Didrik Rokhaug

Rust applications for Zephyr

Master’s thesis in Cybernetics and Robotics
Supervisor: Sverre Hendseth, Sebastian Bge

June 2019

=}
z
-
z

>
(=2}
o
°
o
C
N
]
'_
o
C
©
(0]
o
C
o
(8]
[9p]
—
o
>
=
(9]
[
(]
2
C
]
C
o
o
(0]
2
[
(=]
=z

- o
=
-
s o
(SN)
o c
o

c
2w
©
>
(@]
RS}
[}
C
=
o
'_
c
o
b=
g
—
o
XS]
E
N
o
>
=
3
(&)
o
i

0
o
=
9]
c
(.
o
o
>
o
o
c
(.
o
o
c
ISy
c
L
o«
5]
!
c
9]
S
£
j o
@
o
o
[m]

@NTNU

Norwegian University of
Science and Technology

Didrik Rokhaug

Rust applications for Zephyr

Master’s thesis in Cybernetics and Robotics
Supervisor: Sverre Hendseth, Sebastian Bge
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

@NTNU

Norwegian University of
Science and Technology

Preface

I would like to thank my supervisors, Sverre Hendseth at NTNU and Sebastian
Bge at Nordic Semiconductor for their help with this project. Sverre for asking
hard questions, and Sebastian for help navigating Zephyr’s source code and the
world of compiler options.

Didrik Rokhaug

Problem Statement

Rust is a new system programming language, that can be used in embedded
systems. A requested feature that would help improve Rust’s usability in em-
bedded systems is the ability to use a mature embedded operating system. One
such operating system is Zephyr, a new open source real-time operating system
project hosted by the Linux Foundation.

There are several challenges associated with making a Rust application for
Zephyr. Bindings need to be created so that Rust knows how to call Zephyr’s
APIs and the Rust application need to be linked together with Zephyr.

The goal of this work is to explore the possibility of writing Rust applications
using the Zephyr embedded operating system, and if possible make a proof of
concept application showing how a Rust application for Zephyr can be made.

The student shall:

e Document relevant parts of Rust and Zephyr’s toolchain and build process
with regards to a Rust application on Zephyr

e Find challenges with making a high quality interface to Zephyr in Rust

e Make a proof of concept application in Rust that uses Zephyr

ii

Abstract

Rust is a new systems programming language with features that make it suit-
able for embedded development. However, it is currently not possible to use it
together with embedded operating systems. One such operating system that is
well suited for the same applications as Rust is Zephyr. In this report we will
present a proof of concept application that shows that Rust and Zephyr can be
used together. We will also outline what work that need to be done in order for
Rust application development for Zephyr to be a viable option.

il

Sammendrag

Rust er ett nytt systemprogrammeringssprak med egenskaper som gjor det godt
egnet for utvikling av applikasjoner for innevevde datasystemer. En ting som
mangler for at dette skal bli lettere er muligheten til a4 bruke sanntids oper-
ativsystemer. Ett slikt operativsystem er Zephyr. I denne rapported vil vi
presentere en proof of concept applikasjon som viser at Rust og Zephyr kan
brukes sammen. Vi vil ogsa legge frem hvilket arbeid som mé gjgres for at
applikasjonsutvikling i Rust for Zephyr skal veere et levedyktig alternativ.

iv

Contents

|2 Background|

[2.2.1 Configuration|

2.2.2 ephyr’s toolchain|o 0L
2.2.3 Systemcalls|. 0o oo
2.3 Object files and Iinking|

[3 Generation of bindings to Zephyr’s AP]|
8.1 Configurations|
B.2 static inline functiond

[4 A Rust application on Zephyr|
4.1 The bindings| o
4.2 'The application] oL oo
4.3 Building the application|00,
4.4 Linking to Zephyr| L.

[6_Discussionl
[6 _Conclusion|

|A Build log for Zephyr’s “Blinky” sample|
IA.1 The generation step|o
[A.2 The build step| o
|A.2.1 The building of ibapp.gf
1A.2.2 The rest of the buildstep|
[A3 Thelinkstepl
[A4 The post build stage]

[IB Contents of accompanying zip file

17
19
21

23
23
28
29
30

33

36

40
40
47
47
48
52
60

61

Chapter 1

Introduction

Rust is a new systems programming language that provides a lot of low-level
control, while also maintaining a high abstraction layer and a focus on safety.
It can be used on embedded devices, but its ecosystem is still young. One re-
quested feature is the possibility to use an embedded operating system together
with Rust[7]. One possible embedded OS that has been mentioned in these
discussions is Zephyr. While Zephyr itself is a new project itself, it is supported
by several big corporations in the industry and is based on older projects, which
means that a lot of its source code is already mature. Zephyr does also support
a wide range of features and many different platforms. This makes Zephyr an
attractive operating system to use together with Rust.

In addition to being of great help for the Rust embedded ecosystem, making a
Rust application that uses Zephyr is interesting for other reasons. As Zephyr is
written in C and not in Rust, ensuring that the two languages interact properly
will be necessary. Considering that Zephyr is a complicated system which uses
several advanced C and compiler features, the interactions between Rust and
Zephyr become more complicated. Zephyr’s build process is also complicated,
and incorporating Rust’s build system will therefore also be a challenge.

Another reason that making Rust applications is an interesting challenge is that
even though a solution to many of the problems that may arise might not be
very complicated, the knowledge needed to find the solutions are not easily
accessible. The reason for this is that most developers do not need to know
all the details about how the tools they use work, and these tools do not have
much scientific significance. The knowledge is therefore passed from generation
to generation of a small group of developers that is responsible for maintaining
and improving these tools.

In this report we will take a look at how Zephyr and Rust might be able to work
together, make a proof of concept application and outline the work needed to
make Rust applications on Zephyr a viable option.

Chapter 2

Background

2.1 Rust

Rust is a new programming language sponsored by Mozilla. Rust 1.0, the first
stable release, was released May 15. 2015[15]. It focuses on safety, concurrency
and speed, while also providing low-level control. This makes it suitable for
embedded development. Rust has many of similarities with C, but it also takes
inspiration from functional languages such as Haskell. In addition to this, it
also has many of tools that are inspired by the tools of dynamic languages like
Ruby, Python and JavaScript[15].

Rust aims to provide memory safety without garbage collection. This safety
is achieved using two concepts called ownership and lifetimes. When a new
variable is created, it is bound to a name. We then say that that name “owns”
the variable. Later, the variable can be bound to a new name, and ownership is
then passed over. Tracking ownership allows Rust to know when a variable is no
longer needed. This is because when the owner goes out of scope, the variable
is no longer bound to any name, and can therefore not be accessed by the code
any longer. The variable can therefore safely be dropped, and its memory freed.
If we want to let someone else use the variable for a while, e.g. a function, we
can let the function borrow the variable by giving it a reference to the variable.
However, in order to prevent race conditions, we can either hand out multiple
references that cannot mutate the variable, or we can only hand out one single
mutable reference. This way, Rust is able to prevent simultaneous reads and
writes to a variable, ensuring that it always is in a consistent state. In addition
to this, by tracking the lifetime of the bindings and borrows, that is, the time a
variable is borrowed, or the scope in which the binding or borrow exists, Rust
can ensure that there are no bindings to a variable that is dropped.

As Rust is supposed to be usable everywhere C is used today; it also has built-in
mechanisms for working with libraries written in C. In order to call a function
written in C from Rust, there are a couple of things that need to be done: the
function must be declared as an external function using the C ABI, and the
library where the function is defined must be linked in. If the function uses

10

11

12

13

// File: library.c

struct c_struct {
int a,
int b

}

// We must tell the C comptler what the Rust function looks like
extern int rust_function(int a);

int c_function(struct c_struct arg) {
return rust_function(arg.a);

}

Listing 2.1: An example of using a Rust function, and exporting a function to
Rust

any composite types such as structs or enums, these types must also be defined
in Rust. Also, as the Rust compiler cannot check that the C function upholds
Rust’s safety guarantees, when we call the function it must be inside a unsafe
block. When making a Rust function to call from C, we also need to mark
that the function must use the C ABI. In addition, we need to tell the Rust
compiler not to mangle the name of the function. An example of using the
foreign function interface is shown in listing [2.1] and listing [2.2]

Sometimes, Rust’s safety guarantees are a bit too strict, or Rust might be unable
to prove that something is safe, and therefore will not allow it, even though the
programmer may know that the operation is safe. In these cases, Rust provides
the unsafe keyword. Inside a block of code marked as unsafe, Rust allows us
to do a few things normally not allowed|24]:

e Dereference a raw pointer

e Access or modify a mutable static variable
e (Call an unsafe function or method

e Implement an unsafe trait

Calling foreign functions falls under the “Call an unsafe function or method”
point. Static variables in Rust are variables which have a static lifetime, i.e.,
they last through the whole program. In addition to this, their scope is global
(to the module where they are defined). This means that they, in theory, can
be accessed by multiple threads. Therefore, if the static variable is mutable,
it is unsafe to access it, as another thread might be modifying it at the same
time. As a part of Rust’s lifetime analysis, Rust is able to prevent reading of
uninitialized memory. Such memory access is considered unsafe, as the memory
can contain any value. The reason for this being a problem becomes clear if
we consider an uninitialized variable of type bool. The memory the bool is
made of can only have two valid values: 0 and 1. However, the uninitialized
piece of memory can have any value, which leads to a problem if we try to read
the value of the bool. In safe code (code that is not inside an unsafe block)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

// File: main.rs

// We need to tell the Rust compiler to pack the C
// struct in the same way that the C compiler would.
#[repr(C)]
struct c_struct {

a: 132,

b: 132,
}

#[no_mangle]
pub extern "C" fn rust_function(a: i32) -> i32 {
a+ 1

}

// Inside this block we can define external functions
// that must be called using the C ABI.
extern "C" {

fn c_function(arg: c_struct) -> i32;

}

fn main() {
let foo = c_struct{a: 1, b: 2};
unsafe {
println! ("foo.a + 1: {}", c_function(foo0));

}

Listing 2.2: An example of usage of Rust’s foreign function interface

this cannot happen, as Rust can detect that the variable is uninitialized, and
it is impossible to get references to uninitialized variables. However, Rust also
supports raw pointers (standard C pointers). As these pointers can be set to
point to any address, Rust is unable to guarantee that they always point to
valid initialized memory. Therefore, dereferencing a raw pointer is considered
unsafe, and must be done inside an unsafe block[21].

2.1.1 Rust’s toolchain and other useful tools

Rust’s compiler “rustc” is based on the LLVM compiler backend. The LLVM
project consists of several subprojects; the most relevant are the LLVM Core,
Clang, compiler-rt, and LLD. LLVM Core is a set of libraries that provide a
source and target-independent optimizer and code generation support for many
different CPUs. Clang is a C compiler that uses LLVM as a backend. Clang
does this by producing an LLVM intermediate representation (LLVM IR), that is
given to LLVM Core, which then generates the final binary code. Clang can also
be used as a platform to make source-level tools. The LLVM IR contains some
high-level operations that are not supported on all platforms. For these plat-
forms, compiler-rt provides implements routines for these operations[4]. LLD is
a new linker, that can be used as a replacement of system linkers. It has been
used as the default linker on ARM Cortex-M targets since August 28. 2018[17].

To help with calling the compiler, and handling dependencies Rust provides
Cargo. Cargo is primarily a package manager that handles the dependencies
of a Rust project but can also be used to specify how the Rust project is to
be built. This includes building and linking to C libraries. To provide this
functionality Cargo uses a couple of configuration files and an optional build
script. The first configuration file, called the manifest file, contains information
about the project. What is the name of the project, and what version is it? Who
wrote it? It also has information about what (Rust) dependencies is used, and
what feature flags they use; what other libraries are to be linked, and where to
find them. It also specifies how the project itself is built. This includes options
such as what type of library it should be compiled to (static or dynamic), what
optimization level should be used, and how should panics be handled.

The other configuration file “.cargo/config” and is used to configure Cargo itself.
It can also be used to set certain flags when compiling for a specific target. The
options in this file can be spread across several files, upwards in the file hierarchy.
This way, we can specify options both globally and per project. The final way
of influencing the build is a build script. These are usually called “build.rs”,
but any file can be specified in the manifest file. The build file contains a Rust
program that is run before the project is built. The most common use cases
for these build scripts are to generate code at compile time, build code written
in another language, and to specify how to link to native languages. The build
script can pass commands and options to Cargo using its standard output[9].

Rust uses a hierarchical module structure, meaning that the module structure
represents a tree, with a top-level module that contains children modules and
so on. Any function, type, trait or submodule (an item) defined in a module is
private by default but can be made public by the keyword pub. The exception

is the top level of the library (crate in rust parlance), who exports nothing
by default. An item is always public to its immediate parent module, and
the parent’s children module[24]. A module can be written in the same file as
its parent, but they are often given their own files. In order to simplify the
search for these files, the name of the file is decided by the Rust compiler. A
file containing a module must either have the same name as the module or be
called mod.rs and exist in a folder with the same name as the module. E.g.,
a module called foo can either be written in the file of the parent module, in
foo.rs or mod/foo.rs. Similarly, Cargo expects the top level file in a library to
be called lib.rs, and in an executable main.rs.

As rustc targets LLVM rather than an actual architecture, Rust can be compiled
for most platforms that LLVM can generate code for. This also means that rustc
is a cross compiler by default. In order to compile for a different target, all we
need to do is to get the correct version of the standard library and specify which
target we want to compile for. However, if we want to use the standard library
(or parts of it) on a target that Rust does not support, or we want to change how
the standard library is built, we have to build the standard library ourselves.
This can be done with the tool Xargo, which imitates the behavior of Cargo
but also builds the standard library. Xargo will compile the standard library
and call the compiler with the right flags so that the new standard library is
linked in. Xargo will by default only compile the platform-independent core of
the standard library, but if other parts of the library are needed, they can also
be compiled[12].

To know how to compile for a specific target rustc uses a target specification
file. This approach was first suggested in RFC 131[14]. Having the target
specifications written in its own configuration file allows users to edit targets
easily, and thus easily port Rust to new platforms. The configuration file consists
of a JSON object which specifies what LLVM target is to be used, along with
the endianness, pointer and integer width and data layout of the target. In
addition to this, there are fields for specifying the operating system, environment
(which libc), vendor, and architecture. These options are used for conditional
compilation by Rust. Finally, there are a lot of optional settings that can be
set. Among these are what linker to use and what arguments the linker should
be used with, what output formats are available and some settings that control
what optimizations are applied. A full description of the target specification
can be found in [§].

While the target specifications can be written in JSON, the supported targets
are built in directly in rustc. There are two reasons for this:

1. It eases distribution by avoiding the need for configuration files.

2. The specifications become immutable, and can, therefore, be trusted to
be correct.

However, rustc can print out the specifications in JSON format. The specifica-
tion of the target thumbv7em-none-eabi, which is the target for a bare metal
Cortex M4 without a floating point unit can be seen in listing [2.3]

Another helpful tool for Rust developers is (Rust-)Bindgen. As much of the work
with calling C functions comes from providing the C prototypes in Rust, Bindgen

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

"abi-blacklist": [
"stdcall",
"fastcall",
"vectorcall",
"thiscall",
"win64",
"sysv64"

1,

n arCh" . n

arm",

"data-layout": "e-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-564",

"emit-debug-gdb-scripts": false,
"env": "",

"executables": true,
"is-builtin": true,

"linker": "rust-114",
"linker-flavor": "1d.1l1ld",

"llvm-target": "thumbv7em-none-eabi",
"max-atomic-width": 32,
llOSll . Ilnonell

. H
"panic-strategy": "abort",
"relocation-model": "static",

"target-c-int-width": "32",
"target-endian": "little",
"target-pointer-width": "32",
llvendorll . nn

}

Listing 2.3: The target specification file for the thumbv7em-none-eabi target.

was made to generate these bindings automatically. Bindgen uses libclang, a
library interface to Clang. This way, Bindgen can generate an abstract syntax
tree (AST) of the code, and find all the function and type definitions that
are used[l]. By using libclang Bindgen also gets the benefit of running the
preprocessor on the code, so if there are several versions of a function based on
some configuration options, Bindgen will see the correct one.

2.2 Zephyr

Zephyr is an open source real-time operating system (RTOS) based on Wind
River’s VxWorks Microkernel profile for VxWorks[11]. The project is hosted
by the Linux Foundation, which provides neutral governing, ensuring that all
stakeholders are represented. Among the supporters of the project are Intel,
Linaro, NXP, and Nordic Semiconductor[I3]. While the project itself is only
from 2016[I6], the history of the kernel goes back to 2001 when Wind River
acquired Eonic Systems’ digital signal processor RTOS Virtuoso[28]. Zephyr
uses the Apache 2.0 license, which makes it possible to use it in commercial
solutions, and to incorporate proprietary IP[IT].

Zephyr focuses on Internet of Things (IoT) applications and therefore supports
several protocols and standards such as Bluetooth Low Energy, 802.15.4, Wi-Fi,
CoAP and MQTTI[II]. Another important area of focus is IoT is security. As a
part of this focus, the code is carefully reviewed and tested, including by static
analysis. As many IoT devices have very little memory, Zephyr is made to be
modular, so that we do not have to pay for something we do not use.

