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Task Description

The NTNU Cyborg project aims to enable communication between living
nerve tissue and a robot, thereby developing a cyborg. The work in this
project focuses on bringing the Cyborg robot to a state where it is ready for
demonstration, this entails restructuring and improving the software on the
Cyborg robot and integrating existing and previous work. The student shall:

• Evaulate and reimplement the existing software with the overall aim of
making the Cyborg less complex and easier to work with.

• Design and implement a coordinator module for frequently used output
modules.

• Resume the work with the LED controller presented in the authors
specialization project and integrate it into the Cyborg.

• Assist and provide guidance to groups from the Kyborg Experts in
Team village on their work with the Cyborg.

• Finish the Cyborg body and LED dome.
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Abstract

The NTNU Cyborg project aims to enable communication between living
nerve tissue and a robot, thereby creating a cyborg. This thesis presents work
done on one of the projects robots, The Cyborg, aimed at being transformed
into a cyborg and university mascot. The focus is on making the Cyborg
ready for demonstration. The Cyborg body and LED dome needs to be
finished and integrated, and all current Cyborg ROS modules integrated.

Motivation for a simpler software structure and an evaluation of the Cyborg
is presented. The current Cyborg ROS modules are partly reimplemented,
with the aim of reducing complexity. A behavior module is also designed and
implemented. The module makes commonly used output modules available
through a single interface, while providing a way to configure simple behavioral
presets that can be used by other modules or as states for the Cyborg state
machine. The Cyborg Start-up Box is upgraded, adding the ability to
terminate and select new modes of operation on the Cyborg, the name is
changed to Mode Selector in order to better fit the new function.

As a continuation of the authors specialization project, the controller for
the LED dome is realized and the corresponding software finished. The author
has assisted Experts in Team groups with their work on the Cyborg body,
LED dome, and software, their contribution has proven greatly beneficial for
the project. The Cyborg body is finished and the LED dome integrated into
the Cyborg.

An argument is made for why the restructured software was the right
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choice, and a list of proposed future tasks is presented. At the end of
this thesis the Cyborg satisfies the presented specifications and is ready for
demonstration.
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Sammendrag

NTNU Cyborg-prosjektet har som målsetning å muliggjøre kommunikasjon
mellom levende nerveceller og en robot, og dermed utvikle en cyborg. Denne
oppgaven presenterer arbeid utført på en av prosjektets roboter, The Cyborg,
som på sikt skal transformeres til en cyborg og maskot for universitetet.
Fokuset er på å gjøre the Cyborgen klar for demonstrasjon. Kroppen og LED
domen til Cyborgen må ferdigstilles og integreres, og resterende Cyborg ROS
moduler integreres.

Motivasjon for en enklere programvarestruktur og en evaluering av Cy-
borgen presenteres. De nåværende Cyborg ROS modulene blir delvis reim-
plementert, med formål om å redusere kompleksiteten. En adferdsmodul
blir designed og implementert, modulen gjør flitting brukte utgangsmoduler
tilgjengelig via et felles grensesnitt, og lar en forhåndsinstille adferder som
kan bli brukt av andre moduler eller som tilstander i tilstandsmaskinen.

Cyborg start boksen blir oppgradert for å gjøre det mulig å stoppe og starte
nye moduser, og navnet blir endret for å passe den nye funksjonaliteten bedre.
Som en videreføring av forfatterens spesialiseringsprosjekt, blir kontrolleren
til LED domen realisert, og tilhørende programvare ferdigstilt. Forfatteren
har assistert grupper fra Eksperter i Team med deres arbeid på kroppen,
LED domen og programvare relatert til Cyborgen, deres bidrag har vist seg
å være til stor nytte for prosjektet. Kroppen til Cyborgen er ferdigstilt, og
LED domen integrert i Cyborgen.

Det blir argumentert for hvorfor en omstrukturering av programvaren var
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det rette valget, og en liste over foreslåtte fremtidige oppgaver presenteres. På
slutten av denne oppgaven er tilfresstiller Cyborgen de angitte spesifikasjonene,
og den er klar for demonstrasjon.

iv



Acknowledgements

I would like to express my deepest grattitude to Sverre Hendseth for his in-
valuable guidance throughout the work for this thesis. The regular meetings,
with topics ranging from structure of a thesis to interesting philosophical con-
versations about life in general have been greatly motivating and appreciated.
His willingness to dedicate substantial parts of his time to a great number of
students is nothing but amazing.

I would also like to extend my thanks to Martinius Knudsen for facilitating
the Cyborg and making himself available for assistance when requested. I
hope my contributions to the project will be of as much value as I enjoyd
being involved.

Finally, I wish to thank my grandfather Enn Tõugu, without his inspiration
and dedication to cybernetics, I would never have ended up here in the first
place.

v



Preface

This Master’s thesis has been conducted at the Department of Engineering
Cybernetics at the Norwegian University of Science and Technology. During
my work for this thesis, I have been granted full access to all hardware related
to the Cyborg, including the Pioneer LX robot that serves as the base for
the Cyborg and my work. Through regular meetings, supervisor Associate
Professor Sverre Hendseth has provided me with guidance and advice regarding
the procedure and layout for my thesis. In addition, assisting supervisor PhD
Candidate Martinius Knudsen has made himself available when requested,
his contribution has been on the form of consultation regarding my own
approaches to the work on the Cyborg.

vi



Contents

Abstract i

Acknowledgements v

Preface vi

1 Introduction 1
1.1 The Cyborg: An NTNU Mascot . . . . . . . . . . . . . . . . . 2
1.2 Motivation and Goal . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions of the Author . . . . . . . . . . . . . . . . . . . 3
1.4 Previous work on the NTNU Cyborg Project . . . . . . . . . . 4
1.5 Work not Mentioned any Further . . . . . . . . . . . . . . . . 4

2 Background 6
2.1 Evolution of the Cyborg . . . . . . . . . . . . . . . . . . . . . 6
2.2 Hardware Structure of the Cyborg . . . . . . . . . . . . . . . . 6

2.2.1 The Cyborg Base; Pioneer LX . . . . . . . . . . . . . . 9
2.2.2 The Cyborg LED Dome . . . . . . . . . . . . . . . . . 10
2.2.3 The Cyborg LED Controller . . . . . . . . . . . . . . . 10
2.2.4 Arduino . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 NodeMCU ESP-32S . . . . . . . . . . . . . . . . . . . 11
2.2.6 The Start-up Box . . . . . . . . . . . . . . . . . . . . . 12
2.2.7 Jetson TX2 Developer Kit . . . . . . . . . . . . . . . . 13

vii



2.2.8 Zed Stereoscopic 3D Camera . . . . . . . . . . . . . . . 13
2.2.9 MEA2100-Systems Microelectrode Array . . . . . . . . 13

2.3 Software and Tools . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 RViz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Shell Scripts . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Rhinoceros 3D . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5 Fritzing - Open Source ECAD . . . . . . . . . . . . . . 16
2.3.6 FreeRTOS . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 ROS - The Robot Operating System . . . . . . . . . . . . . . 18
2.4.1 Concepts of ROS . . . . . . . . . . . . . . . . . . . . . 18

2.5 SMACH - A State Machine Library . . . . . . . . . . . . . . . 26
2.5.1 SMACH States . . . . . . . . . . . . . . . . . . . . . . 27
2.5.2 How to Create a Simple SMACH State Machine . . . . 28

2.6 Autonomous Navigation of Mobile Robots . . . . . . . . . . . 31
2.6.1 Adaptive Monte Carlo Localization . . . . . . . . . . . 31

2.7 Software Structure of the Cyborg . . . . . . . . . . . . . . . . 32
2.7.1 Controller . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7.2 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7.3 LED Dome . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Our Long Term Vision . . . . . . . . . . . . . . . . . . . . . . 36
2.9 Terms and Definitions . . . . . . . . . . . . . . . . . . . . . . 37

3 Evaluating the Cyborg 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 The Cyborg v3.0 . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Lack of Integration . . . . . . . . . . . . . . . . . . . . 42
3.3 Overall Software Structure . . . . . . . . . . . . . . . . . . . . 43
3.4 Proposing a new Software Structure . . . . . . . . . . . . . . . 44
3.5 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.1 Preliminary Testing Issues . . . . . . . . . . . . . . . . 46

viii



3.5.2 Navigation Module . . . . . . . . . . . . . . . . . . . . 47
3.5.3 Proposed Task List . . . . . . . . . . . . . . . . . . . . 48

3.6 Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6.1 Proposed Task List . . . . . . . . . . . . . . . . . . . . 48

3.7 Controller Node . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7.1 Proposed Task List . . . . . . . . . . . . . . . . . . . . 49

3.8 LED Dome . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.8.1 Proposed Task List . . . . . . . . . . . . . . . . . . . . 50

3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Assisting Experts in Team Groups 54
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Group 1 - Simple Neural Response Interpreter - SiNRI . . . . 55
4.3 Group 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Frosting and Assembling the LED Dome . . . . . . . . 56
4.3.2 Sanding and Painting the Body . . . . . . . . . . . . . 57

4.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . 57

5 The Mode Selector Box 59
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Software Modifications . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Cyborg Base . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.2 Mode Selector . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 How to add new Modes . . . . . . . . . . . . . . . . . . . . . . 62
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 The Behavior Module 66
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

ix



6.2 Requirements and Specifications . . . . . . . . . . . . . . . . . 66
6.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4 Implementing the Behavior ROS Module . . . . . . . . . . . . 68

6.4.1 How to add new Behavioral Presets . . . . . . . . . . . 72
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Cyborg Audio Module 74
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2 Requirements and Specifications . . . . . . . . . . . . . . . . . 75
7.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.4 Implementing the Cyborg Audio ROS Node . . . . . . . . . . 75

7.4.1 Playback . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.4.2 Text To Speech . . . . . . . . . . . . . . . . . . . . . . 77

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8 The Event Scheduler Module 80
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.2 Requirements and Specifications . . . . . . . . . . . . . . . . . 81
8.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.4 Implementing the Event Scheduler ROS Node . . . . . . . . . 82
8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9 Primary States Module 84
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.2 Requirements and Specifications . . . . . . . . . . . . . . . . . 85
9.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.3.1 Wandering Emotional State . . . . . . . . . . . . . . . 86
9.3.2 Navigation Planning state . . . . . . . . . . . . . . . . 86

x



9.4 Implementing the Primary States Action Server Node . . . . . 87
9.5 How to Implement new States . . . . . . . . . . . . . . . . . . 88
9.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10 Navigation Module 90
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

10.1.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
10.1.2 Reimplementing the Navigation ROS Node . . . . . . . 92

10.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

11 LED Dome 95
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.2 Implementing the LED controller Circuit . . . . . . . . . . . . 95
11.3 Redesigning and Implementing the LED Dome Software . . . 96

11.3.1 Technical Considerations and Requirements for the
LED Controller Interface . . . . . . . . . . . . . . . . . 96

11.3.2 Interface for the LED Controller . . . . . . . . . . . . . 97
11.3.3 The LED Dome ROS Module . . . . . . . . . . . . . . 100

11.4 Preparing the LED Dome for Integration into the Cyborg . . . 101
11.4.1 Casing . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
11.4.2 LED dome ROS module . . . . . . . . . . . . . . . . . 102
11.4.3 LED-dome . . . . . . . . . . . . . . . . . . . . . . . . . 102

11.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
11.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

12 The Finishing Touches 104
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
12.2 Cyborg Body and LED Dome . . . . . . . . . . . . . . . . . . 104

12.2.1 Protective Fan Cover . . . . . . . . . . . . . . . . . . . 104

xi



12.2.2 Covering the Gap Between the LED Dome and Cyborg
Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

12.2.3 Aligning and Fastening the Body Panels . . . . . . . . 105
12.2.4 Mounting the LED Controller . . . . . . . . . . . . . . 106

12.3 Configuring the State Machine . . . . . . . . . . . . . . . . . . 107
12.4 Preparing the Cyborg for Testing . . . . . . . . . . . . . . . . 107
12.5 Testing the Cyborg v3.0 . . . . . . . . . . . . . . . . . . . . . 108
12.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

12.6.1 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . 111
12.6.2 Cyborg Body and Hardware . . . . . . . . . . . . . . . 111

12.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

13 Discussion 115
13.1 Proposed Future Work . . . . . . . . . . . . . . . . . . . . . . 115

14 Conclusion 118

Appendices 121

A Diagrams 121

B Notes and Documentation for Navigation Tuning 123
B.1 Tuning Guides . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B.2 Parameters in MobileEyes . . . . . . . . . . . . . . . . . . . . 123
B.3 Errors Encountered . . . . . . . . . . . . . . . . . . . . . . . . 124
B.4 Relevant Excerpts . . . . . . . . . . . . . . . . . . . . . . . . . 124

References 127

xii



Chapter 1

Introduction

The work presented in this thesis is carried out as a part of the NTNU Cyborg
project at the Norwegian University of Science and Technology (NTNU).
The NTNU Cyborg project is an interdisciplinary project involving several
departments at NTNU, the project is driven foreward by NTNU researchers,
PhD candidates, MSc students, student specialization projects and student
groups from the Kyborg Experts in Team (EiT) village. The overall goal
of the project is to enable communication between living nerve tissue and
a robot, thereby creating a true cyborg, in the hope of achieving a better
understanding of consiousness, and in the process also create a platform for
interdisciplinary collaborations and teaching. This is going to be achieved
by enabling communication between a biological neural network located at
St. Olavs Hospital and a robot at the university campus. The biological
neural network is produced by growing stem cells, extracted from either
humans or rats, over a Micro-Electrode Array (MEA). The MEA enables
us to capture activity in, and also stimulate the neural network, thereby
enabling interaction with the neurons. The hope is to create a closed loop
system with realtime bidirectional communication between neurons and the
robot. Using the activity in the neurons to activate and control the robot,
while sending sensory data from the robot to the neural network, giving the
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CHAPTER 1. INTRODUCTION 2

biological neural network actual senses, and achieving a system which will
allow the neural culture to operate and learn within its working environment.

1.1 The Cyborg: An NTNU Mascot

One of the robots in NTNU Cyborg fleet is the Pioneer LX robot, an au-
tonomous robot base, capable of autonomous navigation. The robot base
serves as a foundation upon which various other components can be mounted,
the whole ensemble is fittingly dubbed The Cyborg. The long term vision is
to transform the robot into an autonomous cyborg, capable of roaming the
university hallways and interact with people, while using activity in neurons
for some tasks. The hope is that the Cyborg will garner a lot of attention
and pique technological interest, while showcasing several fields of forefront
research, ultimately achieving the status of a true NTNU Mascot.

1.2 Motivation and Goal

At the onset of this thesis the Cyborg has been in development for over
four years without being properly operational, thereby by not fulfilling its
ultimate goal. Throughout these years the Cyborg has undergone great
changes, bringing it closer and closer to the overall goal of an autonomous
cyborg. But in order for the Cyborg to garner attention, it must first achieve
a state in which it can be used actively in public. More attention can in
turn potentially lead to an increase in students wanting to involve themselves,
thereby aiding the project by further accelerating the development of the
Cyborg. This makes it even more important to finally make the Cyborg
ready for demonstration and get it out there to be exposed. In order for the
Cyborg to be ready for demonstration, it should satisfy the requirements of
the Cyborg v3.0 stated in the Section 3.2.

Previous EiT groups have shown to be great assets to the project, and
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the author wishes to utilize this potential and facilitate for their work. The
author has previous experience with many of the different tasks at hand, and
it is important to keep track of all the tasks that need to be done in order
to achieve the goal of the Cyborg v3.0. It is specially important that the
bodywork is done properly, both because of the high production cost and
the fact that we want to expose the Cyborg. As such, an effort will be made
to provide assistance and guidance to the groups involved with the Cyborg
spring 2019.

1.3 Contributions of the Author

The work in this thesis aims to make the Cyborg ready for demonstration.
This entails finishing the Cyborg body and hardware, enhancing current
software, and finishing the software for the LED dome. A list of the authors
contributions is presented:

• The current software is evaluated and partly reimplemented in order to
enhance the Cyborg software and make it easier to work with.

• A behavior module is implemented, providing an easy way to configure
new states, while gathering the most commonly used output modules
under a single access point.

• The interface for the LED controller for the LED dome is reimplemented,
and the corresponding Cyborg ROS module made ready for integration.

• The Mode Selector box is upgraded, adding the ability to shut down
and start new modes without restarting the Cyborg base.

• The Cyborg body and LED dome is finished in collaboration with EiT
group 3.

• A state machine is configured, and all implementation is tested at the
university campus.
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1.4 Previous work on the NTNU Cyborg Project

I was first involved with the Cyborg project through my specialization project
fall 2018 [1], working with the LED dome and preparing it for integration into
the Cyborg. I have designed and tested a prototype circuit for controlling the
leds on the LED dome, implemented a ROS module for visualizations, and soft-
ware for the led controller circuit. In addition, I have created documentation
for several of the existing ROS modules.

1.5 Work not Mentioned any Further

• A lot of time was spent on tweaking navigational parameters and
collecting information regarding navigation tuning. I did not find a
proper way to present all this material, and I did not want to write a
new navigation tuning guide since it has already been done before me.
Instead, I have decided to include the information, both own notes and
documentation in Appendix B, hoping that my efforts might ease the
burden for the students resuming this task.

