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Problem statement

Ray tracing is a rendering technique in which rays are cast from a viewpoint into a
scene in order to generate images. Briefly stated, it entails tracing in reverse the paths
that physical light particles would take. The technique is viewed as an alternative to
rasterisation rendering, which is the de facto standard in computer graphics today.
The latter is based on the rasterisation of primitives—most commonly triangles.

As a consequence of the technique’s physical nature, ray tracing implementations
will often produce more realistic images, and will generally result in a more visually and
physically correct rendition of a given scene, when compared to rasterisation rendering.
Caused in part by the fact that the objects to be rendered may be modelled perfectly
in a geometric sense, but also because physical effects such as reflection, refraction, and
transparency are much easier to model and implement than for rasterisation rendering.

An octree is a space partitioning scheme that divides three-dimensional space
into a tree structure. It is analogous to a binary tree in three dimensions, meaning
that each node in the tree may have up to eight children. A sparse voxel octree—
abbreviated SVO—is a specific flavour of octree often used in conjunction with ray
tracing. What sets an SVO apart from the generalised octree is that the data structure
itself is employed to natively represent volumetric data. Physical objects may be
approximated by treating the SVO leaf nodes as either filled or empty (void) voxels.
Several solutions have been proposed in the relevant literature for efficient real-time
rendering of SVOs using ray tracing.

A drawback of using SVOs to store and render volumetric data is that the data is
inherently static; SVOs by themselves do not support any form of animation or efficient
data mutation. In order to use this data structure in the rendering of realistic real-time
graphics, there is a need for animation—most notably rotation, translation, but also
general affine transformations. This is necessary if ray tracing is to be used to render
realistic, animated worlds, and not just static scenes.

In the project thesis, the student explored animation of SVO data from a the-
oretical standpoint, and formulated a general technique suitable for hardware imple-
mentation to achieve this. In the master’s thesis, the student will continue within the
same field of research, and:

• Review existing literature on the subject of hardware ray tracing.

• Investigate whether a hardware implementation for real-time ray tracing of SVO
data is feasible, and formulate the specification and design of such a system.

• If feasible, demonstrate hardware ray tracing of SVO data. Explore the possibility
of extending such a hardware implementation to support animation of SVO data.

iii





Abstract

Ray tracing is a technique used in computer graphics to render virtual scenes consisting
of three-dimensional volumetric models. These volumetric models may be formulated
as geometric primitives, or as data structures such as the optimised voxel-based model
known as the sparse voxel octree (SVO). One of the main limitations today when using
ray tracing to render SVOs is that the octree data structure is inherently static. In
other words, efficient animation of a scene to be rendered is challenging to achieve. In
the project thesis, a general method for animation of such SVO models was derived.

In this master’s thesis, a hardware accelerator for ray tracing of animated sparse
voxel octrees is designed and largely implemented. The hardware implementation
runs on an FPGA, and its design employs the method from the project thesis in in
order to facilitate animation. The proposed solution also makes use of two additional
established algorithms as foundation: an efficient method for traversal of octrees, and
a memory-efficient data structure scheme for storing SVO data.

Initially, an analysis of requirements is conducted and a specification of the desired
system is introduced. The system design is then derived, in which the functionality of
the system and its constituent modules are determined and discussed. Ultimately, an
implementation of this design is presented and examined. Certain parts of the design
were not fully implemented due to time constraints, such as the modules that provide
the arithmetic operations necessary for animation. The overall result is the system
design of a fully-fledged hardware accelerator for real-time ray tracing of animated
SVO models, and a partial implementation of this design.

A number of implementation configurations are tested. Running at 100 MHz with 16
SVO traversal cores, the implementation is shown to be capable of rendering static SVO
models with a frame rate of 26.91 Hz at 1280×720 resolution. With a sufficient number
of traversal cores, the implementation appears to be limited by external factors—
namely the IO performance of the development board. It is concluded that real-time
performance rendering animated SVO models is achievable.
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Sammendrag

Ray tracing—eller str̊alesporing—er en teknikk benyttet i datagrafikk med det mål å
tegne en virtuell verden best̊aende av tredimensjonale volumetriske modeller. Disse
modellene kan være uttrykt som geometriske objekter, eller som abstrakte datastruk-
turer slik som den optimaliserte voxel-baserte modelltypen kalt sparse voxel octree
(SVO). En av hovedbegrensningene forbundet med str̊alesporing av slike SVO-modeller
i dag er at datastrukturen i utgangspunktet ikke har noen støtte for animasjon. I pros-
jektoppgaven ble det utviklet en generell metode for animering av slike SVO-modeller.

I denne masteroppgaven blir en hardwareakselerator for str̊alesporing av animerte
SVO-modeller spesifisert, utviklet og, i stor grad, implementert. Implementasjonen
kjøres p̊a en FPGA, og spesifikasjonen benytter metoden utviklet i prosjektoppgaven
for å legge til rette for animasjon. Som grunnlag benyttes ytterligere to etablerte algo-
ritmer: en effektiv metode for traversering av octree-strukturer, og en minne-effektiv
datastruktur for lagring av SVO-data.

I første omgang utføres en analyse av systemets krav, og en spesifikasjon av den
ønskede løsningen presenteres. Systemets utforming utledes deretter, hvor dets funk-
sjonalitet og interne moduler diskuteres og bestemmes. Til slutt presenteres en im-
plementasjon av dette systemet. Visse deler av systemets implementasjon ble ikke
ferdigstilt grunnet tidsbegrensninger, inkludert deler av funksjonaliteten knyttet til
animasjon. Resultatet er en komplett spesifikasjon og utforming av et system for
hardwareakselerert str̊alesporing av animerte SVO-modeller i sanntid, og en delvis im-
plementasjon av denne spesifikasjonen.

En rekke ulike konfigurasjoner av implementasjonen testes. Ved en klokkefrekvens
p̊a 100 MHz og med 16 kjerner for SVO-traversering, viser systemet seg i stand til å
tegne statiske SVO-modeller med en bildefrekvens p̊a 26.91 Hz og en oppløsning p̊a
1280× 720. Dersom et tilstrekkelig antall kjerner for SVO-traversering implementeres,
blir det demonstrert at systemet begrenses av eksterne faktorer—nemlig ytelsen for-
bundet med IO p̊a utviklingskortet. Det konkluderes at sanntidsytelse under tegning
av animerte SVO-modeller er oppn̊aelig.
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Preface

This master’s thesis shares the subject of research—and in some sense builds upon—the
work done in the project thesis [1]. Its approach to the subject at hand, however, differs,
and the thesis should therefore be regarded as its own work separate from the project
thesis. Moreover, while much of the background matter is shared between the theses,
the actual work done and the results presented are thoroughly different in nature.
The idea behind the project and master’s thesis was conceived in the autumn of 2017
during a conversation after class with my lecturer at the time, Øystein Gjermundnes.
I presented my idea to him, and he enthusiastically encouraged me to pursue it as a
subject for a project and master’s thesis. He also agreed to take the role as my co-
supervisor when the time came. I formulated the general gist of the problem statements
for both theses around this time.

Much thought has been put into determining how the workload should be divided
between the project thesis and the master’s thesis. After hearing some horror stories
of students putting too much work into the project thesis, and leaving too little for the
master’s thesis, I ended up partitioning the subject matter into two distinct segments.
The project thesis was to be an almost purely theoretical venture, in which some
general method or technique would be derived. The master’s thesis would be of a
much more practical nature, and its work would be comprised of a distinctly different
set of problems related to implementation of a system which may incorporate the work
done in the project thesis in some way. This distribution of work ensures that both
the project thesis and master’s thesis may be treated as independent works.

The reason that ray tracing has been chosen as the subject matter for both theses
is that I have had a fascination for the technique for many years. Ray tracing appeals
to me because of the elegance and simplicity of its implementations—qualities that
seem to go missing from traditional rasterisation rendering implementations. This
thesis has a particular focus on hardware design of a ray tracing system. The process
of designing a digital hardware system of substantial size is very different from the
software design flow I’m used to. A considerably larger chunk of the time must be set
aside for planning and verification of the system, since the turnaround time for trying
and failing is significantly longer. Digital hardware design is challenging, but at the
same time highly rewarding; it is immensely satisfying to see the module you have been
designing for the last week actually working as intended.

My principal supervisor for this thesis, Sverre Hendseth, has assumed a more sup-
plementary role during the design work than he had in the project thesis. This is
mostly due to the fact that his field of expertise is not directly relevant to the work.
The occasional meetings I have had with him have been jovial check-ups and geared
towards how I am doing with the report work. It should be noted, however, that the
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tips he has given me regarding general work planning and organisation have helped
considerably during the planning phase of the project.

In his capacity as my co-supervisor, Øystein Gjermundnes has had a much more
prominent part advising me over the course of this thesis than he had in the project
thesis. He has given me many hardware design tips that have helped me along the
way. Moreover, he arranged for me to borrow the development board employed for the
design implementation, so that a time-consuming application process could be avoided.

To sum up, I feel I have been very independent during both the design and im-
plementation work, and the writing of the thesis itself. That said, whenever I have
been stuck—either technically or motivationally—my supervisors have helped me out
with good advice and encouraging words. They have also passionately encouraged
me to pursue a PhD degree after this thesis, which I very much look forward to. I
therefore want to extend my gratitude to my supervisors, Sverre and Øystein. As was
the case for the project thesis, I have had the privilege of doing most of the design
work on a personal workstation the offices of Arm Norway, with access to unlimited
amounts of caffeine. I wish to thank the wonderful people at Arm who have given me
this opportunity. Lastly, I would like to highlight my appreciation for my family and
friends. Especially my girlfriend, Rachel, who has consistently kept my spirits up for
the duration of the project.
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Chapter 1

Introduction

I do think that some form of ray tracing—forward tracing or reversed
tracing—rather than forward rendering will eventually win because there’s
so many things that just get magically better there. (...) And there’s a lot
of work, lots of smart people, lots of effort, and lots of great results coming
out of it. Eventually ray tracing will win, but it’s not clear exactly when
it’s gonna be.

— John Carmack, 2011 [2]

The idea of real-time hardware-accelerated ray tracing has by many been described
as the holy grail of computer graphics [3][4]. In the autumn of 2018, Nvidia threw a
curve ball and confounded an entire field with the launch of its newest series of graphics
cards which featured this elusive technology [5]. The hype surrounding these latest
developments in the field seems to have somewhat diminished in the latest months,
and many have even outright dismissed ray tracing as a useless “gimmick” [6][7]. It is
understandable that from a video game enthusiast’s standpoint, the features may not
have borne much fruit. They have remained largely unexercised by the many video
games that have been released in the meantime.

Nonetheless, the fact that Nvidia has gone all-in on this technology is nothing but
exciting for someone who has been following the ray tracing scene closely for many
years. In fact, the new and shiny Vulkan graphics API—which may be regarded as
the spiritual successor to OpenGL in many respects—actually contains extensions that
expose support for ray tracing [8]. This means that any graphics accelerator vendors
that wish to fully support the Vulkan API and its applications are required to also
support ray tracing. Moreover, in the context of these recent developments, ray tracing
should not be regarded as a replacement for rasterisation rendering. Rather, it ought
to be viewed as a complementary technology that may be employed in conjunction
with rasterisation rendering to improve visual fidelity.

Of course, no one should expect such paradigm shifts of established technology to
happen overnight. It may take many years before the rest of the industry decide to
follow Nvidia’s new direction—it might not even happen at all. But the fact that one
of the major players in the industry have put so much on the line for this technology
is intriguing. In any case it shall be very exciting to follow the many breakthroughs
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Chapter 1. Introduction

that may happen in the field if the technology gains a foothold. Will the other vendors
follow in Nvidia’s footsteps or reject the technology entirely?

About this work, and its relation to the project thesis

This master’s thesis is inspired by—and, to some extent, builds upon—the work done
in the specialisation project during the autumn of 2018. It may be viewed as a con-
tinuation of this work, although the reader should keep in mind that its approach to
the subject of study varies, and thus the nature of the results and their implications
will be entirely different. In the project thesis, a general technique for animation of
sparse voxel octrees was introduced. In this master’s thesis, the method will be treated
as previous work, and employed in a fully-fledged hardware ray tracing system. The
project thesis report is included in the attached ZIP file, as described in Appendix A.

Another point worth noting is that there does not appear to be an established and
universally agreed-upon name for the specialisation project that is completed in the
first half of the fifth year of study at NTNU. In this thesis, however, it will consistently
be referred to as the project thesis. The project thesis [1] will also be explicitly cited
in the text if deemed necessary.

Much of the background matter, as well as the research context and chosen algo-
rithms are useful and relevant for both the project thesis and this thesis. It would be
a wasted effort to rewrite all these relevant sections for this thesis. Therefore, certain
relevant sections of text have been extracted, copied, or paraphrased from from project
thesis and presented here. Whenever this occurs, it will be clearly stated either directly
in the section or in an introductory section.

Thesis outline

This thesis consists of nine chapters and a set of appendices. Chapters 1 to 4 are
background and theory chapters. These contain no results, but serve to bring the
reader up to speed on the concepts and theory that is required to understand the
results. Chapter 2 contains general background theory, while Chapter 3 presents the
general fields of research that this thesis is a part of. In Chapter 4, the algorithms
upon which the solutions and results are built are presented in detail.

Chapters 5 to 8 are the result chapters, in which the work done as part of this
project and its results are presented and discussed. The development methodology in
this master’s thesis is loosely based on the waterfall model, and these four chapters
each represent one or more stages of the model. In Chapter 5, a high-level requirement
analysis of the desired features of the system is presented. Chapter 6 introduces the
system design and a specification of its modules is formulated and discussed. The
hardware implementation of this system is presented in Chapter 7. The results, and a
discussion of these, are presented in Chapter 8.

A small note about figures

Unless otherwise specified, all figures presented in this text are designed and created
by the author. It is not an insignificant workload that has been laid down in their
creation, and as such, they should be regarded as original (or, in some cases, improved
derivative) works and hopefully contribute to the credit of this thesis.
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Chapter 2

Background

Images generated by computers permeate the lives of humans today in ways one could
not imagine merely half a century ago. In the current age of information, there are
numerous areas of which computer graphics is a central part, for instance the fields
of numerical computing visualisations [9][10][11], video games [12][13][14], computer-
aided design (CAD) [15][16][17], graphical user interfaces (GUIs) [18][19], and special
effects for motion pictures (SFX) [20][21].

In this chapter, relevant background information will be presented, starting with a
short account of the eventful history of real-time computer graphics. The chapter is
partly derived from its counterpart in the project thesis by Espe [1], with some sections
taken directly from it. Sourced from the project thesis are Sections 2.1, 2.3 and 2.4,
as well as Sections 2.2.1 to 2.2.3. These selected sections have been evaluated as very
relevant for this master’s thesis, and have such been copied and slightly adapted to be
a part of this background chapter.

2.1 A brief history of real-time computer graphics

Computer graphics as a field has only existed for about 60 years. The term first
appeared around 1960, and was used to describe early works such as Ivan Sutherland’s
groundbreaking computer program Sketchpad [22]. Sutherland’s program is considered
the antecedent to modern computer graphics in that it was the first graphical solution
enabling human-computer interaction (HCI).

The history of real-time computer graphics is defined by breakthroughs. The ren-
dering capabilities at a given point in time was generally constrained by capacity of
the underlying hardware. For instance, once transistor-based memory was available in
the 1970s, the creation of efficient frame buffers was possible. Frame buffers are to this
day central, as the technology simplifies and speeds up computation by allowing the
decoupling of rendering logic from display logic [23][24].

By the late 1970s, three-dimensional computer graphics had left its infancy. And
as the field matured, it became apparent that two main methods of real-time rendering
were to dominate the scene. The earliest attempts had used rasterisation, a technique
which gained popularity after the introduction of the Z-buffer in 1974, developed and
proposed by both Edward Catmull [25] and Wolfgang Straßer [26], independently. The
alternative to rasterisation was ray tracing, an image synthesis technique that was
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first proposed by Arthur Appel in 1968 [27], but popularised after a paper by Turner
Whitted in 1980 [28].

It would become clear, through the conception of dedicated graphics processing
hardware in the 1980s and early 1990s, that rasterisation was to be the main-stream
technique for real-time computer rendering. One of the earliest single-chip display
controllers was the NEC 7220, released in 1982 [29]. By incorporating this chip in their
designs, manufacturers could construct dedicated graphics processing units (GPUs),
such as a range of products released by Number Nine Visual Technology through the
1980s. In these early GPUs, rasterisation of primitives—rather than ray tracing—was
employed to produce output, further consolidating the position of rasterisation as the
preferred method for image synthesis [30].

While rasterisation as a technique may have been more popular, there were attempts
at hardware acceleration of ray tracing as well. In the late 1980s, a series of ray
tracing demonstrations was run on a parallel processing architecture developed by the
British semiconductor company Inmos [31]. The microprocessor architecture on which
these demonstrations were run was known as the transputer. The main purpose of
the transputer architecture was to allow for the construction of scalable concurrent
systems, and the parallel nature of most ray tracing algorithms made ray tracing a
prime candidate for the showcase of their technology.

Through the 1990s and 2000s, real-time computer graphics would continue to in-
crease in popularity, as new graphics acceleration hardware would be released on a
regular basis. Once the personal computer (PC) became a household item, high per-
formance computing, and with it real-time computer graphics, was no longer reserved
for the specialist user. In the early 2010s, a new field of research emerged—embedded
computer graphics, or mobile graphics. While the main constraints in desktop hard-
ware are performance and price, mobile devices introduce an additional concern: as
a consequence of their battery-powered nature, there is a desire to deliver real-time
computer graphics while simultaneously maintaining power efficiency [32].

Even though rasterisation is currently the title-holder of the real-time computer
graphics race, ray tracing continues to be relevant. In 2018, the popularity of ray
tracing experienced a revival after Nvidia unveiled its newest range of GPUs—the
GeForce RTX series [5]. It should be interesting to see to which degree this recent
surge of main-stream attention will impact the future of computer graphics.

2.2 Fundamental concepts

The overarching goal of computer graphics is to utilise a computer to deterministically
render an image based on a specification of some form. The images generated may be
stored for later consumption, or they may be presented in real-time on a display as
part of a graphics pipeline. Regardless of what the end goal of the rendering process
is, and which techniques were employed to reach this goal, there are some fundamental
concepts that are used almost universally. These fundamental concepts are presented
in this section.
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2.2.1 3D models

In three-dimensional computer graphics, the model can be viewed as a digital descrip-
tion of what is to be rendered. Models are a central part of most computer rendering
pipelines and contain the data that is to be interpreted by the rendering process when
generating a scene. Ordinarily, a model is a digital representation of a single, dis-
tinct object; a scene is a collection of models in some configuration. A model may be
sorted into one of three main categories based on way it represents physical objects
digitally. Each category has its drawbacks and advantages, which will be outlined in
the following. Illustrations of the different categories are shown in Figure 2.1.

(a) Analytic model (b) Polygonal model (c) Voxel model

Figure 2.1: Three types of models.

Analytic models

Models that can be completely described by some mathematical equation are known as
analytic models. Such models are often constructed from analytic, geometric primitives,
for instance cubes, spheres, curves, and lines. These models have the advantage of
supporting arbitrary accuracy [33, pp. 66, 70][34, p. 176]. For instance, a sphere of
radius 1, centred at the origin may be modelled perfectly by its analytical formulation
as all the points x that satisfy Equation (2.1).

||x|| = 1 (2.1)

A drawback of analytic models is that they are in general more computationally expen-
sive to render compared to alternative methods. Another shortcoming is that it may be
very difficult to model complex shapes mathematically. Fortunately, for a given level
of detail, one hardly ever needs the fidelity of mathematically perfect models. As such,
they are rarely used in real-time three-dimensional computer graphics. The main use
of this category of models is in the technique called constructive solid geometry (CSG),
where multiple geometric primitives are combined with Boolean logic to produce more
complex models [34, pp. 555–559]. An illustration of a sphere modelled analytically is
shown in Figure 2.1a.
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Polygonal models

A more common approach in computer graphics is to describe the object as a polygonal
surface mesh. These models, known as polygonal models, only store the boundary or
shell of the object, and are therefore a type of surface representation [34, p. 176]. A
polygonal model, such as the sphere shown in Figure 2.1b, can be regarded as a vector
graphics representation of an object, in the sense that a series of points are employed
to define the vertices of a surface. The points are connected by a mesh comprised
of polygons—in almost all practical cases, triangles [14, p. 426][34, p. 177]. As a
consequence of their vector graphics nature, polygonal models are particularly well
suited for representing large, flat surfaces. A flat plane, for instance, can be modelled
by only four vertices describing two triangles. A drawback is that polygonal models
cannot accurately represent curved surfaces [33, p. 4]. High-fidelity models quickly
become computationally expensive to render, since the level of detail is dependent on
the number of polygons.

Voxel models

Where polygonal models can be considered a form of vector graphics representation of
objects, voxel models may be regarded as a pixel or raster graphics representation. A
voxel model, exemplified by Figure 2.1c, is a model consisting of a set of voxels. The
word voxel, short for volumetric element, describes an object that can be thought of as
the three-dimensional analogue of the two-dimensional pixel. In other words, a voxel
represents a single data sample in a three-dimensional grid. As a consequence of their
volumetric nature, voxel models are a type of volume representation, therefore contrast-
ing polygonal models [34, p. 177]. However, certain optimisations of the model data
structure can be made so that the model appears as a type of surface representation,
for instance by employing tree-based structures [35].

2.2.2 Spaces and transforms

After being sculpted and exported from some form of graphics modelling software, a
model will usually be stored in a normalised, axis-aligned format, with all co-ordinates
being relative to a single point called the model’s origin [14, p. 428]. In the other end of
the rendering process, the final image produced is in most cases going to be displayed
on a digital screen. Specifically, the end result of the graphics pipeline is a set of pixels
positioned in an ordered two-dimensional grid.

Model
ScreenRendering 

process

Figure 2.2: The rendering process as a black box.

The rendering process itself is often thought of as a black box process, as shown in
Figure 2.2. However, in order to properly understand the different spatial representa-
tions, as well as the process of converting between them, there is a need to take a look
under the bonnet in search for a more rigorous definition.
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Vector spaces

By introducing the concept of spaces, the process can be simplified quite extensively.
As it turns out, all the different co-ordinate systems normally encountered in computer
graphics may be represented mathematically as vector spaces.

The first of the co-ordinate systems mentioned in the introduction to this section—
the one which is local to the model—is termed the model space, or alternatively local
space [33, p. 7] or object space [14, p. 428]. As for the screen, each individual pixel in
this grid will have a unique set of co-ordinates that describes its position. The pixels
are said to reside in screen space [33, p. 10].

Since the screen on which to display the final image is two-dimensional, while the
models are (in most cases) three-dimensional, there is a need to convert between the
two spaces. Further, it is desirable in almost all cases to rotate, scale, or move the
model around in the scene. To facilitate these requirements, two new vector spaces are
introduced: world space and view space. World space is the global space in which all
models are positioned, rotated, and scaled as desired. It is the space that describes the
larger world, and is what one usually thinks of as the scene in computer graphics [14,
p. 428][33, p. 7]. All models to be rendered must be placed somewhere in the world
space. View space, which is sometimes named camera space [33, p. 7], is the space that
places the camera (or eye) in the origin, looking down the negative z-axis, and orients
all objects in the scene such that they are placed correctly relative to the camera’s
point of view. This space is an intermediate step that is needed to correctly perform
the final conversion to screen space.

As shown in Figure 2.3, there are four main spaces in the rendering pipeline. For
illustration purposes, the camera is shown as an entity in world space. Some method
for deterministically transforming co-ordinates in one space to another space is desired.
Luckily, since the spaces can be mathematically defined as vector spaces, the transfor-
mations between each space can be represented as mathematical transformations.

Model
transform

Model space

View
transform

Projection
transform

World space View space Screen space

Figure 2.3: Main spaces in rendering. The camera itself is shown in world space.

Transforms and transformations

In mathematics, a transformation, also known as a map, is a generic function that
maps one space to another. The mathematical formulation of a map T from Rn to Rm

is shown in Equation (2.2).

T : Rn → Rm (2.2)

Many mathematical maps, and all linear maps, can be written on matrix form. The
map function T may be written as shown in Equation (2.3), where A is a matrix of
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size m× n and x is a column vector with n elements.

T(x) = Ax , x ∈ Rn,Ax ∈ Rm (2.3)

As it turns out, all the transformations needed in the graphics pipeline, except one,
are affine transformations, which means that each of them may be represented as a
homogeneous matrix. In computer graphics, such a matrix is called a transform, and
the function it provides is called a transformation.

Since there are four spaces of concern, it stands to reason that there are three main
transforms that are needed to convert between the spaces. These transforms and their
names are shown in Table 2.1. The transform which converts from model space to world
space is aptly known as the model transform, and the transform from world space to
view space is called the view transform. The last transform, converting view space
to screen space, is unique in that it is not a general affine transform. It is known as
the projection transform, since it serves the function of projecting a three-dimensional
world onto a two-dimensional plane (the pixel grid).

Table 2.1: The main transforms of the computer graphics pipeline.

Initial space Result space Transform name

Model space World space Model transform

World space View space View transform

View space Screen space Projection transform

In practice, the three transforms are represented by four-dimensional matrices. A
complete transformation of a point from model space to screen space can be written
mathematically as shown in Equation (2.4).

q′ = PVMp q =
q′

q′w
(2.4)

Where the vectors p and q are the initial and final positions, respectively. The matrices
M, V, and P are the model, view, and projection transforms. Notice that in order to
obtain the final point, the result of the matrix transformations has to be divided by
its own fourth co-ordinate, the homogeneous co-ordinate. This is called the perspective
division and is a consequence of the fact that the projection transform is not an affine
homogeneous transform [34, p. 122]. The perspective division is the step responsible
for the perspective effect that results in objects farther away appearing smaller than
objects closer to the observer.

2.2.3 Computer animation

It is usually desirable to render not only static scenes, but also dynamic worlds con-
taining movement, rotation, and deformation of models. The way this is achieved in
computer graphics is usually through the stepwise alteration of 3D models, either by
changing their associated model transforms, or by changing the model data itself. The
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models are in most cases altered slightly between each successive rendered frame, so
that their movements may be perceived as smooth motion. This practice of presenting
a series of still, computer generated images in rapid succession with the goal of giving
the appearance of motion is termed computer animation [34, p. 615].

The computer generated frames must be presented at a certain frequency in order
to properly provide the visual continuity required for the human eye to perceive them
as motion. The exact threshold frequency is a topic of much debate, but most studies
appear to agree that it lies in the region of 12 to 16 frames per second [34, p. 615][36,
p. 24]. If a rendering process is able to synthesise and present a series of images
at or above this threshold rate, it is known as a real-time rendering process. It is
worth noting that the usage of the term real-time in the field of computer graphics
differs somewhat from the precise definition of real-time processes found in the field of
embedded systems.

Rigid-body animation

This thesis is chiefly concerned with a certain type of animation termed rigid-body
animation. The term finds its roots in physics, where a rigid body is defined to be a stiff
body for which deformation may be disregarded. By directly adopting this definition
to the field of computer animation, one ends up with the definition of rigid-body
animation—an animated rigid body. In other words, a model animated by rigid-body
animation is an animated model which does not support deformation [34, p. 632].

Rigid-body animation can be regarded as a simple form of animation that does not
alter the internal data of the model. The case of a polygon model is considered in
the following to serve as an example. By treating the polygon model as a rigid body,
the model as a whole must be regarded as a stiff, undeformable body. This means,
in turn, that any animation applied to the model must be applied equally to all the
model’s internal vertices. And during the animation sequence, the positions of all the
vertices in model space must remain unchanged. This does not mean, however, that
every vertex will always be translated by the same amount in world co-ordinates. For
instance when a model is rotated, each vertex is rotated around the model’s origin,
and their paths in world space may not be equal. An illustration highlighting this
distinction is shown in Figure 2.4.

Rigid-body animation

origin origin

Figure 2.4: Example of rigid-body animation. After rotation and translation of the
model, the vertices of the square remain unchanged in model space. In world space,
however, their paths are different.
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A consequence of this definition of rigid-body animation is that only certain affine
transformations are permitted to be applied to models. It turns out that the only
allowed transformations are rotation and translation—both representable by simple
affine matrices [34, p. 632]. The simplifications that are possible as a result of this fact
laid the foundation for the work done in the project thesis [1].

2.2.4 Number representation

While integers may be sufficient for many applications in computer science, in com-
puter graphics it is often necessary to perform calculations involving real numbers.
Indeed, simply observing the linear algebra equations derived in Section 2.2.2, makes
it apparent that non-integral numbers are central to the mathematical calculations
that facilitate the rendering of three-dimensional scenes.

Representing real numbers accurately in hardware, however, is a complicated en-
deavour. With a limited number of bits available for number storage, there is a perpet-
ual trade-off between accuracy and size. A larger number of bits set aside for number
storage would increase the accuracy, but in turn also increase the size of the number
in memory. For some numbers, such as irrational real numbers, total accuracy is not
possible regardless of the number of bits employed in representation. This means that
the application in which the numbers are used should be considered carefully before
determining how numbers are to be represented.

In modern practice there exist two fundamentally different approaches to represent-
ing real numbers in computers—fixed-point and floating-point. Both of these represen-
tations are used extensively in hardware applications, and each one has its advantages
and drawbacks. A brief introduction of the two representations is laid out in the
following, and a comparison between them is presented subsequently.

Fixed-point number representation

The first and simplest of the two is the fixed-point number representation. Real num-
bers are stored in fixed-point by splitting the number into two parts—an integer part
and a fractional part. In other words, an n-bit fixed-point representation allocates a
fixed number of bits, ni, to represent the integer part, and employs the rest of the bits,
nf , to hold the fractional part [14, p. 216]. This structure is illustrated in Figure 2.5.

Integer component Fractional component

n bits

ni bits nf bits

Figure 2.5: An n-bit fixed-point number. The representation uses ni bits to hold the
integer component, and nf bits to hold the fractional component. In order to support
negative numbers, two’s complement representation is often used.

The number of bits chosen to represent each of the two components in an n-bit
fixed-point number varies from application to application. In some cases, there is a
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need for great precision in terms of the fractional part, which requires that a relatively
large number of bits must be set aside to represent this part of the number. In other
cases, fractional accuracy is not as important as the need to represent large absolute
values. The integer part of the number could then be favoured in terms of allocated
number of bits. Making a choice in this regard is up to the designer of the given system.
A number of examples of different bit partitions are given in Table 2.2.

Table 2.2: Examples of different subdivisions of a fixed-point number. The numbers
shown are in two’s complement form in order to support negative values.

Bit widths
Integer range Fractional precision

Total Integer Fraction

8 4 4 −8 to 7 6.25× 10−2

16 4 12 −8 to 7 2.4 × 10−4

16 8 8 −128 to 127 3.9 × 10−3

16 12 4 −2048 to 2047 6.25× 10−2

32 8 24 −128 to 127 5.96× 10−8

32 16 16 −32 768 to 32 767 1.5 × 10−5

32 24 8 −8 388 608 to 8 388 607 3.9 × 10−3

Floating-point number representation

The second approach, and the most widespread method for binary representation of
real numbers today, is the floating-point number representation [37, p. J-13]. Unlike the
fixed-point representation, this number format is standardised. It is governed by the
IEEE-754 standard, more verbosely known as the IEEE Standard for Floating-Point
Arithmetic [38]. The original standard dates back to 1985, but the specification upon
which this thesis is based is the newer and revised version that was published in 2008.

The floating-point format employs exponential notation of numbers. This means
that it utilises the concept that any real number x can be written on the exponential
form shown in Equation (2.5), where s is a real number in the range [1, 2〉 and e is an
integral number.

x = s× 2e (2.5)

In other words, as long as the base of the exponentiation is agreed upon, the number
x can be represented by only storing the significand s and exponent e. Moreover, as
mentioned above, the significand only needs to hold values in the range [1, 2〉. This is
a consequence of the exponentiation base being 2—if the significand were outside this
range, the exponent could be adjusted to bring it back within the range. In binary
form, this means that the leading number of the significand will always be 1, and need
not be stored explicitly [39, p. 12].
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This simplification does, however, raise the question of how to store negative num-
bers. Two’s complement would not really work in this case. The IEEE-754 standard
defines the structural layout of a floating-point number as shown in Figure 2.6. The
illustration shows that one bit of the number has been reserved to store the sign. The
rest of the bits are used to store the exponent and significand.

Sign Exponent Significand

n bits

1 bit ne bits ns bits

Figure 2.6: An n-bit floating-point number. The representation uses 1 bit to signify the
sign of the number, ne bits to store the exponent, and ns bits to hold the significand.

The floating-point specification additionally defines two special values that may be
encoded as a floating-point number. These values are signalled by setting all bits of
the exponent e to one. The first of the two special values is the not-a-number value,
referred to as NaN. The NaN value is used to represent uninitialised variables or for
signalling invalid operations. The second value is the infinity value, which is used
to represent results that are numerically unbounded. The specification states that if
the significand s is zero, the floating-point number signifies ±∞—where the sign bit
determines sign. If the significand is not equal to zero, the number represent a NaN.

In Table 2.3, the most common floating-point formats are listed along with their
specifications and range. Most relevant for this thesis is the single-precision floating-
point specification, which has the standardised name binary32.

Table 2.3: The most common of the IEEE-754 formats. Numbers are taken from the
IEEE Standard for Floating-Point Arithmetic [38, p. 13].

Common name Standard name n ns ne

Magnitude range

Min Max

Half-precision binary16 16 10 5 2−14 215

Single-precision binary32 32 23 8 2−126 2127

Double-precision binary64 64 52 11 2−1022 21023

Quadruple-precision binary128 128 112 15 2−16 382 216 383

Comparison of fixed-point and floating-point

While the floating-point number representation is the most widely used in comput-
ers today, the fixed-point representation does have a few conveniences that makes it
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preferable in certain contexts. As will be further detailed in Chapters 5 to 8, both num-
ber formats are to be used in the solution in order to circumnavigate their individual
weaknesses.

The main drawback of floating-point numbers when compared to fixed-point num-
bers, is that the former is a much more expensive and complex format to implement
in hardware. Quite a bit of chip area is required in order to efficiently facilitate op-
erations such as addition and multiplication of floating-point numbers. Fixed-point
numbers, however, do not present a significant overhead in implementation. In fact,
in hardware one may almost exclusively treat fixed-point numbers as integer numbers.
This means that operations such as addition and multiplication of fixed-point numbers
can be implemented at a much lower cost than for the floating-point representation.
The differences in area can be seen in Table 2.4.

Table 2.4: Differences in chip area requirements between fixed-point and floating-point
implementations. Numbers are in µm2, and taken from [37, p. 29].

Type 16-bit addition 32-bit addition 32-bit multiplication

Fixed-point 67 137 3495

Floating-point 1360 4184 7700

On the other hand, an advantage of floating-point numbers is that they have an
enormous range compared to fixed-point numbers of the same bit width. This fact is
evident by inspecting and comparing Tables 2.2 and 2.3, and is a huge contributing
factor to their widespread use. In addition, the exponential nature of floating-point
numbers makes them well-suited for many numerical applications. As an example, it is
rare that one needs the precision of millionths when dealing with numbers in the order
of a billion. There are, however, some situations in which these precisions are needed,
and employing floating-point numbers may then lead to rounding errors.

2.2.5 Task scheduling

In computer graphics, parallelised systems are commonplace. Whenever a parallelised
system is encountered, either in hardware or software, a question is raised concerning
how one might best utilise this parallelisation. And a decision regarding the method
by which tasks should be ordered and distributed in the parallelised system must be
made. The study of how tasks should be ordered, and in which manner they should
be distributed among execution units is often termed task scheduling.

Normally, the term refers to a collection of methods used to determine the order of
execution of tasks on a single or multiple execution units, as well as the analysis of such
methods—for instance the study of which methods that yield the highest utilisation.
In this thesis, the term is used to mean a slightly different concept. As will be further
detailed in the later chapters—specifically Chapters 6 and 7—the system in this thesis
is made up of several duplicated execution cores that perform a similar function on a
set of data. The term scheduling is then used to describe the process of selecting which
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cores that should be assigned new tasks. This distinction is subtle, but should become
apparent through the examples presented in the following sections.

Another point to note is that the field of scheduling is very broad, and there exists
a host of different scheduling algorithms. Most are not relevant to this thesis, so only
a few algorithms will be presented and discussed. Introduced in the following are the
round-robin algorithm and the first-available algorithm.

Round-robin

The simplest form of scheduling is to order all execution units, and simply wait for the
next execution unit in line to be ready before assigning the next task. This approach is
called round-robin scheduling, and is illustrated in Figure 2.7. In the figure, the select
signal cycles which core is selected in a predetermined order. If the currently selected
core is ready, it is assigned a task—here represented by sending it a data packet on the
data bus.

clk

select C0 C1 C2 C3 C0 C1 C2 C3

core 0:ready

core 1:ready

core 2:ready

core 3:ready

data bus D0 D1 D2 D3 D4 D5 D6 D7

Figure 2.7: Example of round-robin scheduling.

