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Abstract

New architectures and current technologies in software engineering enable the con-
struction of systems with ever-increasing complexity. Distributed software systems
today are most often composed of a number of building-blocks, operating in a net-
worked environment and working together to achieve a variety of tasks. Software
systems can cover several application domains, from smaller-scale dedicated or em-
bedded systems (e.g. a security and video-surveillance system or a scientific simulator)
to multi-user large-scale applications (e.g. web-based stores, or enterprize class data
management systems). These systems are designed to be functionally correct ac-
cording to some specification and at the same time to satisfy requirements related
to the Quality of Service (QoS) they provide. This provided QoS depends on many
parameters, such as properties of the network, the underlying execution hardware
and system configuration. Mainly, two categories of properties can be considered:
(i) capabilities, such as available bandwidth, processing power, storage and memory
capacities, etc., and (ii) QoS requirements, such as volume of transactions, availability
of hosts, amount of processing power, among others.

The topic of this thesis is how to decide where to allocate instances of software
in a network of compute resources, under a variety of resource constraints and QoS
requirements. The allocation of components in a distributed system, in other words its
deployment mapping, can have a significant impact on the QoS provided by the system.
Often, there are numerous deployment mappings that offer the same functionality,
but nevertheless have very different QoS. In addition, some of the requirements the
service has may be conflicting, so that improving the deployment with respect to one
requirement might degrade the solution from another perspective. Hence, the problem
of finding an optimal deployment mapping has many challenges and can be viewed
from many angles. Obtaining a solution is further complicated when there is extensive
dynamism and scale involved.

With the appearance of complex software systems the need for methods and algo-
rithms that enable reconfiguration and adaptation has arisen. Self-adaptation has been
an inherent property of several complex systems in nature that have been described
theoretically and explored extensively. Thus, this thesis investigates how a bio-inspired
method can be applied to the problem of obtaining deployment mappings for software
services, and what are the benefits and tradeoffs of its application. The thesis presents
a novel heuristic method for decentralized optimization aimed at finding near optimal
mappings within reasonable time and for large scale.



ii COST-EFFICIENT DEPLOYMENT OF DIST. SOFTWARE SERVICES

Different incarnations of the deployment problem are explored throughout the
papers included and several representative scenarios are investigated using simula-
tions. For one of the scenario types means for obtaining global optimum solutions are
provided and the results are used for cross-validating the simulations and to show that
the heuristic algorithm presented in this thesis is able to provide effective means for
solving deployment problems.

Furthermore, a formal approach is introduced to model services and deployment
scenarios with different sets of requirements and optimization algorithms are given
for the various scenarios. The approximative, computationally efficient, decentralized
approach presented is believed to be adequate for on-line execution and can be tailored
to given sets of requirements.
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Nomenclature

The table below summarizes the notational elements used in Part I. The sets denoted
in boldface are constants, whereas the sets in italic are running variables. Note that
this notation is adjusted to the overall introduction and might differ from the notations
applied in the included papers.

Table 1: Notational shorthand

Notation Usage Size Description
Ai availability of an instance i

ar,br parameters for the Taylor expansion of the temperature
Amn,Bmn,Cmn parameters for the Taylor expansion of the pheromones

β the memory factor
C ci ∈ C |C| set of components in a service Sl

C{0|1}() a quadratic function to evaluate node-local costs
D di ∈ D |D| set of all existing network clusters
D di ∈ D |D| ⊆ |D| list of clusters used in mapping M

F{1|2|3|4}() a function to evaluate the cost of a given deployment

f (e)
ci execution cost of an instance

f (c)
k j

communication cost of a collaboration

f ( f )
ni financial cost of using a node

FF (M) financial cost of using nodes covered in M
FK(M) communication cost of mapping M

γr temperature in iteration r
H ni ∈ H |H| ⊆ |N| hop-list, i.e. nodes visited in iteration r

H() an (exponential) performance function in CEAS
hr() autoregressive formulation of H()
I() an indicator function
K k j ∈K |K| set of collaborations in a service Sl
L l̂n,r ∈ L |L| ⊆ |N| set of load samples

Mr mn,r ∈Mr |M|= |C| mapping C→ N for a service in iteration r
N ni ∈ N |N| set of all existing nodes
ω scaling between FK and execution costs

pmn,r random proportional rule for mapping m at node n
Φ φ1 ∈Φ set of dependability rules

q{0|1}() helper functions returning a node n or a cluster d
r iteration counter
ρ the search focus
S Sl ∈ S |S| set of services to deploy
T global load-balance estimate

τmn,r pheromone value for mapping m at node n in iteration r
ϑ() processing resource demand
w replica execution cost





Part I

THESIS INTRODUCTION





Introduction

Distributed and pervasive software systems can typically be characterized by dynamic
configurations and operational conditions that are unknown prior to their deployment.
Traditional desktop software systems are relatively stable and static during their oper-
ation. Popular multi-user web applications and similar services are currently being
deployed in large-scale data-center environments due to their inherent scaling needs.
Data-center environments may consist of hundreds of thousands of nodes, and at this
scale, the topology is typically in constant change. Changes in execution context might
be due to scheduled maintenance, failures, or varying usage patterns of the different
applications deployed. Accounting for all the parameters involved in these types of
complex systems is a challenging undertaking. Flexible methods and models are
necessary to maintain the desired QoS at acceptable costs, where the term desired QoS
is interpreted as the delivery of a service in accordance with its specification [PJE09].
As it is often difficult to derive accurate estimations regarding the execution context of
distributed software services at design-time, support for run-time adaptation is needed.
The main contributions of this work can be outlined as follows.

Finding computationally effective cost functions, that is functions that express the
utility of deployment mappings of a service. In order to capture the cost of a deploy-
ment, first a high-level functional modeling approach is found. The models consist of
distributed, collaborating components and can be embellished with non-functional in-
formation, which serve as input for the evaluation of deployments. Different functions
are presented for different requirements and deployment scenarios.

Using the cost functions derived, a bio-inspired, decentralized optimization ap-
proach is applied (previously applied to distributed path-finding in networks). The
heuristic method is aimed at finding (close to) optimal mappings even under instable
network conditions. Several incarnations of the deployment problem are investigated
through simulations. Algorithms based on the bio-inspired method, called the Cross
Entropy Ant System (CEAS), are devised and fine-tuned for solving the deployment
problem.

The deployment approach is cross-validated against a traditional centralized tech-
nique that obtains the global optimum in one of the deployment scenarios studied. It
is shown that the solutions obtained by simulating the proposed deployment logic are
close to optimal, with low variance. Traditional centralized optimization methods fall
short as the problem size grows, whereas the heuristic algorithms proposed can scale
more conveniently to larger problem sizes. Moreover, due to the inherent dynamism
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that exist in the systems considered, a solution might quickly become suboptimal.
The suggested heuristic approach, however, is able to rapidly adapt to changes in the
environment.

This thesis consists of two main parts. The first part is intended to give the reader a
short but comprehensive introduction to the research work conducted by the author
in connection with this thesis. Guidelines for reading and a short summary of the
publications included in the collection in Part II is given below.

The organization of the Thesis Introduction is as follows. Section 1 presents the
background of the problem setting. The problem of obtaining deployment mappings
between various building-blocks of software services and execution hosts in a network
is introduced, followed by a discussion on the complexity, constraints and other as-
pects of the problem at hand.

The research methodology is presented in Section 2, which is a section discussing
the key points of this work, including the importance of cost functions and how deploy-
ment costs are quantified, the swarm intelligence based optimization framework that
is applied extensively in the thesis. Fine-tuning and extensions of the optimization
approach and deployment strategies are discussed. Issues of scalability, convergence,
overhead and validation of the results are also summarized in this section.

A summary of the contributions is given in Section 3 presenting how the included
articles are interrelated and giving guidelines for reading.

Section 4 reviews related work, before a discussion in Section 5. The first part of
the book ends with Section 6, where some of the work ongoing during the time of
writing and possible future directions are outlined.

1. Research focus and background

Current software applications and services predominantly exist in a highly distributed
and dynamic environment, where the underlying hardware systems might change their
topology as well as their capacity and availability frequently. Another dimension
of dynamicity arises from the varying usage patterns of a high volume of users
software systems are designed to provide services for. Maintaining the desired QoS at
reasonable costs requires efficient and flexible methods. The major focus of research
in this thesis is on the deployment of software services. The work explores the possible
advantages achievable via effecting changes in the software architecture and the related
trade-offs that have to be taken into consideration. The relevant constraints and the
complexity of the deployment problem are touched upon in this section, followed by a
short discussion on the target platforms that can be considered as execution framework
for the services this thesis is relevant for.

Furthermore, a set of requirements for a deployment logic is defined below that will
be elaborated and will be referred to in the appropriate sections of this introduction. A
deployment logic shall satisfy the requirements of:

REQ-1. – Efficiency

Being efficient means that a solution to the deployment problem is
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found that satisfies all the requirements of the services at hand. The obtained
solution might not be the absolute optimum (one of the optima in case there
are many), but it is obtained fast, i.e. within a reasonable amount of iterations.
Also, the amount of iterations and the additional overhead required by the
method to converge to a new solution after a change in the execution context
has to be as low as possible.

REQ-2. – Robustness

Furthermore, the logic has to be able to operate in a dependable way if
executed in an on-line environment. By developing a decentralized mechanism
the need for centralized storage and decision making is avoided. Thus, the
approach is free from a possible bottleneck and single point of failure.

REQ-3. – Autonomicity

Autonomicity is required to realize self-management, i.e. to collect
information, to analyze it, and then to act based upon it autonomously.

REQ-4. – Adaptivity

Moreover, the dynamic environment in which software services are
typically deployed into necessitate the capability of adaptation to be able to
adapt deployments to run-time changes in the execution context.

REQ-5. – Scalability

Scalability of the deployment logic has to be considered with respect
to overhead, resource usage and convergence time of the method. Also, it
is important that as the problem size grows the additional burden on the
method grows in a controlled manner. In many cases, if the search space for a
deployment is very large, obtaining the optimum might require prohibitively
long time. By that time, the execution context might even change due to the
dynamic nature of the physical environment of the applications. To allow
scaling to relevant problem sizes, the logic requires efficient data representation
for the search method, and fast execution of the algorithms crawling through
the data.

REQ-6. – Generality & Extensibility

Lastly, the method has to be general enough to allow for extensions
with respect to problem constraints that can be considered. In other words, it
has to be relatively easy to extend the logic to cater for new QoS dimensions for
the services deployed.

Next, the general deployment problem is introduced.
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1.1 The deployment problem

This thesis focuses on the problem of mapping building blocks of services to physical
resources, i.e. execution hosts, so that the requirements the services have are satisfied.
The deployment problem can be characterized as a multifaceted optimization problem,
with multiple layers of complexity as illustrated by Figure 1. The overall goal of the
deployment is to obtain an efficient mapping, M : C→ N between the building-blocks
(the set C) of services ({S1, S2, . . .} ∈ S) and the available nodes (N). A service Sl is
defined as being provided by a set of components {c1,c2, . . .} ∈ C that communicate
with each other via a set of collaborations, {k1,k2, . . .} ∈K. Hence, a collaboration
k j = (k j,1,k j,2) may exist between two components ca and cb, such that k j,1 = ca and
k j,2 = cb. This description assumes that all of the services can be mapped to the set of
available resources. Generally, this is not the case due to compatibility problems and
security restrictions.

Heuristic
algorithm
proposed

Thesis
scope

Services to
be deployed

Execution
hosts

Figure 1: Multiple dimensions of the deployment problem (adopted from [Mal06])

The multiple layers show the execution hosts in the bottom and the services ex-
ecuted and deployed simultaneously on the second layer. QoS-related, or in other
words non-functional (NF), requirements constitute the third layer of the problem,
including aspects such as dependability, security, performance, energy-saving, etc.
This layer contributes to an increased problem complexity as well, as the number of
NF-requirements taken into account increases. The top layer includes the possible
varieties of usage scenarios for the services. These usage scenarios can be captured in
the models by enriching them with additional usage related information, such as for
example arrival rates for the components that handle user requests. This fourth layer,
however, is out of the scope of this thesis.

Relevant QoS requirements can be captured and incorporated into the service mod-
els at design time (REQ-6). In particular, to model services, collaboration oriented
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models are used, similar to UML 2.0 collaboration diagrams. The deployment logic
is used to optimize the mappings and, at the same time, enable compatibility with
existing frameworks and interfaces for deployment. A sample collaboration between
two components is shown in layer two in Figure 2, which is a basic example used
throughout the included papers to introduce service models. This example shows two
software components (that have to be deployed) and a collaboration between them,
each of which has a corresponding cost value. Components have costs related to
their execution, e.g. memory or CPU share needed at the host, factored into a single
value, whereas collaborations have costs that inform about the communication need
between the components. Communication costs are composite values incorporating
the volume of interaction between components, i.e. they are characterized by the
amount of messages interchanged and the average message length.

n 2n 1
d 1

C jC i k

Comm.
cost = 15

Exec.
 cost = 30

Exec.
 cost = 20

k

M : Deployment
mapping

Se
rvi

ces
No

de
s

Figure 2: Example network and collaboration

The main notational elements used throughout Part I are summarized in Table 1.
To demonstrate the notation with a very small example, consider the network and the
example collaboration shown in Figure 2. In this case the target network consists
of two nodes, N = {n1,n2}, and there is only one cluster in the network, D = {d1},
which contains two nodes, d1 = {n1,n2}. The set of services that have to be deployed
consists of only one service S = {S1}, where S1 is defined by the simple collaboration
in the second layer in Figure 2. Hence, there are two components to be deployed
C = {ci,c j} and one collaboration K = {kk} between them. The variables, for exam-
ple after 1 iteration of the deployment logic, can hold the following values. Clusters
used D1 = {d1}, nodes visited H1 = {n1,n2}, load samples taken from the nodes
L1 = {l̂n1,1, l̂n2,1}= {30→ n1,20→ n2}, and the mapping M resulting from iteration 1
M1 = {mn1,1,mn2,1}= {{ci→ n1},{c j→ n2}}. �

1.2 Problem complexity and trade-offs

The problem of determining a new mapping, M, of instances, C, to physical nodes, N,
while avoiding the violation of hard constraints was shown to be NP-hard [WSVY07].
Complexity can be verified by reducing the multidimensional bin packing prob-
lem [KLMS84] to this mapping problem by letting N represent the bins and C the
objects to be packed. Objects may have specific needs for the available resource
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types and each constraint will span a dimension in this case. Even to determine if a
valid packing exists is NP-hard in itself [WSVY07]. The problem of apportioning
multiple finite resources to satisfy the QoS requirements of multiple applications
along multiple QoS dimensions, labelled the MRMD problem has been investigated
in [LLS+99]. Complexity of the MRMD problem has been proven to be NP-hard by
reducing the binary knapsack problem to one of its special cases. A more general
version of the deployment problem, the general module allocation problem, with
the exception of some special communication configurations, has been shown to be
NP-complete in [FB89]. Introducing more requirement dimensions (REQ-6) pro-
vides additional complexity, for example when consistency protocols are added to
improve dependability of the services. These results and considerations suggest that
the problem formulation applied in this thesis, and presented in Section 1.1, results in
an at least NP-hard problem. An additional cost factor is related to the overhead of
actual physical placement of components (deployment) and thereafter their migration
(re-deployment). This cost, however, is not considered in the following.

In addition to the complexity, the size of the deployment problem is often very
large. Finding efficient mappings in realistic scenarios, such as in large-scale data
center infrastructures the problem size becomes difficult to handle and finding exact
solutions might be impossible. One of the major factors increasing the solution space
is that a multitude of services have to be deployed simultaneously. Also, the physical
network usually consists of a large number of nodes, often divided in many different
administrative sites, where all the requirements have to be fulfilled even in deploy-
ments stretching across many sites. A large number of parameters has influence on
the quality of the deployment. A number of services can be executed in parallel and
hence, can compete for the same set of resources.

Further complicating the task of deployment is the dynamic and constantly chang-
ing context of software services, including user mobility, node churn, network clusters
splitting and merging, incremental scaling needs, variations in accepted workloads,
and more. To efficiently deal with these issues the capability for adaptation has to be
inherent in a deployment method (REQ-4) as well as making decisions autonomously
(REQ-3). Hence, the complexity of the problem and the size of the solution space in
realistic scenarios suggests the application of heuristic algorithms instead of exhaus-
tive search methods (considering REQ-1 and REQ-5). Self-organizing systems are
known for exhibiting the required properties and are a good candidate for developing
intelligent methods aiding service deployment.

In some cases the solution space can be reduced due to specific requirements. The
simplest factor, which decreases the solution space is fixing the mapping of some
instances, parts of a service to a given physical resource. Consider for example a
service component that is responsible for operating a surveillance camera and thus it
is fixed to the physical device itself. A fixed mapping cannot be changed during the
search for an appropriate deployment, thus the deployment problem is cut back to the
remaining components in the service, this is referred to as binding throughout the rest
of this thesis. Binding generally reduces the search space. However, bound instances
of the services still have to be taken into account when a given deployment mapping
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is evaluated and checked for compliance with the requirements. Service examples that
contain bindings are presented in PAPER A, B, and C.

Runtime adaptation might enforce changing the placement of a set of instances of a
service from the initial deployment mapping, conditioned by specific threshold values,
characteristic to the cost of the required migration event. Several authors estimate
the durations required for migrating for example operational VMs by conducting
experiments. Durations vary, as expected, depending on the hardware context, e.g.
bandwidth, and naturally on VM package size. However, for realistic sizes estimates
lie typically around 60 to 90 seconds, see [CFH+05, HON+09, JHJ09]. Relocation of
VM instances can be further sped up by compression techniques for complete machine
states. An efficient compression approach, for example in [SPYH04], can provide a
package size as low as 10% of the original memory consumption of a VM. Migration
costs can be factored in as threshold values to allow changes in the deployment map-
pings only if the benefit is higher than the costs of migration. Runtime reconfiguration
costs are further investigated in [HJS+09, JJH+09]. Besides, migration of service data
is an additional challenge complicated by issues of shared data, inter-dependencies
and user mobility. In case of many web-based applications with a very high number
of users, standard commercial optimization tools simply do not scale to the problem
size [ADJ+10].

1.3 Target systems

The deployment logic is concerned with elementary building blocks of services. These
elementary building blocks, referred to as components, are considered to be stand-
alone, executable packages of software that have well-defined interfaces and can
communicate via message exchange. Distributed components then collaborate and
together provide a given service. Services in the deployment logic are looked upon
from the service provider’s perspective. However, a deployment that is deemed ef-
ficient (REQ-1) considers the general QoS perceived by the users of the services as
that is mostly what generates revenue for the providers. There are many ways of
improving QoS by influencing the software architecture, and in particular via changing
the deployment of components, which is the focus of this work. A simple example is
considering the latency of a service, which can be decreased effectively by identifying
and deploying components that require voluminous interactions to the same host,
which we refer to as collocation, or, alternatively deploy them to nodes that are con-
nected by capacious links. If, however, the deployment logic has to consider general
load-balancing at the same time the problem becomes significantly more difficult to
solve.

The execution platform of services is possibly also a highly distributed hardware
environment consisting of nodes heterogeneous in capabilities, amounts of resources
and in access rights. This network of possible execution hosts is considered to be a
hybrid environment, in which services can be deployed in various clusters or clouds,
depending on the present conditions, and usage patterns. The utility of having several
network clusters lies for example in the possibility of tackling peak load scenarios,
or meeting dependability and performance requirements. Handling load-overshoots,
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for example, might dictate addition or removal of service instances. Execution in
such dynamic and hybrid environments might be influenced by a plethora of various
parameters making the search for an efficient deployment difficult. To model the
dynamic environment a target network consists of nodes ni ∈N, and the network itself
can in addition be partitioned into clusters {d1,d2, . . .} ∈ D as shown in Figure 3.

. . .

Figure 3: Example target network

Regarding the network it is assumed that all nodes are identical with respect to
capacity and the network is fully interconnected. Furthermore, each node participating
contains an execution runtime that encapsulates the functionalities of installation
and execution of components. For every service that is deployed the deployment
logic has to be run separately. This, however, can be done in parallel. Autonomous
agents searching for a useful deployment for different services are depicted in differ-
ent colors. Each separate type of agents, corresponding to separate services, has to
have a designated node, a home-location called the nest. Each node has, beside the
execution runtime, a dedicated array of memory available to the deployment logic
only, called the pheromone table, and capacity for installing one or more components
of arbitrary services. The pheromone tables contain information about component to
node mappings for each service and each node (similarly to routing tables). The inner
workings of the deployment logic are addressed in more detail in Section 2.

The concept of autonomic managers has gained much attention in autonomic com-
puting as an entity that can automate management functionalities and provide standard
interfaces externally. An autonomic manager implements an intelligent control loop
introduced in the seminal paper [KC03]. The control loop, shown in Figure 4, is
often referred to as MAPE for it’s four main functions, Monitor, Analyze, Plan, and
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Execute. To realize self-management in a system some degrees of autonomicity has
to be in place (REQ-3) to collect information about the system, analyze it, create a
plan of necessary changes and finally to perform the required actions. Information
used to facilitate autonomic management can be represented as knowledge that can be
shared among distributed mangers working together for a common goal.

Figure 4: Focus of this thesis in the context of autonomic management (adopted
from [KC03])

An autonomic manager featuring the MAPE loop and applied for efficient deploy-
ment of services would benefit from the contributions of this thesis in the analyzes,
planning and knowledge part as shown in Figure 4 indicated by the dashed line. The
deployment logic presented herein requires input from a monitoring unit describing
the environment, and another unit, for execution, that can effect the placement sug-
gested by the logic. These two features of the MAPE autonomic manager are not
discussed in this thesis and are assumed to be in place. When a proper description of
the environment and the current deployment is given, running the deployment logic
will analyze the situation and find a suggested mapping that serves as a plan for change.
This change can then be effected, in the form of a new placement, by the executor
part of the cycle. Knowledge gathered by an autonomic manager, i.e. one instance of
CEAS, can be shared with others via the pheromone tables.

A large variety of software execution frameworks and middleware are possible
candidates for providing an underlying service to the deployment logic depending on
what kind of services we consider. Various examples for different environments are
presented in the papers included in this thesis. For collaborating software components
one such candidate framework is the MUSIC middleware platform [RBL+08] that
promises support for self-∗ properties and component based software. To consider
dependability aspects of a deployment fault tolerant group communication systems
are suitable platforms, such as the DARM platform [MG08]. In a cloud computing
scenario, where the deployment logic is used to optimize placement of VM instances a
typical Infrastructure-as-a-Service (IaaS) setting is used. Candidate cloud computing
platforms include for example the Amazon EC2 system [LLC] or VMware. Impor-
tantly, however, the intention with the deployment logic is that it is agnostic to the
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underlying (monitoring/execution) platform, i.e. optimization of the deployment can
be done based on service models, regardless of the physical framework underneath.

2. Methodology

The research in this thesis has been conducted in a step-wise manner, starting from
discovering the gains that can be achieved in software performance by distributing
components of an application in an efficient manner and noticing how changes in the
software architecture, in particular in the deployment, affect the QoS even in relatively
smaller scale systems. The deployment logic proposed in this thesis is aimed to satisfy
the requirements specified earlier, REQs 1 through 6. To obtain a logic adhering to
these requirements, tangible scenarios were selected with increasing complexity and
size. These scenarios were used to test new developments in the logic. At every stage,
an example that is tractable and which has verifiable solution(s) has been devised.
New examples were used to test every increment of additional complexity. These
examples are described in detail in the included papers in Part II.

For each example scenario extensive simulations were conducted. The algorithms,
the logic consists of, were implemented in a process-oriented, discrete event simulator
environment called Simula/DEMOS [Bir03]. Repeated simulation runs were executed
for each scenario, e.g. 100 runs with one set of parameters, to gain some statistical
insight into how the logic behaved. In particular, two methods are investigated exten-
sively that are crucial for deployment decision making: (i) deriving cost functions and
(ii) a bio-inspired optimization method.

Cost functions are devised to characterize the utility of a given deployment configu-
ration. The appropriate functions contribute to finding efficient deployments, while
allowing the method itself to operate with a large variety of QoS properties (REQ-6).
Regarding optimality of the solutions, the target is not necessarily the absolute global
optimum. Instead, mappings that have acceptable QoS and can be obtained fast are
targeted (REQ-1).

Second, a bio-inspired, decentralized method is adopted and tailored to the deploy-
ment problem. With the decentralized logic the need for centralized information
storage and decision making is avoided, thus eliminating a possible bottleneck and
single point of failure in the system (REQ-2). Obtaining and recalculating deployment
configurations due to changes in the execution context are necessary and useful in
scenarios such as large-scale, geographically distributed data-centers provisioning re-
active services or high-availability virtualized server environments. Here, the inherent
adaptation capability and autonomicity of self-∗ systems are utilized (REQs 3 and
4). To cope with large-scale problems, algorithms especially require an efficient data
representation that is read and updated frequently. A suitable data representation not
only saves storage space, but also contributes to faster execution (REQ-5).

Lastly, cross-validation of parts of the results was achieved via a centralized method,
integer linear programming (ILP) that provides global optimum solutions for given
deployment scenarios, based on a global overview. The integer programs developed
as part of the thesis are implemented in the AMPL language [FGK02], and the Gurobi
solver [Opt] was used for executing them.
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Accordingly, the next sections first introduce the bio-inspired heuristic search
method, the CEAS, applied in this thesis for optimization. Hence, the next section is a
background section. Sections 2.2, 2.3 and 2.4 introduce the three main areas where the
contributions of this thesis are concentrated at. The structure of pheromone databases
are crucial for CEAS and have to be tailored to the specific problem targeted, this is
discussed in Section 2.2. Section 2.3 introduces the concrete algorithms built upon
CEAS. Lastly, Section 2.4 discusses the details of cost function design for various
flavors of the deployment problem.

2.1 The Cross Entropy Ant System

This section introduces the bio-inspired heuristic optimization method that is at the
core of the deployment logic. CEAS is used to obtain mappings M, i.e. solutions
to a given deployment problem. The method originates from Helvik and Wittner
who introduced it first in [HW01], as a subclass of Ant Colony Optimization (ACO)
systems (for an introduction on ACO see [DMC96]). The CEAS is an agent-based
optimization framework, in which the agents’ behavior is inspired by the foraging
patterns of ants. The key idea in CEAS is to let many agents, denoted ants, search
iteratively for the solution of a problem taking into account the constraints and a cost
function predefined. Every iteration consists of two phases. First, during the phase
called forward search ants search for a possible solution, resembling the search for
food in real world ants. The second phase is called backtracking, in which ants –
after evaluating the solution found during the first phase – leave markings, denoted
pheromones, that are in proportion to the quality of the solution. Pheromones are then
distributed at different locations and can be used by forward ants in their search for
improved solutions. Therefore, the best solution is approached gradually. Generally,
there is a trade-off between convergence times and solution quality. Nevertheless, in
case of the main topic of this thesis, deploying services in a dynamic environment,
a pre-mature solution that satisfies both functional and non-functional requirements
often suffices. ACO systems have been proven to find the optimum at least once with
a probability close to one, and after that convergence to the optimum is secured in a
finite number of iterations [SD02]. Since CEAS can be considered as a subclass of
ACO the optimal deployment mapping will eventually emerge.

There is significant difference, however, between the various existing ant-based
systems and the approach taken in CEAS in evaluating the solution and in pheromone
updates. Namely that CEAS uses the Cross Entropy (CE) method originally introduced
for stochastic optimization by Rubinstein in [Rub99]. The centralized CE method
has been shown to be able to provide near-optimal solutions to NP-hard problems
in polynomial time. The method can be reformulated to govern the independent,
asynchronous behavior of agents in CEAS. Compared to similar bio-inspired systems
the application of the CE method makes CEAS unique in that: (i) a formal foundation
is provided, and (ii) it provides two stages, where the second stage adjusts a parameter
regulating the search focus of the algorithm efficiently. The CE method is applied as
described below.

CEAS has been successfully applied to a variety of problems, such as different
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path management strategies, shared backup path protection, p-cycles, adaptive paths
with stochastic routing, and search for resources under QoS constraints, see a more
elaborated list in [HHW08]. Additional details of the method have been worked
out thoroughly and are summarized in [HW10]. Also, detailed studies are reported
in [HW10] in particular with focus on implementation issues and trade-offs, reducing
the management overhead imposed by the additional traffic of management packets,
short recovery times and the mechanisms required to be in place for these improved
features. These mechanisms include elitism, self-tuned packet rate control, and
pheromone sharing. Using pheromone sharing, ants with overlapping search criteria
can cooperate in finding solutions by (partially) sharing information.

In this thesis, CEAS is applied to obtain efficient deployment mappings in the form
M : C→ N. In order to find mappings, ants move between interconnected nodes in
the network in search for hosting capacities. During every iteration, when the forward
search, described above, ends a cost function is used to evaluate the mapping found.
The appropriate cost function, F() is selected depending on the requirements (see
Section 2.4). As discussed, the backtracking phase has to update the pheromone values
proportionally to the cost found by F(M). These pheromone values, denoted τmn,r,
will then be used in the iterations that follow to gradually find improved mappings.
The value of a given τmn,r is directly associated with a set of instances m to be deployed
at node n. Besides, a pheromone value can be updated in every iteration, thus the index
for an iteration r. Pheromone values in general can represent the set m in different
ways, this is described in Section 2.2 where techniques to encode pheromone values
are discussed.

Using the pheromones stored in a node, a random proportional rule, shown in (1) is
used to select deployment mappings during the forward search phase. That is, during
the first phase of each iteration in CEAS, sets of instances can be selected for mapping
to a node according to the random proportional rule matrix pmn,r

pmn,r =
τmn,r

∑l∈Mn,r τln,r
(1)

The probability matrix pr is then changed by applying the CE method and using the
cost of the solution found. The objective of the method is to minimize the cross
entropy between two consecutive probability matrices pr and pr−1. How optimization
is done by minimizing the cross entropy between samples is elaborated in [Rub99],
and a distributed, auto-regressive variant is presented in [HW01]. The main difference
is that in [Rub99] all the global elements (e.g. nodes) are updated in each iteration
based on a batch of samples, while in CEAS pheromones are updated after each
sample, as described later in this section.

CEAS was originally developed to find efficient paths – between source and destina-
tion nodes – for network management purposes, in particular routing. In that case, cost
functions were applied to evaluate the paths found and to influence routing decisions
based on path quality. Using CEAS for routing the pheromones τi j,r were defined as
an assignment between interface i and a node j at iteration r. Selection of the next
hop to visit for each ant, in this case, is based on the random proportional rule. On
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the contrary, in this thesis mappings are selected by the random proportional rule and
next hop selection is completely independent from the pheromones. Selection of the
next hop is done solely based on a guided random walk, which optionally may use
taboo-lists.

The regular updates of the pheromone values are controlled by a parameter called
the temperature, denoted γr. This is chosen to minimize a performance function,
denoted H(F(Mr)), defined as follows

H(F(Mr),γr) = e−F(Mr)/γr (2)

This function is applied to all r samples and the expected overall performance satisfies

h(pmn,r,γr) = Epr−1(H(F(Mr),γr))≥ ρ. (3)

Epr−1(X) is the expected value of X subject to the probability matrix pr−1, and ρ is
the search focus parameter close to 0 (typically 0.05 or less). Finally, a new updated
set of rules, pr, is determined by minimizing the cross entropy between pr−1 and pr
with respect to γr and H(F(Mr),γr).

To allow decentralized execution and to avoid having to use synchronized batch-
oriented iterations the cost of mappings, F(Mr) is calculated immediately after each
sample, i.e. at the end of the forward search phase, and an auto-regressive formulation
of the performance function, hr(γr) = βhr−1(γr) + (1−β )H(F(Mr),γr) is applied.
Moreover, the function hr(γr) is approximated by

hr(γr)≈
1−β

1−β r

r

∑
i=1

β
r−iH(F(Mr),γr) (4)

where β ∈ 〈0,1〉 is called the memory factor, used for weighting (geometrically) the
output of the performance function. The temperature γr in turn is determined by
minimizing it subject to h(γ)≥ ρ . The temperature furthermore is equal to

γr = {γ | 1−β

1−β r

r

∑
i=1

β
r−iH(F(Mi),γ) = ρ} (5)

which is a complicated (transcendental) function that is both storage and processing
intensive since all observations up to the current sample, in other words the entire
mapping cost history {F(M1), . . . ,F(Mr)} must be stored, and weights for all obser-
vations have to be recalculated [HW01]. This can be a prohibitively large resource
demand, especially in an on-line application of CEAS. As a resolution it is assumed,
given a β ≈ 1, that the changes in γr are typically small from one iteration to the next,
which enables a first order Taylor expansion of (5) as follows

γr = br−1+F(Mr)e−F(Mr)/γr−1

(1+ F(Mr)
γr−1

)e−F(Mr)/γr−1 +ar−1−ρ
1−β r
1−β

(6)

where the parameters a0 = b0 = 0 and γ0 =−F(M0)/ lnρ . Furthermore,

ar← β (ar−1 +(1 + F(Mr)
γr

)e−
F(Mr)

γr )

br← β (br−1 + F(Mr)e−
F(Mr)

γr )
(7)
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where the performance function, (2), is adopted. Further details on the application
of the Taylor expansion and its necessity can be found in Appendix A of [Wit03].
Recent work on the theoretical foundations of CEAS, [PH09] and [PH10], revisits
the auto-regressive functions. This parallel work substitutes the hyperbolic approxi-
mations presented in this section with linear approximations. It is shown that linear
approximations are more accurate and robust to radical changes than hyperbolic ones,
while having similar computational complexity. These results have not yet been incor-
porated in the CEAS used in this thesis and remain to be tested.

Since the pheromone values have to be stored and updated regularly by the algo-
rithms used in the deployment logic, it is worthwhile to look at the equations describing
these operations. Note that these operations are independent of the actual pheromone
encodings applied. Generally, pheromone values in CEAS are a function of the entire
history of the mapping cost values, given by the cost function. Hence CEAS has
what is denoted a search history dependent quality function [Z+04]. Updates to the
pheromone values are made by applying the performance function, (2), combining
the last cost value F(Mr) and the temperature γr, calculated by (6). Thus, updates are
according to the following equation.

τmn,r =
r

∑
k=1

I((m,n) ∈Mk)β ∑
r
x=k+1 I((m,·)∈Mx)H(F(Mk),γr) (8)

where I() is a general indicator function, hence I(x) = 1 if x is true, 0 otherwise.
The memory factor, β , supplies geometrically decreasing weights to the output of
the performance function, enabling evaporation of pheromones. The exponent of
β is somewhat complex since ants during backtracking do not update all nodes in
the network, only those nodes that were visited during the preceding forward phase,
i.e. ∀n ∈ H. This exponent in (8) represents the number of ants that have updated
node n between time-step r and k when a mapping Mk was found, while r− k is
the total number of updates in the system, i.e. total number of ants that returned
between time-step r and k. Hence r− k ≥ ∑

r
x=k+1 I((m, ·) ∈Mx). However, as for the

temperature, in (5), excessive processing and storage requirements also apply for (8).
To circumvent this problem (this time a second order) Taylor expansion can be applied
to (8), resulting in

τmn,r ≈ I((m,n) ∈Mr)e−
F(Mr)

γr + Amn +

{
−Bmn

γr
+ Cmn

γ2
r

1
γr
< Bmn

2Cmn

− B2
mn

4Cmn
otherwise

(9)

where

Amn← β (Amn + I((m,n) ∈Mr)e−
F(Mr)

γr (1 + F(Mr)
γr

(1 + F(Mr)
2γr

)))

Bmn← β (Bmn + I((m,n) ∈Mr)e−
F(Mr)

γr (F(Mr)+ F(Mr)
2

γr
))

Cmn← β (Cmn + I((m,n) ∈Mr)e−
F(Mr)

γr (F(Mr)
2

2 ))

(10)

The initial values for (10) are Amn = Bmn = Cmn = 0 for all (m,n). Again, a stepwise
explanation on how the Taylor expansion is applied is given in Appendix A of [Wit03].
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Improvements in and evaluation of the scalability of the CEAS core method is dis-
cussed in details in [HW10].

This thesis does not deal with evaluating or improving the inner workings of the
CEAS method. Instead, CEAS is applied as a heuristic optimization method to solve
a problem it has never been applied to before. When the method was applied for
finding deployment mappings, the theoretical background of CEAS, in particular
the application of the CE method introduced above, was not modified. The main
contributions of this thesis related to CEAS are concerning: (i) how to encode solution
variables as pheromone values (Section 2.2); (ii) design of an algorithm that uses
CEAS, in which the agents are guided in such a way which will result in finding
efficient mappings (Section 2.3). Pheromone value encodings and the role of CEAS in
the deployment mapping algorithm are presented next.

2.2 Pheromone value encodings

Optimization governed by the cost function starts with aligning pheromone values, τ ,
with the decision variables. During optimization values of the decision variables char-
acterize a given solution. A solution to the deployment problem is a list of mappings
M, which contains sets of instances (e.g. components or VMs) C ⊆ C per node n ∈ N.
Accordingly, at each node n the pheromone database has to be able to describe possible
combinations of C, which will then be suggested for deployment for visiting ants,
each entry being proportional to the quality of deploying the given set of instances to
n. Importantly, however, the structure of this database has to be such that it is efficient
both with respect to size and complexity to lower the algorithm’s demand for storage
and processing at the nodes.

Table 2: Pheromone encodings for a service Sl with |Cl| instances

Encoding DB size in a node Encoding example with |Cl |= 4

bitstring 2|Cl | [0000]b . . . [1111]b
per comp. 2 · |Cl | [0/1]; [0/1]; [0/1]; [0/1]

# replicas |Cl |+ 1 [0] . . . [4]

Appropriate solutions can be found using different encodings, however, there are
differences in terms of convergence times and solution quality. As the distributed
pheromone database consumes memory in every node scalability dictates keeping the
database as compact as possible. The two main parameters influencing the size of
the database in each node are the amount of instances within each service (|C|) and,
also, the amount of services that can use the particular node for deployment (|S|). The
amount of instances within a service might not grow above a certain extent, the amount
of services that the deployment logic shall be able to handle might in turn be very
high. The memory needed to cater for the required amount of services can directly
be influenced by the pheromone encoding. Beside the storage needs, an individual
ant has to browse through the pheromone entries during its visit to a node. Clearly, a
more compact pheromone database helps speeding up execution of the tasks it has to
perform. These considerations about the pheromone database are not only relevant to
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the simulations conducted, but to an on-line implementation of the logic as well.
The most comprehensive encoding would be to implement addressing of the

pheromone tables along three dimensions:

all available nodes in the network;

all instances to be deployed;

yes/no flag to represent deployment.