2.2.1 Configuration

Zephyr supports many different platforms. These platforms support different
features, have a different amount of memory, different sets of peripherals, and
everything has different addresses. Zephyr does also support many features
that we might not want to include in our project due to memory, power, or
complexity constraints. In order to support this high degree of options for the
users, Zephyr uses two different systems to provide configurability. The first
is device trees, which are used to describe the hardware Zephyr runs on. The
other is Kconfig which is used for actual configuration of the kernel.

The device tree is not used to configure Zephyr directly but informs Zephyr
about what peripherals are available on the given target, what their addresses
are, what interrupts they have, etc|23]. Linux also uses device trees for similar
purposes. A difference between Linux’s and Zephyr’s usage of the device trees,
however, is that Linux compiles the device trees using a device tree compiler
(DTCQ) into a binary blob that is loaded into memory by the bootloader. When
the Linux kernel boots up, it will read this binary blob, and use the information
to set up its drives correctly. Zephyr, on the other hand, uses the device tree
compiler only to combine all the device tree files into a new device tree file.
This file is then parsed together with a set of YAML files by a python script
to generate C preprocessor #defines used by the drivers. Part of the device

1

N

10

11

10

11

12

13

leds {

compatible = "gpio-leds";

led0: led_0 {
gpios = <&gpioO 17 GPIO_INT_ACTIVE_LOW>;
label = "Green LED 0";

3

ledl: led_1 {
gpios = <&gpioO 18 GPIO_INT_ACTIVE_LOW>;
label = "Green LED 1";

};
};

Listing 2.4: A piece of the device tree for the nrf52 pcal0040 board.
/* led_0 */

#define DT_GPIO_LEDS_LED_0_GPIO_CONTROLLER "GPIO_0"

#define DT_GPIO_LEDS_LED_0_GPIO_FLAGS 0

#define DT_GPIO_LEDS_LED_0_GPIO_PIN 17

#define DT_GPIO_LEDS_LED_O_LABEL "Green LED 0"

#define DT_GPIO_LEDS_LEDO_GPIO_CONTROLLER

— DT_GPIO_LEDS_LED_O_GPIO_CONTROLLER

#define DT_GPIO_LEDS_LEDO_GPIO_FLAGS

— DT_GPIO_LEDS_LED_O0_GPIO_FLAGS

#define DT_GPIO_LEDS_LEDO_GPIO_PIN DT_GPIO_LEDS_LED_0_GPIO_PIN
#define DT_GPIO_LEDS_LEDO_LABEL DT_GPIO_LEDS_LED_0_LABEL
#define LEDO_GPIO_CONTROLLER DT_GPIO_LEDS_LED_O0_GPIO_CONTROLLER
#define LEDO_GPIO_FLAGS DT_GPIO_LEDS_LED_O_GPIO_FLAGS

#define LEDO_GPIO_PIN DT_GPIO_LEDS_LED_O_GPIO_PIN

#define LEDO_LABEL DT_GPIO_LEDS_LED_O_LABEL

Listing 2.5: Part of the output generated from nrf52 pcal0040’s device tree.

tree for nrf52_ pcal0040 is shown in listing 2.4 and part of the output is shown
in listing [2.5] The biggest reason for this different use is that the binary blob
generated by the DTC is huge. This becomes a problem when used on memory
constrained devices.

Kconfig is also used by Linux to configure the kernel. Kconfig is a language used
to describe configuration options and how they relate to each other. Unlike the
device trees, we need to specify what options are available. When specifying
the option, we can specify the type, e.g., number, bool, string; set a default
value, and specify relations to other configuration options. The graphical tool
Makeconfig can be used to select the configurations, or we can write it in a
file. A Zephyr application contains a file called prj.conf which contains the
configuration for the project. In addition to prj.conf, the configuration can be
spread across multiple files. This is used by Zephyr to set options based on
the selected board automatically. The output from the configuration files is the
header file autoconf.h, a part of the autoconf.h generated for Zephyr’s “Blinky”
sample for nrf52_pcal0040 is shown in listing [2.6]

/* Generated by Kconfiglib (https://github.com/ulfalizer/Kconfiglib) */

#define CONFIG_BOARD "nrfb52_pcal0040"
#define CONFIG_SOC "nRF52832_QFAA"
#define CONFIG_SOC_SERIES "nrfb2"
#define CONFIG_NUM_IRQS 39

/o

#define CONFIG_GPIO_NRFX 1

#define CONFIG_GPIO_NRF_INIT_PRIORITY 40
#define CONFIG_GPIO_NRF_PO 1

Listing 2.6: Parts of the autoconf.h generated when building the “Blinky” sample
for the nrf52 pcal0040 board.

2.2.2 Zephyr’s toolchain

Building Zephyr can be divided into several steps. First, Zephyr uses CMake to
check that the build environment is OK and to generate instructions on how to
build Zephyr itself. CMake also generates the macros and defines Zephyr uses
to configure itself. Once this is done, Zephyr uses Make or Ninja to build the
source code itself. The work that CMake does is called the configuration phase.
The next phase is called the build phase. This phase is driven by either Make
or Ninja, and can also be divided into several steps: the generation step, the
build step, the link step, and the post-build step. This process is illustrated in
fig.

During the generation step, Zephyr generates more C code. This generated code
includes parts of Zephyr’s system call dispatch infrastructure and some files used
to keep track of kernel objects. During the build step, Zephyr gets compiled
into a series of statically linked archives. The two most interesting archives
are libzephyr.a and libkernel.a. These libraries are where most of the operating
system itself is defined. The rest are the various subsystems and drivers that
are used by the application or this particular configuration of the operating
system. In addition to this, there are a few hardware dependent libraries. The
application is also built at this stage as a static library called libapp.a.

During the link step, all these libraries are linked together. When the application
and the rest of Zephyr are linked together into an executable, this executable
is analyzed to extract the interrupt service routines, and generate a new C file
containing an interrupt table. All the libraries are then linked together again,
to create the final executable. In the post-build step, a script runs to check
that the executable looks correct, the executable is converted to formats better
suited for flashing the hardware, and some debug output is generated. A full
list of the commands run by the build script is shown in appendix [A] and in
make.log in the accompanying zip file.

2.2.3 System calls

This section is taken from my project thesis “An alternative approach to Zephyr’s
system call dispatch, using Rust”[26].

10

Configuration step

Configuration include files

Makefiles

yi
<

Generation step

Zephyr source

Source files

Application

Build step

T
Archives

Link step

Executable

Post build step

Final executable

Figure 2.1: Visualization of Zephyr’s build process.

11

As user mode threads have limited privileges, there are several things they are
not allowed to do. User-mode threads run in a non-privileged CPU state[I9].
This means that there are certain instructions and operations they cannot exe-
cute. In addition to this, they do not have access to the entire memory, and they
cannot modify kernel objects[I8]. Kernel objects are split into three classes[18§]:

e A core kernel object
e A thread stack
e A device driver instance

Core kernel objects are semaphores, threads, pipes, etc. Device driver instances
are structs that contain a set of function pointers that are used by the specific
driver.

In order for a user mode thread to access any of these objects, or instructions,
they have to use system calls. These are special functions defined in the Zephyr
kernel that can be called from user mode but run in kernel mode. To make it
easier to write system calls, Zephyr generates the code for switching to kernel
mode and back automatically.

A Zephyr system call consists of three components: a C prototype, a handler
function, and an implementation function. The C prototype is listed in a header
that is included by the application and is prefixed with __syscall. This is
the prototype of the system call that is called by the application, but it is
not manually implemented. Instead, code is generated that does the privilege
escalation, checks that the given parameters are valid using the handler function,
and then runs the implementation function, where the actual code of the system
call is. The handler function is declared using a macro that expands to the
correct function declaration. Inside the handler function, a set of macros is used
to verify that the input arguments are valid. When the inputs are validated, the
handler function calls the implementation function and returns the result of the
system call. The implementation function is, as the name implies, where the
system call is implemented. Thanks to the handler function, the implementation
function can assume that the inputs are valid and that the calling thread has
access to the service that the system call provides.

While the __syscall marker is defined as a C preprocessor macro, it does
not expand to anything useful. Instead, several Python scripts search all the
header files in Zephyr’s include directory. When the scripts find the __syscall
marker, they store the name, return type, argument type, and names and the
name of the header where file the system call was declared in a JSON file. Then
another Python script parses the JSON file and outputs the C code and macros
used to dispatch the system call. This includes putting a pointer to the handler
function in a table of all system calls and writing a macro that declares the

system call.

The macro expands to the function that the user mode thread calls when it
wants to perform the relevant system call. The function checks if it was called
from user mode or not, and then either calls an architecture specific function
for checking that the system call is a valid system call and running the system
call in kernel mode, or runs the system call directly. On the other hand, if

12

System
call table

Exception P System call > System call
handler d handler implementation

Kernel mode

User mode

Application [—» System call Application

Figure 2.2: A diagram showing the control flow of Zephyr’s system call dispatch.
The shaded boxes are generated by Python scripts.

the calling thread already runs in kernel mode, the implementation function is
called directly.

If we are in user mode, we need to switch to kernel mode. This includes setting
the CPU in a privileged state. In order to go from an unprivileged state to
a privileged state, we need to go via an exception|20]. This is because you
cannot change to privileged mode from unprivileged mode, but exceptions run
in privileged mode, and can, therefore, be used to execute privileged code.
However, before the code can be executed, it needs to be validated to ensure that
the user cannot execute arbitrary code in privileged mode. Zephyr does this by
not passing a pointer to the system call function to the exception handler, but
instead, it passes an index to a table that contains all the system call handler
functions. The exception handler then checks whether the index is within the
boundaries of the system call table or not. If the index is fine, then the exception
handler changes to privileged mode and sets up the stack and registers needed
to do the system call. When the system call returns, the CPU is set back to an
unprivileged state, before the function returns. A diagram of the control flow is

given in fig. 2.2}

2.3 Object files and linking

When compiling a source file, the output can be given in many different formats
depending on what we want to achieve. Common for most of these forms,
however, is that they are so-called object files, or files containing machine code,
even though it may not be executable, as it is not able to tell where to jump
to when it is supposed to jump. While these files are meant to be read by
a computer, and not a human, sometimes we have to read them in order to
understand what is wrong with our program. In this section, we will first take
a look at the formats produced by Zephyr’s build system: ELF object files, and
archives or statically linked libraries. Then we will take a look at some tools
that lets us extract useful information and interact with these files.

There are a lot of different formats for object files, depending on what platform
and toolchain are used and what the object files are used for. On UNIX like
systems, the executable and linkable format (ELF) is used both for relocatable

13

ELF header

Program table Describe segments
header

Section table
Describes sections header

Figure 2.3: Layout of an ELF file.

linkable files, loadable executables, and loadable shared libraries[25]. This is
done by having two ways of reading the ELF file, as shown in fig. The
file starts with an ELF header, which contains information about the file itself,
i.e.,, what kind of file it is, how to read it (the format is cross-platform, and
therefore contain information about byte order and word size), and where to
find the program and section header tables. It is these two tables that make
the ELF format so versatile. After the ELF header follows the program header
table, which contains descriptions of memory segments that are contained in the
file. These segments can be loaded into memory in order to run the ELF as an
executable. The section header table, on the other hand, describes the sections
which exist in the file. The linker uses the sections in order to link together
several ELF files. This duality means that an ELF file might be linkable and
loadable at the same time.

When the linker links together two object files, it takes the sections in the files
as input and places them in segments in the output file. In addition to this, it
also resolves any symbol references. The code in a section might refer to code
or data in a different section. An ELF section contains different information
depending on its type[25]:

e PROGBITS: Program contents, including code, data, and linking debug-
ger information.

e NOBITS: Similar to PROGBITS, but no data is stored in the file itself.
Used for zero allocated data.

e SYMTAB and DYNSYM: Symbol tables. SYMTAB sections hold symbols
used for the regular linker. DYNSYM holds symbols used for dynamic
linking.

14

1 typedef struct {

2 E1f32_Word st_name; // Index into the string table.

3 E1£32_Addr st_value; // Value of the symbol. Section relative in a

4 // relocatable file, absolute in an exzecutable.

5 E1£32_Word st_size; // Object or function stize.

6 unsigned char st_info; // The 4 least significant bits of this value s

7 // the symbols type, i.e. i1f it s a data object

8 // function or something else. The 4 most

9 // significant is the binding: Local, global or weak
10 unsigned char st_other; // Unused.

11 E1f32_Half st_shndx; // Section number, ABS, COMMON or UNDEF.

>} E1f32_Sym;

=

Listing 2.7: Definition of an ELF symbol table entry[27]. E1£32_Word and
E1£32_Addr are 4 bytes long, while E1£32_Half is 2 bytes.

e STRTAB: A string table. Rather than storing the name of a section or
symbol in their corresponding tables, they instead have pointers to these
tables. This way, all entries in other tables have a constant length.

e REL and RELA: Relocation information. REL contains entries that add
the relocation information to a base value stored in the code or data, while
RELA entries include the base values themselves.

e DYNAMIC and HASH: Dynamic linking information and run-time symbol
hash table.

A symbol table entry contains information needed by the linker to allocate stor-
age for the symbol and to do symbol resolution. A symbol table entry is shown
in listing 2.7 A symbols binding can be local, global, or weak. A local binding
means that it is only accessible from within the same object file (module). This
means that symbols in other modules cannot refer to this symbol. A global
symbol is visible everywhere. A weak symbol is in many ways the same as a
global symbol, but if there are any global symbols with the same name, the
global symbol is used instead of the weak symbol. If a weak symbol is unde-
fined, it defaults to zero. If the linker encounters multiple weak definitions of a
weak symbol, it is free to choose any of the definitions.

Most programs include some common functionality. While this functionality
could be included in the form of object files, this quickly leads to several down-
sides. If we have a large object file that defines a lot of functionality, say a math
library, and we only use a small part of it, our executable will still include the
entire math object file. If on the other hand, we split the math object file into
smaller ones, we would have to tell the linker to include every single one that
we need, and if any of the smaller object files depend on another file that file
would also have to be included.

A solution to this problem is static libraries. On UNIX systems, these are simply
archives of object files. This means that the static library file can be seen as a
directory, containing separate files[25]. In addition to this, the library contains
some added directory information used to speed up searches in the library. As
the added information is itself appearing in the archive as a separate file, the

15

archive can, in theory, contain any set of files, but in practice, this format is
only used as archives of object files.

When the linker links a set of object files and libraries the order they appear
on the command line matters as the linker will process them in order[25]. The
linker will include the entirety of object files, and it will keep a list of encountered
symbols, both defined and undefined. When it encounters a library, it will look
through the library for symbols matching its still undefined symbols. When
the linker finds a symbol it needs, it will include the entire module (object file
inside an archive) that contains the definition. As this module might contain
new undefined symbols, the linker will have to look through the library again.
What is important to note is that the linker will not go back and look at earlier
libraries. This can cause problems if we include two libraries that contain a
circular dependency.

In addition to regular undefined external symbols, a library can also contain
weak external symbols. These are symbols that will resolve to external defini-
tions if a definition exists, but it will not cause a new module to be included on
its behalf. This is useful when, for instance, you have a library that contains
routines for handling floating point numbers. As the floating point routines
take a lot of space, we do not want to include them in our executable if we do
not need them. If we have a function that might need to handle floating point
numbers, this function can use weak references to the floating point routines
in order to only include them if we use the floating point library in another
way (e.g., referencing a symbol in the floating point library to ensure that it is
included).

A library can also contain weak definitions. These define a global symbol similar
to regular global definitions, but if the symbol is defined elsewhere, the weak
definition will be ignored[25]. Weak definitions are not much used but can be
used to define default behavior for functions that the user of a library should
normally implement.

There are various tools for creating and working with static libraries and object
files. On UNIX systems “ar” is the commonly used tool for creating archives.
Earlier it did not add the directory containing the symbol table; this was instead
done by “ranlib”. In order to read the symbol table in an archive or object file,
we can use “nm”. nm will also list the type of the symbol and the symbol
value. If we want more information about an object file we can use “readelf”
or “objdump”. These two programs do most of the same things, but objdump
relies on the “Binary File Descriptor” (BFD) library, while readelf does not. As
the GNU linker and compiler also depends on the BFD library, if there were
a bug in it, it would be hard to discover. readelf is, therefore implemented
separately. If we need to copy, translate or make changes to object files, we can
use “objcopy”.

16

Chapter 3

(Generation of bindings to
Zephyr’s API

In order to be able to use Zephyr from Rust, we need to have bindings to
Zephyr’s API so that the Rust compiler knows which functions exist and how
to call them. In this chapter, we will take a look at how bindings can be made
to Zephyr and what challenges there are.

Usually, when making bindings to a C library, people create two Rust libraries,
or crates as they are called in Rust parlance, one with the same name as the C
library and the other with the same name but ending with -sys. The reason for
this is that calling C functions are considered unsafe, an so using the bindings
directly would lead to many unsafe blocks. To avoid that, the unsafe direct
bindings are usually wrapped in a safe Rust layer that ensures that the C API is
used correctly. This also gives the opportunity to create a more Rust like API.
The crate with the same name as the library is the one that is included by the
users. This library depends on the -sys crate, which contains the C bindings.
While the top crate usually is written by hand, the -sys crate is usually created
by Bindgen.

