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Spectral-divergence based pigment discrimination and mapping: A case study on
The Scream (1893) by Edvard Munch
Hilda Deborah , Sony George and Jon Yngve Hardeberg

Department of Computer Science, The Norwegian Colour and Visual Computing Laboratory, NTNU – Norwegian University of Science and
Technology, Gjøvik, Norway

ABSTRACT
An important application of imaging spectroscopy or hyperspectral imaging is the classification or
discrimination of pigments based on the obtained spectral reflectance information. As opposed to
being a point-analysis tool, this non-invasive method captures the entire surface of interest. This
means that its potential is not only in the discrimination of pigments but also in their mapping.
However, the challenge lies in the fact that in a real painting, there is no clear-cut edge between
regions with certain pure pigments or of the exact same mixture. Pigments and other paint
materials mix seamlessly and continuously in the physical domain. In this article, we introduce a
divergence-based approach to pigment discrimination and mapping. The methodology is then
applied to Munch’s masterpiece The Scream (1893), whose pigments and materials have been
identified for several points in the painting in a previous study. Through the introduced
methodology, we have been able to extend the point analyzes of pigments and materials to the
entire surface of the painting, recto and verso.

RÉSUMÉ
Une importante application de la spectro-imagerie ou imagerie hyperspectrale est la classification
ou la différenciation de pigments en fonction des données de réflectance spectrale obtenues.
Contrairement à un instrument d’analyse ponctuel, cette méthode non invasive examine la
surface d’intérêt dans son ensemble. Cela signifie que son potentiel n’est pas seulement la
différenciation de pigments mais aussi leur cartographie. Cependant, la difficulté réside dans le
fait que dans une véritable peinture, il n’y a pas de limite nette entre des zones de pigments
purs ou de différents mélanges de ces pigments. Les pigments et autres matériaux constitutifs
d’une peinture se mélangent imperceptiblement et continuellement dans le domaine physique.
Dans cet article nous présentons une approche basée sur la divergence de spectre pour la
différenciation des pigments et leur cartographie. Cette méthodologie est ensuite appliquée au
chef-d’œuvre de Munch Le Cri (1893), dont les pigments et matériaux constitutifs ont été
identifiés en plusieurs points de la peinture dans une étude précédente. Grâce à la
méthodologie proposée, nous avons pu étendre les analyses ponctuelles de pigments et autres
matériaux à l’ensemble de la surface de la peinture, recto et verso. Traduit par Claire Cuyaubère.

RESUMO
Uma aplicação importante da espectroscopia de imagem ou imagem hiperespectral é a
classificação ou discriminação de pigmentos com base na informação de refletância espectral
obtida. Ao contrário de ser uma ferramenta de análise pontual, esse método não invasivo
captura toda a superfície de interesse. Isso significa que seu potencial não está apenas na
discriminação de pigmentos, mas também em seu mapeamento. No entanto, o desafio reside no
fato de que, em uma pintura real, não há uma borda nítida entre regiões com certos pigmentos
puros ou que contenham exatamente a mesma mistura. Pigmentos e outros materiais de pintura
se misturam perfeitamente e continuamente no domínio físico. Neste artigo, introduzimos uma
abordagem baseada em divergência para a discriminação e mapeamento de pigmentos. A
metodologia é aplicada à obra-prima de Munch, O Grito (1893), cujos pigmentos e materiais
foram identificados em vários pontos da pintura em um estudo anterior. Através da metodologia
introduzida, pudemos estender as análises pontuais de pigmentos e materiais para toda a
superfície da pintura, frente e verso. Traduzido por Marcia Rizzo.

RESUMEN
Una aplicación importante de la espectroscopia de imagen o imagen hiperespectral es la
clasificación o discriminación de los pigmentos según la información de reflectancia espectral
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obtenida. A diferencia de ser una herramienta de análisis puntual, este método no invasivo captura
toda la superficie de interés. Esto significa que su potencial no solo está en la discriminación de los
pigmentos, sino también en su mapeo. Sin embargo, el desafío radica en el hecho de que en una
pintura real, no hay un borde bien definido entre las regiones con ciertos pigmentos puros o de la
misma mezcla exacta. Los pigmentos y otros materiales de pintura se mezclan en forma fluida y
continuamente en el dominio físico. En este artículo, presentamos un enfoque basado en la
divergencia para la discriminación y el mapeo de pigmentos. La metodología se aplicó luego a la
obra maestra de Munch, The Scream (1893), cuyos pigmentos y materiales han sido identificado
en varias áreas puntuales de la pintura en un estudio anterior. Por medio de esta metodología,
hemos podido extender los análisis puntuales de pigmentos y materiales a toda la superficie de
la pintura, anverso y reverso. Traducido por Amparo Rueda.

1. Introduction

Hyperspectral imaging was initially developed in the
remote sensing sector but later found its application in
several areas, including cultural heritage digitization.
With the possibility of recording high resolution in both
spectral and spatial dimensions, hyperspectral images pro-
vide information of material interactions with light in
different spectral regions. In turn, this results in high dis-
crimination capabilities useful for material classification.