Round-robin scheduling has the advantage that it is exceptionally simple to imple-
ment into a system. The select signal may be realised as a counter that is incremented
for each job, and reset to 0 whenever it reaches the maximum index. A drawback of
this method is that a single execution unit may hold up the entire system if it is busy
with a job while next in line. The issue is highlighted by the diagram above, where the
system has to wait for core C0 to be ready for several clock cycles before continuing.

First-available

Another method of scheduling tasks among execution units is to assign the next task
to the first execution unit that becomes available. This method is demonstrated in
Figure 2.8, where it is shown that the select signal always selects the first core that
is ready and assigns the next data packet to it.

The scheme is a bit more involved to implement efficiently, especially in hardware.
However, it solves the issue raised by round-robin scheduling, where a single execution
unit may impede the rest of the system. This is substantiated by the diagram, where
the next task is assigned to core C2 when it becomes ready before C0 and C1. In a
comparison of the two diagrams, one can see that the first-available scheduling method
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clk

select C0 C1 C2 C3 C2 C3 C0 C1

core 0:ready

core 1:ready

core 2:ready

core 3:ready

data bus D0 D1 D2 D3 D4 D5 D6 D7

Figure 2.8: Example of first-available scheduling.

is finished two clock cycles before the round-robin method in the same setting—evidence
to the claim that it is more efficient and leads to higher utilisation.

2.2.6 Memory caching

In the early years of digital hardware design, computation cores and memory per-
formance increased in lockstep; clock speeds of both processors and memories were
improved by a significant figure each generation. As the field matured, it became ap-
parent that memory clock speed could not be increased indefinitely, and that further
improvements would not match the performance increase of the computation cores.
In later years, a considerable gap has been established between processor core speed
and main memory speed [37, p. 78]. This gap, illustrated in Figure 2.9, leads to many
situations where the computation cores of a hardware design will have to await data
from memory before computations requiring such data can continue [40, p. 82].

Figure 2.9: The gap in performance between single-core processors and main memory.
Image taken from [37, p. 80].

In computer graphics, performance is of the essence. It is therefore crucial that
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memory is implemented as efficiently as possible, and that the effects of this perfor-
mance gap are minimised. The memory cache is a digital circuit designed to this end.
In essence, the cache module will try to predict which memory addresses that may be
used in the future, and subsequently store these addresses in a smaller, faster memory.
The processor may then fetch the data from the cache instead of the main memory,
which in turn leads to an overall reduction of latency. The selection of which memory
addresses that are to be kept in the cache has spawned a whole field of study in itself.
However, since the processor will often reuse the same memory addresses multiple times
in short order, most policies entail keeping track of addresses that have been recently
used [40, p. 83].

There is a trade-off between cache size and cache speed; the access latency of a cache
generally increases with its size. A small and fast cache will often result in many cache
misses, while a larger albeit slower cache will result in a higher degree of cache hits.
Since the desired behaviour is a fast cache with as many cache hits as possible, many
systems have multiple levels of caches between the main memory and the processor,
where each tier is smaller and faster than the previous. This tiered organisation of
caches is termed the cache hierarchy, and the general idea is shown in Figure 2.10.

Processor Registers
Level 1
cache

Level 2
cache

Main
memory

Memory
Decreasing access time

Increasing capacity

Figure 2.10: An example of a cache hierarchy. Level n caches may be abbreviated Ln.

One may divide caches into three main categories on the basis of their operation.
These categories and their advantages and drawbacks are detailed in the following.

Direct-mapped cache

A direct-mapped cache is a cache in which every memory address may only be placed
at a specific position [37, p. 81][40, p. 306]. In other words, the processor will only have
to check a single position in the cache in order to determine if the word it is trying to
access is available, or if it must be fetched from a higher level memory. This has the
advantage that the processor very quickly can determine if the cache has the memory
it is requesting. A downside is the fact that multiple words share the same position in
the cache, and that a cache line may be prematurely exchanged with another.

Fully-associative cache

In contrast to the direct-mapped cache, a fully-associative cache lets any memory
address reside in any location in the cache [37, p. 81]. This reduces the issue of multiple
cache lines contesting for the same location in the cache substantially. However, since
the processor now has to search through the entire cache in order to determine if the
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data it requests is available, this scheme does make the overhead for retrieving words
from the cache a bit larger.

Set-associative cache

The most popular scheme today is a combination of two extremes detailed above—
the set-associative cache [37, p. 81][40, p. 308]. Caches belonging to this category are
divided in to a number of sets, and each memory address is associated with a single
set. When a newly fetched cache line from memory is to be placed in the cache, it may
reside anywhere within its associated set.

This cache type improves upon the fully-associative cache since the processor only
has to search through a single set in order to determine whether the requested memory
resides in the cache. Another advantage is that the contesting issue associated with the
direct-mapped cache is reduced. On a cache miss, a newly fetched cache line may be
exchanged with a number of different cache lines. As such, an appropriate replacement
policy should be implemented [37, p. J-9][40, p. 309].

2.3 Rendering techniques

The final space encountered in the computer graphics pipeline is the screen space.
In this space, the objects to be rendered are projected onto a two-dimensional plane.
However, the screen is a discrete grid of values, while the mathematically defined screen
space is continuous. This raises the question of how one would go about sampling the
continuous screen space in order to render the discrete frame. There are two main
methods one may use to this end: rasterisation and ray tracing. In the following
sections these two methods will be presented in more detail.

2.3.1 Rasterisation

Rasterisation is a general technique for transforming data specified in vector graphics
format into a grid of pixels—a raster image. Most graphics pipelines in use today
employ some form of rasterisation [34, p. 8]. Shown in Figure 2.11 is the general idea
behind the scheme.

Rasteriser

Primitive Raster image

Figure 2.11: Rasterisation used for sampling a primitive.

Specifically, rasterisation concerns itself with taking a set of primitives, for each
primitive calculating which set of pixels the primitive is projected onto, and lastly,
sampling the primitives to determine which colour the resulting pixel should have.
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Most implementations of rasterisation additionally use some form of depth sorting in
order to determine which primitive is in front of the other in the case of overlap [14,
pp. 467–468][33, p. 19][34, p. 27].

The type of models used in rasterisation is, almost exclusively, polygonal models.
This is because the models are natively in vector graphics format, which alleviates the
need for translating the model into such a format before rendering [34, pp. 176–177].

Scan line rendering

The most popular method facilitating the implementation of rasterisation is by using
the technique known as scan line rendering. The method works by inverting the prob-
lem; instead of working on each polygon, it works on each row of the raster image.
By posing the problem this way, the implementation may take advantage of certain
properties—such as scan line and edge coherence—in order to reduce the workload [34,
p. 42].

2.3.2 Ray tracing

As an alternative to rasterisation, ray tracing is a method of sampling volumetric
models, such as voxel models or analytic models. The method of ray tracing is based
on modelling the physical properties of light. The idea is to trace the path light would
take in reverse, starting from the camera, or eye, into the scene. If the ray hits an object,
the colour of this object determines the colour of the pixel the ray passes through on
its way [27]. In order to simulate the effects of lighting—such as shadows, reflections,
and refractions—secondary rays may be spawned whenever the primary rays hit an
object [34, p. 548][33, p. 220]. The basic concept is illustrated in Figure 2.12.

Figure 2.12: Ray tracing process. Image taken from [41].

Since effects of light can be simulated with relative ease, images produced by ray
tracing often have a higher degree of realism than those resulting from traditional
rasterisation-based methods. However, without introducing heavy optimisations, this
improved visual fidelity generally also comes at a higher computational cost. As a re-
sult, ray tracing is widely used in applications which do not require real-time rendering,
such as special effects for motion pictures [42].

18



2.3. Rendering techniques

Recursive ray tracing

Ray tracing as a concept easily lends itself to recursive implementations. One such
implementation is termed recursive ray tracing. This method—or some derivative of
it—is usually central in the generation of the hyper-realistic images one often associates
with ray tracing. Examples of such images can be seen in Figure 2.13.

Figure 2.13: Examples of recursive ray tracing. The scenes are rendered with shadow,
reflection, and refraction effects. Images taken from [43] and [44].

The general principle behind recursive ray tracing was pioneered by Whitted [28],
and consists of recursively generating new rays whenever a ray is terminated by hitting
a surface. For every primary ray hit, one or more secondary rays of the following types
may be spawned: shadow rays, reflection rays, or refraction rays. Each of these types
of rays are responsible for modelling a single effect of lighting.

• The first type, shadow rays, consists of rays that have the purpose of simulating
the effects of shadows. The rays are traced from the hit point of the primary ray
in the direction towards light sources. If a shadow ray hits an object on its way,
the primary hit point is occluded from the light source in question, and hence
lies in its shadow.

• Secondly, reflection rays are, as the name states, rays traced from the hit
point on reflective surfaces. Such rays are traced with the direction reflected as
calculated by some law of reflection, and allow the rendering of the mirror effect
that appears on reflective objects in the scene.

• Finally, refraction rays are rays that follow the laws of refraction. Whenever
a primary ray hits a (partially or fully) transparent object, a new ray is traced
entering into the object. The direction of this ray is often calculated using Snell’s
law, which is dependent on the refractive indices of the materials it exits and
enters [28].

19



Chapter 2. Background

2.4 Space partitioning

In the field of mathematics, space partitioning is the study of methods and techniques
for efficient subdivision of space into partitions. As a branch of geometry, it is most
often concerned with Euclidean space. There are several areas of application for the
concept—chief among them, perhaps, is computer graphics. In computer graphics,
performance is critical; being able to sort or organise objects in a scene by utilising
space partitioning, means that certain optimisations are possible. For instance, hidden
surface elimination or ray-object intersection can be greatly sped up by maintaining a
sorted scene.

A great deal of research has been conducted into the field space partitioning over
the years, but some proposed structures are more relevant than others in the context of
this project. These partitioning schemes are based on a common form of partitioning
termed binary space partitioning (BSP). It is a general style of space partitioning in the
form of a tree structure, where each node in the tree may have zero or more children.
Every node in the tree can be said to describe a portion of space, but policy of how
space is divided among the nodes is dependent on the scheme used [14, p. 436]. In
this thesis, two BSP-derived structures will be presented. The octree will be discussed
initially, and subsequently, the sparse voxel octree.

2.4.1 Octree

The octree is a type of BSP that was first introduced in a 1980 technical paper by
Donald Meagher [45]. In it, he describes how binary trees and, especially, quadtrees
(two-dimensional binary trees) are established data structures with many areas of ap-
plications. He continues by proposing the octree as a data structure which makes use
of an N -dimensional binary tree in the representation of N -dimensional objects. In
most cases, and especially in this thesis, three-dimensional space is used, so N = 3.

Figure 2.14: An illustration of the hierarchical structure of an octree.
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Specifically, the octree is a tree-like structure contained within a root node. The
root node serves as the parent node of 8 child nodes. Each of the child nodes can be
in one of two states. If the region it covers can be completely described by the child
node, the node is a terminal node, or leaf node. If the region cannot be completely
described by the child node, the space will be further subdivided, and the child node
will function as the parent node of 8 new child nodes. The data structure will continue
to be subdivided in this fashion until all paths down the tree structure are terminated
by leaf nodes [14, pp. 436–437]. An illustration is provided in Figure 2.14. In the
illustration, a three-level octree is visualised, showing both the theoretical hierarchy,
and the physical layout.

According to Brönnimann and Glisse [46], octrees are theoretically the most efficient
space partitioning scheme for three-dimensional space in terms of the number of traver-
sal steps. The octree as a data structure has in itself many applications in computer
graphics, such as image processing [45][47], LoD optimisations [14, p. 439][48][49], and
robotics [45][50]. Although the octree in itself is a very efficient format for subdivision
of space, this does not automatically make it very convenient for ray tracing volumetric
data. Some minor modifications can be made to the tree structure, however, to make
it particularly well-suited for ray tracing.

2.4.2 Sparse voxel octree

A specific flavour of octree developed with applications such as ray tracing in mind is
the sparse voxel octree (SVO). The scheme is based on the octree, but differs in that
instead of using the data structure to subdivide or sort objects, the octree itself directly
encodes the volumetric data. By associating certain characteristics with the nodes
themselves, the tree structure can be used to natively describe voxel models. As an
example, a basic SVO may consist of an octree where each terminal node is categorised
as either filled or empty. Shown in Figure 2.15 are two voxel models encoded as sparse
voxel octrees.

(a) Single cube (b) Stanford dragon [51].

Figure 2.15: Voxel models encoded in SVOs.

Sparse voxel octrees can be extended to contain almost any relevant data. The next
step from the simple filled/empty scheme described above could be to include surface

21



Chapter 2. Background

normal vectors and colours for lighting calculations. Other attempts at expanding the
format include adding data such as contour descriptions [35] and LoD optimisations
[52] to further improve visual fidelity or optimise traversal.

There exist many established algorithms for traversal of octrees, and most of these
methods translate well to traversal of sparse voxel octrees with few or no modifications.
The algorithms may be divided into two main categories: top-down and bottom-up
approaches. Algorithms belonging to the first category will start at the root node,
and move recursively into the tree until a leaf node is reached. If the leaf node does
not meet the requirements for algorithm termination—for instance, if it is empty—
the algorithm will backtrack up the tree and enter the next leaf node it encounters.
Bottom-up algorithms work by locating the initial leaf node, and traversing the tree by
a process called neighbour-finding to obtain the next leaf node [53]. Specific algorithms
for traversal are highly relevant will be presented and detailed in Chapters 3 and 4.

Memory requirements

Compared to a three-dimensional array of voxel values, the SVO data structure will in
many cases reduce the memory usage of a voxel model by several orders of magnitude.
In the majority of models, there are vast regions of either filled or empty space. By
utilising the property of octrees where related nodes that hold the same data may be
collapsed into a single, larger node, the size of SVO models can be drastically reduced
compared to explicitly storing the grid of values.

The merging of nodes is visualised in Figure 2.16. In the given case, the number
of nodes after the reduction is less than half of the original count. Do note that the
illustration shows a two-dimensional case—a quadtree—instead of a three-dimensional
octree. The principle, however, is fully analogous to the three-dimensional case, and
may in fact yield even greater reduction of node count.
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Figure 2.16: Merging neighbouring nodes sharing the same value leads to a significant
reduction in number of nodes.

In Table 2.5, the sizes of a selection of models are listed in three distinct formats.
Each model has a resolution of 1024 along each dimension, for a total of about 1 billion
(230) data samples. The first format is the raw, uncompressed format in which each
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voxel is stored as a byte in an array. The second format uses run-length encoding (RLE)
[54] to reduce model size. The third format is a memory scheme for SVOs based on
the paper published by Laine and Karras [35]. The latter is used throughout the thesis
and will be thoroughly described in Chapter 4. Illustrated by the table is the efficiency
of SVOs in terms of memory usage. The SVO yields a reduction in size of a factor of
300 and 3 compared to uncompressed and RLE-encoded formats, respectively.

Table 2.5: A selection of models and their file sizes when stored in different formats.
All models originate from Stanford 3D Scanning Repository [51].

Model Uncompressed RLE SVO

Stanford Dragon 1024 MB 11 MB 2.8 MB

Stanford Bunny 1024 MB 12 MB 3.9 MB

Happy Buddha 1024 MB 11 MB 2.3 MB

Armadillo 1024 MB 11 MB 2.7 MB

Level of detail

As a result of the data structure’s recursive nature, the computational costs associated
with the traversal of an SVO increase with the depth of the tree structure. In some
cases, however, the need for spatial resolution is reduced. As an example, consider
a case where a deep SVO model is rendered at a far distance. The octree traversal
algorithm will at some point reach a depth where one voxel of the octree is smaller
than a pixel on the screen. In this situation, the fine spatial resolution of the SVO
model goes wasted, and will only tax the performance without yielding any tangible
gain in image quality. In fact, it might even lead to worse quality as a result of adverse
effects such as aliasing.

Fortunately, sparse voxel octrees may readily be extended to support level of detail
(LoD) optimisations. A simple method would be to store the average colour in each
node. This means that terminal nodes would still remain either completely filled with
a colour, or completely empty, while intermediate nodes would store the average colour
of all their children. An octree traversal algorithm may then stop its descent into the
tree structure when a desired fidelity is reached.

More sophisticated solutions employing LoD optimisations to mitigate this problem
may also be developed. One such method is presented by Jab loński and Martyn [52]
in a 2016 paper. Their method is a bit more involved, as they extend the sparse
voxel octree format to include a set of redundant nodes, termed helper nodes. These
nodes are then employed in the interpolation of model’s the volumetric data. Their
method is ubiquitous in that it is suited for both rasterisation and ray tracing of SVOs.
Two illustrations of their LoD transition algorithm in action are shown in Figures 2.17
and 2.18.
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Figure 2.17: LoD optimisations of SVO data. Image taken from [52].

Figure 2.18: The LoD optimisations when viewed at different distances. The perceived
quality is invariant, but performance gain may be significant. Image taken from [52].

SVO model generation

The SVO models to be used with a hardware design may be generated in a very
similar manner to the approach that was presented in the project thesis [1]. As such,
the description in the following paragraphs is adapted from this source. The toolchain
for model generation is illustrated in Figure 2.19 and will be discussed in the following.

Source model
.ply .obj

Binvox model
.binvox

SVO model
.svo

Internet/
Blender

Binvox
software

SVO
generator

To ray
tracer

Figure 2.19: Toolchain for SVO model generation.

The polygonal source models are initially obtained from online resources such as
Stanford 3D Scanning Repository [51], or created in the modelling software Blender
[55]. These models are subsequently processed by the software binvox, which is a
freely-distributed program written by Min [56]. The software reads a 3D model file in
a widely-used format—in this case .ply or .obj—and from it produces a voxel model
by means of three-dimensional rasterisation. The output voxel model is stored in a
custom file format (.binvox), which is essentially a raw voxel format that employs the
simple compression scheme run-length encoding (RLE) to reduce the file size [54][57].

The last step of the SVO generation toolchain is to generate and store the models on
the format that will be described in Section 4.2. A custom-made program to perform
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this conversion was developed as part of the project thesis work; its core functions
are written in C++ and included in the attached ZIP file as specified in Appendix A.
Briefly stated, the program takes a raw voxel model in the .binvox format, and initially
constructs a raw, inefficient octree data structure from it. Subsequently, the octree is
converted to the efficient format used in the solution, and stored to disk in a .svo file.

2.5 Digital hardware design

Digital systems are at the core of modern life. Going back just 60 years, digital systems
were only found in expensive computing systems and other niche applications [58, p. 31].
However, once the design and production of integrated circuits became cheaper and
more viable, digital systems started appearing in wide variety of products. Today,
everything from mobile phones and laptop computers to fridges and washing machines
contain digital electronic hardware.

The discipline of designing and developing digital electronic hardware architectures
is known as digital hardware design, or simply hardware design. The field encompasses
everything that might be considered part of the formulation and development of digital
integrated circuits. According to Mano and Ciletti [59], the process of digital design
can be described as the translation of a functional specification or description of a
circuit into a physical specification or description [59, p. 67]. The central stages of this
process is shown in Figure 2.20, with the initial specification step highlighted.

Design
specification

Abstract
HDL model

Design
verification

Synthesis &
implementation

Figure 2.20: The main stages in the digital design process, simplified from [59, p. 363].
The specification step is highlighted.

When compared to the software design process, hardware designs often require
a significantly more detailed specification, and considerably stricter and more rigor-
ous forms of verification. Since bugs and errors can be very hard to discover in the
implementation, in a typical design process today, more than half the effort may be
devoted to testing and verification [58, p. 65]. However, the increased efforts are not for
naught—a design realised in hardware will in most cases yield significant improvements
in terms of performance when contrasted with a comparable design in software.

2.5.1 FPGA

A prevalent platform for prototyping hardware designs, and very relevant to this thesis,
is the field-programmable gate array (FPGA). The FPGA is a packaged integrated
circuit designed to be configured by the customer at some stage after manufacturing—
hence bearing the name “field-programmable” [60, p. 15]. Its configuration is chiefly
performed by the design and formulation of digital circuits in a hardware description
language (HDL). The logical structure of a typical FPGA is shown in Figure 2.21.
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Figure 2.21: The logical structure of an FPGA. The CLBs may be connected to each
other and to the IO blocks by programming the interconnection network.

Internally, an FPGA contains thousands of programmable units, termed config-
urable logic blocks (CLB), that may be configured and connected in order to compose
digital circuits. Each of these logic blocks consists of several components such as
look-up tables (LUTs), multiplexers, gates, and registers. Surrounding the CLBs is
a programmable interconnection network that is employed to create electrical connec-
tions and thus build digital circuits. Running along the perimeter of the platform is a
set of input and output blocks that may be coupled to the CLBs, so that the digital
circuits programmed onto the FPGA may communicate with their surroundings [59,
p. 332].

The FPGA is often viewed as an alternative to the application-specific integrated
circuit (ASIC) [59, p. 68]. Early in the stages of system development, architects are
often presented with a choice between these two implementation media. In general, an
ASIC has higher performance and is more efficient in terms of area compared to an
FPGA [61]. However, the latter allows for much easier prototyping and often increased
effectiveness of verification, in turn leading to a shorter time to market. In some
cases, especially in low-volume applications, the minimal cost of an FPGA may be
preferable to investing in tooling for the manufacture of ASICs [58, p. 69]. Still, the
two implementation media need not be mutually exclusive—an FPGA can be used in
the development of applications that are to be manufactured as an ASIC at a later
stage.

The FPGA often plays a central part in the design verification effort. Since a
design synthesised and implemented on an FPGA can run at much higher speeds than
a mere software simulation of the same design, verification can be done at a faster rate.
However, compared to software simulation, the FPGA has little debugging capability
[60, p. 28]. This means that, in an ideal setting, most major bugs and design errors
would be rooted out before verification on FPGA begins.
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PYNQ-Z1

Alongside software modelling and simulations, the main development platform em-
ployed in this thesis is the PYNQ-Z1: Python Productivity for Zynq-7000 ARM/FPGA
SoC [62] by Digilent Inc. This development board, shown in Figure 2.22, is a proto-
typing platform that contains a Xilinx FPGA alongside an Arm CPU, in addition to
a wide variety of peripherals such as HDMI, Ethernet, and analogue audio.

Figure 2.22: The Pynq-Z1 development platform. Image taken from [62].

Running on the board’s Arm processor is a fully-fledged Linux system which hosts
a Python 3.6 environment [63] including custom Python libraries specifically created
for the Pynq [64]. In addition to the basic communication facilities provided by the
Linux system, the Python environment may also be directly interacted with through
the Jupyter interactive computing environment [65]. This interactive environment can
be reached through a web interface and allows the user to easily run Python code
on the system. The software driver which will be introduced as part of the system
implementation in Chapter 7 makes use of the Jupyter interface. Its source code can
be found attached in Appendix F.

The simplicity and elegance of the Pynq platform makes the development and
verification of digital systems an untroublesome process. Hardware designs may be
downloaded to the FPGA as binary files and subsequently instantiated as objects in
Python scripts. Through the provided Pynq Python libraries, scripts may communi-
cate with any hardware module on the FPGA system that is using the appropriate
communication protocols. This means that a hardware design can, for instance, be
employed as an accelerator for specific operations as a part of software code. Since the
topic of this thesis is to create a hardware accelerated design for ray tracing, the Pynq
system appears to be very well suited for the project.

Apart from the argument that the development board fits the use case of this
project excellently, there is yet another reason for its selection: the board was physically
available at the start of this thesis. In fact, co-supervisor Øystein Gjermundnes kindly
lent out a Pynq development board—free of charge—to be used as part of this work,
thus relieving the need for a cumbersome and time-demanding application process.
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2.5.2 HDL modelling

It was briefly mentioned that hardware designs are usually formulated in a special
machine-interpretable language known as a hardware description language (HDL). Af-
ter a digital circuit has been modelled in the HDL, the code is read and synthesised
by a computer program in order to realise the design as digital circuits and implement
it on a physical medium. Moreover, the HDL description of a circuit’s functionality
can be abstract and implementation media agnostic—that is, without reference to spe-
cific hardware—and thereby freeing a designer to devote their attention to higher level
functional detail rather than transistor-level detail [59, p. 68]. Revisiting the digital
design process diagram introduced at the beginning of this section, the HDL model’s
can be found as shown in Figure 2.23.
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Figure 2.23: The main stages in the digital design process, simplified from [59, p. 363].
The HDL step is highlighted.

The hardware systems developed as part of this thesis are written in the Sys-
temVerilog HDL. Initially introduced in 2002 as a set of extensions to the popular
Verilog HDL, SystemVerilog shares the same C-like syntax as its precursor [60, p. 123].
Today, SystemVerilog is regulated as its own distinct language by the IEEE Standard
for SystemVerilog [66]. Because the syntaxes of Verilog and SystemVerilog are akin,
the latter should not present a huge challenge to learn for a hardware engineer already
knowing Verilog.

Due to the limited language constructs to facilitate the process, verification envi-
ronments in plain Verilog have to be developed manually. This means that verification
of complex designs can be strenuous and time-consuming [60, p. 123]. SystemVerilog
was introduced to yield a productivity boost in design and validation, and hence in-
cludes many extensions to the Verilog language with the overarching goal of allowing
more efficient verification of designs [66, p. 8]. Because of this approach, the language
is often referred as a type of hardware description and verification language (HDVL)
[66, p. 8][60, p. 123]. In its capacity as a HDVL, SystemVerilog introduces several
new data types, it allows dynamic memory allocation, it has more explicit constructs
for separating sequential and combinational logic, and it includes native support for
concurrent assertions and functional coverage—to list a few of its features.

SystemVerilog was chosen as the design, development, and verification language
for this thesis mainly because of the author’s and supervisor’s familiarity with it. If
a different language were to be employed, the process of learning how to use it would
require a significant amount of time that could otherwise have been spent on devel-
opment. As reference works, the books by Mano and Ciletti [59], Mohamed [60], and
Cerny et al. [67]—as well as the SystemVerilog specification [66]—were used throughout
the development process whenever needed.
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2.5.3 Verification

Hardware designs are much more prone to errors than software designs. Partly because
of the increased complexity brought on by the concurrent nature of hardware designs,
meaning that the designer will have to consider multiple operations happening in par-
allel. But also because the synthesis tool—whose function is to turn an abstract HDL
model into an explicit RTL definition—may make incorrect assumptions about the
design. For instance, the synthesis tool can infer latches that make the entire design
malfunction. These kinds of bugs introduced by the logic synthesiser are often not
detectable through software simulations, and might only appear after synthesising and
implementing the design.

Verification encompasses all methods used to verify the correctness of a hardware
design. While the design to be validated—often called the design under test (DUT)—is
assumed to be a synthesisable design written in RTL code, the verification of it can
take many forms. Its place in the digital design process is shown in Figure 2.24.
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Figure 2.24: The main stages in the digital design process, simplified from [59, p. 363].
The verification step is highlighted.

According to Mohamed [60], there are two main categories of verification in hard-
ware design: functional verification and formal verification. Most of the regularly en-
countered types of verification are sorted under functional verification. In this category,
one can find simulation-based verification, accelerator-based verification, emulation-
based verification, and FPGA prototyping [60, p. 28]. In this thesis, however, only
simulation-based verification and FPGA prototyping will be considered, as the other
two types are essentially various combinations of these.

One example of formal verification is assertion-based verification (ABV) [60, p. 29].
Formal verification methods such as ABV are extremely useful in digital hardware
design, since they can be used to mathematically and formally prove the correctness of
a DUT, and thus through exhaustive analysis locate design errors that may be missed
in simulation. However, for relatively small designs such as the one in this thesis, such
verification may be considered somewhat excessive. In addition, licensing for tools that
support this kind of design validation are solicited towards businesses, and typically
much too expensive for single users.

Mano and Ciletti [59], on the other hand, use slightly different classifications. They
divide verification into functional verification and timing verification, where the former
comprises all validation that concerns a circuit’s logical operation. This means that
both formal verification and the previous definition of functional verification are sorted
under this broader view of functional verification. In their usage, timing verification
concerns analysis of a circuit’s timing characteristics, which means that requirements
and constraints are put on the circuit’s temporal performance [59, p. 180].
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2.5.4 Logic synthesis

In early hardware design, most systems were designed using hand-drawn circuit dia-
grams. Today, however, software tooling has all but replaced the traditional circuit
diagram [59, p. 68]. This use of software tools in digital hardware design is known as
electronic design automation (EDA)[68, p. 23]. The process of transforming an HDL
model of a logic circuit into an optimised implementation of gates that behaves iden-
tically is termed logic synthesis, or—in many cases—just synthesis [59, p. 361]. The
output from the synthesis process is said to be at the register-transfer level (RTL),
and HDL code that can be successfully realised as digital circuits through synthesis
is called RTL code [60, p. 5][59, p. 352]. The place of the logic synthesis step in the
design flow is highlighted in Figure 2.25.

Design
specification

Abstract
HDL model

Design
verification

Synthesis &
implementation

Figure 2.25: The main stages in the digital design process, simplified from [59, p. 363].
The logic synthesis step is highlighted.

In all practical cases, the synthesis of a model written in an HDL such as Sys-
temVerilog involves an EDA computer program. There exists a wide variety of logic
synthesis tools, each with their advantages and drawbacks. For this project, the Vivado
Design Suite [69] was the logical choice. The software is a comprehensive digital hard-
ware design application developed by Xilinx Inc. Its main appeal is its logic synthesis
functionality, but it may also be used to view elaborated designs, run simulations, and
create block designs—a modular design approach where hardware modules are placed
on a canvas and wired together visually.

The main reason why this software was chosen is that it is the recommended hard-
ware design tool for the synthesis and implementation of designs on the Pynq devel-
opment board. The system on a chip (SoC) on this board is the Zynq XC7Z020-
1CLG400C, which is designed by Xilinx. This SoC contains the FPGA that is to be
used in development, and it is natural to assume that synthesis and implementation
for the target technology will be best supported through the logic synthesis software
maintained by the same company.

Another argument in Vivado’s favour is the fact that it is available for free through
Xilinx’s WebPACK licence. In the author’s experience, most logic synthesis tools are
often far too expensive to license for single users. Alternatively, they may provide
a cumbersome application process that is required in order to obtain an educational
licence. Vivado, however, can be downloaded and installed free of charge, without
such an application process. Furthermore, the author and supervisor are already very
familiar with the tool from previous projects. This alone makes using it much preferable
to starting anew and learning a different tool.
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2.5.5 Communication protocols

In modular hardware designs, the communication interfaces between modules is a major
design concern. Usually, the signals used for communication follow established patterns
or specifications known as communication protocols. While there exists a host of
different protocols in the field of hardware design, some are more relevant than others
in this thesis. The communication protocols that are to be used in the design and
implementation are the ready-valid protocol, as well as a flavour of the AMBA AXI
protocol.

Ready-valid

Among the simplest communication interfaces is the ready-valid handshake protocol,
which is sometimes called the FIFO interface [70]. The ready-valid protocol is an
elementary handshake protocol between a master (source) and a slave (sink) that is
often used for applications such as inter-module communication in larger systems. The
protocol works as shown in Figure 2.26.

clk

ready

valid

data D0 D1 D2

Figure 2.26: Timing diagram of a simple ready-valid protocol.

When the master wants to initiate a transfer, it puts the data on the bus and asserts
the valid signal. The slave asserts its ready signal whenever it is ready to accept a
transfer. A data transfer occurs whenever both valid and ready are asserted on the
same clock cycle. Do note that the assertion of the handshaking signals ready and
valid may happen in any order [70, p. 2]. As shown in the timing diagram, the slave
may be ready to accept a transfer before the master puts valid data on the bus, and
vice versa.

The ready-valid protocol is attractive because of its simplicity. However, it is not
standardised, so its implementation is up to the designer. It is also very general, and
other, more special-case protocols may be more efficient for specific applications.

AMBA AXI

The AXI (Advanced eXtensible Interface) interface is a suite of protocols. It is the third
generation of the AMBA (Advanced Microcontroller Bus Architecture) specification,
which is a registered trademark of Arm Ltd. [71]. Nonetheless, since the protocols are
well-documented and royalty-free, they are widely used in the industry.

The AXI interface is a collection of protocols suited for many different purposes.
Most relevant to this thesis is the AMBA 4 AXI4-Stream protocol. The protocol is
a standardised interface that is used to connect components that wish to exchange a
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aclk

tready

tvalid
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tlast

Figure 2.27: Streaming 8 bytes with the AMBA 4 AXI4-Stream protocol.

stream of data. While the protocol may be extended with many additional signals, the
basic handshake and data transfer procedure is shown in Figure 2.27.

The handshake can be thought of as an extended version of the ready-valid hand-
shake described above. Data is transferred whenever both the signals tready and
tvalid are asserted at the same clock edge. An additional signal, tlast, is used to
mark the end of a data transfer. The protocol is governed by the AMBA 4 AXI4-Stream
Protocol Specification [72], which lists a number of additional signals which may be im-
plemented if necessary. These signals—such as tstrb, tkeep, and tuser—are optional
and not relevant to this thesis, and will therefore not be detailed further.
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Chapter 3

Research context

In this chapter, the research field as a whole will be explored. In other words, the most
important findings and results in the fields relevant to this thesis will be introduced.
The specific papers and algorithms upon which this thesis is based are introduced and
the reasoning behind their selection is discussed. The methods themselves, however,
will be described in further detail in Chapter 4. Since this thesis is a continuation of
the work done in the project thesis by Espe [1], the following chapter will be partly
adapted from the corresponding chapter there. Section 3.1 is directly sourced from the
project thesis, and Sections 3.2 and 3.4 are partly sourced from the project thesis. The
other parts of the research field—such as the section on hardware ray tracing—were
not presented in [1].

3.1 Algorithms for octree traversal

Since the extent of the research done on the subject of octree traversal is very large,
only the most prominent works, and those of the highest relevance to this thesis, will
be discussed in this section.

The earliest method for traversal of octrees found in the literature was authored by
Glassner [73] in 1984. The paper states that over 95 percent of the total rendering time
may be spent on ray-object intersection calculations. Hence, there is a huge potential
for performance gain by optimising this process. Glassner then suggests sorting the
scene into an octree and presents an algorithm for traversal of such an octree. Another
method was introduced by Levoy [74]. In the paper he introduces two methods for
enhancing the performance of ray tracing of volumetric data, the first of which employs
octrees to encode spatial coherence in the data.

Many subsequent attempts at improving the performance of octree traversal exist.
They can generally be grouped into two main categories based on how they solve the
traversal problem: bottom-up and top-down schemes. The algorithm by Glassner [73],
as well as other, similar schemes [75][76], are instances of bottom-up octree traversal
algorithms. The method by Levoy [74], as well as the HERO algorithm presented by
Agate, Grimsdale, and Lister [77], and a host of other algorithms [78][79][80][81][82]
provide examples of a top-down parametric traversal algorithms. From the number of
papers alone, it appears that top-down traversal algorithms are most popular in the
field.
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An efficient algorithm for octree traversal was presented by Revelles, Ureña, and
Lastra [53] in their 2000 paper. The article introduces a top-down parametric method
that is very well documented. After this work was published, there seems to be few new
algorithms developed that contest its speed and simplicity. In 2006, a paper published
by Knoll et al. [82] describes an algorithm based on the work of Gargantini and Atkin-
son [80], however this algorithm is not as well-documented as [53], and seems more
complicated while not revealing any tangible performance increase. Indeed, perhaps
the opposite, as the algorithm is recursive, and therefore does not translate readily for
implementation in hardware without modification. The algorithm by Revelles, Ureña,
and Lastra [53] is also recursive, but due to its simplicity is bound to translate well
into an iterative method suited for hardware implementation. In fact, this has already
been demonstrated in the master’s thesis by Wilhelmsen [83] and was further explored
in the project thesis [1].

In conclusion, the algorithm elected for traversal of sparse voxel octrees is [53].
The algorithm is simple and fast, and also improves upon the performance of earlier
algorithms. In addition, the traversal algorithm was employed with great success in the
project thesis work. This alone makes it very relevant for this thesis, since the author
already has a deep understanding of its implementation intricacies. On the basis of
these considerations, the algorithm will serve as the starting point of this thesis, and
will be presented in detail in Chapter 4.

3.2 Animation of sparse voxel octrees

Introduced in the project thesis by Espe [1] is a method for efficient animation of sparse
voxel octrees. This master’s thesis will build upon the results from the project thesis,
and the method will be employed as a foundation for the work done as part of this
thesis. The technique will be detailed in Chapter 4.

Apart from the work done in the project thesis, only one significant attempt at
animation of sparse voxel octrees was found in the literature. The bachelor’s thesis by
Bautembach [84] outlines a general method of animating sparse voxel octrees during
the rendering process. In his paper, he describes a method for animation of SVOs
based on the idea that each leaf node of the tree is an individual atom that may
be animated. The method presented can be regarded as a bottom-up solution to the
problem of animation. Bautembach’s proposition contrasts the method introduced in
the project thesis [1] in that the latter may be viewed as a top-down approach.