The typical way of using Bindgen to make a -sys crate is to use bindgen as
a library in the build.rs script. This way, if the library contains any platform
specific things, these things will be configured correctly, without the crate owner
having to build a different crate for all possible targets. A simple build.rs
file that uses bindgen can be seen in listing First, a Bindgen Builder is
created. Builders are a common pattern for ensuring that a struct is created
correctly, especially when they have optional fields. Bindgen uses a C header
file in order to know which bindings to create. If we want to create bindings
to more header files, we can make a wrapper that includes all the header files
that we want to generate bindings to. While the build script is run in the crate
root, it is considered bad form to generate files in the root or source directory,
therefore, provides a directory in the build folder. We get the path to this output
directory as an environment variable. Finally, we write the bindings into the
file bindings.rs. This file can then be included in the crates lib.rs using Rust’s
include! macro.

17

1

3

4

o

10

11

12

// File: build.rs

fn main() {
let bindings = bindgen::Builder::default()
.header ("header.h")
.generate()

.expect ("Unable to generate bindings"); // Stimple error handling

let out_path = std::path::PathBuf::from(env::var("0OUT_DIR").unwrap());

bindings.write_to_file(out_path.join("bindings.rs"))
.unwrap() ;

Listing 3.1: A simple build.rs that uses Bindgen.

As Bindgen only takes one header file as input, while Zephyr’s API is spread
across multiple, we have to make a single header file that contains all the symbols
we want to bind to. This can be done by making a header file that includes all
the header files that we want to create bindings to. This works as Bindgen is
using libclang internally, thus having most of the functionality of an actual C
compiler. The easiest way of doing this is to read Zephyr’s “include” directory,
and include all header files we find in our wrapper. This functionality is easily
added to the build script. In order to compile Zephyr, one has to run (on
Windows) or source (on Mac/Linux) a script that sets up a few environment
variables that Zephyr needs. One of these is $ZEPHYR_BASE, which is the path
to Zephyr’s root directory. Using this environment variable, we can easily find
the path to Zephyr’s include directory.

Attempting to generate bindings with this build script fails, as Bindgen is unable
to find the included header files. While this can be fixed by writing the full path
of the header files we are including, this only delays our problem, as the header
files themselves include header files which Bindgen is unable to find. As these
errors come from libclang as it is trying to parse the header files, we need to tell
libclang where to find the files. This can be done by adding include arguments to
Bindgen’s invocation of libclang. Bindgen provides a method called clang_arg
to its Builder struct that does this. In order to find what arguments to add,
we can read Zephyr’s compiler invocations. When CMake creates Makefiles, it
adds the possibility of adding a “verbose” flag to our Make invocations. This
tells Make that we want to see all the commands that Make runs, so Make
prints them to the standard output. Piping this output into a file, we can
get a log of all the commands that get run in order to compile Zephyr. In
appendix [A] the logfile gotten from compiling Zephyr’s “Blinky” sample for the
nRF52 development kit.

Adding the arguments used to compile the Zephyr application to Bindgen re-
quires converting the GCC arguments that Zephyr uses, to the corresponding
Clang arguments that Bindgen and libclang uses. Also, as we are not doing a
whole compilation, but only parse the code, libclang does not use all the ar-
guments. Most of the arguments are easily translated, but the arguments that
specify the architecture were either unused or unknown.

18

10

11

12

13

14

16

17

18

19

20

21

22

N

3

24

Simply setting up the necessary compiler arguments is not enough. There are
two aspects of Zephyr’s API that makes it hard to generate bindings automat-
ically. The first is the configurability of Zephyr. Some libraries have multiple
implementations, and others only make sense for certain targets. This creates
problems when we try to compile all the headers at the same time. Another
challenge is that Zephyr uses a lot of static inline functions in its API. As
these functions do not exist after Zephyr has been compiled, we are unable to
call these functions from Rust.

3.1 Configurations

One possible way of solving this problem is to create a “super configuration”
which enables all the options so that all the headers compile. While this ap-
proach looks viable at first glance, it is not always easy to know what configu-
ration to set to satisfy a given compiler error, several of the options might be
mutually exclusive, and types might change based on what options are set. One
typical example of types that change depending on configurations are structs
that gain more fields if a configuration option is set, one such struct is shown in
listing [3:2} This will lead to Rust and C having a different layout of the same
struct, which can cause unexpected and hard to find bugs, assuming it compiles
at all. In order to ensure that the Rust application and Zephyr have the same
struct layouts, the “super configuration” would have to be used when compiling
Zephyr as well, leading to bloated executables at best, and a configuration that
does not work for the target at worst.
VAT

* @ingroup thread_apis

* Thread Structure

*/
struct k_thread {

struct _thread_base base;

/** defined by the architecture, but all archs need these */

struct _caller_saved caller_saved;

/** defined by the architecture, but all archs need these */

struct _callee_saved callee_saved;

/*¥*x static thread init data */
void *init_data;

VAT
* abort function
* @req K-THREAD-002
* x/
void (*fn_abort) (void);

#if defined(CONFIG_THREAD_MONITOR)
/** thread entry and parameters description */

19

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

#endif

#if defined (CONFIG_THREAD_NAME)

#endif

#ifdef CONFIG_THREAD_CUSTOM_DATA
/** crude thread-local storage */

#endif

#ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
struct _thread_userspace_local_data *userspace_local_data;

#endif

struct __thread_entry entry;

/** next item in list of all threads */
struct k_thread *next_thread;

/* Thread mname */
const char *name;

void *custom_data;

#ifdef CONFIG_ERRNO
#ifndef CONFIG_USERSPACE

#endif
#endif

#if defined (CONFIG_THREAD_STACK_INFO)

#if defined (CONFIG_USERSPACE)

/** memory domain info of the thread */
struct _mem_domain_info mem_domain_info;
/** Base address of thread stack */
k_thread_stack_t *stack_obj;

#endif /* CONFIG_USERSPACE */

#if defined(CONFIG_USE_SWITCH)
/* When using __switch() a few previously arch-specific items
* become part of the core 0S

#endi f

/** per-thread errno variable */

int errno_var;

/** Stack Info */

struct _thread_stack_info stack_info;
#endif /* CONFIG_THREAD_STACK_INFO */

*/

/** _Swap () return value */

int swap_retval;

/** Context handle returned via _arch_switch() */

void *switch_handle;

20

75

76

77

78

79

80

/** resource pool */
struct k_mem_pool *resource_pool;

/*% arch-spectifics: must always be at the end */
struct _thread_arch arch;

};

Listing 3.2: A struct whos definition changes based on the configuration of the
project.

As crates are distributed as source files and compiled together with the appli-
cation that uses them, rather than being distributed as compiled object files,
we could make a way of reading the configuration used for the project, and use
that configuration to make the bindings. This would require a way of knowing
which header files are necessarily based on the configuration. This also com-
plicates the interaction with Zephyr’s build system. Either, we have to call
Kconfig and DTS ourselves, to generate our own configuration files, or Zephyr’s
build system would have to know that the application is written in Rust and
that bindings need to be created. Another downside with this approach is that
it would be hard to document the bindings or make them discoverable using
auto-completion features of IDEs and text editors as the bindings themselves
does not exist until the application is compiled. This would make it harder for
the application developer to know how to use the Zephyr APIs. This problem
might be solved by a higher level Rust crate, that creates a safe Rust API on top
of the raw bindings. For this to work would require either Rust to know what
the configuration options mean so that Rust can use its conditional compilation
features to not include unused parts of Zephyr’s API, or we would require the
linker and application programmer not to call functions that are not supported
by the given configuration.

3.2 static inline functions

Another challenge with creating bindings to Zephyr’s API is that a lot of the
functions are declared as static inline, and implemented directly in the
header files. This means that when a C module includes any of these func-
tions, the function body gets pasted at the place of the call, instead of an actual
function call happening. The static keyword means that the function is not
exported outside of the module. This is necessary as the function is defined in
the header file and therefore defined in any module that includes the header file.
If the static keyword is not used, the linking will fail, as the linker will not
know what to do with all the definitions of the function. While this inlining of
functions has a speed benefit (at the cost of code size), it also means that the
linker never sees these functions at all. This becomes a problem later, as we try
to call these functions from Rust. As the Rust compiler does not know C (and
vice versa), any interaction with foreign functions must happen via a function
call. However, as these functions are inlined where used, and then discarded by
the compiler, there are no functions for the linker to link to.

There are a couple of possible solutions to this problem. There are a couple of

21

compiler options called -fkeep-static-functions and -fkeep-inline-functions
these options include the static and inline functions in the object files, instead of
being discarded by the compiler. These flags do not solve our problem; however,

as the functions are still marked as having internal linkage, meaning that they
cannot be referenced from outside the module.

Another approach is to make wrapper functions that are not marked as static
inline. This approach would work for obvious reasons, but it is not without
problems. First, we need to create all the wrapper functions. This might be
done automatically, but some of the functions, especially in driver APIs, are just
convenience layers on top of a struct with function pointers. This means that
the in some situations the entire API is defined in a header file that does not
have a corresponding implementation file, but instead is used to abstract several
hardware dependent implementations. This leads to a problem about where to
put the wrapper files. We still need to edit Zephyr’s source code. While Zephyr
is open source, so that editing the source code is possible, we would require
the Zephyr developers to support adding these wrapper functions. From the
Zephyr projects point of view, this might not be something they are willing to
do, as it adds more code to maintain, and it adds an expectation that they
support Rust applications. Another way of adding wrapper functions is to fork
Zephyr’s source code so that we have our own version. This would put the
maintenance burden on us, instead of Zephyr’s developers. Another problem
with this approach is that the wrapper functions would have to have different
names than the function they wrap unless we can do something smart with the
linker. Having different names would make it harder to use our bindings, as the
functions the user would have to call would be different from the functions the
user want to call.

Another option for solving the static inline problem is to handle it from the
Rust side. As actually calling a static inline function is impossible, what
we have to do instead is to implement it in Rust. For the moment, this has
to be done manually, but a way of calling static inline functions has been
a requested feature for a long time, and there has been some progress on the
issue[2]. There is work done on tools both for inlining C code in Rust, to be
compiled by a C compiler; and to generate Rust code from C. If these tools
become powerful enough and integrated into Bindgen it would be possible to
use the Rust version of the inlined functions in the Rust application. This
way, it might also be possible to keep the inlining, thus not losing much of the
performance.

As we need a way to generate bindings to static inline functions and a way to
handle different configurations in order to generate bindings, This is not possible
to do automatically at the moment. In a more limited case, it is possible to know
enough about the configurations to generate bindings using Bindgen, but the
static inline functions is a real roadblock for this project.

22

Chapter 4

A Rust application on Zephyr

When first starting programming in a new language, or with new tools, it is
customary to first write a “Hello, World!” program. In the embedded world,
the equivalent is “Blinky”, a simple program that blinks an LED by toggling an
output pin in a loop. Therefore, as a first step of showing that one can make
Rust applications for Zephyr, porting Zephyr’s “Blinky” sample is a natural step.

Creating a Rust application for Zephyr, in theory, is as simple as creating bind-
ings to Zephyr’s API, writing an application that uses these bindings, building
it and then linking in Zephyr. The Blinky application is quite simple, consisting
only of a couple of #defines that gives better names to peripherals defined in
the device tree, some initial configuration and a loop which toggles the LED
and then sleeps. The C source code is given in listing

4.1 The bindings

While T was not able to generate bindings to Zephyr as a whole, Bindgen can
easily handle the output of DTC and Kconfig, as these files only contain simple
C #defines and do not depend on any other files. In addition to the defines,
four functions are being called:

1. device_get_binding
2. gpio_pin_configure
3. gpio_pin_write

4. k_sleep

Of these four functions, device_get_binding and k_sleep are system calls and
the two gpio_pin_x* functions are static inline. The system call dispatch
mechanism in Zephyr is described in section What this means for in
this situation is that the functions the users call (i.e., device_get_binding and
k_sleep) does not really exist as anything other than a static inline function
that checks if we are in user mode or not, and then either calls a handler function
before the system call is invoked, or calls the implementation function directly.

23

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

/*
*
*
*

*/
#in
#in
#in

Copyright (c) 2016 Intel Corporation
SPDX-License-Identifier: Apache-2.0
clude <zephyr.h>

clude <device.h>
clude <gpto.h>

#define LED_PORT LEDO_GPIO_CONTROLLER
#define LED LEDO_GPIO_PIN

/*

1000 msec = 1 sec */

#define SLEEP_TIME 1000

void main(void)

{

int cnt = 0;
struct device *dev;

dev = device_get_binding(LED_PORT);
/% Set LED pin as output */
gpio_pin_configure(dev, LED, GPIO_DIR_OUT);

while (1) {
/% Set pin to HIGH/LOW every 1 second */
gpio_pin_write(dev, LED, cnt % 2);
cnt++;
k_sleep(SLEEP_TIME) ;

Listing 4.1: Zephyr’s Blinky sample.

24

10

11

12

13

10

11

12

13

14

15

16

// file: /zephyr/include/gpio.h

__syscall int gpio_config(struct device *port, int access_op, u32_t pin,

int flags);

static inline int _impl_gpio_config(struct device *port, int access_op,

u32_t pin, int flags)

{
const struct gpio_driver_api *api =
(const struct gpio_driver_api *)port->driver_api;
return api->config(port, access_op, pin, flags);
}

Listing 4.2: Definition of gpio_config.

In our case, we run the entire application in kernel mode, and we can therefore
for simplicity replace our calls to device_get_binding and k_sleep with calls
to _impl_device_get_ginding and _impl_k_sleep without a problem. If we
had a good way to interface with static inline functions that would obviously
be better.

The two gpio_pin_* functions are a simple abstraction over more general
gpio_* functions that can work with either a pin or a port. These functions are
also system calls, but in this case, the implementation functions are also declared
as static inline. The declaration of these functions can be seen in listing
The device returned from device_get_binding contains a pointer to a struct
containing a set of function pointers. These function pointers are the actual
driver API. As the implementation function also is static inline we cannot
simply call the implementation function as we did with device_get_binding
and k_sleep. As there are no gpio.c file so there was no obvious place to write a
wrapper function, and the functions are relatively simple, these functions were
implemented in Rust. In addition to the functions, we must also tell rustc what
the data types look like.
mod zephyr_sys {

// Module containing Rust definitions of common C types

use super::cty;

// Module containing the output of Kconfig and DTC
pub mod config;

pub const GPIO_DIR_OUT: i32 = 1 << 0O;
#[repr(C)]

pub struct device_config {
name: *const cty::c_char,

init: Option<unsafe extern "C" fn (foo: *mut device) -> cty::c_int>,

config_info: *const cty::c_void,

25

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

#[repr(C)]

pub struct device {
pub config: *mut device_config,
pub driver_api: *mut cty::c_void,
pub driver_data: *mut cty::c_void,

}

// 4 C #define used instde Zephyr's gpio library
const GPIO_ACCESS_BY_PIN: cty::c_int = O;

struct _snode {
next: *mut _snode,
}

type sys_snode_t = _snode;

type gpio_callback_handler_t =

Option<unsafe extern "C" fn(port: *mut device, cb: *mut gpio_callback,

pins: u32)>;

// This union is defined inside the struct gpio_callback
// and not given a name in Zephyr.
#[repr(C)]
union gpio_callback_anon_union {
pin_mask: u32,
pin: u32,
}

#[repr(C)]

struct gpio_callback {
node: sys_snode_t,
handler: gpio_callback_handler_t,
my_field: gpio_callback_anon_union,

}

type gpio_config_t =

Option<extern "C" fn(port: *mut device, access_op: cty::c_int, pin:

flags: cty::c_int) -> cty::c_int>;
type gpio_write_t =

Option<extern "C" fn(port: *mut device, access_op: cty::c_int, pin:

value: u32) -> cty::c_int>;
type gpio_read_t =

Option<extern "C" fn(port: *mut device, access_op: cty::c_int, pin:

value: *mut u32) -> cty::c_int>;
type gpio_manage_callback_t =

u32,

u32,

u32,

Option<extern "C" fn(port: *mut device, callback: *mut gpio_callback,

set: bool) -> cty::c_int>;
type gpio_enable_callback_t =

Option<extern "C" fn(port: *mut device, access_op: cty::c_int, pin:

-> cty::c_int>;

26

u32)

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

86

87

88

89

90

91

92

93

94

95

96

97

98

type gpio_disable_callback_t =
Option<extern "C" fn(port: *mut device, access_op: cty::c_int, pin: u32)
-> cty::c_int>;

type gpio_api_get_pending_int = Option<extern "C" fn(dev: *mut device) -> u32>;

#[repr(C)]

struct gpio_driver_api {
config: gpio_config_t,
write: gpio_write_t,
read: gpio_read_t,
manage_callback: gpio_manage_callback_t,
disable_callback: gpio_disable_callback_t,
get_pending_int: gpio_api_get_pending_int,

fn _impl_gpio_config(port: *mut device, access_op: cty::c_int, pin: u32,
flags: cty::c_int) -> cty::c_int

{
unsafe {
let api = (*port).driver_api as *const gpio_driver_api;
return ((*api).config) (port, access_op, pin, flags);
}
}

// This function is static inline in C, so we define it here
#[no_mangle]
pub fn gpio_pin_configure(port: *mut device, pin: u32, flags: cty::c_int)
-> cty::c_int
{
return _impl_gpio_config(port, GPIO_ACCESS_BY_PIN, pin, flags);
}

fn _impl_gpio_write(port: *mut device, access_op: cty::c_int, pin: u32, value:

-> cty::c_int

{
unsafe {
let api = (*port).driver_api as *const gpio_driver_api;
return ((*api).write) (port, access_op, pin, value);
}
}

// This function is static inline in C, so we define it here
#[no_mangle]
pub fn gpio_pin_write(port: *mut device, pin: u32, value: u32) -> cty::c_int
{
return _impl_gpio_write(port, GPIO_ACCESS_BY_PIN, pin, value);
}

// Bindings to external C functions
extern "C" {

27

u32)

pub fn _impl_device_get_binding(name: *const cty::c_char) -> *mut device;

pub fn _impl_k_sleep(duration: i32);

Listing 4.3: Rust bindings needed for a Rust port of Zephyr’s Blinky sample.