Pigment identification is one of the important goals of
most digitization projects in the cultural heritage sector.
The uniqueness of materials in terms of their physical
and chemical characteristics can be used for their classifi-
cation by means of reflectance spectroscopy. Despite
researchers’ great success on obtaining high quality spec-
tral images, accurate pigment classification still remains a
challenge. Identification and classification of pigments
from hyperspectral data is a complex task due to the
fact that, pigments in most of the regions in the painting
are usually in mixed form and not pure pigments. There
are also other issues like aging, layering, etc. Spectral
unmixing techniques are supposed to help in identifying
the pigments accurately. There are several unmixing
techniques developed in other application areas like
remote sensing, however it is difficult to apply the
same in cultural heritage imaging. The main challenge
lies in the different nature of mixing of the pigments
that is not only optical mixing as in remote sensing appli-
cations. In many cases, there could be multiple layers of
pigments superposing one another and they may mix
both chemically and optically.

There have beenmany efforts in obtaining accurate pig-
ment classification using spectral classification algorithms
(Almeida et al. 2013; Bacci et al. 2007; Cosentino 2014;
Delaney et al. 2005; Grabowski et al. 2018; Rohani et al.
2016). Chemometric techniques (Baronti et al. 1998) for
classification of pigments were also investigated. However,
endmembers obtained from this classification do not have
any physical meaning and are not very useful in interpret-
ation of the pigments in the painting. Pigment classifi-
cation using methods based on Kubelka–Munk theory

resulted in better outcomes. However, it requires measure-
ments of mixtures of the pigment with materials whose
absorption and scattering coefficients are known. This is
not the case with most paintings and, thus, limits the
use of the method (Zhao 2008). Spectral Angle Mapper
(SAM) (Kruse et al. 1993) is one of the commonly used
similarity-based classification methods, where spectra of
pure pigments forming the spectral library are compared
to those in the hyperspectral image. It then classifies pig-
ments in the painting according to their spectral match
or highest similarity to entries in the library. Spectral Cor-
relation Mapper (SCM) (de Carvalho Jr. and Meneses
2000) is an improvement of SAM, which bases its classifi-
cation algorithm on correlation between spectra. It is
found to be more accurate than SAM since it overcomes
the limitation of SAM in detecting negative correlation
(Deborah, George, and Hardeberg 2014). Nevertheless,
both SAM and SCM have been shown to have limitations
in its accuracy (Deborah, Richard, and Hardeberg 2015).
Since then, and a new spectral difference function has
been proposed and validated theoretically and metrologi-
cally, i.e., Kullback Leibler pseudo-divergence (KLPD)
(Richard et al. 2016).

In this study, we present the use of a spectral-diver-
gence based representation space for spectral variation,
which is built based on KLPD, i.e., Bidimensional Histo-
gram of Spectral Differences (BHSD) (Richard et al.
2016) and its modified version (Deborah 2016). The
aim of this article is to demonstrate its applicability
and relevance for pigment analysis of cultural heritage
paintings, using the hyperspectral dataset of the master-
piece The Scream (1893) by Edvard Munch (1863–1944).

2. The Scream (1893), front and reverse sides

As a case study, the hyperspectral imaging-based pigment
mapping will be applied to The Scream by EdvardMunch.
Specifically, it is the painted version of The Scream from
1893 (tempera/ crayon/ oil, Woll 333), owned by the
National Museum of Art, Architecture and Design,
Oslo, Norway (Aslaksby 2015). Subsequently, the painting
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will be referred to as The Scream (1893). The painting
consists of the front side and its less-known reverse side.
More details of the motif of the reverse side were given
by Aslaksby (2015). A hyperspectral dataset of both
sides of the painting was acquired during an acquisition
campaign held in 2012 (Hardeberg et al. 2015). Each
side is available as three separate cutouts or hyperspectral
cubes due to the acquisition setup. Color images of the
cubes are shown in Figure 1 (recto) and Figure 2 (verso).

2.1. Hyperspectral image acquisition and
preprocessing

Hyperspectral image acquisition has been performed
using the HySpex VNIR-1600. The scanner operates in
the visible and the near infrared region (VNIR) of the elec-
tromagnetic spectrum, between 0.4 and 1.0 μm. The line
scanner has been used for scanning the painting at two
different distances, which records high resolution and
slightly lower resolution of the painting; one allowing

acquisitions at a distance of 1 m, which gives a spatial res-
olution of 0.2 mm, and the close-up lens with an acqui-
sition distance of 30 cm, which provides a resolution of
0.06 mm. In order to cover the whole area of the painting,
the painting has been acquired with three acquisition
stripes. Each cutout shown in Figures 1 and 2 is a single
hyperspectral image; sometimes also referred to as hyper-
spectral cube. Thus, the analysis in this study includes a
total of 6 hyperspectral images. Each cube is originally
of 5212 × 1600 pixels. They also consist of 160 channels
or spectral bands from approximately 414.624–
992.497 nm in about 3.634 nm intervals. However, since
not all pixels are relevant for pigment mapping (e.g.,
they are of the wood support), each image is then spatially
cropped on the edges, resulting in those shown in the two
previous figures. Spectrally, we are also only processing 97
spectral bands from roughly 450–800 nm. Spectral
responses obtained below 450 nm are very noisy due to
the sensitivity of the sensor. As for the decision to stop
at 800 nm, it is based on our observation that the