Using a table this large in every node, however, would result in enormous memory
consumption. Instead, different encodings were evaluated during this work, the three
encodings that were published are summarized in Table 2 and are described below.

(i) A straightforward encoding (bitstring) is to implement a flag, i.e. a bit, assigned
to each instance. This way producing a bitstring that can describe any com-
bination of instances within a service. This encoding results in a database of
size 2|C| for each service, within each node in the network. bitstring results
in the largest database as it holds a single value for all possible combinations
of instance mappings in every node, which can result in a prohibitively large
memory need. It is important to note here that |C| represents the total number of
components and possible replicas as well in a given service. Hence, |C| is not
to be confused with the replication level of a single component. For example,
in case of |C|= 15 instances per service this encoding leads to 215 pheromone
values per service. Let the number of services that are to be deployed be |S|= 25,
in a network of |N|= 100 nodes. This results in a total of 215 ·25 ·100 = 81.92
million individual pheromone values in that given network. This high amount
of pheromones is difficult to handle computationally, even if agents in CEAS
do not have to crawl through all values in every iteration. Furthermore, let the
pheromone values be stored using 4 byte long floating point numbers. In this
case, the total distributed pheromone database would consume 312.5 MBytes of
memory in the network. Hence, the bitstring encoding is inefficient regarding
memory consumption and the amount of required computations.

(ii) To reduce the size of the database more simple bookkeeping can be applied,
taking into account solely the number of instances mapped to a given node, in
the encoding denoted # replicas. This is the most compact way to encode the
pheromone values. The tradeoff is that it cannot distinguish between instances
in a service specification, thus it can only be applied if this limitation does not
hinder the deployment, e.g. in case of a service model consisting of equally
sized and equivalent replicas only. Considering the same example of |C|= 15
instances in each of the |S|= 25 services, in a network of |N|= 100 nodes, the
resulting database size is (15 + 1) ·25 ·100 = 40000 values, or approximately
0.15 MBytes.

(iii) As a good compromise between these two options, the encoding denoted per
comp was developed. Using per comp does not result in information loss,
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while still being linear in size. This encoding uses one distinct pheromone
entry for every instance indicating whether or not to deploy them at a given
node. The slight disadvantage is that ants arriving at a node have to decide
on the deployment mapping of each instance, one-by-one reading the multiple
pheromone entries corresponding to the elements of the service (one separate
table element for each). Nevertheless, this encoding provides the necessary
reduction in the size of the database structure and allows scaling it up to handle
larger amounts of services and larger service sizes. For example, if |C| = 15,
|S| = 25, and |N| = 100, the database would use (2 · 15) · 25 · 100 = 75000
pheromone values, or 0.29 MBytes of memory.

Examples for the different pheromone table structures, given that 4 instances have
to be deployed are shown in Figure 5.

replicas

yes
no

Figure 5: Three different pheromone table structures for 4 instances

Use of the pheromone tables and the CEAS method in the deployment algorithms
developed is discussed in the next section.

2.3 Deployment algorithms

This section gives an introduction to the general parts of the deployment algorithm
that was devised. The task of obtaining deployment mappings for a service is given
to one instance of the logic. Ants belonging to this instance are then denoted as one
species. Species have access to one service model each. The service model contains
the set of instances, C, to be mapped. Ants are emitted continuously and select nodes
to visit. There are two types of ants, explorer and normal ants.

During forward search, ants visit nodes and form |H| ≤ |N| discrete sets from the
set of available instances, C. The set that is formed may as well include the empty
set for some nodes. Ants then evaluate this resulting mapping using the cost function.
According to the cost, the pheromone database will be updated (using (8)) during
backtracking in the nodes in H. The pheromone values corresponding to the mappings
in M will be incremented, while the rest of the elements will be decremented slightly
by the mechanism called evaporation. Pheromone values can then be normalized to
provide a probability distribution indicating the likelihood of mapping a given set of
instances to the particular node, as shown in (1). Eventually, after convergence the
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suggested solution emerges in the distributed pheromone database with probability
near to one [SD02], unless there are two solutions, which have identical best cost.
To avoid getting stuck in premature and sub-optimal solutions, explorer ants explore
the search space during forward search by ignoring the pheromones and selecting
mappings uniformly random instead.

It is possible to use explorer ants only in the initial phase of optimization. This
technique can be used to explore and cover a significant portion of the problem space
by random sampling. The length of this initial exploration depends on the problem
size, in terms of network size and number of services. After initial exploration, the
majority of ants are normal ants, while a smaller fraction are explorers, typically
5− 10 percent. This continued exploration is meant to capture fluctuations in the
network, e.g. to detect new nodes connecting. Thereby responsiveness to dynamism
in the environment can be improved. In any case, normal ants aim to find an optimal
mapping. Forward search followed by backtracking completes an iteration, i.e. the
lifetime of a single ant ends, and a new ant can be emitted starting a new iteration of
the algorithm, unless a stopping criteria is met. For adaptation however, the algorithm
can continue (at a lower rate) and maintain the deployment mappings until a new,
more preferable mapping is found depending on the changes in the execution context.
The same continuous ant behavior can be used:

(i) for obtaining an initial mapping to start execution of a service (in this case
convergence to an applicable solution can serve as stopping criteria);

(ii) for an online (re-)deployment mechanism when the service is already running.

A simplified diagram illustrating the basic classes of the deployment logic and their
relations is shown in Figure 6.

The two main classes are the Nest and the Ant. When a species is started at least
one nest is placed on top of a node in the network. It is allowed for one species to
have more than one nest for redundancy. Parallel nests will emit ants corresponding to
the same set of services that can operate using the same pheromone tables [HW10].
If nests can be coordinated, this will not result in flooding the network with ants as
the rate of emission in a stable network can be divided equally between the nests
(bullet 7) in Section 6). Furthermore, ants emitted from different nests but optimizing
mappings for the same service will update the same pheromone tables in the nodes
they visit [HW10]. During execution, synchronization between nests is not necessary,
but only a primary nest will execute deployment decisions and trigger the physical
placement of components.

The functionalities required from each node in the network to support the deploy-
ment logic are summarized in the class Node. Every node must have an allocation table
to support load sampling and allocation of processing resources, and a pheromone
table for CEAS to operate with. Where appropriate nodes can have additional, higher
level categorization, e.g. clusters, or clouds. The class PheromoneTable is used as a
container for the distributed information needed by the logic, i.e. values of τmn,r, and
implements updating and selection mechanisms of (9) and (1). The actual implemen-
tation and format of how information is stored in PheromoneTable is depending on
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PheromoneTable
- phTable : table[serviceId, instanceId] <phEntry[]>
+ updateEntry(serviceID,
                      instanceID,
                      selected,
                      ceasp : CEASParams)
+ select(serviceID, instanceID) : boolean

- phEntry[...]

Ant
- hopList : list <int>
- backtracking : boolean
- explorer : boolean
- serviceID : int
- ceasp : CEASParams
- mapping : table[instanceID] <int>
- utilizedClusters : int
- loadList : list <int>
- cost : float
- serviceRecord : ServiceRecord

+ fwdSearchDone() : boolean
+ backtrack()
+ selectNextHop() : nodeID
+ selectMapping()
+ addMapping(instanceID, nodeID)
+ calcCost(utilizedClusters : int,
                 loadList : list<int>,
                 mapping : table[instanceID]<int>) : float
+ maintenance()
+ initAnt(sRCopy : ServiceRecord, explorer : boolean)
+ calcGamma(ceasp : CEASParams, cost : float) : float
+ addLoadSample(l : int)

Node
- clusterID : int
- nest : Nest
- phTable : PheromoneTable
- nodeID : int
- allocTable : table[serviceID] <int>
- loadLevel : int
+ processAnt()

Nest
- bindingRatio : int
- explorationRatio : int
- numberOfExplorers : int
- serviceID : int
- ceasp : CEASParams
- serviceRecord : ServiceRecord
+ emitAnt(serviceRecord : ServiceRecord,
                ceasp : CEASParams)
+ bind()
+ releaseBindings()

ServiceRecord
- serviceID : int
- numInstances : int
- instances : list <Instance>

+ bind(instanceID : int, node : Node)

Instance
- boundTo : Node
- instanceID : int
- weight : int
+ bindTo(Node)
+ isBoundTo() : Node

Cluster
- clusterID : int

CEASParams
- beta : float = 0.98
- rho : float = 0.01
- r : int
- a : float
- b : float
- gamma : float

create()

<<uses>>

<<uses>>

1..*
1

0..*
1

1
1..*

<<uses>>

Figure 6: Generalized class diagram of the deployment algorithm
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the encoding, which is discussed in Section 2.2.
A Nest uses in addition a set of CEAS related parameters and variables represented

by the class CEASParams, which information is shared by all the nests of the same
species, e.g. the memory parameter β , or the search focus ρ . The current values of
CEAS related parameters are also passed on to the the ants, which in turn use them
when accessing the pheromone tables. Moreover, a Nest must be able to access infor-
mation about the service that the species has to deploy, this information is available
in the class called ServiceRecord, corresponding to Sk. Also this class implements
binding (fixing the deployment mapping) of instances within the service model. A
single building block of a service, e.g. a component, a replica, or a VM is described
by the class Instance. This is the class where costs associated with an instance can be
stored, e.g. the processing cost of the instance in weight.

The second class of the logic, Ant, realizes the ants emitted iteratively by the Nest.
Most of the intelligence is carried by the Ant, represented by methods of the class.
The variables used by the ant during an iteration of the optimization process are part
of the class, e.g. the mapping set mapping corresponding to M, and hopList for H,
utilizedClusters for D, loadList for L, or serviceRecord for Sl .

In contrast to CEAS-based routing, where the temperature can be stored in the
destination node of a path to be set up, for deployment mapping – as no distinct
destination node exists – the temperature has to be passed on to subsequent ants via
the nest. The simplified behavior of an ant is illustrated by the activity diagram in
Figure 7.
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Figure 7: Generalized activity diagram for an Ant
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After an ant is initialized, the current temperature, i.e. γr is retrieved from the nest.
Then, the first phase of an iteration, forward search begins. First, an ant visits the
nodes, if any, that already have a bound instance mapped to maintain these mappings,
which will also be taken into account when the cost of the total mapping is evaluated.
This maintenance phase includes re-allocating processing load for the bound instances
and sampling the overall load at the nodes visited during this process. Moreover, the
pheromones corresponding to these bound mappings will be included in the updates
during backtracking. When finished with the bound instances, ants start visiting nodes
by selecting their next hop randomly. The selection of the next node to visit is inde-
pendent from the pheromone markings laid by previous ants. Different strategies for
guiding the next hop selection, instead of using a pure random walk, can increase the
frequency of finding efficient mappings, thus shortening convergence times. Guidance
can be used to different extents, i.e. in case of simple settings without replication
management where the network is not partitioned into clusters random drawing is
applicable. Whereas when replication is required and dependability rules Φ have to
be satisfied, the guidance and taboo-listing of nodes can be turned on. Guided random
hop selection is introduced in more detail in PAPER E.

Using next hop selection an ant iteratively visits nodes until all instances are mapped.
In a node n a mapping set mn,r is selected either randomly (explorer ant) or based on
the pheromones using (1). Additional bookkeeping is done before the ant leaves a
node, required auxiliary variables are updated, for example D, L, C. When the ant is
ready with a complete mapping for the service the cost of the mapping is calculated
(using the cost function that is applicable) and the temperature (carried along by
the ant) is updated according to (6). The second phase in the lifetime of an ant, i.e.
backtracking commences after the updated cost and temperature are available. During
this phase, nodes in the hop-list are re-visited in a reversed order and the pheromone
tables are updated according to (9). Lastly, before the ant is recycled in the nest, the
current temperature for the species is updated.

The deployment logic uses the nests to emit ants into the network continuously, or
until some stopping criteria is met. The simplified behavior of a Nest is illustrated
in Figure 8. Improving convergence is the concept of binding, which allows nests to
fix the mapping of one instance in M at a time, based on the most recent mapping of
that instance. Binding parts of the mapping for a service can be conditioned by, for
example rules in the set of requirements, example to which is the set Φ introduced
in Section 2.4.3. After a bind ants looking for a suitable deployment for the same
service do not change the fixed mapping in subsequent iterations and new searches
will be conducted for the remaining instances only. Importantly however, bound parts
are also taken into account when the cost of the total mapping is evaluated. Should
a network disruption occur, such as splitting of clusters, these bindings are erased
(release bindings) in the ant nest and the whole service will be taken into consideration
in the following searches.

It has to be distinguished between the three notions of mapping, binding and deploy-
ment of instances of a service. The mapping M is a variable list constantly optimized,
iteration by iteration by the logic, visible internally to the algorithm only. When an
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Figure 8: Generalized activity diagram for a Nest

instance is bound to a node the particular mapping for that instance is not changed
anymore by the ants, until that binding is erased again. Lastly, deployment is the
physical placement and instantiation of building blocks of a service on a node, which
is triggered after the mapping M for the given service has converged to a satisfactory
solution. This step corresponds to the Execute function in the MAPE loop, in Figure 4.
Hence, the deployment mappings provided by the algorithms presented in this thesis
are logical variables, which can be effected at desired times, and as such do not cause
undesirable fluctuations by, for example, migrating parts of a service unnecessarily.

The algorithms within the deployment logic were refined continually throughout
the work presented in papers A – F. The first version of the deployment algorithm
was devised in PAPER A and was extended with the a basic version of load sampling
in PAPER B. The nests received more attention in PAPER C. Additional variables
required for handling dependability requirements were added in PAPER D, and guided
random hop selection was introduced in PAPER E. The concept of taboo-lists to aid
deployment in private and hybrid clouds, among others, was added in PAPER F. More
precise definitions of the algorithms are included in the papers in Part II.

2.4 Quantifying deployment costs

The deployment logic presented in this thesis is built to be general enough to cater for
practically any kind of requirements, as long as a corresponding function quantifying
the cost of the specific property can be constructed (REQ-6). These functions, denoted
F(), are specially designed to evaluate the utility of given configurations of the soft-
ware architecture during the optimization process, which results in finding a preferred
deployment. Accordingly, it is crucial for the method that the proper functions are
available to rank the different deployments, guide the search iteration by iteration to a
deployment mapping that satisfies the requirements. This deployment mapping can
then be effected in the execution framework. Moreover, the construction of these func-
tions has an influence not only on the quality of the solutions, but on the convergence
rate as well. The importance of cost functions has gained attention recently in the
autonomic computing and self-adaptive systems community as well [KD07, CLG+09].
But, increasing the complexity of constructing such functions is the fact that they have
to be applied in a decentralized method without any global knowledge. In the papers
costs of a deployment have to be minimized, i.e. the objective is always min F().
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2.4.1 Load-balancing and communication costs

The first cost function is designed to reflect the goal of balancing the load and minimiz-
ing the communication cost. Balancing the load is practically the task of minimizing
the difference between the load of each node and an ideal average load. Regarding the
service, execution and communication costs are considered. The deployment logic
has access to the service model. Services are defined in a collaboration-oriented style,
as illustrated in Figure 2. Accessing the service model, agents in CEAS are aware of
the execution costs, f (e)

ci for each component, and the communication costs, f (c)
k j

for
each collaboration. Thus, the total offered execution load for the given service can
be calculated as ∑

|C|
i=1 f (e)

ci . Hence, the average load T over the available nodes in a
network, N, where the service is deployed becomes

T =
∑
|C|
i=1 f (e)

ci

|N|
(11)

To cater for the communication costs f (c)
k j

, of the collaborations k j in the service, the
function q0(M,c) is defined first.

q0(M,c) = {n ∈ N|∃(c→ n) ∈M} (12)

This means that q0(M,c) returns the node n that hosts component c in the list of
mappings M. Let collaboration k j = (c1,c2). The communication cost of k j is 0 if
components c1 and c2 are collocated, i.e. q0(M,c1) = q0(M,c2), and the cost is f (c)

k j

otherwise (i.e. the collaboration is remote). Using an indicator function I(x), which
is 1 if x is true and 0 otherwise, this is expressed as I(q0(M,c1) 6= q0(M,c2)) = 1 if
the collaboration is remote and 0 otherwise. To determine which collaboration k j
is remote, the set of mappings M is used. Given the indicator function, the overall
communication cost of the service, FK(M), is the sum

FK(M) =
|K|

∑
j=1

I(q0(M,k j,1) 6= q0(M,k j,2)) · f (c)
k j

(13)

Then, by simply adding up the two types of deployment costs, i.e. load-balancing and
remote communication costs, the cost function is defined as

F1(M) =
|N|

∑
n=1
|l̂n−T |+ FK(M) (14)

where l̂n, n = 1 . . . |N| denotes CPU-usage samples from all nodes. New samples are
taken in every iteration of the method and describe the amount of execution load of
the components mapped to each node n, i.e. ∑i f (e)

ci , for ∀ci, where q0(M,ci) = n. The
absolute value |l̂n−T | then is used to penalize deviation from the desired average
load per node.

To illustrate evaluation of deployment mappings using the cost function, consider
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Figure 9: Example network and services

the simple network in the bottom layer of Figure 9 consisting of 3 identical nodes
n1,n2,n3 in a full mesh.

The deployment task is then to place service components into the example network.
Let the two services S1,S2 ∈ S to be deployed be defined by the models in the Services
layer of Figure 9, including the corresponding costs in the annotations. The two
services have a total of 5 instances and 3 collaborations altogether.

Two deployment mapping examples, M(1) = {{c11 → n1},{c12 → n2},{c21 →
n3},{c22 → n3},{c23 → n2}} and M(2) = {{c11 → n3},{c12 → n2},{c21 →
n1},{c22→ n2},{c23→ n3}} are shown in Figure 10. A cost calculation example is
presented below, and will be followed by more examples in the following sections, to
illustrate the usage of the formulas only.

Cost calculation example 1.

The parameter T in (11) for this scenario is T = (∑
5
i=1 f (e)

ci )/3 = 15,
giving the targeted average load. The communication costs, (13) are calculated
as follows

FK(M) =
3

∑
j=1

I(q0(M,k j,1) 6= q0(M,k j,2)) · f (c)
k j

,

which gives FK(M(1)) = 10 with 2 remote collaborations and FK(M(2)) = 35
with all collaborations executed remotely.

Figure 10 also shows the load levels at each of the nodes. These are
the load levels that the deployment logic can sample from. The samples for
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Figure 10: Deployment mapping examples for S1 and S2

the two mappings are {l̂1, l̂2, l̂3} = {15,15,15} and {10,15,20} respectively.
Using these calculations and data the cost function can now be evaluated. The
deployment costs according to (14) are

F1(M) =
3

∑
n=1
|l̂n−15|+ FK(M).

Resulting in F1(M(1)) = 10, indicating absolute load balance, and F1(M(2)) =
5 + 5 + 35 = 45. Clearly, M(2) has much higher deployment cost due to the
worse load distribution and the high remote communication costs. Note that
these are the cost values obtained by all of the ant species (one for S1 and
another for S2), since all of them have the same global overview. �

The function (14) is applied for calculating deployment costs in PAPER A and
PAPER G, together with related example service models.

2.4.2 Deployment costs for multiple services

Using (14), deployment costs of a single service can be quantified easily. When
multiple services are to be deployed in the same network the average workload on
the (physical) nodes T , presented in (11), has to be calculated taking into account
the execution costs of all components from all services. Furthermore, to be able
to determine a global load average given the amount of nodes in the network (note
that all nodes are considered identical) the sum has to be over all nodes. Hence,
global knowledge is required in this case. For improved scalability one instance of
the deployment logic (and CEAS) is run for each service that has to be deployed.
Through cooperation between the parallel instances of the logic the problem size is
split into smaller pieces as a single instances has to deal with a single service only
and thus, it does not need an overview over all the services and their deployment.
Each CEAS instance stores information at participating nodes to facilitate cooperation
and to obtain a more holistic view of the environment. Having a global parameter,
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like T would require synchronization between the instances of the deployment logic
searching for a solution simultaneously.

To eliminate the need for global knowledge, the average workload T is replaced
with a set of load samples l̂n ∈ L. To enable this sampling mechanism a reservation
mechanism is introduced in the optimization process. When components ci of a
service are mapped to a node ni, a slice of resources equivalent to the weights f (e)

ci

of the corresponding components is reserved. Reservations are logical variables
visible to the deployment logic only, similarly to mappings or bindings, and are
stored and maintained in the actual nodes. This mechanism is used by the logic to
estimate resource usage on nodes, and to facilitate interaction between instances of
CEAS. Agents in CEAS can then sample the current reservations on a node, and
use these samples to evaluate the cost of a mapping involving that node. Excessive
reservation of resources in a node suggests the agents to avoid mapping even more
instances, similarly to the detestation approach applied for finding primary/backup
paths in [WH02]. An important generalization is that nodes are modelled having
no explicit capacity limits. Instead, soft-limits are used, giving high (non-linear)
penalties. Samples that would exceed the capacity of a node are quickly outranked by
better solutions as a high penalty is assigned to these infeasible mappings. Resource
reservations also have to be maintained and kept current. This can be achieved using
timestamping to prevent stale reservations.

Beside splitting the problem size into smaller pieces by launching separate instances
of CEAS for every service and introducing sampling of load levels to remove the
need for global knowledge, additional improvement in scalability can be achieved
by combining load-sampling with a hop-list, similarly to taboo-listing presented
in [HW10]. The hop-list H, |H| ≤ |N|, accounts for a list of nodes sampled, which
is normally a significantly smaller set than the set of all nodes, N. This way, the
extent of the first sum in (14) can be decreased from |N| to |H|. Practically, this means
that near-optimal solutions can be found without exploring the total sample space of
|N| nodes, i.e. the logic does not need to know the size of the sample space. This
combined approach is introduced and its effectiveness is discussed in PAPER B and
PAPER C, and the concept is used in PAPER D, PAPER E and PAPER F as well.

The form of a cost function partly depends on the parameters used. To cater for
multiple services and the additional mechanisms described above, (15) is formed
that uses the deployment mappings in M and the set L. Experiments with various
combinations of multiplicative and additive functions are presented in PAPER D
included in Part II. According to the experiments, the multiplicative combination
presented in (15) was chosen, because this combination showed the best performance.
Where the +1 in the second term is used to avoid evaluating the function to zero in
case there are no communication costs. Hence, load-balancing costs are preserved in
any case.

F2(M,H,L) =
[

∑
∀n∈H

C0(n)
]
· (1 + ω ·FK(M)) (15)

In (15), ω is a scaling parameter for FK(M), identical to (13), incorporating the
communication costs individually for each service. ω in practice can be set intuitively
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according to the costs in the service models. C0(n) quantifies the node local costs for
node n.

C0(n) =
( l̂n

∑
i=0

1
[∑∀n∈H l̂n]+ 1− i

)2
(16)

Function (16) targets load-balancing among nodes. Samples l̂n ∈ L are obtained over
the subset H ⊆ N, in every iteration of CEAS. With the quadratic form, (16) gives
exponential weighting to these costs. In principle, higher exponents than 2 can also
be applied to emphasize load-balancing if needed. The sum inside (16) provides
increasing penalties as the load sampled in a node, l̂ni , gets closer to the total amount
of load observed by the ant, i.e. ∑∀n∈H l̂n. Hence, this function gives an incentive to
distribute the observed (integer valued) load. See Figure 11 for illustration, where the
curve reaches its maximum when l̂ni = ∑∀n∈H l̂n. The +1 in the denominator is used
to avoid division by zero.

→←
inl̂

Figure 11: Graphical plot of the sum in C0(n)

In the cost function (15), the first term counteracts the term for communication
costs, FK(M). The effects of these two counteracting terms can be balanced using
the scaling parameter ω . The quadratic nature of C0 penalizes deviations from a
balanced deployment mapping exponentially. Furthermore, Equation (15) can be used
to evaluate the mappings presented in Figure 10 without using global knowledge.

Cost calculation example 2.

Assume that the ants sampled only does nodes that they actually used
for mapping instances and that ω = 0.1. For the ideal first mapping M(1) ants
for S1 sampled {l̂1, l̂2, l̂3} = {15,15,−} and ants for S2 sampled {−,15,15}.
Hence, for the first species

C0(n1) = (
15

∑
i=0

1
30 + 1− i

)2 = 0.5027,

C0(n2) = 0.5027 and for the second species C0(n2) = C0(n3) = 0.5027. Com-
munication costs are FK(M(1)) = 5 for both species individually. The overall
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cost for M(1) thus becomes

F2(M(1),{n1,n2},{15,15}) =

= [C0(n1)+C0(n2)] · (1 + 0.1 ·5) = 1.5081

for the first species and F2(M(1),{n3,n2},{15,15}) = 1.5081 for the second
one.

Similarly, for mapping M(2) the samples by species are {−,15,20} and
{10,15,20}. Thus, the node local costs per species are

C0(n2) = (
15

∑
i=0

1
35 + 1− i

)2 = 0.3327,

C0(n3) = (
20

∑
i=0

1
35 + 1− i

)2 = 0.7333,

and

C0(n1) = (
10

∑
i=0

1
45 + 1− i

)2 = 0.0728,

C0(n2) = 0.1778, C0(n3) = 0.3608. Furthermore, FK(M(2)) = 5 for species 1
and FK(M(2)) = 30 for species 2. Hence, the deployment costs in M(2) become
F2(. . .) = (0.3327 + 0.7333) · 1.5 = 1.599 and F2(. . .) = 2.4456 for the two
individual species respectively.

This example demonstrates how the less efficient deployment mappings get
outranked by the more optimal solutions, without the need for global overview
in the logic. Specifically, S1 sees only part of the load imbalance in the second
configuration, hence it has a slightly higher cost 1.599 > 1.5081. Whereas S2
sees more of the imbalance and has significantly higher communication costs
2.4456 > 1.5081. �

The next section introduces how another type of requirements can be incorporated
into the cost functions.

2.4.3 Replication management and load-balancing

The next type of requirements the deployment logic was extended with deals with
increasing dependability through redundancy, and management of replicas in par-
ticular. When replication management is considered each component of a service
may be replicated for fault tolerance and/or load-balancing. The previous network
model is refined with the introduction of clusters of nodes, captured in the set D
of clusters, for example d1 and d2 in the Nodes layer of Figure 12. The purpose of
extending the network model is to be able to take into account dependability goals
like cluster-disjoint placement of replicas. Each cluster may represent separate sites
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distinguished geographically or otherwise administratively. In this context, the aim of
the deployment logic is to satisfy the dependability requirements and obtain an effi-
cient mapping in the network. Regarding the services, models are defined according
to the active replication approach, i.e. each component may have one or more replicas,
which are operational as well, hence they have approximately equal execution costs
(which cost will be referred to as w). Replicas are ready to take over the role of the
a component should it fail. Thus, this replication model requires all replicas of a
component to have their states updated and synchronized, using some consistency
protocol. For example, consider S3 and S4 in Figure 12, where the replication level is
1 and 2 respectively. The role of the collaborations is simply to provide a consistent
state for all the replicas.
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Figure 12: 2 simple replication examples

To cater for the modified set of requirements and the different network model
(introduction of clusters), the cost function presented so far is modified. The new
set of requirements is given as a set of dependability rules, denoted Φ, that serve as
constrains to the minimization problem min F(). Φ is then defined with the aid of two
helper functions that apply to a given service. The first one is q0(M,c) defined in (12)
and the second one is q1(D,n) that returns the cluster d in which node n is located.

q1(D,n) = {d ∈ D|n ∈ d} (17)

Let Φ = φ1 ∧ φ2 be the set of dependability rules considered. The first rule, φ1
requires replicas to be dispersed over as many clusters as possible. This rule aims to
improve service availability despite potential network partitions that are assumed to
be more likely to occur between cluster boundaries. In case the replication degree
exceeds the number of available clusters, i.e. there are mode replicas than clusters
available, at least one replica should be placed in each cluster. The second rule, φ2,
prohibits collocation of two replicas on the same node. It is important to note that in
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all the optimization problems discussed soft rather than hard constraints are used. The
two rules formally,

RULE 1 φ1 : ∀d ∈ D,∀ci,cu ∈ C, |C|< |D| : q1(D,q0(M,ci)) 6= q1(D,q0(M,cu))

RULE 2 φ2 : ∀ci,cu ∈ C : q0(M,ci) 6= q0(M,cu)

Noticing that prohibiting collocations by φ2 is contradictory to minimizing remote
communication, communication costs from the service model are omitted in the cost
calculation for replication management.

A new parameter, the number of utilized clusters, referred to as |D|, is added as a
parameter to the cost function. To construct a new cost function several combinations
were evaluated and results are published in PAPER D. The best results were obtained
using a reciprocal term targeting φ1, and reusing the load-balancing function in (16).
First, (16) – previously used solely for load-balancing – is redefined and is applied for
each node n to cater for φ2. The redefined function, (18) is applied in two different
ways, depending on the parameter x ∈ {0,1}. Specifically, C1() is a list of values,
containing one element for each node covered in an iteration of CEAS. The list of
nodes covered is available in the hop-list H. As noted for Equation (16), C1() as
well applies a quadratic power, but higher exponents can also be used to enforce
load-balancing even more.

C1(M,L,n,x) =
(ϑ(n,x)

∑
i=0

1
[∑∀n∈H ϑ(n,x)]+ 1− i

)2
(18)

The two different usages are as follows. For x = 1, load samples in L are used,
accounting for all concurrently executing services on the nodes sampled. x = 0 in turn
represents solely the mappings, M, of replicas of the single service being deployed
by the given instance of the logic. The difference is in the upper-bound, ϑ(), of the
summation and the sum in the denominator.

ϑ(n,x) = (1− x) · |mn| ·w + x · l̂n for x ∈ {0,1} (19)

The upper-bound, as defined in (19), assumes that all replicas in a given service
have the same weight, denoted w, which is derived from the service model, i.e.
∀ f (e)

ci = w. Hence, their load can be assessed by multiplying by the number of
replicas mapped to a given node. The number of instances mapped is found by
|mn| = ∑∀ci∈C I(q0(M,ci) = n). This definition can easily be changed to support
individual replica weights (instead of w) within a service model. Furthermore, the
sum ∑∀n∈H ϑ(n,x) represents the overall execution load of one service (x = 0) or
all services (x = 1) as observed by a given species. When x = 1 the sum is an
approximation based on the samples from the set of nodes H ⊆ N. In other words,
x = 0 is the total processing resource demand of one service, whereas x = 1 accounts
for the additional load of replicas from other concurrent services as well. This way,
the list C1() provides a quadratic approximation of the share of load associated with
each node as experienced by CEAS. An approximation only, as the logic does not have
an exact global overview over the total offered load. Thus, the overall cost function
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used for replication management and load-balancing becomes

F3(|D|,M,H,L) =
1
|D|
· ∑
∀n∈H

C1(M,−,n,0) · ∑
∀n∈H

C1(−,L,n,1) (20)

On one hand, C1(. . . ,0) applies solely to replicas of one service, this way penalizing
the violation of φ2, or in other words favoring mappings where replicas are not
collocated. On the other hand, C1(. . . ,1), is used for general load-balancing and, as
such, it takes into account load imposed on nodes by the other services in the network.
Using these separate terms the output of the cost function used in each iteration can be
smoother, purposefully easing convergence, i.e. simplifying differentiation between
very similar deployment mappings with nearly the same cost. To illustrate the cost
evaluation Figure 13 presents two deployment mappings in the network of Figure 12,
a valid one M(3) and an invalid one M(4). From a dependability perspective M(4) is
invalid, since the deployment of S3 is not cluster-disjoint and S4’s deployment is not
node-disjoint (replicas c22 and c23 are collocated).

25

c12

c11

c22

c21
c23

25

10

(a) Example deployment M(3)

c12
c11

c22

c21

c23

25 15

20

(b) Example deployment M(4)

Figure 13: Deployment mapping examples for S3 and S4

Using (20) the cost of M(3) and M(4) is evaluated as follows (again, assuming the
ants for the corresponding services only visited those nodes that they actually used for
mapping).

Cost calculation example 3.

For S3 in M(3) the cost is

F3({d1,d2},M(3),{n1,n3},{25,25}) =

=
1
2
· ∑
∀n∈{n1,n3}

(
|mn|·15

∑
i=0

1
30 + 1− i

)2 · ∑
∀n∈{n1,n3}

(
l̂n

∑
i=0

1
50 + 1− i

)2
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=
1
2
· (0.4180 + 0.4180) · (0.4414 + 0.4414) = 0.369,

and similarly for S4,

F3({d1,d2},M(3),{n1,n3,n2},{25,25,10}) =

=
1
2
· ∑
∀n∈{n1,n3,n2}

(
|mn|·10

∑
i=0

1
30 + 1− i

)2 · ∑
∀n∈{n1,n3,n2}

(
l̂n

∑
i=0

1
60 + 1− i

)2

=
1
2
· (0.1458 + 0.1458 + 0.1458) · (0.2722 + 0.2722 + 0.0315) = 0.1259.

Now, considering the invalid configuration M(4), for S3 the cost becomes

F3({d1},M(4),{n1,n2},{25,15}) =

=
1
1
· ∑
∀n∈{n1,n2}

(
|mn|·15

∑
i=0

1
30 + 1− i

)2 · ∑
∀n∈{n1,n2}

(
l̂n

∑
i=0

1
40 + 1− i

)2

= (0.418 + 0.418) · (0.8505 + 0.2012) = 0.8792,

and for S4 we have

F3({d1,d2},M(4),{n1,n3},{25,20}) =

=
1
2
· (0.1458 + 1.0148) · (0.5949 + 0.3161) = 0.5287.

In summary, the valid configuration gives the following costs 0.369 and 0.1259,
while the invalid configuration with load-imbalance gives the significantly
higher values of 0.8792 (penalizing lack of domain-disjointness) and 0.5287
(penalizing collocation) for service S3 and S4 respectively. �

Scenarios that involve dependability are presented in PAPER D, PAPER E and
PAPER F.

2.4.4 Cluster-usage costs

Cluster-usage represents a type of cost different from the previously introduced prop-
erties. The model of the network is slightly extended with financial costs associated
with using different clusters, and a deployment configuration is targeted that imposes
minimal aggregated financial cost. At the same time, requirements from before, i.e.
load balancing and dependability are to be adhered to. To facilitate this extended set
of requirements, (20) is modified and a new term, denoted financial cost, is added
to the function. First, let the total financial cost of using the nodes mapped in M be
defined in FF .

FF(M) = ∑
ni∈q1(M,C)

f ( f )
ni , (21)
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where f ( f )
ni is the financial cost associated with using node ni ∈ N. The helper function

q1(M,C), when applied on the set C, returns the set of nodes used for the mapping M.
The new overall cost function becomes

F4(|D|,M,H,L,z) = F3(|D|,M,H,L) ·g(M,z), (22)

in which g(M,z) comes in two variants representing different weightings. The function
is defined using a scaling parameter z and the sum of financial costs FF(M) as

g(M,z) =

{
g(l)(M,z) = 1 + z ·FF(M) linear weighting
g(e)(M,z) = 2− e−(z·FF (M))2

exponential weighting
(23)

Setting z = 0 eliminates the financial costs from the evaluation of deployment map-
pings, returning to the original function in (20). Choosing z > 0, the influence of
financial costs on the deployment can be scaled. The two alternatives in (23) represent
a linear and an exponential increment in costs. With the more fine-grained exponential
weighting mappings can be more balanced, avoiding under-utilization or overloading
clusters, at the cost of introducing non-linearity in the cost function evaluation. Ad-
ditionally, the exponential g(e)(M,z) is more complex, in that it has an upper limit,
which is depending on the scaling parameter z, after which additional cluster usage
( f ( f )

ni ) does not increase the financial cost part. That means that scaling, i.e. z, can
be tailored to the service, so that financial costs increase rapidly where they have to,
and the curve flattens out where additional resource usage is insignificant. Additional
evaluation of how to take into account financial costs can be found in [Gul10].

Table 3: Deployment costs in M(3) and M(4) including financial costs

F4(. . .) = Service FF (M(3)) FF (M(4)) Cost of M(3) Cost of M(4)

F3(. . .) ·g(l)(M,0.1) S3 6 10 0.5904 1.7584
F3(. . .) ·g(l)(M,0.1) S4 11 7 0.2644 0.8988
F3(. . .) ·g(e)(M,0.1) S3 6 10 0.4806 1.4350
F3(. . .) ·g(e)(M,0.1) S4 11 7 0.2143 0.7335

Cost calculation example 4.

As an example, consider the simple network again from Figure 12 and
let cluster d1 be financially expensive and cluster d2 be a cheaper one and let
z = 0.1. With concrete financial costs f ( f )

n1 = f ( f )
n2 = 5 and f ( f )

n3 = 1. Introducing
financial costs will affect the overall deployment costs in the two scenarios M(3)

and M(4) (Figure 13) as illustrated by numerical values in Table 3. �

More tangible results for a cloud computing scenario are presented in Paper F. Fig-
ure 14 gives an intuitive presentation on how the four different terms – corresponding
to domain-disjointness, node-disjointness, overall load-balancing and cluster costs
(from left to right) respectively – are combined in F4(|D|,M,H,L,z). The terms in
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F3(|D|,M,H,L) – φ1, φ2 and load-balancing – are illustrated by the red dashed lines.
Whereas F2(M,H,L) is illustrated by the green dotted section, in which the quadratic
load-balancing term is combined with a linear term representing communication costs.
Each term (depicted as a separate simplified function, e.g. x2 for a quadratic term)
corresponds to one requirement, or in other words, constraint dimension. This con-
tributes to an efficient step-by-step design to tackle the multifaceted problem at hand.
An appropriate granularity for each dimension had to be found when designing each
term. On the contrary, ensuring fast convergence dictates keeping the cost function as
simple as possible, yet the output of the terms must be fine grained enough to rank the
cost values of different solutions correctly. The cost functions are implemented in the
simulator for the experiments included in this thesis. In an on-line implementation of
the logic, however, evaluation of the costs using these functions is done by the agents,
once in every iteration. Hence, the functions’ computational complexity can affect
overall efficiency.

*1
W X 2 Y 2

Z

1-exp -Z 2

**

F 2()F 3()

Figure 14: Multiplicative combination of the cost function factors in F4()

In some cases, an abundance of possible mappings exists with different but very
similar qualities, which may necessitate the application of non-linear cost function. An
example to this is the version of (22), where exponential weighting is applied in (23),
as illustrated by the lower version of the fourth term in Figure 14. The computationally
more expensive exponential term can be used to obtain better influence on the costs of
mappings by the cluster costs. Non-linearities can cause a slow down in the execution
of the logic. Particular care has to be taken to weld components of the cost function
together yielding a single function that is computationally effective and, at the same
time, represents all the QoS requirements weighted properly by their importance.
The various terms and combinations of functions are put into use in the stochastic
optimization algorithms developed in this thesis. Their application is discussed in
PAPER A – F.