By putting the bindings in their own module, we get the module shown in
listing The function pointers wrapped by an Option uses what is called
the “null-pointer” optimization[6]. In Rust, very few types and no references are
allowed to be NULL. This sometimes creates an opportunity for the compiler
to do an optimization that saves some space. If we have an enum that only has
two variants, where one of the variants are zero-sized (i.e., holds no data), and
the type of the other variant cannot be NULL, the compiler can drop the tag
used to identify the variant, and instead, check if the value is NULL. In our
case, if we were to receive a function pointer from C and it was wrapped in an
Option we would be forced to check if we had gotten a valid pointer (Some ()) or
a NULL pointer (None). In this case, it does not matter, but in other cases, this
is a way Rust can provide some safety across an FFI boundary if the bindings
are created in a smart way.

4.2 The application

The “Blinky” application is quite simple. The C application starts by redefining
a couple of symbols created based on the device tree. While Rust does not
have a way of textually replacing symbols similar to the C preprocessor, Rust’s
const can be used in much the same way. The biggest difference is that we
need to declare the type of the const. Following the constants is the main
function. This function is almost identical to its C counterpart except for a
couple of details. As we are calling foreign functions, we need to be inside an
unsafe block. Technically we only need to be inside one when actually calling
the functions, but for simplicity and readability we have put all the code inside
the unsafe block in this case. Ideally, we would have a safe wrapper around all
the foreign functions, and thus not need unsafe in the application at all, but
for this simple prototype, this approach is fine.

The other noteworthy difference is the loop. In C, they use a while loop that
never stops, and inside it, they have a variable that counts upwards. If the
variable is odd, they set the pin high, if it is even they set it low. While we can
do the same in Rust, there are some differences to be aware of. While C has
two types of loops: while and for, Rust has three: while, for and loop. The
first two are very close to their C counterpart, but the loop is used when we
have infinite loops. This gives the compiler more information about the intent
of our code, helping us catch errors at compile time.

While the loop is the closest thing to C’s while (1), it is not very idiomatic
Rust to have a mutable state variable. Instead, we can use a for loop with an
infinite range. This solution might cause a problem, if we compile Rust code
using the built-in “debug” profile as arithmetic operations then are checked for

28

const LED_PORT: *const cty::c_char = zephyr_sys::config::LEDO_GPI0)CONTROLLER;
const LED: u32 = zephyr_sys::config::LEDO_GPIO_PIN;

const SLEEP_TIME: i32 = 1000;
#[no_mangle]

extern "C" fn main() {
unsafe {

10

11

12

13

14

16

17

18

19

20

let mut cnt = 0;
let dev = zephyr_sys::_impl_device_get_binding(LED_PORT);

zephyr_sys: :gpio_pin_configure(dev, LED, zephyr_sys::GPIO_DIR_OUT);

loop {
zephyr_sys: :gpio_pin_write(dev, LED, cnt 7 2);
cnt = cnt.wrapping_add(1);
zephyr_sys::_impl_k_sleep(SLEEP_TIME);

Listing 4.4: Rust port of Zephyr’s Blinky sample.

overflow. As a 32-bit number cannot hold infinite large numbers, at some point,
we will try to store a number in our counting variable that is larger than our
counting variable can hold. This overflow will lead to our Rust code crashing,
while the C code will simply wrap around, and go from the largest possible
number to the smallest possible number. This problem is not limited to ranges
and would indeed also happen with the loop. The easiest way to solve the
problem is to use the method wrapping_add (), which behaves similar to normal
addition in C. The “problem” also goes away if we compile the application with
optimization, as the checks for overflows then are removed. In total, we get the
application shown in listing [1.4]

4.3 Building the application

As we are running the application on an ARM Cortex M4 CPU, we need to
tell Cargo to cross-compile our application. This is done by specifying the
target thumbv7em-none-eabi in the command line. The Rust standard library
does not support this target. We, therefore, have to add an attribute to our
application, so the standard library is not included. In addition to this, we need
to specify what should happen if our code panics. We can do that by adding a
function marked with a special attribute. In our case, we put a loop inside our
function so that nothing worse happens if we panic. The panic handler is listed
in listing 4.5

In addition, we want our application to be compiled as a static library. This is
done by adding a line specifying the crate-type in Cargo’s manifest file. It is not

29

loop

Listing 4.5: A simple panic handler.

necessary to create a new target, but Xargo must be used regardless. In order
to compile the Rust application closer to the C application, we can add a line
to the specification of thumbv7em-none-eabi that specifies that the relocation
model is static. This tells the compiler that it does not have to produce position
independent code (pic), which means that the code works correctly regardless
of where it is loaded into memory[25]. This feature is useful for shared libraries,
but as we only are running one application, we have full control over the memory
layout. We also have the option of changing the default archiver to the one that
Zephyr uses.

4.4 Linking to Zephyr

The final step in making our proof of concept Rust application is to link it to
Zephyr. Two approaches can be taken here. The first is to let Rust drive the
linking, by telling it which libraries to link, and where to find them, the other
is to replace Zephyr’s libapp.a with our own, and then re-run the necessary
commands, thus simulating a Zephyr driven process. Letting Rust drive the
linking does present some challenges. As Zephyr uses the resulting executable
from the linking to generate more code and then doing another pass of linking,
it is important that the correct information exists in the executable. When
building a Rust application, we do not have direct control over the linker com-
mand. Instead, we can set various configuration options, especially in the target
specification to control the linker. While we can include a linker script (which
Zephyr does use), we are not able to control the linking sufficiently without
considerable effort. The biggest problem is that the .intList sections from the
input libraries are discarded. These are the sections later used to generate the
interrupt table, and therefore, while the Rust driven compilation succeeds, later
stages fail.

If we instead use the Zephyr driven approach, we encounter other problems.
The Rust static library contains all the dependencies the Rust application need
to run (except for Zephyr’s libraries which we have not linked in yet). These
dependencies include some parts of the Rust standard library and their depen-
dencies. Among these we find a small part of the C standard library which
defines four functions:

e memcpy
e memmove
e memset

e memcmp

As Zephyr also includes the C standard library (libc), we get a linker error
complaining about multiple definitions of these functions. Usually, if a linker
encounters two definitions of a symbol from two different libraries, it will simply

30

keep the first, and ignore the second definition, as the symbol reference is already
satisfied[25]. However, in this case, libapp.a and libc.a are both included after
the -whole-archive linker flag, which means that all the symbols in the archive
should be kept. There are three ways to solve this problem. The first is to find
a way of not exposing the Rust version of libc, the second is to not expose
Zephyr’s version of libc, and the third is to change the linker command so that
the linker can resolve the symbols.

Rust can be compiled to use different versions of libc. On Linux, we can compile
rust to both dynamically link in glibc, but also to statically link in musl[10].
There are however next to none documentation on how this is done, and adding
support for a new libc implementation would probably require changes in rustc.
We also rather want to keep Zephyr’s libc implementation as Zephyr probably
makes more assumptions about it than Rust does. It is also no good way of
making Rust not expose its libc dependency. Finally, as Rust only use the four
functions mentioned above from libc, if we remove Zephyr’s libc implementation,
there are a lot of other functions in libc that now are undefined. We, therefore,
need to make the linker resolve this conflict, rather than remove it.

The first step we need to take in order to let the linker resolve our conflict is to
move either libapp.a or Zephyr’s libc implementation from the -whole-archive
section of the linker command. If we move Zephyr’s libc then the linker will use
Rust’s definitions of the four mem- functions. However, in the same module as
Zephyr’s definitions of the four mem- functions there are also other functions
defined. As these functions are not defined by Rust, these symbols might be
included in order to satisfy an external reference in another Zephyr library.
When this happens the linker will include the whole module, and we are back
to square one wiht multiple definitions of the four mem- functions.

The solution is, therefore, to move our libapp.a out from the -whole-archive
section of the linker command. We do, however, need to be careful about where
we are putting the libapp.a. If we put it before the -whole-archive we get the
same problems as if it were inside, as any Rust reference to the mem- functions
will include the Rust definitions. If we put it last, only modules containing
still undefined symbols will be included. As Zephyr defines a main function in
case the application does not, our main function will not be included the whole
application will be discarded. If we remove Zephyr’s fallback main implementa-
tion, our application will be included, but any functions used by the application
defined in libkernel.a as these functions have already been deemed unnecessary
by the linker. This happens because when the linker includes symbols from
libraries it will only include symbols which are yet undefined, and it will not go
back to check old libraries if they contain any symbols that are needed by later
included modules.

If we instead put libapp.a before libkernel.a we also get the problem with the
missing main. Our main function is used by libkernel.a, so if we want it included,
we must list libkernel.a first. However, this leads to the linker using libkernel.a’s
fallback main function and our main is not included. To solve this circular
dependency, we can add a flag to linker command that adds main to the list of
undefined symbols, and list libapp.a before libkernel.a. What will then happen
is that the linker will look for a main function in all the libraries listed. It will
not find any definition of it before it encounters out libapp.a. While including

31

our main function in order to resolve its undefined main reference, it will also
get references to the functions we need in libkernel.a. When it later encounters
libkernel.a’s main function it will not use it as it already has a definition of
main. This gives us the linker command shown in listing [1.6] Using this linker
command, we are able to successfully link our Rust application to Zephyr. In
order to get a working executable, we have to run the last commands in the log
file, changing the second linker command in a similar fashion.

ccache /opt/zephyr—sdk/sysroots/x86 64—pokysdk—linux /usr/
bin /arm—zephyr—eabi/arm—zephyr—eabi—gcc CMakeFiles/
zephyr prebuilt.dir /misc/empty file.c.obj —o
zephyr prebuilt.elf —T linker.cmd —WL —Map=/zephyr/
samples/basic/blinky /build /nrf52 pcal0040/zephyr/
zephyr.map —u_OffsetAbsSyms —u_ConfigAbsSyms -umain —
Wl,——whole—archive —fapp/ibappa libzephyr.a arch/arm/
core/libarch _arm_ core.a arch/arm/core/cortex m/
libarch _arm core cortex m.a arch/arm/core/cortex m/
mpu/libarch _arm core_ cortex m __mpu.a lib/libc/
minimal /1iblib___libc_ _minimal.a subsys/bluetooth/
common/libsubsys bluetooth common.a subsys/bluetooth
/host /libsubsys bluetooth host.a subsys/bluetooth/
controller /libsubsys _ bluetooth controller.a subsys/
net/libsubsys net.a drivers/gpio/libdrivers gpio.a
drivers/entropy/libdrivers _entropy.a —WlL——no—whole—
archive ../app/libapp.a kernel/libkernel.a CMakeFiles/
offsets.dir/arch/arm/core/offsets/offsets.c.obj —L"/
opt/zephyr—sdk/sysroots/armvb—zephyr—eabi/usr/lib /arm—
zephyr—eabi /6.2.0/armv7e—m" —L/zephyr/samples/basic/
blinky /build /nrf52 pcal0040/zephyr —lgcc —WlL——print—
memory—usage —mthumb —nostdlib —static —no—pie —WIL—-X
—Wl,—N —Wl——gc—sections —WL——build —id=none —WL——
orphan—handling=warn —mabi=aapcs

Listing 4.6: The modified linker command used to link the Rust application to
Zephyr. Added options are bold, while removed options are stricken—through.

32

Chapter 5

Discussion

As shown in chapter [4] it is possible to run a simple application written in Rust
that uses Zephyr. There are, however, several open questions. First, in order to
actually make Zephyr usable from Rust, we need bindings. These should ideally
be made automatically, both to reduce the necessary maintenance work, but
also to reduce the chance of any errors in the bindings.

Another open question is why the application must be built by Xargo. Xargo
should, in theory, behave similar to Cargo, except that Xargo will build a new
sysroot if necessary. However, when building a new sysroot should not be nec-
essary, and even though Xargo builds a new one regardless, it should not be
different from the one shipped with rustc. Having to use Xargo is also a bit
problematic as Xargo was only meant as a temporary solution to be able to
build applications for embedded targets. As Cargo now supports Cortex M de-
vices, active development of Xargo has stopped|5]. There is work on tools to
replace Xargo, and the Cargo team want to expand Cargo to be able to build
new sysroots, but this work might still take years to complete[22].

We also need a simple way to build our application and link it with Zephyr
if we want to make it viable to write Zephyr application in Rust. While a
Rust driven approach might work, it is much easier to let Zephyr drive the
process. While it is difficult to make Zephyr build our Rust application instead
of a C application, Zephyr’s build system lets us add third-party libraries as
dependencies, including specifying how they are built. We can, therefore, create
a C application that calls the entry point of our Rust application, which is added
as a third party library. The only problem with this approach is that we lose
control over how our library is linked in, leading to a conflict between Rust’s
and Zephyr’s definition of the four mem- functions.

While we solved the multiple definitions problem by manipulating the linker
command, there is another solution that was not discussed. Instead of finding
a way of solving the problem, we could remove it entirely. By using objcopy, we
can make changes to our archive. While we could remove the definitions entirely,
making them weak will also solve our problem. As the linker then will choose
the strong symbol over the weak instead of giving us an error. The resulting
executables from these two approaches should not be very different.

33

While the four mem- functions give us a problem, we also have a collision be-
tween libgcc and compiler-rt. Both these libraries implement arithmetic oper-
ations that the processor cannot handle. The difference between them is that
libgce is implemented as part of the GNU Compiler Collection|3], while compiler-
rt is part of the LLVM project. The reason for this collision not causing any
linker error is that the linker would have satisfied any undefined references by
the first implementation it encountered, and ignore the second as it is in a
library. However, if we found a way of not exporting the mem- functions, we
could also do the same for compiler-rt in order to ensure that we do not run into
any compatibility issues, albeit at the cost of increased size of our executable.

The application presented in this report shows that it is possible to create a
simple application in Rust that uses Zephyr. However, Zephyr does have more
features than only blinking an LED. Zephyr uses interrupts and a multithreaded
environment. While k_sleep is implemented as a switch to an “idle thread” that
does power management, we have not really seen how Rust and Zephyr interact
when there are a lot of interrupts and thread changes. This might cause trouble
due to different usage of the stack between Rust and Zephyr.

Zephyr does also support compile-time initialization of many types of kernel
objects. From the application’s viewpoint, there is a C preprocessor macro that
defines the kernel objects, but taking a look at the definition of some of these
macros there also appears to be some more compiler and linker magic going
on. As Rust does not have a preprocessor similar to C, this might not work
from Rust at all. However, one possible solution is that if the Rust application
is compiled as a third party library by Zephyr, and the Rust entry point is
called from a Zephyr application written in C, then this C application could
also define any necessary kernel objects that should be initialized at compile
time. In order to be able to access these object from the Rust application, we
would need bindings to them, and these bindings would probably have to be
written by hand (possibly with the help of a Rust macro). The C application
could also possibly be written by a Cargo build script. This requires that we
can compile the Rust application before Zephyr tries to compile the application,
but if this turns out to be possible, the application programmer would only have
to care about Rust. While this would be an inconvenience for the application
developer, we would gain the possibility of using the macros defined by Zephyr.

In addition to the C preprocessor, there are other things about C that translates
poorly to Rust. In Zephyr and C, in general, it is usual to have a library
that defines some context struct to hold internal data. The user of the library
declares a variable to hold such a struct and then passes a pointer to a library
function that initializes the struct. The other functions in the library then take
a pointer to the struct in order to keep track of the state of the library. This
approach is similar to objects in object-oriented languages, except that the data
and behavior are separated and the user has to handle the memory of the data.
This is, however, very unidiomatic Rust. Rust, in general, dissuades the use
of raw pointers, and while this can be handled by a Rust wrapper over the C
API Rust is no fan of uninitialized memory. In safe Rust, it is not possible at
all to get a reference to uninitialized memory. This means that in safe Rust,
we cannot declare a struct, and have a function initialize it for us. This leads
to a problem when interfacing with C code that expects a pointer to a piece

34

of memory where the function can initialize a struct. We are also unable to
initialize these structs ourselves, as the struct might be very complicated, and
are internal details of the C module.

