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Problem Description

Background

The Norwegian Defence Research Institute (FFI) is developing an Unmanned Ground
Vehicle (UGV), called Olav, that should be capable of long-term autonomous driving
in challenging terrain environments. For the UGV to be truly autonomous, it needs to
have a map of the environment it is operating in, and it needs to localize itself in that
map. Visual simultaneous localization and mapping (V-SLAM) makes use of on-board
cameras to solve this problem, but suffers from other problems such as drift between
the estimated and real trajectory, and re-initialization issues if tracking is lost.

Task

Investigate ways to utilize other available sensors on Olav to correct for accumulated
drift in the V-SLAM trajectory estimates, and aid the re-initialization of the system in
the case of tracking failure without discarding previously built sections of the map.
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Abstract

The Norwegian Defense Research Establishment (FFI) is currently developing an
Unmanned Ground Vehicle (UGV) named Olav which will operate as part of the
next generation military base defence system as an effort to improve reliability and
minimize risk to human personnel. Olav should be capable of performing Intelligence,
Surveillance and Reconnaissance (ISR) missions autonomously, which implies the need
for it to be able to estimate its position reliably and accurately relative to a global
reference frame.

In this project, a real-time capable stereo Visual Simultaneous Localization and
Mapping (V-SLAM) system which incorporates Global Navigation Satellite System
(GNSS) measurements was developed. It combines locally accurate estimates from
V-SLAM with the globally accurate GNSS sensor, enabling the host platform to report
accurate trajectory estimates relative to a global reference frame. The developed system
was tested on datasets recorded from Olav, but because of issues with the camera
calibration, the main portion of the testing was performed on the publicly available
KITTI dataset [25]. Testing showed that the Visual Odometry (VO)module outperforms
the popular stereo VO system LIBVISO2 [28] on most tested datasets, while achieving
a much higher frame-rate. Testing also showed that the system is able to recover from
tracking failures without discarding information from previously explored areas, and
is robust to false positive loop closure detections and GNSS measurements corrupted
by multipath artifacts.
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Sammendrag

Forsvarets forskningsinstitutt (FFI) utvikler for tiden et ubemannet bakkekjøretøy, kalt
Olav, som skal fungere som en del av fremtidens baseforsvar. Olav skal være i stand
til å utføre oppklaringsoppdrag autonomt, som krever at den må kunne estimere sin
posisjon pålitelig og nøyaktig relativt til en global referanseramme.

I denne oppgaven presenteres et navigasjonssystem basert på visuell simultan
lokalisering og kartlegging (V-SLAM) som kan benytte GNSS målinger. Dette kom-
binerer de lokalt nøyaktige estimatene fra V-SLAM med den globalt nøyaktige GNSS
sensoren, som setter vertsplatformen i stand til å presist rapportere sin globale posisjon.
Systemet ble testet på datasett produsert av Olav, men på grunn av problemer med
kamerakalibreringen ble hoveddelen av testingen utført på det offentlig tilgjengelige
KITTI datasettet [25]. Testresultatene viser at kameraodometrimodulen produserer
bedre estimater enn LIBVISO2 algoritmen [28] på majoriteten av de testede datasettene,
samtidig som den oppnår en høyere bilderate. Testresultatene viser også at systemet
er i stand til å fortsette å operere i tilfeller der kameraodometrien feiler, og er robust
mot falske løkkedeteksjoner og GNSS målinger som er påvirket av flerveisinterferens.
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Chapter 1

Introduction

FFI is currently developing an UGV called Olav, depicted in figure 1.1, that should be
capable of performing military ISR missions autonomously. Automating these kinds
of missions could potentially bring several benefits such as reduced risk to personnel,
cost benefits, and higher reliability as a machine can operate 24/7 without getting
tired or bored. However, there are many challenges associated with developing this
capability as the military domain has some specific challenges compared to commercial
autonomous cars. In addition to handle traffic and urban areas, Olav must be able to
navigate in rough terrain environments associated with military areas. Also, since
the UGV is controlled by a remote base-station, it has to know and report its position
reliably and accurately.

1.1 Motivation

For an UGV, to be truly autonomous, it needs to localize itself in the environment it is
operating in. A common way of performing localization is by using a GNSS which has
the advantage of being able to localize the UGV globally. However, relying on GNSS
as a single sensor for localization provides low redundancy, as GNSS data might not
always be available or be severely degraded. This could result from a technical failure,

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Olav, a Polaris Ranger XP 900 EPS is the autonomous platform.

a war-scenario where GNSS satellites are taken down, or in a dense forest environment
where GNSS signals are blocked or degraded by multipath artifacts. All these scenarios
are relevant for the UGV considered in this project. It is therefore desirable to be able
to perform localization by processing information from on-board sensors only, while
still utilizing the GNSS data when it is available.

The simplest method to localize a robot without GNSS is to process sensor in-
formation and compute incremental motion, and this process is known as odometry.
Some common sensors used for odometry are wheel encoders, Inertial Measurement
Units (IMUs), Light Detection and Ranging sensors (LIDARs), or visual sensors, e.g.
cameras. Odometry allows to estimate the trajectory of the UGV, but the estimate
will inevitably accumulate error and deviate more and more from the real trajectory.
Odometry techniques are therefore suitable for short-term motion estimation, but for
long-term operation in the same environment one would desire to have a map that
allows drift-free localization. Mapping is the process of creating a map from on-board
sensors given that localization is known. However, in order to localize the robot, we
have introduced the necessity of having a map. This is a chicken-and-the-egg problem
known as Simultaneous Localization and Mapping (SLAM), where we aim to solve
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localization and mapping problems simultaneously.

In order to map the environment, the sensors needs to obtain information from the
external world. These types of sensors are known as exteroceptive sensors, and can
provide distances to objects, intensity of ambient light, bearing to magnetic north, etc.
Among the exteroceptive sensors that can be used for SLAM, cameras are one of the
most promising. They are passive sensors in that they don’t influence the environment
by emitting energy, e.g. light, and observe the world as it is. They also provide dense
information of the viewed scene, in comparison to LIDARs which only provides sparse
point clouds. A dense sensor is useful for applications such as 3D reconstruction and
object recognition, that can be useful for other aspects of an autonomous system, and
also place recognition which is a key part of a SLAM system. SLAM performed with
cameras as the main sensor is known as V-SLAM, but will hereby be referenced to
simply as SLAM.

With a built map, the UGV can bound its odometry drift during GNSS outages by
recognizing previously visited locations, and thereby "close the loop". If the map is
built with available GNSS data, the accuracy of the map is high and the location of the
robot at the time of loop closure would be known with a high probability. If the map
is built without available GNSS data, the odometry error would still be bounded to the
uncertainty of the robots location at the time when the map was built, which would
be lower than the uncertainty of the robots location just before a loop closure event
occurred.

Robustness of the navigation system is of high importance in a real-world ap-
plication. A failure in one or more sensors should not result in a navigation failure,
but should rather provide the best possible estimates based on the sensors currently
available at all times. Using only a traditional Inertial Navigation System (INS), a GNSS
outage would result in navigation errors which would grow unbounded over time.
This project aims to incorporate cameras into the navigation system such that we can
map the environment in order to provide bounds on the localization error.
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1.2 Earlier Work

1.2.1 Visual Odometry

The problem of estimating a vehicle’s ego-motion based on visual input was started in
the early 1980s and was described by Moravec [49]. Most of the early research in this
field was done for planetary rovers, and was motivated the need to provide all-terrain
rovers with the capability to measure their 6-Degrees of Freedom (DOF) motion in the
presence of wheel slippage and rough terrains. This method of doing odometry with
cameras later became known as Visual Odometry (VO) after the work by Nistér [54],
who coined the term after providing the first real-time capable VO system. A tutorial
by Scaramuzza and Fraundofer [61], [20] provides an in depth review of the history of
VO as well as the key components of modern VO systems which can essentially be
seen as SLAM systems without the ability to detect previously visited locations.

VO algorithms can be divided into two categories, namely feature based, which
extracts and matches important keypoints in the images to retrieve the relative pose
between them, and direct methods, which uses pixel intensities directly to achieve the
same result.

Feature based approaches is the category with the richest literature, because of the
limited computation involved when dealing with sparse keypoints, allowing for real-
time execution on a wide range of platforms. One well known real-time capable feature
based approach is Libviso2 by Geiger et al. [28]. This approach matches keypoint
features in a circular fashion between consecutive stereo images, and estimates motion
between the consecutive frames by minimizing the reprojection error of the sparse
feature matches. The circular matching approach has also been used in the work of
Cvišsić et al. [8], [9], which currently is the best performing VO algorithm on the
public KITTI dataset [25].

In recent years, there have been many algorithms focusing on the direct approach.
One of such methods that have gained a lot of attention is Direct Sparse Odometry
(DSO) [14] which has achieved remarkable results on public datasets. The downside
of these kinds of algorithms are that they are very sensitive to geometric distortions
resulting from imperfect calibration, and they also require photmetrically calibrated
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datasets.

1.2.2 Visual SLAM

According to Durrant-Whyte and Bailey in their two-part tutorial [13], [2], the research
on SLAM dates back to 1986, when the idea of using estimation-theoretic methods
for robot localization and mapping were first discussed in the IEEE Robotics and
Automation Conference held in San Francisco. Yet, it was not until the 1995 Interna-
tional Symposium on Robotics Research that the structure of the SLAM problem, the
convergence result and the coining of the acronym SLAM were presented.

The tutorial of Durrant-Whyte and Bailey reviews solutions to the SLAM problem
up until 2006, which mainly focused on Bayesian filtering methods, such as the Ex-
tended Kalman Filter (EKF), particle filters, the Unscented Kalman Filter (UKF), and
information filters. Lately, the focus of the SLAM research community has shifted
towards optimization-based approaches, as these have proven to be more accurate
and efficient than the original approaches based on non-linear filtering [62]. The
reason for this is that optimization, or "smoothing", approaches retains and allows for
re-linearization of past states. This is contrary to filtering techniques which commit to
a linearization point when marginalizing, leading to a gradual build-up of lineariza-
tion errors which leads to drift and possible inconsistencies. Cadena et al. [4] more
recently presented a review of modern algorithms which mainly approaches SLAM as
a maximum a-posteriori optimization problem.

In recent years, one of the most popular SLAM algorithms is "An open-source
SLAM system for monocular, stereo and RGB-D cameras" (ORB-SLAM2) [51] which
combines feature based VO with the Dynamic Bag of Words 2 (DBOW2) [23] place
recognition library. The system is highly multi-threaded and optimizes poses and
landmarks over a local and global graph, yielding accurate results.

1.2.3 Sensor Fusion

Combining measurements from many different sensors into a best possible estimate
is known as information fusion, where the combined estimate has less uncertainty
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than if all the sensors were used individually. Traditionally this has been done using
filtering techniques using different variants of the Kalman Filter (KF) (see for example
[63]), but as in visual SLAM, new techniques based on optimization/smoothing have
emerged. Many of them use the formalism of factor graphs, described in section 6.2,
to reason about the interdependence among the involved variables.

Indelman et al. [33] describes how information from different sensors operating
asynchronously at different rates can be incorporated into a factor graph formulation in
a natural way. This method, based on a recently developed incremental smoother [34],
automatically determines the number of states to recompute at each step, effectively
acting as an adaptive fixed-lag smoother. This yields an efficient and general framework
for information fusion. To reduce the number of variables required in the optimization
when dealing with the high rate IMU sensor, Forster et al. describes how to summarize
IMU measurements into a single factor between keyframes [19]. Kaess et al. [36] does
filtering and smoothing in parallel in order to filter out high frequency measurements,
while retaining important states which can be re-linearized to better accommodate for
loop closures.

1.3 Assumptions

This section defines assumptions that will be adopted throughout the thesis.

Assumption 1. The navigation system must be able to operate in real-time.

Assumption 2. The navigation system must be able to operate over long periods of
time.

Assumption 3. The navigation system must be able to operate over large areas.

Assumption 4. The navigation system must be able to operate in a wide range of
environments, such as terrain and urban.

Assumption 5. The navigation system must be able to operate in areas with limited
GNSS coverage.
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Assumption 6. Olav is equipped with a Velodyne HDL-32E 3D LIDAR which is an
active sensor providing sparse but accurate sensor suitable for navigation and mapping.
However, to investigate the potential of using cameras in the navigation system, LIDAR
based algorithms was not considered in this project.

Remark 1. Assumption 4 implies that the odometry must be able to describe motion
with 6-DOF.

1.4 Contributions

• The main contribution of this thesis is a real-time capable V-SLAM system
which incorporates GNSS measurements. This combines locally accurate VO
from stereo cameras, with the globally accurate GNSS sensor. The system is
able to work without a GNSS sensor for long periods of time, and perform
re-localization if the VO estimation fails, due to the systems ability to close
loops.

• A Graphics Processing Unit (GPU) accelerated stereo VO algorithm based on
Library for Visual Odometry 2 (LIBVISO2) [28], the Stereo Odometry Based on
Feature Selection and Tracking (SOFT) [8] algorithm and the work by Manthe
et al. [45].

• A back-end optimization framework based on Incremental Smoothing and Map-
ping 2 (iSAM2) [34] which uses switchable constraints [66] to robustly handle
false positive loop closures and GNSS measurements corrupted by multipath
artifacts.

• A method for finding the relative pose between earth and body frame based on
GNSS measurements only.

• A modular implementation which makes it easy to replace, improve and add
modules. This way, other sensors can be incorporated at a later stage.

• A map and frame viewer which can be used to visually interface the system
during testing.
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1.5 Outline

After this introductory chapter, the outline of the thesis is as follows: Chapter 2
presents the sensor setup on Olav, and the datasets used in this project. Some relevant
background theory on geometry is provided in chapter 3, which lays the foundation
to discuss the stereo camera model and calibration in chapter 4, as well as the SLAM
problem. The topic of SLAM is divided into two chapters. Chapter 5 reviews VO
and place recognition, where after each topic, a module to incorporate into the final
system is presented after a discussion. Chapter 6 provides a probabilistic formulation of
SLAM, and how it can be formalized in a factor graph which can incorporate different
sensors. An optimization framework is chosen and presented in section 6.6.2, based
on a discussion of available frameworks in section 6.6.1. The system implementation
is described in chapter 7, followed by experiments and results in chapter 8. Lastly,
chapter 9 draws conclusions and suggests directions for further work.



Chapter 2

Sensor Setup

In this chapter, I will do a review of the different sensors available on Olav. This will
lay the foundations for which algorithms to implement in the navigation system in
later chapters.

2.1 The Vehicle

Olav, the autonomous platform that the navigation algorithm is going to run on, is a
Polaris Ranger XP 900 EPS modified to enable autonomous driving [46], and is depicted
in figure 1.1. The sensors installed on Olav, which are of importance to this project,
are three forward facing Point Grey Grasshopper3 cameras (two gray-scale stereo
cameras, and one centered color camera) depicted in figure 2.1, a Honeywell HG9900
IMU, and a Trimble SPS855 GNSS receiver which supports Real-Time Kinematic (RTK)
and Omni-Star correction streams to enhance accuracy. The GNSS uses all currently
available satellite signals including L1, L2 and the modernized L2C code. Currently
the system estimates global position and orientation with FFI’s in-house developed
INS [30] which fuse the IMU and GNSS measurements in a Kalman filter. Additionally,
Olav is equipped with two NVIDIA GeForce GTX 980 Ti GPUs which can be utilized
to speed up computation of image streams.

9
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Software-wise, the platform runs Robot Operating System (ROS) [57], which is
a publisher-subscriber framework where nodes implement core functionality. The
nodes subscribe on topics from other nodes, process the received information and then
publish their results.

2.2 The Cameras

The Grasshopper3 GS3-U3-91S6M-C gray-scale stereo cameras has 9.1 mega-pixels
and are equipped with global shutters which eliminates spatial and temporal aliasing
problems associated with conventional rolling shutters. The cameras has fixed aper-
tures, but the shutter speed is adjusted automatically to the lighting conditions, albeit
with some delay when the lighting conditions change rapidly. In the provided dataset,
the images has a resolution of 1688 × 1352 pixels, and a frame-rate of 6 fps.

Figure 2.1: Point Grey Grasshopper3 Camera



Chapter 3

Geometry Fundamentals

This chapter presents geometry fundamentals on homogeneous coordinates and rigid
body motion, necessary for describing the perspective camera model in chapter 4,
and Olav’s motion through the environment. Additionally, this chapter discusses
the relationship between the different coordinate frames involved when working
with different sensors, and how to do to handle incremental updates on rotation- and
homogeneous transformation matrices which is used when discussing optimization in
section 6.6.