3. Summary of papers

The main contributions of this thesis have been published in international peer-
reviewed conference proceedings, except for PAPER C that is published in an in-
ternational journal. As a guideline for reading, this Thesis Introduction part is rec-
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ommended for a start giving a review on the background and the motivation for the
work. For the papers in the Included Papers part a chronological order is a good
choice as it also reflects the gradual developments in the research work. An additional
paper in the appendix summarizes the research and is accepted for publication to an
international journal at the time of writing. The papers are included as originally pub-
lished, except that formatting has been adapted to this thesis. Moreover, the occasional
inconsistencies in the notations applied in the different papers are due to the gradual
developments in the algorithms and the method.

Generally, the papers can be categorized into four sub-topics:

Category I. – Validation of mappings

Category II. – Load-balancing and communication costs

Category III. – Load-balancing and replication costs

Category IV. – Cluster costs

The order and relations between the papers are shown in Figure 15.

Cost Efficient Deployment
of Collaborating

Components

PAPER A

Laying Pheromone Trails for
Balanced and Dependable

Component Mappings

PAPER E

Adaptable Model-based
Component Deployment
Guided by Artificial Ants

PAPER B

Foraging for better deployment
of replicated service

components

PAPER D

Component Deployment
Using Parallel

Ant-nests

PAPER C

Ant system for service
deployment in private and

public clouds

PAPER F

Swarm Intelligence Heuristics
for Component

Deployment

PAPER G

t2008 2009 2010

I.

II.

III.

IV.

Figure 15: Relationships and order between the included papers

In papers A – C focus is on services composed of software components and their
adaptive deployment taking into account load-balancing and communication costs
(category II.). These papers present research conducted together with the two advisers
of the author Poul E. Heegaard and Peter Herrmann. Papers D and E follow with the
different objectives of component replica management and considering dependability
of their deployment (category III.), in which case Hein Meling also contributed to the
research conducted by the author. A move from software components to VM instance
deployment is achieved in paper F (category IV.), where certain financial costs are
also taken into account. Lastly, paper G presents a centralized approach (category I.)
with the main purpose of establishing a framework for validating the results obtained
with the CEAS-based method introduced in this thesis. However, the results published
so far in category I. are limited to problems from category II. as indicated. The journal
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paper in the appendix touches upon all four categories and summarizes the work. A
brief summary of the included papers follows.

PAPER A

Cost Efficient Deployment of Collaborating Components

The problem of efficient deployment of software components is intro-
duced in the first paper. In other words, finding the optimal mapping of
components to physically available resources, while satisfying non-functional
requirements is set as the main goal. A traditional task assignment problem
is adapted to the service engineering context. The original problem used as
an example in the paper has been solved using various methods by previous
authors, referenced in the paper. One particularly relevant solution has been
obtained using the centralized Cross Entropy method, which is used for
comparison as well. The paper takes a new approach, which can be viewed
as an intersection between software engineering and network management. A
new distributed stochastic optimization method based on CEAS is presented
and its place within the software development cycle is identified. Simulation
results using the example model are presented and verified using the known,
global optimal solution to the original problem.

PAPER B

Adaptable Model-based Component Deployment Guided by Artificial Ants

A robust and adaptive service execution platform is targeted by plac-
ing the deployment logic inside the software development cycle. Support
for run-time redeployment of components for keeping the services within
the allowed region of parameters is investigated. Examples of tangible
service models embellished with non-functional requirements are used for
the investigation. Practically, the paper demonstrates that the deployment
logic is capable of handling multiple services simultaneously when the
suggested extensions are applied to the algorithms presented in the preceding
paper. More precisely, it is shown how the need for global knowledge can
be eliminated from the method mainly via load sampling and applying an
improved cost function. Also, adaptation capabilities are evaluated through
scenarios where simple changes are injected to the network, such as node
failures. Simulation results are shown for demonstration.

PAPER C

Component Deployment Using Parallel Ant-nests
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Previously, global knowledge remaining within the decentralized algo-
rithm was eliminated. In this extended journal paper version of the preceding
paper the potential of the deployment logic for providing adaptation support
in changing environments is further elaborated. In particular, cooperation
between species executed in parallel and working for the same objective is
highlighted. A discussion is included on how pheromones can be shared by
ants from the same species but emitted by different nests. Furthermore, the
place for triggering placement of services is identified as the nest, emitting
ants for each species corresponding to the service. To free the deployment
logic of single points of failure, replication of the nests is suggested, this way
increasing reliability of the approach. Simulations show that parallel nests
can interoperate efficiently in obtaining deployment mappings.

PAPER D

Foraging for better deployment of replicated service components

The new dimension, dependability is introduced in addition to perfor-
mance requirements. First, the network model is extended with the notion
of domains that represent groups of nodes based on administrative, geo-
graphical or other considerations. Second, a set of rules is defined related to
dependability, and in particular, concerning management of replicas. Thus,
service models are introduced containing replicas of components for the
purpose of increasing dependability. A discussion is included on the efficiency
of various combinations of cost function elements that are used to guide the
heuristic optimization method to provide better deployment mappings. As
an experimental setting a scenario is introduced including 15 services each
with different redundancy levels, and deployment is simulated over a network
comprising 10 nodes partitioned into 5 domains. Satisfaction of dependability
rules is evaluated while load-balancing is to be maintained in the example
network.

PAPER E

Laying Pheromone Trails for Balanced and Dependable Component Map-
pings

Replication management in large scale, clustered networks requires the
deployment logic to be scalable to handle a significantly higher amount
of replicas and nodes than in the preceding examples. Previously, various
cost function designs were evaluated that take into account replication
management in addition to load-balancing. A further refinement of the
best cost function chosen earlier is included. Another important aspect of
the deployment logic and CEAS at its core is elaborated, the pheromone
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tables. In particular, how to efficiently represent sets of component replicas
in the distributed pheromone database to achieve better scaling is one of
the major contributions of this paper. Accordingly, three different encodings
are evaluated. Results are demonstrated on a larger example scenario than
previously, and robustness of the approach to network partition failures is
examined using the example.

PAPER F

Ant system for service deployment in private and public clouds

Virtualization has become a key enabler in large-scale computing plat-
forms that may provide services for thousands or even millions of users
through private networks or the Internet. This technology promises signif-
icantly better utilization and so-called elastic scaling to better meet and
adapt to changing demands. However, existing technologies to enable this
kind of scaling are based on hierarchically managed approaches that do not
necessarily scale equally well. A significant challenge is to equip management
systems with the capability to handle load-overshoots at times when increased
demand cannot be provided for locally. This requires interoperation between
networks of nodes provisioned by separate organizations, a concept referred
to as federation of clouds, or hybrid, i.e. private and public clouds.

This paper conjectures that self-organizing techniques can very well be
applied to (re)configure virtualized systems in hybrid cloud environments.
Specifically, the paper suggests that the component deployment approach
presented in previous work can be applied and tailored to the problem at
hand to obtain efficient deployments of virtual machine images. In addition
to replication and load-balancing, the objective of the optimization process is
extended with financial costs that model usage of resources in public clouds
over the Internet. The network model is extended to represent the notions of
public and private clusters, which have different access rights depending on
the perspective of a service. An example scenario is presented and simulation
results are obtained for the method.

PAPER G

Swarm Intelligence Heuristics for Component Deployment

There are different options for validation of the deployment logic that
was presented in the preceding papers. Many suggest a comparison between
different kinds of bio-inspired methods applied to the deployment problem.
This, however, is particularly difficult to implement and conduct quantita-
tively due to the very few available related work on bio-inspired methods
for deployment decision making. Existing bio-inspired methods (and other
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types of heuristics as well) need to be tailored to the specific deployment
problem to be able to execute them using example models and compare
results with the results obtained using CEAS. Often, other heuristics require
fine tuning of a plethora of parameters to execute efficiently, and to obtain a
representative comparison between methods. Instead, a centralized, offline
and exact solution method was chosen to obtain optimum solutions for
example scenarios.

Optima in deployment scenarios are difficult to obtain, especially in
large-scale environments and are intended to be used as lower bounds of
possible deployment mappings. The ILP model presented in this paper
is centralized, offline, exact and uses global knowledge to find optimum
mappings, as opposed to the CEAS-based logic, which is a decentralized
heuristic algorithm with no global knowledge. Using the optima obtained
with ILP the output of the heuristic algorithm can be validated by evaluating
how close the cost of the deployment mappings can get to the lowest cost
possible. In this paper, 3 examples are presented for comparison, where
deployment mappings are obtained by both the ILP and executing the
deployment logic in a simulation. The study concludes that the heuristic
deployment algorithm finds mappings with optimal or near-optimal costs
with low variation for the included examples.

THESIS APPENDIX

A Bio-inspired Method for Distributed Deployment of Services

The last paper, included in Part III is summarizing the results of this
thesis and touches upon each of the application scenarios of the deployment
logic that has been investigated. The paper starts with the general problem
setting and its complexity. Then the deployment logic is introduced and
some of the examples from the previous papers are discussed, together with
the validation approach.

4. Related work

The intention of this section is to review some of the related research di-
rections that can either be considered surrounding the deployment mapping
problem or contributing to some crucial parts of an anticipated solution to the
problem. Works on methods, different approaches and related scenarios are
reviewed in the categories below. Each section starts with a short paragraph
introducing the relations of the topic to the research presented in this thesis.

The list of categories starts with a novel service development method, which
could be extended with the deployment logic presented in this thesis. This
would produce a complete service development and deployment cycle. In the
first step of this cycle, service models have to be enriched with QoS-related
information. This can be achieved by requirement capturing, discussed af-
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ter the SPACE method. When changes in the execution context necessitate
adaptation, the service and its components have to be reconfigured. To allow
for adaptation various frameworks have been introduced that are aware of
the execution context to a certain extent. Component-based service models
and their reconfiguration, as well as relevant frameworks and middleware are
touched upon below.

The QoS might be impacted by the deployment configuration of a service.
Different aspects of QoS might be considered, such as balancing of the load
imposed on the hosting environment or replication management, as discussed
in this thesis. Power-usage modeling and management is another interesting
aspect to consider. Relevant work with respect to these QoS dimensions is dis-
cussed in two subsequent sections. One of the relevant target environments
for the deployment logic, where these aspects are important is virtualized
data-centers, also touched upon in this section.

Approaching the deployment problem from a theoretical perspective, a
group of similar problems, labelled task assignment problems are also dis-
cussed below. Migration of some or all parts of the services is required for
adaptation, hence, different migration techniques are reviewed subsequently.
Lastly, a set of relevant bio-inspired methods are discussed, and, in the last
part, various deployment decision methods are discussed and compared qual-
itatively to the work presented in this thesis.

Arctis and the SPACE method

First a service development method is introduced, which describes a complete
software development cycle. The deployment logic presented in this thesis
is a candidate for a natural extension to the cycle, supporting autonomous
(re-)deployment of services developed using this framework.

A method for specification by activities, collaborations and executable state
machines (SPACE), devoted to the rapid and (by design) correct engineer-
ing of distributed services is introduced in [KH10]. A tool-chain support-
ing the concepts of the SPACE method, called Arctis, is also available and
supports the overall stepwise development process. The development cycle
starts from a functional model of the service, specified by UML collaborations
and activities. Thus, the specification encapsulates – efficiently – distributed
sub-functionalities that together interact and implement the service behav-
ior. This specification style and Arctis facilitates reuse of building blocks to
a significantly higher degree than it would be possible with component-based
descriptions [KH09]. Building blocks (e.g. automated creation and transfer
of SMS, user authentication mechanisms, etc.) are stored in collections of
domain specific model libraries and can often be reused in various services
while single components tend to have specific layouts for a particular appli-
cation. Next in the development cycle, correctness checks are performed on
the functional models, followed by a transformation to a component-oriented
design model [KSH09]. An approach for integrating security aspects into the
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system design at the functional level has been proposed in [GHK09]. The
component-oriented models, specified as UML state machines, are used to
generate the executables by code-generation. This completes the automated
development cycle from collaboration-oriented service models to executable
implementations [Kra08].

Figure 16: Development and deployment with SPACE

The implementations generated by the rapid development cycle of SPACE
need to be deployed into a – possibly dynamic – execution environment. This
is the step where the software life-cycle can benefit from autonomous deploy-
ment decision support. The suggested proceeding to integrate the deployment
logic to the service engineering cycle is shown in Figure 16, where the inner
cycle corresponds to the original SPACE cycle and the outer cycle is the sug-
gested extension to it.

To enable deployment support service models can be amended by high-level
NF goals encapsulating non-functional requirements (NFRs) of the service in a
rather abstract manner. Refinement of NF goals can be done in parallel with
the transformation of service models to design models. Requirement profiles
obtained after the refinement step specify NFRs of the service components.
Additionally, a network profile is used, representing the properties of the target
environment, in which the service will be executed. The two profiles serve as
input for the deployment logic, requirement profiles specifying the objective and
the network profile specifying the search space. Beside aiding initial deploy-
ment of an implementation, another aspect is the dynamic re-deployment of
a generated implementation. Deployment support can extend the regular ser-
vice engineering cycle to support re-deployment, depending on changes in the
execution context, as well. To support adaption, according to the MAPE con-
trol loop discussed in Section 1.3, feedback is required that can be provided
by observing the execution environment via monitoring.
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Requirement capturing

The step of capturing requirements is an important phase in the development
cycle. NFRs have to be captured early at design time for deployment decision
making as well. Hence, requirement capturing methods are relevant and are
discussed in this section.

High-level goals were used in AI-research to guide agents already from the
early ’70s [Nil71]. A comprehensive review of goal-oriented engineering of re-
quirements was discussed in [Lam04]. Using high quality NFRs is a factor
contributing to the success any software project. A well elaborated require-
ment capturing approach is the so-called User Requirements Notation (URN)
language, which claims to be the first standardization effort towards explicitly
capturing NFRs throughout the design process [AM02]. Beside graphical no-
tations, contract-based descriptions of QoS goals are used to specify NFRs in a
machine-processable format in QML [FK98] and in CQML [Aag01]. Concern-
ing a description for the execution environment, the same object paradigm
can be used that UML employs to reduce complexity. In [TM05] a language
compliant with the object paradigm is proposed intended to specify QoS in
networked environments, which can be a candidate method to represent the
net-map in a formal way. In most cases, annotations are used to establish an in-
termediate model that can be transformed to traditional performance models
such as queuing networks, quasi birth-death processes, or colored petri nets.
For example, in [FW04] three views of the system are combined to analyze
performance of a distributed system: scenarios, the software and hardware
structure, and available resources. Recurring patterns in resource architec-
tures are identified and layered queuing models are used to analyze them.
Furthermore, [FW04] suggests the use of annotated UML diagrams in the fol-
lowing manner: deployment diagrams to represent the allocation of resources,
and activity diagrams or sequence and collaboration diagrams for the scenar-
ios. Deployment diagrams with fault tolerance patterns are used extensively
in [TSG04] to specify deployment restrictions. These restriction can then be
reused in architectural design and a constraint solver is suggested to produce
a deployment that satisfies the restrictions. Activity diagrams are suggested
in [MEM+09] for expressing system requirements by domain experts. These
experts also define a cost function governing service selection in the suggested
framework.

Component-based models and reconfiguration

The simplest level of adaptation can be achieved on the level of components.
Many approaches have been suggested for enabling runtime reconfiguration of
software considering components as the appropriate building blocks and level
of granularity to start with. The deployment logic presented in this thesis
addresses component level adaptation in the earlier papers, PAPER A, B and
C. Relevant works for component-based reconfiguration are discussed in this
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section.
Dynamic reconfiguration of the system architecture is an example of adap-

tation at the design level. Decisions can be made statically (exhaustively
defined configurations) or dynamically (during execution, based on high-level
goals) [CLG+09]. Both static (e.g. model checking) and dynamic analy-
sis (e.g. simulation) and evaluation of components are essential for software
modeling. Considerable effort has to be spent on understanding the environ-
ment a component may find itself in [Egy04]. An extensible environment,
RAJE allows monitoring of resources, e.g. memory and CPU time consumed,
in Java threads at runtime. Additionally, components can use contracts to
describe the context they desire to be run in [Som04]. The concept of QoS-
aware components, Q-components that dynamically compose Q-applications
was introduced in [MRG04]. Q-components find and negotiate their corre-
sponding service pairs based on a central directory service and some queuing
network analysis. Minimizing the burden on the developer of components is
targeted specifically in [CS02], by introducing a framework offering mecha-
nisms to analyze and handle the interactions between components during re-
configuration. Moreover, support for dynamic reconfiguration of Java-based
applications and components has received considerable attention in a vari-
ety of works, such as [Hal04, ATK05, PKF05]. Implementation design using
UML models, in particular deployment diagrams, was discussed in [FSJB01].
The role of implementation design is to express the decisions made regard-
ing hardware and software for an abstract system. Adaptation policies are
generated systematically using Markov Decision Processes in [JHS+04]. In
general systems with multiple components, however, non-linearities make the
formulation of system properties difficult, e.g. component failures are rare
events. Hence, this deterministic approach suffers from state-space explosion
when performance and dependability metrics are combined.

Context-aware and adaptive frameworks and middleware

Component-based reconfiguration is an attractive target for adaptation sup-
port. To enable this type of reconfiguration, however, some type of system-
level support is needed. This support can be provided by a layer underlying
the executed software components, in other words a middleware. Various
middleware approaches and context-aware frameworks are candidate tech-
niques that can effect the changes suggested and provide information about
the environment needed by the deployment logic. Relevant middleware and
frameworks are discussed in this section.

Extensive research has been conducted in recent years focused around plat-
forms supporting various forms of adaptation and increased dependability.
Autonomous replication management is targeted in a framework based on
group communication systems, using which, a self-managed fault treatment
mechanism that can adapt to network dynamics and changing requirements
is devised in [Mel06]. Another distributed and dynamic middleware, QuAMo-
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bile [LSO+07] introduces independent application variants, where the appro-
priate instance is selected to provide context-awareness and adaptation. Ser-
vice level agreements (SLAs) are commonly used as starting points for plan-
ning. A planning-based adaptation middleware was devised in the MUSIC
project [REF+08], where, similarly to our approach, QoS related metadata
was used in the service models. SLAs are applied as means for building poli-
cies in [ATZ07] as well. Based on the policies resource allocation is enabled
in an autonomic environment. A middleware, CARISMA, employing the peer-
to-peer concept is described in [CEM03]. CARISMA utilizes an auctioning-like
mechanism for conflict resolution and adaptation that is triggered automat-
ically by changes in the context. In [MRKE09] reliability of mobile software
systems is improved by considering information from a variety of sources.
These sources include not only execution logs, but software architectural mod-
els, execution profiles, information regarding the context and domain expert
knowledge. Then, reliability predictions are made by learning algorithms,
such as Hidden Markov Models and Dynamic Bayesian Networks. According
to the predicted reliability configuration of the software is adapted using a
middleware approach.

The SmartFrog framework, developed by HP Labs [Sab06], targets the de-
scription, deployment and management of distributed service components.
This framework describes services as collections of components and applies
a distributed engine comprised of daemons running on each node. A dedi-
cated description language is used for specifying configurations, using which
deployment information can be described and instantiated across a network.
After instantiation, components of the application are hosted by the frame-
work itself. The different configurations that can be instantiated are based
on predefined and complex templates. The decision making mechanism that
develops the best configuration to be instantiated, however, is open for re-
search. The different kinds of middleware discussed are possible candidates
for serving as a means of instrumenting deployment guided by the algorithms
presented in this thesis.

Load-balancing and replication

As discussed in Section 3, PAPERs A – C focus on the QoS goal of balancing
load imposed on the network by the deployed services, from the perspective
of the deployment logic. In addition, deployment of replicas for increased
dependability is investigated in PAPERs D – F. Hence, it is relevant to look
into related techniques.

Load-balancing and replication are two important concepts in provisioning
networked services. With load-balancing, often by applying dedicated load-
balancers, workload can be distributed evenly across particular resources, e.g.
network links, nodes, CPUs, etc. More efficient distribution of workload con-
tributes to better resource utilization, throughput and response times, while
also playing a key part in avoiding load-peaks. Different types of algorithms
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have been devised for general load-balancing problems. Classical solutions,
such as Round-Robin and weighted Round-Robin or shortest job first schedul-
ing were developed decades ago [Kle76]. More recent approaches include gra-
dient models [LK87], economical and game theoretic approaches [GC02] and
evolutionary algorithms based on ant colonies [HE07, MMB03] or intelligent
bees [SCK08].

Another aspect that demands the use of multiple components is reliability,
which can be increased through additional redundancy, or in other words,
replication. There are several approaches to manage replicas, i.e. passive,
semi-passive, active, semi-active replication [Df00]. The service models dis-
cussed in this thesis follow an active replication approach, which is also often
referred to as the state machine approach [Sch90]. In the state machine ap-
proach all replicas perform exactly the same actions in the same order, this
way remaining identical. This, however, requires that all replicas receive the
requests in the same order. Thus, the state machine approach implies that a
consistency protocol must be run among the replicas, and hence introduces
larger communication and processing costs. Regarding the additional com-
munication overhead of executing the required protocols, the notion of mes-
sage complexity can be used, which is typically expressed by the number of
messages generated by a failure-free run of the algorithm. Given a desired
replication-level p, message complexity of the algorithms applied in common
applications with replication is o(p) in point-to-point and typically better than
o(p) (can be constant) in broadcast networks [Df00]. These considerations
lead to the basic service models with replicas, introduced in Section 2.4.3.

Regeneration of crashed replicas appeared in the early Eden system, pre-
sented in [PNP88]. More recent distributed group communication systems,
such as [MG08, MMHB08], can provide automatic reconfiguration and regen-
eration of replicas. The DARM framework [MG08] is one promising candi-
date for providing efficient deployments based on the algorithms in this thesis.
Further results related to regeneration to remedy failures using replication are
discussed in the context of peer-to-peer wide-area storage systems in [YV05].
Moreover, in [YG09] it is shown theoretically that inappropriate placement of
replicas of inter-correlated objects can significantly impact system availability.
Importantly, consistency, or replication protocols with arbitrary communica-
tion and computation costs can be taken into account in the system models
used in this thesis as initial input for deployment mapping.

Power saving

Beside the QoS dimensions considered in the included papers, a natural ex-
tension to the set of requirements is to include power-management limitations
of service deployment.

Recently, powerful economic factors appeared that are pushing information
technologies in general towards lower energy usage. Consolidation of resources
and better utilization are targeted, especially in large-scale data centers, to
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conserve power. Currently, energy consumption and related carbon emission
of IT services are described as being equivalent or above the corresponding val-
ues for the airline industry. However, adopting new technologies might help
making systems more efficient with respect to power saving. Energy costs,
including the costs of extensive cooling, are among the main financial expen-
ditures of operational server farms. The advantage of current data-centers
hosting virtualized applications is that these applications can be adapted rel-
atively easy, taking into account energy-saving aspects. This, however, re-
quires adaptation of each individual component of the application [BGG+10].
Hence, fine-grained models including the interactions between the components
are also required.

Dynamic voltage scaling (DVS) is a technique often addressed in various
works trying to minimize power usage. A thorough example for optimization,
in particular minimizing global power usage of a data-center constrained by
end-to-end delays is the topic of [HASL07]. The DVS technique was also
applied targeting the trade-off between application completion time (task
scheduling) and energy consumption. An algorithm taking into account both
goals, and balancing between them effectively, has been proposed in [LZ09].
The authors of [SZL10] have the same targets of effective scheduling and min-
imizing energy usage in a grid scenario, but taking into account that energy
usage has to be minimized simultaneously in parts of the grid having different
ownerships. Effective scheduling can additionally be used to minimize energy
consumption of memory banks as well [MB08].

One approach for minimizing total power consumption in wireless networks
by adjusting transmission power according to a distributed protocol, applying
centralized techniques locally only, was presented in [MG05]. A framework ca-
pable of estimating the energy consumption of Java-based applications, both
during design and at runtime, was developed with a margin of estimation er-
ror below 5 per cent [SMM07]. Simplifications are justified in this approach
by assumptions related to the Java Virtual Machine.

A useful optimization target in data-centers is the distribution of available
power among the servers so as to get maximum performance. Generally, as-
signing more power to a host allows higher CPU frequencies, hence, results in
faster execution in that host. On the contrary, running servers at their lowest
possible power levels, allowing for more servers to be turned on within a given
power budget, might also be an objective. Accordingly, the optimal power
allocation depends on, among many other factors, the application scenario.
[GHBDL09] gives a theoretical model, based on queuing networks, to analyze
different power-to-frequency relationships and power allocation to nodes.

Virtualization and cloud computing

From a component-level deployment approach taken in PAPERs A – E focus
has been shifted to services provided in a virtualized environment in PAPER
F. Hence, an introduction to some of the key techniques in virtualization and
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cloud computing is provided in this section.
With the increasing demand for platforms supporting large-scale dis-

tributed systems data centers have undergone significant changes recently.
Virtualized infrastructures have been introduced with the aim of achieving
better utilization of resources while hosting services and with the introduc-
tion of on-demand scaling. Multiple, geographically dispersed data center
sites have become a typical scenario. Enhanced availability despite the
ever-present outages and quicker response to local demand are among the
promises. Mayor players, such as Amazon, Google, Salesforce or Yahoo!, offer
public access to large amounts of resources previously unavailable for smaller
enterprizes. The concept of providing infrastructure level access to resources
for virtual servers is popularly called cloud computing. Large data centers
providing the infrastructure as a service are typically assembled of a high
amount of cheap and less reliable blade servers, racks, hard disks, routers,
etc., which might lead to increased failure rates [Dea]. Increased failure rates
in turn, demand replication and repair mechanisms.

The complex requirement of reliable provisioning of services with efficient
utilization of resources is one key selling point of cloud based Infrastructure-
as-a-service type offerings. It is even more challenging, however, to feature
the so-called elasticity property, in other words the capability of dynamically
scaling the amount of available resources up or down according to the
changes in demand. Dynamic service delivery is facilitated by the use
of Virtual Machine (VM) Images deployed on demand in data centers.
Multiple data centers under a single administrative entity are referred to
as a computing cloud. VM images can be packaged in standardized ways
by using for example the Amazon Machine Image format [LLC]. Also,
standardized formats for packaging enable interoperation of different types
of clouds covered under the terminology of hybrid-clouds, where typically
private computing infrastructures are connected on demand to public cloud
offerings. Organizations implementing the private cloud concept may be
running different flavors of operating systems equipped with cloud support,
such as Ubuntu’s Enterprise Cloud solution [WGB09], which is compatible
with the Amazon EC2 packaging format, thus allowing for migration of VMs
into public clouds.

The intention of the Eucalyptus project, for example, is to support
multiple cloud computing interfaces while preserving the back-end infras-
tructure [NWG+09b, NWG+09a]. Lack of service management facilities and
interoperability between cloud providers have been identified as major obsta-
cles limiting scalability of federated cloud computing environments [RBL+09].
Federated cloud environments need a unified interface for dynamically man-
aging VMs, forming services. Moreover, a heterogeneous cloud computing
architecture must also tackle the placement, migration, and monitoring of
VMs across interoperability boundaries. A recent initiative [EL09] proposes
mechanisms for placement, migration and monitoring of components. Vir-
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tualized environments and server consolidation generally achieved significant
advances recently in the autonomic computing community. Effective deploy-
ments, however, require some kind of optimization approach, in addition to
methods easing the actual execution of placement. Systems discussed above
can provide the underlying mechanisms that are necessary to support service
deployment in cloud environments. Focus in these approaches is mostly
on the mechanics of VM deployment and not on the process of optimizing
the deployment configurations. Few frameworks have been developed that
target optimal placements for VMs under a variety of constraints, such
as [VAN08, JHJ09]. The problem of hosting virtualized multi-tier applica-
tions is addressed from the provider’s perspective in a self-adaptive capacity
management framework in [CAAS07]. The system is modelled as a tandem
queuing network of simple M/M/1 queues, however, without considering
interdependencies.

Another aspect is virtualization of the networking resources for better
utilization, which has been hailed as a key enabler of the evolution to future
Internet technologies. The major building blocks of network virtualization
have been identified as: i) application specific routing overlays, ii) con-
solidation of resources (OS virtualization) on a generic infrastructure and
iii) efficient exploitation of network diversity [TZNTG09]. The problem of
finding the optimal mapping between specific virtual network elements and a
physical substrate has been briefly analyzed within the extent of the 4WARD
project, results were summarized e.g. in [CJ09]. Future research directions
were identified including optimization mechanisms, dynamic reallocation
of network resources, managing virtual networks spanning across multiple
infrastructure domains and interoperability of different virtual networks,
which are all problems remaining to be solved. The applicability of virtual
machine technology in routers is investigated in [BFdM09], targeting special
features in virtualized networks. Moreover, future home environments are
used as a proving ground for network virtualization in [BWS+09]. State of
the art in network virtualization and challenges have been sketched in [CB09].

Task assignment problems

To approach the deployment problem from an optimization perspective the
first set of similar problems to look into is denoted task assignment problems,
discussed in this section.

General task assignment problems are fundamental in combinatorial op-
timization and have several slightly different formulations, such as different
transportation problems, finding the minimum cost flows in a graph or finding
the maximum weight match in a bipartite graph with weights. In a simple
task assignment problem there are agents and given tasks to be performed
by them. Assignment of a task to an agent incurs some cost, which usually
depends on the agent. Then, a given solution is an assignment between agents
and tasks so that all tasks are performed and the total cost is minimal. Several
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algorithms have been devised to solve the basic version of the task assignment
problem in polynomial time. During an early stage of research, conducted
within the extent of this thesis, task assignment problems were studied with
focus on scheduling software processes or modules on execution resources.
In module assignment, however, the problem quickly becomes more difficult
when communication between the modules is also allowed. Complexity of the
general module assignment problem is NP-complete, as shown in [FB89].

A seminal paper, [Efe82], dealing with the problem of clustering software
modules and assigning them to processors had large influence on the research
and results of this thesis. The module assignment scenario presented therein –
to introduce a suggested heuristic algorithm for the module assignment prob-
lem – was transformed to a collaboration-oriented service model with execu-
tion and communication costs in PAPER A. This example, even though it does
not have a tangible meaning as a service, served as a reasonable test scenario,
while the problem complexity remained NP-hard. Also, the transformed sce-
nario was useful for validating deployment algorithms, as the solution of the
example is well known. This scenario has been investigated in [WN04] too,
and a comparison of results with some other approaches, such as a solution
with minmax node costs in [WM93], was conducted. Besides, the example was
reused as one of the test models to build the ILP in PAPER G.

Task, process and workload migration

When the deployment logic indicates that a more favorable configuration ex-
ists for the service, most probably parts of the service have to be moved to
new locations. This is the point when migration techniques are required. A
brief review of relevant methods follows.

Given a method that finds efficient and at least near-optimal deployment
mappings for services, one of the biggest issues that needs consideration is how
to migrate arbitrary parts of the service to allow redeployment suggested by
the logic. This is a question discussed in many places in software migration
and mobile agent scenarios. It is especially interesting to consider moving
instances that have open connections, which have to be preserved even after
migration. Mobile agent technologies have been investigated in the literature
intensively, most of them focusing on agents implemented in Java. These
agents are defined as programs that can move across nodes carrying their own
code mainly for the purpose of avoiding data transfer over the network. Fur-
thermore, these techniques allow having, for example, instead of a fixed client
that retrieves massive amount of data from the server side and processes it,
a client component that is moved to the server for the processing period for
the single purpose of conserving network bandwidth. In other solutions the
client-code is available everywhere, only state and data are moved and exe-
cution can continue. The majority of available approaches considers moving
runtime state of instances only and does not handle open connections. Run-
time state consists of state information and data. Furthermore, two types
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of migration are considered, strong and weak, where strong means continued
operation at the new node after being transferred, and weak means data is
transferred but the state machine (SM) of the agent is restarted from initial
state. However, restart from an initial state is an option only if such a SM is
meaningful.

Approaches focusing on moving components with state and data but not
considering connections use different ways to achieve the same goal, to capture
state during execution at regular intervals. Saving the state regularly can be
done automatically or explicitly (function call in the code). The two main
categories are modifying the Java Virtual Machine (JVM), or pre-processing
the source code to insert state-capturing statements. Serialization might miss
information from the JVM, such as method call stack, variables local to the
method and the program counter. If we look at the migration of connections
of a component most of the approaches deal with TCP connections. One way,
followed in some methods, is using OS kernel tricks to access data not yet deliv-
ered. Others extend the TCP protocol itself. New states e.g. SUSPENDED,
RESUME REQ, etc., are introduced. This is a middleware approach, in which
case the middleware takes over and closes/creates connections. More impor-
tantly, a new buffer/queue is added, which collects undelivered data. This
queue is migrated together with the rest of the data, and is read first after
migration. However, only one side of the connection can move at a time, since
the migrated part resumes the connection and has to know the address of the
original party. In addition, this involves exchange of messages during the mi-
gration period for the extended TCP states [ZXS04]. Migration of Java-based
mobile agents has been achieved on the language level by the pre-processing
approach. In this case, automatically inserted code saves runtime information
and state and re-establishes them on restart [Fn98].

Wrapping in the TCP layer by two layers, one above and one under, and
logging the TCP connection state is an alternative approach [ZMAB03]. No
modifications to the TCP protocol itself are required and the application
above TCP is not affected. Another TCP extension allows migration of the
server endpoint of a client-server connection, and also has a specific API with
functions that need to be called from the application such as export state,
import state. Nevertheless, the originating server must stay alive for connec-
tion state delivery to the destination server and only a single process per
connection is allowed, otherwise the connection state cannot be collected. For
example, an HTTP server and multiple CGI worker processes are not al-
lowed [SSII01].

SockMi allows moving both sides of a connection and any connection state
is allowed, i.e. an unconnected socket is interesting especially for server-side
use (e.g. migrating a socket in listening state). An API and a loadable kernel
module is implemented in the approach and a daemon is used that basically
moves the TCP connection state and data together with the receive/transmit
queue. The daemons communicate and allow moving of the socket among
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them. Importantly, the approach uses Network Address Translation (NAT) at
both nodes involved in the migration, thus the exporting node redirects pack-
ets and the importing node communicates using the IP address of the original
exporting node during the connection. This mechanism leaves the question of
long-lasting connections, during which several migrations can happen, unan-
swered [BCT07]. Mobile IP, even though well developed, is not suitable be-
cause it relies on a home agent (proxy) that does not change location and
relays all packets to the migrating endpoint practically continuously [ZXS02].

Migrating workloads is equally important for data center applications as
component migration. Therefore, near optimal workload placement based on
evaluating traces is suggested in [GRC+08]. Authors suggest migrating work-
loads from overloaded servers and shutting down lightly-loaded servers. Sev-
eral trade-offs are identified, such as between the required capacity and power
usage, access QoS for CPU and memory, or the number of migrations. Fur-
thermore, a genetic algorithm is used to analyze alternative workload place-
ments and fuzzy logic is utilized to control migrations. The difficulties of inter-
site migration (between different providers) are highlighted with a suggested
solution for storage migration in [HON+09]. Complexity of placement of ap-
plication data is highlighted in [ADJ+10], where the authors address the issues
of shared data, inter-dependencies between data chunks, application changes
and user mobility. The suggested solution is based on analyzing large, month-
long traces and applying an iterative optimization algorithm. The trade-offs
that have to be considered include minimizing inter-data-center traffic by co-
location while minimizing latency by placing data close to the anticipated
users. Sizes of these types of data placement problems are exploding with the
millions of clients in clouds, and standard exact optimization methods simply
do not scale to that extent.

Bio-inspired methods

The theoretical basis of the deployment logic presented in this thesis is
provided by a bio-inspired AI approach, introduced in Section 2.1. In recent
years, there has been plenty of research effort put into various approaches
with theoretical background in processes observed in nature. This section
gives a brief overview over the relevant bio-inspired approaches.

There are undoubtedly trade-offs in applying bio-inspired techniques com-
pared to conventional, centralized alternatives. Hence, the applied methods
have to exhibit improved efficiency and responsiveness to unpredictable
fluctuations on the long-term to compensate for the possible increase in
delays and waste of resources. Decentralization, however, is inevitable
in autonomic systems, where any centralization of resources or control
can hinder the systems’s ability to adapt. Bio-inspired methods play an
increasingly important role, because the concept of autonomic computing
itself has its roots in biological models, such as the nervous system, swarm
intelligence and artificial immune systems [DDF+06].
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The heuristic optimization algorithms presented in this thesis employ a
variant of ACO systems, the CEAS. The concept of ACO was introduced
in [DMC96] as a multi-agent system for solving a wide variety of combina-
torial optimization problems. ACO, being a bio-inspired method, defines
agents’ behavior based on a theoretical foundation resembling the foraging
behavior of ants. The method has been applied to a variety of problems in
communication systems, including load-balancing [S+97, MMB03], routing in
wired [CD98], and wireless networks [CDG05]. In [BMM02], a framework is
presented to support the design, implementation and evaluation of peer-to-
peer applications that are employing evolutionary programming techniques
resembling complex adaptive systems.

The random proportional rules, similar to the one presented in Section 2.1,
have been common already in early ACO systems and are present in other
swarm intelligence systems, such as AntNet [CD98], Termite [RW03], or
Beehive [WFZ04], as well. These rules have been shown to resemble swarm
behavior closely through empirical studies, and have been recognized as
fundamental for model based search [Z+04].

The particular ACO type method applied, the CEAS, however, differs in
its formal foundations from traditional ACO methods, in that it uses the CE
method, first introduced in [Rub99]. Successful applications of CEAS include
path management strategies, e.g. shared backup path protection [WH04],
p-cycles [WHN05], search for available resources restricted by QoS con-
straints [WHH03], and finding adaptive paths with stochastic routing [H+05].
Implementation issues and related trade-offs, such as management overhead
imposed by additional traffic for management packets and recovery times are
dealt with using a mechanism called elitism [H+04] and self-tuned packet
rate control [HW06a, HW06b]. Additional reduction in the overhead is
accomplished by pheromone sharing [KWH08], where ants with overlapping
requirements cooperate in finding solutions. The objective, when applying
CEAS is often to minimize some cost determined by a given cost function.
The control variable, denoted the temperature in Section 2.1, decreases grad-
ually in these cases, in a similar way to the well-known approaches labelled
simulated annealing [KGV83]. The gradual decrement of the temperature
reduces the probability that the heuristic gets stuck in a premature and far
from optimal solution.