There might be ways to hide these details from the user of the Zephyr bindings
with a well crafted Rust wrapper layer. There are (unsafe) functions that can
give you a piece of uninitialized memory, although one of them was recently
deprecated as there was no way of using it safely at all[2I]. The usage of
uninitialized structs become especially problematic if they also are supposed to
be static, that is global with a lifetime equal to that of the program. This
means that the value of a static variable must be known at compile time. As
this is not the case when we rely on a C function to initialize it for us, we have
a problem. There exists a Rust macro that lets us postpone the initialization of
a static variable that might be able to solve our problem, but it is primarily
intended to initialize data structures that live on the heap, but we want to have
as a static variable. Other than the use of static variables in Zephyr’s APIs,
we must be cautious in general when using unsafe. This means that a wrapper
of Zephyr’s API must be very carefully written in general.

Another challenge that must be solved in order for Rust to be usable with Zephyr
is the configurability of Zephyr. Zephyr’s configurations changes what bindings
must (and can) be made and what they look like. Making bindings is not very
hard if we know all the necessary header files, and the project’s configuration
has been converted into header files containing C macros has been generated
by DTC and Kconfig. The problem is that we do not know the configuration
of the project until an application developer starts the project. It is infeasible
to create a set of bindings for every combination of configurations and boards.
While we can use a build script to generate the configuration information we
need to generate the bindings, this still means that the developer will not be
able to know the full type of the bindings ahead of time.

Another thing to consider is how this interacts with a higher level safe Rust
wrapper of Zephyr’s API. On the one hand, this might mean that the appli-
cation developer does not need to know what the bindings look like, but care
must be taken to avoid that the application developer uses functions that are
not supported by the current configuration. Rust does have mechanisms for con-
ditional compilation, but this would mean that rustc somehow must be aware
of the configuration of the project.

A final interesting question is whether it is possible to implement Rust’s stan-
dard library on top of Zephyr. Currently, the Rust application is built without
the Rust standard library. It only uses the system independent core library.
A big reason for not supporting the standard library is that we currently do
not support heap allocation. However, Zephyr does support memory allocation,
and Rust does have a mechanism of specifying which allocator to use. This
means that it should be possible to tell Rust to use Zephyr’s memory allocator
to allocate memory. This would give us access to a larger part of the standard
library, including most of the collection data types. Rust is also relying on the
operating system for threads and networking. It might also be possible to im-
plement these parts on top of Zephyr. This is helped by Zephyr supporting a
POSIX interface for some of these things.

35

Chapter 6

Conclusion

In this report, we have shown that it is possible to make a simple Zephyr appli-
cation in Rust. We have also found several challenges that must be overcome in
order to make this viable for larger projects. The most immediate challenge is
to generate bindings. First, we need to know what header files to create bind-
ings from. Next, we would have to know the configuration. Finally, we need to
generate bindings to static inline functions.

When the bindings are created, we need a good way to build our Rust application
and link it to Zephyr. These two problems are also linked, as the configuration
we need to generate bindings are created when Zephyr is built. When the
application is built, we need to link it to Zephyr. Here the biggest challenge
is that Zephyr and Rust use two different toolchains that both define some
common symbols.

When the application is built and linked, we still need to ensure that the Rust
application actually is compatible with Zephyr and C. The most interesting
question here is how interrupts affect the stack, and how Rust uses it.

When all these problems are solved, we will have a way of writing Rust appli-
cations for Zephyr, but this would have to be maintained, documentation must
be written, and examples of how to use the Rust bindings and wrapper must be
made. This means that there is still much work to be done before writing Rust
applications in Zephyr becomes a viable option.

Most of these problems should not be too hard to solve, although some thought
must be given on how the user experience can become as pleasant as possible.
The biggest challenge is to create bindings to static inline functions, as the
very definitions of static and inline means that this should be impossible.
There are, however, some ways around the problem that are being worked on.
This problem is not limited to Zephyr, and a solution would help create bind-
ings to other libraries as well. A stopgap solution to the problem would be to
create a fork of Zephyr that adds wrapper functions around the static inline
functions. This way, we would have functions to bind to, without requiring
significant changes in Zephyr or any Rust tools.

In order for the Rust bindings to really be useful, we also need to wrap them in a

36

safe Rust layer. This layer might be fairly thin, or it could present a much more
idiomatic Rust interface. Another and more exciting possibility is that this layer
might be the Rust standard library. There is much work that would have to
happen for this to be possible, as the standard library holds quite strict stability
and safety guarantees, but it is definitely worth exploring the possibility more
in-depth if the other problems can be solved.

Despite a large number of open questions and much work that must be done to
make it work, writing a Rust application in Zephyr should be possible. Most
of the open problems should be solvable with enough work on the tools needed.
Also, most of the problems can be solved without making changes to either
Zephyr or Rust. This means that there are a lot fewer stakeholders that must
be involved, and we need support form in order to be able to write Zephyr
applications in Rust.

37

Bibliography

1]

2]
13l

4]
[5]

(6]
7]

18]
19]
[10]
[11]

[12]
[13]

[14]
[15]

[16]

Bindgen contribution guide. https://github.com/rust-lang/rust-
bindgen/blob/master/CONTRIBUTING.md#code-overview. Accessed
2019-05-16.

Generate C code to export static inline functions. https://github.com/
rust-lang/rust-bindgen/issues/1090. Accessed 2019-06-06.

libgce documentation. |gcc.gnu.org/onlinedocs/gccint/Libgec.html.
Accessed 2019-06-04.

LLVM project home page. https://www.1llvm.org. Accessed 2019-05-13.

PSA: Xargo is now in maintenance mode. https://github.com/japaric/
xargo/issues/193 Accessed 2019-05-14.

The Rustonomicon. Accessed 2019-05-31.

Survey: 2019 wishlist. https://github.com/rust-embedded/wg/issues/
256l Accessed 2019-06-06.

Target specification definition. https://github.com/rust-lang/rust/
blob/master/src/librustc_target/spec/mod.rs. Accessed 2019-05-30.

The Cargo Book. https://doc.rust-lang.org/cargo/index.html. Ac-
cessed 2019-05-16.

The Rust Reference. https://doc.rust-lang.org/reference/
introduction.html. Accessed 2019-06-03.

What is the Zephyr Project? https://www.zephyrproject.org/what-
is-zephyr/. Accessed 2018-12-01.

Xargo. https://github.com/japaric/xargo. Accessed 2019-05-14.

Zephyr project home page. https://www.zephyrproject.org. Accessed
2018-12-01.

Flexible target specification. RFC 131, June 2014.

The history of rust. In Applicative 2016, Applicative 2016, pages —, New
York, NY, USA, 2016. ACM. Speaker-Klabnik, Steve.

The Linux Foundation Announces Project to Build Real-Time
Operating System for Internet of Things Devices. https:
//www.zephyrproject.org/linux-foundation-announces-porject-

38

https://github.com/rust-lang/rust-bindgen/blob/master/CONTRIBUTING.md#code-overview
https://github.com/rust-lang/rust-bindgen/blob/master/CONTRIBUTING.md#code-overview
https://github.com/rust-lang/rust-bindgen/issues/1090
https://github.com/rust-lang/rust-bindgen/issues/1090
gcc.gnu.org/onlinedocs/gccint/Libgcc.html
https://www.llvm.org
https://github.com/japaric/xargo/issues/193
https://github.com/japaric/xargo/issues/193
https://github.com/rust-embedded/wg/issues/256
https://github.com/rust-embedded/wg/issues/256
https://github.com/rust-lang/rust/blob/master/src/librustc_target/spec/mod.rs
https://github.com/rust-lang/rust/blob/master/src/librustc_target/spec/mod.rs
https://doc.rust-lang.org/cargo/index.html
https://doc.rust-lang.org/reference/introduction.html
https://doc.rust-lang.org/reference/introduction.html
https://www.zephyrproject.org/what-is-zephyr/
https://www.zephyrproject.org/what-is-zephyr/
https://github.com/japaric/xargo
https://www.zephyrproject.org
https://www.zephyrproject.org/linux-foundation-announces-porject-build-real-time-operating-system-internet-things-devices/
https://www.zephyrproject.org/linux-foundation-announces-porject-build-real-time-operating-system-internet-things-devices/
https://www.zephyrproject.org/linux-foundation-announces-porject-build-real-time-operating-system-internet-things-devices/

17]
18]
19]
120]
21]
[22]
23]
[24]
23]
126]
j27]

(28]

build-real-time-operating-system-internet-things-devices/,
2016. Accessed 2019-05-20.

PSA: Cortex-M Breakage (LLD as the default linker). PSA, August 2018.

Zephyr Kernel Primer, Kernel Objects. https://docs.zephyrproject.
org/latest/kernel/usermode/kernelobjects.html, 2018. Accessed
2018-12-06.

Zephyr Kernel Primer, User Mode. https://docs.zephyrproject.org/
latest/kernel/usermode/usermode.html, 2018. Accessed 2018-12-04.

ARM. Cortex-M} Devices, Generic User Guide, 2010.

Alexis Beingessner. Here’s my type, so initialize me maybe
(mem::uninitialized is deprecated). https://gankro.github.io/blah/
initialize-me-maybe/, May 2019. Accessed 2019-06-05.

Nick Cameron. Cargo’s next few years. https://www.ncameron.org/
blog/cargos-next-few-years/, February 2019. Accessed 2019-06-06.

Andy Gross. Device tree in Zephyr project. Presented at Embedded Linux
Conference, 2017.

Steve Klabnik and Carol Nichols. The Rust programming language. No
Starch Press, 2. edition, 2018.

John R. Levine. Linkers and Loaders. Morgan Kaufmann, 1999.

Didrik Rokhaug. An alternative approach to zephyr’s system call dispatch,
using rust. Project thesis, Norwegian University of Science and Technology,
2018.

TIS Comittee. Tool Interface Standard (TIS) Executable and Linking For-
mat (ELF) Specification, 1.2 edition, May 1995.

Jim Turley. Wind River Sets Rocket RTOS On Free Trajectory. https:
//www.eejournal.com/article/20151125-windriver, 2015. Accessed
2018-12-03.

39

https://www.zephyrproject.org/linux-foundation-announces-porject-build-real-time-operating-system-internet-things-devices/
https://www.zephyrproject.org/linux-foundation-announces-porject-build-real-time-operating-system-internet-things-devices/
https://docs.zephyrproject.org/latest/kernel/usermode/kernelobjects.html
https://docs.zephyrproject.org/latest/kernel/usermode/kernelobjects.html
https://docs.zephyrproject.org/latest/kernel/usermode/usermode.html
https://docs.zephyrproject.org/latest/kernel/usermode/usermode.html
https://gankro.github.io/blah/initialize-me-maybe/
https://gankro.github.io/blah/initialize-me-maybe/
https://www.ncameron.org/blog/cargos-next-few-years/
https://www.ncameron.org/blog/cargos-next-few-years/
https://www.eejournal.com/article/20151125-windriver
https://www.eejournal.com/article/20151125-windriver

Appendix A

Build log for Zephyr’s
“Blinky” sample

Here are parts of the logfile created by building Zephyr’s “Blinky” sample for
the nRF52 development kit with the verbose option. The paths have been
shortened, and parts of the file have been removed due to the similarity with
the excerpts listed. A summary of the omitted parts are given in their place.
The full file (with shortened paths) can be found in the accompanying zip file.

The commands used to produce the logfile were:
e $ cd /zephyr/samples/basic/blinky
e $§ mkdir build/nrf52_pcal0040 && cd build/nrf52_pcal0040
e $ cmake -DBOARD=nrf52_pcal0040 ../..
e $ make VERBOSE=1 > make.log

A.1 The generation step

/usr/bin/cmake —S/zephyr/samples/basic/blinky —B/zephyr/
samples/basic/blinky /build /nrf52 pcal0040 —-check—
build —system CMakeFiles/Makefile.cmake 0

/usr/bin/cmake —E cmake progress start /zephyr/samples/
basic/blinky/build /nrf52 pcal0040/CMakeFiles /zephyr/
samples/basic/blinky/build /nrf52 pcal0040/CMakeFiles/
progress . marks

make —f CMakeFiles/Makefile2 all

make[1]: Entering directory '/zephyr/samples/basic/blinky
/build /nrf52 pcal0040 '

make —f zephyr/CMakeFiles/kobj types h target.dir/build.
make zephyr/CMakeFiles/kobj types h target.dir/depend

make[2]: Entering directory '/zephyr/samples/basic/blinky
/build /nrf52 pcal0040 '

40

cd /zephyr/samples/basic/blinky/build /nrf52 pcal0040 && /
usr /bin/cmake —E cmake depends "Unix Makefiles" /
zephyr /samples/basic/blinky /zephyr /zephyr/samples/
basic/blinky /build /nrf52 pcal0040 /zephyr/samples/
basic/blinky/build /nrf52 pcal0040/zephyr /zephyr/
samples/basic/blinky /build /nrf52 pcal0040/zephyr/
CMakeFiles/kobj types h target.dir/DependInfo.cmake ——
color=

Dependee "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/kobj types h target.
dir /DependInfo.cmake" is newer than depender "/zephyr/
samples/basic/blinky /build /nrf52 pcal0040/zephyr/
CMakeFiles/kobj types h target.dir/depend.internal".

Dependee "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/
CMakeDirectoryInformation.cmake" is newer than
depender "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/kobj types h target.
dir /depend.internal".

Scanning dependencies of target kobj types h target

make [2]: Leaving directory '/zephyr/samples/basic/blinky/
build /nrf52 pcal0040 '

make —f zephyr/CMakeFiles/kobj types h target.dir/build.
make zephyr/CMakeFiles/kobj types h target.dir/build

make[2]: Entering directory '/zephyr/samples/basic/blinky
/build /nrf52 pcal0040 '

[1%] Generating include/generated/kobj—types—enum.h,
include/generated /otype—to—str.h

cd /zephyr/samples/basic/blinky/build /nrf52 pcal0040/
zephyr && /usr/bin/python /zephyr/scripts/
gen kobject list.py —kobj—types—output /zephyr/
samples/basic/blinky /build /nrf52 pcal0040/zephyr/
include/generated /kobj—types—enum.h —kobj—otype—
output /zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/include/generated /otype—to—str.h
—kobj—size —output /zephyr/samples/basic/blinky/build
/nrf52 pcal0040/zephyr/include/generated /otype—to—size
.h

make [2]: Leaving directory '/zephyr/samples/basic/blinky/
build /nrf52 pcal0040'

[1%] Built target kobj types h target

make —f zephyr/CMakeFiles/syscall macros h target.dir/
build .make zephyr/CMakeFiles/syscall macros h target.
dir /depend

make[2]: Entering directory '/zephyr/samples/basic/blinky
/build /nrf52 pcal0040 '

cd /zephyr/samples/basic/blinky/build/nrf52 pcal0040 && /
usr/bin/cmake —E cmake depends "Unix Makefiles" /
zephyr /samples/basic/blinky /zephyr /zephyr/samples/
basic/blinky /build /nrf52 pcal0040 /zephyr/samples/

41

basic/blinky /build /nrf52 pcal0040/zephyr /zephyr/
samples/basic/blinky /build /nrf52 pcal0040/zephyr/
CMakeFiles/syscall macros_h_target.dir /DependInfo.
cmake —color=

Dependee "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/
syscall macros h target.dir/DependInfo.cmake" is newer

than depender "/zephyr/samples/basic/blinky/build/

nrf52 pcal0040/zephyr/CMakeFiles/
syscall macros h target.dir/depend.internal".

Dependee "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/
CMakeDirectoryInformation.cmake" is newer than
depender "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/
syscall macros h target.dir/depend.internal".

Scanning dependencies of target syscall macros h target

make [2]: Leaving directory '/zephyr/samples/basic/blinky/
build /nrf52 pcal0040'

make —f zephyr/CMakeFiles/syscall macros h target.dir/
build .make zephyr/CMakeFiles/syscall macros h target.
dir /build

make [2]: Entering directory '/zephyr/samples/basic/blinky
/build /nrf52 pcal0040'

[2%| Generating include/generated/syscall macros.h

cd /zephyr/samples/basic/blinky/build /nrf52 pcal0040/
zephyr && /usr/bin/python /zephyr/scripts/
gen syscall header.py > /zephyr/samples/basic/blinky/
build /nrf52 pcal0040/zephyr/include/generated/
syscall macros.h

make [2]: Leaving directory '/zephyr/samples/basic/blinky/
build /nrf52 pcal0040 '

[2%| Built target syscall macros _h target

make —f zephyr/CMakeFiles/syscall list h target.dir/build
.make zephyr/CMakeFiles/syscall list h_ target.dir/
depend

make [2]: Entering directory '/zephyr/samples/basic/blinky
/build /nrf52 pcal0040 '

cd /zephyr/samples/basic/blinky/build /nrf52 pcal0040 && /
usr/bin/cmake —E cmake depends "Unix Makefiles" /
zephyr /samples/basic/blinky /zephyr /zephyr/samples/
basic/blinky/build /nrf52 pcal0040 /zephyr/samples/
basic/blinky/build /nrf52 pcal0040/zephyr /zephyr/
samples/basic/blinky /build /nrf52 pcal0040/zephyr/
CMakeFiles/syscall list _h_ target.dir/DependInfo.cmake
—color=

Dependee "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/syscall list h target
.dir /DependInfo.cmake" is newer than depender "/zephyr
/samples/basic/blinky /build /nrf52 pcal0040/zephyr/

42

CMakeFiles/syscall list h target.dir/depend.internal".