• I surveyed solutions for the gap between the LED dome and Cyborg
body, and went shopping for the fan cover and rubber gasket for the
LED dome.

• I attended EiT demonstrations and workdays.

• At the onset of this thesis I thought perhaps there was an issue with the
battery for the Cyborg base. It looked like the battery did not charge,
and the manuals for the robot were lacking proper information regarding
battery status. I contacted Omron Norway in order to evaluate our
options regarding a new battery, only later to find out that manuals for
the upgraded version of the robot contained all the necessary information,
and that the battery was actually in perfectly good shape.
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• Parts of Sections 2.2 - 2.6 are based on corresponding parts from my
specialization project, and are added for the sake of completeness.



Chapter 2

Background

2.1 Evolution of the Cyborg

The Cyborg has undergone some major design changes since the birth of the
project. Early interations were characterized by an open design with moving
parts, but the vision has since evolved into a more compact and closed off
design. The final design vision features a sturdier Cyborg, better equipped to
cope with curious spectators, and with the aestetichs to mach the role of a
proper NTNU mascot. The evolution of the Cyborg design is shown in Figure
2.1, the final vision is seen in Figure 2.2.

2.2 Hardware Structure of the Cyborg

The hardware structure of the Cyborg is presented in Figure 2.3.

6
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(a) First generation (b) Second generation (c) Cyborg at onset of
thesis

Figure 2.1: Evolution of the Cyborg.

(a) Front (b) Back

Figure 2.2: Final vision for the Cyborg.
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12V (regulated)

Pioneer LX

LED-dome

LED-dome
LED-controller

5V PWM

Startup box

Voltage regulator

5V (regulated)

Serial USB

Serial USB

18-36V (unregulated)

NVIDIA Jetson TX2

ZED-camera Cooling  Fan
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Figure 2.3: Overview of the hardware structure of the Cyborg. Red boxes
indicate components not integrated at the onset of this thesis, while dashed
components and lines indicate future plans.
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2.2.1 The Cyborg Base; Pioneer LX

Figure 2.4: The Pioneer LX
robot by MobileRobots. Image
courtesy of [2].

The Cyborg features a Pioneer LX robot [3],
serving as a foundation for the rest of the
components to be mounted upon. The Pi-
oneer LX robot is based on a platform for
autonomous indoor vehicles, its intended use
is to function as a platform for research, ed-
ucation, and development. It features an on-
board computer compatible with both Linux
and Windows, various sensors and tools, pow-
ered wheels for moving around, and support
payloads of up to 60 kg. Some software li-
braries and tools are also supplied, including
software for navigation and mapping of environment, described in more detail
in Section 2.3. The Pioneer LX features the following hardware:

• Intel D525 64-bit dual core CPU @1.8 GHz
• Intel GMA 3150 integrated graphics processing unit
• Intel 6235ANHMW wireless network adapter
• Ports for ethernet, RS-232, USB, VGA, and various other analog and

digital I/O
• SICK 300 and SICK TiM 510 laser scanner, for navigation and object

detection.
• Sonar sensors and a bumper panel.
• Joystick for manual control.
• A 60 A h battery, expected to power the robot continuously for up to

13 hours.
• Automated charging station, allowing the robot to dock autonomously.
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2.2.2 The Cyborg LED Dome

Figure 2.5: The Cyborg LED
dome.

The LED dome shown in Figure 2.5 is an
integral part of achieving the goal of a true
cyborg. The LED dome provides a display
for visualizations of neural data from the
biological neural network at St. Olavs, en-
abling interaction between robot and living
tissue. In addition to this, it can also be
used to show text and other animations. The
LED dome consist of a molded plastic dome,
with a WS2812B LED strip attached to the
surface. The LED strip consists of several
smaller pieces, mounted together to get one
consecutive strip of the desired length, incorporating a total of 791 LEDs.
The leds are activated by a 5 V-PWM signal from the LED controller, and
require a 5 V voltage supply.

2.2.3 The Cyborg LED Controller

The LED controller for the LED dome is a prototype circuit presented in the
authors specialization project [1], a hardware diagram for the LED controller
is seen in Figure 2.6. The LED controller parses serial data from a Cyborg
ROS module, and activates the leds on the LED dome accordingly.
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LED Controller

Buffer 
74VHCT125A

Development Board
NodeMCU ESP-32S

LED Strip
WS2812B

Cyborg Base
Pioneer LX

3,3V PWM 5V PWM

Serial USB

Common Ground

Figure 2.6: Hardware diagram for the Cyborg LED dome controller.

2.2.4 Arduino

Arduino [4] is an open-source hardware and software project and company.
They design and manufacture microcontrollers and single-board comput-
ers, and through the project provide the Arduino integrated development
environment (IDE).

2.2.5 NodeMCU ESP-32S

Figure 2.7: NodeMCU ESP-
32S development board. Im-
age courtesy of [5].

The ESP-32S (ESP32) is a development board
manufactured by NodeMCU [6], based on the
ESP-WROOM-32 module [7] by Espressif Sys-
tems. Specifications for the ESP32 is listed
below:

• 32-bit dual core architecture.
• 240 MHz clock speed.
• 3.3 V operating voltage.
• Accepted input voltage 6-20 V.
• 38 I/O pins, with support for UART, pulse

width modulation, and DAC output.
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Lua interpreter
PIO ADC CAN PWM LoRa MQTT
SPI I2C UART ... Sensors ...

Real-Time micro-kernel
Hardware Abstraction Layer

Table 2.1: The 3-layer design of Lua RTOS is illustrated.

• USB Micro-B connector. Can be used for
powering and interfacing the board.

The ESP32 runs the Lua real-time operating system (Lua RTOS), and is
programmed in the Lua programming language, utilizing the eLua IDE. Lua
RTOS features a 3-layer design, illustrated in table 2.1, where the middle
layer real-time micro-kernel is powered by FreeRTOS. Through some minor
configurations, it possible to switch out the top layer and instead use the
Arduino IDE and programming language, while keeping FreeRTOS in the
middle layer. [8]. This makes coding simpler for non-concurrent tasks, and in
addition enables the use of many of the libraries already written for Arduino
boards. Its important to note that the Arduino code is compiled and ran on
only one core, if one wishes to utilize both cores, FreeRTOS tasks have to be
used.

2.2.6 The Start-up Box

The Start-up Box presented by Waløen in his thesis[9] is used to select wanted
mode of operation when powering on the Cyborg. The modes of operation
are defined by which modules that are executed on the Cyborg, if one wishes
to change mode, the Cyborg base has to be restarted.
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2.2.7 Jetson TX2 Developer Kit

Figure 2.8: NVIDIA
Jetson TX2 Developer
Kit. Image courtesy of
[10].

The Jetson TX2 Developer Kit[11] from NVIDIA
shown in Figure 2.8 is an AI supercomputer on a
module. Intended at artificial intelligence processing
in real-time, suitable for deployment of computer
vision and deep learning. Its low power consumption
to performance ration, makes it ideal for use in
intelligent edge devices like robots and drones.

2.2.8 Zed Stereoscopic 3D Camera

The Zed stereoscopic 3D camera by Stereolabs shown
in Figure 2.9 can be used for capturing 3D video,
depth perception, spatial mapping, and positional
tracking with 6 degrees of freedom. It features two 4MP cameras, and is
according to Stereolabs, the worlds fastest depth camera [13].

2.2.9 MEA2100-Systems Microelectrode Array

Figure 2.9: Zed Stereo-
scopic 3D Camera. Im-
age courtesy of [12].

Microelectrode arrays (MEAs) can be used for in-
terfacing between biological neurons and electronic
circuits, or in other words interpret and deliver
signals in living tissue through a computer. This
is achieved by measuring and exciting electrical
currents in the biological neurons. The MEA2100-
System is a stand-alone multi-channel MEA sys-
tem, it provides means for data acquisition, signal
amplification, stimulus generation, temperature control, and online signal
processing.
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2.3 Software and Tools

The Pioneer LX robot base is delivered with the following software and tools:

• ARIA - Advanced Robot Interface for Applications, a legacy library by
MobileRobots, used for controlling Pioneer-compatible mobile robots.
This is the core development library for the robot, providing access to
and management of the robot controller, effectors and sensors. Access
to the robots peripherals through this library is done through the ROS
interface module ROSAIRA.

• ARNL - Advanced Robot Navigation and Localization, also by MobileR-
obots. ARNL is built on top of ARIA, and is a development library
for including indoor laser localization and autonomous navigation. The
library also includes arnlServer, used for interactive initiation of au-
tonomous navigation, either through custom software or the provided
MobileEyes.

• Mapper3 - Used for converting and editing maps for use with ARNL
and MobileSim.

• MobileSim - A simulator for testing the robot software. When in use,
ARIA connects to MobileSim instead of the physical robot.

• MobileEyes - MobileEyes provides a GUI for remote visualization, teleop-
eration, and software configuration. The software lets the user monitor
and control the robot, and configure its system parameters remotely.
MobileEyes interfaces arnlServer and connects wirelessly to the robot
or simulator.

2.3.1 RViz

RViz (ROS Visualization) is a 3D visualization tool for ROS . The tool can be
configured to display and visualize a variety of data through plugins, providing
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more configurations than MobileEyes.

2.3.2 Shell Scripts

A shell script is a program designed to be ran in the Unix Shell, the commands
in the script file are ran as if written directly on the command line. Shell
scripts provide an interface for the user to use operating system services, they
enable us to run multiple command line commands without having to type,
letting us avoid doing repetitive work e.g. when executing a system comprised
of multiple modules.

2.3.3 Signals

Signals are software generated asynchronous notifications that can be sent
to processes or threads within processes [14], enabling us to manage and
interrupt normal executional flow. In order to act accordingly when a signal
is received, the signaled process needs to implements a signal handler. A
various selection of different signals are available, the ones most relevant for
this thesis are SIGINT, SIGTERM, and SIGKILL. SIGINT is sent when
a user want to interrupt a process, this signal can be caught and handled,
and gives the process the ability to shut down gracefully. In contrast to this,
SIGKILL terminates the process immediately, without letting the program
save unsaved data.

2.3.4 Rhinoceros 3D

Rhinoceros (Rhino3D) is a commercial 3D CAD software [15], the software
can be used for rapid prototyping and 3D printing.
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2.3.5 Fritzing - Open Source ECAD

Fritzing [16] is an open-source initiative, aimed at developing hobbyist CAD
software for designing electronics hardware, aiding the process of moving
hardware design from the experimental prototyping stage onto more perma-
nent circuits. The application is an easy to understand ECAD tool mainly
used for designing PCBs, its not as advanced as many alternatives, but in
return requires minimal effort to get into.

2.3.6 FreeRTOS

FreeRTOS is a real-time os-kernel for embedded systems [17] distributed
permissive free under the MIT License [18]. FreeRTOS is designed to be
small and simple, it leaves a small memory footprint while providing a low
overhead and fast execution. Methods for multiple threads, tasks, software
timers, mutexes, and semaphores are provided, in addition to support for
thread priorities. When a development board running a FreeRTOS kernel is
set up to work in the Arduino IDE, FreeRTOS can be used freely. A short
example on how to use tasks assigned to specific cores is given:

1 TaskHandle_t Task1 ;
2

3 xTaskCreatePinnedToCore (
4 TaskCore0 , /∗ Function to implement the task ∗/
5 " Function1 " , /∗Name o f task ∗/
6 1000 , /∗ Stack s i z e o f task ∗/
7 NULL, /∗Task input parameter ∗/
8 1 , /∗ P r i o r i t y o f task ∗/
9 &Task1 , /∗Task handle ∗/

10 0) ; /∗Core to run the task on∗/

• An object handle for the task is created in line 1.
• The task is created in line 3-10, this has to be done in the setup-function

of the Arduino Sketch.
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• The task can be given a priority, higher number means higher priority.

1 Void TaskCore0 ( void ∗ parameter ) {
2 f o r ( ; ; ) {
3 /∗Code f o r the task i s implemented her ∗/
4 }
5 }

• The function behaves similar to the Arduino loop()-function, and should
implement an infinite loop.

• The task can be stopped by using executing vTaskDelete(Task1);

For passing data between functions on different cores, FreeRTOS queues are a
good thread-safe alternative. Tasks that try to consume data from an empty
queue, or insert data into a full queue can be blocked:

1 QueueHandle_t queue ;
2

3 void setup ( ) {
4 queue1 = xQueueCreate (4 , s i z e o f ( i n t ) ) ;
5 }
6 i n t i = 1 ;
7 xQueueSend ( queue1 , %i , portMAX_DELAY) ;
8

9 i n t r e c ;
10 xQueueReceive ( queue1 , &rec , portMAX_DELAY) ;

• An object handle for the queue is created on line 1.
• The queue is created on line 4.
• Data is put into the queue on line7, and consumed while storing it in

rec on line 9-10.
• The maximum blocking time can be chosen by modifying portMAX_-

DELAY.
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2.4 ROS - The Robot Operating System

The Robot Operating System (ROS)[19] is an open source robotics middleware,
aimed at simplifying working with complex robotics projects. The framework
provides means for implementing a highly modular peer-to-peer network of
processes, suitable for controlling distributed systems, enabling easy scaling
of projects. As stated on the ROS wiki, the primary goal of ROS is to
support code reuse in robotics research and development, and not to be the
robotics middleware with the most features. The idea is that if an expert
laboratory has developed a module for a specific tasks, others should not
have to reinvent the wheel, and instead be able to gain from their expertise
and save valuable time by using what has already been implemented. ROS
provides services for low-level device control and hardware abstraction, and
implements functionality for message passing between processes and package
management. It is an ever growing collection of tools and libraries, most of
them licensed under a variety of open source licenses, and it is encouraged to
contribute to the collection of available libraries.

ROS is designed to be thin and flexible, as part of their mantra ’we do
not wrap our main()’ main functions are not wrapped[20], making it easy
to use code written for ROS with other robot software frameworks. ROS
is also language independent, with implementations for C++ Python and
Lisp, client libraries roscpp, rospy, and roslisp, respectively. Code examples
presented in this chapter are for the rospy client library.

2.4.1 Concepts of ROS

Nodes

Nodes are the atomic grains in ROS, connected together they make up a robot
control system. They can be viewed as processes that perform computation,
and should each be responsible for one task. For example, in a robot control
system, you might have one node responsible for driving the wheels of the
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robot, one for planning the path the robot should take, one for localizing where
the robot is, etc. Nodes communicate peer-to-peer, using topics, services, and
the Parameter Server. A node is implemented using one of the available client
libraries, each one with its differences. Nodes are identified by their name,
best practices for ROS states that the name chosen should be descriptive of
the task the node is responsible for. The usage of nodes has several benefits.
Crashes are isolated to the faulty node, making the system fault tolerant.
They support the modularity aim of ROS, and are easy to interchange. And
they reduce code complexity, compared with monolithic systems.

ROS Master

All systems need a ROS Master, the ROS Master is started by issuing either
the roslaunch or the roscore command on the command line. The ROS Master
is a name service for ROS, it keeps track of all the running nodes, topics
and services available, and enables nodes to find each other by making all
this information available to them. Once the nodes have located each other
through the ROS Master, they connect directly using the provided methods.
All nodes publish their registration information to the ROS Master, each
time the registration information of a node changes, the ROS Master updates
all nodes with this information through a callback. This allows nodes to
dynamically create connections when a new node is made available.

Parameter Server

A Parameter Server is running inside the ROS Master, it provides nodes
with a central location to store and retrieve data at runtime [21]. It is not
a high-performance solution, and is intended for storing globally accessible
static data, such as configuration parameters. As such, this also provides an
easy way of monitoring and modifying system parameters. The parameters
should be stored in a hierarchical fashion, in accordance with the ROS naming
convention. The provided command-line tool rosparam can be used to get a
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list of, access, and modify the parameters stored on the Parameter Server.
Some commonly used lines of code for the parameter server in Python is given
below:

1 # Fetch parameter
2 value = rospy . get_param ( " /node_name_space/parameter_name " ,

de fau l t_va lue )
3

4 # Check parameter e x i s t e n c e
5 rospy . has_param ( " parameter_name " )
6

7 # Set t ing parameter
8 rospy . set_param ( " parameter_name " , parameter_value )

• A parameter is fetched on line 2. If no parameter is found, the optional
default value is used instead.

• Line 5 checks if a parameter exists, returns True if parameter is set,
else False.

• A parameter is set on line 8.

Messages

Communication between nodes is done through message-passing. A message
is a simple data structure, supporting standard primitive types like integer,
float, boolean, and arrays of supported primitives. Much like a data structure
in C, messages also support arrays and arbitrary nested data structures.
Messages consist of fields and constants, the fields contain the data being
sent, while the constants can be used for defining useful values that can be
used to interpret the defined fields. Each field consist of a type and a name,
whereas a constant also assigns a value. The format of a message is simply a
field or constant on each line. Messages are stored as .msg-files in the msg/
subdirectory of the package, a typical message is on the form:

1 f i e l d t y p e 1 f i e ldname1
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2 f i e l d t y p e 2 f i e ldname2
3 constanttype1 CONSTANTNAME1 = constantva lue1

and is normally initialized like this:
1 message = MessageType ( )
2 message . data = value

Where the first line initializes a message of type MessageType(), and the
second line sets the value of the argument data in the message. A set of
standard messages is already provided in the std_msgs package, however
it is also possible to define custom message types if needed. In order to
use messages, they need to be translated into source code by the Client
Libraries[22].