Instead of applying evaporation to the pheromones a population-based
approach is suggested by the authors in [GM02b], resembling mechanisms
from genetic algorithms. The corresponding population update strategies
were described in [GM02a], and were applied to multi-criteria optimization
problems [GM03], employing one pheromone matrix for each optimization
criterion. Furthermore, a multi-colony approach, where every colony has
one part of the objective as a task, was suggested in [MM99]. The concept
of spy ants that can look into the pheromone databases of other colonies
as well was defined and experimented with in a study [DHR01]. Instead
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of a population of ants for each criterion weights are used by ants before
accessing the pheromone database and solutions are constructed according to
a weight vector also in [DGH+04]. A different approach, an artificial hormone
system is explored for the problem of task allocation in grids by the authors
of [BR09]. An artificial hormone system works also decentralized similarly
to ACO and can be characterized by processing cells that communicate
by exchange of hormone messages (accelerators and suppressors). In the
hormone-based control loop, however, messages have to be exchanged
between all participating processing cells, which implies that the volume of
required communication might hinder scalability.

General deployment decision making

The main focus of this thesis is on methods to aid the deployment of
distributed software services. This section reviews some relevant approaches
that target finding, optimizing, or planing deployments in various application
scenarios.

The general objective in deployment decision making is to maximize the
utility of the services at hand via influencing their deployment. Available
approaches differ in their main concepts and in the view taken on the ser-
vices, i.e. what types of services are considered and how they are modelled.
Generally, the different approaches can be categorized based on (i) the time
of execution, i.e. online or offline; (ii) the place of execution, centralized or
decentralized; (iii) the type of method, approximative or exact search; (iv)
the more concrete type of the algorithm applied, e.g. heuristic search, linear
programming, policy-based, ontology-based, voting, auctioning, etc.

Placement of components is mostly introduced as an optimization task
that results in a specific deployment architecture. This resulting architecture
has large influence on the QoS that can be provided by the distributed
system. In [KHD08], an algorithm has been devised based on calculating
the usefulness of alternative configurations as weighted sums. The resulting
approach is not computationally effective and serves as a trial to show
that deployment decision making is important and necessary to apply.
Most known approaches rely on a centralized optimizer that often has to
crawl through the entire state-space of decision alternatives. Deployment
decision making requires an optimization method to function properly and
autonomicity has to be built in as a basic functionality into it.

Authors of [WS08] have reviewed service placement approaches in mobile
ad-hoc networks. Observations suggest that a single centralized service can
be deployed using passive monitoring alone. Deployment of instances of a
distributed service, however, requires iterative message exchange. According
to this survey, for deployment in mobile ad-hoc networks typically some
middleware is used. Alternatively, it is tackled with an application of facility
location theory (e.g. [KSW07]). The middleware approaches investigated
in the review, however, fail in supporting truly distributed services, and
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applications of facility location theory require collecting information at a
central node. None of the approaches reviewed consider deployment of
services competing for available resources.

Centralized solutions requiring a global view, in particular ILPs, have
previously been applied to clustering problems, for example in grid file sys-
tems [SME09]. In [BSDS98], an abstract model for applications is proposed
and a novel binary integer programming model is introduced to focus on
the deployment aspect. However, high computational complexity is a mayor
drawback in solving this model. Other, more specific approaches that target
minimizing execution delays, such as automated distributed partitioning,
decomposition, or graph cutting algorithms lead to NP-hard complexity even
in cases where the network consists of only 2-3 nodes [HS99]. The so-called
Component Placement Problem (CPP) is defined first in [KIK03]. Authors
devise a method that provides a single valid deployment for components
by restricting the solution space to tractable sizes by capturing important
constraints. Afterwards, the CPP can be solved, but without considering the
quality of the solution. Generally, the exact solution algorithms applied for
deployment mapping become computationally expensive for realistic problem
sizes, even if they only consider a single QoS dimension.

Group-finding algorithms to find mappings in generic wide-area resource
discovery is presented in [AOVP08]. In some way similarly to the foraging
behavior of artificial ants, some approaches rely on extensive measurement
data collection and storage. Optimal placement under a variety of constraints
is then calculated based on the central storage, e.g. in [VAN08] and [JHJ09].
The latter proposes a centralized approach, in which an optimizer and model
solver component is used to find optimal mappings for VMs. Traditional
SLAs were used with planning-based decision making in the MUSIC project,
with focus on a middleware [REF+08].

Self-configuration to aid re-deployment was introduced in [MRM04]. A
middleware design was presented targeted at disconnected operation via
architectural self-reconfiguration, and also to increase availability. The
regular MAPE cycle is adhered to in this middleware approach based on
system monitoring, estimating (re-)deployment and effecting a new deploy-
ment. Similarly, deployment on mobile devices in wireless ad-hoc networks
is targeted with a middleware design in [RG05]. Components are stored
in local repositories and neighboring devices can exchange components in
a peer-to-peer manner. The user of a device can request new components
by contacting a centralized deployment manager, however, no QoS aspects
are considered. Just-in-time component loading is used as a technique,
while future deployment needs are predicted using a Markov model in the
task-driven deployment framework of [RCBC07].

Heuristic algorithms for the deployment problem were devised first
in [Mal06], and approximative solutions are suggested to overcome scaling
problems. In [Mal06] utility is maximized solely from the users’ perspective,
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not considering the preferences of the providers of the services. Moreover,
deployment of a single service is targeted at a time, without taking into
account the effects of services executed in parallel. The authors first formulate
the problem by first defining a set of n components with properties and
k nodes with corresponding parameters, a set of constraints that have to
be satisfied by valid deployment architecture and an initial deployment
mapping. Second, diverse functions are defined for various QoS aspects,
such as availability as the number of successful inter-component interactions,
latency as the time between request and response pairs plus computational
delay, security as levels of encryption or key-length, or energy consumption
as a weighted sum of computation and communication costs (in terms of
energy) for each software component. Based on the well defined objectives,
first mixed-integer linear and nonlinear programming are adopted to find
optimal deployments with respect to the multiple QoS dimensions. However,
after realizing that the solutions found by state-of-the-art MIP and MINLP
solvers do not always improve the cost of the deployment, while being very
complex at the same time, approximative algorithms are targeted. These
algorithms, however, are application-domain specific. The first attempt is a
greedy algorithm, which generates an improved solution every iteration and
runs in polynomial time [MRMM05a]. Using a greedy algorithm, however,
finding deployments still rely on a centralized logic. To allow distributed
implementation of a deployment logic one solution is a genetic algorithm,
presented in [MM06]. A multi-objective genetic algorithm was applied
in [CW98]. Genetic algorithms can continually improve the solution. The
drawback is that they generally have to be tailored very specifically to every
problem.

Various other heuristics could be investigated for supporting deployment
decision making, such as voting [HKU01], or token-ring based algo-
rithms [NOK93]. In a voting-based method, processing of a task is done by
several distributed processors simultaneously and independently. The chosen
deployment mapping could then be selected from their output as the majority
result of a voting. The distributed version of voting implies that each host
independently calculates the desirable deployment based on its limited
overview of the system. A token-ring based algorithm mimics the classical
solution already applied in networking technologies since the ’70s to handle
distributed mutual exclusion problems. Designated messages, i.e. tokens can
be circulated around all the nodes organized into logical ring structures. For
a host to be able to use a resource, acquiring a token is prescribed. The
classical method can be used in connection with (re-)deployment to control
component migration in a network.

Similar to voting, a market-based approach, an auctioning algorithm
was tailored to the deployment problem in [MRMM05b]. The peer-to-peer
middleware, CARISMA employs auctioning-like mechanisms for conflict
resolution and adaptation as well [CEM03]. Auctioning, however, is unable
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to detect potentially high performing nodes in the network if they do not
have any components deployed initially [MRMM05b]. The QoS-brokering
approach in [MD07] allows consumers to request services and then the
broker can predict QoS under a variety of workloads using analytic queuing
models and optimizing for maximized utility. Layered Queuing Networks
in particular are employed in [JJH+08] to build an off-line framework for
generating optimal configurations and policies. Moreover, an integrated
software mobility framework addressing performance (with Layered Queuing
Networks), reliability (using Hidden Markov Models) and energy consumption
was proposed in [MEB+10].

Table 4: Classification of some related decision making methods

Approach On-/Off-line De-/Centralized Approx./Exact Remarks,
[•/◦] [•/◦] [•/◦] methods

[KHD08] ◦ ◦ ◦ alternative configurations
[BSDS98] ◦ ◦ ◦ ILP
[CW98] ◦ ◦ ◦ dependence-graphs
[JJH+08] ◦ ◦ ◦ QNs
[WN04] ◦ ◦ • centralized CE-method
[SME09] • ◦ ◦ grid file clustering
[HS99] • ◦ ◦ graph-cutting
[KIK03] • ◦ ◦ AI planning
[VAN08] • ◦ ◦ bin-packing
[RG05] • ◦ ◦ ad-hoc networks
[RCBC07] • ◦ ◦ QNs-based prediction
[MD07] • ◦ ◦ QNs
[JHJ09] • ◦ • QNs & bin-packing
[REF+08] • ◦ • planning-based adaptation
[MRM04] • ◦ • stochastic & greedy alg.
[MRMM05a] • ◦ • greedy alg.
[CEM03] • ◦ • policies & auctioning
[MEB+10] • ◦ • general framework
[XZF+07] • ◦ • fuzzy learning
[AOVP08] • • • WAN resource discovery
[Mal06] • • • market-based alg.
[MM06] • • • genetic alg.
[MRMM05b] • • • auctioning
[HJ06] • • • remote comm. minimization
[MH07] • • • learning & ACO

This work • • • CEAS

Biologically-inspired resource allocation algorithms for service distribution
problems have been targeted earlier in [HJ06], and stochastic optimization,
in particular the CE method was suggested as a solution for some assignment
problems in [WN04]. Besides, fuzzy learning is applied for configuration
of server environments in [XZF+07], targeting efficient resource utilization
by applying a two-level control mechanism. Another variant of ACO-based
heuristics combined with artificial learning is applied to map applications
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in grid environments in [MH07]. This approach, however, considers only
one instance – similar to the concept of a component in this thesis – in one
species of ants and searches for a suitable assignment to a host.

The various methods relevant for deployment decision making are sum-
marized in Table 4 for comparison with the CEAS-based logic presented in
this thesis. This comparison between the approaches is solely qualitative,
based on three properties, whether: (i) the execution is on-line or off-line,
(ii) the algorithms are distributed or centralized, and (iii) the solutions are
approximative or exact.

5. Discussion

This section summarizes the highlights of this work and the approaches taken.
It also touches upon some of the advantages and disadvantages of the selected
methods, and motivates some of the research left for future work.

Research presented in this thesis started with realizing the importance of
efficient deployment of software services. After noticing that choosing different
deployment configurations impact the QoS, work started on building methods
and establishing strategies for obtaining deployment mappings that satisfy
given, QoS-related requirements. Utility of the research results presented in
the included papers is summarized in the following list.

1) Establishment of cost functions that sufficiently describe the utility of a
deployment, with respect to given requirements.

2) Development of decentralized, heuristic algorithms, auxiliary techniques
and strategies to optimize logical deployment mappings based on bio-
inspired methods.

3) Modeling and simulation of realistic example scenarios, such as a cloud
computing setting, to highlight the benefits of the suggested algorithms
and the promising application areas.

4) Cross-validation of results either by traditional centralized optimization
techniques or by choosing and adapting a theoretical problem with known
solution.

PAPERS A – G contribute to the given 4 areas as shown in Figure 17.
The first paper, PAPER A was the first attempt to formulate the deploy-

ment problem and to develop an initial, yet centralized algorithm based
on CEAS for solving it. The first cost function was derived to capture
communication and execution costs and simulations were conducted. The
scenario included in the paper was a transformed version of a well-known task
assignment problem, with known optimum. Hence, the presented algorithm
was validated by checking the solution it provided. Thus, PAPER A has
contribution in all 4 areas presented above.

PAPER B removed the need for global knowledge in the deployment logic,
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1) Cost functions
2) Heuristic algorithms
3) Modeling scenarios
4) Cross-validation

1)

2)3)

4)

A
B

E
F
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D
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Figure 17: Contributions of PAPERs A – G

by reformulating the cost function and improving the CEAS-based algorithm
as well. Also, a new set of service examples were introduced and simulations
were conducted within a new scenario. This scenario was used to investigate
how the logic adapts deployment mappings in the presence of a node failure
and when a new node appears in the network. PAPER C, building on PAPER
B, uses the same scenario and investigates what mechanisms are needed to
enable deployment of several services in parallel using the deployment logic.
Hence, its contribution falls into category (2).

A new set of dependability-related requirements was introduced in
PAPER D. This paper mainly focused on experimenting with new cost func-
tions to satisfy dependability rules. Simulation results were included based
on a new scenario focusing on replication management. The subsequent
paper, PAPER E refines the cost function targeting load-balancing and
dependability, and mainly contributes to auxiliary aspects of the deployment
mapping algorithm, such as the pheromone database. To experiment with
different variants of pheromone encodings a new example scenario is included.
Simulation results support the decision, which encoding to choose.

A different application scenario, service deployment in a cloud computing
context is discussed in PAPER F. Introducing financial costs also necessitates
improvements in the cost functions. Additionally, to handle new requirements
of the cloud computing setting parts of the optimization algorithm had to be
refined as well. Simulation results show that the deployment logic is flexible
and capable of handling new sets of requirements efficiently.

The last paper, PAPER G presents a validation approach to examine the
quality of the deployment mappings provided by the logic. Two new service
models are used, together with the model already presented in PAPER A.
A centralized, exact optimization approach is developed that requires global
overview over the system and finds the global optimum. The deployment
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logic is run in a simulation using the same scenarios and the solutions found
are compared to the global optimum.

In particular, the deployment optimization algorithms presented herein
build on a swarm intelligence method, the CEAS. Using CEAS, the deploy-
ment logic can be tailored to the requirements and scenarios at hand with
relatively few mandatory parameters in comparison with other swarm
intelligence methods. There are some parameters required by the method,
however, that need tuning and have an impact on the performance of the
algorithm.

To improve the results of the thesis, a general target is to avoid
over-engineering of the method and develop formal techniques to adjust
parameters that previously had to be altered manually. For example, it
would be beneficial to enable formal derivation of the parameters that
fine-tune CEAS and the deployment logic based on scenario and service
related information. Additionally, the constructed cost functions could be
organized into libraries and combined for given scenarios. Besides, the core
functions that describe the inner workings of the CEAS method, such as the
pheromone or the temperature updates could also be revisited. The new,
improved core functions in CEAS could possibly enhance the performance of
the deployment logic.

During the development of the algorithms administrative domain bound-
aries, e.g. networks of competing companies, were not considered. The logic
has to be equipped with additional techniques to tackle this possible lack of
transparency between groups of hosts (e.g. in a large public cloud setting
it might be difficult to achieve node-level insight). The eventual porting
of the algorithms and simulations to more recent simulators, for example a
Java-based environment, can also be considered, and would make the method
more accessible to the general computer science and networking community.

In the included papers, generally 3 types of scenarios have been investi-
gated, categories II – IV in Figure 15, with corresponding service models.
The deployment mappings obtained by the logic for these services were
evaluated. Nevertheless, new, more detailed and realistic service models
could be developed. Especially, the cost values used in connection with model
elements and scenarios, such as collaborations, replicas, or clusters need
special consideration and could be determined more precisely. Furthermore,
validation of deployment mappings can be extended to categories III and IV.
Lastly, more extensive simulations could be conducted to gain more insight
into the scaling and convergence properties of the algorithms, and also, into
the adaptation capabilities of the logic. These issues are touched upon in
Section 6.

In summary, the included papers present a deployment logic that was
designed in accordance with the requirements specified in REQs 1 – 6, in
Section 1. The service and network models that serve as input for the
logic are general enough to describe a wide variety of interesting application
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scenarios. Simulation results together with validation of the solutions justify
the efficiency of the algorithms devised. However, plenty of possible future
research questions, worth investigating, can be identified by the author.
These are summarized in the next section.

6. Future directions

There are many interesting paths of research, identified in this section, that
can be taken based on and following up the work presented in this thesis.
The first three items in the following list present work that is ongoing at the
time of writing, the rest of the list is considered as future work. The items
are not in a priority ordered list.

1) Translation of the simulations to the highly scalable and Java-based, event-driven
simulation environment PeerSim.

Translating the algorithms, currently implemented in the legacy Sim-
ula language and its DEMOS extension, to a more recent Java-based
simulation environment can also be beneficial for example to facilitate
experiments with existing middleware. The current simulation environ-
ment lacks support for more generic and efficient data-structures, such
as hash-maps. Using PeerSim [JMJV] extensive simulations shall be
conducted to test scalability and convergence of the algorithm. Another
opportunity with a more scalable simulator is to evaluate the deployment
logic’s behavior compared to other relevant optimization methods that
support distributed execution. A thorough comparison between the
presented logic and other known bio-inspired methods, however, might
imply having to deal with fine tuning of multiple parameters in case of
many available methods. Porting the code to the Java-based environment
makes the presented algorithms more accessible for the general computer
science audience and can serve as an important step towards a deployable
implementation.

2) Developing additional ILP models.

A recurring comment on the work presented has been the lack of
comparison with other similar methods. To address this issue a different
type of optimization model, a centralized ILP is developed to gain insight
into the performance and effectiveness of the heuristic approach. The ILP
models published and presented in this thesis (Category I. in Figure 15)
sufficiently describe some of the deployment scenarios discussed. They
can be used to validate results in the first set of problems, i.e. Category
II. in Figure 15, scenarios with load-balancing and remote communication
costs. However, solving problems introduced in Categories III. and
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especially in IV. of the contributions require extended models that are
being worked out at the time of writing. Challenges include validating
the implementation of dependability requirements that are represented
as soft-constraints in CEAS but can be specified as hard constraints in
an ILP. Moreover, it is particularly challenging to describe the non-linear
objective introduced in Category IV. of the contributions as an ILP, for
which case a piecewise-linear approximation seems to be applicable [Gul10].

3) The power saving dimension.

One particularly interesting aspect – which received increased atten-
tion recently – is the power-usage characteristics of different deployments
and how configurations could be optimized with respect to overall power
saving. To be able to consider the additional dimension of requirements,
i.e. power conservation, for more efficient deployments, power-usage
and its costs have to be quantified and built into the cost functions.
At the time of writing, the state-of-the-art in data-center power usage
modeling is explored and work is being done on establishing node models
and new objectives considering power conservation. One challenge,
for example, is to consider dependability aspects of the deployment
while power capacity constraints are present. Increased dependability is
often achieved at the cost of increased power-usage, hence it is not ob-
vious how to obtain a deployment mapping considering both requirements.

4) Migration costs.

Migrating workloads, state-less or state-full software components,
and VM instances are all challenging tasks and require particular deep
insight into the inner workings of the corresponding systems. VM
migration is especially challenging in an inter-site (wide-area) context.
The deployment logic presented in this thesis provides new configurations
whenever the environment changes to an extent where the new deploy-
ment would be significantly better. Changing the current deployment,
however, requires at least partial migration of a service, which in turn
implies additional migration costs that should be accounted for in the
cost functions. Quantifying costs of migration in software services is an
interesting and broad research topic in itself. One possible solution for the
deployment logic presented herein is to use threshold values proportional
to migration costs that allow changing deployment configurations only
if the benefit from the new configuration is high enough. The question
about what are the costs that matter remains to be answered. Costs, for
example, can be related to bandwidth required for transmission of state,
or to downtime caused by switching over between replicas. There are
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many tradeoffs as well that need to be considered here, e.g. if bandwidth
is not the main concern downtime of switching over can be very low.

5) Scaling and larger problem sizes.

The results obtained in this thesis are promising and some of the
focus has been on increasing the method’s scalability and adaptability.
There is room, however, for implementing more extensive simulations
and exploring even larger problem sizes. The two main directions con-
sidered where the scenarios shall be extended are larger networks (more
nodes and clusters) and, especially, larger amounts of services deployed
simultaneously. The former extension mainly affects the length of the iter-
ations the method has to take, whereas the former influences the number
of instances of CEAS that are executed (and have to cooperate) in parallel.

6) Incremental scaling.

To investigate the concept of incremental scaling, we may add an-
other dimension of dynamicity to the system models and the deployment
logic. Run-time component replication can be applied to increase/decrease
the replication level at run-time to meet requirements in terms of per-
formance and/or availability. Implementing this feature most probably
requires redesign of the algorithms of the logic (to some extent). A sketch
of the anticipated changes and a preliminary description of the logic
follows.

Given a minimum replication level (e.g. R = 3), increase the num-
ber of replicas until requirements for availability are met (e.g. n-of-k
system). With A = ∑κ j∈κ ∏i∈κ j Ai, where Ai is the availability of an instance

i, and κ represents all
(n

k

)
combinations.

A preliminary algorithm can be given as:

1) – Start with R = 3 replicas

2) – Map {c1,c2,c3} during forward search, sample {A1,A2,A3}
3) – If (A > Areq

∨
R = Rmax) then goto 5) else R ++

4) – Map cR; goto 3)

5) – Evaluate the mapping using F()

6) – Backtrack

Additionally anticipated changes to the method:

a) – one additional table in the nest for pre-selection of R
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b) – larger and more dynamic pheromone tables (in every node)

c) – Ai values to be sampled in every node

7) Coordination and designated nest selection.

Execution of the deployment logic using multiple ant-nests to allow
continuous operation in the presence of network partitions is discussed in
PAPER C. Physical placement of components is designed to be triggered
by a nest corresponding to the service to be placed. When multiple nests
are used for the same service some mechanism has to be in place to
elect a designated nest that can provide the trigger after convergence of
the deployment algorithm. A coordination and designated nest selection
protocol would be desirable that would ensure consistency for placement
triggers. For practical purposes it should be ensured that the deployment
logic is resilient to multiple leaders or no leaders at times.

8) Better and broader service models.

The service models presented in the examples in Part II are repre-
sentative for the deployment scenarios of Category II. – IV. Better
and more complex models of services can be developed that are more
realistic and describe aspects of services not included in this thesis. One
such aspect is for example the inclusion of costs related to maintaining
consistency between component replicas, i.e. the costs of executing certain
consistency protocols.

9) Introducing clients.

Service models discussed in Part II do not encompass too much in-
formation regarding the users of a given service. An additional option
to refine the models used by the deployment logic is to incorporate
more information regarding the client-side. Related information ranges
from specifying user demand levels for selected components, as well as
defining specific access points where services are accessed from inside the
network. One related design question is whether to include client-specific
information in the service model or to describe clients via a separate
model overlapping with the service. Alternatively, adaptive design models
can be targeted, where the number of components is regulated/scaled in
accordance with load levels.
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10) Costs derived from service models.

Costs, such as execution or communication costs, are defined intu-
itively in the examples presented and are used for evaluation purposes
only. It could be beneficial, however, to derive these and similar relevant
cost values automatically. Methods that are expected to be applicable to
aid enriching the service models include: code analysis, constant transi-
tion costs, various offline measurements, or other prediction methods on
expected demand.

11) Deployment diagrams.

Little work has been done on visualizing the output of the deploy-
ment logic for human readability. Standard UML Deployment Diagrams
are one possible option that can be considered for depicting and editing
deployment mappings. Another possible application would be the specifi-
cation of desired deployment rules, constraints and parameters at design
time, which could serve as input for the logic.

12) Feedback to functional design.

Initial deployment mappings obtained by the logic might be used
preceding placement of a service to predict its utility and QoS. Methods
and their place in the software development cycle are to be investigated
to provide useful feedback to the functional design phase. Evaluation of
the suggested deployment mapping can indicate prohibitively high costs,
which problem might be tackled easier by choosing some other functional
pattern at design time.

13) Experiments using a middleware platform.

As a long term goal, experiments with connecting the Analyze and
Plan building blocks of the MAPE cycle (cf. Figure 4) implemented by
the deployment logic to an Effector carrying through commands of the
Execute building block might be worthwhile to conduct. In the replica
management scenario the DARM framework [MG08] appears as a poten-
tial candidate, other middleware or various frameworks might possibly be
used for this purpose that most likely requires extensive programming.
This is a possible direction after more insight has been gained into the
scalability properties of the method and it can be generalized into a
library for integration.
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Abstract We study the problem of efficient deployment of software components in a service
engineering context. Run-time manipulation, adaptation and composition of entities
forming a distributed service is a multi-faceted problem challenged by a number of
requirements. The methodology applied and presented can be viewed as an intersection
between systems development and novel network management solutions. Application of
heuristics, in particular artificial intelligence in the service development cycle allows for
optimization and should eventually grant the same benefits as those existing in distributed
management architectures such as increased dependability, better resource utilization,
etc. The aim is finding the optimal deployment mapping of components to physically
available resources, while satisfying all the non-functional requirements of the system
design. Accordingly, a new component deployment approach is introduced utilizing
distributed stochastic optimization.

1. Introduction

Today, computer applications tend to be highly distributed and dynamic. In addition,
they are executed on hardware systems that change their topology and performance dy-
namically. This calls for flexible methods to deploy the software components realizing
a networked application on the available hosts to achieve preferably high performance
and low cost levels.

By such a software component we mean an executable stand-alone package of soft-
ware that has a well-defined interface and can communicate with other components via
message exchange. Furthermore, we define a service as a collaboration of distributed
components running in a (possibly also highly distributed) hardware environment
on different hosts, using distinct network elements for interconnection. A specific
service can be observed from different views. We investigate the problem of efficient
component deployment from the view of the service creator who is in most cases the
provider of the service as well. We do so based on the starting point we use for our
investigation, i.e. we start from a service specification, from a model that is a product
of the service designer. Usually the parameters we are interested in are performance
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and cost effectiveness, which are both substantial from the provider’s perspective if it
comes to the deployment of a new service.

The problem of cost-efficient component deployment is challenged by multiple di-
mensions of Quality of Service (QoS), or in other words, non-functional requirements
that need to be taken into account. To name a few there might be a fluctuation in the
number of users of the service deployed who might also have arbitrary utility functions
for the service as well as different usage scenarios. Additionally, the QoS requirements
identified might change over time, the system designed might provide several services.
This complicated combination of factors forms the basis of the problem we aim to
solve. Namely, finding the optimal deployment mapping of components to physically
available resources, while satisfying all the non-functional requirements of the system
design.

The resulting deployment mapping has a large influence on the QoS that can and
will be provided by the system. The most basic example of improving QoS by choos-
ing a better deployment architecture is to consider only the latency of the service. The
easiest way to satisfy latency requirements is to identify and deploy the components
that require the highest volume of interactions onto the same resource, or to choose
resources that are at least connected by links with sufficiently high capacity.

Several approaches have been followed to solve this problem, e.g. binary integer
programming [BSDS98] or graph cutting [HS99]. Usually, complexity becomes NP-
hard using these methods with more than 2-3 hosts. Others try to capture constraints
and restrict the solution space [KIK03]. However, due to the exact solution algorithms
computational complexity is still an issue. What is even more restrictive in these
approaches is that they do not attempt to work with more than one QoS dimension
at a time, while our objective is to deal with vectors of QoS properties in one run.
Furthermore, we aim to be able to aid the deployment of several different services at
the same time using the same framework.

Approximative solutions are devised by Malek et al., such as greedy algorithms,
genetic programming for example in [Mal06]. Malek et al. however approaches the
deployment problem from the user’s perspective by maximizing an overall utility func-
tion. On the contrary, we aim to investigate the deployment problem from the service
provider’s perspective. Besides, autonomous replication management is targeted by
Meling in a framework based on group communication systems [Mel06]. Widell et al.
discuss an alternative solution based on a stochastic optimization method called the
Cross Entropy (CE) Method [WN04].

Generally, we require a method that is capable to adapt to changes in the environ-
ment in a highly efficient way. Also, as module allocation problems are proven to
be NP-complete (cf. [FB89]), except in some special cases, heuristics are needed for
providing an efficient solution. Accordingly, we chose a bio-inspired system, swarm
intelligence as a basis for our method to solve the deployment problem in a fully
distributed manner. As we omit any centralized database or building block and propose
to use the analogy of pheromones for storing information in a distributed way the
logic presented is robust and highly adaptive with respect to changing QoS provided
by the service execution platform. Eventually, our aim is to develop a method for
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run-time component (re-)deployment support that allows execution of services within
the allowed region of external parameters defined by the service requirements.

The remainder of this paper is organized as follows. The next section will introduce
our system model and position our work. Sect. 3 briefly presents the Cross-Entropy
Ant System (CEAS) that is used throughout the paper as the basis of our heuristic
optimization method. Sect. 4 provides our solution to the target scenario and a sum-
mary of our algorithm. Sect. 5 comes with a more tangible example and compares
our results to previous solutions. In the last section we conclude and touch upon our
future work.

2. Support for Deployment Mapping

Our deployment approach fits to the engineering method SPACE which is devoted
to the rapid and correct engineering of distributed services [KH06]. As depicted in
Fig. 1a, in the process of developing a service, one creates first a purely functional
service model. This specification is collaboration-oriented, i.e., the overall service
specification is not composed from descriptions of the physical software components
realizing the service but from models of distributed sub-functionalities which — in
interaction — fulfill the complete service behavior. This specification style enables
the development of service models by reusing building blocks from domain specific
model libraries to a much higher degree than it would be possible when applying
component-based descriptions (e.g., [HK07]). As modelling language, we use UML
collaborations and activities.

After performing correctness checks on the service model (see [KSH07]), it is trans-
formed to a component-oriented design model by a model transformation tool [KH07]
which is specified by UML state machines. In the next step, code generators create
executable Java code from the design model enabling a fully automated transformation
of collaboration-oriented service models to executable programs. This process is well
described in [KHB06].

(a) Development cycle (b) Deployment support

Figure 1: Development with SPACE and the deployment support

For the efficient deployment of the implementation, we extend the development
cycle as shown in Fig. 1b. The service models are amended by high-level non-
functional (NF) goals defining the non-functional requirements (NFR) of a service
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in a rather abstract manner. In parallel with the transformation from the service to
the design models, these NF goals are refined into requirement profiles specifying the
non-functional requirements of the service components. Moreover, a network profile is
added, thus required and provided properties are collected describing the system and
its target environment. Based on these inputs our deployment logic can be launched
with the profiles specifying the goals and the net-map specifying the search space.

For capturing QoS requirements that are relevant to our system, we follow the
collaboration-oriented style and capture NFRs in design time. NFRs usually represent
qualities such as security, performance, availability, portability, etc. In fact, in our
view the deployment logic should be able to handle any properties of the service, as
long as we can provide a cost function for the specific property. In that matter we will
exploit the advanced scalability of CEAS and the method of pheromone sharing.

Comp jComp i Collab
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Exec.
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Exec.
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Figure 2: Collaboration with NFRs

In Fig. 2 a simple example of a collaboration between two components is depicted
enriched with NFRs for both the components and for the collaboration binding them.
This basic collection of requirements contains two types of cost values, an execution
and a communication cost. The execution cost is added to the local cost of a node
that contains the particular component after deployment. The communication cost is
imposed on the connection between the two components participating in the collab-
oration. This simple example of collaboration-oriented specification and capturing of
requirements will be illustrated in the example in Sect. 5.

Existing component deployment strategies and solutions use various centralized
databases and decision logics. Relying on a fully centralized logic requires the burden
of keeping the central database constantly updated and at the same time introduces a
single point of failure in the system. Moreover, a performance bottleneck may arise
at the node storing the central database and accommodating the decision logic both
communication wise and storage wise.

In a distributed cooperative algorithm (semi-)autonomous agents cooperate to a-
chieve certain common goals. Since in a distributed environment autonomous agents
do not have an overview of the system as a whole, their decisions have to be based
on information that is available locally to the place where they reside. To enable
cooperation between agents, some sort of shared memory is required at each place an
agent can visit. In our deployment logic, the information is distributed across all the
nodes participating in the deployment. In this way, we achieve a completely robust,
scalable and fault tolerant mechanism. Furthermore, to achieve a complete solution,
our aims are twofold. First, the logic shall be able to obtain an initial deployment
mapping based on the service model. Second, once the service is running, the logic
shall be capable of monitoring online and execute the necessary changes to satisfy the
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requirements it is launched with.
The objective is to find the optimal, or at least a satisfactory, mapping in reasonable

time between a number of component instances c, onto nodes n. A component, ci ∈ C
(C is the set of components available for (re-)deployment) can be a client process, or a
service process, while a node, n ∈ N (N is the set of nodes) can be a transit node, e.g.
a traditional IP router, a server node, which is capable of accommodating a service
component, a client node, which is an aggregation point for client components, or a
mixed node that can accommodate both client and service components.

The cost function F(M) of the mapping M : C→N should be minimized under the
constraints given by the mapping scopes Ri ⊆ N for each component instance i. Ri
is determined by the intersection of access restrictions, service provider policies (e.g.
service level agreements of ISPs), provided and requested capabilities (soft costs) and
provided and requested capacity requirements (hard costs, e.g. bandwidth limitations).
Attached components, i.e. components restricted to a specific node will have an Ri set
consisting of a single node, thus reducing the search space.

Figure 3: Component mapping example

An illustration of the model can be found in Fig. 3. Suppose we develop a service,
Servicek, which is implemented by three service components C = {c1, c2, c3} and the
service is expected to be accessed by two distinguishable set of clients. Besides the
requirement profiles, the service provider must provide the net-map for the decision
logic as well, specifying the available nodes and links. Thus, the set of nodes becomes
N = {n1, n2, . . . , n8}. Client nodes in this case are considered to be aggregation nodes,
i.e., they represent a single point of access to the network for the clients of the service,
with a different meaning from the traditional notion of node. So, the designer can
specify where in the provided net-map the clients are located and can insert additional
parameters describing the clients of the service, such as the expected amount of clients,
the expected service demand, etc. as NFRs. Constraints that will influence the optimal
deployment can be assigned to nodes and links. For links, constraints appear as the
costs of using the particular link for connection between two components that need
to interact. Constraints assigned to nodes, for instance, can represent memory sizes
restricting placement of component instances to a place. Besides, node properties can
be interrelated, i.e., for example if a mixed type node (n6) accommodates a service
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component it can influence the rest of the properties, e.g. lower the amount of allowed
clients at the node by modifying the memory constraint.

Next, we introduce the stochastic optimization background, which we use for
providing solutions to the component deployment and redeployment problem.

3. Cross Entropy Ant System

The deployment problem in this paper is approached by use of a distributed, robust
and adaptive routing system called the Cross Entropy Ant System (CEAS) [HW01].
The CEAS is an Ant Colony Optimization (ACO) system as introduced by Dorigo et
al. [DMC96], which is a multi-agent system for solving a wide variety of combinato-
rial optimization problems where the agents’ behavior are inspired by the foraging
behaviour of ants. Examples of successful application in communication system
are load-balancing (Schoonderwoerd et al. [S+97]), routing in wired networks by
AntNet [CD98], and routing in wireless networks by AntHocNet [CDG05]. The key
idea is to let many agents, denoted ants, iteratively search for the best solution accord-
ing to the problem constraints and cost function defined. Each iteration consists of
two phases; the forward ants search for a solution, which resembles the ants searching
for food, and the backward ants that evaluate the solution and leave markings, denoted
pheromones, that are in proportion to the quality of the solution. These pheromones
are distributed at different locations in the search space and can be used by forward
ants in their search for good solutions; therefore, the best solution will be approached
gradually. To avoid getting stuck in premature and sub-optimal solutions, some of the
forward ants will explore the state space freely ignoring the pheromone values.

The main difference between the ant based systems is the approach taken to evaluate
the solution and update the pheromones. For example, AntNet uses reinforcement
learning while CEAS uses the Cross Entropy (CE) method for stochastic optimization
introduced by Rubinstein [Rub99]. The CE method is applied in the pheromone
updating process by gradually changing the probability matrix pr according to the cost
of the paths. The objective is to minimize the cross entropy between two consecutive
samples pr and pr−1. For a tutorial on the method, [dBKMR05] is recommended.

The CEAS has demonstrated its applicability through a variety of studies of dif-
ferent path management strategies, such as shared backup path protection (SBPP)
[WH04], p-cycles [WHN05], resource search under QoS constraints [WHH03], and
adaptive paths with stochastic routing [H+05]. Implementation issues and trade-offs,
such as management overhead imposed by additional traffic for management packets
and recovery times are dealt with using a mechanism called elitism [H+04] and self-
tuned packet rate control [HW06a], [HW06b]. Additional reduction in the overhead is
accomplished by pheromone sharing [KWH08] where ants with overlapping require-
ments cooperate in finding solutions by (partly) sharing information.

In this paper, the CEAS is applied to obtain the best deployment of a set of com-
ponents, C, onto a set of nodes, N. The nodes are physically connected by links
used by the ants to move from node to node in search for available capacities. A
given deployment at iteration r is a set Mr = {mn,r}n∈N, where mn,r ⊆ C is the set of
components at node n at iteration r. In CEAS applied for routing the path is defined
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as a set of nodes from the source to the destination, while now we define the path as
the deployment set Mr. The cost of a deployment set is denoted F(Mr). Furthermore,
in the original CEAS we assign the pheromone values τi j,r to interface i of node j at
iteration r, while now we assign τmn,r to the component set m deployed at node n at
iteration r. In Sect. 4 we describe the search and update algorithm in details.

In traditional CEAS applied for routing and network management, selection of
the next hop is based on the random proportional rule presented below. In our case
however, the random proportional rule is applied for deployment mapping. Accord-
ingly, during the initial exploration phase, the ants randomly select the next set of
components with uniform probability 1/E, where E is the number of components to
be deployed, i.e. the size of C, while in the normal phase the next hop is selected
according to the random proportional rule matrix pr = [pmn,r], where

pmn,r =
τmn,r

∑l∈Mn,r τln,r
(1)

The pheromone values in (1) are determined considering the entire history of cost
values Fr = {F(M1), . . . ,F(Mr)} up to iteration r. The backward ants update the
pheromone values at the nodes where one or more components in Mr are deployed.
The pheromones are updated according to

τmn,r =
r

∑
k=1

I(l ∈Mn,r)β ∑
r
x=k+1 I(x∈Mk)H(F(Mk),γr) (2)

where I(x) = 1 when x is true and 0 otherwise. H( f ,γ) = e− f/γ is the performance
function and β ∈ (0,1) is the weight parameter, or in other words the memory factor
in the auto-regressive formulation of the performance function. The auto-regressive
formulation hr(γr) = βhr−1(γr)+ (1−β )H(F(Mr),γr) is the key in CEAS for avoid-
ing any centralized control and synchronized iterations. This reformulation allows
the cost value F(Mr) to be calculated immediately after a single ant ends its forward
movement, i.e. the ant manages to find a mapping for all the components originally
assigned to it. Now, iteration r represents the total number of updates, in other words,
the total number of backward ants returned. The reformulated performance function,
hr(γr) can be approximated by

hr(γr)≈
1−β

1−β r

r

∑
i=1

β
r−ie−

F(Mi)
γr (3)

see [HW01]. Thus, a digest of the search history is applied, where older cost values
gradually disappear, i.e. evaporate. This evaporation is achieved using the memory
factor β that provides geometrically decreasing weights for the output of the perfor-
mance function. The control parameter, γr can be determined by minimizing γ subject
to h(γ)≥ ρ , where ρ is the search focus parameter (typically 0.05 or less). For more
details about the parameters and solutions to (2) and (3) see [Wit03].
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4. Application of Ant-based deployment mapping

The deployment logic can be considered as an optimization task continuously
executed by independent ant-like agents in the target network hosting the service we
model. The continuous ant behavior contributes to the advantage of our approach,
namely that the same logic can be used for an initial static mapping and for an online
redeployment mechanism.