3.1 Homogeneous Coordinates

Homogeneous coordinates are a system of coordinates used in projective geometry
and rigid body kinematics. They have the advantage that the coordinates of points,
including points at infinity, can be represented by finite coordinates. They also sim-
plify the algebra when working with projective transformations, extensively used in
computer vision.

A point in the Euclidean planemay be represented by the pair of coordinates (x1,x2)
in R2. Considering R2 as a vector space, the coordinate pair is a point identified as a
vector x = (x1,x2)T . We can represent this same point in homogeneous coordinates,

11
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denoted by x̃ (the tilde notation is used for homogeneous coordinates throughout
this thesis), by adding a third dimension such that x̃ = (x1,x2, 1)T ∈ P2 where P2 is
called the projective plane. For any non-zero λ, x̃ = λx̃ holds, because an arbitrary
homogeneous vector representative of a point on the form x̃ = (x1,x2,x3)T , represents
the point (x1/x3,x2/x3) in R2.

With this, points at infinity can now be represented as x̃ = (x1,x2, 0)T (which is not
part of the Euclidean plane), defined as the limit of a point that moves in the direction
specified by the ratio x1 : x2. Parallel lines in the Euclidean plane is said to intersect at
a point at infinity corresponding to their common direction.

The notion of homogeneous coordinates can also be extended to 3D space, where
the coordinates (x1,x2,x3) in R3 is a point vector when R3 is considered to be a vector
space. The homogeneous representation of the point vector can then be expressed as
x̃ = (x1,x2,x3, 1)T ∈ P3.

3.2 Rigid Body Kinematics

3.2.1 Pose Representation

Since Olav is a terrain vehicle operating in uneven environments, we have to describe
its motion with 6 DOF. If we attach a coordinate frame FB to the moving vehicle body,
the pose of the body frame relative to the fixed world frame FW at time t ∈ {0, . . . ,T }
can be described by the matrix

TWBt =

RWBt tWt

01×3 1


=



r11 r12 r13 tWt
x

r21 r22 r23 tWt
y

r31 r32 r33 tWt
z

0 0 0 1


∈ SE(3) (3.1)

which is a homogeneous transformation of the projective space P3. The transfor-
mation is homogeneous because TABt = λTWBt ∀λ ∈ R \ {0}. The Special Euclidean
group SE(3) is the set of all 3 × 3 transformation matrices defined as
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SE(3) =


©«
R t

01×3 1
ª®¬
�����R ∈ SO(3), t ∈ R3




(3.2)

and SO(3) is the Special Orthogonal group, i.e. the set

SO(3) = {R ∈ R3×3 |RTR = I3,det(R) = 1} (3.3)

which is also known as the group of 3-dimensional rotation matrices. SO(3) and
SE(3) are Lie groups with multiplication as group operations, and has respectively 3-
and 6-DOF manifolds embedded in R3×4 and R4×4.

For a landmark represented by the point vector l̃Bt expressed in homogeneous
coordinates relative to the body frame at time t , the same point can be expressed in
the world frame FW by applying the following transformation:

l̃W = TWBt l̃
Bt . (3.4)

Note that l̃W , l̃Bt . Inversely; given TWBt and l̃W , l̃Bt can be found as:

l̃Bt = TWBt
−1 l̃W = TBtW l̃W =


RWBt

T −RWBt
T tWt

01×3 1


l̃W (3.5)

Consecutive homogeneous transformations are convenient to work with, as the
group operation of SE(3) is matrix multiplication. For two consecutive vehicle poses 1

at time t − 1 and t , the relative transformation between them can be found as:

TBt−1Bt
= (TWBt−1 )−1TWBt (3.6)

The vehicle pose at time t can parametrized by the vector

xt = (x ,y, z,ψroll ,ψpitch ,ψyaw )T , (3.7)

where the the first three elements define the vehicle’s translation tWBt = (x ,y, z)T

1The combination of position and orientation is referred to as the pose
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relative to theworld frame, and the last three parameters (given in radians) parametrizes
a rotation composed of yaw, pitch and roll relative to the world frame:

RWBt = Rz (ψyaw )Ry (ψpitch)Rx (ψroll ) (3.8)

where Rx , Ry , Rz denotes basic rotations around the x , y and z axes, respectively.
There is a singularity problem associated with the yaw, pitch, roll parameterization
when the first and third rotation axes align (when p = π/2 or p = 3π/2), but this is not
relevant for an UGV. The notation TWBt = T(xt ) is used to recover the corresponding
transformation matrix from the pose vector.

3.2.2 Rotation Updates

Using 3 × 3 matrices to represent three-dimensional rotations has the advantage that
rotations can be concatenated by matrix multiplication. A major drawback, however,
is that with nine parameters and only three degrees of freedom, rotation matrices are
over-parameterized, which is disadvantageous when doing numerical optimization.
Also, using rotation matrices for incremental updates is not a good idea, since the
result may produce a matrix which is not in SO(3), and likewise for poses in SE(3).
We can solve this problem by using the associated Lie Algebra so(3) of the Lie Group
SO(3).

A rotation can be parametrized by an axis-angle representation ξ = θω ∈ R3,
where ω = (ωx ,ωy ,ωz )T is a unit vector representing the axis of rotation, and θ is the
angle magnitude. Using this representation, we can find 3-dimensional increments ξ
onto proper rotations by using the exponential map defined by

SO(3) ∋ exp(ξ̂ ) = I3 +
sinθ
θ

ξ̂ +
1 − cosθ

θ 2
ξ̂ 2 (3.9)

where the hat operator maps elements from the 3-vector ξ to elements of the Lie
algebra so(3). In the case of SO(3), the hat operator creates a skew symmetric matrix
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∧ : R3 → so(3) : ξ̂ 7→



0 −ξz ξy

ξz 0 −ξx
−ξy ξx 0


=



0 −ωx ωy

ωz 0 −ωx

−ωy ωx 0


θ ∈ so(3). (3.10)

Incremental rotation updates around an estimate R0 can now be computed as:

R0 ⊕ ξ ≜ R0exp(ξ̂ ). (3.11)

3.2.3 Pose Updates

We can also think of the parameter θ as a finite time ∆τ which we multiply with the
angular velocity ω to obtain the incremental rotation. This is an easier analogy when
dealing with incremental pose updates ξ which can be thought of as multiplying the
angular velocity ω = (ωx ,ωy ,ωz )T and translational velocity ν = (νx ,νy ,νz )T by a
finite time ∆τ , i.e., ξ ≜ (ω,ν )T∆τ ∈ R6. The hat operator defines a mapping from R6

to the Lie algebra se(3) associated with the Lie group SE(3):

∧ : R6 → se(3) : ξ 7→

ω̂ ν

01×3 0


∆τ ∈ se(3). (3.12)

Incremental pose update around an estimate T0 can be found using the exponential
map as in (3.11). The exponential map for SE(3), as for SO(3), has a close form solution,
however when doing optimization on SE(3) it is more computationally efficient to not
use the exponential map, but rather to define a retraction RT which uses a simpler
expression for the translational update. An incremental pose update around an estimate
T0 can then be found as:
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Figure 3.1: Transformations between the camera frames FCr , FCl and the body frame
FBt are constant over time, and represented with solid lines. The transformation
between the body frame and the world frame FW changes with time, and is represented
with a dotted line.

T0 ⊕ ξ ≜ RT0 (ξ ) ≜

R0 t0

01×3 1



exp(ω̂∆τ ) ν∆τ

01×3 1


=


R0exp(ω̂∆τ ) t0 + R0ν∆τ

01×3 1


.

(3.13)

3.3 Working with Different Coordinate Systems

3.3.1 Visual Odometry

When performing frame-to-frame VO, we find the relative motion, TCl,t−1Cl,t
, between

(left) camera frames FCl,t−1 and FCl,t , t ∈ {0, . . . ,T }. The procedure of finding this
transformation is explained in subsection 5.3.3 and 5.3.4. The INS measurements that
are published on the ROS network at time t are given in the INS frame, defined to
coincide with the body frame FBt . To easily combine these measurements, the camera
frame is transformed into the body frame. For a pose estimate based on VO, the pose
is given as
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TWBt = TWB0
TBClT

Cl,0
Cl,t

TClB (3.14)

where

TCl,0Cl,t
= TCl,0Cl,1

TCl,1Cl,2
· · ·TCl,t−2Cl,t−1

TCl,t−1Cl,t
(3.15)

and the transformation TBCl (as well as T
B
Cr
) and its inverse are constant over time,

as illustrated in figure 3.1:

TBCl = TBtCl,t = (TCl,tBt
)−1 = (TClB )−1 ∀t ∈ {0, . . . ,T }. (3.16)

This transformation, along with all other transformations between different coordi-
nate frames defined on the vehicle are found by off-line calibration. When a mapping
session begins, we have to find the transformation matrix TWB0

which is not straight
forward as will be explained in the next section.

3.3.2 GNSS

The GNSS receiver on Olav publishes its measured position in geodetic latitude (lat.) φ,
longitude (lon.) λ and height h relative to the World Geodetic System 1984 (WGS-84)
reference ellipsoid. When doing odometry, however, it is more convenient to work with
Cartesian coordinates, so in order to combine the two sensors, a local tangent plane
on the reference ellipsoid is defined. The plane is illustrated in figure 3.2, and remains
fixed throughout the navigation session. The reference frame FW is defined to be at
the origin at this tangent plane (where the tangent plane coincides with the reference
ellipsoid), with the x , y and z axes pointing to true north, east and up (perpendicular to
fixed the tangent plane) respectively. Note that this is not the same as an East, North,
Up (ENU) coordinate frame as it is commonly referenced in the literature, since the
origin of an ENU frame is the projection of the body frame onto the reference ellipsoid
rather than the fixed tangent plane. Assuming that the x , y and z axes of FBt is aligned
respectively front, left, up with the vehicle, the UGV is pointing due east and aligned
with the tangent plane when RWBt = I3. The tangent provides a good local reference
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Figure 3.2

system, but for very large scale navigation, a new tangent plane would have to be
defined when the distance away from the origin becomes too large.

The tangent plane can be initialized at any time and place on the reference ellipsoid,
but in this case it is initialized at t = 0 with origin corresponding to φ0, λ0 and h0,
based on the assumption that the UGV has remained stationary for some time to get a
good fix on the GNSS satellites before the navigation session begins.

The conversion between the geodetic lat., lon. coordinate system and the local
tangent plane reference system is done via conversion to Earth-Centered, Earth-Fixed
(ECEF) coordinates, and is described in detail in [67]. In practice, this conversion is
made easy with the GeographicLib C++ library [37] and the LocalCartesian class
which defines the local tangent coordinate system, and provides easy conversions be-
tween local and lat., lon. coordinates. The output of the visually augmented navigation
system is given in lat., lon. coordinates so that the UGV can report this position back
to a base station.

Defining the tangent reference frame at time t = 0 provides the translational
component tW0 of the pose TWB0

, but the rotation RWB0
is still unknown. Assuming a
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scenario where this is not available from gyroscope or magnetic measurements, several
GNSS measurements with sufficient relative motion in between are needed, and this
procedure is explained in section 7.3.



20 CHAPTER 3. GEOMETRY FUNDAMENTALS



Chapter 4

Camera Model and
Calibration

This chapter explains the perspective camera model, stereo camera setup and camera
calibration as well as how the camera calibration is performed in practice. Understand-
ing the camera model is important since it describes how information from the world is
interpreted by the cameras, which is central to understand when doing camera-based
odometry.

4.1 Pinhole Camera and Perspective Projection

The Grasshopper3 cameras mounted on Olav approximately follows the perspective
(pinhole) camera model, that is, objects that are projected onto the image appear
smaller if they are far away from the camera than if they are close. The pinhole
camera model describes the relationship between coordinates in the real world and
their projected pixel coordinates on the image plane. In the model, the camera aperture
is described as a point and no lenses are used to focus the light.

The image is formed by the intersection of the light rays from the objects through

21
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Figure 4.1: The pinhole camera model. Image courtesy of [29].

the center of projection (pinhole) with the image plane, depicted in figure 4.1. Figure
4.2 illustrates the same situation in a coordinate system, but here the image plane is
moved in front of the center of projection in order to simplify the math, and this is the
common convention. The coordinate frame FC , the camera frame, has the center of
projection as its origin and its z-axis coinciding with the principal ray. The camera
frame, which in our case is fixed to a robot which is moving, is often represented
relative to a fixed world frame FW which can be anywhere in the world.

Figure 4.2: The normalized pinhole model. Image courtesy of [29].

We want to find the mapping from points in 3D space given relative to the world
coordinate frame, to the corresponding pixel location of that same point on the image
plane. Let l̃W = (lWx , lWy , lWz , 1)T be the coordinates of a landmark point given in the
world coordinate frame, expressed in homogeneous coordinates. First, this point vector
needs to be transformed into the camera reference frame lC , and this transformation
is a function of the extrinsic camera parameters:
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lC =
h
RCW tC

i
l̃W (4.1)

where RCW ∈ SO(3) and tC ∈ R3 is, respectively, the rotation matrix and translation
vector of the world frame relative to the camera frame, which is known as the extrinsic
parameters and will hereby be referred to as R and t to simplify notation. The matrix
[R t] is known as the matrix of extrinsic parameters.

Now we need to find the point projection, û = (û, v̂)T , of lC onto the image plane.
The superscripts are temporarily omitted to simplify notation, but all the points are
given in the camera frame. The image plane is assumed to be located at zC = f , where
f is called the focal length defined as the distance between the image plane and center
of projection. From similar triangles, we see that:

v̂

ly
=

f

lz
⇒ v̂ =

f ly

lz
(4.2)

and by the same approach, we find:

û =
f lx
lz
. (4.3)

Figure 4.3: Finding the point projection from similar triangles in the pinhole camera
model. Image courtesy of [29].

Note that û is given in metrical coordinates. Now, in order to find the pixel
coordinates u = (u,v)T on the image, we need to go through some additional steps.
Because pixels are usually not perfectly square, the focal lengths in the x and y
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direction, denoted fu and fv respectively, are different. fu and fv are given in pixels,
and are products of the focal length f and the pixel densities given in pixels per
millimeter, denoted su and sv respectively. Additionally, since the principal point,
i.e. the intersecting point of the principal ray on the image plane, is not necessarily
the center of the image plane, the parameters cu and cv are introduced to model
the possible displacement. The parameters (fu , fv , cu , cv ) together form the intrinsic
camera parameters. Assuming a high quality camera, we do not include pixel shear.
The pixel coordinates can now be expressed as:

u =
fux

z
+ cu = suû + cu (4.4)

and

v =
fvy

z
+ cv = svv̂ + cv (4.5)

which can conveniently be expressed as a linear transformation:

λ



u

v

1


= K



lx

ly

lz


=



fu 0 cu

0 fv cv

0 0 1





lx

ly

lz


. (4.6)

where K is called the calibration matrix, or matrix of intrinsic parameters.

Putting it all together, we get:

ũ = λ



u

v

1


= K[R t]l̃W = π (lW ; x). (4.7)

where π (lW ; x) is the projection function which depends on the vehicle state vector
x.
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4.1.1 Distortion Model

The geometry of the perspective camera is simplified since we assume the pinhole to
be infinitely small, but in reality the light needs to pass through a lens in order for the
imager to gather enough light for rapid exposure. The need for a lens complicates the
camera intrinsics, because it can cause radial distortion, which makes straight lines in
the scene appears as curves in the image due to inaccurate or wide-angle lenses, and
tangential distortion caused by misalignment between the lens and the image sensor.
The two effects are depicted in figure 4.4. To account for these artifacts, we include a
radial-tangential distortion model.

(a) (b)

Figure 4.4: Fig. 4.4a depicts the effects of radial and tangential distortion. Fig. 4.4b
depicts the effect of radial distortion. Solid lines: no distortion; dashed lines: with
radial distortion (a: negative, b: positive). Image courtesy of [71].