Dependee "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/
CMakeDirectoryInformation.cmake" is newer than
depender "/zephyr/samples/basic/blinky /build/
nrf52 pcal0040/zephyr/CMakeFiles/syscall list h target
.dir /depend.internal ".

Scanning dependencies of target syscall list h target

make [2]: Leaving directory '/zephyr/samples/basic/blinky/
build /nrf52 pcal0040 '

make —f zephyr/CMakeFiles/syscall list h target.dir/build
.make zephyr/CMakeFiles/syscall list h target.dir/
build

make[2]: Entering directory '/zephyr/samples/basic/blinky
/build /nrf52 pcal0040 '

| 3%] Generating misc/generated/syscalls.json

cd /zephyr/samples/basic/blinky/build /nrf52 pcal0040/
zephyr && /usr/bin/python /zephyr/scripts/
parse syscalls.py —include /zephyr/include —json—
file /zephyr/samples/basic/blinky/build/nrf52 pcal0040
/zephyr/misc/generated /syscalls.json

| 4%| Generating include/generated/syscall dispatch.c,
include/generated/syscall list.h

cd /zephyr/samples/basic/blinky/build /nrf52 pcal0040/
zephyr && /usr/bin/python /zephyr/scripts/gen syscalls
.py —json—file /zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/misc/generated/syscalls.json —
base—output include/generated/syscalls —syscall—
dispatch include/generated/syscall dispatch.c —
syscall—list /zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/include/generated/syscall list.h

make [2]: Leaving directory '/zephyr/samples/basic/blinky/
build /nrf52 pcal0040'

[5%| Built target syscall list h target

make —f zephyr/CMakeFiles/driver validation h _ target.dir/
build . make zephyr/CMakeFiles/
driver validation h target.dir/depend

make [2]: Entering directory '/zephyr/samples/basic/blinky
/build /nrf52 pcal0040 '

cd /zephyr/samples/basic/blinky/build /nrf52 pcal0040 && /
usr/bin /cmake —E cmake depends "Unix Makefiles" /
zephyr /samples/basic/blinky /zephyr /zephyr/samples/
basic/blinky /build /nrf52 pcal0040 /zephyr/samples/
basic/blinky /build /nrf52 pcal0040/zephyr /zephyr/
samples/basic/blinky /build /nrf52 pcal0040/zephyr/
CMakeFiles/driver validation h target.dir/DependInfo.
cmake —color=

Dependee "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/
driver validation h_ target.dir/DependInfo.cmake" is

43

newer than depender "/zephyr/samples/basic/blinky/
build /nrf52 pcal0040/zephyr/CMakeFiles/
driver validation h target.dir/depend.internal".

Dependee "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/
CMakeDirectoryInformation.cmake" is newer than
depender "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/
driver validation h _ target.dir/depend.internal".

Scanning dependencies of target
driver validation h target

make [2]: Leaving directory '/zephyr/samples/basic/blinky/
build /nrf52 pcal0040'

make —f zephyr/CMakeFiles/driver validation h target.dir/
build . make zephyr/CMakeFiles/
driver validation h target.dir/build

make [2]: Entering directory '/zephyr/samples/basic/blinky
/build /nrf52 pcal0040"'

| 5%| Generating include/generated/driver—validation.h

cd /zephyr/samples/basic/blinky/build/nrf52 pcal0040/
zephyr && /usr/bin/python /zephyr/scripts/
gen kobject list.py —validation—output /zephyr/
samples/basic/blinky /build /nrf52 pcal0040/zephyr/
include/generated /driver—validation.h

make [2]: Leaving directory '/zephyr/samples/basic/blinky/
build /nrf52 pcal0040 '

[5%| Built target driver validation h target

make —f zephyr/CMakeFiles/offsets.dir/build.make zephyr/
CMakeFiles/offsets . dir /depend

make[2]: Entering directory '/zephyr/samples/basic/blinky
/build /nrf52 pcal0040 '

cd /zephyr/samples/basic/blinky/build /nrf52 pcal0040 && /
usr/bin/cmake —E cmake depends "Unix Makefiles" /
zephyr /samples/basic/blinky /zephyr /zephyr/samples/
basic/blinky/build /nrf52 pcal0040 /zephyr/samples/
basic/blinky/build /nrf52 pcal0040/zephyr /zephyr/
samples/basic/blinky /build /nrf52 pcal0040/zephyr/
CMakeFiles/offsets.dir/DependInfo.cmake —color=

Dependee "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/offsets . dir/
DependInfo.cmake" is newer than depender "/zephyr/
samples/basic/blinky/build /nrf52 pcal0040/zephyr/
CMakeFiles/offsets . dir/depend.internal".

Dependee "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/
CMakeDirectoryInformation.cmake" is newer than
depender "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/offsets . dir/depend.
internal".

Scanning dependencies of target offsets

44

make [2]: Leaving directory '/zephyr/samples/basic/blinky/
build /nrf52 pcal0040'

make —f zephyr/CMakeFiles/offsets.dir/build.make zephyr/
CMakeFiles/offsets.dir/build

make [2]: Entering directory '/zephyr/samples/basic/blinky
/build /nrf52 pcal0040'

[5%] Building C object zephyr/CMakeFiles/offsets.dir/
arch /arm/core/offsets /offsets.c.obj

cd /zephyr/samples/basic/blinky/build/nrf52 pcal0040/
zephyr && ccache /opt/zephyr—sdk/sysroots/x86 64—
pokysdk—linux /usr/bin/arm—zephyr—eabi/arm—zephyr—eabi—
gcc —DBUILD VERSION=zephyr—v1.13.0—-3719—-¢g01592071f1 —
DKERNEL —DNRF52832 XXAA -D FORTIFY SOURCE-2 —
D Z7ZFPHYR =1 —I/zephyr/kernel/include —I/zephyr/arch/
arm/include —I/zephyr/soc/arm/nordic_nrf/nrf52 —I/
zephyr/soc/arm/nordic _nrf/nrf52/include —I/zephyr/soc/
arm/nordic_nrf/include —I/zephyr/include —I/zephyr/
include/drivers —I/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/include/generated —I/zephyr/lib/
libc /minimal/include —I/zephyr/ext/hal/cmsis/Include —
I/zephyr/ext/hal/nordic/nrfx —I/zephyr/ext/hal/nordic/
nrfx/drivers/include —I/zephyr/ext/hal/nordic/nrfx/hal
—I/zephyr/ext/hal/nordic/nrfx /mdk —I/zephyr/ext/hal/
nordic /. —I/zephyr/subsys/bluetooth —isystem /opt/
zephyr—sdk/sysroots /x86 64—pokysdk—linux /usr/lib /arm—
zephyr—eabi/gcc/arm—zephyr—eabi /6.2.0/include —isystem
/opt/zephyr—sdk/sysroots /x86 64—pokysdk—linux/usr/lib
/arm—zephyr—eabi/gcc/arm—zephyr—eabi /6.2.0/include—
fixed —0Os —g —Wall —Wformat —Wformat—security —Wno—
format—zero—length —imacros /zephyr/samples/basic/
blinky /build /nrf52 pcal0040/zephyr/include/generated/
autoconf.h —ffreestanding —Wno-main —fno—common —
sysroot /opt/zephyr—sdk/sysroots/armvi—zephyr—eabi/usr
—mthumb —mcpu=cortex—-m4 —fno—asynchronous—unwind—
tables —fno—pie —fno—pic —fno—strict —overflow —Wno—
pointer —sign —Wno—unused—but—set—variable —fno—reorder
—functions —fno—defer —pop —Werror=implicit —int —
Wpointer—arith —ffunction—sections —fdata—sections —
mabi=aapcs —march=armv7e-m —std=c99 —o CMakeFiles/
offsets.dir/arch/arm/core/offsets/offsets.c.obj —c /
zephyr /arch /arm/core/offsets /offsets.c

| 6%] Linking C static library liboffsets.a

cd /zephyr/samples/basic/blinky/build /nrf52 pcal0040/
zephyr && /usr/bin/cmake —P CMakeFiles/offsets . dir/
cmake clean target.cmake

cd /zephyr/samples/basic/blinky/build /nrf52 pcal0040/
zephyr && /usr/bin/cmake —E cmake link script
CMakeFiles/offsets.dir/link.txt —verbose=1

ccache /opt/zephyr—sdk/sysroots/x86 64—pokysdk—linux/usr/
bin /arm—zephyr—eabi/arm—zephyr—eabi—ar qc liboffsets.a

45

CMakeFiles/offsets.dir/arch/arm/core/offsets/offsets

.c.obj

ccache /opt/zephyr—sdk/sysroots/x86 64—pokysdk—linux /usr/
bin /arm—zephyr—eabi/arm—zephyr—eabi—ranlib liboffsets.
a

make [2]: Leaving directory '/zephyr/samples/basic/blinky/
build /nrf52 pcal0040'

| 6%] Built target offsets

make —f zephyr/CMakeFiles/offsets h.dir/build.make zephyr
/CMakeFiles/offsets h.dir/depend

make [2]: Entering directory '/zephyr/samples/basic/blinky
/build /nrf52 pcal0040 '

cd /zephyr/samples/basic/blinky/build /nrf52 pcal0040 && /
usr/bin /cmake —E cmake depends "Unix Makefiles" /
zephyr /samples/basic/blinky /zephyr /zephyr/samples/
basic/blinky/build /nrf52 pcal0040 /zephyr/samples/
basic/blinky/build /nrf52 pcal0040/zephyr /zephyr/
samples/basic/blinky /build /nrf52 pcal0040/zephyr/
CMakeFiles/offsets h.dir/DependInfo.cmake —color=

Dependee "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/offsets h.dir/
DependInfo.cmake" is newer than depender "/zephyr/
samples/basic/blinky/build /nrf52 pcal0040/zephyr/
CMakeFiles/offsets h.dir/depend.internal".

Dependee "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/
CMakeDirectoryInformation.cmake" is newer than
depender "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/offsets h.dir/depend.
internal".

Scanning dependencies of target offsets h

make [2]: Leaving directory '/zephyr/samples/basic/blinky/
build /nrf52 pcal0040 '

make —f zephyr/CMakeFiles/offsets h.dir/build.make zephyr
/CMakeFiles/offsets h.dir/build

make[2]: Entering directory '/zephyr/samples/basic/blinky
/build /nrf52 pcal0040 '

| 7%] Generating include/generated/offsets.h

cd /zephyr/samples/basic/blinky/build /nrf52 pcal0040/
zephyr && /usr/bin/python /zephyr/scripts/
gen offset header.py —i /zephyr/samples/basic/blinky/
build /nrf52 pcal0040/zephyr/CMakeFiles/offsets . dir/
arch /arm/core/offsets /offsets.c.obj —o /zephyr/samples
/basic/blinky /build /nrf52 pcal0040/zephyr/include/
generated /offsets.h

make[2]: Leaving directory '/zephyr/samples/basic/blinky/
build /nrf52 pcal0040'

[7%| Built target offsets h

46

A.2 The build step

A.2.1 The building of libapp.a

make —f CMakeFiles/app.dir/build .make CMakeFiles/app.dir/
depend
make [2]: Entering directory '/zephyr/samples/basic/blinky
/build /nrf52 pcal0040 '
cd /zephyr/samples/basic/blinky/build /nrf52 pcal0040 && /
usr/bin/cmake —E cmake depends "Unix Makefiles" /
zephyr /samples/basic/blinky /zephyr/samples/basic/
blinky /zephyr/samples/basic/blinky/build/
nrf52 pcal0040 /zephyr/samples/basic/blinky/build/
nrf52 pcal0040 /zephyr/samples/basic/blinky/build/
nrf52 pcal0040/CMakeFiles/app. dir /DependInfo.cmake —
color=
Dependee "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/CMakeFiles/app. dir/DependInfo.cmake" is
newer than depender "/zephyr/samples/basic/blinky/
build /nrf52 pcal0040/CMakeFiles/app.dir/depend.
internal ".
Dependee "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/CMakeFiles/CMakeDirectoryInformation .
cmake" is newer than depender "/zephyr/samples/basic/
blinky /build /nrf52 pcal0040/CMakeFiles/app. dir/depend.
internal".
Scanning dependencies of target app
make [2]: Leaving directory '/zephyr/samples/basic/blinky/
build /nrf52 pcal0040 '
make —f CMakeFiles/app. dir/build .make CMakeFiles/app.dir/
build
make[2]: Entering directory '/zephyr/samples/basic/blinky
/build /nrf52 pcal0040 '
[7%| Building C object CMakeFiles/app.dir/src/main.c.
obj
ccache /opt/zephyr—sdk/sysroots/x86 64—pokysdk—linux/usr/
bin /arm—zephyr—eabi/arm—zephyr—eabi—gcc —
DBUILD VERSION=zephyr—v1.13.0—-3719—g01592071f1 —
DKERNEL —~DNRF52832 XXAA —D FORTIFY SOURCE=2 —
D Z7ZFPHYR =1 —I/zephyr/kernel/include —I/zephyr/arch/
arm/include —I/zephyr/soc/arm/nordic_nrf/nrf52 —I/
zephyr/soc/arm/nordic_nrf/nrf52/include —I/zephyr/soc/
arm/nordic_nrf/include —I/zephyr/include —I/zephyr/
include/drivers —I/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/include/generated —I/zephyr/lib/
libc /minimal/include —I/zephyr/ext/hal/cmsis/Include —
I/zephyr/ext/hal/nordic/nrfx —I/zephyr/ext/hal/nordic/
nrfx/drivers/include —I/zephyr/ext/hal/nordic/nrfx/hal
—I/zephyr/ext/hal/nordic/nrfx /mdk —I/zephyr/ext/hal/

47

nordic /. —I/zephyr/subsys/bluetooth —isystem /opt/
zephyr—sdk/sysroots /x86 64—pokysdk—linux /usr/lib /arm—
zephyr—eabi/gcc/arm—zephyr—eabi /6.2.0/include —isystem
/opt/zephyr—sdk/sysroots /x86 64—pokysdk—linux/usr/lib
/arm—zephyr—eabi/gcc/arm—zephyr—eabi /6.2.0/include—
fixed —0Os —g —Wall —Wformat —Wformat—security —Wno—
format—zero—length —imacros /zephyr/samples/basic/
blinky /build /nrf52 pcal0040/zephyr/include/generated/
autoconf.h —ffreestanding —Wno-main —fno—common —
sysroot /opt/zephyr—sdk/sysroots/armvi—zephyr—eabi/usr
—mthumb —mcpu=cortex—-m4 —fno—asynchronous—unwind—
tables —fno—pie —fno—pic —fno—strict —overflow —Wno-
pointer —sign —Wno—unused—but—set—variable —fno—reorder
—functions —fno—defer—pop —Werror=implicit—int —
Wpointer—arith —ffunction—sections —fdata—sections —
mabi=aapcs —march=armv7e—m —std=c99 —o CMakeFiles/app.
dir/src/main.c.obj —c /zephyr/samples/basic/blinky/
src/main. ¢

[8%| Linking C static library app/libapp.a

/usr /bin/cmake —P CMakeFiles/app.dir/cmake clean target.

cmake
/usr/bin/cmake —E cmake link script CMakeFiles/app. dir/
link . txt —verbose=1

ccache /opt/zephyr—sdk/sysroots/x86 64—pokysdk—linux /usr/

bin /arm—zephyr—eabi /arm—zephyr—eabi—ar qc app/libapp.a
CMakeFiles/app. dir /src/main.c.obj

ccache /opt/zephyr—sdk/sysroots/x86 64—pokysdk—linux/usr/
bin /arm—zephyr—eabi/arm—zephyr—eabi—ranlib app/libapp.
a

make[2]: Leaving directory '/zephyr/samples/basic/blinky/
build /nrf52 pcal0040'

[8%] Built target app

A.2.2 The rest of the build step

In the build step there are a lot of other archives being generated, all containging
a varying number of object files. As all the object files and archives are generated
in a similar fashion to main.c.obj and libapp, we include a simple list of archives
and their object files. Each object file is based on a source file with the same
name (without the .obj suffix). When a folder is given in parenthesis after
the name of the archive, all the source files used can be found in that folder.
Otherwise the file used to create the object file is found in the folder given in
parenthesis after the name of the object file. Any common prefix to the path
is written after the name of the archive. The full log file can be found in the
accompanying zip file.

e libkernel.a (/zephyr /kernel/)
— device.c.obj

— errno.c.obj

48

idle.c.obj

init.c.obj
mailbox.c.obj

mem _slab.c.obj
mempool.c.obj
msg_ q.c.obj
mutex.c.obj
pipes.c.obj
queue.c.obj
sched.c.obj
sem.c.obj
stack.c.obj

system _work q.c.obj
thread.c.obj

thread abort.c.obj
version.c.obj

work q.c.obj
smp.c.obj
timeout.c.obj
timer.c.obj

poll.c.obj

e libzephyr.a (/zephyr/)

isr_tables.c.obj (arch/common))
sw_isr _common.c.obj (arch/common/)
cre32_sw.c.obj (lib/os/)
crcl6_sw.c.obj (lib/os/)

cre8 _sw.c.obj (lib/os/)
crc7_sw.c.obj (lib/os/)
fdtable.c.obj (lib/os/)
mempool.c.obj (lib/os/)

rb.c.obj (lib/os/)

thread entry.c.obj (lib/os/)
work q.c.obj (lib/os/)