At first, every ant is assigned a task of deployment of C components. Thereafter,
ants are started continuously and proceed with a random-walk on the provided net-map
randomly selecting each next node to visit. Behavior at a visited node depends on if
the ant is an explorer or a normal ant. A normal ant selects a subset of C governed by
the pheromone levels at the node it currently resides in and stores its selection mn,r
in a mapping list Mr, which is carried along by the ant. Similarly, an explorer ant
selects a subset mn,r based on a random decision instead of the distributed pheromone
database. Explorer ants are used for exploring the available net-map, both initially
and later as well for covering up fluctuations in the network, e.g. new nodes appearing.
More precisely, the effects of exploration are twofold. First, as optimization starts
explorer ants are used to cover up a significant amount of the problem space via
random sampling. The required number of initial exploration iterations depend on the
problem size, but it can be estimated by sampling the pheromone database size. After
that, the normal phase starts, in which case only a fraction of the ants generated are
flagged as explorers, thus allowing for the required responsiveness to changes in the
environment, while normal ants are focusing on finding the optimum.

Once an ant has deployed all its assigned components the resulting mapping Mr
can be evaluated by applying the cost function F(Mr) derived from the service
specification. A more concrete example on F(Mr) can be found in Sect. 5. Once
the mapping is evaluated, the ant goes back along the nodes in its path that has been
stored in the hop-list Hr and updates pheromone values according to Equation (2)
corresponding to the pairs of component sets and nodes it has selected during its
journey. After that, a new iteration starts as a new ant is emitted, unless a stopping
criteria is met. A stopping criteria can be constructed by observing the moving average
of the evolving cost value, i.e. detecting convergence to a suggested solution. Another
option is sampling the size of the distributed pheromone database during an iteration.
After convergence a very strong pheromone value will emerge in the database, while
inferior solutions will evaporate. The described process is summarized in Algorithm
1.

Generally, we have a trade-off between convergence speed and solution quality.
Nevertheless, while deploying a service in a dynamic environment, which is our goal,
a pre-mature solution that satisfies both functional and non-functional requirements
often suffices. Thus the optimality requirement can be relaxed while taking restoration
time requirements into consideration. Besides, it has been proven that ACO systems
do in fact find the optimum at least once with probability close to one and when this
has happened they converge to the optimum in a finite number of iterations. Since
CEAS can be considered as a subclass of ACO the optimal deployment mapping will
eventually emerge.
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Algorithm 1 Deployment mapping of C = {c1, . . . ,cE} component instances

1 Select the initial node n ∈ N where the search will start randomly.

2 Select a set of components mn,r ⊆ C which satisfies n ∈ R for every ci ∈mn,r
according to the random proportional rule (normal ant), Equation (1), or in a
totally random manner (explorer ant). If such a set cannot be found, goto step 5.

3 Update the ant’s deployment mapping set, Mr = Mr +{mn,r}.

4 Update the set of components to be deployed, C = C−mn,r.

5 Select next node, n randomly and add n to the hop-list Hr = Hr +{n}.

6 If C 6= /0 then goto 2., otherwise evaluate F(Mr) and update the pheromone val-
ues, Equation (2) corresponding to the {mn,r} ∈Mr mappings going backwards
along Hr.

7 If stopping criteria is not met then increment r, initialize and emit new ant and
goto 1.

5. Analysis of a Problem

As a representative example, we consider the scenario originally from Efe dealing
with heuristical clustering of modules and assignment of clusters to nodes [Efe82].
This scenario has also been investigated by Widell et al., and a comparison to results
of several other authors can be found in [WN04]. This scenario, even though artificial
and may not be tangible from a designer’s point of view, is sufficiently complex to
test our deployment logic. The problem is defined in our approach as a collaboration
of E = 10 components (labelled c1 . . .c10) to be deployed and K = 14 collaborations
between them k j, j = 1 . . .K, as depicted in Fig. 4. We consider three types of require-
ments in this specification. Besides the execution and communication costs, we have
a restriction on components c2,c7,c9, regarding their location. They must be bound to
nodes n2,n1,n3, respectively.

Furthermore, to be able to use similar mechanisms for specifying the net-map for
the deployment logic, we propose to use the same object paradigm UML employs
to reduce complexity. Thus, we specify the underlying physical map of hosts as a
diagram, depicted in Fig. 5.

In this example, the target environment consists only of N = 3 identical, inter-
connected nodes with a single provided property, namely processing power and
with infinite communication capacities. Accordingly, we only observe the total load
(l̂n,r, n = 1 . . .N) of a given deployment mapping at each node. The communication
cost between two components is considered significant only if it appears between two
separate nodes, and we will strive for a global optimal solution of equally distributed
load among the processing nodes and the lowest cost possible, while taking into ac-
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Figure 4: Collaborations and components in the example scenario
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Figure 5: The target network of hosts in the example scenario

count the NFRs, execution cost fci , i = 1 . . .E and communication cost fk j , j = 1 . . .K.
fci and fk j are derived from the service specification, thus, the total offered execution
load can be calculated before optimization starts as ∑

E
i=1 fci . This way, the logic can

be aware of the target load

T =
∑

E
i=1 fci

N
(4)

By looking at the example in Fig. 4 and Fig. 5 for this service we have T ∼= 68.
Given a mapping Mr = {mn,r}, the total load can be obtained as l̂n,r = ∑ci∈mn,r fci .
Furthermore, the overall cost function F(Mr) becomes

F(Mr) =
N

∑
n=1
|l̂n,r−T |+

K

∑
j=1

I j fk j (5)



PAPER A: Cost-Efficient Deployment of Collaborating Components 81

for mapping Mr suggested by ant r, where

I j =

{
1, if k j external
0, if k j internal to a node (6)

Optimization governed by the cost function F(Mr) starts with aligning pheromone
values with the sets of deployed components. With the underlying set of nodes (N)
each ant will form N discrete sets from the set of available components (C) that need
to be deployed and evaluate the outcome of that deployment mapping (Mr) at the end
of its run. However, the ants only need to carry a list of the unrestricted components,
i.e. with the exception of components c2,c7,c9 that are bound to a node by a constraint,
leaving the rest of 7 components for mapping. A flag is assigned to each of the remain-
ing components giving 27 as the number of possible combinations for a set at a node.
Thus, the pheromone database at each node has to accommodate 27 floating point
numbers in this case. After normalizing the pheromones in a node we can observe
the probability distribution of component sets mapped to that particular node by the
ant system. Eventually the optimal solution(s) will emerge with probability one after
convergence.

The pheromone database is indexed by a component set identifier. For example, Id.
36, which is equivalent to ′0100100′B, indicates that the free components c4 and c8
are deployed on that node. In Fig. 6, pheromone levels (normalized as probabilities)
for two sets of components at node n1 are depicted. After the initial phase of 10000
explorer ants doing random search the emergence of the solution deemed optimal
can be seen in Fig. 6a for the set of components c4,c8 in addition to c7 attached in
advance. Also, in Fig. 6b evolution of the pheromone corresponding to a suboptimal
set of components, c4,c6,c8 and c7 deployed at n1, is shown (observe the different
scales on the Y-axis).

(a) Id. 36. (b) Id. 52.

Figure 6: Pheromones at node n1

The optimal deployment mapping can be observed in Table 1. The lowest possible
deployment cost, according to (5) is 17 +(200−100) = 117.

The rare event of finding the optimal deployment with the lowest cost during a
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Table 1: Optimal deployment mapping in the example scenario

node components ln,opt |ln,opt −T | internal collaborations
n1 c4,c7,c8 70 2 k8, k9
n2 c2,c3,c5 60 8 k3, k4
n3 c1,c6,c9,c10 75 7 k11, k12, k14

∑cost 17 100

random search can be observed in Fig. 7. The exploration phase consists of the first
2000 ants, conducting a random search and resulting in a random cost figure. However,
after exploration ends, from ant number 2001, the real optimization phase starts and
the overall deployment cost is converging to the optimal value of 117. At the same
time, we propose usage of a pheromone database that is allocated dynamically in the
memory for storing pheromone values based on a threshold level that evaporates all
the pheromone entries under a certain significance level. In Fig. 7, 1% threshold is
applied, i.e. pheromones smaller than 1% of the highest value are deemed insignificant
and are eliminated from the database.

The database size tops at 27 as the solution space is starting to be covered by
exploration ants and thus it can be used as an indicator to switch to the optimization
phase. Likewise, when the overall cost converges to the optimal value (117) the size
of the database approaches one (if there is a single solution like in the example) as the
single optimal solution prevails, allowing for convergence detection.

We can compare our results to the results obtained using the centralized CE method.
A comparison between different solutions to the original problem from Efe can be
found in [WN04]. Widell et al., in accordance with the original CE method, uses a
selected distribution to generate a sample iteration, which is in case of the component
deployment problem a particular deployment mapping. The generated samples are
then used for updates in the parameter of the selected distribution. The updates are
based on an assessment of the quality of the sample iteration. Sampling and updating
is repeated until convergence is detected, which, due to stochasticity though might not
be the optimal mapping of components. In fact, the number of ant runs in distributed
CEAS can be compared to full iterations in the centralized CE method, as a single
ant’s lifetime (from leaving the nest until its return) is equivalent to the number of
samples taken multiplied with the number of iterations.

For example, in [WN04] using 100 samples the mean number of iterations required
for finding the optimal solution with 80% confidence is 41, which in turn is approx-
imately equivalent to 100 ·41 = 4100 ant runs. We can see that using the same CE
focus parameter, i.e. ρ = 0.01, and a memory factor of β = 0.998 (cf. Sect. 3), we
can expect convergence times to average at 1200 ant runs for arbitrary number of
explorations (Fig. 8) using our distributed CEAS approach. Here, we only compared
our results to the most efficient solution by Widell et al. However, it is difficult to
compare the two approaches in terms of number of iterations because they differ
in the methodology, i.e. multiple samples in one iteration in Widell’s work versus
one iteration as a sample in CEAS. Nonetheless, we have found that our approach is
capable of finding the optimal solution (cf. Table 1) with at least the same confidence,
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Figure 7: Observed cost and pheromone database sizes

requires less iterations, thus it is resource conserving and last but not least it is a
completely distributed logic compared to the original CE-based method and the other
strictly centralized solutions, e.g. clustering, bin-packing, etc.

In Fig. 8, results of running the deployment logic with different amounts (shown
on the x-axis) of explorer ants are depicted. The mean values of 200 subsequent
executions in each setting can be observed with the standard deviation of the results
included as error bars. The deployment logic is currently implemented in a simulator
written in the Simula/DEMOS language [Bir03] for evaluation purposes.

Figure 8: The observed cost and the number of ants required for convergence as a
function of the number of explorer ants

It can be noted that above a sufficient amount of initial exploration of the problem
the logic is quite robust in finding the optimal solution and stable in convergence
time as well. However, in our algorithm we do not set the number of explorers to a
constant number, instead we propose to use the dynamic database size as an indication
for sufficient exploratory runs. Also, an advantage of our approach is that it can
provide alternative solutions weighted by their cost and corresponding pheromone
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values will indicate the deployment mapping for those solutions. So, in a system
where convergence time is very critical, even premature results can be used for near
optimal deployment.

6. Closing Remarks

We presented a novel approach for the efficient deployment of software components
taking into account QoS requirements captured during the modelling phase in the
service engineering approach, SPACE. The procedure starts from high-level QoS goals
and through requirement profiles utilizes swarm intelligence to provide solutions and
to aid dynamic deployment. The logic itself can be executed in a fully distributed
manner, thus it is not prone to deficiencies of existing centralized algorithms, such
as performance bottlenecks and single point of failures. Our approach does not re-
quire a centralized database, instead it uses the analogy of pheromones distributed
across the network of hosts. Furthermore, the logic, as it is presented here, is applied
to provide the optimal, initial mapping of components to hosts, i.e. the network is
considered rather static. However, our eventual goal is to develop support for run-time
redeployment of components, this way keeping the service within an allowed region
of parameters defined by the requirements. As the results with CEAS show our logic
will be a prominent candidate for a robust and adaptive service execution platform.

Our work is conducted in cooperation with the ISIS (Infrastructure for Integrated
Services) project funded by the Research Council of Norway comprising of multiple
participants both from industry and academia. The methodology and algorithms
presented are in-line with the objectives of ISIS that are to create a well-established
service engineering platform for collaboration-oriented models, covering a devel-
opment cycle from the requirements to seamless execution in a heterogenous and
dynamic environment.

In our future work we will investigate applicability and utility of different deploy-
ment strategies based on the existing logic. Also, we plan to experiment with stochastic
optimization methods other than the CE method. Another issue is database size man-
agement locally to the nodes hosting the service. The first step to address this issue
was the introduction of dynamically allocated databases, which will be investigated
further. Especially, in case of deployment of multiple services at the same time, which
is one of the topics in our future research.
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Abstract We investigate a means for efficient deployment of distributed services comprising
of software components. Our work can be viewed as an intersection between model-
based service development and novel network management architectures. In a service
engineering context, models of services embellished with non-functional requirements
are used as input to our swarm intelligence based deployment logic. Mappings between
resources provided by the execution environment and components are the results of our
heuristic optimization procedure that takes into account requirements of the services.
Deployment mappings will be used as feedback towards the designer and the provider of
the service. Moreover, our heuristic algorithm possesses significant potential in adaptation
of services to changes in the environment.

1. Introduction

In the process of realizing a service system several important decisions have to
be made that will affect performance of the system as well as the quality of service
(QoS) perceived by its user. A state-of-the-art method to develop distributed services
implemented as software systems is starting from a platform independent model
and realizing the service following a top-down step-wise refinement approach. A
significant factor influencing the perceived QoS from the user’s perspective is the
deployment model of the particular service, in other words the configuration of the
building-blocks of the service and their mapping to run-time processing elements and
resources required for execution.

Nodes hosting a service may consist of heterogeneous hardware and may provide a
dynamic environment for the services being executed, i.e. nodes can join and leave the
network in an unpredictable manner. The evolving nature of the context of distributed
services and mobility of clients requires the capability of adaptation to satisfy QoS
requirements while also considering costs on the service provider’s side. The wide
range of possible requirements against the service makes the deployment and adapta-
tion problem a multi-faceted challenge demanding multi-dimensional optimization.
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The methodology we apply to solve the deployment problem can be viewed as an
intersection between systems development and novel network management solutions.

There have been a couple of promising developments providing platforms for
adaptivity and dependability. Autonomous replication management mainly for de-
pendability is targeted by Meling in a framework based on group communication
systems [Mel06]. A distributed dynamic middleware, QuAMobile is presented in
[LSO+07] that introduces independent application variants and selects between them
for context-awareness and adaptation. Planning is based on service level agreements
(SLAs) and QoS-aware metadata in the service model is used in the planning-based
adaptation middleware of the MUSIC project (cf. [REF+08]). A peer-to-peer mid-
dleware, CARISMA is utilizing an auctioning-like mechanism for conflict resolution
and adaptation automatically triggered by context changes [CEM03]. In the QoS
brokering approach from Menasce and Dubey consumers can request services, after
which the broker uses analytic queuing models to predict QoS of the services under
various workloads, thus looking for maximized utility [MD07].

Traditional techniques were applied for configuration of server environments such
as fuzzy learning, e.g. Xu et al. applied a two-level control mechanism targeting
efficient resource utilization in [XZF+07]. Layered queuing networks are employed for
generating optimal configurations and policies by Jung et al. in an offline framework
[JJH+08]. Some existing approaches have addressed the improvement of perceived
QoS through changing the deployment of applications, however due to the exact
solution algorithms, complexity becomes NP-hard already with more than 2-3 hosts
or several QoS dimensions restricting applicability of these methods. A review
of approximative solutions trying to overcome scaling problems, such as greedy
algorithms, genetic programming, can be found in [Mal06]. These approaches try to
maximize utility of a service purely from the users’ perspective, whereas we aim to
formulate and solve the deployment problem from the providers perspective while also
considering the users perception of QoS. Besides, we aim to handle the deployment of
multiple services at the same time.

We are building a logic that brings QoS-awareness into the development cycle,
and that can manage the deployment of services and adapt to the context once these
services are executed in a real environment. The application of our approach should
grant the same benefits that exist in distributed management architectures, such as
increased dependability, better resource utilization, etc. Moreover, the output of
the logic presented is platform independent, thus it can drive a suitable middleware
platform and will eventually allow adaptation to the changing environment of the
modelled services that are executed.

It is an important design criteria that the deployment logic should allow execution in
a fully distributed manner, thus it shall not be prone to deficiencies of existing central-
ized algorithms, such as performance bottlenecks and single point of failures. Besides,
it is desirable to omit the burden of keeping a centralized decision logic updated and
synchronized and this way to achieve better reaction times for context-awareness.
Consequently, our aim is to develop a method supporting run-time component (re-
)deployment that allows execution of services within the allowed region of external
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parameters defined by the service requirements. Considering all these aspects we
approach the problem using a distributed, robust and adaptive routing system called the
Cross Entropy Ant System (CEAS) [HW01, HHW08]. The CEAS is an Ant Colony
Optimization (ACO) system as introduced by Dorigo et al. [DMC96], which is a
multi-agent system for solving a wide variety of combinatorial optimization problems
where the agents’ behavior are inspired by the foraging behavior of ants. Examples of
successful application in communication systems are load-balancing (Schoonderwoerd
et al. [S+97]), routing in wired networks by AntNet [CD98], and routing in wireless
networks by AntHocNet [CDG05].

In [CHH08] we presented our novel approach for the efficient deployment of soft-
ware components taking into account QoS requirements captured during the modelling
phase. The procedure starts from high-level QoS goals and, through requirement pro-
files, utilizes swarm intelligence to provide solutions and to aid dynamic deployment.
In [CHH08] this distributed approach was tested on component deployment in a static
topology and compared with centralized deployment approaches. In this paper, we ex-
tend the approach to allow deployment of multiple service components simultaneously
that adapt to changing topologies.

The remainder of this paper is organized as follows. The next section will present
how the deployment logic fits into the development cycle. In Sect. 3 an introduction to
CEAS, which is used throughout the paper as the basis of our heuristic optimization
method, will be given. Next, in Sect. 4 we present our proposed solution giving the
algorithm. After that, Sect. 5 sets the example scenario of three concurrent services.
The results related to the examples are evaluated in Sect. 6. Finally, in Sect. 7 we
conclude and touch upon our future work.

2. Deployment cycle

The deployment approach we are proposing will extend the development cycle
SPACE. SPACE is devoted to the rapid and correct engineering of distributed ser-
vices [KH06]. The stepwise modelling and refinement of the models is depicted in
Fig. 1. First, a purely functional service model is created, which is collaboration-
oriented meaning that the service specification is not a composition of descriptions of
physical software components realizing the service. Instead, the collaboration-oriented
specification is built from models of distributed sub-functionalities fulfilling — in
interaction — the complete service behavior. The functional service model is specified
by UML collaborations and activities. One of the advantages of this specification
style is that it enables service modelling by reusing building blocks from collections
of domain specific model libraries to a significantly higher degree than it would be
possible with component-based descriptions [HK07].

Service models undergo correctness checks, as described in [KSH07], before they
are transformed to a component-oriented design model by model transformation
[KH07]. Next, using the component-oriented model, specified as UML state machines,
code generators are used to create executable Java code enabling automated transforma-
tion of collaboration-oriented service models to executable implementations [KHB06].
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Figure 1: Development with SPACE

Figure 2: Deployment Support for SPACE

The dynamic deployment of the generated implementation is the step where the
logic we propose can interact with the development cycle. The additional steps to
support efficient deployment of the components that build up the service is shown
in Fig. 2. In our deployment support cycle service models are amended by high-
level non-functional (NF) goals that define non-functional requirements (NFRs) of
the service being modelled in a rather abstract manner. Refinement of NF goals
can be done in parallel with the transformation of service models to design models.
Requirement profiles obtained in this step specify NFRs of the service components.
In addition, a network profile is added representing provided properties describing
the target environment the service will be executed in. Our deployment logic will be
launched using these two profiles as input with requirements specifying the search
goals and the network profile specifying the search space.

QoS requirements relevant to the service model are captured in a collaboration-
oriented style design time, as a translation of traditional service level agreements. In
NFRs, usually properties related to security, performance, availability, portability, etc.
are addressed. More importantly, our view is that the deployment logic proposed will
be able to handle any non-functional property of the service, as long as a suitable cost
function is provided for the specific properties at hand. This feature will be provided
by exploiting the advanced scalability of CEAS and the method of pheromone sharing.

Fig. 3 depicts a simple example of a collaboration between two components. This
collaboration is enriched with NFRs for both the components and for the collaboration
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binding them. This basic collection of requirements contains two types of cost values,
execution costs ( fci) and communication costs ( fk j ). The total number of cost values
is equivalent to the total number of components in the service (E), plus the number
of collaborations between them (K), i.e. fci , i = 1 . . .E and fk j , j = 1 . . .K. The
execution cost is a local cost imposed on the host node or resource executing the
particular component after deployment, whereas the communication cost loads the
communication link between the two components involved in the collaboration. This
simple example of collaboration-oriented specification and requirement capturing will
be illustrated in the examples in Sect. 5.

Comp jComp i Collab

Comm.
cost = 15

Exec.
cost = 30

Exec.
cost = 20 aa

aa

aa

k

Figure 3: Collaboration with NFRs

Currently, existing deployment strategies and various approaches to aid deployment
of software systems, e.g. ontology-based and reasoning engines, apply centralized
decision logics based on centrally maintained databases. The disadvantages of ap-
proaching the problem this way are the burden of keeping a central database constantly
updated and synchronized and the single point of failure introduced to the system.
Accommodating the decision logic together with the central database on a single node
may introduce bottlenecks both communication wise and storage wise.

In contrast to centralized approaches a distributed cooperative algorithm employs
(semi-)autonomous agents, which cooperate to achieve certain common goals. To
avoid the need for any type of global knowledge in deployment mapping, we employ
autonomous agents operating in a distributed environment with their decisions based
solely on information that is available locally to the place where they reside. At every
node under the provision of the deployment logic some sort of shared memory is
required that will be the vehicle for cooperation between the agents. Accordingly, the
information required for optimization in our logic is distributed across all participating
nodes. This property of the deployment mapping system contributes to robustness,
scalability and fault tolerance. Furthermore, we intend to use the same logic first to
obtain initial, optimal mapping of service components to hosts or resources, and second
to guide necessary changes during execution of a service to satisfy the requirements it
was launched with.

The objective of each ant species is to find either the optimal deployment mapping
of component instances ci onto nodes n j or at least to find a mapping that satisfies
the requirements within reasonable time. A component, ci ∈ C (C is the set of
components that together provide the service the species is responsible for) can have
various properties and restrictions can apply regarding it’s prospective hosts. For
example, deployment of ci can be restricted at node n ∈ N (N is the set of available
nodes) as well as prescribed binding is allowed. A component can be bound to a node
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explicitly, this results in being excluded from the set of components that are available
for the logic to be freely mapped to any available node. However, bound components
are also taken into account by the ants during calculation of the resulting cost of a
particular deployment mapping at a given iteration.

The basis of the heuristics, guiding the ants towards an optimized mapping, is the
cost function F(M) that is used to evaluate the resulting suggestion, M : C→ N, for
deployment mapping. The ants target to minimize the cost calculated using F(M) at
every iteration, while the constraints given by the mapping scopes also have to be taken
into consideration, i.e. Ri ⊆ N for each component instance i. Ri is characterized by
the policies given by the service provider (e.g. service level agreements of ISPs), as
well as the access restrictions, the provided and requested capabilities (soft costs) and
provided and requested capacity requirements (hard costs, e.g. bandwidth limitations).
Using Ri component binding can easily be expressed assigning a single node to the
set, thus restricting the search space.

Besides the requirement profiles, the service provider must provide the net-map,
N for the decision logic as well, specifying the available nodes and links. Two types
of constraints that can influence the optimal mapping are distinguished in the model.
Constraints assigned to nodes and to links. For the latter type, constraints generally
represent the cost of using the link for connecting two components, which have a
functionality in the model requiring interaction between them. Constraints assigned
to nodes or other resources related to execution of a component can, for instance,
represent memory size limitations. Also, these constraints can be interrelated in a way
that, for example, placement of a component on a node can lower the available amount
of different types of resources at once with an amount depending on the available
resources at the time of the mapping.

In the subsequent section the stochastic optimization background is introduced that
is used throughout our logic to specify an algorithmic solution for the deployment
problem.

3. Cross Entropy Ant System

The key idea is to let many agents, denoted ants, iteratively search for the best
solution according to the problem constraints and cost function defined. Each iteration
consists of two phases; the forward ants search for a solution, which resembles the
ants searching for food, and the backward ants that evaluate the solution and leave
markings, denoted pheromones, that are in proportion to the quality of the solution.
These pheromones are distributed at different locations in the search space and can be
used by forward ants in their search for good solutions; therefore, the best solution
will be approached gradually. To avoid getting stuck in premature and sub-optimal
solutions, some of the forward ants will explore the state space freely ignoring the
pheromone values.

The main difference between various ant-based systems is the approach taken
to evaluate the solution and update the pheromones. For example, AntNet [CD98]
uses reinforcement learning while CEAS uses the Cross Entropy (CE) method for
stochastic optimization introduced by Rubinstein [Rub99]. The CE method is applied
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in the pheromone updating process by gradually changing the probability matrix pr
according to the cost of the paths. The objective is to minimize the cross entropy
between two consecutive probability matrices pr and pr−1. For a tutorial on the
method, [Rub99] is recommended.

The CEAS has demonstrated its applicability through a variety of studies of dif-
ferent path management strategies [HHW08], such as shared backup path protection,
p-cycles, adaptive paths with stochastic routing, and resource search under QoS con-
straints. Implementation issues and trade-offs, such as management overhead imposed
by additional traffic for management packets and recovery times are dealt with using
a mechanism called elitism [H+04] and self-tuned packet rate control [HW06]. Ad-
ditional reduction in the overhead is accomplished by pheromone sharing [KWH08]
where ants with overlapping requirements cooperate in finding solutions by (partly)
sharing information.

In this paper, the CEAS is applied to obtain the best deployment mapping M : C→N
of a set of components, C, onto a set of nodes, N. The nodes are physically connected
by links used by the ants to move from node to node in search for available capacities.
A given deployment at iteration r is a set Mr = {mn,r}n∈N, where mn,r ⊆ C is the set
of components at node n at iteration r. In CEAS applied for routing the path is defined
as a set of nodes from the source to the destination, while now we define the path as
the deployment set Mr. The cost of a deployment set is denoted F(Mr). Furthermore,
in the original CEAS we assign the pheromone values τi j,r to interface i of node j at
iteration r, while now we assign τmn,r to the component set m deployed at node n at
iteration r. In Sect. 4 we describe the search and update algorithm in details.

In CEAS applied for routing and network management, selection of the next hop
is based on the random proportional rule presented below. In our case however, the
random proportional rule is applied for deployment mapping. Accordingly, during
the initial exploration phase, the ants randomly select the next set of components
with uniform probability 1/E, where E is the number of components to be deployed,
i.e. the size of C, while in the normal phase the next set is selected according to the
random proportional rule matrix pr = {pmn,r}, where

pmn,r =
τmn,r

∑l∈Mn,r τln,r
(1)

A parameter γr denoted the temperature, controls the update of the pheromone values
and is chosen to minimize the performance function

H(F(Mr),γr) = e−F(Mr)/γr (2)

which is applied to all r samples and the expected overall performance satisfies

h(pmn,r,γr) = Epr−1(H(F(Mr),γr))≥ ρ (3)

Epr−1(X) is the expected value of X s.t. the rules in pr−1, and ρ is a parameter (denoted
search focus) close to 0 (typically 0.05 or less). Finally, a new updated set of rules, pr,
is determined by minimizing the cross entropy between pr−1 and pr with respect to
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γr and H(F(Mr),γt). Minimized cross entropy is achieved by applying the random
proportional rule in (1) for ∀mn with

τmn,r =
r

∑
k=1

I(l ∈Mn,r)β
∑

r
j=k+1 I( j∈Mk)H(F(Mk),γr) (4)

where I(x) = 1 if x is true, 0 otherwise. See [Rub99] for further details and proof.
To avoid centralized control and synchronized batch oriented iterations, in CEAS

the cost value F(Mr) is calculated immediately after each sample, i.e., when all
components are mapped, and an auto-regressive performance function, hr(γr) =
βhr−1(γr)+(1−β )H(F(Mr),γr) is applied approximated by

hr(γr)≈
1−β

1−β r

r

∑
i=1

β
r−iH(F(Mr),γr) (5)

where β ∈< 0,1 > is a memory factor weighting (geometrically) the output of the
performance function. The performance function will smoothen variations in the cost
function, hence rapid changes in the deployment mapping and undesirable fluctuations
will be avoided. This mechanism helps cooperation between the species.

As for the CE method, the temperature γr is determined by minimizing it subject to
h(γ)≥ ρ . In [HW01] it is shown that the temperature equals

γr = {γ | 1−β

1−β r

r

∑
i=1

β
r−iH(F(Mi),γ) = ρ} (6)

However (6) is a complicated (transcendental) function that is both storage and pro-
cessing intensive since all observations up to the current path sample, i.e. the entire
path cost history F(Mr) = {F(M1), · · · ,F(Mr)} must be stored, and weights for all
observations have to be recalculated. In an on-line operation of a network node, such
resource requirements are impractical. Instead it is assumed, given a β close to 1,
that the changes in γr are typically small from one iteration to the next. This enables
a first order Taylor expansion of (6), and a second order Taylor expansion of (4),
see [HW01, Wit03] for more details.

4. Distributed deployment logic

Our deployment logic can be considered as a swarm of independent ant-like agents
executing an optimization task continuously in the target network hosting the service
we model. This continuous behavior contributes to the advantage of our approach,
i.e. that the same logic provides an initial static mapping and can be used for online
redeployment. In this paper we extend the deployment approach to handle multiple
services deployed simultaneously by allowing interoperation of artificial ant species,
each of them representing a particular service realized by distributed software compo-
nents. More importantly, beyond achieving a scalable extension for multiple services
we target other scalability issues as well. By using a new cost function for evaluating
solutions during the heuristical optimization process we eliminate the need for any
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global knowledge, i.e. species can now be launched and operate independently from
each other without having a global view on the requirements set for all the services
in the system. Another step towards scalability is to limit the ants to visit only those
nodes within the network-map that are effectively used for deploying components
of the service represented by their species. This way, we address significantly larger
problem sizes, consisting of a higher number of nodes and simultaneous services.

Initially, each ant is assigned a task of deployment of C components stemming from
the set of components of the service represented by its species. After initialization the
ants start a random-walk in the network of nodes, described by the net-map, selecting
every next hop randomly. After an ant arrives at a node its behavior depends on if it is
a explorer or a normal ant. The latter type of ant uses the corresponding instance of the
distributed pheromone database at the node to select a subset, mn,r, of C for mapping
and stores this selection in a mapping list. The mapping list Mr is carried along by the
ant during its search. On the contrary, an explorer ant selects a subset mn,r based on a
random decision without using the pheromone values available at the node. The ratio
of explorer ants can be regulated and this type of ants are used to initially explore the
net-map and also to cover up fluctuations, e.g. new nodes appearing, in the network
later on in the optimization process. This type of exploration can be considered as
random sampling from the problem space and results in a random cost figure. The
number of iterations in the initial exploration phase depends on the problem size,
however, the end of this phase can be detected by monitoring the pheromone database
size as it extends with the growing number of possibilities covered up by the ants
doing a random-walk in the problem space. After the normal phase starts only a
fraction of the ants, e.g. 5-10%, are flagged as explorers, allowing for the required
responsiveness to changes in the environment, while normal ants are focusing on
finding the optimum.

To support finding the optimal deployment mapping for multiple concurrent services
a means of interoperation is needed among the species responsible for the different
services being deployed. As we consider optimal deployment of services from the
provider’s perspective we target balancing of execution costs imposed on the nodes
that are used for execution of the services, or in other words load-balancing, which
generally requires global overview of the system’s operating conditions. Nevertheless,
we want to avoid any centralized structure, and use a completely distributed optimiza-
tion method. For this reason, we have introduced a processing power reservation
mechanism that has to be implemented in every node in addition to the pheromone
database. The different ant species use this allocation mechanism to indicate their lat-
est resource usage in a node at iteration r. As ants from every species use the allocation
in every node they actually use for deployment mapping, this mechanism will provide
interaction between the components. Sampling the current sum of allocations in every
visited node can give a general overview for the ants, thus load-levels in participating
nodes can be incorporated into the cost calculations at the end of each iteration. We
refer to load-level samples taken during an ant run with the set NLr. Samples that
suggest exceeding the capacity of a node are quickly outranked by better solutions
as a high penalty is assigned to infeasible solutions. The actual implementation of
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sampling is left to the middleware. Allocation entries that are outdated are invalidated
to preserve consistency.

After the forward search is over, i.e. an ant managed to come up with a mapping
for all the components it was assigned with, the resulting mapping can be found in the
set Mr and will be evaluated using the cost function of the service. How to formulate
the cost function F() depends on the NFRs that the service model is extended with.
Currently, we use two parameters for the cost function, the deployment mapping
set Mr and the load-level samples taken during an iteration NLr and we consider
execution and communication costs derived from the service model as introduced in
Sect. 2. Thus, our cost function consists of two components, node related costs (NC)
and link, i.e. collaboration related costs (LC). The aim is to minimize the overall
value of (7).

F(Mr,NLr) = [ ∑
∀n j∈Hr

NC(n j)] · (1 + x ·LC) (7)

where x is a parameter. F(Mr,NLr) is used by all species the same way, and has a
component strictly local to the species, LC, which incorporates the collaboration costs

LC =
K

∑
j=1

I j fk j (8)

where I j is an indicator function to sum all the communication costs of the collabora-
tions that happen between different nodes

I j =

{
1, if k j external
0, if k j internal to a node (9)

The first component, ∑∀n j∈Hr NC(n j), of the overall cost function is related to node
local costs and aims to incorporate load-balancing among the nodes providing the
services being executed. Furthermore, it is important to note that only those nodes
that are visited during the search phase in iteration r are included in the hop-list, Hr.
The node related cost is calculated individually for every visited node according to

NC(n j) = [
NLn,r(n j)

∑
i=0

1
∑∀n j∈Hr NLn,r + 1− i

]y (10)

Equation (10) calculates the execution costs for node n j based on the load-levels
sampled and it is the basis for counteracting the cost component LC. On one hand,
LC tries to put weight on component mappings that have as much as possible of the
collaborations within the same node(s) by favoring mappings that use less nodes for
deployment with a low cost value. This way minimizing external communication. On
the other hand, Equation (10) has an effect of distributing components, thus equalizing
execution load among the available hosts to the highest extent possible. This way two
counteracting requirement types are tackled in the same cost function. The exponent y
(in Equation (10)) allows to focus more on load-balancing instead of minimization
of collaboration costs by selecting a larger value, while the multiplier x (in Equation
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(7)) can be used to scale collaboration costs if needed. We generally use x = 0.1 and
y = 2, as well as with the cost values in the example scenario presented in Sect. 5.

The cost function (7) is used at the end of an iteration to evaluate the mapping
found by the ant. Thereafter, the ant travels backward along the path stored in
the hop-list Hr. This mechanism is called backtracking. During backtracking the
pheromone values are updated according to Equation (4). This ends the behavior
of a single ant and unless a stopping criteria is met a new ant can be initiated and
emitted. There are different options for constructing a stopping criteria. One can be
for example the observation of the moving average of the evolving cost value and
detecting convergence to a suggested solution. Another option is sampling the size of
the distributed pheromone database during an iteration. Convergence can be detected
by observing a very strong pheromone value that will emerge in the database, while
inferior solutions will evaporate.

It is important to note that the same ant behavior can be used for all the species,
i.e. for all the services being deployed simultaneously. The described process is
summarized in Algorithm 1.

Algorithm 1 Deployment mapping of C

1 Select the initial node n ∈ N where the search will start randomly.

2 Select a set of components mn,r ⊆ C which satisfies n ∈ R for every ci ∈mn,r
according to the random proportional rule (normal ant), Equation (1), or in a
totally random manner (explorer ant). If such a set cannot be found, goto step 7.

3 Update the ant’s deployment mapping set, Mr = Mr +{mn,r}.

4 Update the set of components to be deployed, C = C−mn,r.

5 (Re-)allocate processing power at the current node, n according to fci ,∀ci ∈mn,r.

6 Sample the estimated load-level, nln,r at the current node n, and NLr = NLr +
{nln,r}.

7 Select next node, n randomly and add n to the hop-list Hr = Hr +{n}.

8 If C 6= /0 then goto 2., otherwise evaluate F(Mr,NLr) using the mapping set
Mr and the samples taken (NL).

9 Update the pheromone values, Equation (4), corresponding to the {mn,r} ∈Mr
mappings going backwards along Hr.

10 If stopping criteria is not met then start new iteration (increment r), initialize
and emit new ant and goto 1.

For optimization to be successful the pheromone values have to be aligned with
the sets of deployed components. During an iteration each ant visits n⊆ N nodes and
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will form n discrete sets from the available components (C) carried along. At the end
of an iteration the suggested deployment mapping, Mr is evaluated. The pheromone
database for each species is built by assigning a flag to every component that is free for
deployment mapping, i.e. which is not bound to a specific node by requirements. Thus,
the number of components available for the species will be E∗ ⊆ E, and the size of the
pheromone database becomes 2E∗ , equal to the number of possible combinations for a
set at a node, which is specific for each service. Accordingly, the physical requirement
for an execution platform supporting our approach is to accommodate 2E∗ floating
point numbers at every node. If the pheromone database in a node is normalized
between 0 . . .1 it can be observed as a probability distribution of component sets
mapped to that node by the artificial ants. Once a converged state is reached the
optimal solution(s) emerge with probability one.

Indexing of the pheromone database can be done using component set
identifiers. For example, consider a basic set of 5 components in a service,
C = {c1,c2,c3,c4,c5},E = 5. Then indexing is done using an E long binary bitstring.
In this case, e.g. element 17 of the pheromone database, which is equivalent to
′10001′B, refers to the deployment of components c1,c5 at the current node. Besides,
we propose to use a dynamically allocated pheromone database based on thresholds
that can be used for evaporating pheromone entries under a given significance level
to achieve better scalability. Currently, we apply a threshold of 1%, i.e. pheromone
values lower than 1% of the highest value are considered insignificant and are
eliminated from the database.