Let (ûd , v̂d , 1)T = K−1(u,v, 1)T be the normalized image coordinates, denoted with
the subscript d to make it clear that these image coordinates are affected by distortion.
To correct for the radial distortion we use the Open Source Computer Vision Library
(OpenCV) distortion model [3], which adds a correction term that follows from a
Taylor expansion of the distortion factor dependent on the radial distance r = û2d + v̂

2
d

from the principal point (assumed distortion center):
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∆ûradial = û(k1r 2 + k2r 4 + k3r 6) (4.8)

∆v̂radial = v̂(k1r 2 + k2r ‘4 + k3r 6) (4.9)

For tangential distortion the correction term is given by

∆ûtanдential = 2p1ûdv̂d + p2(r 2 + 2û2d ) (4.10)

∆v̂tanдential = p1(r 2 + 2v̂2
d ) + 2p2ûdv̂d . (4.11)

The total expression for the corrected coordinates (x ,y) are then

û = ûd + ∆ûradial + ∆ûtanдential (4.12)

v̂ = v̂d + ∆v̂radial + ∆v̂tanдential (4.13)

Finally, the undistorted image pixel coordinates are given by

u = fuû + cu (4.14)

v = fvv̂ + cv . (4.15)

The intrinsic- and distortion parameters are independent of the scene viewed, and
only has to be found once for each camera. The process of determining the camera
parameters is known as camera calibration, and will be discussed in section ....

4.2 Stereo Vision

When projecting a point in 3D space onto the 2D image plane, the depth dimension
is completely lost. This is intuitively similar to human vision, where it is hard to
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Figure 4.5: Rectified Stereo setup. Image courtesy of [29].

determine the distance to objects when one eye is kept closed. SLAM (or VO) can
be performed using only a single camera, which is called monocular SLAM. This
has the advantage of being the cheapest and smallest sensor setup for visual SLAM,
but since the depth dimension is not observable, the scale of the map and estimated
trajectory is unknown. To overcome this, monocular SLAM require multi-view or
filtering techniques to produce an initial map, as it can not be triangulated from the
first frame, and this adds quite a bit of complexity. Monocular SLAM also suffers from
scale drift, and may fail when performing pure rotational motions. By using stereo
cameras, i.e. two rigidly mounted and approximately aligned cameras looking at the
same scene, the depth dimension can be recovered by triangulation in every frame, so
problems related to scale drift and system bootstrapping are eliminated.

Two images looking at an overlapping scene is related through epipolar geome-
try so that all stereo correspondences, i.e. image points in the left and right image
corresponding to the same 3D landmark, are constrained to lie on the corresponding
epipolar lines. In a calibrated and rectified stereo camera setup, depicted in figure 4.5,
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the two image planes are perfectly aligned such that the epipolar lines are horizontal,
and the focal lengths f and optical centers (cu , cv ) are constrained to be the same for
both cameras. For two image points ul = (ul ,vl )T and ur = (ur ,vr )T in respectively
the left and right camera corresponding to the same 3D landmark lW , a detection
of ul in the left image would only require a search along the epipolar line, the ur
coordinate, in the right image to find the corresponding ur in the right image. This
severely constrains the search domain for stereo correspondences, which now only
needs three coordinates to be described (ul ,vl ,ur ). Alternatively, we can use disparity
to represent the third coordinate, given simply by d = ul − ur . The disparity value is
inversely proportional to depth of the landmark, which can be found as

z =
f b

d
(4.16)

where b is the baseline, i.e. the distance between the stereo cameras’ principal
points. Because of the nonlinear relationship in (4.16), small disparity differences make
for large depth differences when d ≈ 0, while large disparity differences make for
small depth differences when d is large. The consequence is that stereo vision systems
have high depth resolution only for object relatively near the camera.

For the stereo setup, we now have two camera projection functions:

πi (lW ; x) = ũi = λi
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(4.17)

where i ∈ {l , r }, sl = 0 and sr = b. We can also define the re-projection function
which re-projects stereo correspondences to the 3D landmark:

π−1(ul ,d ; x) = l̃W = TWClQ
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(4.18)
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4.3 Calibration and Rectification

The goal of the calibration process is to find the intrinsic, extrinsic and distortion
parameters of both cameras. This information can then be passed to a rectification
step where the aim is to "correct" the individual images so that they appear as if they
had been captured by two cameras with co-planar and row-aligned image planes.

Finding the intrinsic and extrinsic parameters of each camera can be done by
matching the pixel coordinates {u1, u2, . . .} to the set of corresponding scene points
{lW1 , lW2 , . . .} with known coordinates. This way, the intrinsic and extrinsic parameters
of each camera can be found by solving equation (4.17). In practice, this is done by
detecting 3D points on a planar calibration object such as a chessboard, where the 3D
points corresponds to the chessboard corners, and the corresponding pixels coordinates
are usually sub-pixel refined. Because of the underlying distortion parameters, the
problem is solved with optimization methods such as Levenberg-Marquardt (LM)
or Gauss-Newton (GN) which optimizes over the intrinsic, extrinsic and distortion
parameters simultaneously.

The camera parameters can then be passed to the stereo rectification step. This step
is necessary, because it is practically impossible to perfectly align two stereo cameras
such that they are perfectly co-planar and row-aligned. Therefore, the remaining
correction is done virtually. Stereo rectification re-projects the image planes of the
two cameras so that they reside in the exact same plane with exactly parallel optical
axes, and with the same focal length f and optical center (cu , cv ). Pixels from the
original images are mapped to the rectified images through a rectification map. The
result is perfectly horizontal epipolar lines, allowing a constrained search for stereo
correspondences.

4.3.1 Kalibr and OpenCV

For the stereo calibration, I used the Kalibr library [21], [47], which is an open-source
software developed by the Autonomous Systems Lab at ETH Zürich. Kalibr uses the
ROS framework so that calibration sequences can simply be passed to the software as
ROS-bags, making a very simple interface. In addition to chessboards, Kalibr provides
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the option of using an AprilGrid calibration object [55], which makes the calibration
more robust to occlusions, i.e. if the calibration object is only partially visible to
the camera. I found this software to be faster, easier to use and more robust than
the OpenCV library, which provides a sample stereo calibration program. Using
OpenCV, I had to carefully select individual stereo images to include in the calibration,
because occluded calibration objects would cause the program to freeze and produce
unacceptable results. Kalibr also provides a detailed report of the calibration result,
including mean and variance for the reprojection error which is useful for specifying
uncertainties in the VO algorithm.

(a) Original stereo images from the data set. (b) Undistorted and rectified images.

(c) Finally, the images are cropped to remove the sunscreen.

Figure 4.6: Rectification process.

The rectification process, however, had to be done in OpenCV, as Kalibr does
not provide this functionality. The rectification map was produced with the OpenCV
function stereoRectify(), based on the work by Loop and Zhang [43], which takes
the intrinsic and extrinsic camera parameters of both cameras, and outputs new
rotation and projection matrices for each camera. These matrices are then used as input
to the function initUndistortRectifyMap() which initializes a pixel interpolation
mapping for each camera, produces rectified images. The stereoRectify() function
can optionally crop the images. This was necessary for the cameras on Olav, which has
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a sun-screen to protect against direct sunlight, but causes problems when performing
VO. Figure 4.6 illustrates the effect of this mapping applied on a pair of stereo images
from the provided data set.
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Chapter 5

The SLAM Front-End

Figure 5.1: The front-end and back-end components of a modern SLAM system. Image
courtesy of Cadena et al. [4].

As explained in chapter 1, SLAM is the problem of a robot incrementally building
a consistent map of its environment while simultaneously determining its location
within that map. The SLAM system must be able to process information in real-time
as it moves through the environment, and this demand for parallelism is why most
modern SLAM systems has some form of multi-threading, where the different parts of
the system is often referred to as the front-end and the back-end.

As mentioned in section 1.2.2, most modern SLAM techniques are based on opti-
mization/smoothing, and this is usually embedded in a Probibalistic Graphical Model
(PGM). The front-end is responsible for initial construction of the graph, i.e., sensor

33



34 CHAPTER 5. THE SLAM FRONT-END

abstraction, data association and initial pose estimates, while the back-end is respon-
sible for performing probabilistic inference on the abstracted data produced by the
front-end. The back-end can feed information back to the front-end, and provide
information, for example, about potential loop closures. This anatomy is shown in
figure 5.1.

The front-end and back-end creates a natural partitioning for discussing the differ-
ent parts of the SLAM system. This chapter considers the front-end, and goes in-depth
in two topics, namely VO and place recognition. For each topic, a module is chosen
for the system implementation after a discussion.

5.1 Visual Odometry

VO is a part of the front end, and is responsible of finding the relative constraint
between temporal frames. Generally, one can say that VO is SLAM with loop closing
disabled, because all VO methods use information about the environment to find the
relative pose constraints, and in that sense also does mapping. However, since the map
is never re-used after finding the constraints (no loop closing), the map does not need
to be maintained over long periods of time. VO methods can roughly be divided into
two classes, namely indirect and direct methods.

5.1.1 Indirect Methods

Indirect-, or feature based VO methods pre-processes the raw images and extracts
features/keypoints. These features can then be used to estimate the relative motion
of the camera by finding point correspondences between frames. This can be done
by matching features frame-to-frame, such as in LIBVISO2 [28] or SOFT [8], or by re-
projection the features into a 3D feature map such that several poses can be optimized
simultaneously using mutual observability constraints. This form of pose optimization
is known as Bundle Adjustment (BA), and is used in seminal works such as ORB-
SLAM2 [51]. Frame-to-frame methods does not track features over more than one
frame at a time, and has the advantage that they are generally faster than BA methods,
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as there are less variables involved in the optimization, and there is no need to maintain
a feature map. However, frame-to-frame methods has a disadvantage compared BA
methods when it comes to accuracy.

Detecting and describing features is by itself a large field of research in computer
vision. A huge variety of different detectors descriptors exist, and Pire et al. [56] provide
a comparison of different detector and descriptor combinations in a VO application. A
disadvantage of using features in general is that low textured and poorly illuminated
environments creates problems when extracting and matching features, and these
problems are partially solved using direct methods.

5.1.2 Direct Methods

Direct methods skips the image pre-processing step and uses the image pixel intensities
directly in a probabilistic model. The direct approach then proceeds by minimizing a
photometric error term, rather than geometric which is the case for indirect methods.
Since direct methods eliminate the need for feature detectors and descriptors, they are
expected to be more accurate and robust when there is little texture in the scene or blur
on the image. They also provide a denser map reconstruction compared feature-based
methods, which is only able to provide sparse reconstructions that is only useful for
camera localization. A more dense map reconstruction could potentially be useful for
other elements of the autonomous system.

Recent works by Engel et al. such as Large Scale Direct SLAM (LSD-SLAM) [15],
[16] and DSO [14], [68] have proven very good results on publicly available data-sets
compared to other state-of-the-art feature-based systems, as presented in the papers.
Most surprising is the performance of DSO which is a VO method, i.e. no loop closure,
that outperforms most available SLAM systems in regards to tracking accuracy. The
down-side of using direct methods is that they are very sensitive to geometric noise
that can originate from bad calibration or rolling shutter effects. Also, direct methods
requires photometrically calibrated images to produce good results.
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5.2 Selecting a Visual Odometry System

Initially, I investigated the potential of using existing algorithms which currently have
an available open-source implementation. Here are the ones I tested:

• FOVIS, developed by Huang et al. [31], [32]. This is an algorithm originally
intended for RGB-D cameras, which works by extracting Features from Acceler-
ated Segment Test (FAST) features and then using the depth information only
at those key points. Since the depth information is only used at keypoints, the
depth information can be replaced by disparity information from the stereo
cameras. After some experiments, I found that the algorithm could not process
stereo frames faster than approximately 1Hz, which is too slow for the setup on
Olav which publishes images at approximately 6 fps.

• ORB-SLAM2, by Mur-ArtalMur et al. [51]. Since ORB-SLAM2 is highly multi-
threaded and does optimization over a co-visibility graph, essential graph, and
local poses, integration of other sensor data directly into this system is a big
challenge. I therefore tried to remove the loop closing functionality, and use
the keyframes produced from local mapping in a pose graph optimized with
iSAM2. This proved to be a challenge in practice, since ORB-SLAM2 uses g2o
as optimization library. g2o and Georgia Tech Smoothing and Mapping library
(GTSAM) did not work well together, as I experienced segmentation faults after
introducing GTSAM into the code. This is possibly because of different versions
of the Eigen library that the two libraries are built on. I then tried to rewrite the
local bundle adjustment using GTSAM, but I did not get good results.

• Stereo-DSO byWang et al. [68]. The TUM computer vision group has written an
article about the DSO algorithm in a stereo version, but the open-source code is
only available in a monocular version. Another repository fromHorizon robotics
[73] has used the paper to replicate the code, but I found this implementation to
be highly unstable.

• LIBVISO2 by Geiger et al. [28], [38]. This library worked right out of the
box, and has a very simple interface which made it easy to integrate into the



5.3. VISUAL ODOMETRY ALGORITHM 37

code. However, the algorithm does not achieve the best accuracy performance
as compared for example to DSO or ORB-SLAM2, and was just barely able
to achieve the real-time constraint on the KITTI dataset with 10.1 frames per
second average. (The KITTI dataset has 10 FPS), leaving no overhead for loop
closure detection etc. Also, LIBVISO2 uses its own matrix and vector data types,
requiring data type conversions when working with other computer vision
libraries such as OpenCv.

I ended up with implementing a visual odometry system inspired by LIBVISO2,
the SOFT algorithm [8] which is currently the top contender on the KITTI dataset
leaderboard, and the algorithm described in the paper by Manthe et al. [45]. The
algorithm utilizes a lot of functionality from the OpenCV library, which has built in
GPU support for many of its functions allowing for significantly higher computational
performance and utilization of the on-board NVIDIA GPU installed on Olav. The
algorithm is described in detail in the following section.

5.3 Visual Odometry Algorithm

An overview of stereo VO algorithm presented here is illustrated in figure 5.2. The
algorithm is a feature based approach, which matches features in a circular fashion
similarly to LIBVISO2 and the SOFT algorithm. Rather than using the custom corner
and blob detectors used by those, features are matched between consecutive image
pairs using a sparse Lucas Kanade optical flow algorithm [74], as is also done in [45].
The matched features are then used to estimate rotation using Nistérs 5-point algorithm
[53], and translation by minimizing reprojection error between frames. The steps will
be explained in more detail in the following subsections.

5.3.1 Feature Management

At each time step, a stereo image pair is processed. The first image pair initializes the
algorithm, such that the first pose is set to the world origin. All images are assumed to
be calibrated and rectified with coinciding focal lengths and principle points. For the
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Figure 5.2: Pipelined overview of the VO algorithm. Boxes with rounded corners
indicate algorithmic processes and boxes with sharp corners indicate input/output
data. The arrows indicate the data flow.

first image pair, FAST features [58] [59] are extracted on the left image, serving as an
initialization for the optical flow algorithm which requires good features to track in
consecutive images. For the following frames, new FAST features are only extracted
if the amount of tracked features falls below a given threshold, and new features are
appended to the vector of tracked features.

To ensure that the extracted FAST features gets an approximately uniform distri-
bution over the image domain, a bucketing procedure is used. The image is divided
into buckets, or sectors, of size bx × by where each bucket is filled with bn number of
features. As in SOFT, the bucket size is selected to be of size bx = by = 50 pixels where
bn = 4 features per bucket seemed to yield a good trade off between computation time
and pose estimation accuracy.

In addition to provide a good spread on the image features, the bucketing procedure
also prioritizes which features to place in each bucket based on that features tracking
history. Each tracked feature is assigned an age given by howmany frames that feature
has been detected. Features that are tracked for longer periods of time are considered
to be more reliable, with lower probability of being an outlier. Therefore, if more
than bn falls into the same bucket, older features are prioritized over younger ones.
However, during experimentation, features that was retained for a long period of time
seemed to slowly drift, and therefore, features older than a threshold of 10 frames was
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replaced by new ones if available.
The first image pair along with its features are stored in memory. When the next

image pair arrives, the initial features are tracked in a circle using a pyramidal imple-
mentation of the Lucas-Kanade Feature tracker algorithm developed by Bouget [74], im-
plemented with GPU support in OpenCV by the function calcOpticalFlowPyrLK().
Starting in the first left image, each feature is consecutively tracked in the first right
image, second right image, second left image, and lastly to the first left image again
as depicted in figure 5.3. If the tracked feature coincides with the initial feature, the
four feature correspondences are registered as a match and stored to use in the pose
estimation step.

Figure 5.3: Circular matching of feature points: Starting from an initial feature in the
left image at time t − 1 (lower left), the feature is tracked consecutively in the right
image at time t − 1, right image at time t , left image at time t , and lastly at the left
image at t − 1 again. Only if the tracked feature location coincides with the starting
location the match is accepted.