49

— printk.c.ob (lib/os/)
— configs.c.obj (samples/basic/blinky /build /nrf52 pcal0040/zephyr/misc/generated/)
— power.c.obj (soc/arm/nordic_nrf/nrf52/)
— soc.c.obj (soc/arm/nordic_nrf/nrf52/)
— mpu_ regions.c.obj (soc/arm/nordic_nrf/nrf52/)
— system_nrf52.c.obj (ext/hal/nordic/nrfx/mdk/)
— nrfx_glue.c.obj (ext/hal/nordic/)
— rand32_entropy _device.c.obj (subsys/random/)
— nrf_power_clock.c.obj (drivers/clock control/)
— sys_ clock init.c.obj (drivers/timer/)
— nrf rtc_timer.c.obj (drivers/timer/)
e libarch__arm___ core.a (/zephyr/arch/arm/core/)
— exc_exit.S.obj
— irq_init.c.obj
— swap.c.obj
— swap__helper.S.obj
— fault.c.obj
— irq_manage.c.obj
— thread.c.obj
— cpu__idle.S.obj
— fault_s.S.obj
— fatal.c.obj
— sys_fatal error handler.c.obj
— thread _abort.c.obj
— isr_wrapper.S.obj
e libarch _arm_ core cortex m.a (/zephyr/arch/arm/core/cortex m/)
— vector__table.S.obj
— reset.S.obj
— nmi_on_reset.S.obj
— prep_c.c.obj
— scb.c.obj
— nmi.c.obj

— exc__manage.c.obj

50

e libarch arm_ core cortex m mpu.a (/zephyr/arch/arm/core/cor-
tex _m/mpu/)

— arm__core_ mpu.c.obj
— arm_ mpu.c.obj
e liblib__libc_minimal.a (/zephyr/lib/libc/minimal/source/)
— atoi.c.obj (stdlib/)
— strtol.c.obj (stdlib/)
— strtoul.c.obj (stdlib/)
— malloc.c.obj (stdlib/)
— strncasecmp.c.obj (string/)
— strstr.c.obj (string/)
— string.c.obj (string/)
— prf.c.obj (stdout/)
— stdout__console.c.obj (stdout/)
— sprintf.c.obj (stdout/)

fprintf.c.obj (stdout/)
e libsubsys _ bluetooth common.a (/zephyr/subsys/bluetooth /common/)
— dummy.c.obj
— log.c.obj
e libsubsys _ bluetooth host.a (/zephyr/subsys/bluetooth/host)
— uuid.c.obj
— hci_core.c.obj
e libsubsys _ bluetooth controller.a (/zephyr/subsys/bluetooth/controller/)
— mem.c.obj (util/)
— memgq.c.obj (util/)
— mayfly.c.obj (util/)
— util.c.obj (util/)
— ticker.c.obj (ticker/)
— 1l_addr.c.obj (11_sw/)
— 1l _tx_pwr.c.obj (I sw/)
— hei_ driver.c.obj (hei/)
— hci.c.obj (hci/)
— crypto.c.obj (crypto/)
— ctrl.c.obj (II_sw)

o1

— ll.c.obj (I1_sw)
— 11_adc.c.obj (I1_sw)
— 11 filter.c.obj (11 _sw)
— 11_adv_aux.c.obj (Il _sw)
— cntr.c.obj (1I_sw/nordic/hal/nrf5))
— ecb.c.obj (I_sw/nordic/hal/nrf5/)
— radio.c.obj (11_sw/nordic/hal/nrf5/radio)
— mayfly.c.obj (11_sw/nordic/hal/nrf5/)
— ticker.c.obj (II_sw/nordic/hal/nrf5/)
e libsubsys net.a (/zephyr/subsys/net/)
— buf.c.obj
e libdrivers _ gpio.a (/zephyr/drivers/gpio/)
— gpio_ nrfx.c.obj
e libdrivers __entropy.a (/zephyr/drivers/entropy/)
— entropy_ nrf5.c.obj

A.3 The link step

make —f zephyr/CMakeFiles/zephyr prebuilt. dir/build .make
zephyr /CMakeFiles/zephyr prebuilt. dir/depend

make[2]: Entering directory '/zephyr/samples/basic/blinky
/build /nrf52 pcal0040 '

cd /zephyr/samples/basic/blinky/build /nrf52 pcal0040 && /
usr/bin/cmake —E cmake depends "Unix Makefiles" /
zephyr/samples/basic/blinky /zephyr /zephyr/samples/
basic/blinky /build /nrf52 pcal0040 /zephyr/samples/
basic/blinky/build /nrf52 pcal0040/zephyr /zephyr/
samples/basic/blinky /build /nrf52 pcal0040/zephyr/
CMakeFiles/zephyr prebuilt.dir /DependInfo.cmake —
color=

Dependee "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/zephyr prebuilt. dir/
DependInfo.cmake" is newer than depender "/zephyr/
samples/basic/blinky /build /nrf52 pcal0040/zephyr/
CMakeFiles/zephyr prebuilt.dir/depend.internal".

Dependee "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/
CMakeDirectoryInformation.cmake" is newer than
depender "/zephyr/samples/basic/blinky /build/
nrf52 pcal0040/zephyr/CMakeFiles/zephyr prebuilt. dir/
depend.internal ".

52

Scanning dependencies of target zephyr prebuilt
make [2]: Leaving directory '/zephyr/samples/basic/blinky/
build /nrf52 pcal0040'
make —f zephyr/CMakeFiles/zephyr prebuilt.dir/build .make
zephyr /CMakeFiles/zephyr prebuilt.dir/build
make [2]: Entering directory '/zephyr/samples/basic/blinky
/build /nrf52 pcal0040'
| 94%] Building C object zephyr/CMakeFiles/
zephyr prebuilt.dir /misc/empty file.c.obj
cd /zephyr/samples/basic/blinky/build /nrf52 pcal0040/
zephyr && ccache /opt/zephyr—sdk/sysroots/x86 64—
pokysdk—linux /usr/bin/arm—zephyr—eabi/arm—zephyr—eabi—
gcc —DBUILD VERSION=zephyr—v1.13.0—-3719—-g01592071f1 —
DKERNEL —DNRF52832 XXAA -D FORTIFY SOURCE-2 —
D ZFPHYR =1 —I/zephyr/kernel/include —I/zephyr/arch/
arm/include —I/zephyr/soc/arm/nordic nrf/nrf52 —I/
zephyr/soc/arm/nordic_nrf/nrf52/include —I/zephyr/soc/
arm/nordic_nrf/include —I/zephyr/include —I/zephyr/
include/drivers —I/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/include/generated —I/zephyr/lib/
libe /minimal/include —I/zephyr/ext/hal/cmsis/Include —
I/zephyr/ext/hal/nordic/nrfx —I/zephyr/ext/hal/nordic/
nrfx/drivers/include —I/zephyr/ext/hal/nordic/nrfx/hal
—I/zephyr/ext/hal/nordic/nrfx /mdk —I/zephyr/ext/hal/
nordic /. —I/zephyr/subsys/bluetooth —isystem /opt/
zephyr—sdk/sysroots /x86 64—pokysdk—linux/usr/lib /arm—
zephyr—eabi/gcc/arm—zephyr—eabi /6.2.0/include —isystem
/opt/zephyr—sdk/sysroots /x86_ 64—pokysdk—linux/usr/lib
/arm—zephyr—eabi/gcc/arm—zephyr—eabi /6.2.0/include—
fixed —-0s —g —Wall —Wformat —Wformat—security —Wno—
format—zero—length —imacros /zephyr/samples/basic/
blinky /build /nrf52 pcal0040/zephyr/include/generated/
autoconf.h —ffreestanding —Wno-main —fno—common —
sysroot /opt/zephyr—sdk/sysroots/armvi—zephyr—eabi/usr
—mthumb —mcpu=cortex —m4 —fno—asynchronous—unwind—
tables —fno—pie —fno—pic —fno—strict —overflow —Wno—
pointer —sign —Wno—unused—but—set—variable —fno—reorder
—functions —fno—defer—pop —Werror=implicit—int —
Wpointer—arith —ffunction—sections —fdata—sections —
mabi=aapcs —march=armv7e—-m —std=c99 —o CMakeFiles/
zephyr prebuilt.dir /misc/empty file.c.obj —c /zephyr
/misc/empty file.c
[95%] Linking C executable zephyr prebuilt.elf
cd /zephyr/samples/basic/blinky/build /nrf52 pcal0040/
zephyr && /usr/bin/cmake —E cmake link script
CMakeFiles/zephyr prebuilt.dir/link.txt —verbose=1
ccache /opt/zephyr—sdk/sysroots/x86 64—pokysdk—linux /usr/
bin /arm—zephyr—eabi/arm—zephyr—eabi—gcc CMakeFiles/
zephyr prebuilt.dir/misc/empty file.c.obj —o
zephyr prebuilt.elf —T linker.cmd —WL —Map=/zephyr/

53

samples/basic/blinky /build /nrf52 pcal0040/zephyr/
zephyr.map —u_OffsetAbsSyms —u_ConfigAbsSyms —WIL——
whole—archive ../app/libapp.a libzephyr.a arch/arm/
core/libarch _arm core.a arch/arm/core/cortex m/
libarch _arm _ core cortex m.a arch/arm/core/cortex m/
mpu/libarch _arm_ core cortex m _mpu.a lib/libc/
minimal/liblib__libc_minimal.a subsys/bluetooth/
common/libsubsys _ bluetooth common.a subsys/bluetooth
/host /libsubsys _ bluetooth _ host.a subsys/bluetooth/
controller /libsubsys _ bluetooth controller.a subsys/
net/libsubsys net.a drivers/gpio/libdrivers gpio.a
drivers /entropy/libdrivers _entropy.a —WlL——no—whole—
archive kernel/libkernel.a CMakeFiles/offsets.dir/arch
Jarm/core/offsets /offsets.c.obj —L"/opt/zephyr—sdk/
sysroots /armvb—zephyr—eabi/usr/lib /arm—zephyr—eabi
/6.2.0/armv7e—m" —L/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr —lgcc —WL——print —memory—usage —
mthumb —nostdlib —static —no—pie —Wl,—-X —WL,—-N —WI],——
gc—sections —Wl——build—id=none —W]——orphan—handling=
warn —mabi=aapcs

Memory region Used Size Region Size %age Used
FLASH: 36408 B 512 KB 6.94%

SRAM: 10868 B 64 KB 16.58%

IDT_ LIST: 120 B 2 KB 5.86%

make [2]: Leaving directory '/zephyr/samples/basic/blinky/
build /nrf52 pcal0040 '

[95%] Built target zephyr prebuilt

make —f zephyr/CMakeFiles/linker pass final script target
.dir /build .make zephyr/CMakeFiles/
linker pass final script target.dir/depend

make[2]: Entering directory '/zephyr/samples/basic/blinky
/build /nrf52 pcal0040 '

cd /zephyr/samples/basic/blinky/build /nrf52 pcal0040 && /
usr /bin/cmake —E cmake depends "Unix Makefiles" /
zephyr /samples/basic/blinky /zephyr /zephyr/samples/
basic/blinky /build /nrf52 pcal0040 /zephyr/samples/
basic/blinky/build /nrf52 pcal0040/zephyr /zephyr/
samples/basic/blinky /build /nrf52 pcal0040/zephyr/
CMakeFiles/linker pass final script target.dir/
DependInfo.cmake —color=

Dependee "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/
linker pass_ final script target.dir/DependInfo.cmake"
is newer than depender "/zephyr/samples/basic/blinky/
build /nrf52 pcal0040/zephyr/CMakeFiles/
linker pass final script target.dir/depend.internal".

Dependee "/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr/CMakeFiles/
CMakeDirectoryInformation.cmake" is newer than
depender "/zephyr/samples/basic/blinky/build/

54

nrf52 pcal0040/zephyr/CMakeFiles/
linker pass final script target.dir/depend.internal".

Scanning dependencies of target
linker pass final script target

make [2]: Leaving directory '/zephyr/samples/basic/blinky/
build /nrf52 pcal0040 '

make —f zephyr/CMakeFiles/linker pass final script target
.dir /build .make zephyr/CMakeFiles/
linker pass final script target.dir/build

make [2]: Entering directory '/home/didrik /Dropbox/skole/
ntnu/V2019/master /zephyr/zephyr/samples/basic/blinky/
build /nrf52 pcal0040'

[96%] Generating linker pass final.cmd

cd /home/didrik /Dropbox/skole /ntnu/V2019/master/zephyr/
zephyr /samples/basic/blinky /build /nrf52 pcal0040/
zephyr && /opt/zephyr—sdk/sysroots/x86 64—pokysdk—
linux /usr/bin/arm—zephyr—eabi/arm—zephyr—eabi—gcc —x
assembler —with—cpp —nostdinc —undef -MD -MF
linker pass final.cmd.dep —-MT zephyr/linker pass final
.cmd —I /home/didrik /Dropbox/skole /ntnu/V2019/master/
zephyr /zephyr/kernel /include —I/home/didrik /Dropbox/
skole /ntnu/V2019/master/zephyr/zephyr/arch/arm/include
—I/home/didrik /Dropbox/skole /ntnu/V2019/master/zephyr
/zephyr/soc/arm/nordic_nrf/nrf52 —I/home/didrik/
Dropbox/skole /ntnu/V2019/master /zephyr/zephyr/soc /arm/
nordic_nrf/nrf52/include —I/home/didrik /Dropbox/skole/
ntnu/V2019/master /zephyr/zephyr/soc/arm/nordic_nrf/
include —I/home/didrik /Dropbox/skole/ntnu/V2019/master
/zephyr /zephyr/include —I/home/didrik /Dropbox/skole/
ntnu/V2019/master /zephyr/zephyr/include /drivers —1I/
home/didrik /Dropbox/skole /ntnu/V2019/master/zephyr/
zephyr/samples/basic/blinky /build /nrf52 pcal0040/
zephyr/include/generated —I/opt/zephyr—sdk/sysroots/
x86 64—pokysdk—linux /usr/lib /arm—zephyr—eabi/gcc/arm—
zephyr—eabi /6.2.0/include —I/opt/zephyr—sdk/sysroots/
x86 _64—pokysdk—linux /usr/lib /arm—zephyr—eabi/gcc/arm—
zephyr—eabi /6.2.0/include—fixed —I/home/didrik /Dropbox
/skole /ntnu/V2019/master /zephyr/zephyr/lib/libc/
minimal/include —I/home/didrik /Dropbox/skole/ntnu/
V2019 /master /zephyr/zephyr/soc/arm/nordic_nrf/include
—I/home/didrik /Dropbox/skole /ntnu/V2019/master/zephyr/
zephyr/ext /hal/cmsis/Include —I/home/didrik /Dropbox/
skole /ntnu/V2019/master /zephyr/zephyr/ext/hal/nordic/
nrfx —I/home/didrik /Dropbox/skole /ntnu/V2019/master/
zephyr /zephyr/ext/hal/nordic/nrfx/drivers/include —I/
home/didrik /Dropbox/skole /ntnu/V2019/master/zephyr/
zephyr /ext /hal/nordic/nrfx/hal —I/home/didrik /Dropbox/
skole /ntnu/V2019/master /zephyr/zephyr/ext/hal/nordic/
nrfx /mdk —I/home/didrik /Dropbox/skole/ntnu/V2019/
master /zephyr/zephyr/ext/hal/nordic /. —I/home/didrik/

55

Dropbox/skole /ntnu/V2019/master /zephyr/zephyr/subsys/
bluetooth -D GCC LINKER, CMD —DLINKER_ PASS2 —E /home
/didrik /Dropbox/skole /ntnu/V2019/master /zephyr/zephyr/
soc/arm/nordic_nrf/nrf52/linker.ld —P —o
linker pass_ final.cmd

make [2]: Leaving directory '/home/didrik /Dropbox/skole/
ntnu/V2019/master /zephyr/zephyr/samples/basic/blinky/
build /nrf52 pcal0040'

[96%] Built target linker pass final script_ target

make —f zephyr/CMakeFiles/kernel elf.dir/build.make
zephyr /CMakeFiles/kernel elf.dir/depend

make [2]: Entering directory '/home/didrik/Dropbox/skole/
ntnu/V2019/master /zephyr/zephyr/samples/basic/blinky/
build /nrf52 pcal0040'

[97%| Generating isr tables.c

c¢d /home/didrik /Dropbox/skole/ntnu/V2019/master/zephyr/
zephyr /samples/basic/blinky /build /nrf52 pcal0040/
zephyr && /opt/zephyr—sdk/sysroots/x86 64—pokysdk—
linux /usr/bin/arm—zephyr—eabi/arm—zephyr—eabi—objcopy
—I elf32-littlearm —O binary ——only—section=.intList /
home/didrik /Dropbox/skole /ntnu/V2019/master/zephyr/
zephyr /samples/basic/blinky /build /nrf52 pcal0040/
zephyr/zephyr prebuilt.elf isrList.bin

cd /home/didrik /Dropbox/skole /ntnu/V2019/master/zephyr/
zephyr /samples/basic/blinky /build /nrf52 pcal0040/
zephyr && /usr/bin/python /home/didrik /Dropbox/skole/
ntnu/V2019/master /zephyr /zephyr/arch /common/
gen isr tables.py —output—source isr_ tables.c —
kernel /home/didrik /Dropbox/skole/ntnu/V2019/master/
zephyr /zephyr/samples/basic/blinky /build/
nrf52 pcal0040/zephyr/zephyr prebuilt.elf —intlist
isrList .bin —sw—isr—table —vector—table

cd /home/didrik /Dropbox/skole/ntnu/V2019/master/zephyr/
zephyr /samples/basic/blinky /build /nrf52 pcal0040 && /
usr /bin/cmake —E cmake depends "Unix Makefiles" /home/
didrik /Dropbox/skole /ntnu/V2019/master/zephyr/zephyr/
samples/basic/blinky /home/didrik /Dropbox/skole/ntnu/
V2019/master/zephyr/zephyr /home/didrik /Dropbox/skole/
ntnu/V2019/master /zephyr/zephyr/samples/basic/blinky/
build /nrf52 pcal0040 /home/didrik /Dropbox/skole/ntnu/
V2019/master /zephyr/zephyr/samples/basic/blinky /build/
nrf52 pcal0040/zephyr /home/didrik /Dropbox/skole/ntnu/
V2019/master /zephyr/zephyr/samples/basic/blinky /build/
nrf52 pcal0040/zephyr/CMakeFiles/kernel elf.dir/
DependInfo.cmake —color=

Dependee "/home/didrik /Dropbox/skole /ntnu/V2019/master/
zephyr /zephyr/samples/basic/blinky /build/
nrf52 pcal0040/zephyr/CMakeFiles/kernel elf.dir/
DependInfo.cmake" is newer than depender "/home/didrik
/Dropbox/skole /ntnu/V2019/master /zephyr/zephyr/samples

56

/basic/blinky /build /nrf52 pcal0040/zephyr/CMakeFiles/
kernel elf.dir/depend.internal”.