5. Design examples

In this section we introduce 3 different service models for demonstrating the
deployment logic. The first example has been introduced originally in [KH06]. S1
has a component that operates a security door and a card reader with a keycode entry
panel. The two latter components are bound to n1 by requirements. Besides, a central
component administers access rights by using an authentication and a authorization
server with corresponding databases as separate components (Fig. 4).

Figure 4: S1 - The Access Control System

The second example, Fig. 5 models a video surveillance system that has one
surveillance camera component bound to each of the five nodes by default. A central
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control and a recording unit manages the system and uses a main and a backup storage
device for storing surveillance information in a replicated database.

S3, the third service is a model of a process controller that consists of 4 main stages
of processing. In addition, S3 has a main generator component that produces the input
impulses for the processing stages and a logging module monitoring the output of the
four stages. On top of that, a user interface component can be used for direct human
interaction with the system (Fig. 6). In S3 all the components can freely be mapped to
any of the nodes in N, depending on current availability of resources.

Figure 5: S2 - The Video Surveillance System

Figure 6: S3 - The Process Controller System

An ant species is assigned to each of the services and deployment mapping is con-
ducted on the underlying network of hosts, which consists of 5 nodes with equivalent
capabilities in the example setting. The execution and collaboration costs assigned to
each element of the models are summarized in Table 1.

The behavior and the output of our artificial intelligence approach will further be
evaluated in the next section.
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Table 1: Components and costs in the examples

6. Evaluating the scenario

The service deployment mapping problem with execution and communication costs
can be NP-hard even in case of a single service (c.f. [CHH08]). The example provided
here has multiple optimal and near-optimal solutions with different sets of components
deployed on various nodes. However, it is important to recall that we are interested in
providing solutions satisfying the requirements in reasonable time and not necessarily
in always finding the optimum. For demonstration a solution taken from the output of
the logic is shown in Table 2.

Table 2: Example deployment mapping

To evaluate the algorithm we propose, first we compare it to two different ap-
proaches. In the first one (denoted globT,allnodes) ants use a simpler cost function,
Equation (11) that is easier to calculate, but requires the shared knowledge of the sum
of all offered execution costs, T .

F(Mr) = ∑
∀n∈N
|nln,r−T |+

K

∑
j=1

I j fk j (11)

That means that to apply (11) all of the species associated to the multiple services
being deployed simultaneously have to be aware of each others total processing power
demand and incorporate it into T . Knowing the global constant, T , ants can calculate
the deviation of the execution load from a global average, i.e. share the load among
the participating nodes. This is included in the first part of (11). The second part of
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this cost function includes collaboration costs the same way as in Equation (8). For
details see [CHH08].

The second approach used for comparison (denoted globT ) uses the same cost
function, i.e. Equation (11), with the exception that ants are not required to visit and
sample all the nodes available in the net-map, only those that are actually used for
deployment by their species, i.e. we use n ∈Hr instead of ∀n ∈ N. This is a significant
difference with respect to scaling as the set of available nodes, N can be high thus
putting a heavy burden on the ants that have to visit and sample all of the nodes. Our
approach, Algorithm 1, aims to provide deployment mapping without requiring any
global prerequisite and also without driving ants to cover ∀n ∈ N, which contributes to
increased scalability. Algorithm 1, that uses Equation (7) as cost function, is denoted
distF throughout this section.

Table 3: Number of iterations until convergence

First, in Table 3 we compare the amount of iterations, i.e. ant runs executed before
reaching a converged state. The results are derived from the output of 100 runs of
each approach and we conclude that distF requires significantly less iterations to
converge compared to the semi-global approaches. The 5% indicates the percentage
of explorer ants used during the normal phase that is standard procedure to achieve
context-awareness by constantly allowing some of the ants randomly explore the
net-map.

It can be noted that if adaptability to events such as nodes appearing/disappearing
or link fluctuations is not necessary, hence an initial deployment mapping satisfying
the NF-requirements is sufficient, the search for a static mapping can even more be
accelerated.

In Table 4 we compare the average and the deviation of the converged cost values
produced by the three different approaches solving the simultaneous deployment
mapping of the example services S1, S2 and S3. For this comparison the converged
deployment mapping suggested by the different approaches is observed and evaluated
by applying the cost function Equation 7.

Table 4: Average cost of mapping
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We can see that the deviation of the costs values in distF is at least as low as in case
of the least scalable approach, globT with all nodes sampled. Besides, the actual cost
values for distF are the best for services S1 and S3, and for S2 it is between the least
scalable and the scalable globT versions. Accordingly, our algorithm works without
the requirement for any global knowledge and using a more scalable sampling of
nodes while producing equivalent or better results for the deployment problem.

To evaluate the capability of the logic to adapt to changes in the context we have
investigated two simple scenarios with the example services. In the first scenario a
single node failure occurs and sometime later on the node is repaired and operational
again. However, we experiment with soft-errors meaning that deployment to the
selected node will be disallowed for the species after the error event occurs, but the
node will still be operational for the components that are bound to it by requirements.
We allow this exception for those services that would otherwise go down and hence the
deployment mapping would be meaningless for them (e.g. S2, which has a component
bound to each of the five nodes). The second scenario introduces an additional new
node to the network after the species have converged to a solution with 5 nodes.

Figure 7: Costs for S1 with node error and repair

The results of injecting a node error followed by a repair of the same node later on
can be seen in Figures 7, 8 and 9. These figures show how the cost values found by
the three species evolve. The figures display the average (as dots) and the deviation
(as error bars) of results from 100 runs of the same scenario. The first 2000 iterations
represent the initial exploration phase with considerably high costs, but as the normal
phase starts from iteration 2001 the costs of component mappings start to decrease as
species start to cooperate and better and better solutions are found. Vertical markers
show the events of node n3 going down and then coming back to operation. We
can see that the cost values increase for every service after a node goes down, but
interestingly species for S1 and S3 are able to find an almost equally low cost level by
redeploying their components on the remaining nodes. Species corresponding to S2 in
turn remains at a slightly higher cost level because it has a component bound to the
erroneous node thus it has to face degraded load-sharing among the nodes. After n3 is
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repaired components of S2 can be re-mapped to achieve a lower cost level again with
5 nodes, which happens within a few iterations.

Figure 8: Costs for S2 with node error and repair

Figure 9: Costs for S3 with node error and repair

It is also interesting to observe the control parameter γr, i.e. the temperature
that governs the performance function during a run with error and repair events. In
Figure 10 we can observe the changes in the temperature and see how species react to
changes in the environment. First, the node failure is detected very quickly and the
temperature increases as lower cost solutions disappear from the solution space. The
temperature increase is significant in S2 that is mostly affected by the change but it is
also noticeable for S3, whereas S1 seems to be slightly influenced. After the repair
has been made the swarm reacts slower only after some iterations can we observe
decreasing temperatures. S3 notices the better conditions first and S2 follows. More
iterations later all species converge to a stabilized state with lowest temperatures.

Our second test scenario introduces a 6th node to the environment of the services.
The 3 species are already in a converged state when the new node appears, indicated
by a vertical line in Figure 11. Some iterations later explorer ants, which represent 5%
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Figure 10: Temperature within the 3 species

Figure 11: Costs after a new node appears

of all ants in every species, start to indicate that a better, lower cost solution exists in
the changed environment. Deployment mapping of services S1 and S2 is adapted to
the changes giving a somewhat lower cots value, while the cost level for S3 does not
change with an additional node.

Moreover, in Figure 12, the number of pheromone entries in nodes n1 . . .n6 cor-
responding to S1 can be seen over time. As the problem space is explored initially
the database size tops somewhat below 26 as E∗ = 6 for S1 (cf. Section 4). After
exploration the swarm quickly converges to a low cost solution so there is little varia-
tion in the pheromones. The additional node is inserted at the iteration indicated by a
vertical line, before that node n6 has an empty pheromone table. Explorer ants discover
the new node quickly, thus new entries appear in the database pointing to mappings
with a lower cost. After a short period of fluctuation caused by the re-reservation of
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processing power by the 3 species the database contains a few pheromone entries until
convergence is completed and only the optimal mapping remains.

Figure 12: Database size for S1, with a 6th node inserted

7. Conclusions

We presented a new swarm intelligence logic for the efficient deployment map-
ping of software components to execution resources. A model-driven approach was
presented that drives optimization of the component mapping using non-functional
requirements incorporated into the model during the modelling phase. The deployment
logic is executed in a fully distributed manner, thus it is free of deficiencies of most of
the existing centralized approaches, such as performance bottlenecks and single points
of failure. The presence of a central database or decision entity is not required to run
the logic, instead we use the analogy of pheromones distributed across the network of
execution hosts to store information. All the intelligence is carried along by ant-like
agents.

Besides, we have showed that using CEAS our deployment logic is capable of
handling multiple services simultaneously and does not require global knowledge to
achieve better load-balancing among the nodes, while striving to minimize remote
communication at the same time. Our goal is to develop support for run-time rede-
ployment of components to keep the services within an allowed region of parameters
defined by the requirements. With methods in CEAS an the development cycle SPACE
we target a robust and adaptive service execution platform. Furthermore, we intend to
address scalability issues and consider larger network domains within the deployment
problem.

Considering convergence time we have a trade-off between convergence speed and
solution quality. Nevertheless, while deploying services in a dynamic environment
pre-mature solutions satisfying both functional and non-functional requirements often
suffice. More importantly, ACO systems have been proven to be able to find the
optimum at least once with probability close to one and as this happens convergence
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to the optimum is secured in a finite number of iterations. The optimal deployment
mapping can be obtained with high confidence since CEAS can be considered as a
subclass of ACO algorithms. Another advantage of our approach is the capability
to provide alternative solutions weighted by their cost values, which can be selected
for deployment easily as the corresponding pheromones indicate their proposed map-
ping. Currently, the deployment logic is implemented in a simulator written in the
Simula/DEMOS language [Bir03] for evaluation purposes.

Our work is conducted in cooperation with the ISIS (Infrastructure for Integrated
Services) project funded by the Research Council of Norway. The algorithm and
approach presented are in-line with the objectives of ISIS that are to create an estab-
lished service engineering platform for collaboration-oriented models, covering the
development cycle from the requirements to seamless execution in a heterogenous and
dynamic environment.

Future work on the topic will investigate inclusion of a wider range of QoS require-
ments and develop necessary improvements on the cost functions. It is an interesting
topic to look into how larger networks of nodes influence scalability and conver-
gence times. Similarly, introduction of a new type of species corresponding to user
demands towards services targeting better resource utilization possesses challenges.
Besides, we plan to experiment with distributed optimization methods other than
the CE method guiding the ant-based deployment logic and also to do more extent
comparison between state-of-the-art optimization methods and our work.
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Abstract Our paper targets the problem of efficient software component deployment in distributed
networked services. We approach the problem from a model-based service development
aspect and propose a solution based on novel methods applied in network management.
The swarm intelligence based deployment logic we have developed uses service models
that are defined in UML 2.0. These service models are embellished to contain the non-
functional requirements against the implementation of the service, which are necessary
to solve the component deployment problem and to obtain a deployment mapping. The
result of the heuristic optimization procedure are mappings between components and
the resources provided by the execution environment the service is deployed into. In
this work the deployment is viewed from the perspective of the service provider and our
algorithm possesses significant potential in providing adaptation support for services in
various changing environments.

1. Introduction

Realizing distributed service systems requires important design decisions that will
affect both the performance of the implementation and possibly the quality of service
(QoS) perceived by the user of the service. In the process of developing distributed
services we start from a platform independent model and realize the service following
a step-wise refinement approach. A significant factor that influences the QoS perceived
is the deployment of the particular software instances, in other words configuration of
building-blocks of the service and their mapping to run-time processing elements and
resources available during execution.

Besides, the environment of a distributed service might be changing in an unpre-
dictable manner, e.g. hosts can join and leave the network anytime. Heterogeneous
and swiftly reconfigurable hardware introduces additional dynamism that has to be
dealt with by an adaptable service. This dynamics together with the mobility and
cardinality of users provide a significant impact on the QoS. Increasing the provided
QoS will in turn inevitably increase the costs on the providers’ side. Thus, we have
to consider adaptability issues carefully in the engineering process addressing the
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non-functional requirements of a service. In particular, diligent deployment planning
and support are necessary.

The great deal of factors influencing the optimal mapping of service compo-
nents makes the deployment problem a multi-faceted challenge and demands multi-
dimensional optimization techniques. In order to deal with the deployment problem
we unify novel system development methods and network management solutions. In
particular, we use the model-based service engineering technique SPACE as a starting
point for the optimization. Here, the program code of a service is not created directly
but derived from abstract system models. One model describes the functionality of the
service while non-functional aspects like security, dependability or performance issues
are specified in more detailed models. In the functional model, the system topology is
not expressed by physical components but by abstract roles which collaborate with
each other to perform certain subservices. The role identifiers and the collaboration
descriptions can be embellished with QoS parameters expressing the performance
demands of the specified system. When deploying the service, the QoS parameters
can then be used to decide about the assignment of the roles to the available physical
devices. Further, the approach enables us to provide common solutions, which are not
restricted to any particular middleware platform.

We consider distributed execution of the deployment logic an important design
criteria to avoid the deficiencies of existing centralized algorithms, such as perfor-
mance bottlenecks and single points of failure. Besides, we aim to save resources by
omitting the burden of keeping a centralized decision logic updated and synchronized
constantly, this way achieving faster reaction times, which is desirable for context-
awareness. By supporting run-time component (re-)deployment our goal is to allow
execution of services within the allowed region of non-functional parameters defined
by the service requirements. Taking into account the aspects introduced we apply
principles from a distributed, robust and adaptive routing system called the Cross
Entropy Ant System (CEAS) [HW01], [HHW08].

In [CHH08b] we described how to take into account QoS requirements that are
captured while a service model is built and how to incorporate them into high-level
goals that can be used for obtaining efficient deployment mapping of software com-
ponents. Our distributed approach was tested on a static topology and compared to
centralized approaches. We apply swarm intelligence to provide dynamic deployment
and adaptation support for multiple services executed simultaneously in [CHH08a].
In this paper we present an elaborated version of our deployment support algorithm
and show some examples and experiments with them.

The remainder of this paper is organized as follows. Next we present how our
deployment logic fits into the service development cycle we target. An introduction to
CEAS follows in Section 3. In Section 4 our algorithm and the construction of the
main cost function that drives the logic are presented. Section 5 introduces example
scenarios of three concurrent services. Some results related to the examples are
evaluated in Section 6. In Section 7 we discuss work related to ours and highlight
some of the advantages our approach has. Finally, in Section 8 we conclude and touch
upon future work.
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2. Deployment cycle

The deployment approach we are proposing is an extension to the model-based
engineering method SPACE which is devoted to the rapid and correct engineering of
distributed services [KH06]. In contrast to other model-based engineering techniques,
SPACE uses collaboration-oriented models. Such a model does not describe single
physical components but a distributed sub-functionality which is realized by the
cooperation of two or more components. The overall service behavior is provided by
the interaction of the sub-functionalities such that the service model is the composition
of the corresponding collaboration-oriented models. An advantage of this specification
style is that it facilitates service design by the reuse of model building blocks from
collections of domain specific model libraries to a significantly higher degree than it
would be possible with component-based descriptions [HK07]. The reason for this
is that distributed sub-functionalities (e.g., automated creation and transfer of SMS,
user authentication mechanisms) can often be used in various services while single
components tend to have quite specific layouts for each particular application.

The stepwise modelling and refinement approach of SPACE is depicted by the inner
cycle in Figure 1. The service models are expressed by UML collaboration and activity
diagrams. They are mostly specified by simply selecting and instantiating model
building blocks from a library and by describing the interaction between the models.
Afterwards, the system description undergoes various correctness checks, as described
in [KSH07], before it is automatically transformed to a component-oriented design
model specified by a UML state machine for each physical component. Automatic
code generators are used to create executable Java code from the state machines such
that the collaboration-oriented service models can be fully-automatically transformed
to executable implementations [KHB06].

Figure 1: Development and deployment with SPACE
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The dynamic deployment of the generated implementation is the step where the
logic we propose can interact with the development cycle. The additional steps to
support efficient deployment of the components realizing the service are shown in
the outer cycle in Figure 1. The collaboration-based service models are amended by
high-level non-functional (NF) goals defining non-functional requirements (NFRs) of
a service in a rather abstract manner. Typical goals expressed by NFRs are security,
performance, availability and portability. Refinement of NF goals can be done in
parallel with the transformation of the service models to component-oriented design
models. Requirement profiles obtained in this step specify NFRs of the service
components. In addition, a resource profile is added representing properties which
describe the target environment, the service will be executed in.

Link related constraints represent the cost of using the link connecting two interact-
ing components. Constraints assigned to nodes or other resources related to execution
of a component can, for instance, represent memory size limitations. These constraints
can be interrelated in a way that, for example, placement of a component on a node
can lower the available amount of different types of resources at once with an amount
depending on the available resources at the time of the mapping.

Our deployment logic will be launched using both the requirement and the resource
profiles as input with requirements specifying the search goals and the resource profile
specifying the search space. The QoS requirements of the service model are captured
in a collaboration-oriented style at design time, instead of setting up traditional service
level agreements. Our view is that the deployment logic proposed will be able to
handle any non-functional property of the service, as long as a suitable cost function is
provided for the specific properties at hand. This feature will be provided by exploiting
the advanced scalability of CEAS and the method of pheromone sharing as explained
later in this paper.

Figure 2 depicts a simple example of a collaboration between two components.
This collaboration is enriched with NFRs for both the components and for the col-
laboration binding them and thus it is part of the requirement profile. This basic
collection of requirements contains two types of cost values, execution costs ( fci)
and communication costs ( fk j ). The total number of cost values is equivalent to the
total number E of components in the service, plus the number K of collaborations
between them (i.e., i ∈ {1 . . .E} for fci and j ∈ {1 . . .K} for fk j ). The execution cost is
a local cost imposed on the host node or resource executing the particular component
after deployment, whereas the communication cost loads the communication link
between the two components involved in the collaboration. As of now, we use con-
stant costs in the model, thus their values are not dependent on the current utilization
or other properties of the underlying hardware, which is described in the resource
profile. Furthermore, we benefit from using collaborations as design elements as they
incorporate local behavior of all participants and all interactions between them. That
is, a single cost value can describe communication between component instances,
without having to care about the number of messages sent, individual message sizes,
etc. Besides, we believe that NFRs other than execution costs and communication
costs can also be added similarly to our models as long as proper scaling is applied.
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The collaboration-oriented specification and requirement capturing will be illustrated
in the examples in Section 5.

Comp jComp i Collab

Comm.
cost = 15

Exec.
cost = 30

Exec.
cost = 20 aa

aa

aa

k

Figure 2: Collaboration with NFRs

Most existing deployment strategies and various approaches to aid deployment
of software systems like ontology-based and reasoning engines, apply centralized
decision logics based on centrally maintained databases, e.g. [Mal06], [REF+08].
Disadvantages of this proceeding are the burden to keep a central database constantly
updated and synchronized as well as the single point of failure introduced to the
system. Accommodating the decision logic together with the central database on a
single node may introduce both communication-wise and storage-wise bottlenecks.

In contrast to centralized approaches, a distributed cooperative algorithm employs
(semi-)autonomous agents, which cooperate to achieve certain common goals. To
avoid the need for any type of global knowledge in deployment mapping, we employ
autonomous agents operating in a distributed environment with their decisions based
solely on information that is available locally to the place where they reside. At every
node under the provision of the deployment logic some sort of local information shared
by several passing agents is required that will be the vehicle for cooperation between
the agents. Accordingly, in our logic the information required for optimization is
distributed across all participating nodes. This property of the deployment mapping
system contributes to robustness, scalability and fault tolerance. Furthermore, we
intend to use the same logic first to obtain an initial, optimal mapping of service
components to hosts or resources, and second to guide necessary changes during
execution of a service to satisfy the requirements it was launched with.

The objective of each agent is to find either the optimal deployment mapping of
component instances ci ∈ C onto nodes n j ∈ N or at least to find a mapping that
satisfies the requirements within reasonable time. It is important to note that the actual
placement of components constituting a service does not change with the mappings
found in each iteration. Instead placement is done on a significantly larger timescale
compared to a single iteration, as it is triggered only when an ant species converged to a
given mapping. An actual re-deployment of a service involves migrating components,
which in turn incurs additional cost. Migration costs can be taken into account
as a threshold that prohibits re-deployment if the benefit from the new component
mapping is not high enough. In our current work however we do not take into account
component migration costs.

The basis of the heuristics, guiding the agents to find an optimized mapping, is the
cost function F(M) that is used to evaluate the current suggestion in several iterations.
Often, however, the components cannot be freely assigned to nodes but due to certain
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system constraints are restricted to particular ones. This can be based on policies
given by the service provider (e.g. service level agreements of ISPs). Limitations
can be further based on access restrictions as well as on the provided and requested
capabilities (soft costs) and on capacity requirements (hard costs, e.g. bandwidth
limitations). The cost function F(M) has to consider these limitations which on the
other hand restrict the search space and, in consequence, support the performance of
our deployment algorithm.

3. Cross Entropy Ant System

The Cross Entropy Ant System (CEAS) as introduced by Helvik and Wittner
[HW01] is an Ant Colony Optimization (ACO) system, which was originally intro-
duced by Dorigo et al. [DMC96]. In other words, it is an agent-based optimization
system, where the agents’ behavior are inspired by the foraging behavior of ants. ACO
has been successfully applied in a variety of communication systems applications, see
for example [S+97], [CD98], and [CDG05].

The key idea is to let many agents, denoted ants, iteratively search for the best
solution according to the problem constraints and cost function defined. Each iteration
consists of two phases; the forward ants search for a solution, which resembles the
ants searching for food, and the backward ants that evaluate the solution and leave
markings, denoted pheromones, that are in proportion to the quality of the solution.
These pheromones are distributed at different locations in the search space and can be
used by forward ants in their search for good solutions; therefore, the best solution
will be approached gradually. To avoid getting stuck in premature and sub-optimal
solutions, some of the forward ants will explore the state space freely ignoring the
pheromone values.

The main difference between various ant-based systems is the approach taken
to evaluate the solution and update the pheromones. For example, AntNet [CD98]
uses reinforcement learning while CEAS uses the Cross Entropy (CE) method for
stochastic optimization introduced by Rubinstein [Rub99]. The CE method is applied
in the pheromone updating process by gradually changing the probability matrix pr
according to the cost of the paths. The objective is to minimize the cross entropy
between two consecutive probability matrices pr and pr−1. For a tutorial on the
method, [Rub99] is recommended.

The CEAS has demonstrated its applicability through a variety of studies of dif-
ferent path management strategies [HHW08], such as shared backup path protection,
p-cycles, adaptive paths with stochastic routing, and resource search under QoS con-
straints. Implementation issues and trade-offs, such as management overhead imposed
by additional traffic for management packets and recovery times are dealt with using
a mechanism called elitism [H+04] and self-tuned packet rate control [HW06]. Ad-
ditional reduction in the overhead is accomplished by pheromone sharing [KWH08]
where ants with overlapping requirements cooperate in finding solutions by (partly)
sharing information.

In this paper, the CEAS is applied to obtain the best deployment mapping M :
C→ N of a set of components, C, onto a set of nodes, N. The nodes are physically
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connected by links used by the ants to move from node to node in search for available
capacities. A given deployment at iteration r is a set Mr = {mn,r}n∈N, where mn,r ⊆C
is the set of components at node n at iteration r. In CEAS applied for routing the path
is defined as a set of nodes from the source to the destination, while now we define
the path as the deployment set Mr. The cost of a deployment set is denoted F(Mr).
Furthermore, in the original CEAS we assign the pheromone values τmn,r to interface
i of node j at iteration r, while now we assign τmn,r to the component set m deployed
at node n at iteration r. In Section 4 we describe the search and update algorithm in
details.

In CEAS applied for routing and network management, selection of the next hop
is based on the random proportional rule presented below. In our case however, the
random proportional rule is applied for deployment mapping. Accordingly, during
the initial exploration phase, the ants randomly select the next set of components
with uniform probability 1/E, where E is the number of components to be deployed,
i.e. the size of C, while in the normal phase the next set is selected according to the
random proportional rule matrix pr = {pmn,r}, where

pmn,r =
τmn,r

∑l∈Mn,r τln,r
(1)

A parameter γr denoted the temperature, controls the update of the pheromone values
and is chosen to minimize the performance function

H(F(Mr),γr) = e−F(Mr)/γr (2)

which is applied to all r samples and the expected overall performance satisfies

h(pmn,r,γr) = Epr−1(H(F(Mr),γr))≥ ρ (3)

Epr−1(X) is the expected value of X s.t. the rules in pr−1, and ρ is a parameter (denoted
search focus) close to 0 (typically 0.05 or less). Finally, a new updated set of rules, pr,
is determined by minimizing the cross entropy between pr−1 and pr with respect to γr
and H(F(Mr),γr).

To avoid centralized control and synchronized batch oriented iterations, in CEAS
the cost value F(Mr) is calculated immediately after each sample, i.e., when all
components are mapped, and an auto-regressive performance function, hr(γr) =
βhr−1(γr)+(1−β )H(F(Mr),γr) is applied approximated by

hr(γr)≈
1−β

1−β r

r

∑
i=1

β
r−iH(F(Mr),γr) (4)

where β ∈< 0,1 > is a memory factor weighting (geometrically) the output of the
performance function.

As for the CE method, the temperature γr is determined by minimizing it subject to
h(γ)≥ ρ . In [HW01] it is shown that the temperature equals

γr = {γ | 1−β

1−β r

r

∑
i=1

β
r−iH(F(Mi),γ) = ρ} (5)
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However Equation (5) is a complicated (transcendental) function that is both storage
and processing intensive since all observations up to the current path sample, i.e.
the entire path cost history {F(M1), · · · ,F(Mr)} must be stored, and weights for all
observations have to be recalculated. In an on-line operation of a network node, such
resource requirements are impractical. Instead it is assumed, given a β close to 1, that
the changes in γr are typically small from one iteration to the next. This enables a first
order Taylor expansion of Equation (5) providing:

γr = br−1+F(Mr)e−F(Mr)/γr−1

(1+ F(Mr)
γr−1

)e−F(Mr)/γr−1 +ar−1−ρ
1−β r
1−β

(6)

where a0 = b0 = 0 and γ0 =−F(M0)/ lnρ , and

ar← β (ar−1 +(1 + F(Mr)
γr

)e−
F(Mr)

γr )

br← β (br−1 + F(Mr)e−
F(Mr)

γr )
(7)

where the performance function in Equation (2) is adopted. See Appendix A in
[Wit03] for a stepwise explanation of how the Taylor expansion is applied.

The pheromone values in CEAS are a function of the entire history of path cost
values and hence CEAS has what is denoted a search history dependent quality
function in [Z+04]. Pheromone values, and the corresponding random proportional
rules, are updated for every path sample made. This implies that updates are made
by applying the performance function in Equation (2) combining the last cost value
F(Mr) and the temperature γr calculated by Equation (6). Pheromones are updated by

τmn,r =
r

∑
k=1

I((m,n) ∈Mk)β ∑
r
x=k+1 I((m,·)∈Mx)H(F(Mk),γr) (8)

The memory factor β gives geometrically decreasing weights to the output of the per-
formance function, which means that CEAS implements evaporation of pheromones.
The exponent of β is somewhat complex since backward ants do not update all nodes
in the network but only those nodes that were visited by the corresponding forward
ant. The exponent in Equation (8) is the number of ants that have updated node n at
“time” r since “time” k when a path Mk was found, while r− k is the total number of
updates in the system, i.e. total number of returned backward ants, at ”time” r since
“time” k. Hence r− k ≥ ∑

r
x=k+1 I((m, ·) ∈Mx).

However, as for Equation (5), excessive processing and storage requirements also
apply for Equation (8). Hence a (second order) Taylor expansion of Equation (8) is
appropriate, giving

τmn,t ≈ I((m,n) ∈Mr)e−
F(Mr)

γr + Amn +

{
−Bmn

γr
+ Cmn

γ2
r

1
γr
< Bmn

2Cmn

− B2
mn

4Cmn
otherwise

(9)
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where

Amn← β (Amn + I((m,n) ∈Mr)e−
F(Mr)

γr (1 + F(Mr)
γr

(1 + F(Mr)
2γr

)))

Bmn← β (Bmn + I((m,n) ∈Mr)e−
F(Mr)

γr (F(Mr)+ F(Mr)
2

γr
))

Cmn← β (Cmn + I((m,n) ∈Mr)e−
F(Mr)

γr (F(Mr)
2

2 ))

(10)

The initial values of Equation (10) are Amn = Bmn = Cmn = 0 for all (m,n). A stepwise
explanation of the Taylor expansion is given in Appendix A in [Wit03].

4. Distributed deployment logic

The deployment logic we have developed can be considered as a swarm of indepen-
dent agents with ant-like behavior that execute an optimization task in the network
of possible target hosts. They proceed with their behavior continuously and target
the deployment of a service based on information from the service model. Due to
this continuous behavior the same logic can provide an initial mapping for the system
components and can also support run-time redeployment. By allowing interoperation
of artificial ant species via indirect communication between them multiple services
can be deployed using our approach. We assign the deployment of one set of ser-
vice components to each ant-species that way making a species responsible for the
deployment mapping of a single service realized by distributed software components.

By applying an appropriate cost function that is used for evaluating the solutions
found during the heuristical optimization process we omit the need for any global
knowledge within the species. In other words, a set of species can be launched and
can operate independently without any of them requiring a global view on the total
set of requirements for all services being deployed in the system at a time. Another
important property supporting scalability is that the ants are limited to visit only those
nodes in the network that are effectively used in the deployment of service components.
This property allows to address significantly larger problem sizes that consist of a high
number of nodes and a large number of services executed simultaneously.

After an ant is created it is assigned the task of deployment of a set of components,
C, that constitute the service represented by the species the ant is originated from.
After initialization at the ant nest, the node where all the ants from a species are
originated, the ant samples the current temperature. Next, the ant selects the first hop
in the network where it starts a random-walk. The layout of the network is described
by the net-map. Every next hop is selected randomly, and after its arrival to a node
the ants behavior depends on if it is a explorer or a normal ant. Normal ants inspect
the local instance of the distributed pheromone database at the node and selects a
subset, mn,r, of C for mapping, which selection is stored in a list. The mapping list,
Mr is carried along by the ant during its search. An explorer ant in turn selects a
subset mn,r randomly, without using the pheromone database available at the node.
It is important to note that the ratio of explorer ants can be regulated to an arbitrary
extent. The purpose of this ant-type is twofold, initial exploration of the net-map and
discovery of fluctuations in the network during the continuous optimization process,
e.g. new nodes appearing. Random exploration can be considered as sampling from
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the problem space and results in a random cost figure. During the initial deployment
mapping phase a number of exploration iterations are used. The length of this period
depends on the problem size, the end of this period however can be detected by
monitoring the pheromone database size as it extends while a growing number of
possible solutions are covered up by the ants doing a random-walk in the problem
space. During the normal phase only a fraction of the ants, e.g. 5-10%, are flagged
as explorers. Nevertheless, continuously emitted explorers are needed for enhanced
responsiveness and detection of changes in the network environment, while normal
ants focus on finding the optimal deployment mapping.

As we target the deployment of multiple services using the same mechanisms,
species have to have a means of interoperation to obtain the optimal mapping for
the components taking into account resource usage of the services being deployed
simultaneously. We consider the optimal deployment of services from the perspective
of the provider, thus our logic aims at balancing the execution costs that are imposed
on the nodes used for execution of the services, or in other words load-balancing,
which generally requires a global overview on the system’s operating conditions.
However, we want to avoid having any centralized structure in our algorithm and use
a distributed optimization method instead. This requirement lead us to introduce a
mechanism through which species can reserve processing power at arbitrary nodes and
that will serve as a means of indirect communication between different species. This
reservation mechanism needs to be available at every participating node in addition
to the capability of storing elements of the pheromone database. Ant species will
indicate their latest requested resource usage, corresponding to the execution costs
in the service model they are responsible for, by allocation at the visited nodes at
every iteration r. Sampling the current set of allocations in every visited node can
give a general overview for the ants, thus load-levels in participating nodes can be
incorporated into the cost calculations at the end of each iteration. We refer to load-
level samples taken during an ant run with the set NLr. The actual implementation
of load-level sampling is left to the middleware. More important is the fact that,
allocation entries that are outdated are invalidated to preserve consistency. Invalidation
of outdated allocations can easily be done by the ants before they allocate a new value
at the nodes they visit. This means, however, that outdated allocations of a species
can still remain present in some nodes as an ant does not necessarily visit the same
set of nodes in each iteration. Accordingly, an iteration identifier, i.e. r, for each
species is stored together with the allocations in each node. During cost evaluation,
when load-levels for each node are calculated, an ant takes into account only those
allocation samples that have the highest r identifier for each service.

At first an ant conducts a forward search until it manages to find a mapping to all
the components it is assigned with. This resulting mapping is stored in the set Mr
by the ant and will be evaluated by the cost function of the service. The key point
in the optimization process is the formulation of the cost function, F(), which takes
into account the NFRs that the service model is extended with. Our cost function uses
two parameters updated in every iteration, the component mapping set Mr and the
load-level samples taken during forward search NLr. Moreover, the cost calculation
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is based on the execution and communication costs derived from the service model
as introduced in Section 2. Correspondingly, the cost function is built up by two
components, node related costs (NC) and link, i.e. collaboration related costs (LC).
The aim of each species is to minimize the overall value of its own function F ,
Equation (11).

F(Mr,NLr) = [ ∑
∀n j∈Hr

NC(n j)] · (1 + x ·LC) (11)

where x is a parameter. Equation (11) is used by all species the same way, and has a
component strictly local to the species, LC, which incorporates the collaboration costs

LC =
K

∑
j=1

I j fk j (12)

where I j is an indicator function applied to take into account only those communication
costs of the collaborations that happen between different nodes, i.e. remotely

I j =

{
1, if Collabk is external
0, if Collabk is internal to a node (13)

Node related costs are incorporated into the component ∑∀n j∈Hr NC(n j). This
section of the overall cost function aims at achieving load-balancing among the nodes
providing the services being executed. More important, in this part only the subset
of nodes the ant has visited is taken into account not the total amount of nodes.
References to nodes visited in iteration r are contained in the hop-list, Hr. This node
related cost is calculated individually for every visited node according to

NC(n j) = [
NLn,r(n j)

∑
i=0

1
∑∀n j∈Hr NLn,r + 1− i

]y (14)

Execution costs from one ant’s perspective for node n j are calculated according
to Equation (14) based on the load-levels sampled. The cost component NC tries
to counteract component LC. On one hand, LC tries to put weight on component
mappings that have as much as possible of the collaborations within the same node(s)
by favoring mappings that use less nodes for deployment with a low cost value. This
way minimizing external communication. On the other hand, Equation (14) has an
effect of distributing components, thus equalizing execution load among the available
hosts to the highest extent possible. This way two counteracting requirement types are
tackled in the same cost function. The exponent y in Equation (14) can be tuned to
focus more on load-balancing instead of the collaboration costs by selecting a larger
value. The multiplier x in Equation (11) in turn can be used to scale collaboration
costs if needed. The values we generally used in the example scenario presented in
Section 5 were x = 0.1 and y = 2.

At the end of each iteration the mapping found by the ant is evaluated using
Equation (11). Likewise, the temperature is recalculated according to Equation (6).
After the forward search an ant travels back to its nest along the path stored in the
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hop-list Hr during the phase called backtracking. On its way back to its nest the ant
updates the pheromone values according to Equation (9). Arriving back to its nest
node the ant updates the temperature with the new, recalculated value that will be
used by the next ant in the subsequent iteration. Passing the temperature value to the
next iteration at the nest is a necessary step as in contrast to routing and network path
management this information cannot be stored at a particular destination node making
it available to subsequent ants, because no designated destination node exists during
deployment mapping. In other words, a given deployment mapping, M : C→ N can
stretch over a set of nodes N, thus the same mapping M can be found by the ants
visiting the same set of nodes not necessarily in the same order, but making the same
mapping decisions. After the backtracking phase the ant’s behavior is ended, a new
ant will be initiated and emitted unless a stopping criteria is met.

There are different options for constructing a stopping criteria. For example, the
moving average of the evolving cost value can be observed and this way convergence
to a suggested solution can be detected. Another option is sampling the size of
the distributed pheromone database during an iteration, thus convergence can be
detected by observing a very strong pheromone value that emerges in the database,
while inferior solutions evaporate. All the ant species, i.e. representing arbitrary
simultaneous services, will execute the described process summarized in Algorithm 1.

The distributed pheromone database that guides the ants’ decisions has to be aligned
to the sets of deployed components. During an iteration each ant visits n⊆ N nodes
and will form n discrete sets from the available components (C) carried along. At the
end of every iteration r a deployment mapping Mr will be evaluated. For every species
a pheromone database is built by assigning a flag to every component that is free
for deployment mapping, i.e. which is not bound to a specific node by requirements.
This leaves a species with a number of components E∗ ⊆ E, correspondingly the
pheromone database size becomes 2E∗ , equal to the number of possible combinations
for a set at a node, a number specific for each service. Thus, the memory requirement
for an execution platform accommodating our logic is to store 2E∗ floating point
numbers at every node. We can also normalize the pheromone entries in a node to be
between 0 . . .1, in this way the entries can be viewed as a probability distribution of
component sets mapped to that node by the artificial ants. Once a converged state is
reached the optimal solution(s) emerge with probability one.

The pheromone database constructed as described above can be accessed and
indexed using identifiers pointing at sets of components. For example, consider a
basic set of 5 components constituting a service, C = {c1,c2,c3,c4,c5},E∗ = E = 5.
Indexing is done using an E∗ long binary bitstring, e.g. element 17 of the pheromone
database, which is equivalent to ′10001′B, refers to the deployment of a set of two
components, {c1,c5}. In addition, the pheromone database we use can be allocated
dynamically based on thresholds used for evaporating pheromone entries under a given
significance level to achieve better scalability. In the examples we apply a threshold
of 1%, i.e. pheromone values lower than 1% of the highest value are considered
insignificant and are eliminated from the database.
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Algorithm 1 Deployment mapping of service components C ∈ S j from Nestk

1 Read the current temperature, γ0 from Nestk.

2 Select the first node n ∈N randomly where the search from Nestk will start, and
add n to the hop-list Hr = Hr +{n}.

3 Select a set of components mn,r ⊆C so that n∈R is satisfied for every ci ∈mn,r
according to the random proportional rule (normal ant), Equation (1), or in a
totally random manner (explorer ant). If such a set cannot be found, goto step 8.