Note that Bautembach presents a general method for animation of sparse voxel
octrees, but that this method is not suitable for ray tracing. As is explicitly stated
by Bautembach himself, his method destroys the hierarchical structure of the SVO to
be rendered. Consequently, most ray tracing algorithms will no longer work, since the
method in turn prohibits efficient intersection tests. In his work, he therefore resorts
to rasterisation in order to render the animated sparse voxel octrees.
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3.3 Hardware ray tracing

There have been many approaches to hardware-accelerated ray tracing through the
years, and a great deal of these have employed existing SIMD and MIMD architectures.
Examples of such solutions are the works by Crassin et al. [85], Laine and Karras [35],
the transputer demonstrations by Packer [31], as well as the relevant project thesis by
Espe [1].

However, there have also been several notable attempts at pure hardware ray trac-
ing utilising application-specific hardware. Some approaches have been general purpose
solutions for ray tracing—the most well-known of which may be the AR350 by Ad-
vanced Rendering Technologies. This solution is employed directly by some, such as
in the paper by Cassagnabère, Rousselle, and Renaud [86], but due to its ubiquity is
also used by many subsequent works as a comparative basis. For instance, Fender and
Rose [87] claim that their hardware implementation of a well-known software algorithm
could outperform the AR350 by a factor of up to three.

Other attempts at pure hardware ray tracing include application-specific hardware
solutions, such as the VIZARD system by Knittel and Straßer [88]. In 2004, Schmittler
et al. [89] introduce a new solution for real-time ray tracing of dynamic scenes on an
FPGA chip, which is further extended to a programmable ray tracing unit in 2005
by Woop, Schmittler, and Slusallek [90]. In a PhD thesis authored by Collinson [91]
in 2014, further elaboration on the feasibility of hardware-accelerated ray tracing on
FPGAs is conducted. Collinson investigates the viability of using parallelism on FPGAs
to efficiently ray trace scenes, and concludes that FPGA technology has great potential
to rival the efficiency of both GPGPU and CPU implementations, especially in terms
of bandwidth and power. However, Collinson mainly explores traditional ray tracing
and not ray tracing of SVO models, which means that his specific results are of limited
relevance to this master’s thesis.

While there are many previous solutions for hardware ray tracing, few of these are
suited for ray tracing of sparse voxel octrees. In fact, only one attempt was found in
the literature. The master’s thesis by Wilhelmsen [83] presented in 2012 showcases a
hardware solution for ray tracing of SVOs on FPGA. Wilhelmsen’s results are highly
relevant for the work done in this thesis, as many of the design choices made by
Wilhelmsen were echoed in the project thesis—upon which this thesis builds.

3.4 Other works of significance

A very relevant work for the project thesis, as well as this master’s thesis is the article by
Laine and Karras [35], published in 2011. Their work includes employing the GPGPU
capabilities provided by Nvidia CUDA to trace SVOs in parallel. The results presented
in their article proved immensely helpful during the project thesis work [1]. Especially
useful is the compact SVO memory structure introduced in their work, which will
form the basis of the SVO specification used in this thesis. As was the case for the
project thesis, the memory structure used in this master’s thesis can be viewed as a
simplification of the structure presented in their paper. The data structure will be
detailed in Chapter 4.
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Chapter 4

Established algorithms chosen as
foundation

In this chapter a set of established algorithms and schemes that are to be used in this
work, will be presented. The workings of the algorithms will be explained in detail,
as well as the reasoning behind their selection. It should be noted that two of the
methods presented in this chapter are the same that were detailed in the project thesis
by Espe [1]. Since this master’s thesis is a continuation of the project thesis, the same
algorithms are described here by employing the same description as was written for
the project thesis.

In addition to these two algorithms, the results from the project thesis itself will
be presented. The method for animation of sparse voxel octrees will be summarised
in the following so that the reader is brought up to speed on where this work left off.
Like the preceding two sections, this section is also adapted from the relevant sections
in project thesis.

4.1 An efficient parametric algorithm for octree

traversal

The chosen algorithm for traversal of octrees, and in this case, sparse voxel octrees, is
the parametric algorithm proposed by Revelles, Ureña, and Lastra [53] in their 2000
paper. This algorithm was the one employed in the project thesis [1], and it is only
logical that it should be used in the further work that builds upon the results from
the project thesis. As explained in the literature review, this algorithm seems to be
the most efficient and well documented. Many newer papers—such as works on global
illumination [92], virtual X-ray imaging [93], and the very relevant works of Laine and
Karras [35] and Wilhelmsen [83]—employ this algorithm in some shape or form in their
projects. This lends credence to the claim that the algorithm is still both relevant and
competitive.

The algorithm can be classified as a recursive, top-down algorithm with neighbour-
finding. Exactly what this entails should be apparent after the following sections.
A point to note, that was discussed in detail in the project thesis, is that recursive
algorithms are usually problematic in a GPGPU context. The same can be said for
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algorithms to be implemented in hardware. However, it was shown by Espe [1] that this
algorithm could without much effort be modified to be iterative instead of recursive.
This was also demonstrated by Wilhelmsen [83] in his hardware approach.

In this section, the algorithm will be reviewed like it is presented in [53], albeit with
some minor modifications to the naming of parameters and variables. In addition, the
algorithm for the three-dimensional case had to be converted to use a right-handed
co-ordinate system in order to be compatible with the rest of the system.

4.1.1 Simplified algorithm for the 2D case

To present the algorithm in as straightforward a manner as possible, a simplified version
for traversal of two-dimensional quadtrees is considered initially. The algorithm is
parametric, which in this context means that all computations are centred around a
parameter t, such that t is a positive number describing a point p along a ray R as
shown in Equation (4.1). The ray R is defined by its origin ro and direction rd.

p(t) = Rt(ro, rd) = ro + t · rd , t ≥ 0 (4.1)

For simplicity, all rays are at this point in time assumed to have directions with strictly
positive components. The algorithm will at a later stage be extended to allow rays with
arbitrary directions.

First phase: node boundaries

The first concept to be introduced is the characterisation of node boundaries. In the
two-dimensional case, each node has four boundaries. These boundaries represent the
four edges of the node, and are given the names x0, x1, y0, and y1. Since the algorithm
is parametric, the boundary of a node may also be defined by the value t at which the
ray crosses the boundary. Therefore, the following values of t are declared: tx0, tx1,
ty0, and ty1. The values and how they relate graphically to the ray R can be seen in
Figure 4.1

Node
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x
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y0
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R

tx0
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Figure 4.1: The node boundaries.
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The first phase of the algorithm consists of calculating the values of t at which the
ray crosses each of the boundaries. A simple expression for each boundary is derived
in [53] and presented in Equation (4.2).

tx0 = (x0 − rox)/rdx ∧
tx1 = (x1 − rox)/rdx ∧
ty0 = (y0 − roy)/rdy ∧
ty1 = (y1 − roy)/rdy

(4.2)

Second phase: intersection test

Once these values of t are calculated, the second phase of the algorithm begins. The
goal of this phase is to determine if the ray intersects the node at all. Since the ray
direction is assumed positive, it is evident that tx0 < tx1 and ty0 < ty1. From this it
can be deduced that if the ray intersects the node, the boundaries tx0 and ty0 will be
the boundaries through which the ray enters the node, and conversely, tx1 and ty1 the
boundaries through which the ray leaves the node.

It can be shown that if the maximum t-value of all the enter boundaries is less than
the minimum t-value of all the exit boundaries, the ray intersects the node. Therefore,
two more values of t are calculated as shown in Equation (4.3).

tmin = max(tx0, ty0) ∧
tmax = min(tx1, ty1)

(4.3)

The node intersection test consists of checking the expression tmin < tmax. In addition,
tmin and tmax are the t-values at which the ray enters and exits the node itself. The
proof for these statements can be found in [53].

Third phase: recursion

If the intersection test at the end of the second phase passes, the algorithm moves onto
the third and final phase. In this phase, the algorithm will—if applicable—recurse into
the children of the node. To facilitate recursion two additional t-values are defined.
These are the values of t at which the ray crosses the centre, or middle, of the node.
The values are simply defined by taking the arithmetic average of the enter and exit
planes in each dimension. Their mathematical definition is shown in Equation (4.4).

txm = (tx0 + tx1) /2 ∧
tym = (ty0 + ty1) /2

(4.4)

At this stage, all the required values of t have been calculated, and these may now
be used to determine which child nodes that are intersected by the ray. The process
is simply a matter of systematically testing the different parameters introduced so far.
Pseudocode for the process of obtaining child nodes is shown in Figure 4.2.

After the intersected child nodes have been determined, the algorithm will process
them one after the other, ordered by increasing indices. For each child node to process,
if the node has further children, the algorithm will recurse into it. The values of t for a
child node will differ from those of the parent node. The t-values to use for each of the
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1. if tmin < tmax then
2. if tym < txm then the ray crosses q2 and
3. if tx0 < tym then the ray crosses q0
4. if txm < ty1 then the ray crosses q3
5. else if txm < tym then the ray crosses q1 and
6. if ty0 < txm then the ray crosses q0
7. if tym < tx1 then the ray crosses q3

Figure 4.2: Selecting the correct child node.

child nodes q0, q1, q2, and q3, can be defined simply as some selection of the t-values of
the parent. The rules can be seen in Table 4.1. Since all the required parameters are
calculated already, the algorithm may skip directly to the third and final phase when
it recurses.

Table 4.1: Which parameters to use when recursing into child node qi.

Child node New tx0 New ty0 New tx1 New ty1

q0 tx0 ty0 txm tym

q1 txm ty0 tx1 tym

q2 tx0 tym txm ty1

q3 txm tym tx1 ty1

Illustrations of how the ray attributes affect the different parameters introduced are
shown in Figures 4.3 and 4.4. The figures may also serve to reinforce the understanding
of the process of selecting child nodes. Figure 4.3 shows the case where the ray enters
through boundary x0, while Figure 4.4 highlights the situation that y0 is the initial
boundary.

q2 q3

q0 q1

R

ty0 tx0

tym txm

tx1ty1

q2 q3

q0 q1

R

tx0tym

txmty1

Figure 4.3: Sub-nodes crossed when tx0 > ty0. In the right figure, ty0 and tx1 lie outside
the diagram.
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Figure 4.4: Sub-nodes crossed when ty0 > tx0. In the right figure, tx0 and ty1 lie outside
the diagram.

4.1.2 Extending the algorithm to octrees

In order to allow the algorithm to traverse octrees and not quadtrees, a third co-ordinate
is introduced where needed. The parameters tz0, tz1, and tzm are defined in a similar
manner as their x and y counterparts in Equations (4.2) and (4.4). There is also a
need to redefine tmin and tmax. These must now be defined as shown in Equation (4.5).

tmin = max(tx0, ty0, tz0) ∧
tmax = min(tx1, ty1, tz1)

(4.5)

The test that determines whether the ray intersects the node or not is unchanged
from the two-dimensional case; the simple expression tmin < tmax is evaluated. This
means that—apart from introducing the third co-ordinate—the first and second phase
of the algorithm are unchanged. The third phase, however, will differ somewhat. In
the following sections, the process of selecting the initial and next child nodes in an
octree is described.

Obtaining the initial child node

In the event of a successful intersection test, the process of selecting the first child node
crossed by the ray becomes more involved compared to the quadtree case described by
pseudocode in Figure 4.2. The first step is to obtain the entry boundary of the octree
node. This boundary is a plane in three-dimensional space, and is determined by
retrieving the maximum value among tx0, ty0, and tz0. Next, a set of tests are performed.
These tests have the potential to assert a bit in a variable which is subsequently used
to index the child node. The whole process of determining the index of the child node
is described in Table 4.2.

Obtaining the next child node

After traversing into the initial child node, there needs to be some functionality for the
obtaining of the next sibling node. For instance, if the ray crosses into the first child
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Table 4.2: Determining index of initial child node.

Maximum value Entry boundary Conditions to examine Index bit affected

tx0 Y Z-plane tym < tx0 1

tzm < tx0 2

ty0 XZ-plane txm < ty0 0

tzm < ty0 2

tz0 XY -plane txm < tz0 0

tym < tz0 1

node of the root node, but does not terminate within this node—i.e. it hits nothing—
the algorithm needs to continue the traversal by entering the next direct child node of
the root node intersected by the ray.

The algorithm implements this functionality by defining a simple state machine
with a set of transitions. Each child node of the current parent node is a state, and the
traversal through the set of child nodes is described by transitions. These states, as well
as the allowed transitions between them, are shown in Figure 4.5. In the illustration,
the index of the states correspond to the index calculated in the previous step.

000

101

111 110 

100

010011

001
x

y
z

Figure 4.5: The traversal state machine.

The rules for determining the next node to visit can be summarised as shown in
Table 4.3. In the table, the exit plane is determined in the same manner as the entry
plane (in Table 4.2), apart from using the exit boundaries of the current child instead.
The transition to the next state in the state machine is then established based on the
exit boundary and current state. If the END state is reached, all applicable child nodes
of the current parent have been traversed.
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Table 4.3: Determining next child node.

Current If tx1 is max, If ty1 is max, If tz1 is max,

child node exit-plane Y Z exit-plane XZ exit-plane XY

000 001 010 100

001 END 011 101

010 011 END 110

011 END END 111

100 101 110 END

101 END 111 END

110 111 END END

111 END END END

4.1.3 Supporting arbitrary ray directions

The algorithm presented so far requires that the components of the ray direction be
strictly positive. To allow arbitrary ray directions—i.e. positive, negative, or zero
components—some modifications must be made.

Allowing zero-valued direction components

Since the calculation of the entry and exit boundaries in Equation (4.2) includes an
expression where each parameter is divided by the components of the ray direction,
issues arise whenever the ray direction includes zero-valued components. There are
two main ways to mitigate this problem.

The first solution would be to include a special case that, whenever the direction is
used in some manner, checks if one or more components are zero. Further, the algorithm
must be modified to handle this special case. This means that all the proposed rules
for selecting first and next nodes must include special checks, and would in turn lead
to the algorithm becoming much more complex.

The solution proposed in [53] is to allow infinite values, and perform the check
by simply setting the parameters to infinity if the direction component is zero, then
including a couple of checks when calculating the tm-values. This solves the problem
mathematically, but may still lead to issues in implementation, mostly because infinities
can be hard to model in hardware.

Another solution which only resulted in a slight modification of the algorithm was
introduced in the project thesis [1]. It entails checking whether components of the ray
direction are zero on algorithm start-up. If one or more components are zero, they
are instead assigned a very small number. This will mathematically result in a slight
distortion of the rendered image, but as long as the value is small enough, it should
not be noticeable. By solving the issue this way, the algorithm remains simple and the
need to handle special cases is eliminated.
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Allowing negative direction components

The algorithm currently only supports non-negative directions. This is ingrained in the
rules for choosing the first and subsequent child nodes. Fortunately, Revelles, Ureña,
and Lastra [53] have an elegant solution to the problem. A few modifications are
made during the initialisation phase of the algorithm, leaving the rest of the algorithm
unchanged.

Firstly, if a given component of the direction is negative, the direction and origin
of the ray are flipped around the centre of the root node for this component. This is
formulated mathematically in the following fashion: for every negative component i of
the ray direction, the ray is modified as shown in Equation (4.6), where ci is component
i of the centre of the root node.

rdi = −rdi
roi = ci − roi

(4.6)

Secondly, the order in which child nodes are traversed must be modified to account
for the modified ray direction. A new coefficient a is defined such that after the next
node index i has been calculated, i is modified as shown in Equation (4.7).

i′ = a⊕ i

a = 4sz + 2sy + sx
(4.7)

The symbol “⊕” is here used to mean a bitwise exclusive or operator, and the values
si are set to 1 if the original ray direction is negative for component i, and 0 otherwise.

4.2 Efficient sparse voxel octrees

The sparse voxel octree data structure itself also deserves to be a topic of discussion.
The chosen data structure for this thesis is the same that was chosen for the project
thesis by Espe [1], which is a simplified version of the scheme authored by Laine and
Karras [35] in 2011. The focus of said paper was to devise an efficient data structure for
the storage of voxel data. The resulting scheme was also designed to minimise memory
bandwidth requirements and therefore has a modest memory footprint.

As was the case for the project thesis, the data structure will be presented here
with certain simplifications. These simplifications will be justified in the following,
and stem from the fact that some specific features of the original data structure are
unneeded, and would only increase complexity without yielding any benefits. Many
of the simplifications draw inspiration from the implementation found in the master’s
thesis by Wilhelmsen [83].

4.2.1 Scheme overview

The data structure is in essence a large table of node descriptors. Each entry in
the table corresponds to a specific node in the tree, and stores information about its
children. This means that leaf nodes do not have their own entry, as all information
is stored in their parent. In order to support large models while reducing memory
bandwidth requirements and increasing cacheability, the data structure is split into
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blocks of contiguous memory. Within a single such block, all memory references are
relative.

Node descriptor

The basic node descriptor outlined in the paper is 64 bits wide, consisting of a 15-bit
pointer field, a single-bit field describing the nature of the pointer field, two eight-bit
fields that hold the metadata about the children of the current node, and 32 bits of
contour information. However, the contour information stored in the descriptor is not
of interest in this thesis, so a simplified version omitting this data is used. Hence,
the descriptor employed in this thesis is 32 bits wide, its layout on the form shown in
Figure 4.6.

Is far Child pointer Valid mask Leaf mask

1 bit 15 bits 8 bits 8 bits

Figure 4.6: A single node entry.

Each of the fields shown in Figure 4.6 serves a specific purpose. Starting with
the right-most fields: the valid mask and leaf mask are bit masks that describe the
children of the current node. The masks each have eight entries (bits) that describe
each of the eight child slots by the rules stated in Table 4.4. Next, the 15-bit field—the
child pointer—generally stores a pointer to the entry of the first child of the current
node. The rest of the children are stored sequentially after the first child. However,
if the single-bit is far field is asserted, the child pointer is an indirect pointer to a far
pointer. This means that the child pointer field will, instead of pointing directly to
the first child, point to a 32-bit pointer entry that holds a relative pointer to the child
entry. The far pointer is utilised whenever the child pointer field is too small to hold
the pointer, and will split the tree data structure into separate, contiguous blocks of
memory.

Table 4.4: Bit mask interpretation for child slots.

Valid mask Leaf mask Interpretation

0 0 The child slot is empty.

1 0 The child slot is not a leaf and has data.

1 1 The child slot is a leaf, and is filled.

0 1 Invalid combination.

Page headers and info sections

The scheme presented by Laine and Karras [35] also includes a set of special descriptors
that will not be utilised in this thesis. As a simplification of the voxel data structure,
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Chapter 4. Established algorithms chosen as foundation

they will be omitted from the implementation. This decision draws inspiration from
Wilhelmsen [83], and generally results in a simpler layout as well as a smaller memory
footprint. However, since they are part of the original scheme, they will be briefly
presented in this section.

The first omitted descriptor is the info section. This type of entry contains a
pointer to the first node descriptor, and describes the information available in the
octree structure. In other words, it contains metadata about the child descriptors,
and states which features are in use; for instance if contour information, colours, or
normals are employed. Since none of these features are used, the info section is not
implemented at all. The second omitted descriptor, the page header, is spread among
the child descriptors at a set spacing. These descriptors contain a relative pointer to the
current memory block’s info section. Since the info section itself is not implemented,
it stands to reason that the page header is unneeded.

Example voxel data structure

An example voxel data structure is shown in Figure 4.7. In the hierarchical illustration,
grey nodes are empty, blue nodes are filled, and nodes highlighted yellow are non-
terminal, meaning that they have children with data. In Figure 4.8, the same entry
table is rendered as an SVO using the software implementation presented in the project
thesis [1].

0 0x0001 01011010 00010000

0 0x0004  00010100 00010000

1 0x0002 00011001 00010001

0 0x0004 00101100 00000000

1 0x0000 00010010 00010010

0x00000004

0

1

2

3

4

5

6 1 0x0000 01001100 01001100

7

8

9

0 0x0000 00000110 00000110

1 0x0000 01100001 01100001

0 0x0000 00010000 00010000

root

far

Figure 4.7: An example SVO. Both the structure in memory and hierarchical layout
are shown.
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Figure 4.8: The octree specified in Figure 4.7 rendered.

4.3 A method for rigid-body animation of sparse

voxel octrees

The project thesis by Espe [1] forms the starting point for this master’s thesis, which
will employ the work done in the project thesis as part of a larger project of hardware
implementation. In the project thesis, a general method for rigid-body animation of
SVOs was developed and presented. The method will be detailed in this chapter since
it is to be implemented as part of the hardware solution. The following sections are
heavily sourced from the project thesis, with some minor adaptions.

4.3.1 Method overview

The main idea behind the method is to take advantage of the fact that a rigid-body
animation may be modelled as a system of rigid bodies transformed relative to each
other. This system of rigid bodies is essentially a set of static models wherein each
model has an associated transform. In ray tracing of sparse voxel octrees, a sparse
voxel octree can be regarded as a self-contained volumetric model. As such, a rigid-
body animation may be formulated as a set of independent SVOs, where each SVO is
a static, rigid body model with a corresponding transform. The process of animation
is then reduced to simply modifying these transforms in a timely manner. The internal
data of each SVO may remain unmodified for the duration of the animation.
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It is not feasible to apply the transformation to every data point contained in the
model in the rendering stage as one would do when animating polygonal models. The
solution authored by Espe [1] is to invert the problem. Instead of transforming the
model data, one may perform an inverse transformation on the ray. In other words,
each ray in the ray tracing process may be transformed from world space to the local
co-ordinate system of each of the animated SVOs that are to be traced.

Shown in Figure 4.9 is the procedure of transforming rays as a part of the animation
process. When a ray enters the boundary of a transformed SVO, the ray itself is trans-
formed inversely in order to facilitate the transformation of the model. To reiterate, in
place of transforming the SVO data itself—which may involve transforming billions of
data points—the transformation is performed on the ray.

SVO 1
SVO 2

SVO 1 SVO 2

tenter

tenter

texit

texit

R

R
̂ 

texit
texit

tenter

tenter
R

̂ 

Figure 4.9: Demonstrating the ray transformation process.

4.3.2 Mathematical formulation

In order to implement the solution in software or hardware, a mathematical formulation
for the ray transformation is desired. Given the ray definition shown in Equation (4.8),
a transformation T from the ray R in world co-ordinates to the ray R̂ in local co-
ordinates to the SVO must be derived. The desired transformation should work as
shown in Equation (4.9).

Rt(ro, rd) = ro + t · rd , t ≥ 0 (4.8)

R̂t(r̂o, r̂d) = T [Rt(ro, rd)] (4.9)

A graphical description of the desired transformation is shown in Figure 4.10. For-
mulating the transformation mathematically is, at its core, a matter of deriving two
matrices with which to multiply the constituent vectors ro and rd. These vectors rep-
resent the ray origin and direction, respectively. By initially only allowing the SVO to
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be rotated and translated, the linear algebra formulation is straightforward. Given the
rotation matrix MR and the translation matrix MT of the SVO, the transformation
function T can be formulated as described in the following. Since it makes no sense
translating a directional vector, it should be self-evident that the ray direction only
is influenced by the rotation of the SVO. The ray origin, however, is affected by both
rotation and translation.

World space Local space

SVO

SVO 

R

R̂  

= T(R)R̂ 

ro

r ̂ 

o

rd r ̂ 

d

Figure 4.10: The co-ordinate system transformation of a ray in world space to local
space.

The resulting mathematical definition of T is shown in Equation (4.10). The ray
direction is determined by simply premultiplying it with the inverse rotation of the
SVO. Transforming the ray origin is a bit more involved, but may be regarded as
a two-step process. Firstly, the ray origin is translated so that the origin of its co-
ordinate system is at the origin of the octree. Secondly, the vector is rotated around
the SVO origin by the same inverse rotation as employed for the ray direction. The
mathematical formulation is shown in Equation (4.10).

T : Rt(ro, rd) 7→ R̂t(r̂o, r̂d)

such that

{
r̂d = M−1

R rd

r̂o = M−1
R M−1

T ro

(4.10)

4.3.3 Extending the method to allow anisotropic scaling

The transformation so far only accounts for SVO models with transforms consisting of
translation and rotation. While these two affine transforms are the only ones strictly
required to provide the functionality of rigid-body animation, there is a third transform
that one often needs in animation. In order to fully facilitate animation, there should be
a way to animate the size of models as well, by enlarging or shrinking the models along
some or all principal axes. In other words, there should be support for non-uniform,
or anisotropic, scaling of SVOs.

The most convenient way of supporting scaling in the scheme presented above is
to implement the support at the traversal stage of the ray tracing process. Luckily,
most SVO traversal algorithms, and especially the one this master’s thesis is based
upon, already allow the tuning of octree dimensions. By employing this directly in the
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animation process, the method presented above may remain simple, and only take the
rotation and translation into account.

For instance, in the traversal algorithm presented in Section 4.1, one simply has to
input the dimensions of the octree as a set of parameters x0, x1, y0, y1, z0, and z1. Do
note, however, that any calculation involving the scale of SVOs—such as determining
its bounding sphere—also need to be updated to take the scale of the octree into
account.

4.3.4 Optimisations

The original method also introduces a set of optimisations that increase the general
performance of the algorithm. These optimisations will not be utilised in this master’s
thesis due to its scope already being quite substantial. However, since they are a part
of the original method, they will be presented briefly.

Bounding-sphere tests

As a result of the sheer number of intersection tests, the most computationally heavy
stage of the ray tracing process is the traversal of the SVO [73]. Therefore it is desirable
to only traverse SVOs that can lead to a ray tracing hit. For instance, in a situation
where one of the SVOs is located some distance away from the origin of the current
ray, and the direction of the ray is pointed in the opposite direction of the octree, the
SVO can safely be excluded from the process, as the ray will never hit it.

The process of determining which octrees that will never be hit by a given ray may
be implemented in a multitude of ways. One method that was presented in the project
thesis is to perform an intersection test between the ray and the bounding sphere of the
SVO. This intersection test is very fast compared to traversal of the entire SVO, and
will in many cases lead to the exclusion of octrees that will never be hit by a given ray.
In Figure 4.11 the principle is illustrated. A scene of animated SVOs is shown, where
bounding spheres are utilised to determine which octree models that will be missed by
the ray. In this case, only SVO 2 will be traversed, as the bounding sphere of the other
three octrees in the scene do not intersect the ray.

SVO 3

SVO 2

R

SVO 1

SVO 4

Figure 4.11: Using the bounding sphere of an SVO to avoid traversing octrees that will
be missed. SVO 2 is the only octree that will be traversed in this case.
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Depth sorting

The use of bounding spheres means that still further improvements to efficiency can be
made. For instance, the SVO models may be traced in a front-to-back order, sorted by
the distance along the ray for each intersected bounding sphere. Once an SVO model
is traversed and results in a ray hit that is closer than the bounding sphere of the next
SVO to be traced, the ray tracing process may be stopped early, as no object can lie
in front of the current hit. An example of this is illustrated in Figure 4.12.

SVO 1

SVO 2

R

SVO 3

SVO 4

thit

Figure 4.12: Tracing a sorted list of SVOs.

In the illustration, a ray tracing scene consisting of an animated set of SVOs is
shown. The tracing is performed in a sorted manner, where the order of traversal is
by increasing distance to the bounding sphere centre, in this example starting with
SVO 1 and ending with SVO 4. The figure shows a situation where SVO 1 is traversed
without a hit, SVO 2 is traversed as a false positive, SVO 3 results in a trace hit,
and SVO 4 is not traversed. The second octree can be regarded as a false positive
because the ray hits the bounding sphere, but not the octree itself. The ray tracing
process is terminated after SVO 3 is processed, since it results in a ray hit, and the
distance along the ray of this hit is closer than the distance to the boundary of the next
octree that would be traversed, SVO 4. In other words, it is mathematically impossible
that traversal of the fourth octree will yield a ray hit closer than the hit produced by
traversal of the third octree.

Hit buffer algorithm

A simple buffering mechanism was developed as part of the project thesis work. The
buffer—termed hit buffer object (HBO)—stores the ray tracing result for each pixel
in the last rendered frame. In other words, the buffer contains a data structure for
each pixel describing the last result. The idea is that if, for a given pixel, the scene
is unchanged enough since the last frame, the traversal of SVOs for this pixel may be
skipped, and the value from the last frame may be reused. The algorithm is illustrated
in Figure 4.13.

Stored for each pixel in the HBO data structure are: the colour, the normal, the
t-value of the hit along the ray (i.e. the depth), the index of the SVO that was hit, and
the nature of the hit. Most of these are explanatory, except, perhaps, the last entry.
The field describing the nature of the hit provides information such as whether nothing
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Figure 4.13: The hit buffer algorithm.

was hit, or if the ray passed through multiple bounding spheres before arriving at the
hit point.

The HBO is then used in conjunction with a set of state variables to determine if
the value of a pixel is unchanged. Each SVO in the scene, as well as the camera, has
a switch that specifies if the object has moved since the last frame (if it is dirty). The
application can then look up the hit buffer data for the current pixel and, if the camera
is unchanged, and the SVO object hit by the ray the last frame is unchanged, simply
use the last value and avoid tracing the SVO again. It is also required that the ray did
not pass through multiple bounding spheres before the hit for this optimisation to take
place. The reason for this requirement is that if the ray passes through other SVOs,
these might have changed in the meantime, and there is no way of determining if the
ray would hit data in these SVOs without traversing them again.
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Requirement analysis

In this chapter, an analysis of the system requirements will be conducted, and a general
specification will be formulated. The ambition is to end up with an overarching speci-
fication for a system that will meet the requirements posed by the problem statement.
To this end, the problem statement is discussed initially, and a few points concerning
its interpretation are raised. Subsequently, the requirement specification of the system
is formulated.

The requirement specification of a system is used to describe the functional and
non-functional requirements that are put on the system [58, p. 60]. The specification
may be viewed as an agreed-upon description of expected behaviour, and as a set of
well-defined criteria that will be revisited during the verification and validation effort
in order to assert a system’s correctness [37, p. D-10]. Mano and Ciletti [59] regard
the functional specification as the entry point to the digital design process [59, p. 129],
which places further emphasis on the significance of a proper system specification.

According to the methodology detailed by Dally, Harting, and Aamodt [58], a
system specification should open with a concept development and feasibility investi-
gation. The concept development includes a functional specification, as well as an
interface specification and an overall block diagram. Pursuant to their methodology,
this chapter is laid out by first presenting the primary functional and non-functional
requirements. This is followed by more specific requirements, such as an interface spec-
ification and a feasibility evaluation, which is elaborated in a throughput requirement
discussion. Nextly, Dally, Harting, and Aamodt [58] recommend moving on to a more
detailed specification by partitioning the design [58, p. 65]. These considerations are
discussed in Chapter 6, where the system’s internal design is specified.

5.1 Interpretation of the problem statement

The work done in this project should fundamentally be grounded in—and may be
considered a direct response to—the problem statement included in the front matter of
this thesis. Moreover, it should be self-evident that the interpretation of this problem
statement must be as correct as possible if the work done in this master’s thesis is to be
relevant. While the problem statement itself is quite precise, it will be examined point
for point in this section. This is done to make sure that the solutions presented in this
thesis are indeed a direct response to the points in the problem statement. Additionally,
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if decisions must be made regarding its interpretation, these will be highlighted in the
following.

The problem statement opens with a general presentation of the field and exposes
the problem at hand. Following this introduction, three distinct points are presented.
These points may be regarded as the actual requirements for this thesis, as they briefly
state what one should expect of the solution.

First point: Review existing literature on the subject of hardware ray trac-
ing.

The first of these points states that a thorough examination of relevant previous
work should be carried out. This point has already been covered by the literature
review presented in Chapter 3 and the detailed discussion of chosen algorithms in
Chapter 4, and as such will not be part of the requirement specification.

Second point: Investigate whether a hardware implementation for real-
time ray tracing of SVO data is feasible, and formulate the specification
and design of such a system.

The second point of the problem statement states that an investigation should be
launched into the feasibility of hardware ray tracing of SVOs. The point subsequently
requests that a specification of such a system be formulated. The feasibility of hardware
ray tracing was briefly discussed in the literature review in Chapter 3, where multi-
ple previous examples were presented. Hardware applicability have also been kept in
mind and brought up whenever relevant during the detailed algorithm presentations in
Chapter 4. The point will be further substantiated by the investigations done in this
chapter and Chapter 6. The specification and design of such a system will be discussed
in this chapter, and further detailed in Chapter 6.

Third point: If feasible, demonstrate hardware ray tracing of SVO data.
Explore the possibility of extending such a hardware implementation to sup-
port animation of SVO data.

The third and last point states that a hardware implementation should be demon-
strated, and that the possibility of animation of SVO data should be discussed. A
hardware implementation is the core topic of Chapter 7. The possibility of SVO ani-
mation is discussed throughout this thesis—the method by which this can be achieved
was introduced in the project thesis and presented in Section 4.3. The topic is brought
up whenever relevant in this chapter and, especially, Chapters 6 and 7.

5.2 Primary functional and non-functional

requirements

From the problem statement, three initial requirements may be formulated. These
three requirements can be regarded as the primary functional and non-functional re-
quirements that are placed on the system, as they are essentially a summary of the
problem statement. They will be revisited in the discussion found in Chapter 8 so that
the validity of the implemented system may be evaluated.
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First requirement: ray tracing of SVO models

The first and chief requirement of the system is the functional requirement that it must
be able to trace SVO models. Particularly, it must be able to traverse an SVO model
on the format described in Section 4.2, employing the algorithm detailed in Section 4.1.

Second requirement: SVO model animation

The second functional requirement is that the system must support animation of SVO
models. The method for rigid-body animation of SVO models to be used was the main
topic of the project thesis [1] and is detailed in Section 4.3.

Third requirement: real-time performance

The third and last requirement is the non-functional requirement that the system
must be able to trace animated SVO models in real-time. In Section 2.2.3, a real-
time rendering process was defined as having a frame rate of at least 12 to 16 Hz. The
requirement is therefore that system in this thesis must perform above the upper bound
of 16 Hz.

5.3 Further requirement specification

Building upon the system’s primary functional and non-functional requirements, a more
detailed analysis of its requirements can be performed. In the following sections, a set of
additional considerations and requirements will be presented, and further elaboration
of the system’s requirements will be conducted.

5.3.1 System scalability

To genuinely exploit the parallelisability of ray tracing, the system should be of a
scalable nature. More to the point, the system should have some sort of central com-
putation core which may be duplicated to increase the throughput—the amount of work
that can be done by the system per time unit [37, p. 48].

A simple scalable system is illustrated in Figure 5.1. The cores within the system
are identical and designed to perform a task that may limit system throughput. By
duplicating the cores, the throughput may be increased, as tasks sent to the system are
distributed among the computation cores and processed in parallel. This distribution
of tasks would be performed by a scheduler in a manner that maximises utilisation.

Amdahl’s law states that the speed-up achieved from parallelising a system is lim-
ited by the serial portion of the computation load [94]. Amdahl was chiefly concerned
with parallelisation of software in his 1967 paper, but the same reasoning may be
applied to hardware design—the larger section of the system that is parallelised, the
better the overall throughput. For instance, a floating-point multiplication unit may
be duplicated to increase throughput of this specific operation, while an SVO traversal
module may be duplicated separately to achieve higher efficiency in this part of the
algorithm.
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Core 0 Core 1 Core i. . .

Figure 5.1: A scalable system with duplicated computation cores. The dashed rectangle
represents the system, while the individual computation cores are shown within.

A decision must be made concerning the selection of which units of the system
that should be part of this scalability effort. Naturally, this is selection will depend
on which sections of the underlying algorithms that lend themselves to parallelisation.
Furthermore, the system must from a design standpoint be modularised in a fashion
that allows such duplication. As a general rule, computationally heavy operations that
must be done for all inputs may benefit from parallelisation.

In some situations, multiple distinct types of cores could be duplicated separately
to parallelise different tasks. For instance, both a floating-point multiplication unit
and a SVO traversal module could be duplicated to achieve higher overall throughput.
The specifics for the solution presented in this thesis will be discussed as part of the
module definitions in Chapter 6.

Another decision that must be made is to which degree modules of the system
should be duplicated. As an example, it would certainly be a waste of hardware
resources if the system were to contain 32 SVO traversal cores spending most of their
time in an idle state, because they are limited by the throughput of a single floating-
point multiplication unit. Evaluating these considerations is in many cases a matter
of testing an implemented system with the intention of determining which parts of the
system that act as bottlenecks. In other words, one must establish which sections that
act as limiting factors when maximising throughput. These concerns will be revisited,
and related parameters determined empirically, in Chapter 8.

5.3.2 Pipelining

In many situations it may not be necessary to duplicate entire modules in order to
achieve a higher throughput. If an operation requires a known, constant number of
clock cycles to complete—and especially if each distinct part of the operation is only
performed once—one may employ pipelining as an alternative approach to increase the
throughput.