Topics

Topics are the transport layer of messages, they follow a publish-subscribe
model, where a topic can have multiple publishers and subscribers. This allows
for easy communication between nodes, since nodes interested in a particular
topic can subscribe without being aware of who the publisher is. The name
of a topic is used to identify the content on the topic, a node that wants to
send a message simply publishes it on the topic with the corresponding name.
Topics are intended for unidirectional asynchronous communication, and
are most commonly used for publishing continuous streams of data, remote
procedure calls between nodes are better handled by Services. Publishers and
subscribers in Python are declared like this:

1 pub = rospy . Pub l i she r ( ’ cha t t e r ’ , Str ing , queue_size =10)
2 rospy . Subsc r ibe r ( ’ cha t t e r ’ , Str ing , c a l l b a c k )

The first line declares that your node is publishing a message of type String
on the topic ‘chatter‘. queue_size is used for defining a max queue-length,
in case messages are published faster than the subscribers can receive them.
The second line declares that your node is subscribing to the same topic,
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when new messages are received, the function "callback" is invoked with the
received message as the first argument. To publish a message, you call the
publish function of the publisher, with the message as argument:

1 pub . pub l i sh ( message )

The command-line tool rostopic provides different services for working with
topics, a list of all the active topics is made available by issuing the command
rostopic list.

Services

Services are used where a synchronous interaction is needed, for example for
remote procedure calls. A service is defined by a message pair, a request
and a reply message. The node offering a service acts as a server identified
by a string name, clients can request the service through a request message
to the name of the service. When called upon, the service executes and
a reply message containing the result of the operation is sent back to the
client. Much like topics have their associated .msg-files, each service has its
associated service type .srv-file that defines request and response parameters,
the service type is defined by the name of the package combined with the
name of the .srv-file. A .srf -file is essentially just two messages put together
and separated by a line of "- - -", where the first part is the request message,
and the second part is the response message. Service files are stored in the
srv/ subfolder of the package, and are on the format:

1 r eques t type1 requestname1
2 r eques t type2 requestname2
3 − − −
4 responsetype1 responsename1
5 responsetype2 responsename2

Like messages, service files need to be built before they can be used, more on
this can be found in [23]. A service is declared with the line:

1 s = rospy . S e rv i c e ( ’ serv icename ’ , ServiceType , s e r v i c e f u n c t i o n )
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where ’service’ is the name of the service, and ServiceType is the service type.
servicefunction is the function providing the requested service, it is called
when the service is requested with ServiceType-instances as input and output.
As a minimum, a service client usually contains the following lines of code:

1 rospy . wa i t_for_serv ice ( ’ servicename ’ )
2 s e r v i c e = rospy . Serv iceProxy ( ’ servicename ’ , ServiceType )
3 r e s = s e r v i c e ( r eques t )
4 re turn r e s . r e sponse

• The first line utilizes a convenience method for blocking until the service
is available, while the second provides the handle for calling the service.

• The service is called on line 3, with the input variable request and stores
the result as an object of the service type.

• On line 4 the service response value stored in the response-variale of
the service object is returned.

Two command-line tools for ROS services are provided, rossrv and rosservice,
used for displaying information about .srv-files and querying information
about ROS services, respectively.

Actions

Actions are an alternative to services, intended at controlling long-running
tasks. In contrast to services, actions can be preempted and the action server
can send feedback while executing. Tools for creating action client interfaces
and preemptable action servers are provided through the actionlib package.
The communication between action clients and action servers goes through the
ROS Action protocol, which is built on top of ROS messages. As with topics
and services, actions also need messages to define the action specifications,
.action-files, saved in the action-subfolder of the package. An action-file
consist of three messages, goal, feedback, and result. The goal is sent from a
client to a server, and states what you want to accomplish with the action.
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For example, if you want to move a robot arm to a specific position, the
goal could be certain joint-angles for the arm. The feedback message is for
the server to send asynchronous progress-feedback during execution of a goal.
Upon completion of a goal, the server responds with a result. In contrast to
feedback, the result is only sent once. The layout of a .action-file is shown
below:

1 #goa l d e f i n i t i o n
2 goa l type goalname
3 − − −
4 #r e s u l t d e f i n i t i o n
5 r e s u l t t y p e resultname
6 − − −
7 #feedback
8 f eedbacktype feedbackname

.action-files need to be generated during the make process.
The ROS Action protocol automatically sets up five topics for commu-

nication between the server and client, goal, result, feedback, cancel, status.
The first three are used for the messages described above, while cancel and
status are for messages predefined in the actionlib_msgs-folder. cancel lets
clients send cancel requests to action servers, and status lets action servers
send updates to clients regarding the status of all goals the action server is
tracking. When an action goal is sent, the action client registers a timestamp
and generates a unique Goal ID. The goal message is then wrapped in a
ActionGoal-message, together with the timestamp and Goal ID, before it
is sent to the server. The Goal ID provides a way for client and server to
associate specific goals with messages being transported. The Goal ID is also
appended onto messages going over the cancel, feedback, and result topic (for
cancel the timestamp is appended as well), providing different benefits for
each of the topics.

The following example shows the minimum lines of code needed to set up
a ActionClient and send a goal to a ActionServer called "server":
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1 from Example . msg import ExampleAction , ExampleGoal
2

3 #c r e a t e c l i e n t and connect to s e r v e r
4 c l i e n t = a c t i o n l i b . S impleAct ionCl ient ( " s e r v e r " , ExampleAction )
5 c l i e n t . wait_for_server ( )
6

7 #c r e a t e and send goa l
8 goa l = ExampleGoal ( goalname = " do_action " )
9 c l i e n t . send_goal ( goal , cal lback_done )

• The action type and messages are imported on line 1.
• On line 4 the client is initiated and connected to the action server, with

action type ExampleAction.
• Line 5 makes execution wait until the client is properly connected to

the server.
• The goal is created and filled on line 8.
• On the last line the goal is sent to the server. In addition an optional

callback is connected, the callback executes when the server returns a
result.

While theActionServer is set up as follows:
1 from Example . msg import ExampleAction , ExampleResult
2

3 #c r e a t e message f o r r e s u l t
4 r e s u l t = ExampleResult ( )
5

6 #c r e a t e and s t a r t s e r v e r
7 a c t i o n s e r v e r = a c t i o n l i b . S impleAct ionServer ( " s e r v e r " ,

ExampleAction , execute , auto_start = False )
8 a c t i o n s e r v e r . s t a r t ( )
9

10 de f execute ( s e l f , goa l )
11 #Implement ac t i on here
12

13 #Publ ish r e s u l t and s e t s e r v e r s t a t e
14 r e s u l t . resultname = " ac t i on succeeded "
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15 s e l f . a c t i o n s e r v e r . set_succeeded ( r e s u l t )

• The action type and messages are imported on line 1.
• A result message is created on line 4.
• On line 7-8, the ActionServer "server" is created and started, with action

type ExampleAction. "execute" is executed when a goal arrives.
• The function for the action is implemented on line 10-15.
• On line 14 the result message is filled.
• Line 15 sets the terminal status of the action server, and publishes the

result message to the client.

2.5 SMACH - A State Machine Library

SMACH [24] (State MACH ine) is an open source Python library for building
hierarchical and concurrent state machines. SMACH is useful for handling
structured tasks, task-level execution and coordination, and it allows for easy
building, maintenance, and debugging of complex state machines.

At its core, SMACH is independent of ROS, the executive-smach stack
provides a ROS integration, including integration of the actionlib package
described in 2.4.1, and Smach Viewer. Smach Viewer is a GUI for SMACH,
it can visualize transitions between states, current active states, and values of
data passed around, enabling easy introspection of SMACH state machines.
The state classes provided by the library, support ROS protocols, means for
passing user data between states is also provided. Upon building a SMACH
state machine, consistency check of state transitions is provided by the library.

The SMACH core library provides two main interfaces, State and Con-
tainer. State represents a state of execution, with potential outcomes defined
prior to execution. A SMACH Container is a collection of one or more states,
implementing some execution policy. Containers also define behaviour for
dealing with preemption requests, this entails functionality for dealing with
termination signals, and lets the system be canceled in a controlled fashion.
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SMACH is in essence a library for creating state machines, and provides
the StateMachine container. But SMACH also goes a little beyond this,
providing other containers as well, StateMachine being the simplest one, while
Concurrence container provides means for executing more than one state at
the same time.

2.5.1 SMACH States

A formal state machine defines states as a system configuration, where the
system is waiting for certain transitional criteria to be met, upon which
the system executes specific actions related to the transition. A SMACH
state differs from the formal state machine, here a state represents a local
state of execution, states describe what the system is doing rather than the
configurational state of the system. This in turn allows a shift in focus for
the user, from defining transitional points between states to what the states
are executing and the results of that particular execution. Moreover, SMACH
state machines are also states, meaning they can have outcome of their own,
this also makes it possible to build nested state machines.

All SMACH states must implement an execute-function, this is the main
body of the state. When a state is activated, the execute-function of the
state is called. The function blocks until the state is finished, upon which
it returns an outcome the state machine can use to determine the transition
leading to the next state. The state outcomes are a property of the state, and
must be declared prior to execution. They define the interface to the SMACH
container, and the outcome from a state execution must lead to a transition
to the next state for the consistency of the system to hold. If needed, user
data can be passed between states and state machines by specifying input
and output keys prior to execution. Remapping of input and output keys can
be done to specify how user data shall be passed.

Some ROS SMACH state classes are provided, including State and Sim-
pleActionState. State is the state base, this class provides no outcomes.
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SimpleActionState is used to link states to actionlib actions, this class also
provides means for Goal generation and result processing callback, as well as
some outcomes.

2.5.2 How to Create a Simple SMACH State Machine

The following code shows implementation of a state inheriting the State base
class:

1 c l a s s S impleState ( smach . State ) :
2 de f __init__( s e l f , outcomes =[ " outcome1 " , " outcome2 " ] ,
3 input_keys =[ " input " ] ,
4 output_keys=[ " output " ] )
5 #s t a t e i n i t i a l i z a t i o n
6 de f execute ( s e l f , userdata ) :
7 #s t a t e execut ion
8 i f userdata . input == 1 :
9 re turn " outcome1 "

10 e l s e :
11 userdata . output = 2
12 re turn " outcome2 "

• State initialization is done in the __init__-function declared on line 1.
The function should be non-blocking, outcomes for the state must be
passed to this function.

• Input and output-keys for passing data to and from the state are
specified on line 3 and 4.

• Behaviour of the state is implemented in the execute-function declared
on line 6, this function can be blocking.

• The user data is accessed on line 8, and possibly modified on line 11.
• Based on the input value, outcome outcome1 on line 9, or outcome2 on

line 12 is returned.

A SMACH state machine is created as follows:
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1 sm = smach . StateMachine ( outcomes=[ " outcome3 " , " outcome4 " ] )
2 sm . userdata . sm_variable = 0
3

4 with sm :
5 smach . StateMachine . add ( "SIMPLESTATE1" , S imple s tate1 ( ) ,
6 t r a n s i t i o n s={" outcome1 " : "SIMPLESTATE2" ,
7 " outcome2 " : " outcome3 " } ,
8 remapping={" s t a t e1 input " : " sm_variable " ,
9 " s ta te1output " : " sm_variable " , } )

10

11 smach . StateMachine . add ( "SIMPLESTATE2" , S imple s tate2 ( ) ,
12 t r a n s i t i o n s={" outcome2 " : "SIMPLESTATE1" ,}
13 remapping={" s t a t e2 input " : " sm_variable " ,
14 " s ta te2output " : " sm_variable " })
15

16 outcome = sm . execute ( )

• On line 1, statemachine sm with possible outcomes outcome3 and
outcome4 is created.

• The userdata-variable sm_variable for sm is created on line 2.
• The container is opened on line 4. On line 5, the state SIMPLESTATE1

is added to the container, common convention dictates state names in
caps.

• The transitions of a state must specified when the state is added to a
state machine container, this is done on line 6-7.

• On line 8 and 9, keys for userdata are remapped, this is not a requirement,
but considered good practice as it avoids potential confusion between
variables used in states and state machines.

• A second state is added on lines 10-13, before the state machine is
executed on line 15.

The resulting state machine is visualized in Figure 2.10.
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outcome3 outcome4

SIMPLESTATE1 SIMPLESTATE2
SM_PATH

outcome1

outcome 2

outcome2

Figure 2.10: The figure illustrates the SMACH state machine created in 2.5.2.
Transitions are indicated by the arrows. The blue and green boxes portray
states and outcomes, respectively.

SMACH Sequence Container

SMACH also has libraries supporting the creation of sequential state machines,
provided through the Sequence container [25]. The Sequence container is
an extended version of the StateMachine container, where auto-generated
transitions are added in order to create a sequence of states. The sequence is
defined by the order of which states are added. The following code illustrates
how a sequential state machine is implemented:

1 sq_sm = Sequence ( outcomes , input_keys , output_keys ,
connector_outcome )

2

3 with sq_sm :
4 Sequence . add ( "SEQUENTIALSTATE1" , SeqState1 ( ) )
5 Sequence . add ( "SEQUENTIALSTATE2" , SeqState2 ( ) )
6 Sequence . add ( "SEQUENTIALSTATE3" , SeqState3 ( ) )

• The state machine is created on line 1. The connector outcome specifies
the automatic transition, if standard transitions are provided in addition
to the connector outcome, they can override the automatic transition.
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• The container is opened on line 3, and the states added on lines 4-6.

2.6 Autonomous Navigation of Mobile Robots

Autonomous navigation of robots is one of the greater challenges in mobile
robotics. In order for a robot to be self navigating, it needs to be able to
accurately estimate its global position, and track its local position. More
precisely, it needs to be able to determine its position in a map (localization),
with no other info than the map it is in, and be able to keep track of its
position after it has been localized.

2.6.1 Adaptive Monte Carlo Localization

One of the popular approaches to this challenge is the Adaptive Monte
Carlo Localization (AMCL) [26]. AMCL is based on the simpler standard
Monte Carlo Localization (MCL), which relies on a combination of grid-based
Markov Localization and Kalman filtering based techniques [27]. In short, the
algorithm tries to solve the problem of estimating the state of a system, given
given environmental observations and control input. It is then improved by
sampling the estimated state particles in an adaptive manner, giving us the
AMCL approach (also called particle filter localization). For each particle,
the probability of the sensed particle based on the position of the robot is
calculated, and the more likely particles are chosen. The particles are then
resampled and new state estimates calculated. If the particles converge to
the actual position of the robot, localization is successful. If all particles
converge to an erroneous state, or the robot is moved after the particles have
converged, localization will fail.

Unfortunately, no actuator is perfect, when motion updates are received
(result of control inputs), results will always start drifting to some extent,
which in turn leads to diverging particles. Sensory updates on the other
hand, by way of the algorithm, will hopefully lead to converging particles.
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Proper calibration of odometry will help mitigating drifting results from
motion updates, while a higher number of samples can result in more precise
localization. But even though ramping up the number of samples might be
tempting, setting the number of samples too high will also result in poor
localization. Several reasons exist for why this might happen, the most
obvious culprit being limited computing powers. As the number of samples
increase, so does the computational load, and in turn the time needed to
compute the correct pose. For a mobile robot, this might mean that the robot
has moved considerably while new localization data is being computed, and
the data might be outdated before it was even made available, since the robot
now has moved to a different pose than the computed one. In the case of the
Pioneer LX robot, the localization task tries to localize at 10 Hz, this means
that if the localization task takes more than 100 ms, localization might start
to suffer.

The following list contains specifications relevant for proper tuning of
navigation:

• The pose estimate is provided to software along with other robot state
information every 100ms.

• The laser scanner provides 500 readings in a 250° field of view, with
a typical range of about 15m. It operates in a single plane, located
191mm off the ground.

• Maximum translational speed is 1800 mm/s.
• Maximum rotational speed is 300 mm/s.
• The analog gyroscope provides accurate readings up to 320 °/s.

2.7 Software Structure of the Cyborg

The Cyborg consists of several software modules, a simplified class diagram
showing the structure at the onset of this thesis is provide in Figure 2.11.
Modules cyborg_controller, cyborg_navigation, cyborg_conversation,
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cyborg_idle, cyborg_music, and cyborg_text_to_speech are all imple-
mented by previous students.
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Figure 2.11: Simplified class diagram for the Cyborg at the onset of this
thesis.



CHAPTER 2. BACKGROUND 35

2.7.1 Controller

The controller is the main node of the Cyborg [28][9], responsible for coor-
dinating all other nodes. It implements a state machine that organizes all
actions (ROS actionlib servers) into states for the Cyborg. It also features an
emotion system based on a PAD emotion state model, responsible for handling
the emotional state of the Cyborg, and in addition a motivator responsible
for motivating the Cyborg to execute various behaviors when no external or
scheduled events are available. The inner workings of the controller module
is seen in Figure 2.12, behavior modules are used to supply the Cyborg with
various functionality.

events

emotional state

action : client

Controller

State Machine

Motivator
Emotion 
System

state change
events

emotional state

emotional feedback

emotional feedback
Behavioral
Module n

Behavioral
Module 1

emotional state

events

emotional feedback

action : server

ROS topic

ROS action

Figure 2.12: Inner workings of the Cyborg controller module. Behavior
modules supply the Cyborg with various functionality.