Dependee "/home/didrik /Dropbox/skole /ntnu/V2019/master/
zephyr /zephyr/samples/basic/blinky /build/
nrf52 pcal0040/zephyr/CMakeFiles/
CMakeDirectoryInformation.cmake" is newer than
depender "/home/didrik /Dropbox/skole/ntnu/V2019/master
/zephyr /zephyr /samples/basic/blinky /build/
nrf52 pcal0040/zephyr/CMakeFiles/kernel elf.dir/depend
.internal".

Scanning dependencies of target kernel elf

make [2]: Leaving directory '/home/didrik/Dropbox/skole/
ntnu/V2019/master /zephyr/zephyr/samples/basic/blinky/
build /nrf52 pcal0040'

make —f zephyr/CMakeFiles/kernel elf.dir/build .make
zephyr /CMakeFiles/kernel elf.dir/build

make [2]: Entering directory '/home/didrik/Dropbox/skole/
ntnu/V2019/master /zephyr/zephyr/samples/basic/blinky/
build /nrf52 pcal0040'

[97%] Building C object zephyr/CMakeFiles/kernel elf.dir
/misc/empty file.c.obj

cd /home/didrik /Dropbox/skole /ntnu/V2019/master/zephyr/
zephyr /samples/basic/blinky/build /nrf52 pcal0040/
zephyr && ccache /opt/zephyr—sdk/sysroots/x86 64—
pokysdk—linux /usr/bin/arm—zephyr—eabi/arm—zephyr—eabi—
gce ~DBUILD VERSION-zephyr—v1.13.0—3719—g01592071f1 —
DKERNEL ~DNRF52832 XXAA —D FORTIFY SOURCE=2 —
D ZFPHYR =1 —I/home/didrik /Dropbox/skole/ntnu/V2019/
master /zephyr/zephyr/kernel/include —I/home/didrik/
Dropbox/skole /ntnu/V2019/master /zephyr/zephyr/arch /arm
/include —I/home/didrik /Dropbox/skole/ntnu/V2019/
master /zephyr/zephyr/soc/arm/nordic_nrf/nrf52 —I/home/
didrik /Dropbox/skole /ntnu/V2019/master/zephyr/zephyr/
soc/arm/nordic_nrf/nrf52/include —I/home/didrik/
Dropbox/skole /ntnu/V2019/master /zephyr/zephyr/soc/arm/
nordic_nrf/include —I/home/didrik /Dropbox/skole/ntnu/
V2019/master/zephyr/zephyr/include —I/home/didrik/
Dropbox/skole /ntnu/V2019 /master /zephyr/zephyr/include/
drivers —I/home/didrik /Dropbox/skole/ntnu/V2019/master
/zephyr /zephyr/samples/basic/blinky /build/
nrf52 pcal0040/zephyr/include/generated —I/home/didrik
/Dropbox/skole /ntnu/V2019 /master /zephyr/zephyr/lib/
libc /minimal/include —I/home/didrik /Dropbox/skole/ntnu
/V2019/master /zephyr/zephyr/ext/hal/cmsis/Include —I/
home/didrik /Dropbox/skole /ntnu/V2019/master/zephyr/
zephyr /ext /hal/nordic/nrfx —I/home/didrik /Dropbox/
skole /ntnu/V2019/master /zephyr/zephyr/ext/hal/nordic/
nrfx /drivers/include —I/home/didrik /Dropbox/skole/ntnu
/V2019/master /zephyr/zephyr/ext/hal/nordic/nrfx/hal —I
/home/didrik /Dropbox/skole/ntnu/V2019/master/zephyr/

57

zephyr /ext /hal/nordic/nrfx /mdk —I/home/didrik /Dropbox/
skole /ntnu/V2019/master /zephyr/zephyr/ext/hal/nordic /.
—I/home/didrik /Dropbox/skole /ntnu/V2019/master /zephyr

/zephyr/subsys/bluetooth —isystem /opt/zephyr—sdk/
sysroots /x86 64—pokysdk—linux/usr/lib /arm—zephyr—eabi/
gce /arm—zephyr—eabi /6.2.0/include —isystem /opt/zephyr
—sdk/sysroots /x86 64—pokysdk—linux /usr/lib /arm—zephyr—
eabi/gcc/arm—zephyr—eabi /6.2.0/include—fixed —-Os —g —
Wall —Wformat —Wformat—security —Wno—format—zero—
length —imacros /home/didrik /Dropbox/skole/ntnu/V2019/
master /zephyr/zephyr/samples/basic/blinky /build/
nrf52 pcal0040/zephyr/include/generated /autoconf.h —
ffreestanding —Wno-main —fno—common ——sysroot /opt/
zephyr—sdk/sysroots /armvb—zephyr—eabi/usr —mthumb —
mcpu=cortex —-m4 —fno—asynchronous—unwind—tables —fno—
pie —fno—pic —fno—strict —overflow —Wno-pointer—sign —
Wno-unused—but—set—variable —fno—reorder—functions —
fno—defer —pop —Werror=implicit —int —Wpointer—arith —
ffunction—sections —fdata—sections —mabi=aapcs —march=
armv7e—-m —std=c99 —o CMakeFiles/kernel elf.dir/misc/
empty file.c.obj —c /home/didrik /Dropbox/skole/ntnu/
V2019/master /zephyr/zephyr/misc/empty file.c

[98%] Building C object zephyr/CMakeFiles/kernel elf.dir
/isr _tables.c.obj

cd /home/didrik /Dropbox/skole /ntnu/V2019/master/zephyr/
zephyr /samples/basic/blinky /build /nrf52 pcal0040/
zephyr && ccache /opt/zephyr—sdk/sysroots/x86 64—
pokysdk—linux /usr/bin/arm—zephyr—eabi/arm—zephyr—eabi—
gcc —DBUILD VERSION=zephyr—v1.13.0—-3719—-g01592071f1 —
DKERNEL —~DNRF52832 XXAA -D FORTIFY SOURCE-2 —
D ZFPHYR =1 —I/home/didrik /Dropbox/skole/ntnu/V2019/
master /zephyr/zephyr/kernel/include —I/home/didrik/
Dropbox/skole /ntnu/V2019/master/zephyr/zephyr/arch/arm
/include —I/home/didrik /Dropbox/skole/ntnu/V2019/
master /zephyr /zephyr/soc/arm/nordic_nrf/nrf52 —I/home/
didrik /Dropbox/skole /ntnu/V2019/master/zephyr/zephyr/
soc/arm/nordic_nrf/nrf52/include —I/home/didrik/
Dropbox/skole /ntnu/V2019 /master /zephyr/zephyr/soc/arm/
nordic_nrf/include —I/home/didrik /Dropbox/skole/ntnu/
V2019 /master /zephyr/zephyr/include —I/home/didrik/
Dropbox/skole /ntnu/V2019/master /zephyr/zephyr/include/
drivers —I/home/didrik /Dropbox/skole/ntnu/V2019/master
/zephyr /zephyr/samples/basic/blinky /build/
nrf52 pcal0040/zephyr/include/generated —I/home/didrik
/Dropbox/skole /ntnu/V2019/master /zephyr/zephyr/lib/
libc /minimal/include —I/home/didrik /Dropbox/skole/ntnu
/V2019/master /zephyr/zephyr/ext/hal/cmsis/Include —I/
home/didrik /Dropbox/skole /ntnu/V2019/master/zephyr/
zephyr /ext /hal/nordic/nrfx —I/home/didrik /Dropbox/
skole /ntnu/V2019/master /zephyr/zephyr/ext/hal /nordic/

58

nrfx /drivers/include —I/home/didrik /Dropbox/skole/ntnu
/V2019/master /zephyr/zephyr/ext/hal/nordic/nrfx /hal —I
/home/didrik /Dropbox/skole /ntnu/V2019/master/zephyr/
zephyr /ext /hal /nordic/nrfx /mdk —I/home/didrik /Dropbox/
skole /ntnu/V2019/master/zephyr/zephyr/ext/hal/nordic /.
—I/home/didrik /Dropbox/skole /ntnu/V2019/master/zephyr

/zephyr/subsys/bluetooth —isystem /opt/zephyr—sdk/
sysroots /x86 64—pokysdk—linux /usr/lib /arm—zephyr—eabi/
gcc /arm—zephyr—eabi /6.2.0/include —isystem /opt/zephyr
—sdk/sysroots /x86 64—pokysdk—linux /usr/lib /arm—zephyr—
eabi/gcc/arm—zephyr—eabi /6.2.0/include—fixed —Os —g —
Wall —Wformat —Wformat—security —Wno—format—zero—
length —imacros /home/didrik /Dropbox/skole/ntnu/V2019/
master /zephyr /zephyr/samples/basic/blinky /build/
nrf52 pcal0040/zephyr/include/generated /autoconf.h —
ffreestanding —Wno—main —fno—common —sysroot /opt/
zephyr—sdk/sysroots /armvb—zephyr—eabi/usr —mthumb —
mcpu=cortex —-m4 —fno—asynchronous—unwind—tables —fno—
pie —fno—pic —fno—strict —overflow —Wno-pointer—sign —
Wno-unused—but—set —variable —fno—reorder—functions —
fno—defer —pop —Werror=implicit —int —Wpointer—arith —
ffunction—sections —fdata—sections —mabi=aapcs —march=
armv7e-m —std=c99 —o CMakeFiles/kernel elf.dir/
isr _tables.c.obj —c /home/didrik /Dropbox/skole/ntnu/
V2019/master /zephyr/zephyr/samples/basic/blinky /build/
nrf52 pcal0040/zephyr/isr tables.c

[100%]| Linking C executable zephyr.elf

cd /home/didrik /Dropbox/skole/ntnu/V2019/master/zephyr/
zephyr /samples/basic/blinky/build /nrf52 pcal0040/
zephyr && /usr/bin/cmake —E cmake link script
CMakeFiles/kernel elf.dir/link.txt —verbose=1

ccache /opt/zephyr—sdk/sysroots/x86 64—pokysdk—linux/usr/
bin /arm—zephyr—eabi/arm—zephyr—eabi—gcc CMakeFiles/
kernel elf.dir/misc/empty file.c.obj CMakeFiles/
kernel elf.dir/isr tables.c.obj —o zephyr.elf -T
linker pass_final.cmd —WI1,—Map=/home/didrik /Dropbox/
skole /ntnu/V2019/master /zephyr/zephyr/samples/basic/
blinky /build /nrf52 pcal0040/zephyr/zephyr.map —
u_ OffsetAbsSyms —u_ConfigAbsSyms —WIl,——whole—archive
../app/libapp.a libzephyr.a arch/arm/core/
libarch _arm __ core.a arch/arm/core/cortex m/
libarch _arm core cortex m.a arch/arm/core/cortex m/
mpu/libarch _arm_ core__cortex_ m__mpu.a lib/libc/
minimal/liblib__libc_minimal.a subsys/bluetooth/
common/libsubsys _ bluetooth _common.a subsys/bluetooth
/host /libsubsys _ bluetooth host.a subsys/bluetooth/
controller /libsubsys _ bluetooth controller.a subsys/
net/libsubsys _net.a drivers/gpio/libdrivers _gpio.a
drivers/entropy/libdrivers _entropy.a —WlL——no—whole—
archive kermel/libkernel.a CMakeFiles/offsets.dir/arch

59

/arm/core/offsets/offsets.c.obj —L"/opt/zephyr—sdk/
sysroots /armvb—zephyr—eabi/usr/lib /arm—zephyr—eabi
/6.2.0/armv7e-m" —L/home/didrik /Dropbox/skole/ntnu/
V2019/master /zephyr/zephyr/samples/basic/blinky/build/
nrf52 pcal0040/zephyr —lgcc —mthumb —nostdlib —static
—no—pie —Wl,-X —WL —-N —W],——gc—sections —Wl——build—id
=none —Wl——orphan—handling=warn —mabi=aapcs

A.4 The post build stage

Generating files from zephyr.elf for board:
nrf52 pcal0040

cd /home/didrik /Dropbox/skole /ntnu/V2019/master/zephyr/
zephyr /samples/basic/blinky/build /nrf52 pcal0040/
zephyr && /usr/bin/python /home/didrik /Dropbox/skole/
ntnu/V2019/master /zephyr/zephyr/scripts/check link map
.py zephyr.map

cd /home/didrik /Dropbox/skole/ntnu/V2019/master/zephyr/
zephyr /samples/basic/blinky/build /nrf52 pcal0040/
zephyr && /opt/zephyr—sdk/sysroots/x86 64—pokysdk—
linux /usr/bin/arm—zephyr—eabi/arm—zephyr—eabi—objcopy
—S —Oihex ——gap—fill O0xff —R .comment —R COMMON —R .
eh frame zephyr.elf zephyr.hex

cd /home/didrik /Dropbox/skole /ntnu/V2019/master/zephyr/
zephyr /samples/basic/blinky /build /nrf52 pcal0040/
zephyr && /opt/zephyr—sdk/sysroots/x86 64—pokysdk—
linux /usr/bin/arm—zephyr—eabi/arm—zephyr—eabi—objcopy
—S —Obinary —gap—fill 0xff —R .comment —R COMMON —R .
eh frame zephyr.elf zephyr.bin

cd /home/didrik /Dropbox/skole /ntnu/V2019/master/zephyr/
zephyr /samples/basic/blinky /build /nrf52 pcal0040/
zephyr && /opt/zephyr—sdk/sysroots/x86 64—pokysdk—
linux /usr/bin/arm—zephyr—eabi/arm—zephyr—eabi—objdump
—S zephyr.elf > zephyr.lst

cd /home/didrik /Dropbox/skole /ntnu/V2019/master/zephyr/
zephyr /samples/basic/blinky /build /nrf52 pcal0040/
zephyr && /opt/zephyr—sdk/sysroots/x86 64—pokysdk—
linux /usr/bin /arm—zephyr—eabi/arm—zephyr—eabi—readelf
—e zephyr.elf > zephyr.stat

make[2]: Leaving directory '/home/didrik/Dropbox/skole/
ntnu,/V2019/master /zephyr/zephyr/samples/basic/blinky /
build /nrf52 pcal0040'

[100%] Built target kernel elf

make[1]: Leaving directory '/home/didrik/Dropbox/skole/
ntnu/V2019/master /zephyr/zephyr/samples/basic/blinky/
build /nrf52 pcal0040'

/usr /bin/cmake —E cmake progress start /home/didrik/
Dropbox/skole /ntnu/V2019/master /zephyr/zephyr/samples/
basic/blinky/build /nrf52 pcal0040/CMakeFiles 0

60

Appendix B

Contents of accompanying zip

file

In the zip file som fglger med this report there are the following files and folders:

e make.log The logfile generated by make when building Zephyr’s “Blinky”
sample.

e zephyr-blinky-minimal/ Folder containing the source code of the Rust port
of Zephyr’s “Blinky” sample.

61

@NTNU

Norwegian University of
Science and Technology

	Introduction
	Background
	Rust
	Rust's toolchain and other useful tools

	Zephyr
	Configuration
	Zephyr's toolchain
	System calls

	Object files and linking

	Generation of bindings to Zephyr's API
	Configurations
	static inline functions

	A Rust application on Zephyr
	The bindings
	The application
	Building the application
	Linking to Zephyr

	Discussion
	Conclusion
	Build log for Zephyr's ``Blinky'' sample
	The generation step
	The build step
	The building of libapp.a
	The rest of the build step

	The link step
	The post build stage

	Contents of accompanying zip file