As illustrated by Figure 5.2, pipelining is achieved by splitting up a complex op-
eration into multiple simpler stages [40, p. 66]. The pipeline is set up so that each of
these stages performs a simple operation which takes one clock cycle to complete. By
coupling each stage’s output to the next stage’s input and placing a register between
them, every stage of the operation will complete its function and hand the result over
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to the next stage within one clock cycle. In performance terms, this means that if all
the stages are run in parallel, the pipeline is fully utilised and will produce a result
each clock cycle.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Input Output

Figure 5.2: A pipelined operation with five stages. The discrete stages of the pipeline
are shown connected by a data path. The dashed lines represent intermediate registers
that store the results between clock cycles.

While the latency of the whole operation is unchanged, the throughput of the
pipelined system is increased to the point where one operation is completed each time
step. This is further illustrated by an example in Table 5.1, in which a pipelined process
with five stages is described. In the example, the latency of the operation is five time
steps—in other words, it takes five time steps to complete each operation. However,
since the system is pipelined, all of these stages are computed in parallel, and one
operation is finished every time step. The throughput is therefore increased fivefold
through a simple pipelining setup.

Table 5.1: A set of operations moving through the pipeline. Once an operation has
been processed in stage 5, its final result is output.

Time t
Operation

O1 O2 O3 O4 O5 O6 O7

1 Stage 1 — — — — — —

2 Stage 2 Stage 1 — — — — —

3 Stage 3 Stage 2 Stage 1 — — — —

4 Stage 4 Stage 3 Stage 2 Stage 1 — — —

5 Stage 5 Stage 4 Stage 3 Stage 2 Stage 1 — —

6 — Stage 5 Stage 4 Stage 3 Stage 2 — —

7 — — Stage 5 Stage 4 Stage 3 Stage 1 —

8 — — — Stage 5 Stage 4 Stage 2 Stage 1

9 — — — — Stage 5 Stage 3 Stage 2

The pipeline is fully utilised whenever every stage of the pipeline is active. This
happens at time step 5 in the table. At time step 6, O6 is not yet ready to be submitted
to the pipeline. The result is that from time step 6 and onward, a bubble is introduced
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in the pipeline [37, p. C-17]. The effect if this is that for a number of subsequent time
steps, the pipeline will not be fully utilised since one stage will always be inactive.
Pipeline bubbles are undesirable, since they propagate through the system, and lower
the overall throughput.

Determining which modules of the system that are suited for pipelining is a matter
of establishing which operations that take a constant number of clock cycles to com-
plete. This is required to allow the operation to be unfolded into a set of discrete stages.
For instance, since an SVO traversal module may run for an arbitrary number of clock
cycles before returning its result, such a module can not readily be split into a fixed
set of stages for pipelining. As will be detailed in Chapter 6, the system will contain a
conversion operation from floating-point representation to fixed-point representation.
It turns out that this conversion is highly suited for pipelined implementation, and its
functionality and design as a pipelined operation will therefore be discussed in detail.

5.3.3 Interface specification

The interface specification of the system is part of an elaboration of the system’s
functional requirements, introduced in the previous as the first and second primary
requirements. The interface is initially formulated at the top-most abstraction level.
To this end, it makes sense to consider the system as a black box—an opaque container
with a well-defined interface, but whose contents are hidden from view [95, p. 58]. One
may regard this as a description of the system from the point of view of the end user,
since he or she is rarely interested in the internal workings of a system.

In this case, the end user of the system would expect it to function as a hardware
accelerator for ray tracing—a ray tracing unit (RTU). A slightly more detailed descrip-
tion is that the system should await a ray on its input interface, process this ray, and
return a result on its output interface. Figure 5.3 shows the system modelled as a black
box. The interfaces of the system employ the simple ready-valid protocol described in
Section 2.5.5 to accept new rays and return results.

RTU

In ready

In valid

Ray

Out ready

Out valid

Result

Figure 5.3: The ray tracing system as a black box.

The inputted ray should contain all information necessary for the computation that
is to be performed. In other words, it should at least contain the primary attributes
of the ray: the ray origin and direction. Since there may be multiple models in the
scene, it should additionally contain a pointer to the memory location of octree model
that is to be traced. This memory location would also provide any animation data
related to the model such as transform matrices. Moreover, as it is desirable to have a
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system that can process many rays in parallel, it is also necessary for the input packet
to contain a unique ID that can be used to differentiate results. These results may
very well be returned out of order due to the parallel nature of the system.

In the other end of the system, the result output should contain the result of the
ray tracing procedure. First and foremost, it must contain a value that describes the
result. This value could, for instance, be a simple Boolean switch that states whether
or not the ray hit a solid voxel. Secondly, it must hold the same unique ID of the ray
packet that was submitted so that each result may be identified properly. The rest
of the contents should give further information about the nature of the hit. It would
be useful to return the parametric t-value along the ray of the hit, since this could
be employed in a depth buffer. In addition, the surface normal of the hit should be
returned so that it can be employed in lighting calculations. A third value which might
be very useful for debugging purposes is the number of clock cycles that were spent
processing the ray. This value could be used in verification and validation to signify
the ray cost.

Based on the above discussion, the data structures of the input and output objects
may be formulated. In the following, two data structures are specified, beginning with
the input ray structure. This structure has a total of four fields, while the second
structure—the output result packet—has five fields. The specific formats of the two
structures, such as number representation and bit widths, should become clear through
the discussions in Chapters 6 and 7.

Input ray packet fields

• orig: A three-dimensional vector of numbers that holds the ray origin.

• dir: A three-dimensional vector of numbers that holds the ray direction.

• addr: A pointer to the memory location of the SVO model to trace. It is assumed
that the animation data is reachable in the same location.

• job id: A unique ID that the end user assigns to this job. When the result for
this job is returned, it will contain the same ID.

Output result packet fields

• hit: A Boolean value which states whether the ray hit a solid node in the given
SVO model.

• t hit: A number which holds the parametric t-value along the ray of the hit.
Holds garbage data if the ray missed.

• normal: A three-dimensional vector of numbers that holds the surface normal
vector of the node that was hit. Holds garbage data if the ray missed.

• cost: An integer that states how many clock cycles the SVO traversal core spent
processing the ray.

• job id: The same unique ID that was passed in with the input packet.
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5.3.4 Throughput and feasibility

Since the system is a hardware accelerator to be used in computer graphics, it stands
to reason that it should be able to process rays at a speed suitable for rendering.
In fact, the third functional requirement of the system states that one should expect
real-time performance from the system, which in turn puts certain requirements on
the throughput that the system must be able to deliver. As stated in the sections on
scalability and pipelining, throughput may be increased by designing the system so
that it supports the processing of several rays in parallel. This means that multiple
ray tracing jobs may be submitted to the system in short order, while the results of
earlier jobs are simultaneously received.

Shown in Figure 5.4 is a diagram of how the desired parallel-processing system may
behave in terms of its interface signals. The system in the illustration is parallelised
and pipelined to such a degree that it outputs one result per clock cycle, which may
be viewed as the ultimate throughput goal of the system. It should be remarked that
the processing time for each job is highly underestimated for illustrative purposes;
the diagram ambitiously shows that it takes about three clock cycles to process each
ray job. In addition, note that the subscript indices of the input and output only
designate the packets’ temporal index, and do not reflect their unique ID. As stated in
the previous section, the outputs may be received out of order in relation to the inputs.

clk

in ready

in valid

ray in I0 I1 I2 I3 In

out ready

out valid

result out O0 On−3 On−2 On−1 On

Figure 5.4: Communication interface for top-level module, highlighting the desire for
a throughput of one result per clock cycle.

As part of an investigation into the feasibility of such a system, static analysis of
the throughput requirements may be performed. It can be calculated how many rays
the system is required to process, and at which speed these rays must be processed
by a couple of simple calculations. This information may then be analysed and the
feasibility of the system evaluated.

Shown in Table 5.2 are the theoretical throughput requirements of the system for
a selection of resolutions and frame rates. The table illustrates how many rays the
system must be able to process per frame, as well as how many rays must be processed
per second for different desired frame rates. The last column shows how much slack the
RTU has in terms of ray processing when compared to the desire of one ray per clock
cycle outlined in the previous. In other words, the numbers state how many clock cycles
the system may wait between outputting each result. These numbers are calculated
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under the assumption that the system runs at 100 MHz, and essentially highlight the
degree to which the system must be parallelised and pipelined in order to satisfy the
requirements.

Table 5.2: Throughput requirements for a selection of resolutions and frame rates. The
RTU is presumed to run at 100 MHz.

Resolution Rays per frame Frame rate Rays per second
Cycles per ray

(@ 100 MHz)

320× 180 6.84× 104 15 Hz 1.03× 106 115.74

′′ ′′ 30 Hz 1.73× 106 57.87

′′ ′′ 60 Hz 3.46× 106 28.94

640× 360 2.30× 105 15 Hz 3.46× 106 28.94

′′ ′′ 30 Hz 6.91× 106 14.47

′′ ′′ 60 Hz 1.38× 107 7.23

1280× 720 9.22× 105 15 Hz 1.38× 107 7.23

′′ ′′ 30 Hz 2.76× 107 3.62

′′ ′′ 60 Hz 5.55× 107 1.81

1920× 1080 2.07× 106 15 Hz 3.11× 107 3.22

′′ ′′ 30 Hz 6.22× 107 1.61

′′ ′′ 60 Hz 1.24× 108 0.80

Higher numbers in the last column leave the system a lot of slack for processing.
The lower the number, the greater the degree of parallel processing and pipelining
must be. When the number is less than one, as can be seen in the last row—for
1920× 1080 @ 60 Hz—the system is required to return multiple results per clock cycle.
This is not supported in the current specification, since the specified system interfaces
can at most deliver one result per clock cycle. The conclusion must therefore be that
it is not feasible that the RTU will be able to satisfy this requirement with its current
specification. All other configurations, however, are feasible—at least according to the
information gathered from this static analysis.

An assumption made in this section is that the RTU only has to process one ray
for each pixel, which is only valid if there is a single SVO model in the scene. The
validity of the static analysis is therefore somewhat limited since the current specifi-
cation states that a single ray job may only trace a single model, and multiple ray
jobs must be submitted to the system in order to trace a scene with multiple models.
Moreover, techniques for improving visual output, such as multisample anti-aliasing or
supersampling would require multiple rays per pixel per model. Such techniques are
not of interest in this thesis, however, and are consequently disregarded.
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5.3.5 Memory latency

While efficient memory handling is generally of crucial importance in the design of
real-time computer graphics systems, it has been determined that the design and im-
plementation of a fully functioning memory module would make the scope of this mas-
ter’s thesis too large. A complete memory module will therefore not be entertained in
the system’s design and implementation, except as part of peripheral discussion and
elaboration on limitations and future work.

Nonetheless, in an effort to paint a complete picture, certain considerations con-
cerning memory latency and caching optimisations will be presented and discussed in
the following. These concerns are not directly applicable to the current design, but
may be revisited and included a requirement specification for a later revision of the
system as part of future work.

It is expected that that memory latency will become a major obstacle in the design
of a hardware ray tracing system with proper memory handling. The SVO traversal
cores—the main computation cores of the system which will be introduced in Chap-
ter 6—primarily operate on the data contained in the SVO structure, which will at
some point have to be fetched from memory. It would not be feasible to fetch the
entire model at once, so the individual nodes of the data structure would be fetched
incrementally as the SVO is traversed. The issue of memory latency should presumably
manifest itself to a great degree, as each and every node in the tree that a traversal
core requires must be requested and delivered from main memory. Without mitigating
the memory latency problem, the traversal cores may spend a lot of their time blocked,
and waiting for memory requests to come through.

Fortunately, there exists a solution that may help minimise this problem. By in-
troducing a multi-level memory architecture in the system, the latency issue might be
resolved to some degree. The memory cache, which was detailed in Section 2.2.6, has
been part of virtually every processing architecture in the last decades and can be used
to this end, especially since the chosen SVO data structure almost exclusively employs
relative memory references. Additionally, as was detailed in Section 4.2, the data struc-
ture is configured to place sibling nodes contiguously in memory, which should enable
the the system to benefit profoundly from memory caching.
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System design

Employing the requirement specification presented in Chapter 5 as a basis, the system
design is now to be derived. A major part of this design process entails modularising
the system to the point where each module serves a specific and well-defined function,
and has a simple and clean interface [59, p. 351][58, p. 65]. This modularisation is done
not only for the purpose of creating a thorough technical description the system, but
also in order to simplify the development and verification process.

The development of a modular system is simpler, more manageable, and more
comprehensible than for a large monolithic system. Under the assumption that the
functionality of each module and the interfaces between them are well-defined, the
developers may concentrate on developing each module one at a time, while in their
mind disregarding every other module [58, p. 65]. In larger teams, modularisation has
an even greater effect—the modules may be developed concurrently, which significantly
speeds up the design process.

A modularised system also aids in reducing the required verification effort. By
dividing the system into modules that perform logically discrete functions, the correct-
ness of each module may be tested and verified in isolation. This is known as unit
testing. In other words, unit tests are special tests written as part of the verification
effort to test and verify the functionality of each individual module. [58, p. 65]. The
verification of the system and the usage of unit tests is part of the implementation
process, and will be described in detail in Section 7.5.

6.1 System modularisation

The black box introduced in the requirement specification in Chapter 5 is now to be
split into a set of modules. Dally, Harting, and Aamodt [58] recommend partitioning
the system to such a degree that each module may be directly realised using a synthesis
procedure. These resulting bottom-level modules may be combinational logic blocks
that compute a logical function on its inputs, arithmetic modules that manipulate
numbers, or finite-state machines that sequence the operation of the system [58, p. 65].

The top-level modularisation of the entire RTU system is visualised in Figure 6.1,
with the data flow through the modules highlighted. This diagram introduces many
new modules which will be discussed—and some even further modularised—in the
following. Note that the job manager module and SVO cores additionally communicate
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with the memory module, but in order to increase readability, these interfaces are not
drawn in the diagram. At this stage, the scalability of the system is illustrated through
duplication of SVO traversal cores.

Job
manager

Scheduler

SVO
traversal

core 0

SVO
traversal

core 1

SVO
traversal

core i

Result
manager

Memory

Ray Tracing Unit (RTU)

. . .

Figure 6.1: The main internal modules of the ray tracing unit, as well as the data flow
through the modules. Communication with the memory module is not shown.

6.1.1 Method and justification

While there are a number of different approaches when modularising a system, in
many cases the logical place to start is by identifying the central computation load of
its desired functionality.

As required by the specification, the octree traversal algorithm detailed in Sec-
tion 4.1 is to be implemented in hardware, and this algorithm will likely represent
the majority of the processing load. It would make sense to keep all aspects related
to this traversal of SVO models contained within one module, which might then be
modularised further. The most important reason for this, perhaps, is that by keeping
this process within a module, the module may be duplicated so that the requirement of
a scalable system can be satisfied. It is expected that for a strictly sequential system,
the SVO traversal would be the main bottleneck. Hence, there is likely much to gain
in terms of performance by parallelising this computation load.

The next module that should be part of the system is a direct result of the effort
towards system scalability. Since there are now an arbitrary amount of SVO traversal
cores in the RTU, a scheduler module to arbitrate between all these cores is needed. In
other words, there is a need for a module that will decide which core should do what
work at which time. The scheduler will interface directly with all the traversal cores,
with the main responsibility of assigning work to each core. In order to keep utilisation
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high, the scheduler must keep track of which cores are idle and busy, so that pending
jobs may be assigned to idle cores as soon as possible.

In their current configuration, the SVO traversal cores will contain a fair amount
of duplicated logic related to the calculation of internal parameters and facilitation
of animation. This logic is comprised of operations such as matrix multiplication
and floating-point to fixed-point conversions—that is, operations which require a fixed
number of clock cycles to complete. As detailed in Section 5.3.2, operations that
use a fixed number of clock cycles may be unfolded into a set of discrete stages, and
subsequently pipelined. This means that instead of duplicating the logic for each SVO
core, the logic may be isolated into a separate module and pipelined instead. This
solution should save a considerable amount of hardware resources. The module with
these pipelined calculations has been titled the job manager.

Once the SVO traversal cores have finished their assigned jobs, they need to be able
to return their results somewhere. The simplest solution to this end would be to simply
have them wait until the result is retrieved externally. This approach, however, would
couple the internal throughput of the system to the performance of the environment,
and might quickly make the whole system stall; the cores would be unable to accept
new jobs before the result from the last one was retrieved. On account of this, it makes
sense to introduce an additional module which handles the results from the traversal
cores and buffers them until they are retrieved externally. This module accepts the
results, and lets the SVO traversal cores start processing a new job without pause—
essentially introducing a pipeline for results on the module-level. The module that
handles the results is called the result manager.

Lastly, the SVO traversal cores need to fetch data from memory as part of their
traversal operation, and the job manager module needs to retrieve data such as trans-
formation matrices related to animation. While a fully-functioning memory module
has been largely omitted from the requirement specification, some rudimentary form
of memory handling must necessarily be included. Any logic to this end should natu-
rally be formulated as its own module so that this communication may be facilitated
and optimised. The memory module is shown in Figure 6.1, but its communication
interfaces with the mentioned modules are not drawn in the diagram.

With the exception of memory interfaces, every module interface is based on the
ready-valid protocol described in Section 2.5.5. A consequence of this that may not be
obvious at first glance is that if the surroundings fail to extract the results from the
ray tracing system, the entire system will grind to a halt, since no module is ready to
accept new results or jobs from the module before it in the data flow. Once a result
is fetched, the result manager module will be ready to accept new results from the
traversal cores, and the system will run again. This situation highlights the fact that
the throughput of the ray tracing system may be limited by external factors. It also
means, fortunately, that no result will ever get lost.

6.2 Module design

Now that the system has been modularised into a set of discrete modules, a closer look
at each of its modules is warranted. In the following sections, all the modules of the
system will be presented and their internal design derived and discussed.
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6.2.1 Job manager

The main entry point in the ray tracer system is the job manager. This module accepts
an input ray package from the external data lines of the system and from it constructs
job in a format more suitable for the internal SVO traversal cores.

Interface

The job manager interface is shown in Figure 6.2. The signals on the left-hand side in
the diagram are coupled directly with the external signals of the RTU system interface,
while the signals on the right-hand side are connected to the next module in the data
path—the scheduler.

Job manager

Ray ready

Ray valid

Ray

Job ready

Job valid

Job

Figure 6.2: The interface of the job manager module.

Internal modularisation

As shown in Figure 6.3, the module can be split into three stages which will be described
in detail in the following. Briefly stated, in the first stage the job manager takes
the ray parameters of the input ray object and applies any transformation needed
to facilitate animation of the SVO model to be traversed. In the second stage, it
calculates the traversal parameters required by the SVO traversal algorithm. Finally,
in the third stage, it converts floating-point numbers to fixed-point numbers. After the
job manager has constructed a job from the calculated parameters, it passes this job
on to the scheduler.

SVO model
animation

Traversal
parameter
calculation

Floating-point
to fixed-point

conversion

Job manager

Figure 6.3: Internal modularisation of the job manager.

While it may not have been immediately obvious, the pipelining effort done as
part of the system modularisation resulted in a section of the SVO traversal algorithm
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described in Section 4.1 being relocated from the SVO traversal module to the job
manager module. Specifically, the entire first phase of the algorithm is now calculated
by the job manager. This is the phase that entails taking the ray origin and direction,
and from it calculating the t-values and the direction coefficient a that are employed
in the second and third phase of the algorithm.

First stage: SVO model animation

The first internal stage of the job manager as shown in Figure 6.3 encompasses all the
calculations related to SVO model animation. The technique for animation of SVO
models was introduced in the project thesis [1], and reiterated in detail in Section 4.3.
Briefly stated, in order to achieve efficient animation of the SVO models to be traced,
the rays must be transformed inversely corresponding to the orientation of the SVO.
The mathematical formulation is shown in Equation (6.1).

T : Rt(ro, rd) 7→ R̂t(r̂o, r̂d)

such that

{
r̂d = M−1

R rd

r̂o = M−1
R M−1

T ro

(6.1)

The job manager module is responsible for performing this operation on the rays.
It takes the input ray components and applies the transformation of the current SVO
model as described by Equation (6.1), before passing these transformed components
on to the next step. The transformation of the ray components is performed by ma-
trix multiplication of floating-point numbers, an operation which is often realised in
hardware as a set of multiply-accumulate (MAC) circuits [37, p. E-5]. In the imple-
mentation of the floating-point matrix multiplication circuit, inspiration may be drawn
from solutions such as the design presented by Zhuo and Prasanna [96]. This solution
employs a parallel systolic structure based on a MAC circuit that they introduce in
their paper. Found in the paper by Sajish et al. [97] is a hardware module suited for
FPGA implementation which may also be relevant. The co-processor solution intro-
duced by Tertei, Piat, and Devy [98], should also be evaluated as part of this effort, as
they claim their FPGA implementation outperforms all other similar modules.

The matrices reside in the memory associated with the SVO model, and are fetched
by the job manager in order to perform the transformations. These matrices are up-
dated at most once per frame, which means that they are unchanged for many thou-
sands of rays at a time. In order to minimise the effects of memory latency and
presumably improve performance drastically, these matrices only need to be fetched at
the beginning of each frame, and can be cached for all subsequent ray calculations in
the same frame. It should be mentioned that in the project thesis, additional optimi-
sations were introduced to improve general performance. These optimisations—such
as the hit buffer object (HBO), and the sorting of models based on their bounding
sphere—will not be considered in the current design, but can certainly be investigated
as part of future work.

Second stage: traversal parameter calculation

The next stage requires the job manager to calculate the traversal parameters that
are to be employed by the SVO traversal modules. The parameters are a fundamental
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part of the algorithm in Section 4.1, and are determined by the expressions shown in
Equation (6.2). For simplicity, only the two-dimensional case is considered here. Any
calculations for the third co-ordinate are fully analogous to the first and second.

tx0 = (x0 − rox)/rdx ∧
tx1 = (x1 − rox)/rdx ∧
ty0 = (y0 − roy)/rdy ∧
ty1 = (y1 − roy)/rdy

(6.2)

The expressions require a circuit that can supply the division functionality. Savas
et al. [99] introduce a relevant design in their 2017 paper which is described as having
a small size, low latency, and high throughput. Their design is based on a two-stage
method where the inverse of the denominator is first calculated. Subsequently, this
inverse is multiplied by the numerator. Another design that could be evaluated is the
solution by Peng et al. [100]. Alongside a square-root unit, they introduce a division
circuit suited for SIMD applications.

Before these traversal parameters are calculated, the direction coefficient a needs
to be determined. This is because the calculation of a may alter the ray origin and
direction. The calculation involves deriving a coefficient as shown in in Equation (6.3),
where the values si are set to 1 if the original ray direction is negative for component
i, and 0 otherwise.

a = 4sz + 2sy + sx (6.3)

After the direction coefficient a has been determined, the ray direction and origin
components are, if negative, modified as shown in Equation (6.4). Following this
modification, the traversal parameters shown in Equation (6.2) may be calculated.

rdi = −rdi
roi = ci − roi

(6.4)

As a consequence of the SVO animation step, the model to trace will always be
located in the origin of the co-ordinate system and have unit size along each dimension.
This means that the above calculations may be further simplified. The whole process
of deriving the t-values and a ends up being as shown in Equation (6.5).

a = 4sz + 2sy + sx

tx0 =

{
−(1 + rox)/rdx if rdx > 0

(1− rox)/rdx if rdx < 0

tx1 =

{
(1− rox)/rdx if rdx > 0

−(1 + rox)/rdx if rdx < 0

ty0 =

{
−(1 + roy)/rdy if rdy > 0

(1− roy)/rdy if rdy < 0

ty1 =

{
(1− roy)/rdy if rdy > 0

−(1 + roy)/rdy if rdy < 0

(6.5)
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There is a symmetry for the calculations above which means that only four values
need to be calculated regardless of the sign of the direction. If the sign is negative, the
t-values are simply flipped so that tx0 becomes tx1, and vice versa. Moreover, all the
calculations may be expressed on the form shown in Equation (6.6), which suggests
that they lend themselves to certain optimisations that may be done in hardware. By
using a division circuit where the reciprocal is firstly calculated—for instance the one
devised by Savas et al. [99]—the entire operation may be realised in hardware as two
circuits: a reciprocal and a MAC circuit.

ti = −roi ·
1

rdi
± 1

rdi
(6.6)

The optimised operation would consist of two steps. Initially, the reciprocal of
the ray direction would be determined. Subsequently, by utilising a MAC circuit, the
reciprocal would be multiplied with the ray origin, and then accumulated with itself.
The ± notation on the last term would be handled by computing both versions of the
result. As was argued in the previous, both these results must be determined anyway,
as a result of the symmetry of the calculations.

Third stage: floating-point to fixed-point conversion

To allow proper matrix multiplication, the job manager receives its input numbers and
does all the transformations on floating-point form. As will be substantiated in their
section, however, the SVO traversal cores only accept fixed-point numbers. This means
that the resulting traversal parameters must be converted from floating-point to fixed-
point format if they are to be used by the SVO traversal cores. This conversion between
floating-point to fixed-point is quite straightforward, and is illustrated in Figure 6.4.

Sign Exponent Significand

Floating-point

Integer Fraction

Fixed-point

⇐ shift ⇒

Negate

Figure 6.4: The process of converting floating-point numbers to fixed-point represen-
tation.

Firstly, the significand of the floating-point number is read and stored in an inter-
mediate register. This number is then prepended the implicit leading 1 which is not
present in the floating-point format. Secondly, the exponent is read, and for each of the
following clock cycles the significand is shifted according to the value of the exponent.
Lastly, the sign bit is read and the number is negated by taking it’s two’s complement
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if the sign is negative. This entire operation may be pipelined so that one conversion
is performed each clock cycle.

As will be substantiated in Chapter 7, the fixed-point numbers used in this thesis
are 32 bits wide, with 16 bits set aside to store the fractional component. However,
in order to not lose any bits of information during the shifting stage, the intermediate
register in which the significand is stored must be sufficiently large. For the single-
precision floating-point representation used in this thesis, the significand is 23 bits
wide. As a consequence, the fractional component of the intermediate register must be
at least this size even though the resulting fixed-point number may only use 16 bits for
the fraction. After the shifting step is finished, the resulting number may be truncated
to its nominal bit width.

Since number used in this thesis is 32 bits wide and uses 16 of these bits to hold
the fractional component, it stands to reason that the significand may only be shifted
a maximum of 15 places in each direction before the number over- or underflows. This
means that the entire number can be set to the minimum or maximum value if the
exponent is outside the range [−15, 15]. If the exponent is within this range, it can be
shown that an entire shifting operation requires no more than four distinct steps. The
key is to evaluate the exponent’s absolute value as a binary number. Each of the bits
of this binary number will then correspond to a shifting operation by 2n steps, where
n is the zero-indexed position of the bit. Pseudocode for the evaluation is shown in
Figure 6.5.

1. if e > 0 then
2. if e3 = 1 then shift the significand 8 places left.
3. if e2 = 1 then shift the significand 4 places left.
4. if e1 = 1 then shift the significand 2 places left.
5. if e0 = 1 then shift the significand 1 places left.
6. else if e < 0 then
7. if e3 = 1 then shift the significand 8 places right.
8. if e2 = 1 then shift the significand 4 places right.
9. if e1 = 1 then shift the significand 2 places right.
10. if e0 = 1 then shift the significand 1 places right.

Figure 6.5: The significand shifting process. The variable e is the exponent itself, while
en signifies bit n of the absolute value of the exponent.

Each tier of the shifting process takes one clock cycle and only needs to be performed
once for each number. This means that the entire conversion operation is very suitable
for pipelining. Shown in Figure 6.6 is an example of such a pipelined implementation.
Upon entry to the pipeline, the input significand is sorted into one of two paths based
on the sign of the exponent. If the exponent is positive, the significand will potentially
be left shifted by some amount each clock cycle. Conversely, if the exponent is negative,
it may be right shifted. Each of the shifting stages in the pipeline is completed within
one clock cycle, and the intermediate result stored in registers placed between each
shifting tier. Once a significand has passed through the entire pipeline, it is truncated
and outputted as the fractional part of a fixed-point number.
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Figure 6.6: A pipelined version of the shifting process.

6.2.2 Scheduler

When the job manager is finished processing a job, it is passed on to the scheduler.
The scheduler module is responsible for delegating jobs to the SVO traversal cores in
an efficient manner. This involves keeping track of which cores are busy processing
another job, or idle and ready to accept a new job.

Interface

The module interface of the scheduler is shown in Figure 6.7. The left-hand side signals
are connected directly to the job manager, while the right-hand signals are connected
to the SVO cores. Since only one job can be assigned to a single core each clock cycle,
the job bus is scalar and connected to all cores. The ready and valid signals from the
cores are treated as a bus of signals. The scheduler utilises the ready signals from the
cores to keep track of which cores are idle and which are busy, and the valid signals
as a form of chip-select signal in order to choose a core to assign the next pending job
to.

Scheduler

Job ready

Job valid

Job

Cores: job ready

Cores: job valid

Job

Figure 6.7: The scheduler module.

Scheduling algorithm

There is a desire to maximise the utilisation of all the SVO traversal cores. To this
end, there should be a discussion about different scheduling algorithms and which
ones that might be suited for this use case. In Section 2.2.5, two different scheduling
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algorithms were presented, and it would seem that both round-robin and first-available
are applicable solutions for this module.

Intrinsic to the round-robin algorithm is the notion that it may make the system
stall for a number of clock cycles whenever the next core in line is busy. This situation
may arise even though there are idle cores after it ready to accept new jobs. The first-
available scheme alleviates this problem, but is more involved to implement efficiently
in hardware. An account of these issues, a simplified variant of the first-available
scheme has been designed. The scheme, illustrated in Figure 6.8, will be referred to as
the cyclic first-available scheme, and works as described in the following.

clk

select C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

core 0:ready

core 1:ready

core 2:ready

core 3:ready

data bus D0 D1 D2 D3 D4 D5 D6 D7

Figure 6.8: Example of the cyclic first-available scheduling.

The scheduler continuously loops through all cores, selecting a new core each clock
cycle. When a core is selected, the scheduler checks it if is ready by testing its ready

signal. If a job is pending and the currently selected core is ready, the pending job is
assigned to the selected core. A job is said to be pending whenever the job manager
has finished processing a job and has passed it on to the scheduler so that may be
assigned to some core.

As a consequence of the scheduler continuously looping through all the cores, one
core cannot hold up the entire system. Using the cyclic first-available scheme, there
may be worst-case situations where a core will never be assigned a job, since no job
is ready to be assigned whenever it is selected by the scheduler. These situations,
however, should presumably only arise very rarely, and would suggest that there are
an excessive amount of cores implemented in the system.

Looking at the worst-case delay before a job is assigned in a system with at least one
ready core should highlight the compromise this scheme presents. These worst-cases
are listed in Equation (6.7), in which the symbol nc represents the number of cores in
the system, and WJ is the worst-case processing time for a job.

WRR = WJ

WCFA = nc − 1

WFA = 1

(6.7)

The worst-case delay of the cyclic first-available scheme, denoted WCFA, is demon-
strated in Figure 6.8 when the job D4 is delayed three clock cycles. Assuming nc < WJ,
the scheme improves upon the round-robin algorithm, for which a worst-case delay WRR
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would manifest itself as a situation where the ready core is blocked by every other core
processing a worst-case job in parallel. The number of cores have no impact here, since
every other core has already been processing the job for at least nc. As expected, CFA
performs worse than the more complex first-available algorithm that was presented in
Section 2.2.5, for which the worst-case delay WFA is 1 clock cycle.

6.2.3 SVO traversal core

The main computation happens in the SVO traversal core, whose function is to take a
job, and traverse an SVO memory structure based on the setup information contained
in this job. The core should follow the algorithm by Revelles, Ureña, and Lastra
[53], presented in Section 4.1, in order to traverse an SVO model on the data structure
specified by Laine and Karras [35], which was presented in Section 4.2. When the core is
done, it should return a result which describes the outcome of this traversal procedure.
According to the requirement specification the result should contain information about
whether a solid node was hit, and if so, the parametric value along the ray of the hit
(the depth), the cost of the traversal process in number of clock cycles spent, and the
normal of the surface that was hit. The core should also pass on the unique ID of the
ray tracing job so that this ID can be outputted as part of the result.

The module should be designed so that it may be duplicated to cater to the ambition
of a scalable system. This duplication will enable the system to process multiple rays
in parallel, and help alleviate the predicted bottlenecks associated with the traversal
process. Furthermore, the module may contain memory caches as part of its commu-
nication with the memory module. These caches will then help mitigate the expected
issues related to memory latency.

Interface

The SVO traversal module’s interface is shown in Figure 6.9. On one end, the signals
are connected to the scheduler. Through these input signals, the core accepts jobs and
signals whether it is busy or idle. On the other end the signals are connected to the
result manager. The core will through this output interface return the results from its
assigned jobs.

SVO traversal core

Job ready

Job valid

Job

Result ready

Result valid

Result

Figure 6.9: The SVO traversal core module.
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Adaption of the algorithm

The main difference between the original algorithm and a hardware adaption of it is
that a switch from a recursive approach to a flat, iterative approach should be done.
The original algorithm was described as a recursive, top-down method with neighbour-
finding, but this kind of recursion is generally undesirable in a hardware design. The
reason for this is that in order to support recursion, a global function-call stack must
be maintained on which the current execution context—such as the program counter,
parameters, and local variables—is stored [40, p. 407]. Luckily, the original algorithm
is very adaptable, and can easily be converted to use an iterative approach. This was
demonstrated with great success in the project thesis [1], as well as in the master’s
thesis by Wilhelmsen [83].

Accordingly, the design presented here incorporates an iterative state machine.
Still, while the algorithm implementation itself is not recursive, the traversal of the
SVO data structure is bound happen in a recursive manner. This is because the chosen
data structure can only be efficiently traversed in a top-down manner. To facilitate
such recursive traversal, each traversal core in the implemented design features a very
rudimentary stack on which the current state can be pushed when recursing into the
data structure. The state can then be retrieved when backtracking up so that previously
calculated variables do not have to be recalculated.

Number representation

Before implementing the module, a choice was made as to which number representation
that should be used. The choice fell on fixed-point, and will be substantiated in the
following.

As detailed in Section 2.2.4, the main advantage of fixed-point numbers compared
to floating-point numbers is that calculations involving the former are much easier to
implement in hardware. And the fact of the matter is that the original SVO traversal
algorithm only requires two basic arithmetic operations: addition and division by two.
These two operations are very easy to implement for fixed-point numbers—as a simple
adder and right shift operation—but comparatively costly in terms of throughput and
hardware resources to implement for floating-point numbers.

State machine

The algorithm is implemented in hardware by defining a set of distinct states and
the transitions between them. These states were determined by taking a functioning
software model of the algorithm and reducing it down to a state machine. The software
model, which will be discussed further in Section 7.2, was reduced until the point where
dependent calculations made further reduction impossible. The result is a set of seven
states in which the traversal core may be, as well as a set of calculations and evaluations
describing the transitions between them. The states and their meaning are listed in
the following.

• IDLE: The initial state in which the system is brought after reset. In this state,
the core is idle and ready to accept a job assigned to it by the scheduler.
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• INIT: The scheduler has assigned a job to this core, and it has just been accepted.
In this state, the core is determining which direct child of the root that is initially
pierced by the ray based on the parameters of the job.

• EVAL: The core is now evaluating the current node. The validity of the ray is
assessed, which means that it is determined whether or not the ray hits the SVO
at all. If it is valid, it is established whether or not the ray hits a solid direct
child of the current node.

• NEXT: The ray did not hit anything in the current node. The core is moving on
to determine which sibling node to evaluate next.

• PUSH: The current node is not a leaf node, which means that it must be recursed
into. The core is pushing its current variables onto the stack, and fetching the
child nodes of the current node from memory.

• POP: The ray did not hit anything in the current node or any of its siblings. The
core is now backtracking one step up in the SVO tree to continue the traversal.

• OUT: The core has finished evaluating the tree and is ready to report a hit or miss.
It will stay in this state until the result has been fetched by the result manager
module.

In Figure 6.10, a state machine diagram is shown. This diagram illustrates graph-
ically each of the states and the transitions between them. As explained above, the
initial state is IDLE. The traversal core will spend one clock cycle in each state, which
means that the minimum processing time for a ray is four clock cycles. In other words,
at least four SVO traversal cores must be present in the system to achieve the through-
put of one ray per clock cycle.
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Figure 6.10: The internal state machine of the SVO traversal core.
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Memory interface

The SVO traversal module interfaces the memory module in order to read the SVO
data structure. However, since the requirement specification does not include a fully-
functioning memory module, support for stalls in relation to memory latency has not
been incorporated in the design. This means that the cores currently assume that every
memory access happens immediately, without delay. One approach that would extend
the module and offer support for traversal cores being blocked waiting for memory
is outlined in the following. An eight state could be introduced to the system—for
instance named BLOCKED. This new state would be inserted between EVAL and PUSH, as
this is where new nodes are fetched from the memory. The system would simply remain
in this BLOCKED state until the data from memory becomes available. Extending the
state machine in this manner is a topic for future work.