2.7.2 Navigation

The navigation module implements navigational functionality for the Cyborg,
through the use of the ros_arnl module. The functionality is provided
through four action servers, server_planning, server_moving, server_
talking, and server_go_to. In addition, the navigation module contains a
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scheduler function, responsible for finding and publishing scheduled naviga-
tional events to the Cyborg controller.

2.7.3 LED Dome

The software for the LED dome consists of two different parts, the LED dome
ROS module and the interface for the LED controller. The ROS module for
the LED dome is implemented as a SMACH state machine, subscribing to
a topic over which commands are sent from other Cyborg modules. State
diagram for the ROS module is presented in Figure 2.13, a simplified class
diagram for the same module is seen in Figure 2.14.

2.8 Our Long Term Vision

As stated in 1.1, the long term vision is to create an interactive and social
cyborg. The Cyborg project aims to achieve this goal through the tasks
presented at the NTNU Cyborg website [29]. A summary of the tasks
presented on the NTNU Cyborg website relevant for this thesis is as follows:

ROS-based statemachine - This project entails working with the Pioneer
LX robot and the ROS based state-machine. The state-machine is
already well developed, the task now is to get everything up and running
so the robot can operate autonomously in Glassgården. This project
aims to finish this work into our final product. The project also entails
working with the onboard Arduino mode selector which enables choose
the operation mode of the robot (state-machine, manual operation etc.).

LED head animation - In this project you will work on the robots LED
head/dome which displays animations on the robot. The LED module
should communicate with the ROS state-machine described above.

In addition, some of the more specific tasks presented on the NTNU Cyborg
Wiki [30], are as follows:
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• Finish the ROS-based state-machine, and tie all the different software
modules together.

• Create LED visualizations.
• Improve the startup box and script.
• Paint the body.
• Install fan inside body.
• Mount the LED head properly.
• Finishing touches on the body to make it look nice.
• Using rqt available in ROS, develop an interface for monitoring and

controlling the robot externally (e.g via a veb browser).
• Update and improve this wiki.

2.9 Terms and Definitions

This thesis continues the use of definitions specified in Andersen thesis for
the Controller Module [28], the definitions are presented below for the sake
of convenience, albeit with some slight changes, taking into account recent
upgrades on the Cyborg.

Module: Hardware or software that provides some functionality/feature for
the Cyborg through a ROS node.

Input Module: ROS node that takes input from hardware and makes the
data (in some form) available for the ROS network, i.e., for other ROS
nodes. An example is a ROS node that takes sound input from the
microphone and publishes the text on the ROS network.

Output Module: ROS node that ”directly” controls the hardware (through
drivers) (and often makes it accessible for the other ROS nodes). An
example is a node that takes in text and provides a voice output through
the speakers.
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Behavior Module: ROS node that provides some functionality, adds spe-
cific behavior to the Cyborg, e.g., the Selfie module (now obsolete). It
may for example receive data from an input module, and then tell an
output module to do something, but it does not directly interact with
the hardware (drivers).

Event: Something, often external, that has happened, been detected by a
behavior module and that the module wants to act on, e.g., a user rising
an arm (signaling that the user wants the Cyborg to follow).

In addition, the following terms are specified:

Mode of operation: Modes of operation for the Cyborg, defined by which
modules are executed, e.g., autonomous mode, where the state machine
for the autonomous cyborg is in control, or manual operation where
the Cyborg is controlled either with a joystick or through a wireless
interface like MobileEyes.

Behavior: Some specific functionality, for example playing sounds through
the speakers.
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Figure 2.13: State diagram for the Cyborg LED dome ROS module.
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Figure 2.14: Simplified class diagram for the LED dome ROS module.



Chapter 3

Evaluating the Cyborg

3.1 Introduction

This chapter aims to present an evaluation of the Cyborg, and the various
tasks deemed necessary in order to bring the Cyborg closer to the short and
long term goal. The tasks presented here are in direct correlation with the
vision presented in 2.8, some tasks also emerged as a result of work and
testing that was done on the Cyborg, and were appended to the list when the
obstacle manifested. The software evaluation is a continuation of the proposed
path presented in the authors specialization project [1], with emphasis on
simplifying and improving the overall software structure of the Cyborg.

3.2 The Cyborg v3.0

In his thesis for the Cyborg Waløen presents The Cyborg v2.0[9]. Once
again the Cyborg has undergone some big structural changes, the new and
probably last visual design iteration is completed at the end of this thesis, the
hardware architecture is changed, and the software structure of the Cyborg
is reworked. This motivates the new version of the Cyborg, The Cyborg
v3.0.

41
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In order to achieve the goal of the Cyborg V3.0, it is first necessary to
define what the Cyborg must be able to do. The following specifications have
been defined:

• The Cyborg must be able to roam around autonomously and of its own
will.

• The Cyborg must be able to visualize biological neural activity on the
LED dome, and in addition show text and animations.

• The Cyborg must be able to speak and play sounds.
• The Cyborg must be easy to operate and support mode changes on the

fly.
In order to satisfy the goal of the Cyborg V3.0, the following tasks have

been selected as critical:

• The LED dome controller and ROS node must be fully integrated into
the Cyborg.

• The existing Cyborg ROS modules must be properly integrated.
• The Mode Selector box must be upgraded in order to facilitate mode

changes without having to restart the Cyborg base.
• The LED dome must be finished and integrated into the Cyborg.
• The Cyborg body must be finished and properly mounted.
• The Cyborg must be painted, and the end result aesthetically pleasing.
• Cooling fan must be installed inside Cyborg body.
• All other hardware must be properly mounted, not able to move when

the Cyborg is operational.

Tasks 4-8 are done in collaboration with EiT group 3.

3.2.1 Lack of Integration

When reading through earlier reports dealing with the Cyborg, lack of inte-
gration and a wish to remedy the challenge is mentioned and can be seen
several times:
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The NTNU Cyborg: Robot Hardware Infrastructure [31] - "The gen-
eral problem for the NTNU Cyborg project has been lack of integration
of all its parts, and this has been my main focus."

Controller Module for the NTNU Cyborg [28] - "The short term goal
for the NTNU Cyborg is to have a robot prototype up and running by
the summer of 2017."

The NTNU Cyborg v2.0: The Presentable Cyborg [9] - "focused on
making an integrated solution..." "project difficult to enter..." "lack of
structure..." "lack of of a good, reliable foundation that all smaller parts
of the project could be built around..."

Control System and Object Detection System for the NTNU Cyborg [32]
- This thesis presents implementation of a decision-tree based alternative
to the state machine that is already implemented.

The second thesis in the list mentions the goal of having a robot prototype
up and running by summer of 2017, although this goal was not properly
met, the ground work for a proper system structure was laid down. The
third thesis still mentions many of the same challenges as the first thesis.
While the fourth thesis mentioned tries to circumvent parts of the problem,
by avoiding it all together. The author mentions challenges regarding the
complexity of growing state machines, and the reuse of states with tightly
coupled transitions.

The development of the Cyborg is driven forward by students, mastering
a new and complex system is time consuming and not a trivial task.

3.3 Overall Software Structure

While working on my specialization project fall 2018, it became apparent that
a simplification of the software structure could potentially benefit the overall
project, this is further motivated by 3.2.1. After conferring with assisting
supervisor Martinius, it was decided that a rework of the software structure of
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the Cyborg was the right choice. In authors opinion, there are two challenges
that should be addressed. An overall complex software structure, and the
complexity of the implemented states. The state machine is hard to configure,
and implementing new states is time consuming and complex. Several of the
modules currently implemented handle a great variety of tasks, and input
and output is many cases directly paired with states for the state machine.

3.4 Proposing a new Software Structure

In order to achieve the goal of a less complex software structure, current
modules are going to be decomposed, isolating and cutting back on the tasks
handled. States will be reworked in the same manner, isolating input and
output in separate modules. States with coupled output makes it easy to
add new behavior as nested states in more complex states. But by providing
output in separate modules, and in turn use those modules by states, we
obtain a more modular design that is easier to maintain, while still enabling
nested states in the same fashion as before.

The reworked software structure with isolated output modules motivates
a common interface for the most used output modules, making them easier to
use, not having to worry about conflicting commands. Expanding on this idea
and providing an easy way of making new behavioral presets, without having
to implement a new action server state each time, will make it easier and less
time consuming to configure new behaviors for the Cyborg state machine.

The proposed software structure is presented in Figure 3.1. As before, the
state machine in the Cyborg Controller connects to the behavior modules
through Module. Behavior is the proposed common interface module, that
connects to the output modules, while also providing simple behavioral presets.
For more complex behaviors than provided by Behavior, a separate State
module is used between Module and Behavior. The choice of the optional
module is done for two reasons, it lets us keep the behavioral presets simple,
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and it lets us use Module and states provided through action servers as before,
meaning that an already implemented core concept does not have to be
switched out. For states not requiring any output modules, ex. a planning
state where the only goal is to chose the next state, all modules below State
are omitted.

Module

NavigationVisualAudio

State

Behavior

Wander Go to DockMEAText

Controller

NONMEAText to SpeechPlayback

Controller Module

Figure 3.1: A proposed software structure for the Cyborg. Red components
indicate output modules, blue indicate functions provided by the output
module. Dashed component and lines indicate optional module.

A class diagram for the new software structure is seen in Figure 3.2.

3.5 Navigation

Although autonomous navigation already should be fully implemented on
the Cyborg, it has not been properly tested and tuned, which only became
apparent when testing for this thesis first began. The preliminary testing
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brought several issues to the table, and in addition some deficiencies were
identified.

3.5.1 Preliminary Testing Issues

When simulating the Cyborg, it does not dock properly, testing in real life
is necessary in order to see if the problem exists as in the simulator. In
addition, the Cyborg would not follow a path in the simulator, the path was
properly calculated, but instead of driving along the path, the Cyborg was
only rotating from side to side. This turned out to be an issue with the sonar,
which has to be disabled when simulating, in order to get the Cyborg to
follow a path. Simulating the Cyborg also masked some problems, which
of course turned up when the navigation was tested on the Cyborg itself,
this has probably contributed to the lack of information on the issues faced.
The first issue that manifested itself when commanding the Cyborg around,
was the lack of computing power needed in order to satisfy navigation. The
software is provided with default values for the navigational parameters, which
should suit the robot in question perfectly as they are set by the manufacturer
itself. Unfortunately, with the default values for the navigational parameters,
the ros_arnl node is unable to execute in a satisfactory fashion, repeatedly
throwing messages about the localization task taking too long.

When testing the autonomous navigation capabilities of the Cyborg in
Glassgården, it exhibited an erratic behavior, often stopping abruptly, stand-
ing still for a couple of seconds, maybe rotating a little, before it eventually
continued along its path. This turned out to be because of the sonar, which
was automatically disabled and reenabled, before the Cyborg continued mov-
ing. The slate tiled floor is not an ideal surface for the sonar, the joints
between tiles are sometimes identified an obstacles right in front of the Cy-
borg, which makes it stop. Another issue with the floor in Glassgården is the
sun glare, when the Cyborg drives from a shaded area to an area with strong
sun light, the transition line on the tiles is seen as an obstacle.
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Then there is the issue of the closure of Mobile Robots, mentioned in
my specialization project [1]. The Cyborg base is heavily dependant on
software provided by a company which no longer exists, and it is probably
only a question of time before this will be a growing issue. The provided
software is also rather restrictive compared to the alternative navigation stacks
presented in the navigation guide on the ROS wiki[33], with less options for
customization. Given the fact that the software is provided by a commercial
party and should be working as is this is not surprising, and if the solution
had been up to par, providing proper working autonomous navigation, this
would not have been an issue. Unfortunately, the lack of options makes it
harder to tune the navigation to a satisfactory degree.

The last issue is regarding recovery of the Cyborg when it loses localization
or gets stuck, which can and will happen, for example because of the highly
dynamic environment it is navigating in. If localization is lost, the Cyborg
will not be able to move again without external intervention. It would be
beneficial to implement recovery behavior. This can for example be achieved
by backtracking and revisit previously visited poses, while trying to reinitialize
localization. Or by trying to initialize localization with a set of different poses
scattered across the map, or around points where localization is more likely
to fail.

3.5.2 Navigation Module

The navigation module is one of the main modules that need to be reworked,
stripping away all behavioral functionality, keeping only the parts needed
for proper connection to the ros-arnl node. This entails removing all
"navigation talking" states from the module, as well as the scheduler function.
The navigation modules also lacks the ability to dock the robot, this has to
be implemented in order to enable the Cyborg state machine to recharge at
night or when the battery is depleted.
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3.5.3 Proposed Task List

The proposed task list for the navigation module is as follows:

• Rewrite navigation module, stripping away behavioral functionality.
• Implement docking.
• Implement recovery functionality.
• Adjust sonar parameters in order to avoid erratic behavior.
• Tune overall navigational parameters, with regard to available comput-

ing power and accuracy.
• Change navigation stack on the Cyborg, removing the need for legacy

software provided by Mobile Robots.

3.6 Audio

The Cyborg can play sounds through the speakers on the Cyborg base, both
playback and text to speech is implemented. Playback is handled through an
action server state called music, which is activated by the state machine, while
text to speech is implemented in a separate output module, which makes itself
available for the other modules through a ROS topic. The playback module
mixes behavior and output functionality, motivating a reimplementation. It
also lacks the ability to play different sound clips, loading only one hard coded
filename.

The text to speech module works, but execution is not preemptive. In
addition, the quality of the text synthesizer is rather poor, it lacks proper op-
tions for customization, and quite often it is impossible to actually understand
what is being said.

3.6.1 Proposed Task List

The following tasks are proposed regarding audio:
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• Rewrite the playback module, stripping away behavioral functionality,
with possibility to play different sound clips.

• Investigate alternatives to the text synthesizer that is used for text to
speech.

• Rewrite the text to speech module, and add the ability to preempt
execution.

• Combine playback and text to speech in a separate audio module, with
a common interface for both.

3.7 Controller Node

The state machine for the Cyborg is implemented in the controller module,
in order to avoid unnecessary clutter in the controller module, it would
be preferable if states used multiple times were configured separately and
imported where needed.

The state machine does not want to execute, complaining about that the
nested states do not have the proper input and output keys available, this is
probably due to a recent upgrade in the SMACH library. The state machine
has to be reimplemented anyway, taking into account changes done to the
other modules, presenting a natural opportunity to address this issue. The
emotionsystem, motivator, and database will be kept as is.

3.7.1 Proposed Task List

The following task list is stated:

• Relocate state machine configurations.
• Reimplement the state machine in accordance with new system struc-

ture.
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3.8 LED Dome

Resuming the work presented in my specialization project fall 2018, some
tasks still remain before both hardware and software is ready for integration
into the Cyborg. A context diagram for the LED dome is presented in Figure
3.3. The dual-core version of the interface for the LED controller does not
support both text and other visualizations in the same version, and only a
small horizontal part of the LED dome is used for text animations. Since
data is passed between tasks on separate cores on the LED controller, special
care must be taken regarding memory protection. In addition, the prototype
circuit needs to be realized and integrated into the Cyborg.

3.8.1 Proposed Task List

A list of the tasks necessary to fully integrate the LED dome onto the Cyborg
is presented below:

• Implement the prototype LED controller on a stripboard.
• Frost the translucent plastic dome that is going to be mounted over the

LED-dome.
• Integrate the LED-head hardware and software into the Cyborg.
• Improve concurrency handling and memory protection in the dual-core

version of the ESP32 software.
• Implement text animations in the dual-core version of the ESP32 soft-

ware.
• Remap the whole LED-dome for text animations.
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System

Administator

Command Goal

Visualization command

Server for 
biological neural 

network

Biological neural
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FeedbackSystem state
Controller

Behavior 
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Figure 3.3: Context diagram for the Cyborg LED dome.

3.9 Discussion

The software evaluation tries to address the complexity of the Cyborg software
and make it easier to configure new behaviors for the state machine. The
proposed behavior server enables us do just that, without removing the option
for more advanced programmers to implement complex states. As mentioned
earlier, more advanced states can also be built from multiple simple states,
which aids modularity and reusability. Evaluation of the navigation stack
and a proposed change, as well as a change to ROS 2 for the whole Cyborg
was not prioritized.
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3.10 Conclusion

The Cyborg v3.0 has been defined, and the different tasks deemed necessary
in order to bring the Cyborg to a state where it cover the specifications of the
Cyborg v3.0 and is ready for demonstration have been evaluated and stated.
An evaluation of the Cyborg software has been motivated and presented, and
tasks for the different software modules stated. The evaluation is done with
regards to making the Cyborg easier to work with. A behavior module is
proposed, the module offers an easy way to configure state presets and acts
as a single interface for commonly used output modules.
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Figure 3.2: A simplified class diagram for the new structure of the Cyborg.
Components related to output are marked with red, while grey indicates
modules pertaining to remote access and monitoring.