5.3.2 Pyramidal Lucas-Kanade Feature Tracker

The optical flow feature tracking algorithm tries to find feature correspondences
between two images I and J . For a pixel u = [ux ,uy ]T in the first image I , the
algorithm tries to find the location v = u+ d = [ux +dx ,uy +dy ]T in the second image
J such that I (u) and J (v) are similar. The vector d is known as an optical flow vector.
The algorithm tries to minimize the residual function ϵ defined as:
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ϵ(d) =
ux+ωxÕ

x=ux−ωx

uy+ωyÕ
y=uy−ωy

(I (x ,y) − J (x + dx ,y + dy ))2 (5.1)

whereωx , ωy defines an image neighborhood of size (2ωx +1)× (2ωy +1) on which
the similarity is measured. A larger neighborhood is more robust as it allows to track
features which moves with higher velocity between frames, but is also less accurate.
In this implementation, ωx = ωy = 10 was used.

Figure 5.4: Optical flow pyramid: An initial estimate of the optical flow is computed for
the image at lowest resolution, and continuously refined through the higher resolution
levels down to the original image resulting in the final flow estimate d.

The pyramidal implementation builds, for each image, an image pyramid ofm + 1
levels where the original image serves as the bottom level, and higher levels are
produced by recursively smoothing and down-sampling the input image. See figure
5.4. Features are initially tracked in the highest level of the pyramid, producing an
initial flow vector which serves as an initial guess when searching for the feature in
the higher resolution image one step lower in the pyramid. This process is repeated for
each level of the pyramid until the bottom level/original image at the highest resolution
is reached, yielding the resulting flow vector d. In this implementation, a pyramid
with 3 levels is used.
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5.3.3 Rotation Estimation

As in the SOFT algorithm, rotation is estimated using Nistérs five point algorithm [53].
For this, only the left images are used. For two images taken with the same calibrated
camera, the epipolar constraint between two views can be expressed as:

ûTt Eût ′ = 0, (5.2)

where ût and ût ′ are normalized image projections of a world point at time t and
t ′ respectively. The essential matrix is related to the relative pose as

E = [t]×R (5.3)

where [·]× denotes the skew symmetric operator. The essential matrix is in R3×3,
but since scale is unobservable, eight unknowns are left to be solved. However, Nistér
uses the fact that

det(E) = 0 (5.4)

and

2EET E − tr (EET )E = 0 (5.5)

to impose additional constraints such that only 5 correspondences are needed to
estimate E. The five point algorithm is used in conjunction with Random Sample
Consensus (RANSAC) [18]. A number of random five point subsets are taken from the
total set of points, and the Essential matrix is calculated for each subset. Finally, the
essential matrix that has the larges set of inliers among all the points is selected as the
final solution.

The relative pose from the essential matrix can be recovered up to the scale of t,
as shown by Longuet-Higgins [42]. Since we can only estimate E up to scale, we can
always re-scale it so that the Singular Value Decomposition (SVD) has the form
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E = UDVT =
h
u1 u2 u3
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1 0 0

0 1 0

0 0 0
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(5.6)

where det(U) = det(V) = 1. Then one can show that

R ∈ {UWVT ,UWTVT } (5.7)

t = ±λu3, λ ∈ R \ {0} (5.8)

where

W =



0 1 0

−1 0 0

0 0 1


(5.9)

The different possible combinations of R and t thus leaves 4 possible solutions. In
order to determine which combination is correct, some keypoints are triangulated
to ensure that the Cheirality constraint is satisfied, i.e. all scene points are in front
of both cameras. This is all done with the OpenCV function recoverPose() which
takes in the essential matrix computed from the five point algorithm with the OpenCV
function findEssentialMat().

5.3.4 Translation Estimation

To recover the translation, each stereo correspondence from the previous frame are
re-projected into 3D using the inverse projection function π−1 as defined in equation
(4.18). The 3D point is then projected into the current left frame using the projection
function πl and πr as defined in (4.17). Using LM optimization, the error term
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NÕ
i=1

∥ul,i − πl (lWi ;R, t)∥2 + ∥ur,i − πr (lWi ;R, t)∥2 (5.10)

is iteratively minimized with respect to the relative translation t, as the rotation is
already found from the 5-point algorithm. The translation is initialized to the result of
the previous configuration to speed up convergence. To be robust against outliers, the
estimation is embedded in a RANSAC scheme.

Estimating both rotation and translation by minimizing the reprojection error
was also experimented with, yielding slightly better computation times, but worse
odometry accuracy.

5.4 Place Recognition

A key feature that separates any SLAM system from a VO system is the ability to
recognize previously mapped environments. This allows the system to re-localize
after tracking failure, which might happen due to occlusion, abrupt movements or
driving towards the sun. It also enables detecting loop closures in the map, which
allows to correct for errors that have accumulated during exploration. Loop closures
also informs the robot about the true topology of the environment, allowing it to find
shortcuts between locations, as illustrated in figure 5.5.

Figure 5.5: A robot performing VO only will interpret the world as an infinite corridor.
Loop detection informs the robot about the true topology of the environment. Image
courtesy of [4].

One potential downside of a SLAM system with loop detection compared to a VO
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system is that wrong loop closures can corrupt the map, making it useless to navigate
in. Therefore, the properties of the place recognition module is very important in
the SLAM system, as well as having a policy for rejecting wrong associations. As
mentioned earlier, the loop detection module is usually considered part of the front-
end, with the back-end informing the front-end about potential loop-closures and also
providing geometrical verification which allows for discarding unlikely ones.

As the system has to perform in real-time, a place recognition module has to
be very effective. A naive brute force approach which detects features in the image
and tries to match them against all previously detected features quickly becomes
impractical, especially in large-scale environments. State-of-the-art real-time capable
place recognition methods such as Fast Appearance-Based Mapping 2.0 (FAB-MAP
2.0) by Cummins and Newman, [7], [6], and DBOW2 by Galvez-Lopez and Tardós
[24], are appearance-based methods which uses Bag of Words (BoW) techniques to
build a database of previously visited locations from visual words. Both methods store
their databases as tree structures, allowing for fast matching and retrieval. The tree
structures are called visual vocabularies, which requires an offline training stage to be
constructed. Visual- words and vocabulary will be explained in more detail in section
5.4.2.

In the case of severe illumination variations which is common in long-term opera-
tion, the BoWdescriptors are harder to match and in these conditions appearance-based
place recognition often fail. One newmethod that explicitly account for such variations
by matching sequences instead of image templates is seqSLAM by Milford and Gordon
[48], however the current implementation is quite expensive on memory consumption
and is therefore, at this point, not suitable for this project.

5.4.1 Selecting a Place Recognition System

For this project I chose to use the DBOW2 algorithm. This choice is partially based
on the survey by Williams et al. [72], which compares several approaches for place
recognition and concluded that techniques based on appearance, image to image
matching, seemed to scale better in large environments than map-to-map or image-to-
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map methods. DBOW2 achieves similar recall performance as FAB-MAP 2.0, but with
much lower computation times. DBOW2 can reportedly search and retrieve matches
from a database of 10 000 images using only 39 ms on average [52]. The reason for the
computational advantage over FAB-MAP 2.0 is that DBOW2 uses binary descriptors,
such as Oriented FAST and Rotated BRIEF (ORB) [60] or Binary Robust Elementary
Features (BRIEF) [5], to construct the vocabulary and database, while FAB-MAP 2.0
uses Speeded Up Robust Features (SURF) features which takes 400 ms to extract [52].
The algorithm has an open-source implementation [22] which is templated, so it can
work with any type of descriptor at the users convenience. The implementation is built
on OpenCV which allows easy integration into the developed VO system from section
5.3. DBOW2 serves as the place recognition module in one of the state-of-the-art
SLAM algorithms, ORB-SLAM2, which was reviewed in my project work last semester.
I found it to be very reliable and did not encounter a single false positive during testing.
Similar to ORB-SLAM2, I use the DBOW2 library with ORB features, as this descriptor
is more invariant to changes in scale and rotation compared to BRIEF [52]. Additionally,
a pre-trained visual vocabulary based on ORB features is readily available from the
ORB-SLAM2 Git-Hub repository [50], which is convenient because training a good
vocabulary requires thousands of images captured in a wide range of conditions.

5.4.2 Place Recognition with Dynamic Bag of Words 2

The visual vocabulary in DBOW2 is created offline in an offline training step. ORB
features are extracted from thousands of images captured in a wide range of conditions,
and the set of all these features is called the descriptor space. The descriptor space
is first discretized into kw binary clusters by performing k-means clustering with k-
means++ seeding [1]. These clusters form the first level of nodes in the tree. Subsequent
levels are created by repeating this operation with the descriptors associated with each
node, up to Lw times. This results in a tree withW leaves called the vocabulary words.
The ORB vocabulary used consists of Lw = 6, with 10 nodes at each level, resulting in
one million words. Each word is weighted according to the Term Frequency-Inverse
Document Frequency (tf-idf), i.e. each word is given a weight according to its relevance
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Figure 5.6: Example of the vocabulary tree and direct and inverse indexes that compose
the image database. The vocabulary words are the leaf nodes of the tree. The inverse
index stores the weight of the words in the images in which they appear. The direct
index stores the features of the images and their associated nodes at a certain level of
the vocabulary tree.

in the training set, decreasing the weight of words which are very frequent and thus
less discriminative.

In order to detect if an image corresponds to a revisited place, the content of an
image is summarized by converting it to a BoW vector. First, ORB features are detected
and extracted from the image It taken at time t . To convert the extracted feature
vectors to a BoW vector vt ∈ RW , the binary feature descriptors traverse a vocabulary
tree from the root to the leaves, selecting at each level the intermediate nodes that
minimize the Hamming distance.

To store the history of visited location, DBOW2 creates a database which stores
three data structures, with the first being the visual vocabulary which was already
discussed. The second is an inverse index, which for every wordwi in the vocabulary
stores a list of images It in which it appears, together with the corresponding weight
of the word in the image vit (see figure 5.6). This is useful when querying the database,
since it allows to perform comparisons only against those images that have some word
in common with the query image.

The third structure is a direct index, which stores for each image It the nodes
which are ancestors to the words present in it, as well as the list of local features ft j
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associated to each node. This allows to speed up geometrical verification between
images by computing correspondences only between those features that belong to the
same words.

To detect loop closures, a four step approach is used. First, the database is queried
with the vector vt which results in a list of potential matches {(vt , vt1 ), (vt , vt2 ), . . .}
associated with their scores s(vt , vtj ) ∈ [0, 1] which is computed by

s(vt , vtj ) = 1 − 1
2

���� vt|vt − vtj
|vtj |

���� . (5.11)

This score is normalized with the score one would expect to get for an image
showing the same place. This is approximated with the previous image processed:

η(v, vtj ) =
s(vt , vtj )
s(vt , vt−1) (5.12)

Matches whose η(v, vtj ) score does not achieve a minimum threshold are then
discarded.

The second step is to group matches that are close in time. If It and It ′ rep-
resent a real loop closure, It is very likely to be similar to It ′±∆t , It ′±2∆t , . . .. De-
noting the interval composed of timestamps {tni , . . . , tmi } by Ti , several matches
{(vt , vtni ), . . . , (vt , vtmi

)} are converted into a single match (vt ,VTi ) if the gaps be-
tween consecutive timestamps are small. This group match is then ranked according
to a score H :

H (vt ,VTi ) =
miÕ
j=ni

η(vt , vtj ). (5.13)

The groupmatchwith the highest score is selected asmatching group and continues
to the third step, which is a temporal consistency check.

After obtaining the matching island VT ′ , it is checked for temporal consistency
with previous queries. The match (vt ,VT ′)must be consistent with k previous matches
{(vt−1,VT1 ), . . . , (vt−k ,VTk )}. If so, the vector vt ′ ∈ VT ‘′ that achieves the highest η
score with vt is kept and processed through the fourth and final stage which checks
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for geometrical consistency. The geometrical consistency checks tries to find with
RANSAC the fundamental matrix between images It and the matching candidate It ′
supported by at least 12 correspondences. The fundamental matrix F ∈ R3×3 relates
two point matches ut and ut ′ in image It and It ′ respectively, by the equation

uTt Fut ′ = 0. (5.14)

To find F, the local features of the query image and those of the matched one must
be compared. Using the direct index in the database, the features of each image is
quickly extracted, and the matching is speeded up because only features associated
with the same nodes in the vocabulary tree needs to be compared. If the computation
of the fundamental matrix was successful, the match is finally accepted.

5.4.3 Finding the Loop Closure Relative Pose Constraint

In order to find the relative pose

TCtCt ′ =

R t

01×3 1


(5.15)

between the two matching frames, the matching stereo pair is loaded from the
database of previously recorded frames. Then the relative pose is recovered by applying
the algorithm detailed in section 5.3.



Chapter 6

The SLAM Back-End

Figure 6.1: The essential SLAM problem. The pose estimate affects the estimates of
landmark positions and vice versa, implying high correlation between the variables.
Image courtesy of Durrant-Whyte and Bailey [13].

As mentioned in the beginning of chapter 5, the back-end of a SLAM system is
responsible for performing probabilistic inference on the abstracted data produced

49
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by the front-end. Probabilistic inference is a term associated with the use of PGMs,
and in SLAM there is one specific inference problem that we wish to solve, namely
the joint Maximum a Posteriori (MAP) probabilities of the variables in the graph.
This will be explained in the next section, followed by a review of factor graphs and
how to incorporate different sensors into this framework. Lastly, in section 6.6, a
review of different optimization frameworks is provided followed by a description of
an optimization framework chosen for the system implementation.

6.1 Probabilistic Formulation of SLAM

x0 x1 x2 x3 xT−1 xT

z1 z2 z3 z4 z5 zK−1 zK

l1 l2 l3 lN

u1 u2 u3 uT−1 uT

Figure 6.2: A Dynamic Bayesian Network representing a SLAM scenario. A loop
closure is detected between the states x1 and xT−1 through their mutual observation
of landmark l2. White nodes represent latent variables, and grey nodes represent
observed variables.

Consider a mobile robot moving through an environment taking relative observa-
tions of a number of unknown landmarks using sensors located on the robot as shown
in Figure 6.1. Due to the inherent noise in the measurements, the SLAM problem
is described by means of probabilistic tools. At time step t , the state of the robot is
parametrized by the state vector xt . We assume that the robot is moving through the
environment according to the equation
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xt = f (xt−1, ut ) +wt (6.1)

where ut is the measured odometry vector (sometimes the control input) between
the states xt−1 and xt , and the noise wt is assumed to be distributed according to a
zero-mean Gaussian with covariance matrix Λt , i.e., wt ∼ N(0,Λt ). While the robot is
moving, it makes landmark measurements described by the equation

zk = hk (xik , ljk ) + vk (6.2)

where zk is the kth landmark measurement vector, lj is a vector describing the
location of the jth landmark whose true location is assumed time invariant, and the
measurement noise vk is also assumed to be Gaussian distributed, i.e. vk ∼ N(0,Σk ).
The indices ik and jk denotes respectively the vehicle state and landmark related to
the k th measurement.

Figure 6.2 shows a Dynamic Bayesian Network (DBN) representation of a given
SLAM scenario. In the model, there are some underlying assumptions that are usually
made for this problem to be tractable; the world is static, the noise is independent, and
the Markov property holds. The DBN is a Directed Acyclic Graph (DAG) that encodes
the conditional independence structure of a set of variables, where each variable only
directly depends on its predecessors in the graph. Since SLAM is usually performed
on-line, the joint probability for all the states up to a time step t is given by

p(Xt ,Mt ,Zt ,Ut ) ∝ p(x0)
tÖ
i=1

p(xi | xi−1, ui )
KtÖ
k=1

p(zk | xik , ljk ) (6.3)

where Xt ,Ut ,Mt and Zt are sets given by

• Xt = {xi }ti=0: The history of vehicle locations up to time step t .

• Ut = {ui ; }ti=1: The history of control inputs up to time step t .

• Mt = {lj }Nt
j=1: The set of landmarks observed up until time step t .

• Zt = {zk }Ktk=1: The set of all landmark measurements up to time t .
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In (6.3), p(x0) is a prior on the initial state, p(xi | xi−1, ui ) ∼ N(fi (xi−1, ui ),Λi ) is
the motion model parametrized by a control input or odometry measurement, which is
assumed known, and p(zk | xik , ljk ) ∼ N(hk (xik , ljk ),Σk ) is the landmark measurement
model. We assume a uniform prior on all landmarks, and states after t = 0. Note that
this model assumes that the data association problem, i.e., finding the correct indices
ik and jk relating to zk , has been solved.