As discussed in the requirement specification in Chapter 5, it is expected that
memory latency will play a huge role in design performance once implemented. The
latency of the memory accesses could be improved by utilising memory caches. For
instance, an L2 cache may be included in the memory module, while placing L1 caches
in every SVO traversal core. Furthermore, the initial node of the model to be traced
will necessarily always be a direct child node of the octree root node. Therefore, this
node data could be cached in a register in the core to avoid having to fetch identical
data from memory for every job.

6.2.4 Result manager

In order to multiplex the many SVO traversal cores that may be instantiated in the
system, a final module is needed. The result manager keeps track of all results, and
exposes an external interface for the retrieval of the result of each submitted ray.

Interface

The interface of the result manager is displayed in Figure 6.11. As was the case for
the scheduler module, the result manager is connected to all the traversal cores and
monitors their output lines awaiting results. The result manager’s output lines are
coupled directly to the external lines of the RTU so that results may be delivered to
the environment.

Result manager

Cores: result ready

Cores: result valid

Result

Result ready

Result valid

Result

Figure 6.11: The result manager module.

76



6.2. Module design

Result buffering mechanism

The result module must return results on the format specified in Section 5.3.3 of the re-
quirements. It should additionally contain a buffering mechanism so that it can accept
results from SVO traversal cores and ready these for transmission to the environment.

The chief function, perhaps, of the result manager is this buffering of the results
from the SVO traversal cores. The mechanisem will help decouple the traversal cores
from the environment and pipeline the result output so that the traversal cores do not
have to wait for results to be retrieved before starting to process new jobs. In other
words, the cores may then immediately begin processing new jobs, not needing to wait
for the results to be retrieved by the environment. To this end, the result manager
contains an array of buffers—one for each SVO core. In order to demultiplex this array
of results to the environment, a scheme similar to that of the scheduler is be used. The
result manager will continuously loop through the buffers, exposing each of them to
the environment in turn.

An idea for future work is to investigate whether adding multiple layers of buffers
will increase performance. These buffers could be configured so that they sort the
output by the jobs’ unique ID before delivering them externally. Doing this ensures
that the results are retrieved in raster order—the same order that they were submitted
to the RTU. It might be possible to achieve a significant performance gain by sorting
the results in hardware instead of offloading this to the software driver.

6.2.5 Memory

The last module included in the system is the memory module, whose main responsibil-
ity is to communicate with any module that requires data from memory. Specifically,
the memory module needs to interface the SVO traversal cores and the job manager,
as these are the two types of modules that currently need data from memory. The
traversal cores must fetch the SVO models to be traced from memory, while the job
manager must retrieve any data associated with animation.

Interface

The interface of the memory module is as shown in Figure 6.12. Each of the modules
that communicate with the memory module has their dedicated address and data lines.
Once an address is put on the address bus, the data is immediately returned on the
data bus.

Memory
Modules: Address Modules: Data

Figure 6.12: The simplified memory module.
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Implications of thesis scope reduction

As was explained in the requirement analysis in Chapter 5, the memory module has
not been the main focus of this thesis. Since including a fully-fledged memory module
with caches would make the scope significantly larger, the memory module is currently
specified and designed as a read-only hard-coded data store. A consequence of this
reduced memory module is that the size of the models that can be rendered is con-
siderably reduced compared to what would be possible with a full memory module.
The limitation stems from the fact that any model would have to be hard-coded and
synthesised as part of the memory module design.

The reduced memory module also negates the need for memory caches. However,
a proper memory module would in all likelihood require memory caching to be imple-
mented to further reduce latency issues. As discussed in the section describing the SVO
traversal module, the traversal cores may contain an L1 cache to this end. Latency
issues could be further alleviated by introducing an L2 cache in the memory module
consisting, for instance, of fast block RAM.

Both a true memory module and memory caches are topics that should be revisited
as part of future work. It would be highly interesting to see what effect this might have
on system performance, especially if coupled with the introduction of a BLOCKED state
in the SVO traversal core.
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System implementation

The abstract system design of the ray tracing unit (RTU) and its modules presented
in Chapter 6 is now to be employed as a foundation for a hardware implementation.
This chapter opens with a presentation of the target technology, and follows up with
the details of the hardware implementation and verification methodology. The results
from the implementation, such as timing and utilisation reports, are presented and
discussed in Chapter 8.

7.1 Target technology

There are several viable target technologies that may be employed for implementation
of a hardware design. The choice of which medium might be best suited for imple-
mentation is in many cases a matter of assessing the applications of the end product.
For instance, if the end product is to be mass-produced and sold as a packaged circuit,
an ASIC would be the logical choice from an economical standpoint. In other cases,
however, one might benefit from keeping the development process itself in mind. The
ASIC approach, for instance, would require the design to be sent to a manufacturer
for production in order to realise it as a circuit. Hence, iterative design exploration on
an ASIC would presumably be infeasible.

For the development work in this master’s thesis, there is virtually only one practical
alternative that has the desired qualities for hardware implementation—the FPGA.
When compared to other types of media, such as the ASIC, it is clear that while it
may result in a slower and less streamlined implementation, only the FPGA can provide
the short turnaround time desired for this project. The development process will in
all likelihood entail a fair bit of design exploration and general trial and error, and an
FPGA would accommodate such a development methodology well. Furthermore, there
is simply not available budget to allow for an ASIC design in this master’s thesis, as
manufacturing expenses can be in the millions [58, p. 69].

Based on these considerations, the FPGA was elected as the target technology
for the hardware implementation. The chosen platform is the PYNQ-Z1: Python
Productivity for Zynq-7000 ARM/FPGA SoC [62], which has already been presented
in detail as part of the background chapter, in Section 2.5.1. One of the supervisors
for this master’s thesis, Øystein Gjermundnes, has kindly lent the author one such
development board to be used in the development work. The physical development
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setup in use for this master’s thesis is shown in Figure 7.1. Placed on the right-hand
side of the desk is the Pynq development board that was provided.

Figure 7.1: The development setup.

The FPGA SoC on the Pynq is the Zynq XC7Z020-1CLG400C, which is part of
Xilinx’s Artix-7 family of programmable logic [62]. The most relevant specifications
for this FPGA are provided in Table 7.1. For the design presented in this thesis, the
most important figure is the number of available logic slices, and derived from it, the
number of slice LUTs and slice registers. These numbers denote how much resources—
or area—the FPGA can provide when implementing hardware designs. In other words,
the higher these numbers are, the larger the designs may be that are to be programmed
onto the FPGA.

Table 7.1: Principal specifications of the FPGA. Taken from [62].

Logic slices (CLB) Slice LUTs Slice registers Block RAM DSP slices

13 300 53 200 106 400 630 kB 220

The discussion regarding available resources ties in with the scalability consideration
that was introduced as part of the requirement analysis in Section 5.3.1. According
to the design specification, the system will contain a central computation core—the
SVO traversal core—that may be duplicated in order to parallelise the workload and
increase throughput. Furthermore, the number of logic slices available on the FPGA
will presumably be the limiting factor in terms of the number of SVO traversal cores
that will fit on the target technology. This metric will therefore be revisited in the
results and discussion found in Chapter 8.
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7.2 Software model

Before commencing the actual hardware implementation work, a software model of
central parts of the design was created. Initially, this model was developed in order to
help the author build an understanding the chosen algorithms, and how these may be
efficiently adapted to hardware. However, the software model proved itself immensely
useful throughout the entire project—not only as a crucial tool to help build under-
standing, but also as a central part of the verification process that was conducted
concurrently with the development.

In the preliminary stages of the development process, the model was employed as
an accessory to the design exploration effort. It was used in this manner to allow
for quick design exploration with a much shorter turnaround time than for traditional
hardware design exploration. In other words, several different approaches to the same
problem could be implemented and tested in short order, without having to go through
the more cumbersome process of formulating them in RTL code and testing them in
hardware. Minor tweaks could also be made without having to simulate or synthesise
an entire hardware design repeatedly.

The model is written in Python in a modularised manner that resonates with how
the design is implemented in hardware. The model implementation of the SVO traver-
sal core, for instance, contains a state machine in software which runs exactly like
its counterpart on the FPGA. By implementing the software model in this fashion, it
could conveniently be employed as a reference for comparison during debugging and
validation of the hardware design. Specifically, the software model could be treated
as the blueprint for how the implementation should behave and function, as it is both
bit-exact and cycle-exact with respect to the hardware implementation.

The most relevant components of the finalised software model have been included in
Appendix G. Comparing the SVO traversal core model in Appendix G.1 with its actual
hardware implementation in Appendix C.4, one can readily see the similarities between
the two. The software model’s role in the verification process is further detailed in the
discussion on verification methodology found in Section 7.5.

7.2.1 Fixed-point decimal precision

The software model was employed in a major portion of the design exploration pro-
cess, which partly consisted of the determination of certain implementation details and
parameters. One such configuration parameter is the decimal precision of the 32-bit
fixed-point numbers that are employed in the SVO traversal module.

The fixed-point number format was detailed in Section 2.2.4, where it was pointed
out that a certain decision must be made when implementing the number representa-
tion. This decision concerns how the total 32 bits should be distributed between the
integer part, ni, and the fractional part, nf . The trade-off that arises when determin-
ing these two components’ sizes was subsequently described as part of this background
theory section. The software model was therefore employed in an effort to empirically
determine the optimal bit distribution for this specific area of application. Several
model runs were executed with a selection of configurations, after which the optimal
configuration was chosen by visual inspection of the output renders.
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In Figure 7.2 the results of these model runs are shown. Firstly, a control image
was created, which can be seen in Figure 7.2a. This output was rendered with 32 bits
of information set aside for each of the components of the fixed point number. In other
words, a total of 64 bits were used to store the fixed-point numbers in this run. Thus,
no matter the configuration of a 32-bit fixed-point number, the precision and range
can not be better than for this control render.

(a) ni = 32;nf = 32 (b) ni = 4;nf = 28 (c) ni = 8;nf = 24 (d) ni = 12;nf = 20

(e) ni = 16;nf = 16 (f) ni = 20;nf = 12 (g) ni = 24;nf = 8 (h) ni = 28;nf = 4

Figure 7.2: Model runs for different configurations of ni and nf . (a) functions as a
control render, with 32 bits allocated to both the integer and fraction parts.

In the runs illustrated by Figures 7.2b and 7.2c, significant visual artefacts appear.
These artefacts presumably stem from the fact that not enough bits have been allocated
for the integer part of the number. While having a very fine fractional resolution, the
fixed-point numbers in these configurations suffer from a tiny integral range. At the
other end of the scale, in Figures 7.2g and 7.2h, the edges in the output renders
appear to exhibit some sort of oscillation pattern. This “wobbly” visual effect may
be attributed to the very limited fractional precision that the fixed-point numbers can
provide at these configurations. The result is a very visible quantisation effect that
distorts the output image.

Both of the effects witnessed at each end of the scale are undesirable, and their
configurations therefore unsuitable for the implementation. Three of the configurations,
however—namely the runs illustrated by Figures 7.2d to 7.2f—seem to have none of
these artefacts or distortions, and are thus all valid candidates. Ultimately, the decision
was to use the configuration shown in Figure 7.2e for the system implementation.
This configuration—with both ni and nf equal to 16 bits—was chosen for the reason
that it is essentially the “farthest” from both of the undesirable effects. In addition,
while not a satisfactory argument by itself, it was also noted that this configuration
offers an attractive symmetrical elegance by allocating 16 bits for each of the number
components, which may ease implementation slightly.
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7.3 Module implementation

The hardware implementation of the system designed in Chapter 6 is now to be pre-
sented. The implementation was written entirely in SystemVerilog [66], and synthesised
by the Vivado Design Suite [69], both of which were presented in Section 2.5.

In Figure 7.3, the top-level schematic of the whole RTU system implemented with
four SVO cores is shown. While the text is hardly legible due to limitations of the
Vivado rendering options, all the major modules that were described in the specification
can be found. Upon closer inspection, it is revealed that the input signals are shown
on the bottom left, and are coupled directly to the job manager module on the lower
right-hand side. Just above and to the left of the job manager is the scheduler module,
which controls the four SVO traversal cores found distributed in the upper left-hand
quadrant of the schematic. Centred between the four traversal cores is the memory
module. Finally, the result manager is the tall module on the upper right-hand side,
which is subsequently connected to the output lines.

Figure 7.3: The elaborated design for the entire RTU. The schematic is drawn with 4
SVO cores.

The attentive reader may have noticed that the job manager module does not com-
municate with the memory module in the schematic. This is true for the implementa-
tion, and a result of the fact that the job manager module was only partly implemented
according to its specification. As will be further explained in the appropriate section
in the following, the scope of the implementation work turned out to be too large, and
certain features of this module could not be finished in time.

The individual modules that compose the RTU system are now to be presented.
The following sections will dive deeper into the implementation details of each module,
with justifications given for any design choices that were made. The source code for
all implemented modules is included in Appendix C, with the top-level module found
in Appendix C.1.

7.3.1 Job manager

As stated in its design description in Section 6.2.1, the main responsibility of the job
manager module is to transform an input ray, comprised of an origin and a direction,
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to an internal job structure that can be passed on to the SVO traversal cores. This
entails transforming the ray parameters such that animation of the SVO models can
be achieved, before converting the ray components to the set of traversal parameters
required by the chosen SVO traversal algorithm. Lastly, the job manager should convert
the floating-point numbers to a fixed-point format suitable for the SVO traversal cores.
For reference, the source code for this module is attached in Appendix C.2.

Schematic

The elaborated schematic of this module is shown in Figure 7.4. The schematic is
included here to illustrate the general complexity of the module, and is not expected
to be readable. Nonetheless, certain information may be gathered from the schematic.
The pipelined nature of the module, for instance, is apparent. From left to right,
there are layers of registers connected in series that illustrate this pipeline. The six
parallel data paths in the right half of the schematic are the floating-point to fixed-point
conversion modules.

Figure 7.4: Schematic of the job manager module internals. The module has 2844 cells
and 12101 nets.

Comparison to the design specification

As will be outlined in the following, certain aspects of the job manager’s specified
functionality were not implemented. Their implementation details were explored but,
unfortunately, the actual design of these functions could not be completed in time. It
would seem that including these in the specification lead to a workload whose scope
was simply too large for a master’s thesis.
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The first functionality that could not be implemented due to time constraints is
the matrix multiplication operation needed for SVO model animation. The design of a
matrix multiplication unit was explored, and many suitable solutions were referenced
in the system design, but their implementation ultimately proved too time-consuming.
This functionality is therefore an aspect of the system that should be revisited in future
work. Furthermore, this is the reason for the lack of a communication interface between
the job manager and the memory module in the top-level schematic.

The second functionality that proved too time-consuming to implement properly
is the floating-point division operation used in the traversal parameter generation.
Division is generally a very complex operation, and different designs were explored
during the implementation work. However, as with the SVO animation, a finished
design of a division module could not be finalised in time.

As a result of these limitations in the implemented design, actual animation of
SVO models could not be demonstrated. In addition, since the traversal parameter
calculation was not fully implemented, the traversal parameters were calculated in the
software driver and sent to the RTU instead of the ray origin and direction.

The floating-point to fixed-point conversion stage, however, was implemented and
demonstrated to work with huge success. It was implemented as described by the
module design in Chapter 6, and pipelined to such a degree that one such operation
could be completed every clock cycle.

7.3.2 Scheduler

When the job manager is finished processing a job, it is passed on to the scheduler
module. This module’s main responsibility is to keep track of all the SVO traversal
cores and their state. If there are idle cores, the scheduler will assign the next available
job to one of them. The source code for this module is found in Appendix C.3.

Schematic

The simplicity of the scheduler module is highlighted by its schematic, shown in Fig-
ure 7.5. In the figure, one can see that the scheduler is only concerned with the ready

and valid signals, and does not handle the job data. This was a further simplification
from the design specification which will be explained shortly.

Figure 7.5: Schematic of the scheduler internals. For scheduling 16 SVO cores, this
module has 11 cells and 49 nets.
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Comparison to the design specification

The scheduler was initially implemented exactly as described in the design chapter. It
functioned as a simplified implementation of the first-available scheduling algorithm,
that passed a pending job from the job manager on to the first available core.

However, in later implementations, the scheduler was further simplified. It was
implemented as a simple counting demultiplexer that passes the ready and valid

signals of its currently selected core directly to the job manager. This means that the
scheduler does not handle the actual job data at all, and is just concerned with the
ready and valid signals. This effort towards further simplification was made to avoid
any overhead associated with the scheduling itself, and can be observed in the source
code of the scheduler module, found in Appendix C.3.

7.3.3 SVO traversal core

The primary computation logic of the ray tracer happens in the SVO traversal core
module. This module is direct hardware adaption of the chosen algorithm described
in detail in Section 4.1. When compared, the algorithm implemented in the module
remains fairly true to the original algorithm. However, some minor alterations have
been made to make it more suitable for hardware design. These alterations were
described in Chapter 6. The source code for this module is found in Appendix C.4.

Schematic

This module is arguably the most complex and where most time was spent during the
design. The schematic in Figure 7.6 can bear witness to the module’s complexity. As
with earlier dense diagrams, the reader is not expected to be able to decipher the actual
schematic—it is only included to serve as an illustration of the general complexity.

Figure 7.6: Schematic of the SVO traversal module internals. The module has 1047
cells and 5271 nets.

Comparison to the design specification

The implementation of the SVO traversal core closely reflects the module design pre-
sented in Chapter 6. The interface and function are for all practical purposes imple-
mented identically to their specification. If there is a pending job and the scheduler
has selected the SVO traversal module by asserting its valid signal, the traversal core
can accept the job by signalling its ready signal. In other words, a job is accepted by
an SVO traversal core whenever both its ready and valid signals are asserted.
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After accepting a job, the core begins the computation by traversing the SVO
model referenced in the job according to the given parameters. Once the SVO traversal
operation is complete, the core will wait until the result can be passed on to the result
manager before it is ready to accept a new job. The communication between the SVO
traversal cores and the result manager happens by a similar ready-valid scheme as the
job assignment.

In an effort to achieve higher performance and increase the throughput the system,
the traversal core module may be duplicated. The scheduler and result manager mod-
ules support an arbitrary number of cores running in parallel, which means that the
available hardware resources is the factor limiting the number of cores.

7.3.4 Result manager

After a SVO traversal core has determined whether a ray results in a hit or miss, the
result is transferred to the result manager module. This module is responsible for
handling the results from multiple traversal cores, and preparing and demultiplexing
these so that they can be fetched through the external interface of the RTU. The source
code for this module is found in Appendix C.5.

Schematic

The schematic of the module is shown in Figure 7.7. While the module may look
complex initially, the following description should clarify that its implementation is
actually quite straightforward.

Figure 7.7: Schematic of the result manager module internals. The module has 210
cells and 408 nets.
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Comparison to the design specification

The implementation of the result manager resonates with its design specification to a
great extent. It is connected to every core, and contains an array of registers so that
each core result can be buffered. Whenever a core is finished, it may hand its result
over to the result manager and signal that it is ready to process a new job. In order to
expose these buffers on the external lines of the system, the result manager contains
a counter that cycles through them. This selection mechanism functions in similar
manner to how the scheduler cycles through the traversal cores.

7.3.5 Memory

As specified in the requirement analysis, the memory module is not the main focus of
this thesis. A fully-functioning memory module has not been designed and implemented
in an effort to reduce the overall scope of the project work. A simplified memory
module with no latency was included to simulate interactions with memory so that a
full module may be revisited and developed as part of future work.

7.4 Implementation context and wrapper modules

The Pynq development board requires some additional modules to be included in order
to properly implement designs its FPGA. The top-level block diagram of the design
implemented in hardware, along with these wrapper modules is shown in Figure 7.8.

Figure 7.8: Block diagram of the system, as rendered in Vivado’s block design func-
tion. The RTU is implemented as an IP and included in the design using Vivado’s IP
integrator.

In the block diagram, the RTU system is realised as a single module, highlighted
in red. The Zynq7 processing system, which represents the Arm processor on the SoC,
is also shown as its own module, coloured green. The other modules in this diagram
are responsible for the communication between these two main system modules, as
well as basic functionality such as system reset. Some of these helper modules were
automatically generated by the Vivado wizard, while others, such as the DMA module,
were placed and configured by the author.
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At this stage, it is worth noting that the interface of the RTU module in the block
diagram closely matches the interface presented as part of the requirement specification
in Section 5.3.3. While not immediately apparent, perhaps, the point can be argued
by explaining that the ports S00 AXIS and M00 AXIS on the RTU module in the block
diagram are actually visually collapsed buses that contain all signals of the AMBA 4
AXI4-Stream protocol. This means that these buses contain—among a few additional
signals—the ready-valid signals and the data lines required of the RTU interface. The
four other signals, namely s00 axis aclk, s00 axis aresetn, m00 axis aclk, and
m00 axis aresetn, are clock signals and reset signals.

The AMBA 4 AXI4-Stream interface to the RTU is included in Appendix D. It is
configured to use a word width of 256 bits, so that an entire 8-byte ray input packet
can be transferred each clock cycle. The results have a nominal size of 7 bytes, but are
padded to 8 bytes so that they match the bit width of the AXI4-Stream interface.

7.4.1 DMA controller

As can be seen in Figure 7.8, the AXI4-Stream buses from the RTU module are con-
nected directly to a DMA module. Direct memory access (DMA) was chosen as the
main interface between the processor and the FPGA on the Zynq SoC mainly because
of its suitability and simplicity.

The software driver inputs a sequence of rays to the RTU and obtains the results
by employing the direct memory access controller present on the Zynq SoC. The DMA
controller is initially set up by defining two regions of memory—the first of which holds
the data that should be input to the design on the FPGA, the second of which will
hold the results output from the design. On the CPU side, the whole interface consists
only of these two blocks of memory which makes communication with the RTU very
simple. The input block of memory is set up by the driver to contain all the ray jobs
that are to be traced. This block of memory is then streamed to the RTU by the DMA
controller through the AXI4-Stream input bus. Simultaneously, the second block of
memory is ready to be filled with results. The DMA controller streams the results
outputted from the RTU into this block of memory, one by one.

A limitation with this approach is that the dimensions of the frames to be rendered
are constrained by the size of the DMA memory regions. According to the Pynq
specification [64], a DMA memory region must be defined as a contiguous buffer in
memory, which is only feasible up to a certain size. Moreover, to properly communicate
both input and output, two of these contiguous buffers are needed. On the Pynq-Z1
the largest supported DMA buffers were emperically determined to be around 8 MB
each, for a total of 16 MB. Since the input rays and output results each have a size of
256 bits or 8 bytes, this corresponds to a 16 : 9 resolution of just above 1280 × 720.
The derivation is shown in Equation (7.1).

1280× 720 · 8 B = 7.37 MB (7.1)

A consequence of this, unfortunately, is that the full-HD resolution 1920× 1080 is
not supported by the DMA approach, as it would require two buffers of 16.6 MB. This
is fact is demonstrated by trying to allocate a DMA region for a frame larger than
1280 × 720—it simply results in the error “Failed to allocate memory”. For this
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reason, the results presented in Chapter 8 do not contain any performance data for
resolutions above 1280× 720.

7.4.2 Software driver

In order to simplify the interface between the software and the RTU system on the
FPGA, a software driver for it was written. The driver is written in Python and runs in
the Pynq environment on the Arm CPU. It is responsible for downloading the hardware
design to the FPGA, setting up the DMA controller, and allocating memory regions
to be used for communication.

Running as part of the Jupyter [65] interactive web interface, the driver enables the
user to initiate the rendering sequence and save the resulting render to a file. It can
also be used for benchmarking and was employed to record the performance metrics
presented in Chapter 8. An example of this usage of the driver is shown in Figure 7.9,
while the source code for it can be found in its entirety in Appendix F.

Figure 7.9: Example usage of the driver. The run test function is included in Ap-
pendix F.2.
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7.5 Verification methodology

A major part of the hardware implementation process is the verification of the system
and its individual modules. The verification methodology used in the implementation
work will be presented in this section, while the initial requirements of the system will
be revisited and discussed in Chapter 8.

7.5.1 Software modelling

As discussed in Section 7.2, a software model of central modules of the design was
prepared before the actual implementation work started. This model served not only
as a tool for understanding and design exploration, but was also heavily employed in
verification of the implementation in the early stages of the design process.

The software model was first written as a direct implementation of the underlying
algorithms. Subsequently, it was modularised and the central modules of the software
model were rewritten to reflect how their internal functionality might be implemented
in hardware. This means, for instance, that certain routines which were initially im-
plemented as blocking function calls were converted to software modules with internal
state machines. In order to model the synchronous nature of hardware, these modules
were called repeatedly—once each simulated clock pulse.

By converting an existing functional implementation of the algorithms to these
synchronous software modules, the author was forced to think ahead and plan how the
design would be best implemented. The process also aided in determining which states
the internal state machines should contain, or whether an explicit state machine was
needed at all.

Once the hardware design process began, the software model served a central role in
functional verification. Used in conjunction with simulations of the hardware modules
being designed, the software model was employed as a reference for the modules’ desired
functionality. For instance, the state machine in the SVO traversal core was verified
by submitting the same job to both the hardware design and the software model. The
behaviour of both designs could then be recorded and compared down to the smallest
detail. Many bugs and design errors were quickly discovered using this method.

7.5.2 Simulation

The bulk of the verification effort was carried out utilising software simulations of the
RTL code. Simulation runs are much faster than verification using the software model,
which means that more exhaustive testing can be done using this method compared to
the model. In addition, correctness against the specification can be checked on-the-fly
using SystemVerilog’s extensive assertion logic.

In a modular design, unit tests are often used to verify the functionality of each
individual module [58, p. 65]. Since the design in this thesis is heavily modularised,
it is natural that unit testing should be employed for the verification of its functional
correctness. The concept of modularisation in conjunction with unit testing generally
makes verification much easier than for large monolithic designs.

Simulations of a hardware design typically utilise unit testing so that each module
of the design can be tested separately. To this end, test benches for the given RTL
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modules must be written. A test bench is a piece of non-synthesisable HDL code that
instantiates the DUT and performs tests on its functionality [58, p. 207]. In a majority
of cases, the test bench is an example of a unit test.

Shown in Figure 7.10 is a demonstration of a test bench simulation, highlighting its
usage in the verification of system functionality. In the figure, the entire RTU system
is simulated by a test bench which submits ray tracing jobs and verifies the outputs.
This exact test bench is therefore not an example of a unit test, since it essentially tests
the entire system. As signified by the blue cursor, a ray tracing job with the unique
ID 0x06F7 is submitted to the system at time 45 034 ns. The ray tracer then processes
this job, and its result with the same unique ID is outputted at time 45 860 ns, as
highlighted by the yellow cursor.

Figure 7.10: Simulation of the top-level RTU module. The out ready signal is ran-
domised.

While software simulations are extremely useful in verification, they do not show
the whole picture. One central aspect that is not explored is the viability of a design
in terms of timing. Furthermore, the usage of resources and area is not calculated,
and whether or not the physical routing of a design is feasible is not determined. This
means that quite a number of bugs may pass undiscovered through the verification of
a simulated design. In fact, since simulations often contain test benches with non-RTL
code, they will not reveal situations where parts of the design itself is not synthesisable.
While a simple software simulation will not uncover such design issues, prototyping on
an FPGA can be used to this end.

7.5.3 FPGA prototyping

In this thesis, FPGA prototyping was employed with huge success in the verification ef-
fort. Since the design had been thoroughly modelled in software before the design work,
and exhaustively simulated to root out bugs before implementation, the validation load
at the FPGA stage was very light. FPGA prototyping is among the fastest verification
methods in terms of the raw speed at which the design can be run. Depending on the
implemented design, in the case of the chosen FPGA, the clock frequency can be well
over 500 MHz [64]—a switching rate that is not feasible using software modelling or
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simulation. This means that tests with considerable coverage can be run on the design
very quickly.

The downside, however, when the design has been implemented on an FPGA is
that the verification engineer forfeits a great deal of the debugging capacity that they
had access to with software modelling or design simulation. Observing what happens
inside the FPGA when a test fails—and determining the circumstances that lead to
the failure—is not straightforward. Nonetheless, there exist techniques that may be
used to increase the observability of a design implemented on an FPGA. The most
common, perhaps, is the implementation of performance counters.

As stated in the previous section, there are several bugs and issues that might
not be rooted out by simulation. One such design error that may not be discovered
by simulation, but will manifest itself when prototyping on an FPGA is rooted in
the unintended consequences related to the semantics of the X-value in Verilog and
SystemVerilog. In RTL code, the X represent an unknown value [66, p. 83]. As stated
by Turpin [101] in his paper The Dangers of Living with an X, unqualified use of the
X-value in designs can be extremely dangerous as RTL bugs can be masked, allowing
RTL simulations to incorrectly pass where netlist simulations can fail. Such X-bugs
are often missed because simulations and formal equivalence checkers are configured to
ignore them.
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Results and discussion

In the following sections, numerical metrics and results will be presented and discussed.
Many of these are reported from the chosen logic synthesis tool, Vivado, while some
are sourced from other experiments. The full reports from Vivado are included in
Appendix E. Further discussion about the overall design and implementation can be
found in Section 8.5.

8.1 Timing

The design timing results after implementation of the RTU system with different num-
bers of duplicated SVO traversal cores are shown in Table 8.1. The table is a summary
of the implementation timing, and shows the worst and total slacks for three kinds of
timing metrics: setup timing, hold timing, and pulse width timing.

Table 8.1: Worst and total negative slacks after implementation, taken from the Vivado
design timing summary included in Appendix E.2. All timing numbers are given in ns.

SVO cores
Setup Hold Pulse width

Worst Total Worst Total Worst Total

1 0.562 0.000 0.019 0.000 3.750 0.000

2 0.342 0.000 0.025 0.000 3.750 0.000

4 0.348 0.000 0.020 0.000 3.750 0.000

8 0.249 0.000 0.017 0.000 3.750 0.000

16 0.124 0.000 0.022 0.000 3.750 0.000

24 −0.104 −0.826 0.015 0.000 3.750 0.000

The setup time refers to the time before each rising clock edge that data signals
reach their correct value, while the hold time denotes how long after the clock edge
that the data remains stable [59, p. 199][58, p. 497]. The pulse width is a measure of
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the how the clock signal itself is distributed between high and low signal level during a
clock period [59, p. 474]. Slack describes in this context the margin that the design has
in relation to these timing values [58, p. 499]. A negative slack is desired if the system
is to function correctly—otherwise, the system is said to fail the timing requirements.

The system in this thesis is initially configured to run at 100 MHz, which translates
to a clock period of 10 ns. As demonstrated by the timing results in Table 8.1, the
design passes all timing requirements up to and including 16 SVO cores. Beyond
this core count—as highlighted by implementing the design with 24 cores—the timing
constraints are violated. This is most likely due to the signal routing becoming too
complex, or simply impossible, for more than 16 cores on the given area. Typically, the
signal paths of the system become too long, leading to a situation where the routing
delay exceeds the timing requirements.

8.1.1 Critical path and maximum frequency

The critical path of the 16-core implementation is shown in Figure 8.1. The schematic
is generated by Vivado and is unfortunately not legible, but it shows when zoomed in
that the critical path is the in the SVO traversal core. Starting in the memory, the
path subsequently goes through the carry signal of an adder, and ends up in the stack.
This path is used in the PUSH state when fetching the next node from memory and
calculating the new parameters. Redesigning the module in an attempt to improve this
critical path is the key to speeding up the implementation, and is something that can
be looked into as part of future work.

Figure 8.1: The critical path of the design as rendered by Vivado.

For a 16-core implementation, the worst negative slack (WNS) when running at
100 MHz is reported in Table 8.1 to be 0.124 ns. This means that the clock period could
be reduced by this value while still meeting the timing requirements [58, p. 499]. The
theoretical max frequency of the design in its current configuration may be calculated
as shown in Equation (8.1).

fmax =
1

10 ns− 0.124 ns
= 101.26 MHz (8.1)

It should be noted, however, that by changing the timing constraints, these numbers
may change as well. This effect can for instance be seen by looking at the difference
in WNS for the implementation of 2 and 4 SVO cores. While it may seem logical
for the slack for 2 cores to be much larger than for 4 cores, it is not the case in
Table 8.1. The most likely cause for this strange effect is that the synthesis tool stops
its implementation effort once it reaches a configuration that meets all the constraints
that have been posed. In other words, there might exist a more efficient layout and
routing that could be achieved by further processing, which may be discovered by
imposing stricter timing constraints.
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8.2 Resource utilisation

Shown in Table 8.2 are the utilisation metrics for the entire system as reported by
Vivado. The table sums up how adjusting the number of SVO traversal cores affects
the usage of available resources. By visual examination, there appears to be a trend
that slice register usage rises significantly slower than slice LUT usage when increasing
the number of SVO cores in the system. This tendency is in all likelihood caused by
the traversal cores being very logic-heavy. Furthermore, since the cores mainly perform
calculations in-place on existing data, they do not require much register storage.

Table 8.2: Utilisation for the whole system by different SVO core counts. Taken from
the Vivado resource utilisation report included in Appendix E.1.

SVO cores
Slice LUTs Slice registers

Used Available Utilisation [%] Used Available Utilisation [%]

1 10 796 53 200 20.29 12 718 106 400 11.95

2 12 578 ′′ 23.64 13 488 ′′ 12.68

4 15 798 ′′ 29.70 14 976 ′′ 14.08

8 22 795 ′′ 42.85 17 940 ′′ 16.86

16 36 714 ′′ 69.01 23 874 ′′ 22.44

24 50 656 ′′ 95.22 29 815 ′′ 28.02

As witnessed by its 95 % slice LUT utilisation, the 24-core implementation is right
on the limit of what can be synthesised on the given FPGA in terms of logic slice
resources. Attempting to synthesise the system with more than 24 cores fails due to
the implementation exceeding the available number of slice LUTs. However, as was
discussed in the timing results section, a 24-core implementation would not be feasible
in any event, since it does not satisfy the timing requirements of the system.

8.2.1 Per-module utilisation

Table 8.3 breaks down the resource utilisation further. The table shows how the FPGA
resources—such as the number of slice LUTs and slice registers—are distributed among
the different modules in the case of a 16-core system.

The SVO traversal cores represent the largest consumption of resources by a signifi-
cant margin, especially in terms of LUT usage. The metrics lend credence to the claim
that the traversal cores are the most complex parts of the design. The scheduler, on the
other hand, uses almost no resources at all. As detailed in its implementation descrip-
tion, the scheduler is essentially implemented as a counter and a demultiplexer circuit
which selects which of the cores’ ready-valid signals to pass through. It is therefore
only logical that this module should use very little resources when synthesised.
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Table 8.3: Utilisation per module when implemented with 16 SVO cores. Wrapper
modules has been chosen as a catch-all term for modules that are required for synthesis,
but not directly part of the design. Examples of such logic are the AXI and DMA
modules, as well as reset logic.

Module
Slice LUTs Slice registers

Used % of total Used % of total

Job manager 3334 9.08 1208 5.06

Scheduler 17 0.05 4 0.02

SVO cores 23 806 64.84 10 232 42.86

Result manager 449 1.22 1626 6.81

Memory 2110 5.75 0 0.00

Wrapper modules 6998 19.06 10 804 45.25

The result manager uses quite a number of slice registers. This is supported by the
fact that it contains an array of buffers for storing results before delivering them to
the environment. The job manager, however, employs a lot of slice LUTs, as well as a
fair number of slice registers. The module consists of a pipeline of calculations, so it is
logical that both LUTs and registers are utilised. The registers store the intermediate
results between the pipeline steps, while the LUTs implement the logic operations that
form each stage.

As expected, the number of slice registers employed by the memory module is listed
as 0. This metric is caused by the manner in which the memory module is currently
implemented. In an effort to reduce the scope of this thesis, a fully functional memory
module has not been developed. According to its requirements and design specification
in Chapters 5 and 6, the memory module has been implemented in the system as a
read-only data store, with the SVO model to be traced hard-coded. The memory is in
essence a module of combinational logic which the synthesis tool has implemented as
a set of look-up tables instead of employing conventional memory units such as block
RAM or registers. This is substantiated by the module’s LUT count in the utilisation
table. To improve the design, memory should be prioritised for development as part of
future work.

8.3 Performance

In Figure 8.2 is an SVO model is shown as rendered by the FPGA implementation. The
SVO model was generated by the process described in Section 2.4.2, and has a spatial
resolution of 323 data points. The object modelled is known as the Stanford Dragon,
and is provided by Stanford 3D Scanning Repository [51]. Due to the previously dis-
cussed limitations in memory, a model of the size 323 was the largest synthesisable
SVO data structure that would fit in memory.
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In this output image, the computational cost of each ray is highlighted in red,
employing the cost field in the output packet. A more intense red colour signifies
that more clock cycles were spent in the SVO traversal core to calculate the result. It
should be noted that only ray misses are part of this ray-cost visualisation, as ray hits
are utilised to render the model itself.