4 Update the ant’s deployment mapping set, Mr = Mr +{mn,r}.

5 Update the set of components to be deployed, C = C−mn,r.

6 (Re-)allocate processing power at the current node, n according to fci ,∀ci ∈mn,r.

7 Sample the estimated processing load level at n, nln,r, and let NLr = NLr +
{nln,r}.

8 Select next node, n randomly and add n to the hop-list Hr = Hr +{n}.

9 If C 6= /0 then goto 3., otherwise evaluate F(Mr,NLr) using the mapping set
Mr and the samples taken (NL).

10 Recalculate γ0 based on the new cost value, Equation (6).

11 Update the pheromone values, Equation (9), corresponding to the {mn,r} ∈Mr
mappings going backwards along Hr.

12 Update γ0 at Nestk.

13 If stopping criteria is not met then start new iteration (increment r), initialize
and emit new ant and goto 1.

5. Design examples

In this section we present 3 service models demonstrating the modelling method.
The example models will be used to evaluate the deployment logic subsequently. The
first example service, S1 has been introduced originally in [KH06]. S1 has a component
that operates a security door and a card reader with a keycode entry panel. These
two components are bound to node n1 by their requirements. In addition, a central
component administers access rights using an authentication and an authorization
server with corresponding databases implemented as separate components (Figure 3).

The second example, Figure 4 models a video surveillance system. The service
has one surveillance camera component bound to each of the five nodes by default. A
central control and a recording unit is used for managing the system and a main and a
backup storage device for storing surveillance information in a replicated database.
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Figure 3: S1 - The Access Control System

Figure 4: S2 - The Video Surveillance System

The third service is a model of a process controller that consists of 4 main stages
of processing. Besides, S3 has a main generator component that produces the input
impulses for the processing stages and a logging module is monitoring the output
of the four stages. On top of that, a user interface component can be used for direct
human interaction with the system (Figure 5). In S3 none of the components are
bound directly, thus every component can freely be mapped to any of the nodes in N,
depending the on current availability of resources.

Ant species are assigned to the services and a deployment mapping is conducted on
the underlying network of hosts, which consists of 5 nodes with equivalent capabilities
in the example setting. That is, the resource profile in this case contains 5 hosts,
which are capable of executing components and are interconnected in a full mesh
with equally capacious links. The exact values of execution costs ( fc) assigned to
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Figure 5: S3 - The Process Controller System

components (ci) and communication costs ( fk) assigned to collaborations (k j) in the
example scenario are summarized in Table 1.

Table 1: Components and costs in the examples

How the swarm intelligence logic handles the example services and scenario will
be evaluated in the next section.

6. Evaluating the scenario

We will use the example scenario and services introduced in Section 5 to observe
some of the properties of our deployment logic. This example setting has multiple
optimal and near-optimal solutions based on the wide variety of possible groupings
of components on the available nodes. What makes the distributed optimization task
even more challenging is that the service deployment problem using execution and
communication costs can be NP-hard even if we have to deal with a single service at a
time (c.f. [CHH08b]).

Based on the example setting of 3 services and 5 nodes initially the number of
required iterations to obtain a solution is significantly smaller compared to the size
of the problem if we would used conventional exhaustive search, as in this case,
components of a each service can take NE∗Sk mapping combinations, where E∗Sk is the
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number of unbound components in service k. If we are deploying all 3 services at
the same time the size of this example becomes N∑k E∗Sk , which would then require the
exhaustive exploration of 515 possible configurations.

Thus, it is important to recall that we are interested in finding mappings satisfying
the requirements in reasonable time and not necessarily in always finding the optimal
solution. Furthermore, we split the problem into 3 as we have one type of species
for each of the services and these species are executed simultaneously. The guided
heuristic search for a mapping can even more be accelerated if there is no need
for supporting adaptability to events such as nodes appearing/disappearing or link
fluctuations, hence an initial deployment mapping satisfying the NF-requirements
is sufficient. However, we are interested in a complete solution paving the way for
model-based adaptability. For demonstration a solution, i.e. a mapping of components
to nodes (M : C→ N) is shown in Table 2. This mapping is an example output of the
logic.

Table 2: Example deployment mapping using 5 nodes

Two simple scenarios were evaluated to investigate the capability of the method to
adapt to changes in the execution context of the services. First a single node failure
occurs in the network, the node goes down and becomes repaired and operational some
time later. In this case we experiment with soft-errors, meaning that deployment to the
selected node will be disallowed for the species after the error event occurs, but the
node will still be operational for the components that are bound to it by requirements.
An additional node appears in the network in the second scenario. The new node is
added after all the species have converged to a solution with 5 nodes.

The evolution of deployment mapping costs as calculated by the corresponding cost
functions are shown for two of the example services, S2 and S3, in Figure 6. The costs
for each of the services are calculated based on the costs fc and fk (cf. Table 1) of the
given service and the processing costs of other service components sharing the same
set of hosts, which can be predicted using the allocation samples NLr. In the figure
results of injecting a node error and a corresponding repair 4000 iterations later can
be seen. The plot shows the average cost value as dots and the minimum/maximum
values as error bars obtained by running 100 times the same scenario. The first 2000
iterations represent the initial exploration phase. As the normal phase starts from
iteration 2001 the costs of component mappings start to decrease as species start to
cooperate and better and better solutions are found.
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(a) (b)

Figure 6: Costs for S2 and S3 with node error and repair

As the node error appears, node n3 goes down, the cost values increase for all of
the services, although not to the same extent. The cost levels for S2 are generally
higher, probably as a result of a high amount of communication demand, which is also
making the redeployment of components constituting the service more difficult and
dependent on the resource usage of parallel services. Service S3 is able to find a new
deployment mapping on the remaining nodes for its components that comes with an
almost equally low cost as before the node error. After n3 is repaired components can
be re-mapped again to achieve lower cost levels with 5 nodes. Adaptation to the repair
event in the environment happens within a few iterations.

Figure 7: Temperature within the 3 species

It is also interesting to observe the control parameter γr, i.e. the temperature that
governs the performance function during a run with error and repair events. In Figure
7 changes in the temperature and how species react to changes in the environment
are shown. The node failure is detected very quickly and the temperature increases
suddenly as solutions with a lower cost disappear from the solution space. The increase
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in temperature is most significant in S2, while S1 and S3 are slightly affected. After
the repair the swarm reacts as ants find better solutions. More iterations later all
species converge to a stabilized state with low temperatures again.

In our second test scenario we introduce a new, 6th node to the environment of the
services. The species are already in a converged state when the new node appears
around iteration 5000. At this point the swarm is using only 5% of the ants emitted for
exploration. After some iterations explorers start to indicate that a better, lower cost
solution exists in the changed environment. Soon the better solutions with a lower
cost reach majority in the pheromone database eventually resulting in adaptation, i.e.
redeployment of components. The new overall deployment mapping of the 3 services
imposes slightly higher costs for S1 and S3, but a significantly lower cost for S2,
which indicates that the swarm managed to achieve consensus for a globally better
solution, even though the individual species did not have a global overview of the
system themselves. The cost values for the species are depicted on the left in Figure 8.

New, valuable mappings are appearing in the distributed pheromone database as new
entries. On the right in Figure 8 the number of pheromone entries corresponding to
S2, i.e. the database size is depicted for nodes n1 . . .n6. As S2 has only 4 components
that are available for redeployment, E∗S2 = 4, the maximum database size is 2E∗S2 = 16.
During initial exploration the various solutions are explored and the database size tops.
After exploration the swarm quickly converges to a low cost solution so there is little
variation in the pheromones. The additional node is inserted at the iteration indicated
by a vertical line, before that node n6 has an empty pheromone table. Explorer ants
discover the new node quickly, thus new entries appear in the database pointing
to mappings with a lower cost, and the database in n6 is building up too. After a
short period of fluctuation caused by the re-reservation of processing power by the
species suboptimal solutions are evaporated from the database and after convergence
an optimal mapping remains only.

(a) (b)

Figure 8: Costs and the pheromone database after a new node appears
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7. Related Work

Today, a fair number of middleware approaches aiming at adaptability and depend-
ability have become available. An autonomous replication management approach for
dependability is suggested by Meling in a framework based on group communication
systems [Mel06]. A dynamic middleware, QuAMobile, is presented in [LSO+07],
which introduces independent application variants and selects between them for
context-awareness and adaptation. Service level agreements (SLAs) and QoS-aware
metadata is used in the planning-based adaptation middleware of the MUSIC project
(cf. [REF+08]). A peer-to-peer middleware, CARISMA is utilizing an auctioning-like
mechanism for conflict resolution and adaptation automatically triggered by context
changes [CEM03]. In the QoS brokering approach from Menasce and Dubey con-
sumers can request services, after which a broker uses analytic queuing models to
predict QoS of the services under various workloads, and to look for maximized utility
[MD07]. A framework, SmartFrog [Sab06], for describing, deploying and managing
distributed service components has been developed in HP Labs. Similarly to our
concept, this framework describes services as collections of components and applies
a fully distributed engine comprised of daemons running on each node. The same
engine can be used to deploy many services simultaneously, which is a property of
our deployment logic too. A description language is used for specifying configura-
tions, using which deployment information can be described and instantiated across a
network. After instantiation components that form the application are hosted by the
framework itself.

The various kinds of middleware discussed above are all very good candidates
for serving as a means of instrumenting deployment guided by our logic. In our
work we do not deal with implementation and support of component instantiation and
migration. The algorithms we are developing serve as an optimization and decision
logic triggering component placement, while the actual decisions made by the logic
are autonomous and are based on the service model.

Effective component placement requires some kind of optimization approach in
addition to methods easing the execution of it. Virtualized environments and server
consolidation achieved significant advances recently in the autonomic computing
community. Xu et al. applied fuzzy learning for configuration management in server
environments via a two-level control mechanism that targeted efficient resource utiliza-
tion [XZF+07]. Queuing models, namely layered queuing networks are employed by
Jung et al. for generating optimal configurations and policies in an offline framework
[JJH+08]. Others also suggest improving the perceived QoS through changing the
deployment of applications, however due to the exact solution algorithms, complex-
ity becomes NP-hard already with more than 2-3 hosts or several QoS dimensions
restricting applicability of these methods. Approximative solutions that can overcome
some of the scaling problems, such as greedy algorithms and genetic programming
are discussed in [Mal06]. The algorithms presented therein are aiming to maximize
utility of a service from the users’ perspective, whereas we formulate and solve the
deployment problem in a way that takes into account the providers’ goals while con-
sidering user requirements as well. Moreover, our deployment logic should grant the
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same benefits that exist in distributed management architectures, such as increased
dependability, better resource utilization, etc. while still preserving an output format
that is platform independent.

8. Conclusions

In our work we discussed modelling of distributed networked services, incorpo-
rating non-functional requirements into service models for the purpose of obtaining
optimized deployment of components constituting the services. A swarm intelligence
logic was built for solving the optimization task of mapping software components to
execution resources. The deployment logic can be executed in a fully distributed man-
ner, making it free of the deficiencies most of the existing centralized approaches suffer
from, such as performance bottlenecks or single points of failure. Instead of a central
database or control and decision making entity we use the analogy of pheromones
distributed across the network of execution hosts to store information. Pheromones
that will be used by ant-like agents possessing all the intelligence required to solve
the deployment problem. Using CEAS we have showed that our method can handle
the deployment of multiple services executed in parallel without requiring knowledge
available globally to all the species, i.e. all of the species rely only on the view they
obtain on the execution environment and make independent decision based on that.
Species assigned with the task of deploying a particular set of service components are
able obtain load-balancing among the execution nodes, while striving to minimize
remote communication between components at the same time. Nevertheless, the goal
of optimization is not necessarily obtaining the global optimum, but instead to keep
the services within an allowed region of QoS parameters defined by the requirements.
With methods in CEAS and the development cycle SPACE we target a robust and
adaptive service execution platform. The deployment logic is being developed in a
way to address scalability issues and to consider larger domains of networks within
the deployment problem.

Convergence time is often cardinal in stochastic optimization frameworks, here
we have a traded-off between convergence speed and solution quality. However,
during service deployment in a dynamic environment pre-mature solutions satisfying
both functional and non-functional requirements often suffice. More important, ACO
systems are proven to be able to find an optimal solution at least once with a probability
close to one and as this happens convergence to this solution is assured within a finite
number of steps. As CEAS can be considered a subclass of ACO algorithms, optimality
of deployment mappings obtained with CEAS can be trusted with high confidence.
In addition, our approach can provide multiple alternative solutions weighted by
their cost values, which can easily be selected and used for deployment based on the
corresponding pheromone values indicating the proposed mapping.

Our methodology has been developed in cooperation with the project ISIS (Infras-
tructure for Integrated Services) funded by the Research Council of Norway. Both the
algorithm and the collaboration-oriented modelling approach are in-line with the main
objectives of ISIS, i.e. to create a service engineering platform that covers the service
development cycle from the requirements capturing phase to seamless execution in
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heterogeneous and dynamic environments. The deployment logic is continuously
under development and exists currently as a preliminary implementation in a simulator
environment [Bir03] for evaluation purposes.

There are many objectives and directions that will be considered to further improve
our method. Different types of QoS requirements will be considered for inclusion,
which will also influence developments and refinements of the cost functions we use.
Larger networks and their influence on convergence and scalability will be investigated.
The user perspective has not taken a role so far in the optimization process. We plan to
address this aspect with constructing separate species corresponding to user demands.
This aspect will however introduce new challenges as it will increase the dimensions
of the deployment problem. Besides, we also plan to experiment with a variety of
stochastic optimization methods for guiding the artificial ants we employ and compare
our results. Another interesting topic is to use the deployment mapping logic as
feedback towards the service designer for influencing the functionality in the model
before implementation. Nevertheless, the next issue that will be tackled is making
nest nodes that emit ants more dependable by developing strategies based on, among
others, replication.
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Máté J. Csorba and Hein Meling and Poul E. Heegaard and Peter Herrmann

In proceedings of 9th IFIP International Conference on Distributed Applications and
Interoperable Systems (DAIS’09)

Lisbon, Portugal, June 9-12, 2009





FORAGING FOR BETTER DEPLOYMENT OF
REPLICATED SERVICE COMPONENTS
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Abstract Our work focuses on distributed software services and their requirements in terms
of system performance and dependability. We target the problem of finding optimal
deployment mappings involving multiple services, i.e. mapping service components in the
software architecture to the underlying platforms for best possible execution. We capture
important non-functional requirements of distributed services, regarding performance
and dependability. These models are then used to construct appropriate cost functions
that will guide our heuristic optimization method to provide better deployment mappings
for service components. This paper mainly focuses on dependability. In particular, a
logic enabling replication management and deployment for increased dependability is
presented. To demonstrate the feasibility of our approach, we model a scenario with 15
services each with different redundancy levels deployed over a 10-node network. We
show by simulation how the deployment logic proposed is capable to satisfy replica
deployment requirements.

1. Introduction

Distributed applications and services are increasingly being hosted by infrastructure
providers over virtualized architectures, enabling on-demand resource scaling, such as
in the Amazon EC2 platform [LLC]. An important concern in such platforms is the
problem of finding optimal deployment mappings involving multiple services spread
across multiple sites. During service execution a plethora of parameters influence
the optimal deployment mapping, and more so in a distributed environment where
concurrent services influence each other as well. Furthermore, some applications have
non-functional requirements related to dependability, such as fault tolerance and high
availability. Upholding such requirements demands replication protocols to ensure
consistency, but also adds additional complexity to the optimization problem. Ideally,
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the deployment mappings should minimize the resource consumption, yet provide
enough resources to satisfy the dependability requirements of services.

This paper presents a novel modeling and optimization methodology for deploy-
ment of replicated service components. We model services in a platform independent
manner using the SPACE [KH06] methodology. As previously shown by Fernandez-
Baca [FB89], the general module allocation problem is NP-complete except for certain
communication configurations, thus heuristics are required to obtain solutions effi-
ciently. Based on our service models, we apply an heuristic optimization method
called the Cross-Entropy Ant System (CEAS) [HHW08], which is able to take multi-
ple parameters into account when making a decision on the deployment mapping. The
approach also enables us to perform optimizations in a decentralized manner, where
replicated services can be deployed from anywhere within the system, avoiding the
need for a centralized control for maintaining information about services and their
deployment.

There are a number of reasons to develop replicated services, including fault toler-
ance, high availability and load balancing. This work focuses on fault tolerance and
availability, and in this context, the objective is to improve the availability character-
istics of the service by appropriate allocation of service replicas to nodes, such that
the impact of replica failures and network failures is reduced. And at the same time
minimizing the resource consumption.

Generally, to support replicated services the underlying architecture needs to pro-
vide replication protocols to ensure consistency between replicas, e.g., active or passive
replication protocols [Sch93, BMST93]. Such protocols have different implicit com-
munication and computation costs and can be taken into account in our model. In
addition, a replication management infrastructure, e.g. [OMG00, MMHB08, MG08],
is necessary to support deployment of replicas and managing reconfigurations when
failures occur. One example is the distributed autonomous replication management
framework (DARM) [MG08]. DARM focuses on the deployment and operational
aspects of the system, where the gain in terms of improved dependability is likely to be
the greatest. DARM is equipped with mechanisms for localizing failures and system
reconfiguration. Reconfiguration is handled without any human intervention, and
according to application-specific dependability requirements. The benefits of DARM
are twofold: (i) the cost of deploying and managing highly available applications can
be significantly reduced, and (ii) its dependability characteristics can be improved
as shown in [HMM05]. The approach presented in this paper can be combined with
frameworks such as DARM in order to improve the deployment mapping operation;
such an implementation has been left as future work.

There are at least three cases where finding suitable deployment mappings are of
significance to replication management: (i) initial deployment of replicas according
to some policy; (ii) reconfiguration of deployed replicas that have failed or become
unavailable due to a network partition according to some maintenance policy; (iii) mi-
gration of replicas to re-balance the system load. The deployment mapping policy used
in this paper, is formulated as a cost function to the optimization problem, essentially
stating that replicas should be placed on nodes and domains (sites) so as to improve



PAPER D: Foraging for better deployment of replicated service components 141

the dependability of the service being deployed.
The paper is organized as follows. The next section presents how replicas are

modeled in the SPACE modeling framework. Sec. 3 introduces CEAS and provides a
description of the deployment algorithm. Subsequently, we formulate the optimization
problem and present cost functions used to solve it. Simulation results using our logic
are presented in Sec. 5. Finally, in Sec. 6 we conclude and touch upon future work.

2. Replica services in SPACE

To account for dependability requirements while deploying replicated service com-
ponents, collaboration-oriented models can be used. To this end, the SPACE [KH06]
methodology provides a modeling technique for automated engineering of distributed
applications. In contrast to other UML-based methods, it enables the composition of
system descriptions from collaboration-oriented sub-models that does not specify the
behavior of a single physical component, but rather describes the sub-functionality
encompassing various system entities. Such sub-models are typically easier to reuse
than component-oriented building blocks, since different systems in a particular do-
main often have similar sub-functions, which can be coupled in various ways. Each
sub-function can then easily be specified as a collaborative building block once, and
thus the creation of a new system can be reduced to the design of a new combination
of these pre-defined blocks.
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Figure 1: Example service, S1 with 4 replicas and corresponding costs

In SPACE, the topology of a system is modeled with UML collaborations, while
behavior is described using UML activities. SPACE is accompanied by the Arc-
tis [KBH09] tool, which enables composition of models, various model checker-based
correctness proofs and automated transformation to executable Java code.

In this paper, only UML collaborations are used. Fig. 1 depicts a simple example
model. It describes the pair-wise replication of data between the physical components
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R1 to R4. The updating function is modeled by four collaboration uses called update,
each specifying the alignment of data between the two linked components. Although
SPACE offers specification of multiple instances of a collaboration [KBH07], for
clarity only four instances of update are used here. SPACE models can be embellished
with additional non-functional requirements that can be exploited by our deployment
logic, i.e., the execution costs assigned to components or costs that are specific to each
collaboration between replicas. Within a given service specification, some (or all) of
the service components might require replication to improve their dependability. We
propose to model and specify component replication using the same methodology
applied for designing the services themselves. In other words, we specify a set of
replicas related to a specific component separately, i.e. as a collaboration of replicas
of a single component.

To test our deployment logic, we assume an active replication approach, where each
replica of the service performs according to the client requests. Thus, replicas have the
same execution cost. Each replica is also assigned a communication (collaboration)
cost to account for the cost of ensuring consistency (state updates) between repli-
cas. The example scenario illustrated in Fig. 1 is used as a basis for the simulations
presented in Sec. 5.

3. Replica Deployment using the Cross Entropy Ant
System

To find suitable replica placements a collection of ant-like agents, denoted ants,
search iteratively for the best solution according to a cost function, restricted by
the problem constraints. To find a solution ants are guided using the analogy of
pheromones, which are proportional to the quality of the solution. CEAS uses the
Cross Entropy method for stochastic optimization introduced by Rubinstein [Rub99],
and has demonstrated its capabilities and relevance through a variety of studies of
different path management strategies. For an intuitive explanation and introduction to
CEAS, see [HHW08].

Table 1 gives the notation for sets and variables used throughout our description.

Table 1: Notational shorthand

Shorthand Usage Description
S Sk ∈ S set of service instances

Ck ci ∈ Ck set of all replicas in Sk
D d ∈ D set of all existing domains
N n ∈ N set of all existing nodes
|Ck| |Ck| number of replicas to be deployed
Dr d ∈ Dr list of domains used in deployment of Sk
Nr n ∈ Nr list of nodes used in deployment of Sk

NLr nln,r ∈ NLr load-level samples for Sk
Mr mn,r ∈Mr mapping list for Sk
Hr n ∈ Hr hop-list for Sk

In this paper, we apply CEAS to obtain the best mapping of a set of replicas onto
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a set of nodes, M : C→ N. The pheromone values used by the ants, denoted τmn,r,
correspond to a set of replicas, m mapped to node n at iteration r. Ants use a random
proportional rule for selecting the individual mappings.

pmn,r =
τmn,r

∑l∈Mn,r τln,r
(1)

The pheromone values τmn,r in (1) are updated continuously by the ants as follows:

τmn,r =
r

∑
k=1

I(l ∈Mn,r)β
∑

r
j=k+1 I( j∈Mk)H(F(Mk),γr) (2)

where I(x) = 1 if x is true, 0 otherwise. See [HHW08] for further details.
A parameter γr denoted the temperature, controls the update of the pheromone

values and is chosen to minimize the performance function

H(F(Mr),γr) = e−F(Mr)/γr (3)

which is applied to all r samples.
To enable a distributed optimization process the cost of a mapping, F(Mr) is

calculated immediately after each sample i.e., when all replicas are mapped, and an
auto-regressive performance function, hr(γr) is applied, Eq. 4.

hr(γr)≈
1−β

1−β r

r

∑
i=1

β
r−iH(F(Mr),γr) (4)

where β ∈ 〈0,1〉 is a memory factor weighting (geometrically) the output of the
performance function. This mechanism smooths variations in the cost function, hence
rapid changes in the deployment mapping and undesirable fluctuations can be avoided.
The temperature, γr is determined by minimizing it subject to h(γ)≥ ρ , thus

γr = {γ | 1−β

1−β r

r

∑
i=1

β
r−iH(F(Mi),γ) = ρ} (5)

where ρ is a parameter (denoted search focus) close to 0 (typically 0.05 or less).
Eq. (5) is a transcendental function that is storage and processing intensive since all

observations up to the current sample, i.e., the entire mapping cost history F(Mr),∀r
should be stored, and weights for all observations would have to be recalculated, thus
putting an impractical burden on the on-line operation of the logic. Accordingly, we
assume that, given a β close to 1, changes in γr are typically small from one iteration
to the next, enabling a first order Taylor expansion of (5), and a second order Taylor
expansion of (2), see [HHW08] for more details. More importantly, we are able to
obtain an optimal deployment mapping with high confidence, since CEAS can be
considered as a subclass of Ant Colony Optimization (ACO) algorithms [DMC96],
which have been proven to be able to find the optimum at least once with probability
close to one. Once the optimum has been found, convergence is secured in a finite
number of iterations.
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Algorithm 1 Code for Nestk
1: Initialization:
2: r← 0 {Number of iterations}
3: γr ← 0 {Temperature}

4: while r < R {Stopping criteria}
5: antAlgo(r,γr) {Emit new ant}
6: r← r + 1

We now present the steps executed by the deployment logic to obtain a mapping
of replicas. Behavior of the logic is separated into Algorithm 1, which describes the
simple functionality of a Nest, i.e. basic additional intelligence in one of the nodes, and
Algorithm 2, which describes the behavior of the ants that are subsequently emitted
from the Nest. The role of a Nest can be played by an arbitrary node. The steps are
executed independently by ants of each species, where a species is directly involved in
the deployment of a specific service. Each ant initiated from the nest node of a species
is assigned a set of replicas, C; in this case the replica instances to deploy. The ant
then starts a random-walk in the network, selecting the next hop at random. Behavior
at a node depends on if the ant is an explorer or a normal ant. Normal ants select a
subset of C for mapping to the current node according to the pheromone database
and store this selection in the mapping list, Mr. An explorer ant, however does the
selection without using the pheromone values in a completely random manner.

The benefits of applying explorer ants are twofold, first they initially explore the
solution space and second, they are used for faster discovery of changes in the network
during optimization. In both cases, explorers do not use the pheromone tables, instead
they build up an initial database. Besides, they are used to detect alternative solutions
while the system undergoes short- or long-term changes. The amount of explorer
vs. normal ants is a configurable ratio parameter to the logic. Initial exploration is
essentially a random sampling of the problem space and the number of iterations
depends on the problem size. However, the end of this phase can be detected by
monitoring the pheromone database size. Optimizing the deployment mappings
based on the available cost functions should be performed using a distributed method,
avoiding a centralized structure. To do so, each node provides a processing power
reservation mechanism. Ant species use this mechanism to indicate their resource
usage in every node they utilize for their replicas. Processing power reservation can
be updated by a given percentage of ants, which is again a parameter to the logic, i.e.,
only a certain fraction (e.g. 10%) of iterations result in re-allocation at the nodes, see
Lines 18− 21 in Algorithm 2. Outdated allocations get invalidated in the nodes to
preserve consistency. In addition, the allocation mechanism can serve as a means of
interaction between the species. Thus, the current sum of allocations in a node can
be sampled providing a general overview for the ants. These load-level samples are
denoted NLr. The decreased ratio of reservations by the ants (e.g. only 10% of them)
contributes to obtaining a smoother series of NLr samples. The actual implementation
of sampling is left to the middleware.

The forward search phase of an ant is over when all component replicas are mapped
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and the resulting mapping is stored in Mr. The algorithm proceeds with evaluating the
resulting mapping using the appropriate cost function Fi(). After evaluating the cost of
the mapping, the ant backtracks to its nest using the hop-list, Hr. During backtracking,
pheromone values distributed across the network of nodes are updated according to
Eq. (2). After the ant finds its way back to the nest node or times out a new ant can be
initiated and emitted. The same behavior can be used for all ants, even though they
are of different species.

The main purpose of the pheromone database is its usage in Algorithm 2, Line 13.
In every iteration, an ant will form |Nr| discrete subsets of C as it visits n⊆ Nr nodes.
In order to be able to describe replica mappings to nodes, values of the pheromone
database have to be aligned with replica sets. Accordingly, the pheromone database
is built by assigning a flag to every replica available for deployment in a service,
∀ci ∈ C, with the exception of replicas that are bound to specific nodes explicitly by
requirements and thus, they cannot be moved.

Algorithm 2 Ant code for deployment mapping of component replicas C ∈ Sk ⊂ S
from Nestk
1: Initialization:
2: Hr ← /0 {Hop-list; insertion-ordered set}
3: Mr ← /0 {Deployment mapping set}
4: Dr ← /0 {Set of utilized domains}
5: NLr ← /0 {Set of load samples}

6: function antAlgo(r,k)
7: γr ← Nestk.getTemperature() {Read the current temperature}
8: while C 6= /0 {More replicas to deploy}
9: n← selectNextNode() {Select first node}

10: if explorer ant
11: mn,r ← random(⊆ C) {Explorer ant; randomly select a set of replicas}
12: else
13: mn,r ← rndProp(⊆ C) {Normal ant; select replicas according to Eq. (1)}
14: if {mn,r} 6= /0, n ∈ dk {At least one replica mapped to this domain}
15: Dr ← Dr ∪dk {Update the set of domains utilized}
16: Mr ←Mr ∪{mn,r} {Update the ant’s deployment mapping set}
17: C← C−{mn,r} {Update the set of replicas to be deployed}
18: if r mod 10 = 0 {Only every 10th ant modifies allocations}
19: foreach ci ∈ mn,r
20: sumpp← sumpp + fci {Sum the exec. costs imposed by Sk}
21: n.reallocProcLoad(Sk,sumpp) {(re-)allocate processing power needed by Sk}
22: nln,r ← n.getEstProcLoad() {Get the estimated processing load at node n}
23: NLr ← NLr ∪{nln,r} {Add to the list of samples}

24: cost← F(Mr,Dr,NLr) {Parameters depending on the cost function}
25: γr ← updateTemp(cost) {Given cost, recalculate temperature according to Eq. (5)}
26: foreach n ∈ Hr.reverse() {Backtrack along the hop-list}
27: n.updatePheromone(mn,r,γr) {Update pheromone value at n, Eq. (2)}
28: Nestk.setTemperature(γr) {Update γr at Nestk}

29: function selectNextNode() {SELECT UNIQUE RANDOM NODE}
30: R← N− currentNode {Set of candidate nodes for ant traversal}
31: n← random(R) {Select candidate node at random}
32: Hr ← Hr ∪{n} {Add node to the hop-list}
33: return n
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The pheromone database will contain 2|C| elements, equal to the number of possible
combinations for a set ci at a node, which is specific for each service. This determines
a physical requirement for the execution platform that supports our logic, namely to
be able to accommodate 2|C| floating point numbers for each of the services in every
node. If the pheromone database in a node is normalized between {0 . . .1} it can
be observed as a probability distribution of replica sets mapped to that node. In a
converged state the optimal solution(s) will emerge with probability one.

4. Construction of the Cost Function

When applying the optimization method presented in Sec. 3 it is essential to
formulate a proper cost function aimed at guiding the optimization process towards
an appropriate solution. An appropriate solution is a solution to the deployment
mapping problem satisfying the system requirements, Freq derived from the service
specification, while accounting for the costs of the mapping, Fi(). Trying to find a
global optimal solution does not make much sense in the systems considered here, as
the solution would most likely be suboptimal by the time, the optimal mapping could
be applied. However, the algorithm can continue optimization even after a feasible
mapping is found, that can trigger (re-)deployment of replicas. By optimal mapping
we mean mappings with the lowest possible cost, while for a feasible mapping Fi()
< Freq is enough. Note that the formulation of the deployment problem below is
independent of the methods we apply to obtain a solution.

min Fi() {< Freq}
subject to Φ

In each iteration of our deployment logic, the cost function is evaluated for every
suggested mapping, mn,r, (cf. Algorithm 2, Line 24). Properties of this function
impact the quality of the solutions obtained as well as the convergence time, or in
other words, the number of iterations required to reach a stable solution. In order
to develop a logic that can aid replica deployment and increase dependability by
influencing the mapping of software architecture the cost function has to be carefully
selected. However, what is the proper function to use depends on the requirements
and goals of the service. Here, we target efficient placement of component replicas in
an active replication scheme aimed at improving the dependability.

We define the mapping functions fk and gk,d as follows.

Definition 1. Let fk: rk→ d be the mapping of replica rk to domain d ∈ D

Definition 2. Let gk,d: rk→ nd be the mapping of replica rk to node nd ∈ N in
domain d ∈ D

We then define two distinct rules that the deployment logic targets. The first
one states that replicas shall be distributed across as many domains as possible for
increased dependability, i.e. two replicas of the same service shall not be placed in the
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same domain preferably, or if there are more replicas than domains available there
shall be at least one replica in all domains (φ1).

Rule 1 φ1 : fk 6= fl ⇐⇒ k 6= l ∧ |Sk|< |D|

Whereas the other rule declares that two replicas of the same service should
not be co-located on the same node (φ2).

Rule 2 φ2 : gk,d 6= gl,d ⇐⇒ k 6= l, ∀d

Deployment mappings of component replicas can be evaluated by the deploy-
ment cost function Fi(). Accordingly, we formulate the replica deployment problem
as the task of minimizing Fi() subject to Φ = φ1∧φ2.

The problem of producing deployment mappings that conform to the rules
introduced above is approached step-wise by introducing different types of cost
functions. We start by considering φ1 only and use information collected by the ant
species during forward search by counting the number of domains that have been
used to map replicas at an iteration, this variable will be denoted Dr. Using Dr we
will experiment with a reciprocal (6) and a linear function (7) too. The latter case
uses the number of replicas, |C|, a constant derived from the service model and thus
known to each species.

F1(Dr) =
1
|Dr|

(6)

F2(Dr,C) = |C|− |Dr|+ 1 (7)

Similarly, we include φ2 into the cost function by a reciprocal and a linear function
and combine it with (6) and (7) as follows.

F3(Dr,Nr) =
1
|Dr|
· 1
|Nr|

(8)

F4(Dr,Nr,C) = (|C|− |Dr|+ 1) · (|C|− |Nr|+ 1) (9)

F5(Dr,Nr,C) =
1
|Dr|
· (|C|− |Nr|+ 1) (10)

F6(Dr,Nr,C) = (|C|− |Dr|+ 1) · 1
|Nr|

(11)

In (8)-(11) we utilize a variable, Nr, which denotes the number of nodes that have been
used by a specific species for deploying replicas at iteration r, this is also reported by
each ant during the forward search phase. We evaluate all four possible combinations
of the reciprocal and linear functions targeting φ1 and φ2.

The last combination of cost functions, in (12), is a combination of the simple
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reciprocal function in (6) targeting φ1 combined with a more complex function used
successfully in service component deployment [CHH08].

F7(Dr,Mr,NLr) =
1
|Dr|
·Flb(Mr,NLr) (12)

Flb uses two parameters that are updated in every iteration, the replica mapping set Mr
and the load-level samples taken in the nodes visited by the ant (n j ∈Hr), denoted NLr.
This function accounts for the execution and communication costs derived from the
service specification as introduced in Sec. 2. Correspondingly, the function consists of
two main parts, node (NC) and collaboration related costs (LC).

Flb(Mr,NLr) = [ ∑
∀n j∈Hr

NC(n j)] · (1 + x ·LC) (13)

where x is a parameter used to balance the effect of the LC term, as needed. The
component LC is strictly local to each species and incorporates the collaboration costs

LC(Mr) =
K

∑
j=1

I j fk j ; where I j =

{
1, if Collabk external
0, if Collabk internal to a node (14)

Thus, the term LC will take into account communication costs ( fk j ) assigned to those
collaborations that happen between different nodes only, in other words aiming at
minimizing remote communication.

Costs related to execution of replicas, i.e., node local costs are incorporated into
the first term in (13). Node local costs aim at achieving load-balancing among the
nodes hosting replicas. Importantly, in this term only the subset of nodes an ant has
actually visited (Hr) is taken into account, not the total amount of nodes. The term
that is calculated individually for each of the nodes in Hr is shown in (15).

NCn j (NLn,r) = [
NLn,r(n j)

∑
i=0

1
∑∀n j∈Hr NLn,r + 1− i

]y (15)

The term NC counteracts the other term in (13), LC, which puts weight on replica
mappings that have as much as possible of the collaborations within the same node(s).
NC has an effect of distributing replicas, thus equalizing execution load among the
available nodes to the highest extent possible. This way two counteracting requirement
types are tackled in the same function. The exponent y in (15) can shift the focus
towards load-balancing against minimization of remote communication in collabora-
tions. In the experiments in this paper we use x = 10−5 and y = 2, which are adjusted
to the cost values derived from the models, e.g. see the example service in Fig. 1.

Using Flb we are able to smoothen the output of the cost evaluation executed for
each iteration of the deployment logic. Its purpose is to ease convergence of the
logic by making the solution space more fine grained, i.e. simplifying differentiation
between very similar deployment mappings with nearly the same cost value.

The next section presents simulation results evaluating all the cost functions pre-
sented here using an example setup.
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5. Simulation Results

To evaluate our approach and the proposed cost functions, we developed a test
scenario. The scenario consists of a network of 10 identical nodes clustered into
5 domains (cf. Fig. 2). The 5 domains have 3,2,1,1,3 nodes. Using this network
of nodes, each ant species executing Algorithm 2 is assigned a replica service for
deployment. A set of 15 actively replicated services with redundancy levels shown in
Table 2 is used for the evaluation.

Table 2: Service instances in the example

Service S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15
#replicas 4 6 4 4 4 5 5 6 6 6 6 7 8 9 10

For example, see S1 in Fig. 1. Each replica within a service has identical execution
cost, and all replicas have the same cost in all services. Similarly, the same is true for
the communication costs, i.e. fci = 20,∀i and fk j = 1,∀ j.
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Figure 2: Test network of hosts clustered into 5 domains

For the evaluation scenario with S1 . . .S15, the deployment logic (Algorithm 2) is
executed 50 times using the cost functions discussed in Sec. 4 and we compare their
behavior. The deployment logic was described by a process-oriented simulation model
implemented in Simula/DEMOS [Bir03].

For the problem at hand, deploying replicas of each service yield NCk mapping
combinations; deploying all 15 services simultaneously would account for an exhaus-
tive search of N∑Ck = 1090 possible configurations. For the evaluation, the execution
of Algorithm 2 was limited to rmax = 30000 iterations (significantly smaller than
exhaustive search), unless convergence is obtained earlier. All 15 species, one for each
service, were executed simultaneously. This is in accordance with our goal to find an
appropriate solution within reasonable time, even though it may not be the optimal
mapping. After each run, the obtained deployment mapping was checked against φ1
and φ2. Results for selected functions are presented in Table 3.

In case of F1(Dr), which is based on observing the number of domains (Dr) utilized
for deployment mapping of replicas, φ2 (cf. Sec. 4) is not checked because the cost
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function does not consider this rule. From the 50 independent runs we see that in some
cases φ1 is not satisfied; some of the 15 services fail to utilize as many domains as they
could. That is due to the limited number of iterations we allowed for the species to
achieve convergence and because this cost function is very simple, i.e. lacking a more
smooth, more fine grained evaluation of the deployment mappings for the ant species.