We are interested in the most likely configuration of the vehicle states and land-
marks, therefore we want to find the MAP estimate which we get by maximizing the
joint probability of states and landmarks given all available measurements and priors.
The joint posterior we want to maximize is given by

p(Xt ,Mt | Zt ,Ut ) = argmax
Xt ,Mt

p(Zt ,Ut |Xt ,Mt )p(Xt ,Mt )
p(Zt ,Ut )

∝ p(Zt ,Ut |Xt ,Mt )p(Xt ,Mt ) = p(Xt ,Mt ,Zt ,Ut )
(6.4)

where the first equality follows from Bayes law. The MAP estimate can now be
found by

X ∗,MAP
t ,M∗,MAP

t = argmax
Xt ,Mt

p(Xt ,Mt | Zt ,Ut )

= argmax
Xt ,Mt

p(Xt ,Mt ,Zt ,Ut )

= argmin
Xt ,Mt

− log(p(Xt ,Mt ,Zt ,Ut ))

= argmin
Xt ,Mt

− log(p(x0)) −
tÕ
i=1

log(p(xi | xi−1ui ))

−
KtÕ
k=1

log(p(zk | xik , ljk ))

(6.5)

The prior p(x0) often assumed known (initialized to the origin), and in that case,
the MAP estimate becomes the Maximum Likelihood (ML) estimate.
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X ∗,ML
t ,M∗,ML

t = argmin
Xt ,Mt

−
tÕ
i=1

log(p(xi | xi−1ui )) −
KtÕ
k=1

log(p(zk | xik , ljk ))

= argmin
Xt ,Mt

tÕ
i=1

∥ f (xi−1, ui ) − xi ∥2Λi +
KtÕ
k=1

∥hk (xik , ljk ) − zk ∥2Σk

(6.6)

where

∥e∥2Σ ≜ eTΣ−1e (6.7)

is the squared Mahalanobis distance. It is possible to substitute (6.7) with a robust
loss function (e.g., Huber or Turkey loss), which implies a distribution with heavier
tails than the Gaussian which can increase resilience to outliers.

6.2 Factor Graph Representations for SLAM

x0 x1 x2 x3 xt−1 xt

l1 l2 l3 lNt

Figure 6.3: A Factor graph representing the same SLAM scenario as in figure 6.2. A loop
closure is detected between the states x1 and xT−1 through their mutual observation
of landmark l2. Black squares represent factor nodes.

The SLAM problem can be expressed using different kinds of PGMs which makes
reasoning about the interdependence among the involved variables more convenient,
as shown in the last section where equation (6.3) relates directly to the DBN in figure
6.2. The DBN has long been the preferred PGM for SLAM, but in recent years this
preference has shifted to the factor graph [4], which Dellaert and Kaess reviews in [12].
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In the paper, they also explain how the factor graph relates to other popular models
like the DBN and the Markov Random Field (MRF).

A factor graph is a bipartite graph G = (F ,Θ, E) with two types of nodes: factors
ϕi ∈ F and variables θ j ∈ Θ. Edges ei j ∈ E are always between factor nodes and
variables nodes. A factor graph G defines the factorization of a function ϕ(Θ) as

ϕ(Θ) =
|F |Ö
i=0

ϕi (Θi ) (6.8)

where |F | is the cardinality of the set F , Θi is the set of variables θ j adjacent to the
factor ϕi , and independence relationships are encoded by the edges ei j . Each factor ϕi
is a function of the variables in Θi . The joint probability of all variables is proportional
to ϕ, i.e., p(Θ) ∝ ϕ(Θ), so factors act as unnormalized probabilities. Our goal is to find
the variable assignment Θ∗,MAP , corresponding to the MAP estimate, that maximizes

Θ∗,MAP = argmax
Θ

ϕ(Θ) (6.9)

When assuming Gaussian measurement models, we assume that each factor is on
the form

ϕi (Θi ) ∝ exp(−1
2 ∥hi (Θi ) − zi ∥2Σi ) (6.10)

which corresponds to an error between the measurement function hi evaluated
at the estimated Θi , and the measurement corrupted by a zero mean Gaussian noise
zi = hi (Θi ) +wi where wi ∼ N(0,Σi ). In this case, the factored objective function to
maximize (6.8) corresponds to the nonlinear least-squares criterion

Θ∗,MAP = argmin
Θ

(− logϕ(Θ)) = argmin
Θ

|F |Õ
i=0

∥hi (Θi ) − zi ∥2Σi (6.11)

where hi (Θ) is a measurement function and zi is a measurement. Factors are
sometimes referred to as potentials, and minimizing (6.11) can be seen as an energy
minimization problem over the factor graph.
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Going back to the SLAM scenario in figure 6.3 and 6.2, the equivalence relations
between equation (6.3) and (6.8) can be established by setting Θ = {Xt ,Mt } and taking

ϕ(·)(x0) ∝ p(x0)
ϕ(·)(xi−1, xi ) ∝ p(xi | xi−1, ui )
ϕ(·)(xik , ljk ) ∝ p(zk | xik , ljk )

(6.12)

where the indices of the factors are left unspecified, since they can be ordered
arbitrarily.

6.2.1 Pose Graphs

x0 x1 x2 x3 xt−1 xt

Figure 6.4: Pose factor graph representing the same scenario as in figure 6.4

For very large scale SLAM problems, optimizing over all observed landmarks can
become computationally intractable over time. If we are not explicitly interested in
building a map, but rather in knowing the history of vehicle poses to a high degree
of certainty, we can omit the the landmarks as unknowns in the factor graph which
we explicitly optimize over. This results in a pose factor graph, depicted in figure 6.4,
where the loop closure constraint is represented by a factor between poses x1 and xt−1.
In the model, the unknown variable set Θt from the last section becomes the history of
vehicle poses only, i.e., Θt = Xt , while explicit landmarks or other information about
the environment are not part of the pose graph itself. However, such information
can be attached to the nodes in the graph, hence allowing the pose graph to express
landmark/feature maps at a later stage. In the case of landmark observations with a
stereo camera, attaching the coordinates of all observed keypoints observed from a
particular pose allows us to project the landmarks into the world frame and build a
feature map. Mutual observations of landmarks between frames results in odometry
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information which are represented as factor nodes between variable nodes in the
graph.

In a pose factor graph, two types of factor constraints between pose nodes are iden-
tified; odometry constraints between consecutive poses, and loop-closure constraints
due to revisiting a previously explored region of the environment. For the odometry
constraints, the model is the same as in section 6.1, namely

xt ∼ N(ft (xt−1, ut ),Λt ). (6.13)

A detected loop is between two non-successive poses xi , xj enforces the constraint

xj ∼ N(fi j (xi , ui j ),Λi j ), (6.14)

where ui j is a pseudo-odometry measurement between xi and xj . In order for the
robot to recognize previously visited places, it has to perform place recognition which
is described in section 5.4. Section 5.4 also describes how we can find the pseudo
odometry constraint ui j between the images.

As mentioned, in pose graph SLAM we are only interested in the most likely
configuration of the poses, given the set of odometry and loop-closure measurements
up to time t , Ut . If there are no priors given, this can be found by maximizing the
likelihood

Θ∗,ML = X ∗,ML
t = argmax

Xt

p(Xt |Ut ) = argmin
Xt

− logp(Xt |Ut )

= argmin
Xt

tÕ
i=1

∥ fi (xi−1, ui ) − xi ∥2Λi +
Õ
i, j

∥ fi j (xi , ui j ) − xj ∥2Λi j
(6.15)
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6.3 Factor Graph Formulation in Inertial Navigation
Systems

While a factor represents the general concept of an error function that should be
minimized, it is common in the navigational literature to design a measurement model
h(·) that predicts a sensor measurement given a state estimate. The factor then captures
the error between the predicted measurement and the actual measurement.

x0 x1 x2 x3 xt−1 xt
f дnss

f imu

f vo

f imu

f vo

f imu f vo

f loop

f дnss

Figure 6.5: A factor graph with VO, GNSS, IMU and place recognition. Two poses can
be constrained an IMU factor, a VO factor or both. In areas with poor GNSS coverage,
only some poses will be constrained by a GNSS unary factor.

6.3.1 Stereo Vision Measurements

Assuming a known baseline, one can incorporate the observed landmark l as a variable
into the optimization and add a factor that represents the projection of the observed
landmark onto the image plane of the two cameras. Such a factor is defined as

f stereo(xt , l) = ∥zt,l − πl (l; xt )∥2Σl + ∥ztr − πr (l; xt )∥2Σr (6.16)

where πl and πr is defined in (4.17).
Alternatively, it is possible to first estimate the relative transformation TCl,iCl, j

be-
tween two stereo frames at time i and j using all of the landmark observations in those
frames. Such a transformation can be used to predict the robot pose at tj based on xi .
with the corresponding visual odometry binary factor f VO (xi , xj ) .
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Assuming a known baseline, it is possible to estimate the relative transformation
between two stereo frames. This can be formulated as a binary factor connected
to navigation nodes at the time instances of these frames. Denoting this relative
transformation by T∆ and the global poses of the two stereo cameras by Tk1 and Tk2 ,
calculated based on the current values of the navigation nodes xk1 and xk2 , the binary
factor becomes

f stereo(xk1 ,xk2 ) ≜ ∥T∆ − (Tk1 −Tk2 )∥2Σstereo . (6.17)

6.3.2 GNSS Factor

The GNSS measurement equation is given by

zдnsst = hдnss (xt ) + nдnss (6.18)

where nдnss is the measurement noise assumed Gaussian distributed, and hдnss

is the measurement function, relating between the measurement zдnsst to the robot’s
position. Since only one state variable is involved in the measurement function, the
above equation defines a unary factor:

f дnss (xt ) ≜ ∥zдnsst − hдnss (xt )∥2Σдnss . (6.19)

An alternative incorporation of GNSS measurement factors is to use raw pseudo-
range measurements from the GNSS receiver. However, this was not tested in this
project.

Factor graphs with GNSS measurements from other sensors, operating at different
rates, are shown in figure 6.5

6.4 Switchable Constraints for Robust Loop Closure

The ability to close the loop is both the biggest strength and weakness of SLAM. A false
positive loop detection will result in a wrong topology in the underlying factor graph,
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which will again likely cause a catastrophic failure in the SLAM system’s navigation
capability.

Figure 6.6: Pose graph of the Manhattan dataset corrupted by false positive loop
detections which causes wrong estimation results. Using switchable loop constraints
enables the optimizer to recover. Image courtesy of [66].

To prevent this, we can introduce a switch variable si j which induces a probability
of whether a loop closure constraint between pose xi and xj is correct or not. We
can then include this variable in the optimization, effectively enabling optimization
over the topology of the graph itself and potentially allowing the SLAM system to
recover from a false positive loop detection. The switch variable in combination with
the loop constraint is called a switchable loop closure constraint, see figure 6.7, and
was developed by Süderhauf and Protzel [66]. The implementation of the switchable
constraint is available in an open-source library called Vertigo [66], which reportedly
can deal with up to 1000 false positive loop closure constraints on various datasets.

Introducing the switch variable into the graph, the MAP estimation problem from
(6.15) becomes:
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X ∗, S∗ = argmin
X ,S

Õ
i

∥ f (xi−1, ui ) − xi ∥2Λi|                        {z                        }
Odometry constraints

+
Õ
i j

∥Ψ(si j ) · (f (xi , ui j ) − xj )∥2Λi j
|                                    {z                                    }

Switchable Loop Closure Constraints

+
Õ
i j

∥γi j − si j ∥2Ξi j
|               {z               }

Switch Prior Constraints

.
(6.20)

The activation function Ψ : R→ [0, 1] maps si j to a probability, and can be chosen
by the user. In [66] the best choice was found to be a linear function Ψlin(si j ) = si j

constrained to 0 ≤ si j ≤ 1. The idea behind the switch variables is that the influence
of a loop closure constraint between the poses xi and xj can be removed by driving
the associated switch variable si j to a value so that Ψ(si j ) ≈ 0.

x0 x1 x2 x3 xt−1 xt

s1,t−1

Figure 6.7: The pose factor graph from figure 6.4 with a switch variable s1,t−1 which
governs the loop closure factor (gray). Depending on the value assigned to the switch
variable si, j , the loop closure factor is switched on or off, i.e. it is activated or deactivated
as part of the optimization process. The switch variable is governed by a prior factor
that penalizes the deactivation of loop closures.

To penalize the deactivation of loop closures, the switch variable are constrained
by a prior si j ∼ N(γi j ,Ξi j ). Since it is reasonable to initially accept all loop closures,
the prior mean γi j is always set to 1. A good general choice for the variance Ξi j was
found empirically in the Vertigo paper to be 1.
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6.5 Switchable Constraints for GNSS Measurements

Similar to the switchable constraint applied on a loop constraint factor, switchable
constraints can also be applied to GNSS measurements. This is useful when GNSS mea-
surements are affected by multipath artifacts, as these measurements can be completely
wrong. The authors of the switchable constraint have applied this technique to GNSS
based positioning by applying switch constraints on pseudo-range measurements [64]
in a fixed lag smoothing framework. An open-source implementation of this approach
is provided by Watson and Gross [69], [70].

As including all pseudo-range measurements and additional switch nodes into the
factor graph quickly becomes expensive, a custom switchable constraint was developed
that works on the GNSSmeasurement as a whole (not the pseudo-rangemeasurements).
A GNSS factor governed by a switch will result in the following minimization problem:

f дnss (xt−1) ≜ ∥Ψ(st−1) · (zдnsst−1 − hдnss (xt−1))∥2Σдnss + ∥γt−1 − st−1∥2Ξt−1 . (6.21)

xt−2 xt−1 xt

st−1

Figure 6.8: A section of a factor graph with a switch st−1 which governs the GNSS
measurement factor (gray). Depending on the value assigned to the switch variable
si, j , the measurement factor is switched on or off, i.e. it is activated or deactivated as
part of the optimization process. The switch variable is governed by a prior factor that
penalizes the cost when disregarding a measurement.
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6.6 Optimization

6.6.1 Choosing an Optimization Framework

For the navigation system to be able to operate in real time, the non-linear least squares
problem in (6.11) has to be solved efficiently. In practice, one typically considers a
linearized version of equation (6.11), which is obtained by using the measurement
Jacobian found by linearizing the measurement function hi around a given estimate Θ0

i .
For the SLAM problem the measurement Jacobian is sparse, and often has a specific
structure. This insight is exploited by modern nonlinear optimization libraries for
SLAM, of which maybe the two most popular is the g2o library by Kümmerle et al.
[39], and the GTSAM library which contains implementations of the

√
SAM [11], iSAM

[35], and iSAM2 [34] algorithms. Both libraries are open-source, and can be found in
[40], [17].

The g2o framework, as well as
√
SAM are algorithms designed with the full SLAM

problem in mind. That is, they operate in batch mode, solving the whole problem at
once, after sensor data etc. has been collected. In contrast, incremental approaches
like iSAM and iSAM2 are designed to accommodate the fact that a robot navigating in
real time makes measurements at every time step, and manages to add new states to
the estimation incrementally rather than rebuilding the data structures and recompute
everything from scratch at every time step. This is especially useful for large-scale
SLAM, where the number of variables can grow extremely large. In the case of loop
closures, the iSAM2 algorithm utilizes a technique called fluid re-linearization, which
can detect which variables are affected by the loop closure, and only re-linearize the
affected ones.

Although g2o is the most efficient batch algorithm, as the authors show in the
accompanying article [39], the incremental functionality of the GTSAM library seems
very useful for a large-scale application like the one considered in this project. Addi-
tionally, I have found the GTSAM library to be better documented, with the tutorial
by Dellaert [10] and extensively commented code. As factor graphs has become an
unofficial standard in the SLAM literature, an additional advantage is that GTSAM
uses a factor graph framework explicitly, in contrast to g2o which uses hyper-graphs.
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Therefore, I have chosen to build the navigation system around the iSAM2 algorithm.