Figure 1. Three cutouts of The Scream (front side, 1893) as acquired by the hyperspectral scanner. The color images are generated by
GLIMPS software1 using the peak wavelengths at approximately 610, 560, and 454 nm as the RGB channels. Their brightness has been
adjusted for presentation purposes. The numbers and arrows indicate the approximate location of paint samples provided in Table 1.
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pigments and materials we are dealing with are mainly
varying in the visible range and a few nanometers into
the near infrared region. Then, each hyperspectral cube
is normalized to spectral reflectance, with values between
0 and 1. Finally, considering the noise level of the

reflectance spectra (Figure 3(a)), a Savitzky–Golay filter
(Savitzky and Golay 1964) is employed as a smoothing
filter, with parameters window size 9 and polynomial
order 2. The impact this filter has on the previously
shown spectra can be observed in Figure 3(b).

Figure 2. Three cutouts of The Scream (reverse side, 1893) as acquired by the hyperspectral scanner. The color images are generated
the same way as Figure 1. Their brightness has been adjusted for presentation purposes.

Figure 3. (a) Initial noisy spectra and (b) after they are preprocessed using Savitzky–Golay filter of window size 9 and polynomial order
of 2. The filtering process acts as a smoothing filter to the noisy input.
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2.2. Spectral library of pure and mixed pigments

A prior study investigating the materials used by Edvard
Munch is available (Singer et al. 2010), inwhichThe Scream
(1893) was also analyzed. The study provides us with its
material identification carried out for 24 paint samples.
The specification of several samples to be used in this
study is provided in Table 1. Spatial locations where these
reflectance spectra are taken from were approximately
determined by the guidance of sample sites provided in
reference (Singer et al. 2010). These locations can be
observed in Figures 1 and 2. Note that the shown samples
are not all that were identified in the previous study. They
are selected for their relevance in this article.

3. Spectral variation: representation and
discrimination

The notion of difference is a natural and intuitive way to
measure similarity between two spectra. Given a

hyperspectral image of any arbitrary object or surface,
the characteristics of this surface can be represented in
terms of how different each pixel is to a pre-determined
reference. This means that only a spectral difference
function and a spectral reference are needed to compute
such characteristics. Then, these characteristics will be
useful for a discrimination task when the obtained differ-
ence measures are represented in a meaningful way, such
as through the visual representation of spectral variation.

3.1. Spectral difference measure

Spectral angle, commonly known as Spectral Angle Map-
per (SAM) (Kruse et al. 1993), has been widely used as
the similarity measure for pigment identification or
classification tasks based on hyperspectral imaging
(Delaney et al. 2010; Pelagotti et al. 2008), some provid-
ing angle tolerance value of 0.4 (Daniel et al. 2016; Mou-
nier, Denoël, and Daniel 2016). However, SAM has a
drawback in its inability to detect negative correlation
between two spectra. This inability can be overcome by
using its so-called improvement, Spectral Correlation
Mapper (SCM) (de Carvalho Jr. and Meneses 2000),
which has also been confirmed in our earlier work on
pigment mapping of The Scream (1893) (Deborah,
George, and Hardeberg 2014).

Since then, there have been more fundamental studies
focusing on how to accurately measure the difference
between two contiguous spectra as in the case of the
hyperspectral domain (Deborah, Richard, and Harde-
berg 2015; Richard et al. 2016). In those studies, theoreti-
cal and metrological2 limitations of both SAM and SCM
and other difference measures have been extensively
studied. A more suitable spectral difference function
was then proposed based on information divergence,
the Kullback–Leibler pseudo-divergence (KLPD)
(Richard et al. 2016), whose mathematical expression is
as follows

divKL′ (S1, S2) = DG(S1, S2)+ DW(S1, S2) (1)

KLPD is composed of two independent components,
spectral shape and intensity differences DG and DW,
respectively. See formulas for both spectral differences
below.

DG(S1, S2) = k1.KL(�S1, �S2)+ k2.KL(�S2, �S1)

DW(S1, S2) = (k1 − k2) log
k1
k2

(2)

where Kullback–Leibler divergence function KL, normal-
ized spectrum �S and total energy k of a spectrum S are
defined by the following equations. Note that the KL func-
tion is asymmetric, thus KL(�S1, �S2) = KL(�S2, �S1). In
practice, the total energy k can be calculated through a

Table 1. Main pigments identified from paint samples of The
Scream (front and reverse sides, 1893) (Singer et al. 2010) used
in this study.
Sample
number Color, description Main pigments

14 Yellow, lower right Cadmium yellow and barium sulfate,
vermilion, charcoal, an organic yellow
containing rhamnetin, probably a
buckthorn berry lake

17 Red, upper left Vermilion and gypsum
19 Turquoise, upper

left
Viridian (chromium oxide dehydrate),
lead white, lead chromate

20 Blue (dark) to the
right of figure

Artificial ultramarine blue, barites, clay,
zinc white

33 Reverse side, red,
upper left

Vermilion

34 Reverse side, blue,
upper left

Ultramarine blue, lead white, barites

Figure 4. Three spectral reflectances to illustrate the shape and
intensity components of spectral differences. P1 and P2 are con-
sidered as identical in shape (therefore zero shape difference)
but different in intensity. P1 and P3 have similar intensity but
different shape. P2 and P3 have both shape and intensity
differences.
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summation operator. However, when possible, an inte-
gration function with trapezoidal rule should be used to
give a calculation that is more accurate.