Chapter 4

Assisting Experts in Team
Groups

4.1 Introduction

As a part of this thesis, I have chosen to assist and provide guidance for the
different groups from Experts in Team that were involved with the Cyborg. As
I already had previous experience with the Cyborg, co-supervisor Martinius
also requested that I should present some of the tasks relevant for getting it
to a state where it is ready for demonstration. Throughout the semester I
have made myself available on Slack, and attended EiT workdays both when
requested and at my own initiative to check up. And where I had relevant
experience, I have tried to assess their proposed solutions and offer my advice
when requested.
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4.2 Group 1 - Simple Neural Response Inter-
preter - SiNRI

Group 1 chose to work with the neural interface for the Cyborg, their work
is presented in project report [34]. Their plans incorporate a sonar sensor
that should be used to detect and notify the Cyborg state machine when
people are standing in front of the Cyborg. At the start of the semester,
the group requested some assistance regarding ROS and the overall software
structure of the Cyborg. I have explained and shown them the basics on how
to design a ROS module that can notify the Cyborg state machine about
occurring events. In addition to this, I have set up a computer with ROS at
their disposal at the Cyborg office. Although the sonar will probably not be
used, their work has added incremental updates to the neural interface for
the Cyborg.

4.3 Group 3

This group aimed at finishing the Cyborg body and mounting the LED dome,
their work is presented in project report [35]. Their original plans also entailed
creating more animations for the LED dome, but this idea was discarded
after a meeting where I explained briefly what had to be done on the Cyborg
body, warning them about taking on more tasks than they could handle in
the given time frame, and that their aim should be to deliver a completely
finished product. The group had no previous experience regarding spackling,
sanding, and painting related to the bodywork, and assistance was requested
several times during the semester. In addition to this, co-supervisor Martinius
instructed me that I was in charge of evaluating their work related to the
body and LED dome, and check if it was of acceptable quality. As the Cyborg
will garner a lot of attention, it is instrumental that it looks the part.
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4.3.1 Frosting and Assembling the LED Dome

Figure 4.1: Preparing the LED
dome and outer shell for the
dome fasteners.

In order to prepare the LED dome for inte-
gration into the Cyborg, the outer plastic
shell needed to be frosted. The group tested
multiple solutions on how to frost the outer
shell on some leftover pieces of plastic, and
opted to use a frosting spray. Before they
used the frosting on the outer shell I checked
on their frosting experiments, and as I was
not particularly pleased with the result they
had attained, I conducted my own wet sand-
ing tests. I also performed some scratch tests
on the frost spray using only a fingernail, and
it was evident that the result was not very
durable. I then voiced my concerns about
the frosting spray with the group, and showed them the result with the wet
sanding test, proposing they should use this solution instead. The group
opted to use the frosting spray, but as the end result was deemed unaccept-
able, they ended up wet sanding over the frosting spray. The outer shell is
more translucent than was expected, and a better end result can probably be
attained with some more effort.

I also assisted with drilling holes in the outer shell and the LED dome for
the dome fasteners, and mounting these pieces together. As it is instrumental
that the holes align properly, we assembled the pieces on a metal table
before drilling, exploiting the magnets in the dome fasteners in order to keep
everything from moving. A picture taken during this process is seen in Figure
4.1.



CHAPTER 4. ASSISTING EXPERTS IN TEAM GROUPS 57

4.3.2 Sanding and Painting the Body

Regarding the spackling and sanding of the body, I offered some advice on
how to get a proper result as I have done similar work in the past. Regretfully,
I did not show them how to actually apply the spackle and how to determine
if the surface was smooth enough after sanding. This resulted in two rounds
of spackle and sanding before the body was ready for painting, as it was
quickly discovered that the body looked less smooth after a couple of layers
of primer was applied after the first round. After the two rounds, the body
looked smooth and they body and Cyborg base was painted. I checked up
on the paint work several times, and the end result was deemed acceptable,
although the paint that was used is rather thin, resulting in some faint glare
from the red parts of the Cyborg base. Overall though the body looks good,
and after the decals were applied it looks even better.

4.4 Discussion and Conclusion

The contributions from EiT group 1 and 3 have benefited the project greatly,
resulting in new software for the neural link, and an almost assembled Cyborg.

The Cyborg body looks nice, and only some small parts are still missing.
Group 3 installed a fan which needs protective covers, and a gap between
the LED dome assembly and the Cyborg body needs to be addressed. In
addition, the two 3D printed body parts of the Cyborg do not align properly
and the backside tends to slide off when operating the Cyborg, which also
needs to be addressed before the work on the body is complete. In hindsight,
firmer boundaries for quality should have been set right from the beginning,
and in addition I should have checked on some of group 3 solutions before
letting them proceed, as this could have saved them some time and effort. It
is hard to know how much to intervene with someone elses work, but I could
potentially have saved them some time if I had asked about their knowledge
on the subjects at hand.
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All in all, both groups have contributed greatly, bringing the Cyborg one
step closer to the overall goal.



Chapter 5

The Mode Selector Box

5.1 Introduction

At the onset of the thesis, co-supervisor Martinius expressed a wish about
being able to change modes directly on the Startup Box. The Startup
Box is programmed in such a way that its only possible to select a mode
when powering on the Cyborg, if one wants to change modes, a restart of
the whole Cyborg is needed, wasting time and making the Cyborg harder
to operate than necessary. There is many scenarios in which easy switching
between modes of operation for the Cyborg is desirable. For example, when
demoing the Cyborg, the Aria Demo might be used to drive the Cyborg with
the joystick to the destination, before an autonomous mode is selected for
the demo itself. Another issue that emerged when testing the Cyborg base
in Glassgården, was that the Aria Demo was crashing quite often, an easy
way of restarting modes on the fly would make such issues less cumbersome.
Since the modifications add functionality outside the scope of the original
name, a rebranding of the component is deemed to be in order, hence the
new name, Mode Selector.
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5.2 Software Modifications

When powering on the Cyborg, Mode Selector waits for a ready signal
from the cyborg base. Once the ready-signal is received, the available modes
are presented on the screen and the user is prompted for input. When a
valid sequence is chosen, the display tells which sequence is chosen, as well
as an option to stop the sequence. If the running sequence is stopped, the
user is once again prompted to chose a new sequence. A sequence diagram
showing the interaction between the Mode Selector box and the Cyborg base
is presented in Figure 5.1.

Mode Selector Box Pioneer LX

Administrator Power on

Cyborg ready : "C"

present_modes()

Select mode
Sequence number start_sequence()

Cyborg active : "F"present_current_mode()

Stop current mode Sequence number : 3
stop_sequence()

Cyborg ready : "C"

Loop

Figure 5.1: Sequence diagram for the Mode Selector box and Cyborg base.
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5.2.1 Cyborg Base

start.py

This script initiates communication between the cyborg base and the Mode
Selector, parses the input, and executes the chosen sequence. The original
version of this script contained one loop, which initiated serial communication,
and when a valid sequence input was received, the loop was terminated and
the sequence executed. The modified version is made up of three loops, one
indefinite outer loop, containing two more loops. The first inner loop handles
execution of sequences, while the second inner loop handles termination of
the active sequence. A activity diagram showing control flow for both the
original and modified version of the script is seen in Figure 5.2.

sequences.py

In the modified version of this script, the sequences in function start_sequence
are modified to return the number of bash instances spawned. An exception
is made for the sequence for Aria Demo, which returns "-1". In addition,
a second function, stop_sequence is added, which handles termination of
sequences. For all other sequences than the Aria Demo, it terminates the
proper number of bash instances, by searching for the pid(s) of the latest
bash instance(s), and sending a SIGTERM signal. While for the Aria Demo
sequence, the shutdown sequence script shutdown_aria.sh is ran.

5.2.2 Mode Selector

The software for the Mode Selector is modified to accommodate the changes
made on the python scripts running on the Cyborg base.
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main.c:

The portion of code responsible for presenting the menu on the display has
been moved to cyborg_menus.c. Handling of the running marker has been
implemented, and in addition presentation of the currently running mode on
the display, together with the associated option to terminate.

cyborg_menus.c:

Two new functions have been added, present_modes and present_current_
mode.

present_modes - Contains the portion of code removed from main.c re-
sponsible for presenting the menu.

present_current_mode - Presents the running sequence, together with
the option to terminate.

5.3 Scripts

Shutdown ARIA

The Aria Demo-mode differs from the other modes available, as it is ran
as an application, which can be shut down with a "SIGINT" signal. When
shutting down Aria Demo, the Shutdown ARIA script is ran. This script
runs the following sequence:

1 rosnode k i l l −a
2 k i l l a l l −SIGINT demo

Where the first command kills all ROS-nodes, and the second one signals the
demo application

5.4 How to add new Modes

Some changes apply to how new modes of operation are added.



CHAPTER 5. THE MODE SELECTOR BOX 63

sequence.py - New sequences are added here as before. In addition, the
number of bash instances that are spawned when executing said sequence,
need to be returned after the sequences are executed.

cyborg_menus.c - The name of the new sequence is swapped with the
desired sequence in function present_modes. A new case for the switch
in function present_current_mode is added, along with the associated
name and number.

The software is compiled and uploaded as described in [9].

5.5 Discussion

When assisting supervisor Martinius first requested the ability to change
modes on the Cyborg without having to restart it every time, he did not
know the original Startup Box well enough to comment on if it was feasible
regarding the implementation.

More time than originally planned was spent on this task, but the task was
deemed important by the author of this thesis, and in the end it was time well
spent. With the Mode Selector it is now possible to stop the current mode
and select a new one. The upgraded component has been used extensively,
every time the Cyborg has to be restarted because of crashing modules while
testing, or for every mode change, eg. when transporting the Cyborg, the
new functionality enables us to save roughly two minutes. While this might
not seem like a lot of time, it quickly adds up to a considerable amount
when working with the Cyborg. It also adds to ease of use for the Cyborg,
by virtually eliminating the need to use the power buttons on the Cyborg
base, considering that Cyborg should be on all the time when it is used more
actively.
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5.6 Conclusion

To summarize, the software on both ends for the Mode Selector has been
modified, adding the ability to shut down the currently running mode on
the Cyborg and selecting a new one. The Mode Selector works as expected
when tested, the new features make the Cyborg easier to work with since
less buttons are used actively, and will result in saved time for every future
participant working with the Cyborg.
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Initiate serial 
communication

Send ready 
signal "C"

Is input valid 
sequence?

Execute 
sequence

Yes

No

Read serial

Initiate serial 
communication

Send ready 
signal "C"

Is input valid 
sequence?

Execute 
sequence

Read serial

Yes

No

Send running 
signal "F"

Read serial

Is input stop 
sequence?

Stop current 
sequence

Yes

No

Figure 5.2: Activity diagram for the start.py script. Original version on the
left, modified vesion on the right.



Chapter 6

The Behavior Module

6.1 Introduction

The purpose of the behavior module is to serve as a common interface for the
most used output modules, and in addition provide an easy way to make and
execute new behavioral presets and simple states. The behavior module is
intended to be interfaced in the same way as the action server states already
implemented, to avoid heavy modifications to the controller module.

In order to cover the role of a complete action server state for the Cyborg,
the module must be able to exploit the emotional state of the Cyborg to
choose which behavior to execute in the active state, and provide emotional
feedback while doing so. It should also implement a way to change audible
and visual modes in certain states, facilitating dynamic behavior while a state
is active. A context diagram for the behavior module is seen in Figure 6.1.

6.2 Requirements and Specifications

Based on the system structure and evaluation presented in 3, the following
requirements and specifications have been selected:

• The module must be implemented in ROS, as a ROS node.
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Cyborg Controller

Cyborg Behavior Module

EmotionSystem

Parameter server
Fetch behavioral preset

Get emotional state 

Publish emotional feeedback

Cyborg LED 
Dome

Cyborg Audio Cyborg Navigation

Module

Activate audio
Activate LED dome Activate navigaton

Execute behavior goal

ROS Topic

ROS Action

Figure 6.1: Context diagram for the behavior module.

• All communication with other ROS nodes must be through ROS proto-
cols.

• The module must offer its service as an action server.
• The module should have a database for all the behavioral presets.
• The module must take advantage of the Cyborgs emotional state, and

provide emotional feedback.
• The module must interface the audio module, led_dome module, and

the navigation module.
• The module must provide a way to configure what triggers the comple-

tion of a state.
• The module must provide a way to change audible and visual modes

while a state is active.

6.3 Design

The behavior module is designed as a single ROS node, interfaced through
the actionlib protocol, all communication with other modules is through
ROS protocols. The module connects to the controller module to get the
emotional state of the Cyborg, and to provide emotional feedback. The
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module also connects to the audio and visual modules in order to activate
them. If the behavior incorporates navigation, the module activates a client
for the navigation module.

The module has a database for behavioral presets where the parameters are
loaded from, separate presets can be configured for each emotional state if one
wishes to incorporate the emotional state of the Cyborg into the behavior. A
behavioral preset defines commands for the audio, visual, navigation module,
and emotional feedback. The preset also defines the completion trigger for
the behavior, and if the behavior state is dynamic. The trigger can either be
a duration, or completion of audio or navigation execution, callbacks are used
in order to handle the executional feedback from these modules. When a
behavior state is dynamic, it is possible to activate different behaviors in the
same behavior state, this is done by publishing a command to the behavior
module. The reasoning for including this option is that for states with relative
long duration, for example a state where the Cyborg is following a long path,
it can be restrictive to only be able to execute one type of visuals or audio.
As most long lasting states are navigational states, the dynamic behavior
commands are limited to only activating the audio or visual module. A class
diagram for the modules action server Python class is presented in Figure 6.2.

6.4 Implementing the Behavior ROS Module

The behavior module is implemented as a single Python class BehaviorServer,
instantiated by the ROS node cyborg_behavior. It provides behavior states
through an action server, utilizing the StateMachine.action action file imple-
mented in the controller module. Behavioral presets are saved in the modules
launch file behavior.launch, which is accessed through the ROS parameter
server. The form of a behavioral preset is as follows:

1 <rosparam param = " preset_name ">
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cyborg_behavior

__init__(self):
emotional_callback(self, message):
callback_command_location(self, message):
server_behavior_callback(self, goal):
enter(self):
execute_behavior(self):
callback_dynamic_behavior(self, data):
callback_navigation_done(self, status, result):
change_behavior(self, behavior):
callback_playback(self, message):
callback_text_to_speech(self, message):
send_emotion(self, pleasure, arousal, dominance):

ROS Topic

ROS Action

Subscriber:
/cyborg_audio/feedback_playback
/cyborg_audio/feedback_text_to_speech
/cyborg_behavior/dynamic_behavior
/cyborg_behavior/command_location
/cyborg_controller/emotional_state

Publisher:
/cyborg_audio/playback
/cyborg_audio/text_to_speech
/cyborg_visual/domecontrol
/cyborg_controller/emotional_feedback

ActionServer:
/cyborg_behavior

ActionClient:
/cyborg_navigation/navigation

Figure 6.2: Class diagram for the behavior module BehaviorServer Python
class.

2 visual_mode : " visual_command "
3

4 playback : " playback_command "
5

6 utte rance : " u t t e rance "
7

8 navigat ion_order : #Can be " navigation_go_to " , "
navigation_wander " , or " navigation_dock " .

9

10 l o c a t i o n : " l o c a t i o n "
11

12 dynamic : True #Omit i f Fa l se . True i f s t a t e permits
behav io ra l changes whi l e a c t i v e .

13

14 comple t ion_tr igger : #Can be " nav igat i on " , " u t t e rance " , "
playback " , or " time xx " , where xx i s the durat ion in seconds .

15

16 t imeout : #Set Fa l se to d i s a b l e behavior timeout , s e t
durat ion in seconds to con f i gure , omit i f d e f a u l t va lue i s
used .

17
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18 emotional_feedback : { p : value , a : value , d : value ,
cont inuous : boolean } #Continuous v a r i a b l e i s s e t to True f o r

cont inuous emotional feedback .
19 </rosparam>

Parameters not relevant for a preset can be omitted in the launch file when
configuring new presets, default values are used by the module if it cant find
certain parameters for the behavioral preset, as indicated in the example
above. Comments and spaces have been added for readability, and are not
part of an actual preset.

As seen in the class diagram presented in Figure 6.2, the behavior mod-
ule uses ROS topics to connect to the other modules, callbacks are im-
plements all subscribers. In addition, an action client is used to interface
the navigation module, utilizing the Navigation.action action file imple-
mented in the navigation module. For behaviors involving navigation to a
specific location, there are multiple ways to supply the location. The lo-
cation can be defined in the behavioral preset, it can be published on the
/cyborg_behavior/command_location topic before activating the naviga-
tion state, or it can be sent with the action goal for the module, by supplying
the location name in the "order" field of the StateMachine.action action
message. The different options were included in order to facilitate less modifi-
cations to the old software structure. A simplified activity diagram for the
behavior module is presented in Figure A.1.