6.6.2 Optimization with iSAM2

For nonlinear measurement functions hi , nonlinear optimization methods such as
Gauss Newton or the Levenberg-Marquardt algorithm solve a succession of linear
approximations to (6.11) in order to approach the minimum. We can linearize all
measurement prediction functions hi using the first order Taylor expansion

hi (Θi ) = hi (Θ0
i ⊕ ξi ) ≈ hi (Θ0

i ) + Hiξi (6.22)

where ξi is the state update vector, and Hi is given by

Hi ≜
∂hi (Θi )
∂Θi

����
Θ0
i

(6.23)

i.e., the measurement Jacobian evaluated at Θ0
i , which is the estimate at the current

iteration in the optimization.
By substituting (6.22) into (6.11), we obtain a linearized least squares problem in

the state update vector ξ ,

ξ ∗ = argmin
ξ

|F |Õ
i=0

∥hi (Θ0
i ) + Hiξi − zi ∥2Σ

= argmin
ξ

|F |Õ
i=0

∥Hiξi − {zi − hi (Θ0
i )}∥2Σi

(6.24)

where zi − hi (Θ0
i ) is the prediction error at the linearization point. Since we can

write the Mahalanobis distance defined in (6.7) as

∥e∥2Σ ≜ eTΣe = (Σ− 1
2 e)T (Σ− 1

2 e) = ∥Σ− 1
2 e∥2 (6.25)

we can convert the weighted least squares problem in (6.24) into the standard least
squares problem by defining



64 CHAPTER 6. THE SLAM BACK-END

Ai = Σ− 1
2

i Hi (6.26)

bi = Σ− 1
2

i (zi − hi (Θ0
i )) (6.27)

This is a form for whitening that eliminates the units of the measurements. We
also obtain the standard least squares problem

ξ ∗ = argmin
ξ

|F |Õ
i=0

∥Aiξ − bi ∥2 = argmin
ξ

∥Aξ − b∥2 (6.28)

where the state update vector ξ ∈ Rn contains all pose and landmark variables,
the matrix A ∈ Rm×n is a large and sparse measurement Jacobian of all measurements,
and b ∈ Rm is the right-hand-side vector. A and b are obtained by collecting all Ai

and bi into one large matrix and right-hand-side vector, respectively. Solving this
standard least squares problem, we can obtain an updated estimate Θ = Θ0 ⊕ ξ , which
is then used as linearization point in the next iteration of the nonlinear optimization.
The operator ⊕ is often a simple addition (as e.g. for landmark vectors), but for
over-parameterized representations such as poses, it is defined as in equation (3.13).

By setting the derivative of ∥A∆−b∥2 to zero, we get the so called normal equations
ATA∆ = Atb. This equation system can be solved by Cholesky or QR decomposition
of the information matrix ATA as is done in batch updates in

√
SAM, or incrementally

in iSAM in combination with periodic variable reordering of the information matrix.
iSAM2, which is an improved version of the iSAM algorithm, avoids decomposing

the information matrix by doing variable elimination on the factor graph and con-
verting it to a Bayes net. The Bayes net is then further transformed to a Bayes tree,
where each node encodes a density on fully connected clique variables, conditioned
on its ancestors. This conditional structure allows the Bayes tree to be incrementally
updated when a new measurement arrives. Only the cliques connected to the new
factors and along the path to the root of the tree are removed an re-eliminated. Most of
the tree is typically unaffected, allowing for efficient updates. The algorithm uses fluid
re-linearization and partial state updates, which further reduces computational cost
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by detecting which variables that are affected when new measurements arrives, thus
avoiding unnecessary re-linearizations and insignificant state updates. This can be
thought of as an adaptive-lag smoother. Even though updates with iSAM2 are typically
very fast, some updates, such as loop closures between the current state and a state far
back in time will involve many cliques, and therefor take much longer. In addition,
without some sort of sparsification, the factor graph will still grow unbounded in
memory.
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Chapter 7

Implementation

The goal of this project was to make a system capable of robust long term navigation
by using on board cameras, to utilize other available sensors on Olav to correct for
accumulated drift in the relative odometry estimates, and aid the re-initialization
of the system in the case of tracking failure. Of the existing sensors on Olav, the
GNSS sensors was evaluated to be the most complementary to visual navigation, since
VO produces accurate relative pose estimates while the GNSS sensor provides global
position estimates.

For the visual navigation, a GPU accelerated frame-to-frame VO system based on
[28], [8] and [45] was developed, detailed in section 5.3. A frame-to-frame method
was selected over a system based on BA, since the system must be able to operate
long-term both temporally and spatially and should therefore try to reduce the amount
of variables needed in the optimization.

To reduce the trajectory estimate’s drift in a scenario where GNSS is unavailable,
the visual navigation was augmented with a BoW-based loop-detector module, DBOW2
[23]. This module was chosen because of its ability to search and retrieve matches in
a database of thousands of images in a matter of milliseconds. The loop detector is
responsible for the M in the SLAM acronym, in the form that it builds a database that
allows it to recognize previously visited locations.
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To combine the results from the relative VO, loop-closing module and the GNSS
measurements, a back-end optimization algorithm embedded in a factor graph frame-
work, iSAM2, was chosen. The algorithm has an open source implementation in the
GTSAM library, and I used version 4. Since the navigation system has to work in real-
time, iSAM2 was considered to be particularly well suited because of its incremental
approach to solving the SLAM problem by only re-linearizing variables affected by
new measurements.

7.1 System Overview

A block diagram of the full system can be viewed in figure 7.1. The extracted FAST
features is utilized in both the computation of relative constraints between frames and
the loop detection where ORB descriptors are computed on the detected keypoints. If
a loop is detected, the matched stereo frame is retrieved from a database of previous
frames. The loop detection (including image retrieval) and the VO works in separate
threads to save computation time. In the iteration subsequent to a detected loop, the
retrieved stereo images are sent to a new VO object working in a separate thread
where a relative pose constraint is computed between the previous and matched frame.
In order to avoid conflicts when calling the GPU from different threads, different
cv::cuda::Stream objects are used in each thread.

Figure 7.1: An overview of the complete SLAM system. Boxes with rounded corners
indicate algorithmic processes and boxes with sharp corners indicate input/output
data. The arrows indicate the data flow
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(a) 3D Map Viewer. (b) Frame Viewer.

Figure 7.2: Screen shot of the visualization tools developed in order to visually interface
the system.

To visually interface the system, a map viewer was implemented using Pangolin
[44] (see figure 7.2a), which is a rapid development library for managing OpenGl
displays. The viewer displays the 3D-trajectory of the vehicle, and also provides the
option of comparing to a ground truth trajectory, if provided. A stereo frame viewer,
depicted in figure 7.2b, was also developed in OpenCV for convenience, which displays
the current frames being processed along with the feature tracks between frames and
other statistics.

Figure 7.3: A block diagram representation of the code structure.

Figure 7.3 illustrates an overview of the code structure. The System class serves as
an interface of the entire system, and is responsible for most of the logic and managing
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all the system threads. The calling main function is therefore only responsible for
loading the initialization parameters to initialize the System class, which in turn
initializes the rest of the system, and in themain loop load the stereo frames, timestamps
and GNSS data to pass to the System class. By only providing an initialization function
and a function to call in the main loop, this would hopefully reduce the amount of
work needed later to implement a ROS interface needed for integration on Olav.

7.2 Sequence Diagrams

To better explain the sequential execution of the code, the three sequence diagrams
below in figure 7.4, 7.5 and 7.6 illustrates calls between the classes in three different
scenarios of a call to the System class from the main calling function.

Figure 7.4: Sequence diagram of normal operation.

Figure 7.4 depicts the first scenario which is the most common. Here, no loops
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are detected and there is thus no need to retrieve any stored images, or to compute
a loop-closure constraint. The system class stores extracted features and images for
future iterations. The viewer classes are omitted from the other diagrams to avoid
clutter.

Figure 7.5: Sequence diagram of a scenario where a loop detection occurs.

The second scenario, in figure 7.5, a loop is detected. This launches another thread
which retrieves the matched stereo frames based on the match id and stores it in
memory for the next iteration depicted in figure 7.6. This happens concurrently with
the graph optimization.

In the third scenario, in figure 7.6, a loop has been detected in the previous iteration,
and the matched stereo frame is already loaded into memory. The System object then
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Figure 7.6: Sequence diagram of a scenario where a loop constraint is computed.
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initializes a new VisualOdometry object in a new thread. This way, the loop detection,
loop closure constraint and the odometry constraint are all computed concurrently in
separate threads. The resulting loop closure constraint is then passed to the Optimizer
object thread, which maintains the factor graph, together with the VO constraint and
GNSS data.

7.3 GNSS Data Management and Global Frame Ini-
tialization

As explained in section 3.3.2, defining the tangent reference frame at time t = 0
provides the translational component tW0 of the pose TWB0

, but the rotation RWB0
is still

unknown. Assuming a scenario where this is not available from gyroscope or magnetic
measurements, several GNSS measurements with sufficient relative motion in between
are needed.

Therefore, when the vehicle initially starts to move, a prior is applied on the first
pose to have zero translation and identity rotation, and the pose estimation output
is solely based on VO. Thus, the UGV will initially report its position relative to the
initial frame. As the vehicle is moving, it obtains GNSS measurements which is put
into a buffer which is continuously evaluated to check if the data has sufficient relative
motion to initialize the pose. I set a minimum travel distance of 30 meters in the
east and north direction, and a minimum of 3 measurements as a threshold criteria.
When this threshold is met, the identity rotation prior on the first pose is removed,
and the GNSS measurements are inserted from the buffer and into the graph. After
optimization, all the poses are rotated into the global reference frame. This is illustrated
in figure 7.7.

To visualize the output in the global frame, the system saves its trajectory in
Latitude/Longitude (Lat/Long) coordinates to a .kml file when shutting down, which
can be loaded directly into Google Maps.
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Figure 7.7: A state machine overview of the Optimization class. When the class is
initialized, either on startup or when a tracking failure is signaled, a new graph is
created and the initialization procedure begins.
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7.4 Switchable Constraints

The switchable loop closure constraint was imported from the Vertigo open source
library [65]. However, it had to be re-written to be compatible with GTSAM version 4.0,
as the Vertigo implementation is based on an older version of GTSAM. The switchable
GNSS constraint was implemented based on the GPSFactor() class in GTSAM and
the linear switch variable from the Vertigo library. In the implementation, all loop
closure constraints and GNSS measurements are governed by switch variables, but
can easily be turned on and off in a configuration file.

7.5 Keyframe Insertion

Not all frames are inserted into the factor graph as this would require a lot of com-
putational effort. Rather, only frames marked as a keyframes are included in the
optimization. I chose a keyframe insertion strategy where a frame is selected to be a
keyframe when the cumulative optical flow from the last keyframe reaches a certain
threshold. This leads to fewer keyframes on straight lanes and more keyframes when
going through corners, and no keyframe insertions if the robot is stationary. The
reasoning behind this insertion strategy is that the odometry is expected to be less
accurate when making turns, as the motion of each tracked feature is larger between
consecutive frames, and matching features between frames in this case becomes more
uncertain. The noise model between each key-frame is fixed, and so the estimated
trajectory becomes more "flexible" in the turns, and less so on straight lanes when
optimizing a loop closure.

Non-keyframes are stored with a reference to its respective keyframe, with a
corresponding relative pose. Let FB̂t denote the body coordinate frame at time t ,
where the ·̂ notation indicates a keyframe. TW

B̂t
denotes the pose of that keyframe

relative to the global origin. As mentioned, only the poses {TW
B̂i
,TW

B̂j
, . . . TW

B̂t
}, i.e. poses

corresponding to keyframes, are included in the optimization. The non-keyframe FBt+1
is stored with a fixed transformation TB̂tBt+1 relative to its corresponding keyframe
FB̂t , and to retrieve the pose TWBt+1 after an optimization step, TW

B̂t
TB̂tBt+1 needs to be
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computed.
Every frame is inserted into the BoW database, and somatches can potentially occur

between non-keyframes. The relative transformation between the matched frames is
then propagated back to yield a constraint between their respective keyframes. If a loop
is detected, there is no new keyframe insertion, so that the number of keyframes only
grows with explored space. As an example, let’s say a match occurred between the non-
keyframes FBt+1 and FBi+2 . The frame-to-frame odometry computes the transformation
TBt+1Bi+2

. This constraint is then propagated back to yield the constraint between their
respective keyframes FB̂t and FB̂i :

TB̂t
B̂i
= TB̂tBt+1T

Bt+1
Bi+2

(TB̂iBi+2 )
−1. (7.1)

7.6 Saving and Loading

In order to retain information from the factor graph and BoW database when turning
the vehicle off and on, the class destructors calls their respective save functions which
writes all the factors, estimated values of the nodes and the BoW database to file. If
these files are provided when initializing the system, the SLAM session can continue
where it was left off when booting the system again.

7.7 Recovery after tracking failure

If the VO processing fails, the system initializes a new factor graph and sets the first
pose inserted into the factor graph to the origin. This is because when tracking fails, we
no longer have information about its pose, and in the case of no GNSS measurements,
we do not have information about its position. In GTSAM, all nodes in the factor
graph are required to be connected, and my solution to this problem is to initialize a
new graph and restart the global initialization procedure as explained in 7.3. This is
illustrated in figure 7.7.

After the trajectory is initialized in the global reference frame, the graphs could be
concatenated by inserting a between factor between the graphs based on their initial
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positions estimated from the GNSS data. However, there is little knowledge on the
noise model between these initial positions in the two graphs, so the system continues
to operate with two separate graphs. When a loop is detected, the system searches for
the matched frames across all graphs. If the frames exist in separate graphs, the graphs
are connected by a loop constraint and concatenated into one. If there are no GNSS
measurements available, the graphs are still concatenated based on a loop closure, but
the trajectory estimate will be reported relative to the origin of the earliest of the two
graphs in chronological order instead of relative to the global frame.

After recovery, there is no constraint inserted at the point where track was lost
since this would imply that information from the loop closure would have to be
propagated all the way back to where tracking failed. Especially in the case of no
GNSS measurements, this would result in a very uncertain constraint. To connect the
trajectory at the point of tracking failure, the robot have to make another pass over
that section of the trajectory to constrain the trajectory at that point.

The prior on the first pose after tracking failure can easily be changed to e.g. the
last pose before track was lost, to report a more accurate position in the global frame.
However as a sequence of frames could potentially fail to be processed, the prior was
chosen to the origin to indicate that the system is in fact recovering from a tracking
failure, and we can say with a quantifiable uncertainty what the position is relative to
the initial pose in the new graph.
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Chapter 8

Experiments and Results

In the following chapter, a brief explanation of the method evaluation is provided
followed by the generated results. The results are presented by scenario, and for
each scenario, a brief discussion is provided. All results was generated on a laptop
computer with an Intel Core i7 8-core processor running at 2.9 GHz with 32 GB of
memory. The laptop is also equipped with a NVIDIA Quadro M2200 GPU. Note that
all results presented in this chapter is from running experiments once with only one
application running on the computer, and this causes variations in results based on a
single iteration such as maximum execution time.

8.1 Method of Evaluation

To evaluate the quality of the estimated trajectory, I used the trajectory evaluation
toolbox by Zhang and Scaramuzza [75] [76]. This toolbox has support for calculating
Absolute Trajectory Error (ATE), which is an error metric commonly used in the SLAM
community as it produces a single metric which makes it easy to compare performance
of different algorithms for a given trajectory. The toolbox assumes that the temporal
correspondence between the estimate and the ground truth has been established.

Calculating the ATE starts with aligning the estimated trajectory with the ground
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Figure 8.1: The process trajectory evaluation. First, the estimated trajectory (blue)
needs to be aligned with the ground truth (black). Then, the trajectory estimation
error can be calculated from the aligned estimate and the ground truth using certain
error metrics.

truth, which is a non-trivial task since they are often given in different coordinate
systems. The trajectories are essentially aligned by minimizing the term

{R∗, t∗} = argmin
R,t

N−1Õ
i=0

∥pi − Rp̂i − t∥2 (8.1)

where {p̂i }N−1
i=0 and {p}N−1

i=0 are the estimated and ground truth positions respec-
tively, and {R∗, t∗} is the optimal estimated rotation and translation between the
reference frames. After calculating the optimal relative rotation and translation, the
aligned trajectory estimate is then given by:

p̂′i = R∗p̂i + t∗, R̂′
i = R∗R̂i . (8.2)

The trajectory alignment is described in more detail in Algorithm 1 in [76]. After
alignment, the rotation and translation error at timestep i is given by
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∆Ri = Ri (R̂′
i )T , (8.3)

∆pi = pi − ∆Ri p̂′i (8.4)

respectively. The absolute rotation and translation error can then be found by
calculating:

ATErot =
 
1
N

N−1Õ
i=0

∥∠(∆R)∥2
! 1

2

(8.5)

ATEpos =
 
1
N

N−1Õ
i=0

∥∆pi ∥2
! 1

2

(8.6)

where ∠(·) means converting the rotation matrix to angle axis representation and
using the rotation angle as the error.