KL(�S1, �S2)=
∫lmax

lmin

�S1(l) · log
�S1(l)
�S2(l)

dl ;

�S= �s(l)= s(l)
k

, ∀l[ [lmin, lmax]

{ }
; k=

∫lmax

lmin

s(l) dl

(3)

Figure 4 is provided to illustrate what are the shape
and intensity differences calculated by KLPD or other
spectral difference functions. P1 and P2, both with
peaks at approx. 500 nm, are considered having identical
shape (therefore zero shape difference) but different
intensity or energy (there is intensity displacement in
the reflectance axis). P1 and P3 can be seen as having
relatively similar intensity but different shape (their
peaks are at approx. 500 and 460 nm, respectively).
Finally, P2 and P3 are considered to have both shape
and intensity differences.

Since the most important feature in pigment identifi-
cation is spectral shape difference, which had initially
motivated the use of SAM and then SCM, the shape
component DG of KLPD can be used as the alternative
to the two similarity measures. In Deborah et al.
(2017), it was used to determine the coloring palette
Old Man in Warnemünde (1907), another Munch
painting.

3.2. Bidimensional representations of pigment
distribution

Despite shape information being the most important fea-
ture in pigment discrimination tasks, intensity

differences can also provide useful information. Using
the two components of KLPD allows construction of
two-dimensional graphical representations of spectral
differences. Bidimensional Histogram of Spectral Differ-
ences (BHSD) was introduced in Richard et al. (2016),
and its modified version in Deborah (2016). In the fol-
lowing, a way to read and interpret them will be pro-
vided, as they will be used later in this article.

One subset of the hyperspectral image of the case
study painting is shown in Figure 5(a). Using the shape
DG and intensity DW components of KLPD, the distri-
bution of all pixels in the image is plotted in a BHSD
in Figure 5(b). BHSD is a histogram so every dot in it
represents a frequency or pixel count. The origin of
BHSD coordinate (0, 0) is the location of the spectral
reference used. A spectral reference is a spectrum that
is used to compute the difference functions to; its selec-
tion will be explained in more details in the following
section. This means that every pixel in the image is rep-
resented in BHSD by means of its shape and intensity
differences to this reference spectrum in the horizontal
and vertical axes, respectively.

The BHSD in Figure 5(b) allows observer to intui-
tively estimate how many pigment or color groups
exist in the image under observation. However, it does
not provide information of which color each cluster
belongs to. The modified BHSD in Figure 5(c) is pro-
vided for such complementary information. There,
every dot is an individual pixel from the image rep-
resented in its true color.3 However, due to that, not
every pixel can be seen in this representation since the
dots overlap each other in the two-dimensional rep-
resentation. Thus, this modified BHSD must be used
together with the original BHSD.

By closely observing the subset image, it can be seen
that there are approximately four groups of colors, i.e.,

Figure 5. (a) A subset of The Scream (reverse side) image, shown in a color visualization. (b) Its BHSD shows the spectral distribution,
providing a general idea of the number of pigment groups in the image. (c) Modified BHSD is to be read as a scatter plot, providing the
actual pixel colors in addition to where it is located in the distribution.
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the cardboard substrate, red, blue, and light blue. The
BHSD, which plots the distribution of these colors,
does not show four distinct or separate groups of clus-
ters. Instead, there are two smaller concentrations close
to the origin and two tails in both vertical and horizontal
axes. Through the modified BHSD, we can observe that
the two tails mainly consist of pixels with red and blue
colors. Then, parts of the red tail that are closer to the
origin consist of colors that progress from red to the
color of the cardboard. On the other hand, the dark
blue tail progresses toward the paler blue ones and, even-
tually, the cardboard color. This explains the two con-
centrations of pixels close to the origin. Through the
two representations, we are able to observe the colors

or pigments distribution in a continuous manner as
they mix with other colors. Also, note that in Plutino
et al. (2017), BHSD representation has been compared
to subjective expert judgment in pigment discrimination
task. It was concluded that there is a direct relationship
between expert judgment and the BHSD approach.

3.3. Selecting spectral references

The quality of pigment discrimination in a BHSD
depends on how optimal the spectral reference selection
is. To do so, knowledge of the image at hand as well as
how BHSD works are required. To demonstrate this,
the subset image previously shown in Figure 5(a) will

Figure 6. (a) Spatial locations of four pixels representing the four groups in the image and (b) their corresponding spectral reflectance
plot. Additionally, two artificial spectra R1 and R2 are also plotted. R1 is generated to mimic a light-colored ultramarine blue pigment.
R2 is created to simulate a dark greenish color.