Figure 8.2: The model rendered when timing the implementation. Red colour signifies
the ray cost.

The output image testifies to the claim that the implementation fulfils the first
functional requirement posed in Chapter 5. This requirement stated that the system
must be able to render SVO models. Specifically, the system had to be able to traverse
an SVO model on the format described in Section 4.2, employing the algorithm detailed
in Section 4.1. The validity of the solution in terms of these primary functional and
non-functional requirements will be further discussed in Section 8.5.

8.3.1 Render times

In Table 8.4, the recorded render times of the implementation are listed. The table
includes several different resolutions, as well as different numbers of cores, in order to
illustrate what effect these configuration parameters have on performance. The content
that is rendered is the Stanford Dragon shown in Figure 8.2. The data was gathered by
rendering the same frame 1000 times and averaged in order to filter out any overhead
associated with the setup of the FPGA and DMA controller.

The main reason why an attempt was made to filter out the overhead delays is
because these latencies are not strictly part of the design and will only obscure the
actual performance. During the verification, it was revealed that downloading the
design to the FPGA and setting up the DMA controller and its memory regions were
very slow operations. This process could take many seconds, or even minutes, to
complete. Since this time delay could not be attributed to the design itself, but rather
was an issue with the speed of the Pynq system, it was decided that it should be filtered
out in order to paint a picture of the true performance of the system, unlimited by
external factors.
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Table 8.4: Actual render times of the implementation as timed by the software driver
for different resolutions and SVO traversal core count. The frame rate for a given
configuration is calculated as the inverse of the recorded render time. The relevant
functions of the software driver are included in Appendix F.

Resolution SVO cores Render time [ms] Frame rate [Hz]

320× 180 1 9.04 110.57

′′ 2 5.11 195.72

′′ 4 3.14 318.61

′′ 8 2.58 387.87

′′ 16 2.58 387.86

640× 360 1 35.36 28.28

′′ 2 19.63 50.93

′′ 4 12.29 81.38

′′ 8 9.56 104.65

′′ 16 9.50 105.30

1280× 720 1 140.58 7.11

′′ 2 78.75 12.70

′′ 4 50.32 19.87

′′ 8 38.44 26.02

′′ 16 37.15 26.91

The first thing one may notice is that the performance of the implementation meets
the requirement for real-time performance in a majority of the configurations. The re-
quirement specified in Chapter 5 stated that any performance above 16 Hz would satisfy
the performance requirement. As demonstrated by the render times, the requirement
is satisfied for any number of cores for the resolutions 320 × 180 and 640 × 360. For
1280× 720 resolution, however, the system must be implemented with at least 4 cores
in order to satisfy the requirement.

8.3.2 Identifying bottlenecks

It can be observed in Table 8.4 that for configurations up to and including 4 SVO
traversal cores, it appears that a further increase in the number of cores improves
overall performance. This happens regardless of rendering resolution, and indicates
that for these core counts, the bottleneck is internal to the system. In fact, it can be
established that for an RTU implemented with 1, 2, or 4 traversal cores, the bottleneck

100



8.3. Performance

resides in the section of the system responsible for the traversal of the SVO models.

Beyond this point, however, there is not much difference in performance when
adding traversal cores. The render times and frame rate of an 8-core implementation
and a 16-core implementation are very similar across the board. For the given content
they perform almost identically—an additional 8 cores have practically no impact on
the throughput. In other words, the SVO traversal cores do not represent the bottleneck
of the system in these cases. One possible explanation is that the content that is
rendered—i. e. the dragon in Figure 8.2—is not very complex. Its SVO data structure
has a maximum depth of 5, which means that the cores in the system do not spend a
sufficient amount of clock cycles traversing it to warrant the need for a large amount
of cores. Additional cores would presumably have a greater impact on throughput for
more complex content, such as deeper SVO structures.

An interesting metric that may yield insight into potential bottlenecks of the system
in these cases is the average amount of clock cycles the system uses to process each ray.
This metric can be calculated from the performance data using the general formula
listed in Equation (8.2). Shown in Table 8.5 are the results of employing this equation
to calculate the average number of clock cycles per ray for the 16-core system at
different resolutions.

100 MHz× Frame time

Rays per frame
(8.2)

Table 8.5: Average number of clock cycles per ray for the three resolutions.

Resolution Average rendering
time [ms]

Rays per
frame

Average clock cycle
count per ray

320× 180 2.58 6.84× 104 3.77

640× 360 9.50 2.30× 105 4.13

1280× 720 37.15 9.22× 105 4.03

The arithmetic mean of the averages listed in the right-most column is determined
to be 3.97, which means that the system on average outputs a result about every
fourth clock cycle. Based on this, one may conclude that there must be a bottleneck
somewhere, since it from a design standpoint should be able to process one ray per clock
cycle when not limited by the SVO traversal cores. Conclusively determining where
this bottleneck is located is not straightforward. However, it is theorised that since the
DMA controller is set up to transfer 8-byte words, and no 256-bit buses exist natively
on the Pynq, the performance might be limited by external factors. In fact, according
to AXI DMA v7.1 - LogiCORE IP Product Guide [102], the maximum throughput of
the DMA controller is around 300 MB s−1, which corresponds to 3 bytes per clock cycle
at 100 MHz. This means that the DMA controller must use at least 3 clock cycles to
transfer 8 bytes. On the basis of this, the system throughput is presumably limited—at
least partially—by IO transfers.
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8.3.3 Extrapolating the data

A data set that is lacking from Tables 8.4 and 8.5 is the performance of the system
when rendering a 1920×1080 frame. Unfortunately, this data could not be gathered as
a consequence of a different limitation in the Pynq system. It was briefly explained in
the section describing the DMA controller in Chapter 7, that the Pynq does not allow
the allocation of large enough contiguous memory buffers to support the 1920 × 1080
resolution. In fact, the largest standard resolution that is supported is the 1280× 720
resolution.

It would be very interesting to see how the system would perform rendering a full-
HD frame, but the data could therefore not be gathered directly. Nonetheless, the
performance of the other data sets could be extrapolated in an attempt to predict the
behaviour. Assuming that the system still uses on average 4 clock cycles to process
each ray, the performance can be calculated as shown in Equation (8.3).

4 · 2.07× 106

100 MHz
= 82.80 ms (8.3)

This corresponds to a frame rate of just above 12 Hz. Such a low frame rate may
not be classified as real-time, so the system might struggle to meet its requirements at
a resolution this high. However, it should be noted that the system currently only runs
at 100 MHz. Optimising the digital design to attain higher frequencies could be part
of future work. If the frequency were to double, the frame rate for 1920× 1080 could
very well be classified as real-time. It is not too far-fetched to consider that higher
clock frequencies may be attainable, as the current generation of graphics cards from
Nvidia have a base clock speed of 1350 MHz [5].

8.4 Visual results

Shown in Figure 8.3 is a visual comparison of the outputs from the software model
and the hardware implementation. Figures 8.3a and 8.3b show the original outputs
rendered with a resolution of 1280 × 720. The latter of these outputs was rendered
by an FPGA implementation with 16 SVO traversal cores. To highlight differences in
the individual pixels, Figures 8.3c and 8.3d show zoomed-in sections of these outputs.
The per-pixel difference between the two cropped outputs is shown in Figure 8.3e as a
binary image—a black pixel implies that the corresponding pixels in the two cropped
outputs are identical, while a white pixel signals that there was a difference.

The comparison shows that there is an almost negligible difference in the visual
outputs between the software model and the FPGA implementation, and that the
latter is very nearly a bit-exact implementation of the former. Since the zoomed-in
images each have a resolution of 160 × 90, it follows that for a total of 14 400 pixels,
only 5 differ. Furthermore, for the complete renders, only 12 out of the total 921 600
pixels are different between the software model and the hardware implementation. This
last fraction corresponds to a percentage of 0.0013 %.

From visual inspection, it appears that the few pixels which differ are somehow
related to the edges of the voxels. On the basis of this observation, it would stand
to reason that the anomalies may be attributed to some section of the SVO traversal
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(a) Model (b) FPGA

(c) Model (zoomed) (d) FPGA (zoomed) (e) Difference (zoomed)

Figure 8.3: The outputs from the software model and the implementation on FPGA
are shown in (a) and (b), each with a resolution of 1280× 720. Zoomed-in sections of
these outputs, with sizes 160× 90, are shown in (c) and (d). The differences between
the zoomed outputs are highlighted in (e).

algorithm. One hypothesis is that they might stem from slight differences in the math-
ematical comparison operators that are employed in the design. These comparison
operators are used when determining which node children that are to be recursed into,
as well as to decide which face of a node that is hit if the ray pierces a solid node.
In the model, these comparison operators are implemented using simple software com-
parison operators, while in the FPGA, they are implemented as hardware comparison
circuits. While no such discrepancy has been explicitly confirmed, there may be slight
differences in how these behave.

Another potential source for these minor differences is that the internal fixed-point
numbers may be rounded differently in the two implementations. In the software model,
the fixed-point numbers are implemented as a custom data type employing standard
integers. This means that after mathematical operations, the numbers will be rounded
according to the rules of integer rounding. As for the FPGA implementation, no such
logic for conventional rounding has been designed. In other words, in the hardware
design, the numbers are truncated and not properly rounded after any mathematical
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operation. The small differences this rounding discrepancy introduces may add up over
the course of a traversal routine and lead to slightly different results.

8.5 Further discussion

In the following sections, further discussion about the overall design and implemen-
tation will be presented. Limitations of the current design and future work will be
discussed, and the finalised system will be compared to its requirement specification.

8.5.1 Validation with respect to primary requirements

In conclusion, the system design presented in Chapter 6 fulfils all three of the primary
functional and non-functional requirements presented in Chapter 5. The implementa-
tion of this design, however, only meets two of the three requirements. In the following,
each of the primary requirements will be systematically revisited and discussed.

First requirement: ray tracing of SVO models

This first functional requirement was satisfied by both the system design and the system
implementation. The design specification presented a system which implemented the
correct algorithms and data structures, and its correctness was verified by the software
model. For the hardware implementation, this was proved by the output render shown
in Figure 8.2, as well as the comparison in Figure 8.3.

Second requirement: SVO model animation

The second functional requirement was satisfied by the design specification, which dis-
cussed and formulated all the necessary modules and their functionality for the proper
animation of SVO models. The implementation, however, does not meet this require-
ment primarily as a consequence of the required functionality not being completed
in time. A system implementation meeting this requirement should be the principal
concern for future work.

Third requirement: real-time performance

The last requirement is the non-functional requirement that the solution should exhibit
real-time performance, which was defined to be a frame rate of more than 16 Hz. The
initial calculations in Chapter 5 showed that such a system was indeed feasible, and
the implementation satisfied the performance requirement by providing frame rates
well above the required minimum.

8.5.2 Animation

The primary limitation of the implementation is the fact that animation is not sup-
ported. The design specification includes all necessary modules to facilitate animation,
but—as has been repeatedly discussed in previous relevant sections—part of these
modules were not implemented as they proved too time-consuming to develop.
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There are two main features that are missing from the current implementation,
which therefore need to be revisited as part of future work. The first is the matrix
multiplication circuit that provides the actual animation from a mathematical stand-
point. This circuit should be quite straightforward to design as an array of multiply-
accumulate (MAC) operations, and may even be parallelised by pipelining or module
duplication. In Chapter 6, many relevant examples from the literature were high-
lighted, including solutions by Zhuo and Prasanna [96]; Sajish et al. [97]; and Tertei,
Piat, and Devy [98].

The second operation is the floating-point division circuit needed to calculate the
traversal parameters after the animation transformations have been applied. The divi-
sion operation is usually a bit more involved to implement in hardware, but there are
multiple viable approaches. A couple of relevant designs were discussed, such as the
solutions by Savas et al. [99], and Peng et al. [100]. The design by Savas et al. [99] is
especially relevant since it is comprised of two main steps: reciprocal calculation and
multiplication. It was devised in Chapter 6 that these two stages may potentially be
incorporated in an effort to optimise the traversal parameter calculation, on account
of the reciprocal being a central part of this operation.

8.5.3 Memory

The design implemented in this thesis does not employ a true memory module. This
limitation in the system design was introduced in the requirement analysis in Chapter 5
as part of an effort to reduce the scope of the thesis, which had grown to become very
large. Unfortunately, this means that any latency associated with memory operations is
not properly manifested in the timing metrics presented in the results, and the validity
of these in a real world setting is therefore debatable. All the results in Table 8.4 were
gathered by rendering a model hard-coded in memory as a set of LUTs. A consequence
of this is that all memory operations were completed within the same clock cycle as
they were requested, and none of the SVO traversal cores were ever stalled due to
memory latency.

The idea of a fully-functioning memory module has been entertained in peripheral
discussion throughout this thesis—as evidenced by the discussion of memory caches
and the potential inclusion of a BLOCKED state in the SVO traversal cores. As a topic
for future work, it would be interesting to see what effect a fully-functioning memory
module would have on performance. This memory module could for instance employ
the block RAM present on the FPGA. The Pynq development board has a total of
630 kB of such memory available, so by storing the model to be rendered in this RAM,
a much larger and more complex scene can be rendered.

The introduction of memory caches should help alleviate the latency introduced by
such a memory module. Exploring how a memory cache would mitigate latency issues
is certainly a potential subject for future research. It has been suggested in relevant
earlier discussion that multiple levels of cache could be employed. For instance, placing
a L1 cache in each SVO traversal core, and an L2 cache in the memory module may
further improve performance.
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8.5.4 Tracing complex scenes

The performance when tracing complex scenes consisting of multiple models may be
quite limited in the current design specification. The reason for this is that tracing
multiple models currently requires submitting multiple ray tracing jobs to the RTU.
The system is configured to interpret one ray tracing job to mean tracing a single ray
through a single model, and is pipelined, parallelised, and optimised for this exact
purpose. Complex scenes may be traced by traversing every model in the scene by
every ray, and subsequently using the depth information—the t hit field—as part of
a depth buffering mechanism to sort the results. There would presumably be much
to gain in terms of performance by extending the design specification so that multiple
objects may be traced by a single ray, and an effort to this end can be part of future
work.

One approach to enable such functionality would be to include a module responsible
for traversing the scene. This module will in the following referred to as the scene
manager, and the RTU structure after introducing this scene manager module is shown
in Figure 8.4. A description of the scene and which models it contains would be supplied
by some data structure in memory, or be submitted to the RTU as an initial setup
before tracing a frame. Using this scene description, the scene manager would for each
model in the scene submit an internal ray tracing job to the job manager. In addition,
it would keep track of the results from the result manager and select the correct result
to return for a given ray.

Job
manager

Scheduler

SVO
traversal

core 0

SVO
traversal

core 1

SVO
traversal

core i

Result
manager

Scene
manager

Ray Tracing Unit (RTU)

. . .

Figure 8.4: How a scene manager module may be realised in the system in order to
allow efficient traversal of complex scenes.

106



8.5. Further discussion

8.5.5 Algorithmic optimisations

Introduced in the project thesis were several optimisations that may further improve
general performance of animated SVO models. These optimisations were briefly de-
scribed in Section 4.3, and should be evaluated as part of future work. Especially
relevant are the hit buffer object (HBO) and bounding-sphere sorting optimisations
which were employed with huge success in the project thesis.

These optimisations work on the scene level, and therefore might be coupled with
the introduction of a scene manager module as described in the previous.
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Chapter 9

Conclusions

In this master’s thesis a solution for the real-time ray tracing of animated sparse voxel
octrees is presented. The solution—titled ray tracing unit (RTU)—is designed to run in
hardware on the FPGA present on the Pynq-Z1 development board. For its design, the
system employs the works of Revelles, Ureña, and Lastra [53], and Laine and Karras
[35] as a foundation, where the former paper provides the octree traversal algorithm,
and the latter contains the formulation upon which the SVO format is based. The
method for animation of SVO models was introduced by Espe [1], in the specialisation
project thesis that was antecedent to this master’s thesis.

An analysis of the system requirements was conducted in Chapter 5, and later em-
ployed in the formulation of a requirement specification. Three primary requirements
were established—two functional requirements and one non-functional requirement.
The first functional requirement stated that the solution must be able to render SVO
models as specified by the chosen foundational algorithms detailed in Chapter 4. The
second functional requirement posed that the solution must support animation of the
SVO models in the manner detailed by the project thesis. The third non-functional
requirement asserted that the solution must be capable of rendering these models in
real-time. The requirements were revisited in later chapters as part of the validation
of the solution. Following these primary requirements, further derivative requirements
and considerations were discussed, such as system scalability, pipelining, communica-
tion interface, and overall feasibility.

In Chapter 6, the overall design of the system was derived. The internal modulari-
sation of the solution was determined, and the function of each module discussed and
examined in contrast to the requirements posed in the previous chapter. The main
modules of the system introduced as part of the design were: the job manager, the
scheduler, the SVO traversal core, the result manager, and the memory module. All
but one of these modules were specified in detail; in an effort to limit the scope of the
implementation workload, the memory module was only partially designed, leaving the
design and implementation of a proper memory module for future work.

An implementation of the system design was developed and presented in Chapter 7.
The majority of the system was implemented in accordance with the design specifica-
tion, but due to time constraints, some modules were only partially completed. The
scheduler, the SVO traversal core, and the result manager closely reflect their design
specification, while the job manager lacks a certain subset of the required features that
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facilitate animation. As such, the implementation is a fully-functioning SVO ray tracer,
but support for animation of the models could not be completed in time. Many relevant
approaches to these unfinished features were presented in an attempt to streamline this
part of future work. The memory module was implemented as required by the design
specification, though its functionality is limited due to the reduction of scope detailed
in the system design.

The results from the implementation show that the solution is capable of delivering
a frame rate of 26.91 Hz when rendering static SVO models at a resolution of 1280×720.
This performance was recorded with 16 SVO traversal cores. In order to achieve real-
time performance at this resolution, the system must be implemented with at least 4
SVO traversal cores, which gives the borderline frame rate of 19.87 Hz. On the basis
of this, it is argued that the non-functional requirement of real-time performance is
satisfied. Even though the implementation itself does not satisfy the second functional
requirement of supporting animation, this requirement is satisfied by the system design.
It is theorised that real-time performance rendering animated models is achievable if
implemented efficiently—especially if certain optimisations are explored, such as the
general optimisation techniques presented in the project thesis.

It is demonstrated that if the system is implemented with sufficient resources, the
bottleneck is not attributed to limitations in its internal throughput, and that the
RTU performance is consequently limited by external factors. Specifically, when not
constrained by the throughput of the SVO traversal cores, the system performance was
limited by a bottleneck identified as the transfer of data from the DMA controller to the
RTU system. A side-by-side comparison of the outputs from a software implementation
of the chosen algorithms and the hardware implementation was presented. The visual
difference between the outputs is negligible, which substantiates the claim that the first
functional requirement is fulfilled.

9.1 Limitations

The limitations of the design and implementation were detailed in Chapter 8, but the
main points will be briefly reiterated here. A major limitation of the implementation
is the fact that animation is not supported. The scope of this thesis was apparently
too large, and lead to certain required features not being completely implemented. A
limitation in the design of the system itself is that scenes consisting of several models
can only be properly rendered by tracing multiple rays. Moreover, the memory module
is only partially designed. For this reason the system is currently constrained by the
available memory, with only small SVO models currently supported.

A limitation attributed to the chosen target technology is that the performance of
the implementation is currently restricted by the speed of the CPU and DMA controller
on the Pynq. This was indeed identified as the bottleneck of the system. Additionally,
the setup and configuration of the Pynq—including the downloading of the implemen-
tation to the FPGA and the allocation of DMA memory—is very slow. Lastly, due to
memory constraints associated with the selected DMA approach, the system is limited
to a maximum resolution of 1280× 720.

110



9.2. Future work

9.2 Future work

When nearing the end of implementation work, it was evaluated that a hardware im-
plementation of the entire design specification had been too ambitious, and resulted
in a scope too large for a master’s thesis. To put it somewhat extremely, the im-
plementation of a matrix multiplication circuit or floating-point division circuit could
conceivably constitute entire theses on their own.

A fair share of material has been identified as suitable for future work and continued
research. The chief topic, perhaps, is completing the implementation of the job manager
module according to its design specification. The job manager was only partially
implemented due to time constraints, which lead to animation not being supported by
the implementation. Finishing the implementation of the required operations, such as
matrix multiplication and floating-point division in hardware, should be the primary
focus of future work. Many solutions providing these specific functions were found in
the literature, so their implementation should be unproblematic given sufficient time.

Secondly, a proper memory module should be designed and implemented. The
memory module could make use of the block RAM present on the FPGA to enable the
storage of larger SVO models, as well as the transformation matrices associated with
animation. This memory module would be coupled with proper support for stalls in
the SVO traversal cores. In addition, to mitigate the adverse effects linked to memory
latency, memory caches could be introduced wherever suitable. For instance, a large
L2 cache could be implemented as part of the memory module, while placing L1 caches
in the job manager and SVO traversal cores.

Complex scenes consisting of several SVO models currently require that multiple
ray jobs are submitted to the system in order to trace properly. Extending the system
design to allow a single ray to be used for the traversal of multiple models would
presumably speed up the implementation significantly, since post-processing of the
results and the maintaining of a depth buffer in software would no longer be required.
This could be achieved, for instance, by designing a scene manager module.

As a consequence of the parallel nature of the system, ray tracing jobs submitted to
the RTU may be received out of order. Hence, the results must be post-processed and
reordered in software so that each result ends up in the appropriate memory location.
The result manager could in all likelihood be extended to perform this sorting in
hardware, and subsequently return the result in raster order—the order in which they
were submitted. This extension would also alleviate the need for the job id field,
which is required solely for the purpose of identifying results.

Optimisations of the current solution may yield significant improvements in per-
formance, and as such is an area that could be explored as part of future work. The
critical path identified in Chapter 8 is the primary limitation constraining the max-
imum frequency of the implementation. If improved, the design could accommodate
higher frequencies and in turn better performance. Another approach would be to
introduce multiple clock domains in order to speed up certain parts of the design.
The optimisations introduced in the project thesis—such as the HBO and the set of
bounding-sphere optimisations—should be evaluated, as they may be suited for hard-
ware implementation and grant further improvements in performance once animation
is supported.
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Heinrich-Hertz-Institut für Nachrichtentechnik Berlin, West: Technischer Bericht.
Technische Universität Berlin, 1974.

[27] A. Appel. “Some techniques for shading machine renderings of solids”. In: Pro-
ceedings of the April 30–May 2, 1968, spring joint computer conference on -
AFIPS ’68 (Spring). ACM Press, 1968. doi: 10.1145/1468075.1468082.

[28] T. Whitted. “An improved illumination model for shaded display”. In: Commu-
nications of the ACM 23.6 (1980), pp. 343–349. doi: 10.1145/358876.358882.

[29] T. Oguchi et al. “A single-chip graphic display controller”. In: 1981 IEEE In-
ternational Solid-State Circuits Conference. Digest of Technical Papers. IEEE,
1981. doi: 10.1109/isscc.1981.1156160.

[30] C. Machover and J. Dill. “New products”. In: IEEE Computer Graphics and
Applications 5.10 (1985), pp. 67–75. doi: 10.1109/mcg.1985.276240.

[31] J. Packer. Exploiting concurrency: a ray tracing example. Tech. rep. 72-TCH-
007-01. INMOS Technical Note 7, 1987. url: http://www.transputer.net/
tn/07/tn07.html.

114

https://www.sketchup.com/
https://www.sketchup.com/
https://www.autodesk.com/autocad
https://www.autodesk.com/autocad
http://www.solidworks.com/
http://www.solidworks.com/
https://gtk.org/
https://gtk.org/
https://www.qt.io/
https://doi.org/10.1145/800031.808606
https://doi.org/10.1145/1461551.1461591
https://doi.org/10.1145/362566.362567
https://doi.org/10.1145/355611.362537
https://doi.org/10.1145/1468075.1468082
https://doi.org/10.1145/358876.358882
https://doi.org/10.1109/isscc.1981.1156160
https://doi.org/10.1109/mcg.1985.276240
http://www.transputer.net/tn/07/tn07.html
http://www.transputer.net/tn/07/tn07.html


Bibliography

[32] D. You and K.-S. Chung. “Dynamic voltage and frequency scaling framework
for low-power embedded GPUs”. In: Electronics Letters 48.21 (2012), p. 1333.
doi: 10.1049/el.2012.2624.

[33] A. Watt and M. Watt. Advanced animation and rendering techniques. Addison-
Wesley Professional, 1992. isbn: 978-0201544121.

[34] T. Theoharis et al. Graphics and Visualization: Principles & Algorithms. A K
Peters/CRC Press, 2008. isbn: 978-1-4398-6435-7.

[35] S. Laine and T. Karras. “Efficient Sparse Voxel Octrees”. In: IEEE Transactions
on Visualization and Computer Graphics 17.8 (2011), pp. 1048–1059. doi: 10.
1109/tvcg.2010.240. url: https://www.nvidia.com/docs/IO/88972/nvr-
2010-001.pdf (visited on 05/16/2013).

[36] P. Read and M.-P. Meyer. Restoration of Motion Picture Film (Butterworth-
Heinemann Series in Conservation and Museology). Butterworth-Heinemann,
2000. isbn: 0-7506-2793-X.

[37] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach (The Morgan Kaufmann Series in Computer Architecture and Design).
Morgan Kaufmann, 2017. isbn: 978-0-12-811905-1.

[38] IEEE Standard for Floating-Point Arithmetic. IEEE, 2008. isbn: 978-0-7381-
5753-5. doi: 10.1109/ieeestd.2008.4610935.

[39] M. L. Overton. Numerical Computing with IEEE Floating Point Arithmetic.
Society for Industrial and Applied Mathematics, 2001. isbn: 978-0-89871-482-1.
doi: 10.1137/1.9780898718072.

[40] A. S. Tanenbaum and T. Austin. Structured Computer Organization (6th Edi-
tion). Pearson, 2012. isbn: 978-0-13-291652-3.

[41] Henrik. Ray trace diagram. Wikimedia Commons. 2008. url: https://commons.
wikimedia.org/wiki/File:Ray_trace_diagram.svg (visited on 11/05/2018).

[42] P. H. Christensen et al. “Ray Tracing for the Movie Cars”. In: 2006 IEEE
Symposium on Interactive Ray Tracing. IEEE, 2006. doi: 10.1109/rt.2006.
280208.

[43] T. Babb. Recursive raytrace of a sphere. Wikimedia Commons. 2008. url:
https://commons.wikimedia.org/wiki/File:Recursive_raytrace_of_

a_sphere.png (visited on 11/05/2018).

[44] G. Tran. Glasses 800 edit. Wikimedia Commons. 2006. url: https://en.

wikipedia.org/wiki/File:Glasses_800_edit.png (visited on 11/05/2018).

[45] D. Meagher. “Octree Encoding: A New Technique for the Representation, Ma-
nipulation and Display of Arbitrary 3-D Objects by Computer”. In: IPL-TR-
80-111 (Oct. 1980).
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[52] S. Jab loński and T. Martyn. “Real-Time Rendering of Continuous Levels of
Detail for Sparse Voxel Octrees.” In: Computer Graphics, Visualization and
Computer Vision WSCG 2016. Short Papers Proceedings. 2016, pp. 79–88.

[53] J. Revelles, C. Ureña, and M. Lastra. “An Efficient Parametric Algorithm for
Octree Traversal”. In: (2000), pp. 212–219.

[54] A. H. Robinson and C. Cherry. “Results of a prototype television bandwidth
compression scheme”. In: Proceedings of the IEEE 55.3 (1967), pp. 356–364.
doi: 10.1109/proc.1967.5493.

[55] Blender. Version 2.79b. Blender Foundation. Mar. 22, 2018. url: http : / /

blender.org/ (visited on 10/29/2018).

[56] P. Min. Binvox. Version 1.26. Oct. 22, 2017. url: https://www.patrickmin.
com/binvox/ (visited on 10/08/2018).

[57] M. Kazhdan. BINVOX voxel file format specification. 2015. url: https://

patrickmin.com/binvox/binvox.html (visited on 10/30/2018).

[58] W. J. Dally, R. Curtis Harting, and T. M. Aamodt. Digital Design Using VHDL:
A Systems Approach. Cambridge University Press, 2015. isbn: 978-1-107-09886-
2.

[59] M. M. R. Mano and M. D. Ciletti. Digital Design: With an Introduction to the
Verilog HDL. Pearson, 2012. isbn: 978-0-13-277420-8.

[60] K. S. Mohamed. IP Cores Design from Specifications to Production: Modeling,
Verification, Optimization, and Protection (Analog Circuits and Signal Process-
ing). Springer, 2015. isbn: 978-3-319-22034-5.

[61] I. Kuon and J. Rose. “Measuring the Gap Between FPGAs and ASICs”. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 26.2 (2007), pp. 203–215. doi: 10.1109/tcad.2006.884574.

[62] PYNQ-Z1: Python Productivity for Zynq-7000 ARM/FPGA SoC. Digilent Inc.
url: https://store.digilentinc.com/pynq-z1-python-productivity-
for-zynq-7000-arm-fpga-soc/ (visited on 04/19/2019).

[63] Python 3.6.0 documentation. Python Software Foundation. url: https : / /

docs.python.org/release/3.6.0/ (visited on 04/22/2019).

[64] Python productivity for Zynq (Pynq). Xilinx, Inc. url: https://pynq.readthedocs.
io/en/latest/getting_started.html (visited on 04/22/2019).

116

https://doi.org/10.1109/IVS.2010.5548088
https://graphics.stanford.edu/data/3Dscanrep/
https://doi.org/10.1109/proc.1967.5493
http://blender.org/
http://blender.org/
https://www.patrickmin.com/binvox/
https://www.patrickmin.com/binvox/
https://patrickmin.com/binvox/binvox.html
https://patrickmin.com/binvox/binvox.html
https://doi.org/10.1109/tcad.2006.884574
https://store.digilentinc.com/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/
https://store.digilentinc.com/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/
https://docs.python.org/release/3.6.0/
https://docs.python.org/release/3.6.0/
https://pynq.readthedocs.io/en/latest/getting_started.html
https://pynq.readthedocs.io/en/latest/getting_started.html


Bibliography

[65] Jupyter Notebook Documentation. Jupyter Team. url: https : / / jupyter -

notebook.readthedocs.io/en/latest/index.html (visited on 04/22/2019).

[66] IEEE Standard for SystemVerilog. IEEE, 2018. isbn: 978-1-5044-4509-2. doi:
10.1109/ieeestd.2018.8299595.

[67] E. Cerny et al. The Power of Assertions in SystemVerilog. Springer US, 2010.
doi: 10.1007/978-1-4419-6600-1.

[68] L. Lavagno et al. Electronic Design Automation for IC Implementation, Circuit
Design, and Process Technology. CRC Press, 2017. isbn: 978-1-4822-5461-7.

[69] Vivado Design Suite. Version 2018.3. Xilinx, Inc. Dec. 10, 2018. url: https:
/ / www . xilinx . com / products / design - tools / vivado . html (visited on
04/22/2019).

[70] C. Fletcher. EECS150: Interfaces: “FIFO” (a.k.a. Ready/Valid). UC Berkeley
College of Engineering. Feb. 24, 2009. url: https://inst.eecs.berkeley.
edu/~cs150/Documents/Interfaces.pdf (visited on 05/15/2019).

[71] AMBA Specifications. Arm Ltd. url: www . arm . com / products / silicon -

ip- system/embedded- system- design/amba- specifications (visited on
04/09/2019).

[72] AMBA 4 AXI4-Stream Protocol Specification. Arm Ltd. 2010. url: https :

//www.xilinx.com/support/documentation/ip_documentation/axi_dma/

v7_1/pg021_axi_dma.pdf (visited on 05/26/2019).

[73] A. S. Glassner. “Space subdivision for fast ray tracing”. In: IEEE Computer
Graphics and Applications 4.10 (1984), pp. 15–24. doi: 10.1109/mcg.1984.
6429331.

[74] M. Levoy. “Efficient ray tracing of volume data”. In: ACM Transactions on
Graphics 9.3 (1990), pp. 245–261. doi: 10.1145/78964.78965.

[75] H. Samet. “Implementing ray tracing with octrees and neighbor finding”. In:
Computers & Graphics 13.4 (1989), pp. 445–460. doi: 10.1016/0097-8493(89)
90006-x.

[76] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image
Processing, and GIS. Addison-Wesley Pub (Sd), 1995. isbn: 0-201-50300-X.

[77] M. Agate, R. L. Grimsdale, and P. F. Lister. “The HERO Algorithm for Ray-
Tracing Octrees”. In: Eurographics Workshop on Graphics Hardware. Ed. by R.
Grimsdale and W. Strasser. The Eurographics Association, 1989. isbn: ISBN
3-540-53473-3. doi: 10.2312/EGGH/EGGH89/061-073.

[78] F. W. Jansen. “Data structures for ray tracing”. In: Data Structures for Raster
Graphics. Springer Berlin Heidelberg, 1986, pp. 57–73. doi: 10.1007/978-3-
642-71071-1_4.

[79] D. Cohen and A. Shaked. “Photo-Realistic Imaging of Digital Terrains”. In:
Computer Graphics Forum 12.3 (1993), pp. 363–373. doi: 10.1111/1467-

8659.1230363.

117

https://jupyter-notebook.readthedocs.io/en/latest/index.html
https://jupyter-notebook.readthedocs.io/en/latest/index.html
https://doi.org/10.1109/ieeestd.2018.8299595
https://doi.org/10.1007/978-1-4419-6600-1
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://inst.eecs.berkeley.edu/~cs150/Documents/Interfaces.pdf
https://inst.eecs.berkeley.edu/~cs150/Documents/Interfaces.pdf
www.arm.com/products/silicon-ip-system/embedded-system-design/amba-specifications
www.arm.com/products/silicon-ip-system/embedded-system-design/amba-specifications
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://doi.org/10.1109/mcg.1984.6429331
https://doi.org/10.1109/mcg.1984.6429331
https://doi.org/10.1145/78964.78965
https://doi.org/10.1016/0097-8493(89)90006-x
https://doi.org/10.1016/0097-8493(89)90006-x
https://doi.org/10.2312/EGGH/EGGH89/061-073
https://doi.org/10.1007/978-3-642-71071-1_4
https://doi.org/10.1007/978-3-642-71071-1_4
https://doi.org/10.1111/1467-8659.1230363
https://doi.org/10.1111/1467-8659.1230363


Bibliography

[80] I. Gargantini and H. H. Atkinson. “Ray Tracing an Octree: Numerical Eval-
uation of the First Intersection”. In: Computer Graphics Forum 12.4 (1993),
pp. 199–210. doi: 10.1111/1467-8659.1240199.

[81] R. Endl and M. Sommer. “Classification of Ray-Generators in Uniform Subdivi-
sions and Octrees for Ray Tracing”. In: Computer Graphics Forum 13.1 (1994),
pp. 3–19. doi: 10.1111/1467-8659.1310003.

[82] A. Knoll et al. “Interactive Isosurface Ray Tracing of Large Octree Volumes”.
In: 2006 IEEE Symposium on Interactive Ray Tracing. IEEE, 2006, pp. 115–
124. doi: 10.1109/rt.2006.280222.

[83] A. Wilhelmsen. “Efficient Ray Tracing of Sparse Voxel Octrees on an FPGA”.
M.S. thesis. 2012. url: http://hdl.handle.net/11250/2370620 (visited on
08/22/2018).

[84] D. Bautembach. Animated Sparse Voxel Octrees. B.S. thesis. 2011. url: http:
//masters.donntu.org/2012/fknt/radchenko/library/asvo.pdf (visited
on 08/22/2018).

[85] C. Crassin et al. “Gigavoxels: ray-guided streaming for efficient and detailed
voxel rendering”. In: I3D ’09: Proceedings of the 2009 symposium on Interactive
3D graphics and games. 2009, pp. 15–22.

[86] C. Cassagnabère, F. Rousselle, and C. Renaud. “Path tracing using the AR350
processor”. In: Proceedings of the 2nd international conference on Computer
graphics and interactive techniques in Austalasia and Southe East Asia - GRAPHITE
’04. ACM Press, 2004. doi: 10.1145/988834.988838.

[87] J. Fender and J. Rose. “A high-speed ray tracing engine built on a field-programmable
system”. In: Proceedings. 2003 IEEE International Conference on Field-Programmable
Technology (FPT) (IEEE Cat. No.03EX798). IEEE. doi: 10.1109/fpt.2003.
1275747.

[88] G. Knittel and W. Straßer. VIZARD - Visualization Accelerator for Realtime
Display. 1997. doi: 10.2312/eggh/eggh97/139-146.

[89] J. Schmittler et al. “Realtime ray tracing of dynamic scenes on an FPGA
chip”. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics hardware - HWWS ’04. ACM Press, 2004. doi: 10.1145/1058129.
1058143.