8.2 FFI Dataset

The visual odometry algorithm was tested on a recorded dataset from Olav. The
sequence is recorded on a dirt road, and starts and ends in in approximately the same
position and orientation. The resulting trajectory is depicted in figure 8.2. The result is
of very poor quality, and the algorithm particularly struggles with estimating rotation,
as can be seen in the figure where the estimated trajectory is jagged and non-smooth.
The estimated initial and final position is estimated to be 156 meters apart, with a 56
meter offset in height which results from the poor rotation estimates which also affects
pitch and roll. When introducing loop closure, the optimization crashes as the iSAM2
optimization module throws an indeterminant linear system exception.

The reason for the poor performance is because of incorrect stereo camera cali-
bration. Several attempts was performed with different calibration sequences with
both chessboard- and Apriltag calibration patterns. Both the calibration package from
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(a) Top view.

(b) Side view.

Figure 8.2: Overview of the trajectory generated by the VO algorithm on the FFI
dataset.
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OpenCV as well as the Kalibr toolbox was used, but neither one could find a correct
rectification mapping so that the epipolar constraint was satisfied. The best obtained
calibration result was from the Kalibr toolbox, which reported an expected reprojection
error of [0.000089, -0.000202] +- [0.087093, 0.070710] pixels, however when aligning
the rectified stereo images next to each other and drawing horizontal (epipolar) lines
on top of them, as shown in figure 8.3, one can see that the epipolar error is several
pixels, especially when comparing the left side of the images.

Figure 8.3: Horizontal lines on rectified images from the FFI dataset.

Looking at the locations of removed outliers in figure 8.4, one can see that the
Kalibr toolbox has discarded several of the keypoints (chessboard corners) in the left
side of the images, which could have contributed to the poor fit of the calibration
model in this region. Similar results was obtained from the other calibration sequences.

Figure 8.4: Locations of removed outlier corners from the calibration procedure with
Kalibr.

As the visual odometry is the only component that provides relative motion be-
tween GNSS measurements in the developed system, further testing with GNSS was
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not performed with the dataset from Olav, as the necessary foundations to provide
reasonable navigation results were not present.

8.3 KITTI Dataset

After many attempts of trying to get the datasets from Olav to work, the publicly
available KITTI dataset published by Geiger et al. [25] was considered to be a good sub-
stitution because its similar sensor setup to Olav. All further test results presented here
is from this dataset. It was recorded with two Point Grey Flea2 (FL2-14S3M-C) cameras
equipped with global shutters, which has a bit lower resolution (1.4 Megapixels) and a
higher frame rate (10 fps) than the Grasshopper 3 cameras on Olav. The dataset was
also recorded with a high-quality INS (OXTS RT3003) which is RTK capable.

The sensor platform is a standard VW Passat, depicted in figure 8.5, and all the
recordings are from public roads in Karlsruhe, Germany. Urban areas and traffic are
conditions that Olav’s navigation system should be able to handle, and the similarity
in the sensor-setup, as well as the fact that the data comes pre-calibrated, rectified and
synchronized, makes this dataset suited as a test set.

The KITTI dataset has 11 sequences (sequence 00-10) which is provided with a
ground truth trajectory, 6 of which contains one or more loop closure events. Se-
quence 00 is one of the longer sequences which contains several loop closure events,
which makes this sequence more flexible for testing loop detection and re-localization.
Therefore, I will especially focus on this sequence when evaluating the results.

8.4 Visual Odometry

To evaluate the performance of the visual odometry module, I compared the developed
system with the well known frame-to-frame VO method, LIBVISO2. Tables 8.1 and 8.2
compares the ATE for the two systems.

Looking at the tables, where the best results are marked in bold, we can see that
the developed system performs better on most sequences. LIBVISO2 has a slight edge
over the developed system on the two shortest sequences, however, these sequences
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Figure 8.5: A VW Passat is the sensor platform used in the KITTI dataset. The location
of the cameras and INS system is illustrated. Image courtesy of [25].

are very short and since the developed system performs very similarly, this could be
coincidental. The developed system generally performs better on the longer sequences,
except for sequence 01 and 06. On sequence 06 where the vehicle drives in an oblong
loop, the developed system under-estimates the second turn, and so it drifts further
and further away from the ground truth after this. The trajectory estimate aligned
with the ground truth can be seen in figure 8.6.

Figure 8.6: The trajectory estimate from the KITTI 06 sequence aligned with the ground
truth. The algorithm under-estimates the second of the two turns in the sequence,
which makes the estimate drift further and further away from the ground truth after
this turn.

On sequence 01, both algorithms accumulates a large error, but the developed
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Developed System LIBVISO2
Sequence Length [m] ATEpos [m] σ [m] ATEpos [m] σ [m]

00 3724 8.60 4.06 31.01 15.76
01 2454 55.83 20.64 38.34 7.76
02 5066 19.38 6.39 38.73 15.52
03 560 2.36 0.93 1.88 0.75
04 392 1.61 0.73 0.92 0.41
05 2204 4.98 1.79 12.50 6.79
06 1232 6.17 2.76 4.12 1.91
07 694 4.06 2.02 5.84 3.38
08 3222 6.61 4.12 20.92 8.46
09 1704 13.19 6.59 17.37 10.57
10 918 2.78 1.32 3.93 1.79

Table 8.1: Absolute translation error statistics from LIBVISO2 and the visual odometry
part of the developed system.

system fail "harder". Figure 8.7 shows a screen-shot from this sequence, which is from
a highway environment. The feature detector struggles with finding features in the
sky and in the gray asphalt which covers most of the image. When other cars pass by, a
lot of features gets detected on those objects, and as a result the algorithm estimates its
motion relative to passing objects rather than the road. This leads to several incidents
where the developed VO system under-estimates the translation, which can be seen in
figure 8.8. Normally the algorithm considers features detected on moving objects as
outliers, but in this case there are so few detected features that features on moving
objects are no longer rejected by the RANSAC algorithm.

Looking closer at the 00 sequence, a comparison of the aligned trajectories from
the developed system and LIBVISO2 is provided in figure 8.9, as well comparisons of
the translation and rotation error per frame in figure 8.10 and 8.11 respectively. Note
that the estimates are aligned with the ground truth to minimize the overall error, and
so the errors are non-zero in the first frames. The spikes in yaw error at approximately
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Developed System LIBVISO2
Sequence Length [m] ATErot [deg] σ [deg] ATErot [deg] σ [deg]

00 3724 2.62 1.38 7.41 3.09
01 2454 7.79 5.82 8.70 4.03
02 5066 4.37 2.26 8.64 3.36
03 560 1.49 0.80 1.20 0.58
04 392 1.23 0.18 1.50 0.09
05 2204 2.46 0.99 6.32 2.36
06 1232 2.58 0.60 3.63 1.56
07 694 2.02 0.70 4.78 1.45
08 3222 3.23 1.55 7.47 2.45
09 1704 2.25 0.77 7.78 2.61
10 918 2.25 0.92 3.78 1.60

Table 8.2: Absolute rotation error statistics from LIBVISO2 and the visual odometry
part of the developed system.

Figure 8.7: Screenshot from the KITTI 01 sequence.
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Figure 8.8: Trajectory estimate from the KITTI 01 sequence aligned with the ground
truth. As there are so few features detected, the algorithm ends up estimating its
motion relative to passing cars. This leads to a trajectory estimate that is too short
compared to the ground truth.
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1450 and 2300 meters happens for both algorithms, and as there is nothing particular
happening in those corresponding frames, this seems to be an error in the ground
truth which is estimated from a separate INS system. There appears to be a bias in the
rotation yaw estimates with the LIBVISO2 algorithm, which was present in several of
the other sequences as well. Both algorithms seems to struggle with the last part of
the sequence which contains a long gentle turn to the left, which goes from coordinate
(x ,y) = (470, 275) to (−10, 40) in figure 8.8. In this part of the sequence, there is a
hedgerow on the right side close to the road, which causes the optical flow on the
right side of the image to be greater than the left side. This may contribute to the drift
in the estimates.

Looking at the execution time of each system in figure 8.12a, we see that both
systems maintain a relatively constant execution time over the sequence, as both
algorithms are frame-to-frame. From table 8.3 we see that on average, the developed
system can process frames at 47.6 fps, while LIBVISO2 is only able to maintain 10.9
fps, which is just above the frame rate of the KITTI dataset. Of course, LIBVISO2 is
not GPU-accellerated so the comparison is not fair, but this was the main reason for
developing a new visual odometry algorithm as this could utilize the GPU which Olav
is equipped with. When adding loop detection and the iSAM2 back-end, the execution
time rises and this would leave a system based on LIBVISO2 unable to satisfy the
real-time constraint.

Developed System LIBVISO2

Mean [s] 0.0206 0.0916
Max [s] 0.0346 0.1589
Min [s] 0.0125 0.0699
σ [s] 0.0031 0.0106

Table 8.3: Execution time statistics from LIBVISO2 and the developed VO system on
the KITTI 00 sequence.
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(a) Developed VO system.

(b) LIBVISO2.

Figure 8.9: Comparison of trajectory estimates aligned with the ground truth on the
KITTI 00 sequence.
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(a) Developed VO system.

(b) LIBVISO2.

Figure 8.10: Comparison of the translation error per frame on the KITTI 00 Sequence.

(a) Developed VO system.

(b) LIBVISO2

Figure 8.11: Comparison of the rotation error per frame on the KITTI 00 Sequence.
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(a) Developed VO system. (b) LIBVISO2.

Figure 8.12: Comparison of the execution time of the developed VO system and
LIBVISO2 on the KITTI 00 sequence.

8.5 Visual-SLAM

Turning on the loop closure module, the developed VO system becomes a SLAM system.
The SLAM system was tested on the 6 sequences in the KITTI dataset that contains
loop events, and the result from 5 of them is listed in table 8.4. Sequence 09 also
contains a loop event between the first and last frame, but since the loop detection
algorithm requires 3 consistent matches in a row to accept a loop closure, the loop
event was not added as a loop constraint in this case. From table 8.4, we see that the
ATE in translation and rotation is reduced in all sequences compared to the results
obtained from the visual odometry.

The trajectory estimate from the SLAM algorithm on sequence 00 is aligned with
the ground truth in figure 8.13, together with the translation and rotation errors in
figure 8.14a and 8.14b, respectively. Looking at the rotation error, we can see that its
reduced overall, but the error in the yaw is more jagged. This is partially because
the keyframe poses are now optimized to satisfy the loop constraints while the non-
keyframes are stored with fixed transformations relative to their respective keyframes.

Looking at the execution time of the DBOW2 module in figure 8.15, which includes
database query and geometric verification, we see that in figure 8.15a, the execution
time exceeds 0.6 seconds at approximately frame 4100. This is because the BoW
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Translation Rotation
Sequence Length [m] ATEpos [m] σpos [m] ATErot [deg] σrot [deg]

00 3724 3.14 1.13 1.73 0.68
02 5066 11.46 4.98 0.69 0.92
05 2204 2.48 1.00 1.20 0.51
06 1232 3.74 1.76 2.52 1.68
07 694 1.40 0.47 1.50 0.85

Table 8.4: ATE statistics from the SLAM part of the developed system.

Figure 8.13: Estimated trajectory aligned with the ground truth for the V-SLAM system
on the KITTI 00 sequence.
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(a) Translation error.

(b) Rotation error.

Figure 8.14: Trajectory estimate errors per frame for the developed V-SLAM system
on the KITTI 00 sequence.
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database structure grows as more frames are added, and if it is not pre-alllocated, this
causes huge penalties in the execution time. When pre-allocating this structure, see
figure 8.15b, the execution time of this module peaks at 26 milliseconds.

(a) Not pre-allocating the BoW database
leads to a worst case execution time of 0.6
seconds.

(b) Pre-allocating the BoWdatabase reduces
the worst case execution time to 26 ms.

Figure 8.15: Execution time of the DBOW2 loop detection module per frame.

The frame retrieval execution time in figure 8.17 remains relatively constant, with
a mean of 9 ms and maximum of 12 milliseconds. This plot also indicates where the
system accepted a loop closure. A big contributor to the maximum execution time is
the optimization step which peaks at 38ms. The optimization execution per frame can
be seen in figure 8.16.

The total execution time in figure 8.18 has an average of 28 ms, but peaks at 115 ms
which is above the real time constraint of 100 ms for the KITTI dataset. It is still below
the real time constraint of 167 ms for the FFI dataset, but looking at the graph, the
execution time is expected to rise as more keyframes are added. The execution time
spikes when loop closure constraints are processed, and there are a lot of variables
that needs to be re-linearized. Note that the execution time includes the switchable
constraint discussed in section 6.4.
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Figure 8.16: Optimization execution
time with loop closure. Mean: 3ms.
Max: 38ms.

Figure 8.17: Execution time of the frame
retrieval. Mean: 9ms. Max: 12ms.

Figure 8.18: Overall execution time of the developed SLAM system, without GNSS
measurements. Mean is 28ms, max is 115ms.
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8.6 GNSS

The GNSS measurements provided with the 00 sequence is mostly corrected with RTK
signals (see [25] for detailed information), which means that they are very precise.
The largest reported error from the INS system in the horizontal plane is 38 cm. To
test the integration of GNSS measurements into the factor graph, I applied GNSS
measurements on every nth keyframe, and the results from this is listed in table 8.5.
We can see that the system can provide accurate global estimates with only 5 GNSS
measurements on the 3724 meter long sequence when only providing measurements
every 500th keyframe. There is no visible penalty in the execution time by including
the GNSS measurements compared to the results from V-SLAM-only in the previous
section. All results listed in table 8.5 is from using the switchable GNSS constraint
from section 6.5. One potential problem is that the estimate makes a large jump when
it is initialized in the global frame, and this could cause problems when controlling the
vehicle based on the estimate.

Translation Rotation Execution Time
Period [KF’s] ATEpos [m] σpos [m] ATErot [deg] σrot [deg] Mean [ms] Max [ms]

1 1.32 0.56 1.46 0.83 28 114
10 1.33 0.56 1.47 0.83 27 95
100 1.36 0.93 1.39 0.73 28 118
500 2.52 1.08 1.77 0.81 28 121

Table 8.5: Absolute translation and rotation error statistics on the KITTI 00 sequence
with GNSS measurements every x th keyframe, where x is given in the first (Period)
column.

With global information, the estimated trajectory can now be plotted in a map. Fig-
ure 8.19 shows the estimated trajectory with GNSS measurement every 500th keyframe
laid over a satellite photo in the Google Maps application.

To test the system’s ability to deal with noisy GNSS measurements, I performed
three experiments. In all three, I applied (switchable) GNSS measurements on every
keyframe, and in each experiment the measurements was perturbed with an additive
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Figure 8.19: Trajectory estimate from SLAM with GNSS measurement every 500th
keyframe plotted over a satellite photo.



8.6. GNSS 99

Figure 8.20: Trajectory estimate aligned with the ground truth from experiment with
GNSSmeasurements, perturbed by a 30meter diagonal Gaussian noise, every keyframe.
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Gaussian noise with a standard deviation of respectively 10, 20, and 30 meters in every
direction. In each experiment, the noise model on the GNSS measurement was adapted
to the additive noise. The results are listed in table 8.6, and the trajectory estimated
from the noisiest measurements is aligned with the ground truth in figure 8.20. As
expected, the accuracy gets worse as the noise on the measurements increases, but the
estimate is more accurate when provided GNSS measurements perturbed with the 10
meter Gaussian than with SLAM only. Also, the execution time increases compared to
the experiment with unperturbed measurements in table 8.5.

Translation Rotation Execution Time
Noise σ [m] ATEpos [m] σpos [m] ATErot [deg] σrot [deg] Mean [ms] Max [ms]

10 2.37 0.84 3.31 1.50 31 150
20 4.34 2.09 6.59 3.15 31 151
30 4.71 2.37 6.82 3.40 31 147

Table 8.6: Absolute translation and rotation error statistics on sequence 00 with noisy
GNSS.

8.7 Switchable Loop Constraints

Because of how the loop constraint is computed, a false positive loop detection normally
does not result in a false loop constraint. For a false positive match, the frame-to-frame
odometry is normally not able to compute a loop closure constraint based on a false
positive loop closure detection. This is because the feature tracker is only able to find
very few matches which results in failure in the 5-pt algorithm, which again leads to
the loop constraint being discarded. During testing, there were some false positive
matches, but none of these resulted in a loop constraint.

