reason would be that Content-CNN-nopost 

processes color information, while MC-CNN-fst-nopost does not have color information 

available through the “grayscale” image. Thus, the extra information present in the colored 

structured light is not available to MC-CNN-fst-nopost. The final factor which may have 

influenced in Content-CNN-nopost being able to generalize better is its usage of batch 

normalization which is known to make a network generalize better to new data. 

 

6.8 Discussing if the batch size had an impact on the prediction results 

6.8.1 MC-CNN-fst-nopost 

When it comes to the network variant with 9 layers, the batch size did not seem to make a 

significant difference in accuracy. The results are relatively close, and the small differences in 

accuracy may be due to the random weight initialization at the start of the training procedure.  

The batch size did have an impact when the network consisted of 4 convolutional layers. 

Consequently, it may be beneficial to use a larger batch size when training MC-CNN-fst-nopost 

with 4 convolutional layers. 

6.8.2 Content-CNN-nopost 

Both variants of the network showed significantly better results on the test set when using a 

batch size of 32. This may have been caused by the network being able to generalize better on 

new data when using a smaller batch size as mentioned in section 2.6.9.  

Furthermore, when using a batch size of 2 the network failed to learn properly. The reason being 

is most likely the learning rate of the constant learning rate scheme used being too high, as the 

small mini-batch gives more noise in the estimate of the loss functions gradient.  
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6.9 Weights extracted close to the last epoch 

The results show that the weights used in evaluating a network’s accuracy have been extracted 

close to the last epoch. This indicates that even better results could have been obtained by 

increasing the number of epochs to train for.  

 

6.10 Differences in disparity ranges 

Due to a blunder, the disparity range for the deep learning methods was chosen to be [0,170], 

while the range for Optoscale’s algorithm was chosen to be [65,145] which is the best disparity 

range possible owing to limitations in MATLAB’s Semi-Global Block Matching implementation 

of the disparity range. Due to aspects of the deep learning methods’ code implementations, the 

smallest disparity was always zero, however the max disparity should have been set to 145. 

Owing to the differences in disparity range, the task of stereo-matching was more difficult for the 

deep learning methods in that they had to distinguish between more potential matches and makes 

it more impressive that they still managed to out-perform Optocale’s algorithm. 

 

6.11 Differences in 1-pixel error results 

When using the 3-pixel error, the best accuracy of Content-CNN-nopost and MC-CNN-fst-

nopost was 98.490 % and 99.864 % respectively on the test set. When using the 1-pixel error, the 

results were 91.049 % and 99.620 % respectively. One observes that the differences in 

accuracies between the two networks is significantly higher when using the stricter 1-pixel error. 

Thus, the particular configuration of Content-CNN-nopost which gave the best result is deemed 

to be better at replicating the disparity values found through the optimized version of Optoscale’s 

method.  
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7 Conclusion 

To conclude, the field of deep learning stereo-matching algorithms has been investigated by 

providing theory on how convolutional neural networks can be used as stereo image matchers 

and giving an overview of well-established methods in literature, including details regarding 

their code implementations. Furthermore, an optimized version of Optoscale’s algorithm which 

yielded better accuracy and density in its disparity maps, when being compared to the original 

algorithm, has been used to create a stereo image dataset of a fish model in a freshwater tank 

with an empirical accuracy of 3-pixels. Moreover, the stereo image dataset was used to evaluate 

the accuracy of variants of the deep learning stereo-matching algorithms MC-CNN-fst (Žbontar 

& LeCun, 2016) and Content-CNN (Luo et al., 2016) without post-processing steps, named MC-

CNN-fst-nopost and Content-CNN-nopost, against Optoscale’s original stereo-matching 

algorithm. The results when using the 3-pixel error at base showed that the deep learning 

methods managed to out-perform Optoscale’s algorithm, where the best accuracy result of 

99.864 % was obtained with a 9 convolutional layer version of Content-CNN-nopost compared 

to Optoscale’s algorithm’s 92.071 %. Additionally, when using the 1-pixel error at base, only 

Content-CNN-nopost managed to significantly out-perform Optoscale’s algorithm’s 91.990 % 

accuracy with a top accuracy of 99.620 % when using 9 convolutional layers. 

 

8 Future work 

1. It would be interesting to establish the true accuracy of the stereo image dataset by 

redoing it with a method of known mathematical accuracy and see if the results obtained 

in this paper uphold. 

2. It would be of value to see if the networks trained in this paper do well on real images of 

fish, and at the same time establish the potential to use transfer learning.  

3. One could capture more stereo images of the fish model at different orientations to see if 

it effects the accuracy results reported. 
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10.2 MATLAB scripts used in the creation of ground truth disparity maps 

10.2.1 Script implementing the filter pipeline which finds the binary image of the fish 
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10.2.2 Script used to manually mark gaps to fill 
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10.2.3 Script used to control how well the binary image fits the fish image 
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10.2.4 Script used to crop images 
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10.2.5 Script implementing Optoscale’s stereo-matching algorithm 
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10.2.6 Script used to create the ground truth disparity maps 
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10.2.7 Script used to interactively mark spots and control disparity values 
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10.2.8 Script used to evaluate Optoscale’s algorithm on the test dataset 
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10.3 Details of the zip-file 

10.3.1 The folder “MC-CNN-fst-nopost” 

“preprocess/modelfish2019_prep.m” was used to preprocess the data. 

“train_match.lua” was used to train and validate the network on the training and validation set.  

“test_accuracy.lua” was used to find the mean accuracy results on the test set. 

 

10.3.2 The folder “Content-CNN-nopost” 

“preprocess_modelfish” was used to preprocess the data. 

“main_val.lua” was used to train and validate the network on the training and validation set.  

“main_test.lua” was used to find the mean accuracy results on the test set. 

 

10.3.3 The file “westlie_prosjektrapport.pdf” 

Contains the project report written by the author, Storm Westlie.  

 