Figure 7. (a) BHSD and (b) modified BHSD of subset image shown in Figure 6(a), computed using 1-cardboard as the reference. See also
spectral reflectance plot in Figure 6(b). The distribution of pixels in these BHSD representations are considered in terms of convex hull,
whose outer rim is approximated by the red line in (a).
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be used. This subset image can be considered as consist-
ing of approximately four color groups, the cardboard
and the pigments (red, light blue, blue). Four pixels orig-
inating from these groups are selected and their reflec-
tance spectra are plotted in Figure 6.

Distribution of spectral variations in BHSD represen-
tation is considered a convex hull, see more details of the
concept in Deborah (2016). Based on this, there are sev-
eral criteria with which to choose the optimum spectral
reference. First, the reference spectrum should not
come from the initial set or image under evaluation. As
an illustration, the spectrum of 1-cardboard from Figure
6(b) is employed as the spectral reference for the input
image in Figure 6(a). The obtained BHSD and modified
BHSD can be observed in Figure 7. The convex hull of
this image as obtained by using 1-cardboard as reference
is approximated by the region surrounded by the solid
red line in Figure 7(a). Observing the obtained distri-
bution, most pixels are concentrated around the origin
and the discrimination is poor except for red pixels
located far in one of the two tails of the distribution.

An optimum spectral reference should be chosen
from outside the convex hull. It can be achieved by
first generating an artificial spectrum whose intensity is
outside the dynamic range of the dataset. To do so, we
can pick any arbitrary spectrum from the initial spectral
set and then modify its intensity. As an example, spec-
trum R1 in Figure 6(b) was generated by mimicking
the shape of an ultramarine blue mixture in the painting
(sample #34 in Table 1) and then shifting its intensity
higher, such that it bounds or covers all other spectra
from above or higher intensity values. The BHSD and
modified BHSD obtained using R1 as spectral reference
are those shown in Figure 5. If we compare them to
those in Figure 7, they are already an improvement con-
sidering the two smaller clusters close to the origin in

Figure 5(b). However, despite R1 being a better reference
than 1-cardboard, it is still not an optimal one. This is
because its shape is still highly similar to the ultramarine
blue pigments that exist in the painting. The second way
to achieve an optimum spectral reference is done by
shifting the peaks of the spectrum to the left (shorter
wavelength) or right (longer wavelength) directions. R2
in Figure 6(b) was generated by first mimicking the
same ultramarine blue shape as R1 (sample #34 in
Table 1), then shifting the spectrum to the right direction
and finally multiplying its values by 0.5 such that R2 cov-
ers the four spectra of the pigments from below. The
BHSDs obtained by using R2 as a reference can be
observed in Figure 8. Through the BHSD, we can see
that there are more than two clusters in the image.
Then, as complementary information, the modified
BHSD provides the information that there is spectral
variation that goes from red, lighter red, cardboard
color, light blue, and then to darker blue, and this vari-
ation is shown in a continuous manner. This agrees
with our initial visual observation of the image, that
there are roughly four groups of pigments in the
image. Furthermore, the BHSDs also provide infor-
mation that there are possibly regions in the image
where the red pigment is applied in thin layers, such
that they are transparent and their spectra is optically
mixed with those of the cardboard.

To summarize, by considering the spectral set of our
input image as a convex hull in the BHSD or modified
BHSD spaces, the task of reference selection becomes
easier and more practical. Knowing that the BHSD axes
are intensity and shape differences allows us to generate
an artificial spectrum that will be located outside the initial
convex hull, such that it becomes an optimum one. This
can simply be carried out by taking any arbitrary spectrum
from the initial set and further modifing it in both

Figure 8. (a) BHSD and (b) modified BHSD of subset image shown in Figure 6(a), computed using R2 shown in Figure 6(b) as reference.
Better pigment/ color group separation is observed, especially in the modified BHSD.
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dimensions of the BHSD space, intensity and shape differ-
ences. Intensity modification is carried out through mul-
tiplication operation, such that the modified spectrum
has an either higher or lower intensity than all other spec-
tra in the initial set, in all the wavelengths or spectral

channels. Modification in the shape dimension can be car-
ried out by shifting the spectrum to the direction of the
shorter (left) or longer (right) wavelengths, keeping in
mind that the resulting spectrum cannot already exist in
the initial set. Illustrations and demonstrations in this

Figure 9. Pigment mapping workflow based on difference computation using KLPD measure and its representation using BHSD and
modified BHSD.

Figure 10. (a) Side-by-side comparison of a subset of the reverse side of The Scream and its vermilion map. (b) Vermilion maps for the
whole surface of the reverse side of the painting. Note that in these maps, only pixels considered as containing vermilion are colored.
The rest are represented in grayscale.
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section have been provided by modifying an ultramarine
blue sample from the painting, which was chosen merely
for the purpose of the demonstration.