A description of the functions in the module is given:

emotional_callback - Callback for the subscriber to topic /cyborg_controller/
emotional_state. Updates the modules emotional state variable when
a message is received.

callback_command_location - Callback for subscriber to topic /cyborg_
behavior/command_location. Updates the modules command_loca-
tion variable when a message is received.
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server_behavior_callback - Callback for the /cyborg_behavior action
server. When an action goal is received, the callback checks if the
requested preset exists, first by appending the name of the behavioral
state to the name, and then without if no preset for that particular
emotional state is found. If no preset at all is found, the callback sets the
server state as aborted and returns. If the name of the requested preset
is found, the enter and execute_behavior functions are executed in
sequence.

enter - Executed by server_behavior_callback. Retrieves parameters
for the behavioral presets and updates the corresponding variables in
the module. If the preset involves navigation, an action client for the
navigation modules action server is instantiated.

execute_behavior - Executed by server_behavior_callback. Activates
the different output modules, for the navigation module it sends naviga-
tion goal, while for the audio and visual module, commands are published
on their respective topics. The function checks the behavior_finished
variable to see if the behavior is finished, the state of the navigation
server when it is used, and for preemption request from the module
using the behavior action server. If navigation or the behavior server is
preempted, a preemption command is sent to audio modules utilized
in the current preset. When the behavior is finished, send_emotion is
used to provide emotional feedback to the Cyborg controller.

callback_dynamic_behavior - Callback for the topic /cyborg_behavior/
dynamic_behavior, only active when the parameter for dynamic be-
havior is set. Parses message and activates the corresponding output
modules.

callback_navigation_done - Callback for the navigation module. Sets
the behavior finished variable when called.
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change_behavior - Called by callback_dynamic_behavior when a be-
havior command is intercepted. Retrieves behavioral parameters for the
audio and visual module and executes.

callback_playback - Callback for topic /cyborg_audio/feedback_playback,
handles feedback for audio playback and sets the behavior_finished vari-
able accordingly.

callback_text_to_speech - Callback for topic /cyborg_audio/feedback_
text_to_speech, handles feedback for text to speech and sets the be-
havior_finished variable accordingly.

send_emotion - Publishes emotional feedback when executed.

6.4.1 How to add new Behavioral Presets

New behavioral presets are configured by appending the desired preset to
the behavior.launch file in the behavior module. Presets are added to the
Cyborg state machine in the same way as other action server states, shown
in the following code:

1 smach . StateMachine . add ( "<s t a t e name>" ,
2 Module ( "<pr e s e t name>" , " cyborg_behavior " , t r a n s i t i o n s ,

r e s o u r c e s ) ,
3 t r a n s i t i o n s ,
4 sm_remapping )

Where <state name> and <preset name> is replaced by the chosen state
and preset name, which usually are identical.

6.5 Discussion

When I first designed the behavior module I was in doubt wether to incorporate
emotional feedback or not. In the end I chose to incorporate it in order to
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make the presets fully cover the role of a proper state, and also enabling
us to remove more of the previously implemented states. In order to test
the implementation, I defined a set of different presets in the corresponding
launch file and tested the module by simulating the Cyborg. The module
handles feedback from the audio module as it should, enabling us to use
executional feedback from the audio module as trigger for state termination.
This has proven valuable as it enables us to break down the size of states
and implement simple state sequences based on something other than a set
duration or navigation.

For future expansions I would recommend distributing the behavioral
presets over several launch files, as the files quickly grows in length as new
presets are appended. This can be done by including the files for behavioral
presets in the main launch file for the module. I also thought about adding the
option to configure a return event upon completion of a preset execution, but
the idea was never fully evaluated. This might be valuable for more complex
state machine configurations, but the downside can be added complexity.

6.6 Conclusion

A common interface for the most commonly used output modules has been
designed and implemented. The module also provides a simple way to
configure new behavioral presets that can be used as states for the Cyborg
state machine, which in turn aids the overall configuration of the state machine
by removing the need to implement new action servers for simple states.
The simple states can be used to constuct more complex state sequences
from states that are easy to understand, while enabling us to save time on
implementation. The module has been tested by simulating the Cyborg and
is ready for integration.



Chapter 7

Cyborg Audio Module

7.1 Introduction

The Cyborg audio module gathers functionality previously provided by mod-
ules cyborg_music and cyborg_text_to_speech, while decoupling output
and Cyborg states. The module handles execution of playback and text to
speech onto the Cyborg speakers, makes itself available for other modules
through ROS topics, and provides executional feedback. A context diagram
for the cyborg audio module is presented in Figure 7.1.

Cyborg AudioBehavior Module Speaker
Activate speaker

Publish feedback

Get playback message
Get text to speech message

ROS Topic

Figure 7.1: Context diagram for the cyborg audio module.
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7.2 Requirements and Specifications

Based on the software structure of the Cyborg and the evaluation presented
in Chapter 3, the following requirements and specifications have been stated
for the audio module:

• The module must be implemented in ROS, as a ROS node.
• All communication with other ROS nodes must use ROS protocols.
• The module must be able to handle playback of audio files and text to

speech.
• Implementation of playback and text to speech must be done as separate

and independent instances.
• The module shall publish feedback when execution is finished or pre-

empted.
• Optional: Execution should be preemptive.

7.3 Design

The audio node is designed as a single ROS node. As per the stated specifica-
tions, playback and text to speech are separate instances, each with their own
channels for commands and feedback. A conceptual class diagram is shown
in Figure 7.2. Both playback and text to speech handles preemption requests
through messages, and both reply with a feedback message once execution is
finished or preempted. A sequence diagram for the playback module is seen
in Figure 7.3.

7.4 Implementing the Cyborg Audio ROS Node

The implementation is done in Python, as a single ROS node called cyborg_
audio. Playback and text to speech are implemented as separate Python
classes, instantiated in the cyborg_audio ROS node. Individual ROS topics
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Audio

Commands and feedback

TextToSpeechPlayback

Commands and feedback

ROS Topic

Figure 7.2: A conceptual class diagram for the Cyborg Audio ROS node.

with message type std_msgs.msg.String are used for commands and feed-
back. A class diagram for the audio module is presented in 7.4. ROS topics
were chosen as they require less lines of code than actions.

7.4.1 Playback

The playback module is reimplemented using ROS topics instead of the
actionlib protocol. The main body of the module is implemented as a
threaded function using the threading library, python library vlc is used to
play the audio files.

The module is made up of two functions:

playback - Main function of the module. Signaled by callback_playback
when a message is received, loads the requested file into vlc and executes.
Checks for preemption requests when active, and publishes a result
message on the feedback topic upon completion or preemption.

callback_playback - Callback function for the ROS topic subscriber, stores
the message content and signals playback through a shared variable.

The following commands are available:

• "<filename>" - Replace <filename> with your filename, the name is
written without the filetype extension.
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Cyborg Controller
Audio Module :  

callback_playback

playback command

Audio Module : 
playback

got_message = True

recording.play()

Alternative
playback finished

preemption command
playback_command = "PreemptPlayback"

recording.stop()

playback preempted

Figure 7.3: Sequence diagram showing the playback module being activated
and preempted.

• "PreemptPlayback" - Preempts playback.

The following feedback is provided:

• "playback finished" - Published when playback is finished.
• "playback preempted" - Published when playback has been preempted.
• "playback timeout" - Published if playback has timed out.

The requested audio file must be located in the homedir folder, only mp3
files are supported.

7.4.2 Text To Speech

The text to speech module is reimplemented with a new text to speech engine
pyttsx3, in addition preemption and feedback of execution has been added.
The module is made up of three functions:

text_to_speech - This is the main function of the module, it starts the
text to speech engine and connects to the on_end_tts function.
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Subscriber: 
/cyborg_audio/text_to_speech

cyborg_audio

TextToSpeech

__init__(self):
text_to_speech(self):
on_end_tts(self, name, completed):
callback_text_to_spech(self, message):

Playback

__init__(self):
playback(self):
callback_playback(self, message):

Subscriber: 
/cyborg_audio/playback

Publisher: 
/cyborg_audio/feedback_text_to_speech

Publisher: 
/cyborg_audio/feedback_playback

ROS Topic

Figure 7.4: Class diagram for the Cyborg audio module.

on_end_tts - Executed upon completion, publishes feedback on the feed-
back ROS topic.

callbcak_text_to_speech - Callback function for the ROS topic sub-
scriber, stores the message content and starts or preempts execution.
Publishes feedback on the feedback ROS topic upon preemption.

The following commands are available:

• "<utterance>" - Replace <utterance> with the wanted utterance to
execute text to speech.

• "PreemptUtterance" - Preempts utterance.

The following feedback is provided:

• "utterance finished" - Published when utterance is finished.
• "utterance preempted" - Published when utterance has been pre-

empted.

7.5 Discussion

While testing the previously implemented text to speech module, I was
disappointed by the quality of the speech synthesizer. The Python library
that is used supports different engines for the speech synthesizer, but only
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one of them is actually available on a Ubuntu system, namely espeak. I did
not prioritize finding an alternative, but although the speech synthesizer does
its job, it could definitely be better. For future upgrades, I would recommend
changing to a online subscription based text to speech service like Watson
Text to Speech by IBM or Google Cloud Text-to-Speech. The online versions
are far superior in quality and require less processing power of the Cyborg.
This solution of course would require a stable internet connection on the
Cyborg, which one could argue should be provided any way. It is also possible
to download commonly used phrases and use the playback module instead,
or use the online service only the first time a phrase is used, and then save
the file for future use.

The implemented module now gathers similar output functionality, de-
couples playback from Cyborg states, and provides them through a common
interface, making the software structure of the Cyborg less complex and the
module easier to interface. The feedback from the module is exploited by the
behavior module, and can be used as a trigger for ending states.

7.6 Conclusion

An audio module for the Cyborg has been designed and implemented, gath-
ering functions previously provided by two separate modules with different
interfaces. The module supports text to speech and playback of audio files,
execution can be preempted for both, and playback is no longer directly
coupled with a state, enhancing modularity for the Cyborg software and
states, while making it less complex to work with. Executional feedback is
provided by the module, which in turn makes it possible to base a states
duration on executions in this module. The module has been tested and is
ready for integration into the Cyborg.



Chapter 8

The Event Scheduler Module

8.1 Introduction

The event scheduler module provides functionality pertaining to publishing
scheduled events for the Cyborg. The module is also responsible for detecting
and publishing other system events like when the Cyborg battery is starting
to run low. The scheduler function previously found in module cyborg_
navigation is isolated and moved to this module. A context diagram for the
module is seen in Figure 8.1.

Event SchedulerCyborg controller

ARNL

Get current location

Get battery status

Publish scheduled and
 system events

Get current state

Cyborg Navigation

ROS Topic

Figure 8.1: Context diagram for the event scheduler module.
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8.2 Requirements and Specifications

The following requirements and specifications have been defined for the event
scheduler module:

• The module must be implemented in ROS, as a single ROS node.
• All communication with other ROS nodes must use ROS protocols.
• The module must interface the navigation module for location informa-

tion.
• The module must notify the Cyborg state machine about scheduled

events.
• The module must notify the Cyborg when the battery is below a set

limit.

8.3 Design

The event scheduler is designed as a single ROS node, all communication with
other modules is through ROS protocols. The node subscribes to state data
published by the state machine, location data published by the navigation
module, and battery status published by the ros_arnl node. If a scheduled
event at another location than the current one is found, the rest of the Cyborg
state machine is notified, if the battery gets below a set limit while the
Cyborg is not already charging or on its way to the charger, a corresponding
event is published. The scheduler itself is almost identical to the function
previously found in the navigation module, with some slight modifications
done in order to make it fit the overall system structure. A class diagram,
with corresponding ROS protocols is presented in Figure 8.2.
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ROS Topic

Subscriber:
/cyborg_controller/state_change
/cyborg_navigation/current_location
/rosarnl_node/battery_status

Publisher:
/cyborg_controller/register_event

cyborg_event_scheduler

__init__(self):
callback_current_location(self, data):
scheduler(self):
callback_subscriber_state(self, data):
callback_battery_status(self, BatteryStatus):

Figure 8.2: Class diagram for the event scheduler ROS node, with correspond-
ing ROS protocols.

8.4 Implementing the Event Scheduler ROS
Node

The event scheduler is implemented as a single ROS node, containing the
scheduler function previously mentioned, and in addition callbacks for the
topics it subscribes to:

scheduler - Checks for ongoing events, by searching through the database
of events provided in the navigation module. If an event at another
location than the current one is found, a navigation_schedular event is
published on the event topic of the controller module.

callback_current_location - Callback for the location subscriber, updates
the current location of the module.

callback_subscriber_state - Callback for the state subscriber, updates
the module with the current state.

callback_battery_status - Callback for the battery status subscriber. If
the battery percentage is below a set value while the Cyborg is not
already charging og moving to the dock, a power_low event is published
on the event topic of the controller module.
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8.5 Discussion

Even though the scheduled events are only navigational event at this moment,
this will possibly change. Part of the reasoning behind a separate event
scheduler module is to keep the door open for a more advanced event scheduler
in the future, aiding the goal of a software structure where similar functionality
is gathered in separate modules. Removing the scheduler function from the
navigation module has made the navigation module less complex, and easier
to comprehend. The module has been tested both on its own and together
with the rest of the Cyborg modules, and it works as expected.

8.6 Conclusion

Based on the evaluation done in Chapter 3, the scheduler from the navigation
module has been isolated and implemented as a separate module. A function
that detects and publishes an event when the battery is below a set limit is
also implemented in the same module. The event scheduler module has been
tested and is ready for integration into the Cyborg.



Chapter 9

Primary States Module

9.1 Introduction

The primary states module gathers action server states with more complex
behavior than provided by the Behavior module, and states that do not
use output modules, the old wandering, idle, and navigation_planning
states are reimplemented here. The module provides emotional feedback to
the controller while active, and can execute state changes in the Cyborg by
publishing events. If behavioral outputs are needed, the Behavior module is
also interfaced. A context diagram for the module is presented in Figure 9.1.

Cyborg Primary States 
Module

Cyborg Behavior 
Module

Activate behavior module

ROS Topic

ROS ActionCyborg Controller

EmotionSystem
Get emotional state 

Publish emotional feeedback

Module
Execute state goal

Figure 9.1: Context diagram for the primary states module.
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9.2 Requirements and Specifications

Based on the evaluation presented in Chapter 3 and the software structure of
the Cyborg, the following requirements and specifications are stated for the
module:

• The module must be implemented in ROS, as a single ROS node.
• ROS protocols must be used for communication with all other ROS

nodes.
• The module must interface the controller module in order to exploit the

emotional state of the Cyborg.
• In order to search for navigation locations, the module must be able to

use the databasehandler provided by the navigation module.
• The module must be able to interface the behavior module.
• The module shall provide states for the Cyborg state machine through

a single ROS action server.
• The module shall provide emotional feedback in relevant states.

9.3 Design

The module is designed as a single ROS node, providing states through a
ROS action server. In order to save resources, all states are provided through
the same action server, using the callback for the action server to execute
the wanted function based on the action goal. The module connects to the
controller module to get the emotional state of the Cyborg, provide emotional
feedback, and register events leading to state changes. For states using output
modules, Behavior is also interfaced. A class diagram for the module is seen
in Figure 9.2



CHAPTER 9. PRIMARY STATES MODULE 86

ROS Topic

cyborg_primary_states

__init__(self):
callback_server_primary_states(self, goal):
emotional_callback(self, message):
create_and_send_goal(self, behavior, location):
actionloop_check(self):
idle_state(self):
wandering_emotional(self):
navigation_planning_state(self, goal):
waking_up(self)
change_state(self, event):
send_emotion(self, pleasure, arousal, dominance):

Subscriber:
/cyborg_controller/emotional_state

ActionServer:
/cyborg_primary_states

ROS Action

Publisher:
/cyborg_controller/emotional_feedback
/cyborg_controller/register_event
/cyborg_behavior/command_location

ActionClient:
/cyborg_behavior

Figure 9.2: Class diagram for the primary states module.

9.3.1 Wandering Emotional State

Based on the wandering action server state previously implemented in the
navigation module. The state activates a wandering behavior in the behavior
module, and preempts itself when the emotional state of the Cyborg changes
to something other than "bored", "curious", or "unconcerned".

9.3.2 Navigation Planning state

Based on the navigation_planning action server state previously implemented
in the navigation module. The state executes when the Cyborg state machine
receives a "navigation_schedular" or "navigation_emotional" event. It checks
the current emotional state of the Cyborg and selects how and where the
Cyborg should move, before providing emotional feedback and initiating a
state change.
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9.4 Implementing the Primary States Action
Server Node

The module is implemented according to the class diagram presented in the
previous section, ROS topics are used for communication with the controller
and behavior module. The module provides its states as a single ROS action
server that utilises StateMachine.action actions, and interfaces Behavior
through an action client when needed:

callback_server_primary_states - Callback for the action server, checks
the action goal and executes the corresponding function.

emotional_callback - Callback for the emotional state topic.

create_and_send_behavior_goal - Used to create and send action goals
to the Behavior module.

actionloop_check - When executed, checks for preemption requests for the
active state, and the executional status of the Behavior action server.
Sets the terminal state of the action server according to the terminal
state of the behavior server.

wandering_emotional - Activates wandering behavior in Behavior, pre-
empts the state when the Cyborg is in the wrong mood.

navigation_planning_state - Based on the old navigation_planning
state. Activated by either a navigation_emotional or navigation_-
schedular event. Checks the emotional state of the Cyborg, and decides
and activates the next state. If the next state is navigation_go_to,
the location is published on the /cyborg_behavior/command_location
topic for the Behavior module, before the state change is executed.

change_state - Executes a state change by publishing events on the corre-
sponding topic.
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send_emotion - Used for publishing emotional feedback to the controller,
by publishing a EmotionalFeedback message on the corresponding topic.