To test the switchable loop constraint, I bypassed the relative pose estimation step
between the matched frames and added the false constraint directly between frame
300 and the origin. The experiment was performed without GNSS measurements.
The resulting trajectory estimate achieved an ATEpos = 2.76 meters in translation
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and ATErot = 1.75 degrees in rotation, which is similar to the result without the
false constraint from table 8.4. Without the switchable loop constraint, the iSAM2
optimizer crashed in the form of throwing and indeterminant linear system exception.
As I added the constraint, the estimated trajectory started oscillating approximately 1
meter side to side, because the switch value corresponding to the false loop constraint
was switched on and off by the optimizer, as can be seen in figure 8.21. I found that
the value of the switch prior variance Ξ300,0 explained in section 6.4, which was set
to 1.0 in the listed result, had an impact on this oscillatory behaviour. I found that
with a smaller value of Ξ300,0 = 0.5, the oscillation was much more significant and
lasted throughout the sequence, and with a larger value Ξ300,0 = 2.0, more of the true
positive loop constraints was rejected.

Figure 8.21: Value of the switch corresponding to the false loop constraint applied
between frame 300 and the origin. The switch starts to exist at frame 300, and its value
oscillates between 0 and 1 until a loop closure occurs.

Adding false loop constraints becomes more and more dangerous as the robot
explores without receiving GNSS information or a correct loop closure. This is because
the uncertainty grows larger and larger when performing pure visual odometry, and
so the false positive loop closure becomes more and more likely to the optimizer.

The system was also able to handle false positive loop constraints added every
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300th frame (15 total), and in this case the estimate achieved an ATEpos = 5.57 meters
and ATErot = 2.91 degrees. However, the estimate was very oscillatory as the switch
values for many of the false constraints did not converge.

The experiment from section 8.5 was also performed without the switchable con-
straint. It yielded approximately the same performance with ATEpos = 3.14 meters
and ATErot = 1.66 degrees, but the optimization time was reduced, as can be seen
in figure 8.22. Compared to figure 8.16, there are less oscillations in the execution
time after the second sequence of loop closures. This indicates that some of the loop
constraints added during normal operation are inaccurate, leading to oscillations in
the switch values and thus more re-linearization of variables during optimization. This
is also indicated by figure 8.23, where some of the true positive loop detections result
in constraints that are fully or partially optimized out.

Figure 8.22: Execution time of optimization without the switchable loop constraint.
Mean is 2ms, max is 39ms.

8.8 Switchable GNSS Constraint

To test the switchable GNSS constraints explained in section 6.5, I performed two
experiments. In the first experiment, I applied GNSS measurements to every 10th

keyframe, where every 10th measurement was corrupted with a fixed additive noise of
30 meters in a random horizontal direction to simulate multipath artifacts. The noise
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Figure 8.23: Switch values of all switchable loop constraints added when performing
V-SLAM without GNSS. Some constraints are fully or partially optimized out even
though there are no false positive loop detections.

model on the GNSS measurement was a diagonal Gaussian with standard deviation of
σ = 5 meters in every direction, so the added noise was not conforming to the noise
model. The switchable factor was compared to the original GNSS factor explained in
6.3.2, which is implemented in the GPSFactor() class in GTSAM. The result of using
the original GNSS factor can be seen in figure 8.24a, where it is clear that the trajectory
estimate is affected by the simulated multipath artifacts. Notice how the first pose
near the origin in figure 8.24a, which is affected the noise, leads the switchable loop
constraint to discard the detected loop.

Figure 8.24b shows the same experiment using the switchable factor. The esti-
mate achieves an ATE of ATEpos = 1.35 meters and ATErot = 1.47 degrees, which is
very similar, but slightly worse, compared to the results from the experiment with
unperturbed GNSS measurements in table 8.5. Figure 8.25 shows the switch values of
every switchable GNSS factor added to the graph, which indicates how the optimizer
considers the probability of each measurement being valid. We can see that most
of the corrupted measurements are optimized out of the graph topology, but some
still remains (e.g. measurement 50), which explains the slightly worse performance
compared to the experiment with unperturbed measurements.

In the second experiment, I applied GNSS measurements on every keyframe, and



104 CHAPTER 8. EXPERIMENTS AND RESULTS

(a) Without the switchable GNSS factor.

(b) With the switchable GNSS factor.

Figure 8.24: Trajectories aligned with the ground truth from the experiment with GNSS
measurements corrupted by simulated multipath artifacts. GNSS measurements are
provided every 10th keyframe, and every 10th measurement is corrupted with a fixed
30m additive noise in a random horizontal direction.
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Figure 8.25: Switch values related to the switchable GNSS constraints from the multi-
path experiment.

added a diagonal Gaussian noise to every measurement with a standard deviation of
σ = 10 meters in every direction. The noise model on the measurements was also a
diagonal Gaussian, but with a standard deviation of σ = 5 meters in every direction,
so the measurements with added noise was not conforming to the noise model. The
result from using the original GPSFactor() can be seen in figure 8.26a. It is clear that
the estimate is severely affected, as the optimizer puts too much confidence in the
GNSS measurements. Replacing the GNSS factor with the switchable GNSS factor in
figure 8.26b, we can see that the estimate becomes much smoother. Here, many of
the measurements are optimized out of the graph topology, as indicated by the switch
values in figure 8.27 which has a mean of µ = 0.50 and a standard deviation of σ = 0.40.
The estimate achieves ATEpos = 2.96 meters and ATErot = 5.11 degrees, which is not
as good as the result from table 8.6 (estimate with the correct noise model). This is
because, as we saw from figure 8.25, not all measurements that falls outside the noise
model are optimized out of the topology, and the optimizer puts to much confidence in
those remaining measurements. The execution time with and without the switchable



106 CHAPTER 8. EXPERIMENTS AND RESULTS

GNSS constraint was very similar to the results in table 8.6, with a mean of 30ms, and
a max of 141ms without the switch, and 147ms with.

8.9 Re-localization

To test the system’s ability to recover after a tracking failure, I performed three experi-
ments. One where tracking failed at frame 500 without GNSS, and two experiments
where tracking failed every 1000th frame (resulting in 4 tracking failures during the
4541 frame long sequence) with and without GNSS. To simulate tracking failures,
images loaded from the dataset was filled with zeros (black).

8.9.1 Without GNSS

When there are no GNSSmeasurements, the trajectory is recovered when encountering
a loop closure. As explained in section 7.7, there is no constraint inserted at the position
where track was lost after recovery. The tracking failure at frame 500 was placed
strategically as the robot passes this section twice, and the disconnected point is
constrained with loop constraints to the second pass. The resulting trajectory can
be seen in figure 8.28, together with the absolute translation and and rotation error
in figure 8.29a and 8.29b, respectively. Referring to figure 8.28, the tracking failure
happens at approximately (x ,y) = (240,−20), but there is no visible signs of the
tracking failure at this point, or in the plots in 8.29a, 8.29b. In fact, comparing table 8.7
with table 8.4, we that the ATE in translation and rotation is lower with the tracking
failure than without.

Translation Rotation Execution Time
Tracking Failures GNSS ATEpos [m] σpos [m] ATErot [rad] σrot [rad] Mean [ms] Max [ms]

1 No 2.70 1.28 1.59 0.69 27 107
4 No 9.44 5.98 3.03 1.11 26 114
4 Yes 1.25 0.50 1.43 0.81 26 100

Table 8.7: Absolute translation and rotation error statistics tracking failure experiments.
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(a) Without the switchable GNSS factor.

(b) With the switchable GNSS factor.

Figure 8.26: Trajectories aligned with the ground truth from experiment with noncon-
forming GNSS noise. GNSS measurements perturbed by a diagonal Gaussian noise
with σ = 10 meters are applied to every keyframe, while the measurement model is a
diagonal Gaussian with σ = 5 meters.



108 CHAPTER 8. EXPERIMENTS AND RESULTS

Figure 8.27: Switch values related to the switchable GNSS constraints from the experi-
ment with nonconforming GNSS noise.

In figure 8.30, we see the resulting trajectory when tracking fails at frame 1000,
2000, 3000 and 4000, respectively corresponding to the (approximate) (x ,y) coordinates
(340, 190), (20,−280), (390,−240) and (360, 270) in the figure. Now, all the disconnected
points are clearly visible, as none of these points are passed twice. The plots 8.31a
and 8.31b shows how the translation and rotation error is affected. As there are no
constraints on the poses following the tracking failures, the trajectory is very sensitive
to errors in the loop closure constraints when recovering.

8.9.2 With GNSS

Adding GNSSmeasurements every 10th keyframe to the last experiment where tracking
fails every 1000th frame, the results are drastically improved as can be seen in figure
8.32. Looking at figure 8.33a and 8.33b, we can still see the effects of the tracking
failures, especially in translation, but the amplitude is much smaller compared to figure
8.31a and 8.31b.
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Figure 8.28: Trajectory estimate aligned with ground truth from experiment where a
tracking failure occurs at frame 500, corresponding to coordinate (x ,y) = (240,−20).
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(a) Translation error.

(b) Rotation error.

Figure 8.29: Translation and rotation error from experiment with a tracking failure at
frame 500.
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Figure 8.30: Trajectory aligned with ground truth from experiment where tracking
failures occure every 1000th frame, without GNSS measurements.
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(a) Translation error.

(b) Rotation error.

Figure 8.31: Translation and rotation error from experiment where tracking failures
occur every 1000th frame, without GNSS measurements.
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Figure 8.32: Trajectory estimate aligned with the ground truth from experiment where
tracking fails every 1000th frame, with GNSS measurements every 10th keyframe.
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(a) Translation error.

(b) Rotation error.

Figure 8.33: Translation and rotation error from experiment where tracking failures
occurs every 1000th frame with GNSS measurements every 10th frame.



Chapter 9

Conclusions and Future Work

In this project, a GPU-accelerated stereo V-SLAM system was developed, capable
of utilizing GNSS sensor data to correct for accumulated drift, and re-localize after
tracking failure without discarding information gathered from previously explored
areas.

The performance of the VO module of the developed system was able to provide
trajectory estimates which in most cases exceeded the performance of the LIBVISO2
algorithm on the KITTI dataset, while operating at a much higher frame-rate of 47.6
fps. By including the DBOW2 loop detection module, the accuracy of the estimates
was further improved on all tested datasets which contained loop events, however this
also impacted the execution time of the system which had a worst case of 115 ms on a
sequence of 4541 frames. I still claim that the system is real-time capable, since the
mean execution time was 28 ms which corresponds to a frame rate of 35.7 fps.

The systemwas able to recover from false positive loop detections, as demonstrated
in section 8.7, by using the switchable constraint as proposed in [66]. This improved the
robustness of the system compared to using the traditional loop constraint implemented
in the GTSAM library, which caused the system to crash in the performed experiment.
Using the switchable constraint came with a penalty of slightly higher execution times
in the optimization due to oscillations in the switch values, which may be due to

115
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inaccuracies in the computed loop constraints.
When provided GNSS measurements, the system was able to increase the precision

of the trajectory estimates further. The system was able to handle limited GNSS
coverage by estimating the trajectory relative to a locally defined reference frame until
enough GNSS measurements was received, and then initialize the trajectory in the
global reference frame. The system was able to provide accurate estimates with as little
as 5 measurements on the 3724 meter long KITTI 00 sequence, as shown in section
8.6. As shown in section 8.8, the system proved to be robust to GNSS measurements
corrupted by simulated multipath artifacts and measurements not conforming to the
expected noise model, due to the switchable GNSS factor presented in section 6.5.

The system was also able to recover from simulated tracking failures both with and
without GNSS measurements, as shown in section 8.9. Testing showed that the system
was able to refine the estimate at the point where tracking was lost by performing a
second pass over that section. If the points of failure was not passed a second time, the
estimate became less accurate in the case when there were no GNSS measurements.

Unfortunately, I was not able to test the developed system properly on any datasets
from Olav due to problems with the stereo calibration. As suggested by my co-
supervisor at FFI, a possible contributing factor to the calibration failure is that the
stereo cameras may not have been attached rigidly enough. A suggestion on how to
possibly improve the calibration procedure is presented in the next section.

9.1 Future Work

These are my thoughts on what remains to be done in order to incorporate cameras
into the navigation system on Olav.

• Stereo calibration. In order to utilize stereo cameras for navigation, correct
stereo calibration is a necessity. One interesting stereo calibration technique
particularly intended for cameras mounted on automobiles is the Camera and
Range Sensor Calibration Toolbox by Geiger et al. [26] which calibrates the
stereo pair from a single stereo frame. This method requires a set of calibration
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patterns arranged in different poses such that they cover the whole field of view
of both cameras. The single stereo frame can then be uploaded to a web-page
[27] where the calibration parameters are computed.

• As shown in the results, the execution time sometimes exceeded the real-time
constraint when encountering loop closures. A possible solution to this is to let
the optimization module operate continuously in parallel.

• Improve the visual odometry module. The VO module presented in section 5.3
is a frame-to-frame algorithm. Its performance could probably be enhanced by
performing windowed bundle adjustment as is done in ORB-SLAM2 or DSO.
This way, better relative pose constraints could be estimated by optimization
over mutual observations of features over multiple frames instead of consecutive
frames only. This would require some extra computation, but only over a limited
window. Since the VO system already tracks features over multiple frames,
implementing this would require a modification in the optimization module only.
This would also a better strategy for inserting keyframes into the pose-graph
than just considering the optical flow between images, as is presently done.

• Better estimation of the noise models of the relative pose constraints. In its
current state, the noise model, or covariance matrices, of the relative pose
constraints used in the optimization is proportional to the cumulative optical
flow computed between frames. By using a windowed BA approach, the noise
models could be better estimated by only specifying the pixel uncertainty, and
let that uncertainty propagate to the relative pose constraints estimated by a
windowed BA procedure. This point also applies to the loop constraints, which
I suspect would lead to less oscillations in the switch values of the switchable
loop constraints and thus lower execution times.

• The performance of the VO algorithm in dense forest and terrain environments
remains to be tested.

• Develop a ROS wrapper around the current implementation. Olav uses ROS to
pass messages between nodes in its software framework. For the system to be
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operational on Olav, the system should be embedded in a ROS framework. As I
was not able to obtain a good calibration on the dataset from Olav, and since
the KITTI dataset is not dependent on ROS, this was not a priority. However,
the system was developed with ROS in mind, as the only input to the system is
time-stamped images and GNSS measurements.

• Find loop constraints from stored features instead of stored images. For long
term operation, storage of all keyframes in raw format can become expensive.

• Add more sensor measurements as constraints in the optimization. For the navi-
gation system to be complete, IMU measurements should be added as odometry
constraints in the factor graph. One interesting approach on how to do this is
the method of Forster et al. [19] which summarizes the high frequency inertial
measurements from the IMU into a single relative motion constraint (factor)
between frames. Thus, instead of adding variable and factor nodes to the factor
graph at IMU rate, they are added at a much slower frequency that is determined
by other available sensors. Also, Olav is equipped with wheel encoders which
can be added as factors as well.

• As discussed in section 5.4, feature-based place recognition is known to lack
performance over day/night and seasonal changes in the environment, although
this was not part of the test sequences in this project. It would be interesting
to look into sequence based place recognition, as those methods have proven
able to do place recognition over such changes. By using the DBOW2 as place
recognition module, the database may have to be augmented with seasonal and
daily variation for each location.

• The DBOW2 module also inherently has the problem that the database structure
grows over explored area, and if the size of the explored area is not known before
starting the mission, this can cause problems with execution time and memory
overflow.

• In the experiments performed in chapter 8, I assumed that the availability of
GNSSmeasurements coincided with the keyframes. This assumption is a simplifi-
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cation, and could be changed for example by basing the keyframe decision on the
availability of GNSS measurements, or by transforming the GNSS measurements
on non-keyframes back to the keyframes, which would have to happen after the
estimate is initialized in the global frame. The last option would also work when
measurements are available between frames, by assuming an intermediate pose
between frames at the time of measurement based on velocity estimates. The
GNSS measurement on that intermediate pose could then be transformed back
to the keyframe based on the transform between the intermediate pose estimate
and the corresponding keyframe.

• As the variance of the switch prior in the switchable constraints impacts their
performance, the front-end could potentially inform the back-end about the
probability of a loop closure being correct as suggested in [66]. As mentioned
in section 8.7, adding a false positive loop constraint becomes more dangerous
after long periods of exploration, and the value of the switch prior variance may
help mitigate this.

• For very large scale operation, nodes of the pose graph corresponding to poses
far away from the current position should not be stored in working memory, as
this would eventually overload the system. A solution, such as the one presented
by Labbé et al. [41], where distant sections of the map is stored in long term
memory should be investigated. Some of the foundations for doing this, such as
save and load functionality of the BoW database and factor graph, is present in
the current implementation, but was not extensively tested. The implemented
re-localization in the developed system is also an important building block which
can be extended for this purpose.
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