3.4. Discussion

In the classical similarity (or difference) based pigment
discrimination task, typically the employed spectral differ-
ence function only measures differences in terms of shape,
e.g., SAM and SCM. This widely accepted practice is based
on the knowledge that the peaks and valleys of spectra
belonging to identical pigments (or mixtures) will be
located in nearly identical wavelengths. The variations in
intensity are usually due to the lightness, opacity, or thick-
ness of the paint layers. However, in this section, we have
shown that intensity differences provide useful infor-
mation for characterizing the distribution of pigment on
a painting surface through bidimensional representations
of spectral differences, i.e., BHSD and modified BHSD.
They are enabled by the two independent components
of the Kullback–Leibler pseudo-divergence (KLPD)
measure. Inside the BHSD and modified BHSD represen-
tations, we can observe the spectral variations of a surface
or object in a continuous manner. For example, we can
observe the transition between pixels of pure vermilion
and those of the cardboard in Figure 8. Moreover, we
can derive that the in-between pixels are possibly vermi-
lion pigments thinly applied on the cardboard, making
the paint layer transparent.

In this section, we have also shown through Figures 5,
7 and 8, that the discrimination quality provided by a
BHSD or its modified version is highly dependent on
the chosen spectral reference. It is important to note
that this is not a limitation of the representation. Rather,
it should be regarded as the potential and flexibility of
the representations. Experts in the cultural heritage

domain know the characteristics of materials they are
interested in. For example, ultramarine blue pigment
will have a reflectance peak at 500 nm. By using ultra-
marine blue as a spectral reference, they will be able to
observe the distribution of vermilion pigments, since
these pigments will be located far from the reference in
the BHSD and modified BHSD.

Finally, the potential of KLPD and its representation
in a BHSD and modified BHSD do not stop at the
two-dimensional space. For the same object or surface
under evaluation, several n spectral references can be
employed, providing a representation or feature vector
of size 2n. Even if its visual representation will be limited
to a three-dimensional space, by combining two shape
and an intensity differences, this higher dimensional fea-
ture vector can be processed as classification or cluster-
ing tasks.

4. Pigment mapping

An immediate task that can be carried out using a
spectral difference function and its representation in
BHSD and modified BHSD is pigment mapping.
The complete workflow that will be used in this
section is as depicted by Figure 9. Using this workflow,
the mapping of several pigments will be carried out
for both sides of the case study painting, The Scream
(1893).

4.1. Reverse side – Vermilion

Following the pigment mapping workflow in Figure 9, a
vermilion map for a subset image of the reverse side of
The Scream is obtained and shown Figure 10(a). To
remind readers, this subset image is the same as what

Figure 11. (a) BHSD and (b) modified BHSD of subset image shown in Figure 6(a), computed using a spectral reference that mimic the
shape of sample #33 in Table 1, but of lower intensity values. Two clusters of ultramarine mixtures can be observed, they are manually
circled in red in (a). Thresholds used for the mapping are shown in (b).
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has been used throughout Section 3 for illustrations and
demonstrations of the representation and discrimination
of spectral variation. The vermilion map (Figure 10(a),
bottom) is obtained by choosing a threshold for the

BHSD representations that were shown in Figure 8. Pix-
els considered the vermilions are those located within
shape threshold TG ≥ 13 and intensity threshold
10 ≤ TW ≤ 150 in the BHSDs.

Figure 12.Maps for the mixture found in sample #34 in Table 1 (ultramarine blue, lead white, barites) for the reverse side of The Scream
(1893). Only relevant pixels are colored, while the rest represented in grayscale.

Figure 13. Two subsets of the front side of The Scream (1893). Both extracted from the leftmost cutout.
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Using the same thresholds, the mapping is extended
to the entire surface of reverse side of the painting. The
results can be seen in Figure 10(b), where only pixels
classified as vermilion are colored, while the rest are pre-
sented in grayscale. Note that these pixels are not always
considered pure vermilion. They can also be considered
as where traces of the pigment can be found, in thin
layers or possibly mixed with relatively low amounts of
other pigments.

4.2. Reverse side – mixed ultramarine blue

Amixture of ultramarine blue, lead white, and barites was
found on the reverse side of the painting, see sample #34
in Table 1. In this section, we want to extend this point
analysis result to the entire surface of this side of the paint-
ing using the same method as previously carried out for

vermilion. For this mixture, we can immediately apply
thresholding to the representations in Figure 8. However,
there, the distribution of this mixture is rather concen-
trated around the origin. This is understandable because
the spectral reference was a slightly modified spectrum
of this exact mixture. To have a better discrimination
for it, we would rather choose another spectral reference
that would push the distribution of the mixture away
from the origin, such that we are able to observe and
decide for a better threshold selection.

From the representation in Figure 8(b), we know that
vermilion and the mixed ultramarine blue are located in
both ends of the horizontal axis of modified BHSD.
Thus, if we are to choose a spectral reference that is
mimicking the vermilion, we know we will have the ver-
milion distribution concentrated around the origin and
the mixture will be located in the far end of the horizontal

Figure 14. (a) BHSD and (b) modified BHSD of a subset image of the front side of The Scream (1893) shown in Figure 13(a). They are
obtained using a spectral reference generated based on the spectrum of sample #20.

Fig. 15. Vermilion maps for two subsets of the front side of The Scream (1893) shown in Figure 13. The map in (a) demonstrate a rela-
tively good classification of vermilion. However, the result in (b) shows also a misclassification for yellow pigments. Note that pixels
represented in grayscale are not detected as vermilion.
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Figure 16. Vermilion maps for two subsets of the front side of The Scream (1893) previously shown in Figure 13 after a second step of
thresholding involving a second spectral reference. Pixels represented in grayscale are not detected as vermilion.