9.5 How to Implement new States

New states are implemented as standard Python functions and then added to
the callback function callback_server_primary_states in order to make
them available. An example is given:

1 de f example_state ( s e l f ) :
2

3 ### Implement s t a t e behavior here ###
4

5 s e l f . create_and_send_behavior_goal ( behavior = "
example_behavior " )

6 whi le not rospy . is_shutdown ( ) :
7

8 ### Implement s t a t e ex e cu t i ona l checks here ###
9

10 i f s e l f . act ionloop_check ( ) == True :
11 re turn
12

13 s e l f .RATE_ACTIONLOOP. s l e e p ( )
14 # s e t te rmina l goa l s t a tu s in case o f shutdown
15 s e l f . server_pr imary_states . set_aborted ( )

• A state with name "example_state" is defined on line 1.
• State behavior is implemented before the while loop.
• On line 5 function create_and_send_behavior_goal is used to send

action goal "example_behavior" to the behavior module.
• Variable and state execution checks are added inside the action loop.
• action_loop function is used to check the action goal state of the

behavior module on line 10, terminating the loop on line 11 and ending
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the state if the behavior module is finished or has stopped for some
reason.

• The loop is suspended on line 13.
• And the terminal goal status for the action server is set on line 15 in

case the while-loop exits for some unexpected reason.

9.6 Discussion

The main goal of this module was to gather action server state functionality
that could be removed from other modules, while providing a common place
for some of the most used states as well as commonly used future action server
states. An effort has also been put into facilitating easy implementation of
new states, by providing various functions that can eliminate some of the
most common portions of code used in action server states, resulting in less
time spent when implementing new states for the Cyborg.

9.7 Conclusion

In accordance with the evaluation in Chapter 3, a module for the most
commonly used action server states has been designed an implemented. The
module offers a common place for frequently used action server states, and
states implemented in the future. The navigation_planning and wandering
action server state functionality previously found in the cyborg_navigation
module has been gathered and reimplemented in this module. In addition,
functions aiding implementation of new states have been implemented. The
module has been tested and is ready for integration into the Cyborg.



Chapter 10

Navigation Module

10.1 Introduction

The navigation module provides navigational behavior for the Cyborg through
an action server. The new design keeps the databasehandler as is, while the
navigationserver is stripped down, removing all functionality pertaining to
talking behavior and the scheduler, only keeping what is needed in order to
properly interface with the ros_arnl module. In addition, the navigation
module should preferably provide docking for the Cyborg, which has to be
implemented. Since the scheduler that is removed relies on location data,
this has to be provided by the navigation module. A context diagram for
the navigation module (omitting parts regarding the databasehandler) is
presented in Figure 10.1. fix figurefix figure

10.1.1 Design

The overall structure of the navigation module is changed slightly, going
from one action server per state, to one common action server for the whole
module. When a module connects to the action server provided in the
navigation module, the action goal is parsed by the action server callback, and
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Cyborg NavigationCyborg Controller ARNL

Provide current location

Get current location

Give emotional feedback

Cyborg Event 
Scheduler

Activate ARNL 

ROS Topic

ROS Action

Cyborg Behavior 
Module

Execute navigation goal

Figure 10.1: Context diagram for the navigation module, parts regarding the
databasehandler are omitted.

the appropriate function executed. While one can argue that a single action
server goes at the expense of modularity, a common action server is chosen
in order to save some processing power, not having to offer multiple servers.
And as the overall system structure of the Cyborg is changed, utilizing a
common interface for the output modules, there is no reason to keep the few
action servers still remaining as separate entities when they are all directly
related to navigation output, other than modularity inside this particular
module.

In order to satisfy the need for location data in other modules, the
navigation module publishes the current location name on a ROS topic. Also
different from before, before sending a location goal to the ros_arnl node,
the navigation module first checks if ros_arnl is able to calculate a path to
the wanted location. The previously implemented wandering function is also
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stripped down somewhat, removing the part where the wandering state makes
the choice about how long it should stay in this state based on the emotional
state of the Cyborg. A class diagram for the new navigation module is seen
in Figure 10.2.

ROS Topic

ROS Action

navigationserver

__init__(self, database_file):
location_callback(self, data):
location_updater(self):
client_base_done_callback(self, state, result):
client_base_active_callback(self):
client_base_feedback_callback(self):
navigationserver_callback(self, goal):
navigation_go_to(self, goal):
check_and_send_goal(self, location):
start_wandering(self):
navigation_dock(self):
send_emotion(self, pleasure, arousal, dominance):

Subscriber:
/rosarnl_node/amcl_pose

Publisher:
/cyborg_navigation/current_location
/cyborg_controller/emotional_feedback

ActionClient:
/rosarnl_node/move_base

ActionServer:
/cyborg_navigation/navigation

ServiceProxy:
/rosarnl_node/wander
/rosarnl_node/dock
/rosarnl_node/make_plan

ROS Service

Figure 10.2: Class diagram for the navigation module, the databasehandler is
omitted.

10.1.2 Reimplementing the Navigation ROS Node

The module is implemented as a single ROS node as before, ROS protocols
are used for all communication with other nodes. The module implements
the action server cyborg_navigation/navigation, actions are provided in
the action file Navigation. The action file is based on the previously used
NavigationGoTo action, where the variable "order" has been appended to the
goal definition, and the action has been renamed since it is now used for all
navigation actions. Only the new or changed functions are listed below:

location_updater - Checks if the current location is registered as a location
in the databasehandler, and publishes the location name on a ros topic.
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client_base_done_callback - The original function is modified in order
to handle the aborted action server state.

navigationserver_callback - Callback for the navigationserver, parses the
action goal and executes navigation_go_to, navigation_wander, or
navigation_dock accordingly.

navigation_go_to - Based on server_go_to_callback. The action server
callback is reimplemented as a standard function, and modified in order
to provide emotional feedback and handle action server state "aborted"
from ros_arnl. The function is executed by navigationserver_
callback when action goal "navigation_go_to" is received.

check_and_send_goal - The original function is modified in order to
check if the ros_arnl is able to calculate a path to the location, before
the goal is sent. This is done by using the ROS service MakePlan
provided by the ros_arnl node on path /ros_arnl/make_plan. If the
service provides a negative response, the action server is signaled by
setting a common variable indicating that the base goal is canceled.

start_wandering - The original function is modified, removing the parts
of code responsible for preempting the state when the Cyborg is in the
wrong emotional state.

navigation_dock - Implements docking behavior for the navigation module.
The function activates the dock service provided by the ros_arnl node
on path /ros_arnl/dock. The service is stopped when the action server
gets a preemption request.

10.2 Discussion

The stripped down and reimplemented module has been tested with the rest
of the Cyborg modules by simulating the system. As the social part of the
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Cyborg is an important aspect, I would propose to reimplement the states
that were removed from the navigation module somewhere else.

10.3 Conclusion

In accordance with the evaluation presented in Section 3.5, the navigation
module has been partly reimplemented. Cyborg state and scheduler function-
ality has been stripped away, docking functionality has been implemented,
and all navigation actions have been gathered in one action server. The reim-
plemented navigation module has a simpler structure with a more condensed
task responsibility. The module has been tested by simulating the Cyborg in
MobileSim and is ready for integration into the Cyborg.



Chapter 11

LED Dome

11.1 Introduction

As stated in Section 3.8, the LED dome ROS module and LED controller
needs to be made ready for integration into the Cyborg. The interface for
the LED controller needs to be redesigned and implemented, and the ROS
Module must be modified in order to facilitating the changes. The overall
tasks presented in Section 3.8 will serve as a basis for the work presented in
this chapter.

11.2 Implementing the LED controller Cir-
cuit

The proposed implementation of the LED controller circuit that was presented
in the authors specialization project [1] is modified slightly, making it simpler
by removing a redundant wire. A sketch of the modified proposition is seen
in Figure 11.1. The proposed circuit is realized on a stripboard, seen in figure
11.2. Sockets have been used for both chips, facilitating easy removal of the
components.
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Figure 11.1: A proposed implementation of the LED-controller on a stripboard.
Black wires indicate ground connections, red power, and blue data. Notice
where the copper tracks are cut, in addition all tracks under the ESP32 and
buffer are cut, except for the track between pin 7-8 on the buffer.

11.3 Redesigning and Implementing the LED
Dome Software

11.3.1 Technical Considerations and Requirements for
the LED Controller Interface

In accordance with the changes to the LED controller interface, the following
considerations and requirements are stated:
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(a) Front (b) Back

Figure 11.2: The LED-controller, realized on a stripboard. Notice which
copper tracks are cut.

• The interface must be implemented using FreeRTOS tasks for the main
functions.

• FreeRTOS queues must be used when passing visualization data between
tasks.

• The interface must be able to detect the start and end of a serial message,
and in addition correctly identify the message content.

• The interface shall support text visualization on the whole LED dome.
• The visualizations must be executed correctly and fast enough to look

"aesthetically pleasing".

11.3.2 Interface for the LED Controller

In order to initialize the library for text animations, a defined rectangular
area of pixels is needed. The interface that was presented in the authors
specialization project [1] was only using seven of widest pieces of led strip on
the LED-dome, where the first three strips only are one pixel wider than the
next four, which in turn makes defining a rectangular area trivial. In reality,
when laid out, the led strips take on the form of an egg, defining rectangles
inside an egg shape means loosing big portions of the available pixels, which
obviously is not a good solution.
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Another challenge that needs to be resolved in order to have proper text
animations, is the fact that there is no system in how the individual portions
of led strips are aligned on the LED-dome, meaning that when text animations
are displayed, there is nothing that guarantees that the animations will be
aligned throughout the strips, potentially rendering the animations so skewed
that they are useless. To tackle this problem, a new remapping function,
remapping the whole LED-dome is designed and implemented. The function
enables us to emulate a rectangle enclosing the physical egg-shape of the led
strips, and aligns the output on the led strips. Pixels that fall outside of the
physical egg shape the led strips take on, are discarded.

Arduino libraries FastLED, LEDMatrix, LEDText, and FontMatrise are
used for controlling the leds and creating text animations [36][37]. The new
interface implements two FreeRTROS tasks, ReceiveSerialDataTask and
VisualizationTask, one for serial communication and one for visualizations.
The serial messages that are sent from the LED dome ROS module are on a
special format where values 252-255 are reserved, their definition is given in
table 11.1.

VALUE FUNCTION

252 Indicates if text should be vertical

253 Indicates if message is text

254 Start of message

255 End of message

Table 11.1: Definitions for reserved values over serial.

When a message is received by the LED controller, the data is parsed by
the serial task, before it is put into a buffer and sent to the visualization task.
The buffer is a data structure on the following form:

1 typede f s t r u c t {
2 bool textmode ;
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3 bool vert i ca lMode ;
4 uint8_t l ength ;
5 uint8_t data [NUM_LEDS∗ 3 ] ;
6 } MessageStruct ;

The two boolean variables indicate if the data is text and if the text should be
displayed vertical or horizontal. The data is stored in the data array, and the
length of the array in length. FreeRTOS queues are used for passing pointers
to the structures containing visualization data between the two tasks. When
an item on the queue is consumed by the visualization task, the visualization
task executes accordingly, before the address of the buffer is returned to the
serial task on a separate queue. The following functions are implemented in
the interface for the LED controller:

setup - The first function to execute, initializes visualization and FreeRTOS
queues, and starts the two tasks.

ReceiveSerialDataTask - Checks for available buffers on the appropriate
queue, and intercepts serial data if one is found.

receiveMessageInfo - Executed by the serial task when a serial message
arrives. Takes in a pointer to a buffer, parses the beginning of a serial
message (before the actual visualization data) and sets the first two
variables of the buffer.

VisualizationTask - Receives visualization data on a queue from the serial
task and executes accordingly, before returning the consumed buffer
back to the serial task.

remapLeds - Remaps the visualization data for text animations, called by
the visualization task.

The new interface for the LED-controller supports visualizations of text and
other animations, both in the same version.
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11.3.3 The LED Dome ROS Module

The context diagram for the LED dome ROS module is presented in Figure
11.3. In order to facilitate the changes done in the interface for the LED
controller, the text state in the LED dome ROS module is modified slightly.
When text commands are sent to the module, the text state now handles
commands for both vertical and horizontal text. This is done by checking
if the first word after the text command is "vertical", indicating vertical
text. Because of the reserved bit for the new command, the loop function is
modified to round down all values above 251 to 251, before messages are sent
to the LED controller over serial.

Cyborg Led Dome ModuleCyborg controller

Server for neural 
activity

Database for 
prerecorded 

neural activity

Fetch neural activity from file

Fetch neural activity from server

Get visualization command

Cyborg LED  
Controller

Send visualisation data

ROS Topic

Figure 11.3: Context diagram for the Cyborg LED dome ROS module.

How to add new Animations

• Add the new interpreter and the name of the interpreter to function
return_interpreter.

• Add the name of the new interpreter to function updatevisualization_
mode.

• Add the name of the new interpreter to function set_visualization_
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mode_callback

11.4 Preparing the LED Dome for Integra-
tion into the Cyborg

11.4.1 Casing

In order to facilitate the goal of proper integration of components, an enclosure
for the LED-controller is designed and 3D printed. The casing is designed
using Rhino 3D, and printed on a private 3D printer. It features a snap-fit
cover with venting holes, and snap fits for the circuit board. Figure 11.4 show
the drawing of the case. A photo of the finished LED-controller hardware,
complete with casing, is shown in Figure 11.5.

Figure 11.4: The casing for the LED controller, drawn in Rhino 3D.
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Figure 11.5: The LED-controller, mounted inside its casing.

11.4.2 LED dome ROS module

The LED dome ROS module has been tested and is ready for integration,
except for installing the Module on the Cyborg, no further work is needed.

11.4.3 LED-dome

The author assisted group 3 from Experts in Team with their work on the
LED dome, this work is presented in Chapter 4.

11.5 Discussion

The LED controller has been tested for extended periods of time on the authors
computer, both hardware and software works as intended. No increase in
framerate was achieved with the new interface, after some investigation the
culprit is found to be the blocking time of binary semaphores, which are used
in the implementation of queues. By changing to direct notification, one can
expect a decrease in blocking time of up to 45% [38]. The 3D printed case
looks good, and makes for a complete solution. Implementing new animations
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was not prioritized, but would make a great addition to the LED dome.

11.6 Conclusion

In accordance with the evaluation presented in Chapter 3, the interface for
the LED controller has been redesigned and implemented, and the LED
Dome ROS node has been modified to accommodate for more advanced text
commands. The new dual-core interface for the LED controller supports text
commands in addition to visualization data sent from the LED Dome ROS
node, utilizing the whole LED Dome for both.

The LED Controller circuit proposed in the authors specialization project[1]
has been modified and realized, and an enclosure has been designed and 3D
printed, making the LED controller ready for integration into the Cyborg.
The framerate of the new LED controller interface is 15 Hz, 5 slower than
the 20 that was achieved before. The lower performance than was achieved
with the old dual-core interface is due to FreeRTOS semaphores being less
effective than direct notifications.



Chapter 12

The Finishing Touches

12.1 Introduction

This chapter presents the last steps in making the Cyborg ready for demonstra-
tion. The body needs to be finished and the LED Dome properly integrated.
The Cyborg also needs a working state machine, and all implementation must
be properly tested on the Cyborg.

12.2 Cyborg Body and LED Dome

12.2.1 Protective Fan Cover

Figure 12.1: Protective fan
covers installed on both sides
of the exhaust fan.

The cooling fan mounted by EiT group 3 is
exposed on both sides. In order to prevent
damage caused by the fan, protective covers
are installed on both sides. Small rubber bits
are added between the fan and the fan guards,
the rubber bits dampen fan vibrations, and
provide some distance between the fan and
the fan guards in order to avoid scratching.

104
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The reassembled fan with added fan guards
and rubber bits is seen in Figure 12.1.

12.2.2 Covering the Gap Be-
tween the LED Dome and Cy-
borg Body

Figure 12.2: Masking tape is
used to line up the sealing strip
on the LED dome.

A rubber sealing strip is installed on the LED
dome, covering the gap between the LED
dome and the body. The sealing strip fea-
tures tape on the backside, making it easy to
glue the strip onto the LED dome shell. The
edge of the dome shell is uneven and should
not be used as a reference when mounting
the sealing strip. In order to make the seal-
ing strip line up perfectly with the body
edge, the LED dome is installed and the
sealing strip pushed into the gap. When
pleased with the orientation of the sealing
strip, masking tape is applied to mark where
the sealing strip should be glued on, seen in Figure 12.2 The LED dome is
taken out of the Cyborg body, and the sealing strip glued on. The end result
is seen in Figure 12.3.

12.2.3 Aligning and Fastening the Body Panels

Special parts have been designed and 3D printed in order to properly align
the 3D printed body panels where they meet. The parts are mounted with
strong double sided adhesive, seen in Figure 12.4.
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(a) Before (b) After

Figure 12.3: Sealing strip mounted on the LED dome.