[90] S. Woop, J. Schmittler, and P. Slusallek. “RPU: A Programmable Ray Process-
ing Unit for Realtime Ray Tracing”. In: ACM Transactions on Graphics 24.3
(2005), p. 434. doi: 10.1145/1073204.1073211.

[91] S. Collinson. “Efficient Ray Tracing on FPGAs”. PhD thesis. Dec. 2014.

[92] S. Thiedemann et al. “Voxel-based global illumination”. In: Symposium on In-
teractive 3D Graphics and Games on - I3D ’11. ACM Press, 2011. doi: 10.
1145/1944745.1944763.

[93] N. Li et al. “Virtual X-ray imaging techniques in an immersive casting simula-
tion environment”. In: Nuclear Instruments and Methods in Physics Research
Section B: Beam Interactions with Materials and Atoms 262.1 (2007), pp. 143–
152. doi: 10.1016/j.nimb.2007.04.262.

118

https://doi.org/10.1111/1467-8659.1240199
https://doi.org/10.1111/1467-8659.1310003
https://doi.org/10.1109/rt.2006.280222
http://hdl.handle.net/11250/2370620
http://masters.donntu.org/2012/fknt/radchenko/library/asvo.pdf
http://masters.donntu.org/2012/fknt/radchenko/library/asvo.pdf
https://doi.org/10.1145/988834.988838
https://doi.org/10.1109/fpt.2003.1275747
https://doi.org/10.1109/fpt.2003.1275747
https://doi.org/10.2312/eggh/eggh97/139-146
https://doi.org/10.1145/1058129.1058143
https://doi.org/10.1145/1058129.1058143
https://doi.org/10.1145/1073204.1073211
https://doi.org/10.1145/1944745.1944763
https://doi.org/10.1145/1944745.1944763
https://doi.org/10.1016/j.nimb.2007.04.262


Bibliography

[94] G. M. Amdahl. “Validity of the single processor approach to achieving large
scale computing capabilities”. In: Proceedings of the April 18-20, 1967, spring
joint computer conference on - AFIPS ’67 (Spring). ACM Press, 1967. doi:
10.1145/1465482.1465560.

[95] J. W. Nilsson and S. Riedel. Electric Circuits (9th Edition). Pearson, 2010. isbn:
978-0-13-611499-4.

[96] L. Zhuo and V. K. Prasanna. “Scalable and Modular Algorithms for Floating-
Point Matrix Multiplication on Reconfigurable Computing Systems”. In: IEEE
Transactions on Parallel and Distributed Systems 18.4 (Apr. 2007), pp. 433–
448. doi: 10.1109/tpds.2007.1001.

[97] C. Sajish et al. “Floating Point Matrix Multiplication on a Reconfigurable Com-
puting System”. In: Current Trends in High Performance Computing and Its
Applications. Springer-Verlag, pp. 113–122. doi: 10.1007/3-540-27912-1_11.

[98] D. T. Tertei, J. Piat, and M. Devy. “FPGA design and implementation of a
matrix multiplier based accelerator for 3D EKF SLAM”. In: 2014 International
Conference on ReConFigurable Computing and FPGAs (ReConFig14). IEEE,
Dec. 2014. doi: 10.1109/reconfig.2014.7032523.

[99] S. Savas et al. “Efficient Single-Precision Floating-Point Division Using Harmo-
nized Parabolic Synthesis”. In: 2017 IEEE Computer Society Annual Sympo-
sium on VLSI (ISVLSI). IEEE, July 2017. doi: 10.1109/isvlsi.2017.28.

[100] Y. Peng et al. “Single/Double Precision Floating-Point Division and Square
Root Unit Based on SRT-8 Algorithm”. In: Communications in Computer and
Information Science. Springer Singapore, 2016, pp. 3–14. doi: 10.1007/978-
981-10-3159-5_1.

[101] M. Turpin. The Dangers of Living with an X (bugs hidden in your Verilog).
Arm Ltd. Aug. 14, 2003. url: http://infocenter.arm.com/help/topic/
com.arm.doc.arp0009a/Verilog_X_Bugs.pdf (visited on 05/11/2019).

[102] AXI DMA v7.1 - LogiCORE IP Product Guide. Xilinx, Inc. url: https://www.
xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/

pg021_axi_dma.pdf (visited on 05/20/2019).

119

https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1109/tpds.2007.1001
https://doi.org/10.1007/3-540-27912-1_11
https://doi.org/10.1109/reconfig.2014.7032523
https://doi.org/10.1109/isvlsi.2017.28
https://doi.org/10.1007/978-981-10-3159-5_1
https://doi.org/10.1007/978-981-10-3159-5_1
http://infocenter.arm.com/help/topic/com.arm.doc.arp0009a/Verilog_X_Bugs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.arp0009a/Verilog_X_Bugs.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf




Appendix A

Attached ZIP file contents

A ZIP archive is attached to this master’s thesis. Its contents are as listed in the
following.

Contents

masters_thesis.pdf # This master's thesis

project_thesis.pdf # The project thesis

rtu/ # The SystemVerilog source code for the RTU

axi/ # AXI wrapper modules

modules/ # Main modules

rtu.sv # The RTU top module

job_man.sv # The job manager module

float_to_fixed.sv # The floating-point to fixed-point converter

scheduler.sv # The scheduler module

svo_trav_core.sv # The SVO traversal module

result_man.sv # The result manager

memory.sv # The memory module

data_types.sv # Data types

model/ # The Python source code for the software model

svo_model_generation/ # SVO model generation routines (from the project thesis)

figures/ # Figures used in this thesis
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Appendix B

Acronyms and abbreviations

ABV Assertion-Based Verification. 29

AMBA Advanced Microcontroller Bus Architecture. 31, 89

API Application Programming Interface. 1

ASIC Application-Specific Integrated Circuit. 26, 79

AXI Advanced eXtensible Interface. xiii, 31, 89, 98, 143–147

BSP Binary Space Partitioning. 20

CAD Computer-Aided Design. 3

CLB Configurable Logic Block. 26, 80

CPU Central Processing Unit. 27, 35, 89, 90, 110

CSG Constructive Solid Geometry. 5

CUDA Compute Unified Device Architecture. 35

DMA Direct Memory Access. xii, 88–90, 98, 99, 101, 102, 110

DSP Digital Signal Processing. 80

DUT Device Under Test. 29, 92

EDA Electronic Design Automation. 30

FPGA Field-Programmable Gate Array. v, vii, xi, 25–27, 29, 30, 35, 67, 79–81, 88–90,
92, 93, 97–99, 102, 103, 105, 109–111

GPGPU General-Purpose computing on Graphics Processing Unit. 35, 37

GPU Graphics Processing Unit. 4
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Acronyms and abbreviations

GUI Graphical User Interface. 3

HBO Hit Buffer Object. 51, 52, 67, 107, 111

HCI Human-Computer Interaction. 3

HDL Hardware Description Language. xi, 25, 28–30, 92

HDMI High-Definition Multimedia Interface. 27

HDVL Hardware Description and Verification Language. 28

IO Input/Output. v, vii, 101

IP Intellectual Property. 88

LoD Level of Detail. 21–24

LUT Look-up Table. 26, 80, 97, 98, 105

MAC Multiply-accumulate. 67, 69, 105

MIMD Multiple Instruction, Multiple Data. 35

NaN Not-a-number. 12

NTNU Norges Teknisk-Naturvitenskapelige Universitet. 2

PC Personal Computer. 4

RAM Random-Access Memory. 78, 80, 98, 105, 111

RLE Run-Length Encoding. 23, 24

RTL Register-Transfer Level. 29, 30, 81, 91–93, 125

RTU Ray Tracing Unit. xiii, 58, 60, 61, 63, 64, 66, 76, 79, 83, 85, 87–90, 92, 95, 100,
106, 109–111, 125, 149

SFX Special Effects. 3

SIMD Single Instruction, Multiple Data. 35, 68

SoC System-on-Chip. 30, 80, 88, 89

SVO Sparse Voxel Octree. iii, v, vii, xii, xiii, 21–24, 34, 35, 46–52, 54–56, 58, 59,
61–69, 71, 73–78, 80, 81, 83–87, 91, 95–102, 104–107, 109–111, 131, 133, 135,
137, 149

WNS Worst Negative Slack. 96
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Appendix C

Hardware modules

The RTL source code for the RTU implementation is listed in this appendix.

C.1 RTU top module

import types::*;

module rtu #(

parameter CORE_CNT = 16,

parameter FX_PT_FRAC_BITS = 16

) (

input logic clk,

input logic reset,

output logic in_ready,

input logic in_valid,

input ray_t in_ray,

input logic out_ready,

output logic out_valid,

output result_t out_result

);

logic sched_ready;

logic sched_valid;

job_t pending_job;

job_manager #(FX_PT_FRAC_BITS) job_manager_inst (

.clk(clk),

.reset(reset),

.in_ready(in_ready),

.in_valid(in_valid),

.in_ray(in_ray),

.out_ready(sched_ready),

.out_valid(sched_valid),

.out_job(pending_job)

);
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logic [CORE_CNT-1:0] core_in_ready;

logic [CORE_CNT-1:0] core_in_valid;

scheduler #(CORE_CNT) scheduler_inst (

.clk(clk),

.reset(reset),

.in_valid(sched_valid),

.in_ready(sched_ready),

.core_ready(core_in_ready),

.core_valid(core_in_valid)

);

logic [31:0] mem_addr [0:CORE_CNT-1];

logic [31:0] mem_data [0:CORE_CNT-1];

memory #(CORE_CNT) memory_inst(

.addr(mem_addr),

.data(mem_data)

);

logic [CORE_CNT-1:0] core_out_ready;

logic [CORE_CNT-1:0] core_out_valid;

result_t [CORE_CNT-1:0] core_out_result;

genvar i;

generate

for (i = 0; i < CORE_CNT; i += 1) begin

svo_trav_core svo_trav_core_inst(

.clk(clk),

.reset(reset),

.mem_addr(mem_addr[i]),

.mem_data(mem_data[i]),

.in_ready(core_in_ready[i]),

.in_valid(core_in_valid[i]),

.in_job(pending_job),

.out_ready(core_out_ready[i]),

.out_valid(core_out_valid[i]),

.out_result(core_out_result[i])

);

end

endgenerate

result_manager #(CORE_CNT) result_manager_inst (

.clk(clk),

.reset(reset),

.core_ready(core_out_ready),

.core_valid(core_out_valid),

.core_result(core_out_result),

126



C.2. Job manager

.out_ready(out_ready),

.out_valid(out_valid),

.out_result(out_result)

);

endmodule

C.2 Job manager

import types::*;

module job_manager #(

parameter FX_PT_FRAC_BITS = 16

) (

input logic clk,

input logic reset,

output logic in_ready,

input logic in_valid,

input ray_t in_ray,

input logic out_ready,

output logic out_valid,

output job_t out_job

);

logic pipeline_enable;

assign pipeline_enable = out_ready || ~out_valid;

assign in_ready = pipeline_enable;

vec3_t t0_float;

vec3_t t1_float;

genvar i;

generate

for (i = 0; i < 3; i += 1) begin

// Placeholder for future work

ray_to_params ray_to_params(

.clk(clk),

.enable(pipeline_enable),

.in_ray_orig(in_ray.orig[i*32+:32]),

.in_ray_dir(in_ray.dir[i*32+:32]),

.out_t0(t0_float[i*32+:32]),

.out_t1(t1_float[i*32+:32])

);

float_to_fixed #(FX_PT_FRAC_BITS) float_to_fixed_t0(

.clk(clk),

.enable(pipeline_enable),

.data_in(t0_float[i*32+:32]),

.data_out(out_job.t0[i*32+:32])

);

float_to_fixed #(FX_PT_FRAC_BITS) float_to_fixed_t1(

.clk(clk),

.enable(pipeline_enable),
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.data_in(t1_float[i*32+:32]),

.data_out(out_job.t1[i*32+:32])

);

end

endgenerate

`define P_STAGES 6

logic [`P_STAGES - 1:0] valid_delay;

job_t pipeline [`P_STAGES];

assign out_valid = valid_delay[`P_STAGES - 1];

assign out_job.a = pipeline[`P_STAGES - 1].a;

assign out_job.addr = pipeline[`P_STAGES - 1].addr;

assign out_job.job_id = pipeline[`P_STAGES - 1].job_id;

always @(posedge clk) begin

if (reset == 'b1) begin

valid_delay <= 'b0;

end else if (pipeline_enable) begin

valid_delay <= {valid_delay[`P_STAGES - 2:0], in_valid & in_ready};

pipeline[0].a <= in_ray.job_id[30:28];

pipeline[0].addr <= in_ray.addr;

pipeline[0].job_id <= in_ray.job_id;

for (int i = 0; i < `P_STAGES - 1; i += 1) begin

pipeline[i + 1] <= pipeline[i];

end

end

end

endmodule

C.2.1 Floating-point to fixed-point conversion

import types::*;

module float_to_fixed #(

parameter FX_PT_FRAC_BITS = 16

) (

input logic clk,

input logic enable,

input float32 data_in,

output fixed32 data_out

);

typedef struct packed {

logic sign;

logic exp_sign;

logic [7:0] exponent;

logic [63:0] fraction;

} pipeline_stage_t;

pipeline_stage_t s1;

pipeline_stage_t s2;

pipeline_stage_t s3;

pipeline_stage_t s4;
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logic [31:0] output_select;

assign output_select = s4.fraction[(63-FX_PT_FRAC_BITS)-:32];

always @(posedge clk) begin

if (enable) begin

s1.exp_sign <= 'b0;

s1.sign <= data_in[31];

s1.fraction <= 'b0;

s1.fraction[32-:24] <= {1'b1, data_in[22:0]};

if ($signed(data_in[30:23] - 127) >= 0) begin

s1.exponent <= data_in[30:23] - 127;

end else begin

s1.exponent <= ~(data_in[30:23] - 127) + 1;

s1.exp_sign <= 'b1;

end

if ($signed(data_in[30:23] - 127) >= (31 - FX_PT_FRAC_BITS)) begin

s1.exponent <= 'b0;

s1.sign <= 'b0;

if (data_in[31]) begin

s1.fraction <= 'b0;

s1.fraction[63] <= 'b1;

end else begin

s1.fraction <= 'b1;

s1.fraction[63] <= 'b0;

end

end else if (

$signed(data_in[30:23] - 127) <= $signed(1 - FX_PT_FRAC_BITS)

) begin

s1.sign <= 'b0;

s1.exponent <= 'b0;

s1.fraction <= 'b0;

end

end

end

always @(posedge clk) begin

if (enable) begin

s2 <= s1;

if (s1.exponent[3]) begin

if (s1.exp_sign) begin

s2.fraction <= s1.fraction >> 8;

end else begin

s2.fraction <= s1.fraction << 8;

end

end

end

end

always @(posedge clk) begin

if (enable) begin

s3 <= s2;
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if (s2.exponent[2]) begin

if (s2.exp_sign) begin

s3.fraction <= s2.fraction >> 4;

end else begin

s3.fraction <= s2.fraction << 4;

end

end

end

end

always @(posedge clk) begin

if (enable) begin

s4 <= s3;

if (s3.exponent[1]) begin

if (s3.exp_sign) begin

s4.fraction <= s3.fraction >> 2;

end else begin

s4.fraction <= s3.fraction << 2;

end

end

end

end

always @(posedge clk) begin

if (enable) begin

data_out <= s4.sign ? (~output_select + 1) : output_select;

if (s4.exponent[0]) begin

if (s4.exp_sign) begin

data_out <= (

s4.sign ? (~(output_select >> 1) + 1) : (output_select >> 1)

);

end else begin

data_out <= (

s4.sign ? (~(output_select << 1) + 1) : (output_select << 1)

);

end

end

end

end

endmodule

C.3 Scheduler

module scheduler #(

parameter CORE_CNT = 16

) (

input logic clk,

input logic reset,

output logic in_ready,

input logic in_valid,

input logic [CORE_CNT-1:0] core_ready,
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output logic [CORE_CNT-1:0] core_valid

);

logic [$clog2(CORE_CNT)-1:0] core_select;

assign in_ready = core_ready[core_select];

assign core_valid = in_valid << core_select;

always @(posedge clk) begin

if (reset == 'b1) begin

core_select <= 'b0;

end else begin

core_select <= 'b0;

if (core_select < CORE_CNT - 1) begin

core_select <= core_select + 1;

end

end

end

endmodule

C.4 SVO traversal core

import types::*;

typedef enum logic[2:0] {

IDLE,

INIT,

EVAL,

NEXT,

PUSH,

POP,

OUT

} rt_core_state_t;

typedef struct packed {

logic [31:0] entry_idx;

vec3_t t0;

vec3_t tm;

vec3_t t1;

logic [2:0] cur_child_idx;

} stack_frame_t;

module svo_trav_core (

input logic clk,

input logic reset,

output logic [31:0] mem_addr,

input logic [31:0] mem_data,

output logic in_ready,

input logic in_valid,

input job_t in_job,

input logic out_ready,

output logic out_valid,
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output result_t out_result

);

rt_core_state_t core_state;

assign in_ready = (core_state == IDLE);

stack_frame_t cur_stack_frame;

stack_frame_t stack_top;

logic stack_push;

logic stack_pop;

logic stack_empty;

logic push_indirect;

logic stack_clear;

stack inst_stack(

clk,

reset,

stack_clear,

stack_push,

stack_pop,

cur_stack_frame,

stack_top,

stack_empty

);

logic [2:0] transform;

logic [2:0] cur_child_idx_t;

always_comb begin

cur_child_idx_t = cur_stack_frame.cur_child_idx ^ transform;

end

logic [95:0] top_t0;

logic [95:0] top_t1;

logic ray_valid;

get_ray_valid inst_get_ray_valid(clk, top_t0, top_t1, ray_valid);

vec3_t t0_child;

vec3_t t1_child;

get_child_t_values inst_t0_get_child_t_values(

cur_stack_frame.cur_child_idx,

cur_stack_frame.t0,

cur_stack_frame.tm,

t0_child

);

get_child_t_values inst_t1_get_child_t_values(

cur_stack_frame.cur_child_idx,

cur_stack_frame.tm,

cur_stack_frame.t1,

t1_child

);

logic [2:0] initial_child_idx;

get_initial_child_idx inst_get_initial_child_idx(

cur_stack_frame.t0,

cur_stack_frame.tm,
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initial_child_idx

);

logic [3:0] next_child_idx;

get_next_child_idx inst_get_next_child_idx(

clk,

cur_stack_frame.cur_child_idx,

t1_child,

next_child_idx

);

logic [2:0] ones_count [8];

get_ones_count inst_get_ones_count(mem_data[14:8] & ~mem_data[6:0], ones_count);

logic[31:0] next_entry_idx;

assign out_valid = (core_state == OUT);

always @(posedge clk) begin

if (reset == 1'b1) begin

core_state <= IDLE;

cur_stack_frame <= 'b0;

stack_push <= 'b0;

stack_pop <= 'b0;

stack_clear <= 'b0;

push_indirect <= 'b0;

next_entry_idx <= 'b0;

mem_addr <= 'bX;

transform <= 'bX;

out_result <= 'bX;

end else begin

if (core_state == IDLE) begin

out_result.cost <= 'b0;

end else if (core_state != OUT) begin

out_result.cost <= out_result.cost + 1;

end

case (core_state)

IDLE: begin

if (in_ready & in_valid) begin

next_entry_idx <= 'b0;

mem_addr <= 'b0;

stack_clear <= 'b1;

out_result.job_id <= in_job.job_id;

cur_stack_frame.entry_idx <= in_job.addr;

cur_stack_frame.t0.x <= in_job.t0[0 +:32];

cur_stack_frame.t0.y <= in_job.t0[32+:32];

cur_stack_frame.t0.z <= in_job.t0[64+:32];

cur_stack_frame.t1.x <= in_job.t1[0 +:32];

cur_stack_frame.t1.y <= in_job.t1[32+:32];

cur_stack_frame.t1.z <= in_job.t1[64+:32];

cur_stack_frame.tm.x <= (

$signed(in_job.t0[0 +:32] + in_job.t1[0 +:32]) >>> 1
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);

cur_stack_frame.tm.y <= (

$signed(in_job.t0[32+:32] + in_job.t1[32+:32]) >>> 1

);

cur_stack_frame.tm.z <= (

$signed(in_job.t0[64+:32] + in_job.t1[64+:32]) >>> 1

);

top_t0 <= in_job.t0;

top_t1 <= in_job.t1;

transform <= in_job.a;

core_state <= INIT;

end

end

INIT: begin

cur_stack_frame.cur_child_idx <= initial_child_idx;

mem_addr <= cur_stack_frame.entry_idx;

stack_clear <= 1'b0;

core_state <= EVAL;

end

EVAL: begin

if (!ray_valid) begin

out_result.hit <= 1'b0;

core_state <= OUT;

end else if (mem_data[{2'b01, cur_child_idx_t}]) begin

if (mem_data[{2'b00, cur_child_idx_t}]) begin

out_result.hit <= 1'b1;

out_result.normal <= 'b0;

if (

$signed(t0_child.x) >= $signed(t0_child.y) &&

$signed(t0_child.x) >= $signed(t0_child.z)

) begin

out_result.t_hit <= t0_child.x;

out_result.normal[0 +:32] <= 32'h00010000;

end else if (

$signed(t0_child.y) >= $signed(t0_child.x) &&

$signed(t0_child.y) >= $signed(t0_child.z)

) begin

out_result.t_hit <= t0_child.y;

out_result.normal[32+:32] <= 32'h00010000;

end else begin

out_result.t_hit <= t0_child.z;

out_result.normal[64+:32] <= 32'h00010000;

end

core_state <= OUT;

end else begin

stack_push <= 1'b1;

if (mem_data[31] == 1'b1) begin

mem_addr <= (

cur_stack_frame.entry_idx +

{17'b0, mem_data[30:16]}
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);

push_indirect <= 1'b1;

end else begin

next_entry_idx <= (

cur_stack_frame.entry_idx +

{17'b0, mem_data[30:16]}

);

end

core_state <= PUSH;

end

end else begin

core_state <= NEXT;

end

end

NEXT: begin

if (next_child_idx < 8) begin

cur_stack_frame.cur_child_idx <= next_child_idx[2:0];

core_state <= EVAL;

end else begin

if (stack_empty == 1'b1) begin

out_result.hit <= 1'b0;

core_state <= OUT;

end else begin

cur_stack_frame <= stack_top;

stack_pop <= 1'b1;

core_state <= POP;

end

end

end

PUSH: begin

stack_push <= 1'b0;

cur_stack_frame <= '0;

if (push_indirect == 1'b1) begin

cur_stack_frame.entry_idx <= (

cur_stack_frame.entry_idx +

mem_data + {29'b0, ones_count[cur_child_idx_t]}

);

end else begin

cur_stack_frame.entry_idx <= (

next_entry_idx +

{29'b0, ones_count[cur_child_idx_t]}

);

end

push_indirect <= 1'b0;

cur_stack_frame.t0 <= t0_child;

cur_stack_frame.t1 <= t1_child;

cur_stack_frame.tm.x <= $signed(t0_child.x + t1_child.x) >>> 1;

cur_stack_frame.tm.y <= $signed(t0_child.y + t1_child.y) >>> 1;

cur_stack_frame.tm.z <= $signed(t0_child.z + t1_child.z) >>> 1;

core_state <= INIT;

end

POP: begin
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stack_pop <= 1'b0;

mem_addr <= cur_stack_frame.entry_idx;

core_state <= NEXT;

end

OUT: begin

if (out_ready) begin

core_state <= IDLE;

end

end

endcase

end

end

endmodule

module get_initial_child_idx(

input vec3_t t0,

input vec3_t tm,

output logic [2:0] initial_child_idx

);

always_comb begin

initial_child_idx = 3'h0;

if ($signed(t0.x) >= $signed(t0.y) &&

$signed(t0.x) >= $signed(t0.z)) begin

if ($signed(t0.x) >= $signed(tm.y)) begin

initial_child_idx[1] = 1'b1;

end

if ($signed(t0.x) >= $signed(tm.z)) begin

initial_child_idx[2] = 1'b1;

end

end else if ($signed(t0.y) >= $signed(t0.x) &&

$signed(t0.y) >= $signed(t0.z)) begin

if ($signed(t0.y) >= $signed(tm.x)) begin

initial_child_idx[0] = 1'b1;

end

if ($signed(t0.y) >= $signed(tm.z)) begin

initial_child_idx[2] = 1'b1;

end

end else begin

if ($signed(t0.z) >= $signed(tm.x)) begin

initial_child_idx[0] = 1'b1;

end

if ($signed(t0.z) >= $signed(tm.y)) begin

initial_child_idx[1] = 1'b1;

end

end

end

endmodule

module get_next_child_idx(

input logic clk,

input logic [2:0] cur_child_idx,

input vec3_t t1,
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output logic [3:0] next_child_idx

);

logic [3:0] lookup [0:31] = '{

4'b0001, 4'b0010, 4'b0100, 4'b1111,

4'b1000, 4'b0011, 4'b0101, 4'b1111,

4'b0011, 4'b1000, 4'b0110, 4'b1111,

4'b1000, 4'b1000, 4'b0111, 4'b1111,

4'b0101, 4'b0110, 4'b1000, 4'b1111,

4'b1000, 4'b0111, 4'b1000, 4'b1111,

4'b0111, 4'b1000, 4'b1000, 4'b1111,

4'b1000, 4'b1000, 4'b1000, 4'b1111

};

always @(posedge clk) begin

if (

$signed(t1.x) <= $signed(t1.y) &&

$signed(t1.x) <= $signed(t1.z)

) begin

next_child_idx <= lookup[{cur_child_idx, 2'b00}];

end else if (

$signed(t1.y) <= $signed(t1.x) &&

$signed(t1.y) <= $signed(t1.z)

) begin

next_child_idx <= lookup[{cur_child_idx, 2'b01}];

end else begin

next_child_idx <= lookup[{cur_child_idx, 2'b10}];

end

end

endmodule

module get_ray_valid(

input logic clk,

input logic [95:0] t0,

input logic [95:0] t1,

output logic ray_valid

);

logic [31:0] t0_max;

logic [31:0] t1_min;

always_comb begin

if (

$signed(t0[0 +:32]) >= $signed(t0[32+:32]) &&

$signed(t0[0 +:32]) >= $signed(t0[64+:32])

) begin

t0_max = t0[0 +:32];

end else if (

$signed(t0[32+:32]) >= $signed(t0[0 +:32]) &&

$signed(t0[32+:32]) >= $signed(t0[64+:32])

) begin

t0_max = t0[32+:32];

end else begin

t0_max = t0[64+:32];

end
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end

always_comb begin

if (

$signed(t1[0 +:32]) <= $signed(t1[32+:32]) &&

$signed(t1[0 +:32]) <= $signed(t1[64+:32])

) begin

t1_min = t1[0 +:32];

end else if (

$signed(t1[32+:32]) <= $signed(t1[0 +:32]) &&

$signed(t1[32+:32]) <= $signed(t1[64+:32])

) begin

t1_min = t1[32+:32];

end else begin

t1_min = t1[64+:32];

end

end

always @(posedge clk) begin

if ($signed(t0_max) >= $signed(t1_min)) begin

ray_valid = 0;

end else begin

ray_valid = 1;

end

end

endmodule

module get_ones_count(

input logic [6:0] data,

output logic [2:0] ones_count [8]

);

always_comb begin

for (int idx = 0; idx < 8; idx += 1) begin

ones_count[idx] = '0;

for (int sub_idx = 0; sub_idx < idx; sub_idx += 1) begin

ones_count[idx] += {2'b00, data[sub_idx]};

end

end

end

endmodule

module stack(

input logic clk,

input logic reset,

input logic clear,

input logic push,

input logic pop,

input stack_frame_t data,

output stack_frame_t top,

output logic empty

);
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stack_frame_t [10:0] stack;

logic [7:0] stack_idx;

always_comb begin

empty = (stack_idx == 8'h0);

if (empty) begin

top = 'b0;

end else begin

top = stack[stack_idx-1];

end

end

always @(posedge clk) begin

if (reset == 1'b1 || clear == 1'b1) begin

stack_idx <= 0;

end else if (push == 1'b1) begin

stack[stack_idx] <= data;

stack_idx <= stack_idx + 1;

end else if (pop == 1'b1) begin

stack_idx <= stack_idx - 1;

end

end

endmodule

module get_child_t_values(

input logic [2:0] cur_child_idx,

input vec3_t t0,

input vec3_t t1,

output vec3_t t_child

);

always_comb begin

if (cur_child_idx[0] == 1'b1) begin

t_child.x = t1.x;

end else begin

t_child.x = t0.x;

end

if (cur_child_idx[1] == 1'b1) begin

t_child.y = t1.y;

end else begin

t_child.y = t0.y;

end

if (cur_child_idx[2] == 1'b1) begin

t_child.z = t1.z;

end else begin

t_child.z = t0.z;

end

end

endmodule

C.5 Result manager

import types::*;

module result_manager #(
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parameter CORE_CNT = 16

) (

input logic clk,

input logic reset,

output logic [CORE_CNT-1:0] core_ready,

input logic [CORE_CNT-1:0] core_valid,

input result_t [CORE_CNT-1:0] core_result,

input logic out_ready,

output logic out_valid,

output result_t out_result

);

logic [$clog2(CORE_CNT)-1:0] result_select;

logic [CORE_CNT-1:0] result_valid;

result_t [CORE_CNT-1:0] result_buffer;

assign out_valid = result_valid[result_select];

assign core_ready = ~result_valid;

assign out_result = result_buffer[result_select];

always @(posedge clk) begin

if (reset == 1'b1) begin

result_valid <= 'b0;

result_select <= 'b0;

end else begin

for (int i = 0; i < CORE_CNT; i += 1) begin

if (core_ready[i] & core_valid[i]) begin

result_valid[i] <= 'b1;

result_buffer[i] <= core_result[i];

end

end

if (out_ready & out_valid) begin

result_valid[result_select] <= 'b0;

end

result_select <= 'b0;

if (result_select < CORE_CNT - 1) begin

result_select <= result_select + 1;

end

end

end

endmodule
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C.6 Data types

package types;

typedef logic [31:0] float32;

typedef logic [31:0] fixed32;

typedef logic [95:0] vec3_pack_t;

typedef struct packed {

fixed32 x;

fixed32 y;

fixed32 z;

} vec3_t;

typedef struct packed {

vec3_pack_t orig;

vec3_pack_t dir;

logic [31:0] addr;

logic [31:0] job_id;

} ray_t;

typedef struct packed {

logic [2:0] a;

vec3_pack_t t0;

vec3_pack_t t1;

logic [31:0] addr;

logic [31:0] job_id;

} job_t;

typedef struct packed {

logic hit;

fixed32 t_hit;

vec3_pack_t normal;

logic [31:0] cost;

logic [31:0] job_id;

} result_t;

endpackage
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AXI hardware modules

These modules were originally generated by the Vivado AXI wizard, but have heavily
modified to fit the use case of this thesis.

D.1 AXI top module

import types::*;

module rtu_v1_0 #(

parameter integer C_S00_AXIS_TDATA_WIDTH = 256,

parameter integer C_M00_AXIS_TDATA_WIDTH = 256,

parameter integer CORE_CNT = 16,

parameter integer FX_PT_FRAC_BITS = 16

)(

// Ports of Axi Slave Bus Interface S00_AXIS

input wire s00_axis_aclk,

input wire s00_axis_aresetn,

output wire s00_axis_tready,

input wire [C_S00_AXIS_TDATA_WIDTH-1 : 0] s00_axis_tdata,

input wire [(C_S00_AXIS_TDATA_WIDTH/8)-1 : 0] s00_axis_tstrb,

input wire s00_axis_tlast,

input wire s00_axis_tvalid,

// Ports of Axi Master Bus Interface M00_AXIS

input wire m00_axis_aclk,

input wire m00_axis_aresetn,

output wire m00_axis_tvalid,

output wire [C_M00_AXIS_TDATA_WIDTH-1 : 0] m00_axis_tdata,

output wire [(C_M00_AXIS_TDATA_WIDTH/8)-1 : 0] m00_axis_tstrb,

output wire m00_axis_tlast,

input wire m00_axis_tready

);

wire job_ready;

wire job_valid;

wire [255:0] job_data;

wire [31:0] job_count;

wire in_done;

wire out_done;
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wire result_ready;

wire result_valid;

wire [255:0] result_data;

// Instantiation of Axi Bus Interface S00_AXIS

rtu_v1_0_S00_AXIS #(

.C_S_AXIS_TDATA_WIDTH(C_S00_AXIS_TDATA_WIDTH)

) rtu_v1_0_S00_AXIS_inst (

.job_ready(job_ready),

.job_valid(job_valid),

.job_data(job_data),

.job_count(job_count),

.in_done(in_done),

.out_done(out_done),

.S_AXIS_ACLK(s00_axis_aclk),

.S_AXIS_ARESETN(s00_axis_aresetn),

.S_AXIS_TREADY(s00_axis_tready),

.S_AXIS_TDATA(s00_axis_tdata),

.S_AXIS_TSTRB(s00_axis_tstrb),

.S_AXIS_TLAST(s00_axis_tlast),

.S_AXIS_TVALID(s00_axis_tvalid)

);

// Instantiation of Axi Bus Interface M00_AXIS

rtu_v1_0_M00_AXIS #(

.C_M_AXIS_TDATA_WIDTH(C_M00_AXIS_TDATA_WIDTH)

) rtu_v1_0_M00_AXIS_inst (

.result_ready(result_ready),

.result_valid(result_valid),

.result_data(result_data),

.job_count(job_count),

.in_done(in_done),

.out_done(out_done),

.M_AXIS_ACLK(m00_axis_aclk),

.M_AXIS_ARESETN(m00_axis_aresetn),

.M_AXIS_TVALID(m00_axis_tvalid),

.M_AXIS_TDATA(m00_axis_tdata),

.M_AXIS_TSTRB(m00_axis_tstrb),

.M_AXIS_TLAST(m00_axis_tlast),

.M_AXIS_TREADY(m00_axis_tready)

);

wire clk;

wire reset;

wire in_ready;

wire in_valid;

ray_t in_ray;

wire out_ready;

wire out_valid;

result_t out_result;

rtu #(

.CORE_CNT(CORE_CNT),

144



D.2. AXI4-Stream slave module

.FX_PT_FRAC_BITS(FX_PT_FRAC_BITS)

) rtu_inst (

.clk(clk),

.reset(reset),

.in_ready(in_ready),

.in_valid(in_valid),

.in_ray(in_ray),

.out_ready(out_ready),

.out_valid(out_valid),

.out_result(out_result)

);

assign clk = s00_axis_aclk;

assign reset = ~s00_axis_aresetn;

assign job_ready = in_ready;

assign in_valid = job_valid;

assign in_ray.job_id = job_data[0 +:32];

assign in_ray.orig = job_data[32 +:96];

assign in_ray.dir = job_data[128+:96];

assign in_ray.addr = 'b0;

assign out_ready = result_ready;

assign result_valid = out_valid;

assign result_data = {

32'b0,

out_result.cost,

out_result.normal,

out_result.t_hit,

31'b0, out_result.hit,

out_result.job_id

};

endmodule

D.2 AXI4-Stream slave module

module rtu_v1_0_S00_AXIS #(

parameter integer C_S_AXIS_TDATA_WIDTH = 256

)(

input wire job_ready,

input wire out_done,

output reg job_valid,

output reg [255:0] job_data,

output reg [31:0] job_count,

output reg in_done,

// Do not modify the ports beyond this line

input wire S_AXIS_ACLK,

input wire S_AXIS_ARESETN,

output wire S_AXIS_TREADY,

input wire [C_S_AXIS_TDATA_WIDTH-1 : 0] S_AXIS_TDATA,
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input wire [(C_S_AXIS_TDATA_WIDTH/8)-1 : 0] S_AXIS_TSTRB,

input wire S_AXIS_TLAST,

input wire S_AXIS_TVALID

);

reg axi_ready;

wire axi_valid;

wire axi_last;

wire [255:0] axi_data;

assign S_AXIS_TREADY = axi_ready;

assign axi_valid = S_AXIS_TVALID;

assign axi_data = S_AXIS_TDATA;

assign axi_last = S_AXIS_TLAST;

always @(posedge S_AXIS_ACLK) begin

if (!S_AXIS_ARESETN) begin

axi_ready <= 'b1;

job_valid <= 'b0;

job_data <= 'b0;

job_count <= 'b0;

in_done <= 'b0;

end else begin

if (axi_ready && axi_valid) begin

if (axi_last) begin

in_done <= 'b1;

end

job_data <= axi_data;

axi_ready <= 'b0;

job_valid <= 'b1;

job_count <= job_count + 1;

end

if (job_ready && job_valid) begin

axi_ready <= 'b1;

job_valid <= 'b0;

job_data <= 'b0;

end

if (in_done && out_done) begin

in_done <= 'b0;

end

end

end

endmodule

D.3 AXI4-Stream master module

module rtu_v1_0_M00_AXIS #(

parameter integer C_M_AXIS_TDATA_WIDTH = 256

)(

output reg result_ready,

input wire result_valid,

input wire [255:0] result_data,

input wire [31:0] job_count,
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input wire in_done,

output reg out_done,

// Do not modify the ports beyond this line

input wire M_AXIS_ACLK,

input wire M_AXIS_ARESETN,

output wire M_AXIS_TVALID,

output wire [C_M_AXIS_TDATA_WIDTH-1 : 0] M_AXIS_TDATA,

output wire [(C_M_AXIS_TDATA_WIDTH/8)-1 : 0] M_AXIS_TSTRB,

output wire M_AXIS_TLAST,

input wire M_AXIS_TREADY

);

wire axi_ready;

wire axi_valid;

reg axi_last;

reg [255:0] axi_data;

reg [31:0] result_count;

assign M_AXIS_TVALID = axi_valid;

assign M_AXIS_TDATA = axi_data;

assign M_AXIS_TLAST = axi_last;

assign M_AXIS_TSTRB = {(C_M_AXIS_TDATA_WIDTH/8){1'b1}};

assign axi_ready = M_AXIS_TREADY;

assign axi_valid = ~result_ready;

always @(posedge M_AXIS_ACLK) begin

if (!M_AXIS_ARESETN) begin

axi_last <= 'b0;

axi_data <= 'b0;

result_count <= 'b0;

result_ready <= 'b1;

out_done <= 'b0;

end else begin

if (result_ready && result_valid) begin

axi_data <= result_data;

result_count <= result_count + 1;

axi_last <= in_done & (result_count + 1 == job_count);

out_done <= in_done & (result_count + 1 == job_count);

result_ready <= 'b0;

end

if (axi_ready & axi_valid) begin

result_ready <= 'b1;

axi_last <= 'b0;

out_done <= 'b0;

end

end

end

endmodule
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Appendix E

Vivado synthesis reports

The synthesis reports from Vivado are attached in this appendix. The reports are
generated during the synthesis of an RTU system with 16 SVO traversal cores.