Figure 17. Maps for mixtures with vermilion for the whole surface of the front side of The Scream (1893). Only relevant pixels are
colored, while the rest represented in grayscale. The yellow pixels are also detected as containing vermilion; they are possibly
mixed with vermilion as the case of sample #14 in Table 1.
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axis. BHSDs shown Figure 11 are obtained using a refer-
ence spectrum whose shape is of sample #33 in Table 1,
but of lower intensity values. From these representations,
we can observe two clusters that belong to the mixtures of
ultramarine blue, i.e., those that are within red circles in
Figure 11(a). The obtained distribution allows us to
empirically decide the thresholds for the mapping, see
Figure 11(b). Finally, using these thresholds, maps for
the pigment mixture of ultramarine blue, lead white,
and barites are shown in Figure 12.

4.3. Front side – Vermilion

Compared to the reverse side, pigment mapping of the
front side of The Scream (1893) is expectedly more chal-
lenging. This is because in the reverse side, what is now
considered as an unfinished version of The Scream, the
brushstrokes are significantly less mixed. It is also under
a better condition compared to the front side, which has
been under exposure to light, dirt, weathering, etc. for dec-
ades. Due to this, pigment mapping of the front side is
highly likely needing more than one spectral reference.

Before working for the entire front side of the paint-
ing, a subset is selected to illustrate the impact of refer-
ence selection and the challenge of mapping this
particular painting, see Figure 13(a). In the subset, we
can observe red, turquoise, and mixtures of whites and
yellows. The red colors are possibly of similar mixture
to sample #17 in Table 1, likely vermilion and gypsum.
Thus, we are interested in correctly detecting this red
region of the subset as vermilion.

From vermilion mapping results of the reverse side of
the painting (Section 4.1), we know that choosing an
ultramarine blue-like spectral reference will allow pushing
the distribution of vermilion-containing pixels away from
the origin, in the direction of the horizontal axis (Figure 8
(b)). However, we also know that the front side of the
painting is highly mixed and deteriorated compared to
the reverse side. Thus, if we are to generate an ultramarine
spectral reference, it has to be one that mimics an ultra-
marine mixture that is found on the front side rather
than the reverse side of the painting. Sample #20 in
Table 1 is found to be a mixture of artificial ultramarine
blue with some other white pigments/colorants. A spectral
reference is then generated based on the spectrum of this
sample and the BHSDs of the subset image of interest can
be observed in Figure 14.

Using the thresholds as illustrated in Figure 14(b), ver-
milion maps for both subsets shown in Figure 13 are
obtained and provided in Figure 15. Vermillion mapping
for the first subset seems reasonable. Regions with tur-
quoise, yellow, and other colors are not detected as

vermilion. However, in the second subset, we can observe
that there exists several misclassification for the yellow
colored pixels. While such results are understandable
because there are yellow colors that are mixed with vermi-
lion, such as in sample #14, the results can be improved by
using another spectral reference that maximizes the differ-
ence between the red and yellow colored pixels. Then, by
combining the shape differences from both references,
new representations can be plotted. For brevity, here we
skip the procedure and intermediate thresholding results.
The final mapping for both subset images after combining
results from the two references can be observed in
Figure 16. Finally, full vermilion maps for the front side
of the painting are provided in Figure 17.

4.4. Discussion

Pigment mapping is an immediate application of the
bidimensional representations of spectral variation
introduced in the previous section, BHSD and modified
BHSD. By simply giving thresholds in the representation
space, we can map the occurrence of pigments of interest
in the entire surface of a painting. Moreover, in this sec-
tion, we have applied pigment mapping for the reverse
and front sides of The Scream (1893), for vermilion pig-
ment and mixed ultramarine blue.

Mapping the reverse side of the painting is a relatively
easier task than for the front side. This is because the
reverse side can be considered as a sketch or layout,
painted with confident and large brushstrokes, making
the pigments on this side not as highly mixed as the
front side. Moreover, it is also relatively well preserved
and has not been exposed to dirt and weather as the
front side of the painting. As a result, the pigment map-
ping for vermilion and mixture of ultramarine blue only
required each a single BHSD processing with one spec-
tral reference.

Pigment mapping task becomes more challenging as
we tried to map vermilion on the front side of the paint-
ing. To tackle the deterioration issue of the front side, the
spectral reference is chosen to mimic mixture of ultra-
marine blue that is found on this side rather than that
of the reverse side. However, this does not solve the chal-
lenge posed by the highly mixed nature of the pigments.
For this issue, two references have to be used in combi-
nation. After the first thresholding of BHSD obtained
using the first reference, several yellow colored pixels
were identified as vermilion. A second spectral reference
was then selected to maximize the difference between
vermilion and these yellow pixels. Finally, the processing
in which this second reference was incorporated yielded
a better mapping of vermilion.
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Thresholding applied on the representation space can
be considered as a classification approach. The limitation
to such approach lies in the fact that it provides a binary
decision, whether a certain pixel is vermilion or not,
which evidently is not always relevant in cases where pig-
ments are highly mixed. However, depending on the
choice of the threshold, the user is allowed to determine
how strict he or she wants the results to be. As the
threshold becomes more narrow or strict, the mapped
pigment becomes purer. On the other hand, when the
threshold is set looser, the obtained map should be trea-
ted as indication of where this certain pigment occurs, be
it pure or in mixture. Although it has to be noted, that
the map is an indication of occurrence and does not pro-
vide information of pigment concentration.