Figure 12.4: The body align-
ers installed on the 3D printed
body.

Care must also be taken in order to stop
the backside body panel to slide off while
operating the Cyborg. This challenge has
been resolved by installing pieces of hook
velcro tape on the body panel and Cyborg
base right under the exhaust fan. A consec-
utive piece of loop velcro is placed over the
hook pieces when the backside needs to be
fastened.

12.2.4 Mounting the LED Con-
troller

Velcro tape is used to mount the LED con-
troller inside the LED dome. The velcro
makes it easy to take out the controller if
needed, and requires no modifications or permanent changes to the LED
dome. Loose wires inside the LED dome are fastened with a strong type of
duct tape. A picture of the mounted LED controller is seen in Figure 12.5.
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12.3 Configuring the State Machine

Figure 12.5: The LED con-
troller mounted inside the LED
dome with velcro tape.

A new SMACH state machine is imple-
mented in the controller module in order
to test all implementation and make the Cy-
borg ready for demonstration. A sequential
state is implemented in statemachines.py,
providing the main state machine with the
navigation_go_to state for navigation_emo-
tional events. State diagram for the Cyborg
is presented in Figure 12.6. With the ex-
ception of states navigation_planning and
wandering_emotional, all states are pro-
vided through behavioral presets in the be-
havior module. Beware that the state ma-
chine is configured with implemented docking
behavior in mind, even though docking this
is not fully implemented in the navigation module yet. States exhausted or
sleepy lead to the docking state sleeping. The exhausted state is triggered
by a "power_low" event published by the event scheduler module, while the
sleepy state is triggered by a scheduled event published by the same module.

12.4 Preparing the Cyborg for Testing

The setup script is updated to accommodate for the libraries used by the LED
Dome module and text to speech, the following lines have been appended:

1 #Speech Output Module requi rements :
2 pip2 i n s t a l l PyTTSX3
3

4 # LED Dome Module requi rements :
5 pip2 i n s t a l l pyopengl
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6 pip2 i n s t a l l pyopengl−a c c e l e r a t e
7 pip2 i n s t a l l numpy
8 pip2 i n s t a l l pandas
9 pip2 i n s t a l l c o l ou r

10 pip2 i n s t a l l p y s e r i a l

All new and changed modules are downloaded onto the Cyborg, and the
system is built with the catkin_make command.

12.5 Testing the Cyborg v3.0

The Cyborg v3.0 is tested by activating the implemented state machine
and letting it roam autonomously in Glassgården. The following acceptance
criteria have been selected in order to satisfy the specifications for the Cyborg
v3.0:

• All integrated modules must work together in a consistent manner.
Canceled actions shall not lead to undetermined behavior.

• Visualizations and sounds must be activated correctly.
• The Cyborg must navigate properly.
• The Cyborg must avoid driving into people.
• Body and mounted hardware shall not be moving while traveling.

The cyborg state machine is activated either by using the Mode Selector
or manually through a ssh connection. Two videos of the testing is included,
a description is given below:
Video 336:

• The Cyborg is activated through a remote ssh connection. State music_
horror is activated after the initial idle state and the Cyborg tries to
move at 0:35, but the state fails and the Cyborg changes to the idle
state, while music is continuing to play.

• At 0:51 the wandering_emotional state is activated, playback is still
active.
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• At 1:52 the idle state is activated, before navigation is activated at
02:10.

• At 3:00 and 3:23 the Cyborg reacts to the tile floor and stops shortly.
• The Cyborg reaches the intended location at 04:09, and the rest of the

sequential states in the navigation_go_to_emotional are activated.
• At 04:49 the idle state is activated once again, show_off_mea is activated

shortly after, lasting for exactly sixty seconds as configured in the
behavioral preset.

• Idle state is activated at 06:03, before astrolanguage is activated at
06:16.

• At 06:35, the Cyborg is seen dodging a person.
Video 339:

• The Cyborg is activated with the Mode Selector box. Music_horror
is activated and the Cyborg tries to move at 00:35, but navigation is
aborted.

• At 0.50 wandering_emotional is activated, playback from astrolanguage
is still active.

• The state finishes and idle is active at 01:51, before navigation goes
active shortly thereafter. The Cyborg navigates to the commanded
location and executes the proper arrival sequence.

• Idle state is active at 03:29, and show_off_mea at 02:42.
• At 04:20 the Cyborg dodges a gap in the floor.
• Idle state is active at 04:44 and astrolanguage shortly thereafter.
• At 06:30, the Cyborg drives into a gap in the floor, but manages to get

out on its own.
• Idle state is activated at 06:50, before show_off_mea is activated at

07:01.
The videos show us a couple of important points regarding the behavior

of the Cyborg, and in addition highlights some issues:

• The state machine works, the Cyborg operates autonomously.
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• The Cyborg navigate successfully, humans and foreign objects are
avoided.

• Gaps in the floor are sometimes avoided, but not always.
• Body panels and hardware does not move while the Cyborg is traveling.
• When a state is aborted, playback continues into the next state.
• The first event in the second video is a result of the state machine trying

to activate navigation before all modules are properly inititated.
• All modules work as intended together, except for the issues stated in

the point above.

In order to prevent the Cyborg from getting stuck in gaps in the floor,
forbidden areas should be added where these gaps are on the map. The issue
regarding playback continuing into the next state when the current state
is aborted has since been fixed, by adding a preemption of playback when
the behavior module aborts. The issue with navigation when the Cyborg
is just initiated has also been addressed. A delay is added after ARNL is
started in the startup sequences, giving navigation some time to properly
initiate. In addition, the launch file in the controller module is updated,
the controller module is now the last module to be activated. The Cyborg
v3.0 has been tested again without issues after the stated problems were
fixed. The map has not been updated. It was also registered that the Cyborg
struggled with visualizing neural activity from a file at the same framerate as
other animations, the framerate has therefore been set to 3 frames per second
for this kind of animations. To summarize, all modules work as intended,
visualizations and sounds are activated correctly, and navigation performs
adequately.

12.6 Discussion

Testing the Cyborg in Glassgården was at times quite challenging, many
people displayed great interest and wanted to talk, which made it hard to
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actually get any testing done. Nevertheless, attention was always part of the
plan for the Cyborg, and this just proves that the Cyborg is on the right
track to become a proper mascot.

Testing shows that the Cyborg covers the stated acceptance criteria. The
implemented state machine is not the most advanced one, but it works well for
demonstrations and should be a good starting point for further development.

It can be hard to balance the emotional feedback parameters for differ-
ent states and events, for future participants to the project, a tuning or
configuration guide of some sort would be greatly beneficial.

12.6.1 Navigation

A lot of time was spent on getting navigation to work properly, the localization
task is still a bit slow, leading to suffering localization when the Cyborg is
moving. Nevertheless, localization is held successfully, and the Cyborg is able
to navigate autonomously. Sonar parameters have been tuned by trial and
error in order to mitigate the issues with the sonar and the slate tiled floor,
the Cyborg does not abruptly stop as often as before. Although navigation
works to a satisfactory degree, there is probably still room for improvement
by tuning. In order to properly solve the problems regarding localization,
more powerful or distributed computers for different tasks would be beneficial,
more processing power would also aid neural visualizations.

12.6.2 Cyborg Body and Hardware

The Cyborg body looks good and is ready for demonstration. The gap
between the body and the LED dome looks better than expected, and active
leds beneath the translucent sealing strip makes for a nice overall effect. The
velcro used to prevent the backside body panel from sliding was originally
planned as a temporary solution, but it works well enough to be permanent.
As EiT group 3 used decals for the details on the Cyborg body, the upper
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ring has not been painted blue as in the proposed vision, and should be done
in the future. The finished product is seen in Figure 12.7.

12.7 Conclusion

The last tasks deemed necessary in order to make the Cyborg body and
hardware ready for demonstration is completed. The gap between the LED
Dome and Cyborg body is covered, protective covers have been mounted
on each side of the exhaust fan, and the body panels aligned and fastened.
Navigation works and the Cyborg is able to keep localization, but the lack
of computing power makes localization and neural visualizations suffer. A
state machine has been implemented, and the Cyborg has been tested in
Glassgården. Videos of testing have been presented and commented on.
Testing unearthed some issues which have been resolved, and the Cyborg now
covers the stated acceptance criteria.
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Figure 12.6: State diagram for the Cyborg controller.
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(a) Front (b) Back

Figure 12.7: The Cyborg v3.0.



Chapter 13

Discussion

The focus of the presented work has been on finalizing a proper foundation
and getting the Cyborg to a state where it is ready for demonstration, instead
of adding new complex states or other features. The configured state machine
works, but some more variety on the state machine would be ideal when the
Cyborg is going to be active for longer periods of time. I am confident that the
software evaluation and the restructuring was the right choice. All software
modules now feature a more concentrated set of tasks to handle than before,
enhancing modularity. I believe that the new structure and the behavior
module will make the Cyborg easier to work with and aid in configuring new
behaviors for the Cyborg. I was amazed by how much attention the Cyborg
attracts when tested. The current platform works very well, and it is without
doubt that given some active time the Cyborg will turn into a proper Mascot.
At the end of this thesis the Cyborg is ready for demonstration, and there is
not much left in order to make the Cyborg ready for full time operation.

13.1 Proposed Future Work

A list of tasks tasks that was either not completed, or tasks aiding future
development is presented below:

115
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Recovery behavior - The Cyborg will get stuck or lose localization at some
point, and without human intervention it will not move when this
happens. As discussed in Section 3.5, some form of recovery behavior
or notification to an administrator, would be preferable to have.

Docking behavior - Docking behavior is needed in order for the Cyborg
state machine to select when to dock and undock the Cyborg. An almost
finished docking function is implemented by the author in the navigation
module, with only a few lines of code missing where commented.

Emotion configuration guide - Selecting appropriate emotional feedback
values for new behaviors is hard and frustrating. A set of guidelines of
some sort would be beneficial.

Change navigation stack - Although an evaluation of the navigation stack
was not prioritized, I would still recommend changing the current
navigation with the one presented on the ROS Wiki [33]. Although
the current stack is provided as a complete solution, it has several
limitations and consists almost entirely of legacy code.

New Visualizations - New visualizations will make the Cyborg more at-
tractive and can be exploited in order to convey emotional states.

More advanced state machine - The current state machine works and
presents the current features of the Cyborg. But for full time operation
it might be too repeating.

Change to ROS 2 - An evaluation of ROS 1 vs ROS 2 was not prioritized,
but ROS 2 offers several benefits over ROS 1 for the Cyborg. In addition,
the software for object detection requires ROS 2 or a ROS bridge for
communication between nodes of different ROS versions.

Integrate object detection - Object detection is implemented, but not
integrated into the Cyborg. The stereoscopic camera is already bought,
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and the computer for it is readily available at the university campus.
Object detection requires ROS 2, which means that the system must be
converted to ROS 2, or that a ROS bridge must be used between the
ROS 2 node for the object detection and the ROS 1 controller node.

Computer upgrade - The computer on the Cyborg base struggles with
handling navigation and visualization of neural data. A more powerful
or distributed computers would greatly benefit both.

Refrost the LED dome - The frosting on the LED dome achieves diffusing
the leds to some degree, but it would be preferable if the frosting was
good enough to properly hide the inside of the LED dome.



Chapter 14

Conclusion

The work in this thesis brings the Cyborg to a state where it is ready for
demonstration, and almost ready for full time operation. Motivation for a
reworked software structure and an evaluation of the current Cyborg software
has been presented. The point of the evaluation is to obtain a less complex
software structure, and make the Cyborg easier to work with. The current
Cyborg ROS modules have been reimplemented in accordance with the
evaluation, and a behavior module has been designed and implemented. The
behavior module provides a way to configure presets for commonly used
output modules, and the presets can be used as states in the Cyborg state
machine.

The LED controller proposed in the authors specialization project has
been realized, and the interface reimplemented in order to add better memory
protection and provide text animations on the whole LED dome. All corre-
sponding software and hardware has been integrated into the Cyborg. The
author has assisted groups from EiT with their work on the Cyborg, and with
their collaboration the Cyborg body and LED dome has been made ready and
integrated into the Cyborg. In order to make the Cyborg easier to operate,
the software for the Start-up box has been upgraded and the component
renamed to Mode Selector, adding the option to shut down and start new
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modes. A SMACH state machine has been configured for the Cyborg, and
the Cyborg has been tested on university campus. Lack of processing power
on the Cyborg base makes navigation and neural visualizations suffer, and
an upgrade would be beneficial. Nevertheless, the Cyborg still manages to
perform adequately and the specifications for the Cyborg v3.0 are satisfied.
Tasks deemed beneficial for the overall goal of the Cyborg by the author have
been presented as proposed future work.

The new design of the Cyborg is finished, the new software structure
features modules with more condensed task responsibility while states have
been broken down into simpler entities, making the Cyborg software more
modular and less complex. At the end of this thesis the Cyborg is ready for
demonstration, testing shows that the current design platform works very
well and the Cyborg attracts a lot of attention.
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Figure A.1: Simplified activity diagram for the Cyborg behavior module.



Appendix B

Notes and Documentation for
Navigation Tuning

B.1 Tuning Guides

For navigation tuning, I recommend the guide on the ROS wiki [39], in
combination with the ROS Navigation Tuning Guide [40]. Keep in mind that
these both presume a navigation stack that is set ut with RViz.

B.2 Parameters in MobileEyes

In order to find out how the different localization parameters available in
MobileEyes affected accuracy and computational load, I activated only the
ros_arnl node, and commanded the Cyborg base between the registered
locations entrance and hallway in glassgården, while changing one and one
parameter. My notes for the tested parameters are presented below:

Num samples - Default value is 2000 samples. As expected, decreasing this
value reduces the computational load, when decreased to 1000 samples,
almost no warnings were received. I did not notice any problems
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regarding accuracy or loosing localization with this value.
Grid resolution - Default value is 100. Decreasing this value by half,

increases the computational load by four times, without offering any
benefits for our use of the Cyborg. Increasing the value to around 200
helps with localization, but might cause problems with accuracy. More
testing is needed in order to determine if an increase might be beneficial.

MaxSpeed while following path - Default value 750. This is much lower
than the maximum translational speed of 1800 mm/s, after proper
navigation tuning, this value can be increased if deemed necessary.

NoLocalPlanLookAhead - Default value 200. An increase in this value
caused the Cyborg to behave slightly less erratic while wandering with
bystanders around.

B.3 Errors Encountered

The following list presents errors I encountered while working with the ros_
arnl module:

Duration out of dual 32-bit range - Probably caused by an incomplete
update to ROS packages. Fixed by deleting the devel and build folders
after updating packages, before building with catkin.

Localization task took to loong - Different versions of this message ex-
ists, all caused by a lack of computational power. A quick fix is to
decrease parameter Num samples.

B.4 Relevant Excerpts

From [41]: "Some values we’ve used are a rotVelMax of 250, rotAccel of 300,
rotDecel of 300, transAccel of 600, transDecel of 600. This isn’t appropriate
for all robots or situations, but should give you an idea of the range of values,
and that the higher you set them the better and faster ARNL will drive. You
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should obviously find values appropriate to your robot, your robot’s payload,
your robot’s environment, and your robot’s task. Note that for some of these
you may need to change the *Top value with the configuration program for
the microcontroller (some old robots shipped with low Top values). Also note
that you that the gyros that we use will only give accurate readings until 300
degrees/sec, so your rotVelMax should never go over that value, and probably
shouldn’t come close. It is okay if the rotAccel or rotDecel is higher."

"For example, if the environment has few unmapped obstacles and is
relatively fixed, the user can get away with a lower CollisionDistance parameter
which will reduce the collision computation. If the robot has to navigate
through narrow passages like doors, the PlanRes can be decreased to allow for
more resolution. Changing some of these parameters can result in unintended
consequences due to the limited resources such as the speed of the on board
computer and memory. For example reducing the PlanRes by a factor will
cause path planning computations to increase by the square of the factor.
Path planning and obstacle avoidance can also fail to operate as expected
due to parameter values."

From [42]:
One of the important considerations with any localization system is to

know when it is lost. With the laser localization, we have one primary measure
called PassThreshold which is the ratio of the laser readings that match with
the map points to the total number of laser points. If this score falls below
the PassThreshold, the Monte Carlo localization will stop trying to correct
the robot pose from its sensor update step. Once this threshold is crossed
under, the certainity of the robot pose will progressively get worse as the
robot moves. This measure of uncertainity will be directly related to the
amount of motion described by the robot kinematics and error parameters
such as KmmPermm etc. This measure of uncertainity will be tracked in
the Kalman filter during every cycle as a distance in the XY space. When
this spread grows beyond a LostThresholdDistance the robot is considered
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completely lost. The localization thread will call the fail callbacks as soon as
this happens. "Note that the PassThreshold and the LostThresholdDistance
are related. They come into play in sequence. If the PassThreshold is too low,
say 0.1, it is unlikely that the robot will ever report itself lost using MCL. So
a low PassThreshold like 0.2 and a LostThresholdDistance of 100mm is useful
only for situations where the environment is fairly unchanged from the map
used. In situations such as in a warehouse where a significant area of the map
during its travel can be different from the map, it is better to use a higher
PassThreshold such as 0.5 and a LostThresholdDistance of about 1000mm."
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