E.1 Utilisation report

Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.

-----------------------------------------------------------------------------------

| Tool Version : Vivado v.2018.3 (lin64) Build 2405991 Thu Dec 6 23:36:41 MST 2018

| Date : Mon May 20 11:43:54 2019

| Host : asbjorn-pc running 64-bit Manjaro Linux

| Command : report_utilization -file

ray_tracer_bd_wrapper_utilization_placed.rpt -pb

ray_tracer_bd_wrapper_utilization_placed.pb

| Design : ray_tracer_bd_wrapper

| Device : 7z020clg400-1

| Design State : Fully Placed

-----------------------------------------------------------------------------------

Utilization Design Information

Table of Contents

-----------------

1. Slice Logic

1.1 Summary of Registers by Type

2. Slice Logic Distribution

3. Memory

4. DSP

5. IO and GT Specific

6. Clocking

7. Specific Feature

8. Primitives

9. Black Boxes

10. Instantiated Netlists

1. Slice Logic

--------------

+----------------------------+-------+-------+-----------+-------+

| Site Type | Used | Fixed | Available | Util% |
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+----------------------------+-------+-------+-----------+-------+

| Slice LUTs | 36714 | 0 | 53200 | 69.01 |

| LUT as Logic | 31795 | 0 | 53200 | 59.77 |

| LUT as Memory | 4919 | 0 | 17400 | 28.27 |

| LUT as Distributed RAM | 4670 | 0 | | |

| LUT as Shift Register | 249 | 0 | | |

| Slice Registers | 23874 | 0 | 106400 | 22.44 |

| Register as Flip Flop | 23874 | 0 | 106400 | 22.44 |

| Register as Latch | 0 | 0 | 106400 | 0.00 |

| F7 Muxes | 901 | 0 | 26600 | 3.39 |

| F8 Muxes | 101 | 0 | 13300 | 0.76 |

+----------------------------+-------+-------+-----------+-------+

1.1 Summary of Registers by Type

--------------------------------

+-------+--------------+-------------+--------------+

| Total | Clock Enable | Synchronous | Asynchronous |

+-------+--------------+-------------+--------------+

| 0 | _ | - | - |

| 0 | _ | - | Set |

| 0 | _ | - | Reset |

| 0 | _ | Set | - |

| 0 | _ | Reset | - |

| 0 | Yes | - | - |

| 0 | Yes | - | Set |

| 0 | Yes | - | Reset |

| 246 | Yes | Set | - |

| 23628 | Yes | Reset | - |

+-------+--------------+-------------+--------------+

2. Slice Logic Distribution

---------------------------

+--------------------------------------------+-------+-------+-----------+-------+

| Site Type | Used | Fixed | Available | Util% |

+--------------------------------------------+-------+-------+-----------+-------+

| Slice | 11177 | 0 | 13300 | 84.04 |

| SLICEL | 7517 | 0 | | |

| SLICEM | 3660 | 0 | | |

| LUT as Logic | 31795 | 0 | 53200 | 59.77 |

| using O5 output only | 7 | | | |

| using O6 output only | 21774 | | | |

| using O5 and O6 | 10014 | | | |

| LUT as Memory | 4919 | 0 | 17400 | 28.27 |

| LUT as Distributed RAM | 4670 | 0 | | |

| using O5 output only | 0 | | | |

| using O6 output only | 2 | | | |

| using O5 and O6 | 4668 | | | |

| LUT as Shift Register | 249 | 0 | | |

| using O5 output only | 15 | | | |

| using O6 output only | 111 | | | |

| using O5 and O6 | 123 | | | |

| Slice Registers | 23874 | 0 | 106400 | 22.44 |
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| Register driven from within the Slice | 14157 | | | |

| Register driven from outside the Slice | 9717 | | | |

| LUT in front of the register is unused | 5264 | | | |

| LUT in front of the register is used | 4453 | | | |

| Unique Control Sets | 472 | | 13300 | 3.55 |

+--------------------------------------------+-------+-------+-----------+-------+

* Note: Available Control Sets calculated as Slice Registers / 8, Review the

Control Sets Report for more information regarding control sets.

3. Memory

---------

+-------------------+------+-------+-----------+-------+

| Site Type | Used | Fixed | Available | Util% |

+-------------------+------+-------+-----------+-------+

| Block RAM Tile | 9 | 0 | 140 | 6.43 |

| RAMB36/FIFO* | 8 | 0 | 140 | 5.71 |

| RAMB36E1 only | 8 | | | |

| RAMB18 | 2 | 0 | 280 | 0.71 |

| RAMB18E1 only | 2 | | | |

+-------------------+------+-------+-----------+-------+

* Note: Each Block RAM Tile only has one FIFO logic available and therefore can

accommodate only one FIFO36E1 or one FIFO18E1. However, if a FIFO18E1 occupies a

Block RAM Tile, that tile can still accommodate a RAMB18E1

4. DSP

------

+-----------+------+-------+-----------+-------+

| Site Type | Used | Fixed | Available | Util% |

+-----------+------+-------+-----------+-------+

| DSPs | 0 | 0 | 220 | 0.00 |

+-----------+------+-------+-----------+-------+

5. IO and GT Specific

---------------------

+-----------------------------+------+-------+-----------+--------+

| Site Type | Used | Fixed | Available | Util% |

+-----------------------------+------+-------+-----------+--------+

| Bonded IOB | 0 | 0 | 125 | 0.00 |

| Bonded IPADs | 0 | 0 | 2 | 0.00 |

| Bonded IOPADs | 130 | 130 | 130 | 100.00 |

| PHY_CONTROL | 0 | 0 | 4 | 0.00 |

| PHASER_REF | 0 | 0 | 4 | 0.00 |

| OUT_FIFO | 0 | 0 | 16 | 0.00 |

| IN_FIFO | 0 | 0 | 16 | 0.00 |

| IDELAYCTRL | 0 | 0 | 4 | 0.00 |

| IBUFDS | 0 | 0 | 121 | 0.00 |

| PHASER_OUT/PHASER_OUT_PHY | 0 | 0 | 16 | 0.00 |

| PHASER_IN/PHASER_IN_PHY | 0 | 0 | 16 | 0.00 |

| IDELAYE2/IDELAYE2_FINEDELAY | 0 | 0 | 200 | 0.00 |

| ILOGIC | 0 | 0 | 125 | 0.00 |
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| OLOGIC | 0 | 0 | 125 | 0.00 |

+-----------------------------+------+-------+-----------+--------+

6. Clocking

-----------

+------------+------+-------+-----------+-------+

| Site Type | Used | Fixed | Available | Util% |

+------------+------+-------+-----------+-------+

| BUFGCTRL | 1 | 0 | 32 | 3.13 |

| BUFIO | 0 | 0 | 16 | 0.00 |

| MMCME2_ADV | 0 | 0 | 4 | 0.00 |

| PLLE2_ADV | 0 | 0 | 4 | 0.00 |

| BUFMRCE | 0 | 0 | 8 | 0.00 |

| BUFHCE | 0 | 0 | 72 | 0.00 |

| BUFR | 0 | 0 | 16 | 0.00 |

+------------+------+-------+-----------+-------+

7. Specific Feature

-------------------

+-------------+------+-------+-----------+-------+

| Site Type | Used | Fixed | Available | Util% |

+-------------+------+-------+-----------+-------+

| BSCANE2 | 0 | 0 | 4 | 0.00 |

| CAPTUREE2 | 0 | 0 | 1 | 0.00 |

| DNA_PORT | 0 | 0 | 1 | 0.00 |

| EFUSE_USR | 0 | 0 | 1 | 0.00 |

| FRAME_ECCE2 | 0 | 0 | 1 | 0.00 |

| ICAPE2 | 0 | 0 | 2 | 0.00 |

| STARTUPE2 | 0 | 0 | 1 | 0.00 |

| XADC | 0 | 0 | 1 | 0.00 |

+-------------+------+-------+-----------+-------+

8. Primitives

-------------

+----------+-------+----------------------+

| Ref Name | Used | Functional Category |

+----------+-------+----------------------+

| FDRE | 23628 | Flop & Latch |

| LUT6 | 14369 | LUT |

| LUT4 | 12877 | LUT |

| LUT3 | 8422 | LUT |

| RAMD32 | 7004 | Distributed Memory |

| CARRY4 | 3137 | CarryLogic |

| LUT2 | 2929 | LUT |

| LUT5 | 2449 | LUT |

| RAMS32 | 2334 | Distributed Memory |

| MUXF7 | 901 | MuxFx |

| LUT1 | 763 | LUT |

| SRL16E | 327 | Distributed Memory |

| FDSE | 246 | Flop & Latch |
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| BIBUF | 130 | IO |

| MUXF8 | 101 | MuxFx |

| SRLC32E | 45 | Distributed Memory |

| RAMB36E1 | 8 | Block Memory |

| RAMB18E1 | 2 | Block Memory |

| PS7 | 1 | Specialized Resource |

| BUFG | 1 | Clock |

+----------+-------+----------------------+

9. Black Boxes

--------------

+----------+------+

| Ref Name | Used |

+----------+------+

10. Instantiated Netlists

-------------------------

+----------+------+

| Ref Name | Used |

+----------+------+

E.2 Timing summary report

Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.

-----------------------------------------------------------------------------------

| Tool Version : Vivado v.2018.3 (lin64) Build 2405991 Thu Dec 6 23:36:41 MST 2018

| Date : Mon May 20 11:46:43 2019

| Host : asbjorn-pc running 64-bit Manjaro Linux

| Command : report_timing_summary -max_paths 10 -file

ray_tracer_bd_wrapper_timing_summary_routed.rpt -pb

ray_tracer_bd_wrapper_timing_summary_routed.pb -rpx

ray_tracer_bd_wrapper_timing_summary_routed.rpx

-warn_on_violation

| Design : ray_tracer_bd_wrapper

| Device : 7z020-clg400

| Speed File : -1 PRODUCTION 1.11 2014-09-11

-----------------------------------------------------------------------------------

Timing Summary Report

-----------------------------------------------------------------------------------

| Timer Settings

| --------------

-----------------------------------------------------------------------------------

Enable Multi Corner Analysis : Yes

Enable Pessimism Removal : Yes

Pessimism Removal Resolution : Nearest Common Node

Enable Input Delay Default Clock : No

Enable Preset / Clear Arcs : No

Disable Flight Delays : No
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Ignore I/O Paths : No

Timing Early Launch at Borrowing Latches : false

Corner Analyze Analyze

Name Max Paths Min Paths

------ --------- ---------

Slow Yes Yes

Fast Yes Yes

check_timing report

Table of Contents

-----------------

1. checking no_clock

2. checking constant_clock

3. checking pulse_width_clock

4. checking unconstrained_internal_endpoints

5. checking no_input_delay

6. checking no_output_delay

7. checking multiple_clock

8. checking generated_clocks

9. checking loops

10. checking partial_input_delay

11. checking partial_output_delay

12. checking latch_loops

1. checking no_clock

--------------------

There are 0 register/latch pins with no clock.

2. checking constant_clock

--------------------------

There are 0 register/latch pins with constant_clock.

3. checking pulse_width_clock

-----------------------------

There are 0 register/latch pins which need pulse_width check

4. checking unconstrained_internal_endpoints

--------------------------------------------

There are 0 pins that are not constrained for maximum delay.

There are 0 pins that are not constrained for maximum delay due to constant clock.

5. checking no_input_delay

--------------------------

There are 0 input ports with no input delay specified.

There are 0 input ports with no input delay but user has a false path constraint.
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6. checking no_output_delay

---------------------------

There are 0 ports with no output delay specified.

There are 0 ports with no output delay but user has a false path constraint

There are 0 ports with no output delay but with a timing clock defined on it or

propagating through it

7. checking multiple_clock

--------------------------

There are 0 register/latch pins with multiple clocks.

8. checking generated_clocks

----------------------------

There are 0 generated clocks that are not connected to a clock source.

9. checking loops

-----------------

There are 0 combinational loops in the design.

10. checking partial_input_delay

--------------------------------

There are 0 input ports with partial input delay specified.

11. checking partial_output_delay

---------------------------------

There are 0 ports with partial output delay specified.

12. checking latch_loops

------------------------

There are 0 combinational latch loops in the design through latch input

-----------------------------------------------------------------------------------

| Design Timing Summary

| ---------------------

-----------------------------------------------------------------------------------

WNS(ns) TNS(ns) TNS Failing Endpoints TNS Total Endpoints

------- ------- --------------------- -------------------

0.124 0.000 0 114194

WHS(ns) THS(ns) THS Failing Endpoints THS Total Endpoints

------- ------- --------------------- -------------------

0.022 0.000 0 114194

WPWS(ns) TPWS(ns) TPWS Failing Endpoints TPWS Total Endpoints
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-------- -------- ---------------------- --------------------

3.750 0.000 0 33605

All user specified timing constraints are met.
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Appendix F

Software driver

The software driver for the hardware implementation is listed in this appendix. The
driver runs in the Jupyter environment on the Pynq development board.

F.1 Driver core functions

import numpy as np

from pynq import Xlnk

from pynq import Overlay

import time

import math

import struct

from PIL import Image

class RTU:

def __init__(self, path):

self.overlay = Overlay(path)

self.dma = self.overlay.axi_dma

def setup(self, width, height, pos, rot):

global inv_proj

global inv_view

inv_proj = self.get_inv_proj(width, height)

inv_view = self.get_inv_view(pos, rot)

self.width = width

self.height = height

xlnk = Xlnk()

self.input_buffer = xlnk.cma_array(

shape=(width * height, 8),

dtype=np.uint32

)

self.output_buffer = xlnk.cma_array(

shape=(width * height, 8),

dtype=np.uint32

)

np.set_printoptions(formatter={'int': '{: x}'.format})
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for y in range(0, height):

for x in range(0, width):

self.input_buffer[x + y*width,:] = self.get_ray_job(

x,

y,

width,

height

)

if (y + 1) % 80 == 0:

print("Row {} of {}".format(y + 1, height))

def start_input(self, block, debug=False):

if debug:

print("Starting transfer of {} jobs...".format(

len(self.input_buffer)

))

self.dma.sendchannel.transfer(self.input_buffer)

if block:

self.dma.sendchannel.wait()

def start_output(self, block, debug=False):

if debug:

print("Trying to receive {} results...".format(

len(self.output_buffer)

))

self.dma.recvchannel.transfer(self.output_buffer)

if block:

self.dma.recvchannel.wait()

def render_frame(self):

self.start_input(block=False)

self.start_output(block=True)

def save_output(self, file, highlight_cost=True):

data = np.zeros((self.height, self.width, 3))

for result in self.output_buffer:

i = result[0] & 0x0FFFFFFF

x = i % self.width

y = int(i / self.width)

if not result[1]:

if highlight_cost:

data[y, x] = [

1.0,

0.95**((result[6] - 2) / 2),

0.95**((result[6] - 2) / 2)

]

else:

data[y, x] = [1.0, 1.0, 1.0]

continue

if result[3]:

data[y, x] = [0.7, 0.7, 0.7]

elif result[4]:
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data[y, x] = [0.9, 0.9, 0.9]

else:

data[y, x] = [0.5, 0.5, 0.5]

img = Image.fromarray((data * 255).astype('uint8'))

img.save(file)

def get_inv_proj(self, width, height):

far = 100.0

near = 0.001

fov = 75.0

aspect = float(width)/height

f = far

n = near

t = math.tan(fov / 180 * math.pi / 2) * n

b = -t

r = t * aspect

l = -r

return np.array([

[-f * (r - l) / (f - n), 0, 0, -f * (r + l) / (f - n)],

[0, -f * (t - b) / (f - n), 0, -f * (t + b) / (f - n)],

[0, 0, 0, 2 * f * n / (f - n)],

[0, 0, 1, -(f + n) / (f - n)]

])

def get_inv_view(self, pos, rot):

inv_view = np.array([

[1, 0, 0, 0],

[0, 1, 0, 0],

[0, 0, 1, 0],

[0, 0, 0, 1]

])

rotation_y = np.array([

[ math.cos(-rot[1]), 0, math.sin(-rot[1]), 0],

[ 0, 1, 0, 0],

[-math.sin(-rot[1]), 0, math.cos(-rot[1]), 0],

[ 0, 0, 0, 1]

])

s_rot = math.sin(rot[0])

rotation_x = np.array([

[1, 0, 0, 0],

[0, math.cos(0.5 * s_rot), -math.sin(0.5 * s_rot), 0],

[0, math.sin(0.5 * s_rot), math.cos(0.5 * s_rot), 0],

[0, 0, 0, 1]

])

rotation = rotation_x.dot(rotation_y)
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translation = np.array([

[1, 0, 0, pos[0]],

[0, 1, 0, pos[1]],

[0, 0, 1, pos[2]],

[0, 0, 0, 1]

])

inv_view = np.transpose(rotation).dot(inv_view)

inv_view = translation.dot(inv_view)

return inv_view

def get_ray(self, x, y):

v0 = np.array([x, y, -1, 1])

v1 = np.array([x, y, 1, 1])

q0 = inv_proj.dot(v0)

q1 = inv_proj.dot(v1)

q0 = q0 / q0[3]

q1 = q1 / q1[3]

q0 = inv_view.dot(q0)

q1 = inv_view.dot(q1)

ray_orig = [q0[0], q0[1], q0[2]]

ray_dir = [q1[0] - q0[0], q1[1] - q0[1], q1[2] - q0[2]]

return {'orig': ray_orig, 'dir': ray_dir}

def get_initial_params(self, ray_orig, ray_dir):

ray_len = (ray_dir[0]**2 + ray_dir[1]**2 + ray_dir[2]**2)**0.5

ray_dir[0] /= ray_len

ray_dir[1] /= ray_len

ray_dir[2] /= ray_len

a = 0

dim = 1

for comp in range(0, 3):

if ray_dir[comp] == 0:

ray_dir[comp] = 0.0001

if ray_dir[comp] < 0:

ray_orig[comp] *= -1

ray_dir[comp] *= -1

a |= 2**comp

t0_float = (

(-dim - ray_orig[0]) / ray_dir[0],

(-dim - ray_orig[1]) / ray_dir[1],

(-dim - ray_orig[2]) / ray_dir[2]

)

t1_float = (

(dim - ray_orig[0]) / ray_dir[0],
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(dim - ray_orig[1]) / ray_dir[1],

(dim - ray_orig[2]) / ray_dir[2]

)

return {'a': a, 't0_float': t0_float, 't1_float': t1_float}

def get_float(self, val):

return struct.unpack('I', struct.pack('f', val))[0]

def get_ray_job(self, x, y, width, height):

ray = self.get_ray(

(x + 0.5) / width * 2 - 1.0,

((height - y - 1) + 0.5) / height * 2 - 1.0

)

params = self.get_initial_params(ray['orig'].copy(), ray['dir'].copy())

return [

(x + y * width) | params['a'] << 28,

self.get_float(params['t0_float'][0]),

self.get_float(params['t0_float'][1]),

self.get_float(params['t0_float'][2]),

self.get_float(params['t1_float'][0]),

self.get_float(params['t1_float'][1]),

self.get_float(params['t1_float'][2]),

0x00000000

]
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F.2 Example driver usage

def run_test(file, width, height, count, save=False):

rtu = RTU(file)

print('Start setup {}x{}'.format(width, height))

rtu.setup(

width,

height,

[-0.5, 0.35, -2.1],

[math.pi * 4/12, math.pi * 13/12, 0]

)

print('Setup done!\n')

print('Start timing test...')

start = time.time()

for i in range(0, count):

rtu.render_frame()

end = time.time()

print("Timing test done! Rendered {} frames.".format(count))

print("Average frame time: {:.2f} ms.".format((end - start) / count * 1000))

print("Average frame rate: {:.2f} Hz.\n".format(1 / ((end - start) / count)))

if save:

print('Saving output image...')

rtu.save_output('img_test.png')

print('Image saving done!\n\n')

del rtu

file = '/home/xilinx/asbjoree/ray_tracer_ip_16.bit'

run_test(file, 320, 180, 1000, True)
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F.2.1 Example output

Start setup 320x180

Row 80 of 180

Row 160 of 180

Setup done!

Start timing test...

Timing test done! Rendered 1000 frames.

Average frame time: 2.58 ms.

Average frame rate: 387.03 Hz.

Saving output image...

Image saving done!
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Software model

The software model created during the design and implementation of the system is
included in this appendix.

G.1 Ray tracer core

from datatypes import *

import sys

def get_initial_child_idx(t0, tm):

child_idx = 0

if fp.gte(t0.x, t0.y) and fp.gte(t0.x, t0.z):

child_idx |= (fp.gte(t0.x, tm.y) << 1);

child_idx |= (fp.gte(t0.x, tm.z) << 2);

elif fp.gte(t0.y, t0.x) and fp.gte(t0.y, t0.z):

child_idx |= (fp.gte(t0.y, tm.x) << 0);

child_idx |= (fp.gte(t0.y, tm.z) << 2);

else:

child_idx |= (fp.gte(t0.z, tm.x) << 0);

child_idx |= (fp.gte(t0.z, tm.y) << 1);

return child_idx

def get_max_t_value(t):

if fp.gte(t.x, t.y) and fp.gte(t.x, t.z):

return t.x

if fp.gte(t.y, t.x) and fp.gte(t.y, t.z):

return t.y

else:

return t.z

def get_next_child_idx(cur_child_idx, t):

lookup = [

[0b0001, 0b0010, 0b0100],

[0b1000, 0b0011, 0b0101],

[0b0011, 0b1000, 0b0110],

[0b1000, 0b1000, 0b0111],
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[0b0101, 0b0110, 0b1000],

[0b1000, 0b0111, 0b1000],

[0b0111, 0b1000, 0b1000],

[0b1000, 0b1000, 0b1000]

]

if fp.lte(t.x, t.y) and fp.lte(t.x, t.z):

return lookup[cur_child_idx][0]

if fp.lte(t.y, t.x) and fp.lte(t.y, t.z):

return lookup[cur_child_idx][1]

else:

return lookup[cur_child_idx][2]

def get_child_t_values(child_idx, t0, t1):

t = vec3()

t.x = t1.x if (child_idx & 0x1) else t0.x

t.y = t1.y if (child_idx & 0x2) else t0.y

t.z = t1.z if (child_idx & 0x4) else t0.z

return t

def sum_and_right_shift(t0, t1):

return vec3.shr(vec3.add(t0, t1))

state = None

stack = []

stack_idx = 0

out = {

'ready': False,

't_hit': None

}

t0_child = vec3()

t1_child = vec3()

next_child = 0

a = 0

def rt_core(reset, start, params, mem, debug):

global state

global stack

global stack_idx

global out

global t0_child

global t1_child

global next_child

global a

global push_entry

global push_offset_lookup

if debug:

print('=== %s ===' % state)

print('\tOut: %s\n\tStack: %s' % (out, stack))

if reset:

166



G.1. Ray tracer core

state = 'IDLE'

out['ready'] = True

return out

if state == 'IDLE':

stack = []

t0_child = vec3()

t1_child = vec3()

next_child = 0

stack_idx = 0

if start:

state = 'INIT'

out['ready'] = False

stack.append(stack_frame())

stack[stack_idx].entry = params['entry']

stack[stack_idx].t0 = params['t0']

stack[stack_idx].t1 = params['t1']

stack[stack_idx].tm = sum_and_right_shift(

params['t0'],

params['t1']

)

a = params['a']

else:

return out

elif state == 'INIT':

stack[stack_idx].cur_child_idx = get_initial_child_idx(

stack[stack_idx].t0,

stack[stack_idx].tm

);

state = 'EVAL'

elif state == 'EVAL':

t0_child = get_child_t_values(

stack[stack_idx].cur_child_idx,

stack[stack_idx].t0,

stack[stack_idx].tm

)

t1_child = get_child_t_values(

stack[stack_idx].cur_child_idx,

stack[stack_idx].tm,

stack[stack_idx].t1

)

if (

((mem[stack[stack_idx].entry] & 0x0000FF00) >> 8) &

(1 << (a ^ stack[stack_idx].cur_child_idx))

):

if (

(mem[stack[stack_idx].entry] & 0x000000FF) &

(1 << (a ^ stack[stack_idx].cur_child_idx))

):

out['hit'] = True

state = 'OUT'

else:

state = 'PUSH'

push_entry = stack[stack_idx].entry + \

((mem[stack[stack_idx].entry] & 0x7FFF0000) >> 16)

mask = ((mem[stack[stack_idx].entry] & 0x0000FF00) >> 8) & \
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~(mem[stack[stack_idx].entry] & 0x000000FF)

push_offset_lookup = [

0,

mask & 0x1,

(mask & 0x1) + ((mask >> 1) & 0x1),

(mask & 0x1) + ((mask >> 1) & 0x1) + ((mask >> 2) & 0x1),

(mask & 0x1) + ((mask >> 1) & 0x1) + ((mask >> 2) & 0x1) +

((mask >> 3) & 0x1),

(mask & 0x1) + ((mask >> 1) & 0x1) + ((mask >> 2) & 0x1) +

((mask >> 3) & 0x1) + ((mask >> 4) & 0x1),

(mask & 0x1) + ((mask >> 1) & 0x1) + ((mask >> 2) & 0x1) +

((mask >> 3) & 0x1) + ((mask >> 4) & 0x1) +

((mask >> 5) & 0x1),

(mask & 0x1) + ((mask >> 1) & 0x1) + ((mask >> 2) & 0x1) +

((mask >> 3) & 0x1) + ((mask >> 4) & 0x1) +

((mask >> 5) & 0x1) + ((mask >> 6) & 0x1),

]

else:

next_child = get_next_child_idx(

stack[stack_idx].cur_child_idx,

t1_child

)

state = 'NEXT'

elif state == 'PUSH':

entry = 0

if mem[stack[stack_idx].entry] & 0x80000000:

entry = stack[stack_idx].entry + mem[push_entry] + \

push_offset_lookup[a ^ stack[stack_idx].cur_child_idx]

else:

entry = push_entry + \

push_offset_lookup[a ^ stack[stack_idx].cur_child_idx]

stack_idx += 1

stack.append(stack_frame())

stack[stack_idx].entry = entry

stack[stack_idx].t0 = t0_child

stack[stack_idx].t1 = t1_child

stack[stack_idx].tm = sum_and_right_shift(t0_child, t1_child)

state = 'INIT'

elif state == 'NEXT':

if next_child < 8:

stack[stack_idx].cur_child_idx = next_child

state = 'EVAL'

else:

if stack_idx == 0:

out['hit'] = False

state = 'OUT'

else:

state = 'POP'

elif state == 'POP':

del stack[stack_idx]

stack_idx -= 1

t0_child = get_child_t_values(

stack[stack_idx].cur_child_idx,

stack[stack_idx].t0,

stack[stack_idx].tm
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)

t1_child = get_child_t_values(

stack[stack_idx].cur_child_idx,

stack[stack_idx].tm,

stack[stack_idx].t1

)

next_child = get_next_child_idx(

stack[stack_idx].cur_child_idx,

t1_child

)

state = 'NEXT'

elif state == 'OUT':

out['t_hit'] = get_max_t_value(t0_child)

if out['t_hit'] == t0_child.x:

out['normal'] = vec3(1, 0, 0)

elif out['t_hit'] == t0_child.y:

out['normal'] = vec3(0, 1, 0)

else:

out['normal'] = vec3(0, 0, 1)

state = 'IDLE'

out['ready'] = True

return out

G.2 Data types

class fp:

binval = 0

global_prec = 16

size = 32

def __init__(self, value=2**16):

if value > 2**(fp.size - 1 - fp.global_prec) - 1:

value = 2**(fp.size - 1 - fp.global_prec) - 2**(-fp.global_prec)

elif value < -2**(fp.size - 1 - fp.global_prec) - 1:

value = -2**(fp.size - 1 - fp.global_prec)

self.binval = int(value * 2**fp.global_prec) & (2**fp.size - 1)

def __repr__(self):

if self.binval > 2**(fp.size - 1) - 1:

dec = (self.binval - 2**fp.size) / 2**fp.global_prec

else:

dec = self.binval / 2**fp.global_prec

return "%08X (%f)" % (self.binval, dec)

def add(left, right):

retval = fp(0)

if left.binval == 2**(fp.size - 1) or right.binval == 2**(fp.size - 1):

retval.binval = 2**(fp.size - 1)

else:

retval.binval = (left.binval + right.binval) & (2**fp.size - 1)

return retval

def shr(val):
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retval = fp(0)

if val.binval == 2**(fp.size - 1):

retval.binval = 2**(fp.size - 1)

elif val.binval < 2**(fp.size - 1):

retval.binval = val.binval >> 1

else:

retval.binval = (val.binval | 2**fp.size) >> 1

return retval

def gt(left, right):

if (

(left.binval > 2**(fp.size - 1) - 1) ^

(right.binval > 2**(fp.size - 1) - 1)

):

return (left.binval <= 2**(fp.size - 1) - 1)

else:

return left.binval > right.binval

def lt(left, right):

if (

(left.binval > 2**(fp.size - 1) - 1) ^

(right.binval > 2**(fp.size - 1) - 1)

):

return (left.binval > 2**(fp.size - 1) - 1)

else:

return left.binval < right.binval

def gte(left, right):

if (

(left.binval > 2**(fp.size - 1) - 1) ^

(right.binval > 2**(fp.size - 1) - 1)

):

return (left.binval <= 2**(fp.size - 1) - 1)

else:

return left.binval >= right.binval

def lte(left, right):

if (

(left.binval > 2**(fp.size - 1) - 1) ^

(right.binval > 2**(fp.size - 1) - 1)

):

return (left.binval > 2**(fp.size - 1) - 1)

else:

return left.binval <= right.binval

class vec3:

x = fp()

y = fp()

z = fp()

def __init__(self, x=None, y=None, z=None):

if x is not None:

self.x = fp(x)

if y is not None:

self.y = fp(y)
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if z is not None:

self.z = fp(z)

def __repr__(self):

return "[%s | %s | %s]" % (self.x, self.y, self.z)

def add(left, right):

retval = vec3()

retval.x = fp.add(left.x, right.x)

retval.y = fp.add(left.y, right.y)

retval.z = fp.add(left.z, right.z)

return retval

def shr(val):

retval = vec3()

retval.x = fp.shr(val.x)

retval.y = fp.shr(val.y)

retval.z = fp.shr(val.z)

return retval

def max(self):

if fp.gte(self.x, self.y) and fp.gte(self.x, self.z):

return self.x

elif fp.gte(self.y, self.x) and fp.gte(self.y, self.z):

return self.y

else:

return self.z

def min(self):

if fp.lte(self.x, self.y) and fp.lte(self.x, self.z):

return self.x

elif fp.lte(self.y, self.x) and fp.lte(self.y, self.z):

return self.y

else:

return self.z

G.3 Test bench

reset = False

start = False

out = {}

max_it = 0

max_params = {}

def run_rt_core(ray_orig, ray_dir, debug=False):

global out

global max_it

global max_params

params = get_initial_params(ray_orig.copy(), ray_dir.copy())

params['ray_orig'] = ray_orig

params['ray_dir'] = ray_dir

if fp.gte(params['t0'].max(), params['t1'].min()):
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out['cost'] = 0

return False

params['entry'] = 0

out = rt_core(True, False, {}, mem, debug)

out = rt_core(False, True, params, mem, debug)

for i in range(0, 1000):

out = rt_core(False, False, params, mem, debug)

if out['ready']:

hit = out['hit']

out = rt_core(False, False, {}, mem, debug)

out = rt_core(False, False, {}, mem, debug)

if hit and i > max_it:

max_it = i

max_params = params

out['cost'] = i

return hit

def get_initial_params(ray_orig, ray_dir):

ray_len = (ray_dir[0]**2 + ray_dir[1]**2 + ray_dir[2]**2)**0.5

ray_dir[0] /= ray_len

ray_dir[1] /= ray_len

ray_dir[2] /= ray_len

a = 0

dim = 1

for comp in range(0, 3):

if ray_dir[comp] == 0:

ray_dir[comp] = 0.0001

if ray_dir[comp] < 0:

ray_orig[comp] *= -1

ray_dir[comp] *= -1

a |= 2**comp

t0_float = (

(-dim - ray_orig[0]) / ray_dir[0],

(-dim - ray_orig[1]) / ray_dir[1],

(-dim - ray_orig[2]) / ray_dir[2]

)

t1_float = (

(dim - ray_orig[0]) / ray_dir[0],

(dim - ray_orig[1]) / ray_dir[1],

(dim - ray_orig[2]) / ray_dir[2]

)

t0 = vec3(t0_float[0], t0_float[1], t0_float[2])

t1 = vec3(t1_float[0], t1_float[1], t1_float[2])

return {

'a': a,

't0': t0,
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't0_float': t0_float,

't1': t1,

't1_float': t1_float

}

def get_inv_proj(width, height):

far = 100.0

near = 0.001

fov = 60

aspect = float(width) / height

f = far

n = near

t = math.tan(fov / 180 * math.pi / 2) * n

b = -t

r = t * aspect

l = -r

return np.array([

[-f * (r - l) / (f - n), 0, 0, -f * (r + l) / (f - n)],

[0, -f * (t - b) / (f - n), 0, -f * (t + b) / (f - n)],

[0, 0, 0, 2 * f * n / (f - n)],

[0, 0, 1, -(f + n) / (f - n)]

])

def get_inv_view(pos, rot):

inv_view = np.array([

[1, 0, 0, 0],

[0, 1, 0, 0],

[0, 0, 1, 0],

[0, 0, 0, 1]

])

rotation_y = np.array([

[math.cos(-rot[1]), 0, math.sin(-rot[1]), 0],

[0, 1, 0, 0],

[-math.sin(-rot[1]), 0, math.cos(-rot[1]), 0],

[0, 0, 0, 1]

])

rotation_x = np.array([

[1, 0, 0, 0],

[0, math.cos(0.5* math.sin(rot[0])), -math.sin(0.5* math.sin(rot[0])), 0],

[0, math.sin(0.5* math.sin(rot[0])), math.cos(0.5* math.sin(rot[0])), 0],

[0, 0, 0, 1]

])

rotation = rotation_x.dot(rotation_y)

translation = np.array([[1, 0, 0, pos[0]],

[0, 1, 0, pos[1]],

[0, 0, 1, pos[2]],

[0, 0, 0, 1]])
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inv_view = np.transpose(rotation).dot(inv_view)

inv_view = translation.dot(inv_view)

return inv_view

def get_ray(x, y, width, height, pos, rot):

v0 = np.array([x, y, -1, 1])

v1 = np.array([x, y, 1, 1])

inv_proj = get_inv_proj(width, height)

inv_view = get_inv_view(pos, rot)

q0 = inv_proj.dot(v0)

q1 = inv_proj.dot(v1)

q0 = q0 / q0[3]

q1 = q1 / q1[3]

q0 = inv_view.dot(q0)

q1 = inv_view.dot(q1)

ray_orig = [q0[0], q0[1], q0[2]]

ray_dir = [q1[0] - q0[0], q1[1] - q0[1], q1[2] - q0[2]]

return {'orig': ray_orig, 'dir': ray_dir}
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