Apart from its use in the task of pigment discrimi-
nation, BHSD and modified BHSD are generic represen-
tation spaces useful for the analysis and processing of
hyperspectral images in any application domain. In a
most recent study, this space was used to define statistics
to measure the variability of hyperspectral texture images
(Deborah, Richard, and Hardeberg 2018). By allowing
observing, analyzing, and quantifying spectral variability
in a reduced space, their potential lies in many different
application fields. In the remote sensing field, the con-
cept of spectral variability has been used to solve unmix-
ing tasks (Drumetz, Chanussot, and Jutten 2016). It also
remains to be explored how feature vectors computed in
this space can be used in medical applications, such as
dermatological diagnosis based on hyperspectral ima-
ging (Koprowski et al. 2014).

5. Conclusion and future works

In this study, we have introduced a spectral-divergence
based representation space for spectral variation,
BHSD and modified BHSD. This representation is built
based on Kullback-Leibler pseudo-divergence (KLPD)
which has been shown in previous studies to be more
accurate than other more commonly used similarity
metrics. Note also that a prior study has demonstrated
the direct relationship between BHSD representation
and expert judgment on pigment discrimination. We
have also illustrated and demonstrated the use of these
BHSDs using The Scream (1893) by Edvard Munch as
a case study. In addition to using The Scream (1893)
for the demonstration of use for BHSD, we have pro-
vided several pigment mappings for both sides of this
painting, vermilion and mixed ultramarine blue.

The use of BHSD and modified BHSD is not limited
to pigment mapping task. By using multiple references,
a feature vector of spectral differences for every pixel in

the image can be obtained. In such a higher dimensional
space, a more complex classification task will become
possible. It also opens the possibility to carry out pig-
ment unmixing task, which will provide not only infor-
mation of occurrence, but also an estimation of
pigment concentration in any given pixel.

Notes

1. https://www.rese-apps.com/software/glimps/free-
enviimage-viewer.html.

2. Metrology, as defined by the International Bureau of
Weights and Measures (BIPM), is “the science of
measurement, embracing both experimental and theoreti-
cal determination at any level of uncertainty in any field of
science and technology,” taken from https://www.bipm.
org/en/worldwide-metrology/. Accessed March 5, 2018.

3. By “true color,” we mean any color representation or
space chosen by the user. It can be color simulated for
the human visual system under D65 illuminant or
color generated by some software using a certain
optimization.
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Appendix 1. Comparison to SAM and SCM

In an earlier case study, we have compared the performance of
spectral angle mapper (SAM) and spectral correlation mapper
(SCM) for mapping the pigments of the front side of The
Scream (1893) (Deborah, George, and Hardeberg 2014). In

Figure A1. Modified BHSD for subset image shown in Figure 6
(a), obtained through using SAM and SCM as the X- and Y-
axes, respectively. Note that the range of values obtained by
SAM and SCM are [0, 1] and [−1, 1], respectively. Results
obtained the aforementioned parameters for SAM and SCM
can be observed in Figure A2, with original image and KLPD
result also provided for comparison. In addition to the reddish
pigments that are highly likely vermilion, SAM also detects pur-
plish colors located at the arm of the figure at the center of the
painting as vermilion. For the same region, SCM does not deem it
as vermilion. The problem with SCM, however, lies in its false
detection of cardboard regions as vermilion. KLPD also detects
some part of the arm of the figure as vermilion, but not as severe
as the case of SAM. In addition, KLPD does not consider the card-
board regions as containing vermilion.

Figure A2. Original image of one cutout of the reverse side of The Scream (1893) and its mapping results for vermilion pigment,
obtained by KLPD, SAM, and SCM. Note that only pixels detected as vermilion are colored, the rest remains in grayscale.
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it, it had been shown that cases of erroneous identification and
mapping resulting from SAM were indeed improved by SCM.
Nevertheless, results obtained by SAM and SCM for vermilion
pigment on one cutout of the reverse side of the painting are
provided and contrasted to that of KLPD in the following.
They use the same spectral reference as that of KLPD, i.e.,
R2 shown in Figure 6(b). Then, their thresholds are set with
TSAM ≥ 0.4 and 0.5 ≤ TSCM ≤ 0.75. The choice of these

thresholds are made through observing the modified BHSD
obtained for a subset image (Figure 6a) that is provided in
Figure A1. In this BHSD, the two axes are both representing
shape differences, albeit representing different similarity func-
tions. As a final note, despite providing a BHSD that combines
the result of SAM and SCM in a single visualization, the pro-
cessing of the results do not combine the two since the aim is to
compare their individual performances against KLPD.
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