In the second branch of cost functions, Eq. (8)–(11), we apply two very simple
functions together to take into account φ1 and φ2 at the same time. The experiments
show that the combination of two functions of the same kind, i.e. two linear or two
reciprocal functions, gives inferior results to applying a combination of one reciprocal
and a linear. This might be caused by smoother cost output in case of the latter, which
results in better convergence and better solution quality, i.e. a deployment mapping
that satisfies the requirements with a higher probability. Nevertheless, there were 2
violations of φ2 within the 50 runs, that means that one replica was co-located with
another in one of the services. This is possible for services that have a high number
of replicas, e.g. 9 or 10, which easily occupy 5 domains, thus obtain the lowest cost
possible considering the first part of the cost function resulting in a mapping that
violates φ2 after convergence. These services, with these simple cost functions are able
to decrease their mapping costs only marginally by spreading their replicas further
among the available hosts, which results in sub-optimal solutions, thus violations of
φ1 or φ2.

Now, if we look at the last combination of functions in Table 3, we can see how
our load-balancing function performed with the extension of taking into account the
number of domains utilized (Dr). From the 50 independent runs the deployment
logic converged to a stable solution in all of the cases. φ1 was successfully taken into
account by the first reciprocal term and resulted in no violations. In one case however,
one of the services failed to satisfy φ2, i.e. a replica was co-located with another one.
After a closer look we can see that this involved service S15 comprising 10 replicas.
The reason for this violation is that the load-balancing function, Flb(Mr,NLr), has
enforced a deployment mapping, which was better for global load-balancing in this
particular case by taking into account this global goal to a greater extent and thus,
violating the rule prohibiting co-location of replicas. However, as in S15 the number
of replicas is equal to the number of available nodes there is not much space left for
the logic to place replicas so that load-balancing is also achieved, which is the main
goal for this part of the cost function. Clearly, applying the cost function we propose
implies taking a broader view on the deployment problem. The tradeoff might be that
under certain circumstances the mapping of replicas might violate one of the rules
formulated, but the gain is that we can obtain a globally better and more effective

Table 3: Replication rules satisfied, 50 trials each

Cost function φ1 φ2 Comments
F1(Dr) 88% n/a all due to no convergence

F5(Dr,Nr,C) 100% 96% all due to no convergence
F7(Dr,Mr,NLr) 100% 98% all converged
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mapping, still using a fully distributed logic and doing so faster, i.e. within reasonable
time.

Figure 3: Example mapping of replicas in S1 . . .SS15, with S2 exploded

To get a picture of how replicas are mapped to the underlying nodes clustered into
domains one of the possible mappings is depicted in Fig. 3, in which each slice of the
pie diagram corresponds to a specific service Sk ⊂ S. As in this optimal mapping there
is no co-location of replicas, a slice being shaded means that there is a single replica
placed on the particular node. It is easy to notice that the two domains consisting of a
single node (d3, d4) are heavily packed with replicas due to the fact that there are many
services, which can exploit 5 domains or more. This makes overall load-balancing
among the available nodes more difficult.

Furthermore, to illustrate the behavior and convergence of our logic, in Fig. 4
we look at the cost output of some species that guides the mapping of replicas as a
function of number of iterations.

The three services presented have 6 (S11), 8 (S13) and 10 (S15) replicas to deploy.
The first 2000 iterations, i.e. the exploration phase is not shown in the figure. After
2000 initial iterations optimization continues and the cost values decrease, thus indi-
cating increasingly improved mapping of replica components. We stop the simulation
where the costs do not improve anymore, in this particular case after approximately
10000 additional iterations. By checking φ1 and φ2 we can see that the mapping
obtained in this run satisfies both. In case where the number of replicas is high, e.g. 10,
values do not deteriorate too much from a consensus level between the parallel species
(considering N = 10) as φ1 restricts the solution space. That means that for service S15
all of the nodes have to host one replica according to the rule. Whereas services with
less replicas to deploy have a significantly larger valid solution space, i.e. service S11
and S13 find, in some cases, a solution satisfying φ1 and φ2 but with a higher overall
cost, thus we can see some deviations in the cost output in the figure before obtaining
convergence. After consensus is reached among the species the actual deployment of
component replicas can be triggered. Practically, when a species detects that the cost
values obtained by its ants are stable over a period of time, replicas corresponding to
this species can be (re-)deployed. The technical solution as well as the protocol of
replica placement/re-deployment is, however, left to the middleware (e.g., DARM).
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Figure 4: Costs with 6, 8 and 10 replicas

6. Closing Remarks

Our focus has been on a heuristic optimization technique aided by swarm intelli-
gence that can manage deployment of software components, in particular component
replicas for increased dependability. To obtain an efficient mapping of replicas we
utilize service models specified as UML 2.0 collaborations. These models are enriched
with non-functional requirements that are used in the cost evaluation of the mappings
made by the deployment logic. Importantly, our method is a fully distributed approach,
thus it is free of discrepancies most of the existing centralized solutions suffer from,
e.g. performance bottlenecks and single points of failure. Instead of having a central-
ized database we use the analogy of pheromones used by foraging ants as a distributed
database across the network of hosts. This database can be quite compact as all the
intelligence is carried along by the ant-like agents.

We have showed that, using CEAS for optimization and SPACE for modeling, the
deployment logic is capable of handling various non-functional requirements present
in service specifications. Extending on our previous work, in this paper focus has
been on how the logic can deal with basic dependability requirements concerning
replication management. Eventually, our goal is to aid run-time (re-)deployment and
replication of software components while considering the execution environment and
satisfying the requirements of the service.

For future work we plan to introduce new types of species corresponding to user
demands towards the services being deployed. However, this will introduce new
challenges as it will increase the dimensions of the deployment problem significantly.
More fine grained cost modeling, e.g. passive replication, with costs dependent on
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replica attributes will be part of future investigations. This will also involve more
extensive simulations with new experimental settings. Larger network sizes will also
be investigated together with their impact on convergence and scalability. Another
interesting aspect we will experiment with is how splitting/merging of domains in-
fluences the output of our logic, besides assessing what level of node churn can be
tolerated by our method. Generally, context-aware adaptation is considered one of the
main tracks we follow in our future work.
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Abstract This paper presents an optimization framework for finding efficient deployment mappings
of replicated service components (to nodes), while accounting for multiple services
simultaneously and adhering to non-functional requirements. Currently, we consider
load-balancing and dependability requirements. Our approach is based on a variant of Ant
Colony Optimization and is completely decentralized, where ants communicate indirectly
through pheromone tables in nodes. In this paper, we target scalability; however, existing
encoding schemes for the pheromone tables did not scale. Hence, we propose and
evaluate three different pheromone encodings. Using the most scalable encoding, we
evaluate our approach in a significantly larger system than our previous work. We also
evaluate the approach in terms of robustness to network partition failures.

1. Introduction

Data centers are increasingly used to host services over a virtualized infrastructure
that permits on-demand resource scaling. Such systems are often comprised of
multiple geographically dispersed data center sites to accommodate local demand
with appropriate resources, and to ensure availability in case of outages. Major
service providers, e.g. Amazon [LLC], Google, Yahoo! and others all use such
infrastructures to power their world wide web offerings, popularly called cloud
computing infrastructures. These systems are typically built using large numbers of
cheap and less reliable blade servers, racks, hard disks, routers, etc., thus leading to
higher failure rate [Dea]. To cope with increased failure rates, replication and repair
mechanisms are absolutely crucial.

Another related and important concern in such data center infrastructures is the
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problem of finding optimal deployment mappings for a multitude of services, while
ensuring proper balance between load characteristics and service availability in
every infrastructure site. During execution a plethora of parameters can impact the
deployment mapping, e.g due to the influence of concurrent services. Another set
of parameters in the mix is the dependability requirements of services. Upholding
such requirements not only demands replication protocols to ensure consistency, but
also adds additional complexity to the optimization problem. Ideally, the deployment
mappings should minimize resource consumption, yet provide enough resources to
satisfy the dependability requirements of services. However, Fernandez-Baca [FB89]
showed that the general module allocation problem is NP-complete except for
certain communication configurations, thus heuristics are required to obtain solutions
efficiently.

This paper extends our previous work to find optimal deployment map-
pings [CMHH09], [CHH08] based on a heuristic optimization method called
the Cross-Entropy Ant System (CEAS). The strengths of the CEAS method is its
capability to account for multiple parameters during the search for optimal deployment
mappings [HHW08]. The approach also enables us to perform optimizations in a
decentralized manner, where replicated services can be deployed from anywhere
within the system, avoiding the need for a centralized control for maintaining
information about services and their deployment.

The main goal of this paper is twofold; to provide additional simulation results
(i) involving scaling up the problem size, both in terms of number of nodes and
replicas deployed, and (ii) evaluating its ability to tolerate network partition failures
(split/merge). Scaling up the problem size turned out to be more challenging than
first anticipated, and thus certain enhancements were necessary in the algorithm and
the data representation. To tackle the challenges we met, we have introduced a new
cost function, run-time binding of replicas, a new method for selecting next-hops and
new pheromone encodings. In addition, we have used more simple service models in
the current study. There are generally two branches of works where finding optimal
replica deployment mappings are necessary and useful. On the one hand, virtual
machine technology is increasingly being used in data centers for providing high
availability and thus needs to consider the placement of replicas in the data centers to
ensure efficient utilization of the system resources. The advantage of this approach
is that (server) applications running on virtual machines can be repaired simply by
regenerating them in another physical machine. This is the approach taken by the
Amazon EC2 system [LLC] and in VMware, among others. The general drawback
with virtualization for fault tolerance and high availability is that the storage system
used to maintain application state must be independently replicated as it would
otherwise constitute a single point of failure. On the other hand, server applications
written specifically for fault tolerance typically replicate their application state to all
replica processes, avoiding any single points of failure. These systems are typically
built using a middleware based on a group communication system with support for
repair mechanisms, e.g. DARM [MG08].

The importance and utility of deployment decision making and optimization has
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been identified previously, e.g. in [KHD08]. Recently, Joshi et al [JHJ09] proposed a
centralized approach in which an optimizer and model solver component is used to
find optimal mappings specifically in the field of virtual machine technology. We
however, intend to pursue a fully distributed solution that is based on optimization
techniques and can support context-awareness and adaptation.

The paper is organized as follows. The next section presents our view on
component replicas, their deployment, corresponding costs and requirements. In
Sec. 3 the fundamentals of the CEAS are described. Sec. 4 proposes our algorithm
for solving the deployment mapping problem and subsequently we demonstrate its
operation in Sec. 5. Finally, we conclude and touch upon future work.

2. System Model, Assumptions and Notation

We consider a large-scale distributed system consisting of a collection of nodes,
N , connected through a network. Nodes are organized into a set of domains, D , as
illustrated by d1 and d2 in Figure 1. All nodes within a domain are located at the
same geographic site, whereas different domains are in separate sites. The objective
of the distributed system is to provide an environment for hosting a set of services,
S = {S1,S2, . . .}, to be provided to external clients. Let Ck

i be the ith component of
service k, and let Sk = {Ck

1, . . . ,C
k
q} denote the set of components for service k, where

q = |Sk|. Each component may be replicated for fault tolerance and/or load-balancing
purposes. Thus, let Rk

i j denote the jth replica of Ck
i . Hence, Ck

i = {Rk
i1, . . . ,R

k
ipi
}, where

pi ≥ 1 is the redundancy level of Ck
i . Moreover, Sk = {Rk

11, . . . ,R
k
1p1

, . . . ,Rk
i1, . . . ,R

k
ipi
}

is the expansion of the component sets into replicas for service k.
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Figure 1: Overview of the deployment environment and service specification.
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The objective of the algorithms herein is to discover suitable deployment mappings
between component replicas (replicas for brevity) and nodes in the network, such that
the dependability requirements of all services are preserved with minimal resource
consumption. To accomplish this, the CEAS optimization method is used, which
works by evaluating a cost function, F(), for different deployment mappings. The
CEAS method is implemented in the form of ants moving around in the network to
identify potential locations where replicas might be placed. An ant is simply an agent
with associated state; as such it is simply a message on which the ant algorithm is
executed at each visited node. We say that different ant species are responsible for
different services, e.g. the green and blue ants in Figure 1 represent the green and blue
services, respectively.

As Figure 1 shows, each node contains an execution runtime whose tasks are
to install, run and migrate replicas. A node also has a pheromone table which is
manipulated by ants visiting the node to reflect their knowledge of existing mappings.
Moreover, the pheromone table is used by ants for selecting suitable deployment
mappings; it is not used for ant routing as in the Ant Colony Optimization (ACO)
approach [DMC96]. See Sec. 4.2 for details.

To deploy a service, at least one node must be running a nest for that service. The
tasks of a nest are twofold: (i) to emit ants for its associated service, and (ii) trigger
installation of replicas at nodes, once a predefined convergence criteria is satisfied,
e.g. after a certain number of iterations of the algorithm. An iteration is defined as one
round-trip trajectory of the ant, during which it builds a hop list, Hr, of visited nodes.
A nest may be replicated for fault tolerance, and emit ants independently for the same
service. During execution of the CEAS method, synchronization between nests is
not necessary, but only a primary nest will execute deployment decisions. Figure 1
shows a two-way replicated nest for the green service; nests for the blue service are
not shown.

Initially, the composition of services to be deployed is specified as UML collab-
orations embellished with non-functional requirements that are used as input to the
cost function of our algorithm to evaluate deployment mappings (cf. [CHH10]). Our
aim is not to find the globally optimal solution. The rationale for this is simple; by the
time the optimal deployment mapping could be applied, it is likely to be suboptimal
due to dynamics of the system. Rather, we aim to find a feasible mapping, meaning
that it satisfies the requirements for the deployment of the service, e.g. in terms of
redundancy and load-balancing. These requirements are specified as a set of rules,
denoted Φ. Thus, our objective function becomes min F() subject to Φ. Moreover,
our algorithm can continue to optimize even though an appropriate mapping has been
found and deployed into the network. Once a (significantly) better mapping is found,
reconfiguration can take place.

Next we define the dependability rules, Φ, that constrain the minimization problem,
but first we define two mapping functions. These rules and functions apply to service
k.

DEFINITION 1 Let f j,d : Rk
i j→ d be the mapping of replica Rk

i j to domain d ∈D .
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DEFINITION 2 Let g j : Rk
i j→ n be the mapping of replica Rk

i j to node n ∈N .

Rule φ1 requires replicas to be dispersed over as many domains as possible, aimed
to improve service availability despite potential network partitions1. Specifically,
replicas of component Ck

i shall be placed in different domains, until all domains are
used. If there are more replicas than domains, i.e. |Ck

i |> |D |, at least one replica shall
be placed in each domain. The second rule, φ2, prohibits two replicas of Ck

i to be
placed on the same node, n.

RULE 1 φ1 : ∀d ∈D ,∀Rk
i j ∈Ck

i : f j,d 6= fu,d ⇔ ( j 6= u)∧|Ck
i |< |D |

RULE 2 φ2 : ∀Rk
i j ∈Ck

i : g j 6= gu ⇔ ( j 6= u)

Combining these rules gives us the desired set of dependability rules, Φ = φ1∧φ2.
In order to adhere to φ1, the ant gathers data about domains utilized for mapping
replicas; hence, let Dr denote the set of domains used in iteration r. The ant also
collects information about replicas mapped to various nodes. Thus, we introduce
mn,r ⊆ Sk as the set of service k replicas mapped to node n in iteration r. Moreover, let
Mr = {mn,r}∀n∈Hr be the deployment mapping set at iteration r for all visited nodes.
Finally, ants also collect load-level samples, ln,r, from every node n ∈ Hr visited in
iteration r; these samples are added to the load list, Lr, indexed by the node identifier,
n.

The load-levels observed by an ant are a result of many concurrently executing ant
species reserving resources for their respective services. For simplicity, all replicas
have the same node-local execution cost, w, whereas communication costs are ignored.
An ant during its visit to node n reserves processing resources for the replicas, if any,
that it has chosen to map to n. Mappings made at n during iteration r are stored in
mn,r, thus, resources of size |mn,r| ·w are reserved during a visit, assuming identical
cost for all replicas. With this notational framework in place, we are now ready to
introduce the cost function used by the deployment logic.

First, we define a list, NCx, that can carry an element for each node visited by
the ant and which elements account for specific execution costs imposed on those
nodes. Elements of the list are calculated two different ways (x = 1 or 2), using the
observations on the services executed in parallel (Lr), and the mappings of replicas
made by the ant itself (Mr).

NCx[n] = (
ϑx

∑
i=0

1
Θx + 1− i

)2 (1)

Parametrization of the list is done by changing the upper bound of the summation,
ϑx and the constant in the denominator, Θx. Accordingly, ϑx and Θx are defined as
follows.

ϑx =

{
|mn,r| ·w, x = 1
|mn,r| ·w + Lr(n), x = 2 (2)

1We assume network partitions are more likely to occur between domain boundaries.
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The constant, Θx represents the overall execution load of one service or all services.
In other words, Θ1 is the total processing resource demand of the service deployed by
the ant, whereas Θ2 represents the overall joint load of the service being deployed and
the load of replicas executed in parallel.

Θx =

{
∑∀n∈Hr |mn,r| ·w, x = 1
∑∀n∈Hr (|mn,r| ·w + Lr(n)), x = 2 (3)

Importantly, the equations only have to be applied on the subset of nodes an ant
has actually visited (Hr), which is beneficial for scalability as there is no need for
exploring the total amount of available nodes. Finally, to build a cost function that
satisfies our requirements with regard to Φ, while maintaining load-balancing, we
formulate F() using a combination of terms, as shown in (4).

F(Dr,Mr,Lr) =
1
|Dr|
· ∑
∀n∈Hr

NC1(n) · ∑
∀n∈Hr

NC2(n) (4)

Thus, we use (1) for load-balancing, i.e. to distribute replicas to the largest extent
possible. The three terms correspond to our goals in the optimization process. The first
reciprocal term caters for φ1. Applying (1) solely on the replicas of the service the ant
species is responsible for (x = 1) penalizes violation of φ2, i.e. favors a mapping where
replicas are not collocated, but distributed evenly. Lastly, the standard application
of (1), x = 2, balances the load taking into account the presence of other services
during the deployment mapping. A more detailed introduction to the application of
the load-balancing term can be found in [CHH08] and [CHH10]. The next section
describes how the cost function plays a role in driving the optimization using the
CEAS.

3. The Cross-Entropy Ant System

We build our algorithm around the CEAS to obtain optimal deployment map-
pings with high confidence. CEAS can be considered as a subclass of ACO algo-
rithms [DMC96], which have been proven to be able to find the optimum at least
once with probability close to one; once the optimum has been found, convergence is
assured within a finite number of iterations. The key idea is to have many ants, search
iteratively for a solution according to a cost function defined according to problem
constraints. Each iteration is divided into two phases. Ants conduct forward search
until all the replicas are mapped successfully. After that, the solution is evaluated using
the cost function, the ants continue with backtracking leaving pheromone markings at
nodes. This resembles real-world ants foraging for food. The pheromone values are
proportional to the solution quality determined by the cost function. These pheromone
markings are distributed to nodes in the network, and are used during forward search
to select replica sets for deployment mapping, gradually approaching the lowest cost
solution. In forward search, a certain proportion of ants do a random exploration of
the state space, ignoring the pheromone trails. Exploration reduces the occurrence of



PAPER E: Laying pheromone trails for balanced and dependable 163

premature convergence leading to sub-optimal solutions. The CEAS uses the Cross-
Entropy (CE) method introduced by Rubinstein [Rub99] to evaluate solutions and
update the pheromones. The CE method is applied to gradually change a probability
matrix pr according to the cost of the mappings with the objective of minimizing
the cross entropy between two consecutive probability matrices pr and pr−1. The
method itself has been successfully applied in different fields of network and path
management, for examples and an intuitive introduction we refer to [HHW08].

In our algorithm, the CEAS is applied to obtain an appropriate deployment mapping,
M : Ck

i →N , of the replicas (Ck
i ) of service Sk onto a set of nodes. A deployment

mapping is evaluated by applying the cost function as F(Mr). In the following, let
τmn,r be the pheromone value corresponding to, mn,r, the set of replicas mapped to
node n in iteration r. Various pheromone encoding schemes are discussed in Sec. 4.2.

To select a set of replicas to map to a given node, ants use the so-called random
proportional rule matrix, pr = {pmn,r} presented below. Similarly, explorer ants select
a set of replicas with uniform probability 1/|Ck

i |, where |Ck
i | is the number of replicas

to be deployed.

pmn,r =
τmn,r

∑l∈Mn,r τln,r
(5)

A parameter γr denoted the temperature, controls the update of the pheromone values
and is chosen to minimize the performance function, which has the following form

H(F(Mr),γr) = e−F(Mr)/γr (6)

and is applied to all r samples. The expected overall performance satisfies the equation

h(pmn,r,γr) = Epr−1(H(F(Mr),γr))≥ ρ (7)

Epr−1(X) is the expected value of X s.t. the rules in pr−1, and ρ is a parameter (denoted
search focus) close to 0 (in our examples 0.01). Finally, a new updated set of rules, pr,
is determined by minimizing the cross entropy between pr−1 and pr with respect to
γr and H(F(Mr),γt). Minimized cross entropy is achieved by applying the random
proportional rule in (5) for ∀mn with

τmn,r =
r

∑
k=1

I(l ∈Mn,r)β
∑

r
j=k+1 I( j∈Mk)H(F(Mk),γr) (8)

where I(x) = 1 if x is true, 0 otherwise. See [Rub99] for further details and proof.
As we target a distributed algorithm that does not rely on centralized tables or con-

trol, neither on batches of synchronized iterations, the cost values obtained by applying
Eq. (4) are calculated immediately after each sample, i.e. in each iteration r. Then,
an auto-regressive performance function, hr(γr) = βhr−1(γr)+(1−β )H(F(Mr),γr)
is applied, where β ∈< 0,1 > is a memory factor that gives weights to the output of
the performance function. The performance function smoothes variations in the cost
function and helps avoiding undesirable rapid changes in the deployment mappings.

The temperature required for the CEAS, e.g. in Eq. 6, is determined by minimizing
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it subject to h(γ)≥ ρ (cf. [HW01])

γr = {γ | 1−β

1−β r

r

∑
i=1

β
r−iH(F(Mi),γ) = ρ} (9)

However, (9) is a complicated function that is storage and processing intensive since
all observations up to the current sample, i.e. the entire mapping cost history F(Mr) =
{F(M1), . . . ,F(Mr)} must be stored, and weights for all observations have to be
recalculated. This would be an impractical burden to on-line execution of the logic.
Instead, given that β is close to 1, it is assumed that changes in γr are relatively
small in subsequent iterations, which enables a first order Taylor expansion of (9),
and a second order Taylor expansion of (8), see [HW01], thus saving memory and
processing power.

4. Ant Species Mapping Replicas

In this section we present our deployment algorithm, how we apply the CEAS
method, and three different ways of encoding replica mappings into pheromone values.

4.1 Swarm-based Component Deployment

Our algorithm has successfully been applied for obtaining component mappings
that satisfy non-functional requirements. In addition, the algorithm’s capability to
adapt to changing network conditions, for example caused by node-failures, has
been investigated, cf. [CHH08]. However, from a dependability point of view it is
interesting to equip the logic with the capability to adapt to dynamicity of domains,
i.e. splitting/merging of domains. To also cater for domain splits and merges we
propose to initiate an ant-nest in multiple nodes belonging to separate domains. These
ant-nests will emit ants corresponding to the same set of services, this however, will
not result in flooding the network with ants as the rate of emission in a stable network
can be divided equally between the nests. Besides, ants emitted from different nests
but optimizing mappings for the same service will update the same pheromone tables
in the nodes they visit during their search for a solution. The concept of multiple nests
has been introduced in [CHH10].

Algorithm 1 shows the code of a single ant-nest that sends out an ant in every
iteration. The idea is that when a coherent network suffers a split, there shall be at least
one nest in each region after the split event that will maintain a pheromone database
in each region. (By a region we denote a set of nodes partitioned into one or more
domains.)

To ease convergence of the mappings made by the ants the nests are allowed to bind
one replica at a time if some condition applies. Here we check rules φ1 and φ2 against
the mapping obtained in the current iteration, Mr. Replica bindings are indicated in
the service specification that is derived from the model of the service.
After a replica has been bound to a specific host ants in subsequent iterations will not
try to find a new mapping for it, instead these bound mappings are maintained and
the search is conducted for the remaining replicas only. Importantly however, bound
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Algorithm 1 Code for Nestk corresponding to service Sl at any node n ∈N
1: Initialization:
2: r← 0 {Number of iterations}
3: γr ← 0 {Temperature}

4: while r < R {Stopping criteria}
5: Mr ← antAlgo(r,k) {Emit new ant, obtain Mr}
6: update(availableDomains) {Check the number of available domains}
7: if splitDetected() ∨ mergeDetected()
8: release(Sl) {Delete existing bindings for all replicas ci ∈Cl

i }
9: if φ1(Mr,availableDomains) ∧ φ2(Mr)

10: bind1(Mr) {Bind one of the still unbound replicas in Cl
i }

11: r← r + 1 {Increment iteration counter}

replicas are also taken into account when the cost of the total mapping is evaluated by
the ant. When a split or a merge event occurs these soft-bindings are flushed by the
ant nest and, for example in case of a merge, two nests being in the same region can
start to cooperate and share bindings and pheromone tables again.

Here it is important to clearly distinguish between the notions of replica mapping,
binding and deployment. We use the term mapping during the optimization process,
where our algorithm is constantly optimizing an ordering of replicas of a service
to underlying execution hosts, but only internally to the algorithm itself. When a
replica is bound to a host it means that from that point the algorithm does not change
the mapping between that replica and a host. By deployment however, we refer to
the actual physical placement of a software component replica to a node, which is
triggered after the mappings obtained by our algorithm have converged to a satisfactory
solution. The latter property ensures that there is no undesirable fluctuation in the
migration of replicas using our method. In Algorithm 2 we present the steps executed
by the ants emitted from a nest.

Each species of ants retrieves and updates the temperature used in the CEAS method
from the nest where they are emitted from. First, an ant visits the nodes, if any, that
already have a bound replica mapped to maintain these mappings, which will be
taken into account when the cost of the total mapping is evaluated. The pheromones
corresponding to these bound mappings will also be updated during backtracking.
Besides, ants allocate processing power corresponding to the execution costs of the
bound replicas, derived from the service specification. After maintenance the ants
jump over to nodes selected in a guided random manner and attempt to map some
replicas to the node they reside in. This selection of the next node to visit, in contrast
to e.g. ant-based routing algorithms, is independent from the pheromone markings laid
by the ants. The selection of replica mappings in each node, however, is influenced by
the pheromones.

Here, we distinguish between explorer and normal ants, where the former selects a
set of replicas to map randomly and the latter uses the pheromone table at the current
node. In case of a normal ant the selection process varies depending on the form of
the pheromone tables (cf. Sec. 4.2). After some variables carried along by the ant
(Mr, Dr, Ck

i ) are updated a sample of the sum of execution load on the current node is
taken by the ant. This replica load reservation mechanism is intended to function as
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an indirect way of communication between species executed in parallel. At the end
of the f orward search phase, when the ant has managed to map all the replicas of
the service, the mapping is evaluated using the cost function and the temperature is
recalculated using the obtained cost value. The last part in the lifetime of a single ant
is the backtracking phase, during which the ant revisits the nodes that have been used
for the mapping of the service and updates the pheromone database.

Algorithm 2 Ant code for mapping of replicas Cl
i ∈ Sl ⊂S from Nestk

1: Initialization:
2: Hr ← /0 {Hop-list; insertion-ordered set}
3: Mr ← /0 {Deployment mapping set}
4: Dr ← /0 {Set of utilized domains}
5: Lr ← /0 {Set of load samples}

6: function antAlgo(r,k)
7: γr ← Nestk.getTemperature() {Read the current temperature}
8: foreach ci ∈Cl

i {Maintain bound replica mappings}
9: if ci.bound()

10: n← ci.boundTo() {Jump to the node where this comp. is bound}
11: n.reallocProcLoad(Sk,w) {Allocate processing power needed by comp.}
12: ln,r ← n.getEstProcLoad() {Get the estimated processing load at node n}
13: Lr ← Lr ∪{ln,r} {Add to the list of samples}

14: while Cl
i 6= /0 {More replicas to map}

15: n← selectNextNode() {Select next node to visit}
16: if explorerAnt
17: mn,r ← random(⊆Cl

i ) {Explorer ant; randomly select a set of replicas}
18: else
19: mn,r ← rndProp(⊆Cl

i ) {Normal ant; select replicas according to Eq. (5)}
20: if {mn,r} 6= /0, n ∈ dk {At least one replica mapped to this domain}
21: Dr ← Dr ∪dk {Update the set of domains utilized}
22: Mr ←Mr ∪{mn,r} {Update the ant’s deployment mapping set}
23: Cl

i ←Cl
i −{mn,r} {Update the set of replicas to be deployed}

24: ln,r ← n.getEstProcLoad() {Get the estimated processing load at node n}
25: Lr ← Lr ∪{ln,r} {Add to the list of samples}

26: cost← F(Mr,Dr,Lr) {Calculate the cost of this given mapping, using Eq. (4)}
27: γr ← updateTemp(cost) {Given cost, recalculate temperature according to Eq. (9)}
28: foreach n ∈ Hr.reverse() {Backtrack along the hop-list}
29: n.updatePheromone(mn,r,γr) {Update pheromone table in n, Eq. (8)}
30: Nestk.setTemperature(γr) {Update the temperature at Nestk}

The gain in using a guided but random hop-selection instead of a pure random walk
lies in that with the proper guidance the frequency of finding an efficient mapping is
greater. The idea is that at first the next node is selected from a domain that has not
yet been utilized until all visible domains are covered, leading to better satisfaction of
φ1. Then the next hop selection continues with drawing destinations from the set of
nodes not yet used in the mapping by checking with the variable Mr, before reverting
to totally random drawing. The guided hopping strategy for the selection of a next
node to visit is summarized in Algorithm 3.
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Algorithm 3 Procedure to select the next hop for an ant
1: function selectNextNode() {Guided random hop}
2: if Hr = N {All nodes visited}
3: n← random(N) {Select candidate node at random}
4: else
5: if Dr = D {All available domains utilized}
6: n← random(N \Mr) {Select a node that has not been used yet}
7: else
8: di← random(D\Dr) {Select a domain not yet used}
9: n← random(di) {Select a node within this domain}

10: Hr ← Hr ∪{n} {Add node to the hop-list}
11: return n

4.2 Encoding Sets of Replicas into Pheromone Entries

Generally, pheromone entries can be viewed as a distributed database located in the
nodes available in the network considered for deployment. This distributed database
has to be built so that it is able to describe arbitrary combinations of replicas of a given
service component. At the same time the size of this database is crucial for obtaining
better scalability for our approach. The reasons are twofold. The first reason is related
to memory consumption as each participating node has to cater for a pheromone
database for each service being deployed. Thus, memory consumption grows with the
database size (depending on the encoding) and with the number of parallel services,
where we can influence the former. Second, as we can see in the algorithm description
in Sec. 4.1, an individual ant agent has to browse through the pheromone entries during
its visit at a node, so clearly, a more compact encoding helps speeding up execution of
the tasks an ant has to perform. The different encodings we proposed are shown in
Table 1.

Table 1: Three pheromone encodings for a service with |Ck
i | replicas

Encoding DB size in a node Encoding example w/ |Ck
i |= 4

bitstring 2|C
k
i | [0000]b . . . [1111]b

per comp. 2 · |Ck
i | [0/1]; [0/1]; [0/1]; [0/1]

# replicas |Ck
i |+ 1 [0] . . . [4]

The bitstring encoding is the largest as it has a single value for all possible combina-
tions of replica mappings in every node, which results in prohibitively large memory
need. For example, in case of 20 replicas per service this encoding leads to 220

pheromone values, which by using 4 byte long floating point numbers would require
4 MB of memory for each of such services at every node. To tackle this problem we
might reduce the pheromone table size by applying more simple bookkeeping taking
into account solely the number of replicas mapped to a given node (# replicas). This
results in the most compact pheromone database, however it comes with a drawback
that it can only be applied if there is no need to distinguish between replicas in the
service specification (for example considering replication and dependability aspects
only). As a trade-off we developed a third encoding (per comp.) that results in no
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information loss and still linear growth of the pheromone database. per comp. uses
one distinct pheromone entry for every replica instance indicating whether or not
to deploy a replica at a given node. The drawback is that an ant arriving at a node
has to decide on the deployment mapping of each replica, one-by-one reading the
multiple pheromone entries. Nevertheless, a reduction in the database structure size is
necessary for scaling the algorithm up to larger amounts of nodes and replicas. How
the various encodings perform will be demonstrated with an example in Sec. 5.

5. Simulation Results

To evaluate the deployment mapping logic proposed above we start with an exam-
ple where 10 services (S1 . . .S10) are being deployed simultaneously, that means 10
independent species are released. Besides, we apply 20 ant nests to look at a simple
split/merge scenario where 1 nest for every service remains in each region after the
split. Each service has a redundancy level as shown in Table 2. The simulation of the
logic’s behavior is conducted in a custom built discrete event simulator.

Table 2: Service instances in the example

Service S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
# replicas 2 3 4 5 6 7 8 9 10 11

Mapping of the services is conducted in a network of 11 interconnected hosts, where
we assume full mesh connectivity and do not consider the underlying network layer.
The 11 nodes are partitioned into 5 domains as depicted in Fig. 2.

n9

n10

n6

n7

n11

n3

n5n1 n2

n8

d 1

d 2

d 3

d 4

d 5

n4

Figure 2: Test network of hosts clustered into 5 domains

In this setting we conducted simulations with all three pheromone encodings. To
test our concept of tackling domain splitting we have used a basic setting where
domain d1 containing 4 nodes has been split from the rest of the domains and later
the two regions merged again. We then compared the resulting deployment mappings
with the mappings obtained by executing our logic with no splitting. To demonstrate
how the cost evaluation works in the optimization process the evolution of the cost
output is displayed in case of service S10 in Fig. 3 with the three pheromone encodings
introduced in Sec. 4.2. Fig. 3a shows how the optimal mappings are found and kept
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maintained iteration by iteration. The experiment is repeated with the introduction
of the splitting of d1 after 4000 iterations, the evolution of mapping costs is shown in
Fig. 3b.

An appropriate solution is found almost identically with the three different encod-
ings. However, the bitstring encoding converges to a solution with slightly higher
overall cost, whereas the lowest cost is obtained first by per comp. and somewhat later
by # replicas too. In Fig. 3 the first 2000 iterations are not shown as the simulations
start with 2000 explorer iterations for the sake of comparability. Initially, a random
cost figure appears corresponding to exploration that is omitted here. The amount
of initial exploration was constrained by the bitstring encoding. The more compact
encodings would require significantly less iterations, e.g. one tenth of that. In Fig. 3b,
where a domain splits at iteration 4000 we can observe how the swarm adapts the
mappings to a more expensive configuration after the event has happened. Similarly,
as the domains merge the deployment mappings are adapted to utilize a more optimal
configuration. The bitstring encoding in this test case is unable to find exactly the
same mapping and converges to a somewhat more costly solution. per comp. is the
fastest to obtain the lowest cost mapping followed by the third encoding about 1000
iterations later.

(a) Without split (b) With split

Figure 3: Mapping costs of S10

Considering the rules that we formulated regarding the dependability of the deploy-
ment mapping (cf. Sec. 2) Table 3 shows the three different pheromone encodings and
the percentage of test cases, which succeeded in satisfying the two rules. The results
are obtained by executing the algorithm 100 times with different input seeds.

Table 3: Success rate of the three encodings

wo/ split φ1 φ2 w/ split φ1 φ2
bitstring 100% 88% bitstring 100% 87%

per comp. 100% 100% per comp. 100% 100%
# replicas 100% 100% # replicas 100% 99%

Our first objective was load-balancing among the nodes participating in the execution
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of the services, while basic dependability rules are satisfied too. To investigate that
aspect we can look at the average number of replicas placed onto the nodes after
convergence. Here, we chose the best encoding (cf. Table 3), i.e. per comp.. In
Fig. 4a the average load placed on the 11 nodes (n1 . . .n11) partitioned into the 5
domains is depicted. A total of 65 replicas constituted the ten service instances giving
an average of 5.91 replicas per node; shown as a dotted horizontal line. We observed
that the smaller domains, e.g. d3, d4, were overloaded compared to the rest due to φ1,
but generally replicas were placed quite evenly, showing that cooperation between the
species worked.

As a next step towards developing our logic further for larger scales we repeated
our experiment with a setting consisting of 50 nodes in 5 domains (containing 20-
10-5-5-10 nodes respectively). Naturally, an increased amount of available resources
for placement would make the deployment mapping problem actually easier, so we
have used larger service specifications too to scale up the problem. Accordingly, the
10 services assigned to ant species were sized as |Ck

i | = i · 5 replicas for Si, where
i = 1 . . .10, thus giving a total amount of 275 replicas.

(a) Over 11 nodes (b) Over 5 domains (50 nodes)

Figure 4: Load-balancing (average number of replicas and deviation per node)

We repeated the experiment 50 times using the selected encoding, per comp., and
allowing a maximum amount of 10000 iterations in each run. The resulting average
execution load in the 5 available domains is depicted in Fig. 4b, where the average
number of replicas per node, using identical domains, would be 5.5 that is shown with
a dotted horizontal line. Regarding load-balancing similar effects are observed as in
the previous example. We can look at the dependability aspects of the solutions ob-
tained in the 50 runs of the simulation too. As the problem size was significantly larger
and the number of allowed iterations was constrained too, collocation is observed in
some cases (in Table 4), while rule φ1 is never violated. Violations of φ2 are more
frequent in case the number of replicas was close to the number of available nodes
(e.g. S10), which makes satisfying φ2 harder when load-balancing has to be performed
simultaneously.
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Table 4: Collocation within the 10 large services

service S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
collocation (φ2) 0 1 0 3 1 1 0 3 1 13

6. Closing Remarks

Our focus has been on applying swarm intelligence, in particular the CEAS method
to manage the deployment of collaborating software components. While developing
our distributed approach we targeted a logic that shall not be over-engineered and
uses only a few parameters that do not depend on the problem at hand (e.g. to avoid
having to adjust parameters and cost functions manually). It is also required to be
able to handle certain degrees of dynamics and adaptation to changes in the execution
context. These are the reasons that lead us to nature inspired methods and systems
that do not have to be altered significantly for every new target system. We have
tested the ability of the logic to handle domain splitting and dealing with dependability
requirements as well as load-balancing using two example settings and a custom
built simulator. We believe that applying CEAS will not only result in a tailored
optimization method but, at least on the long run, it will allow the implementation of a
prototype of a truly distributed system that will support run-time deployment within
software architectures.

Our results are promising and are inline with our efforts to further develop the
deployment logic and increase its scalability and adaptability. Furthermore, we
plan to experiment with another dimension of dynamicity by introducing run-time
component replication that means that the amount of replicas in a service might change
at run-time. Moreover, extensive simulations will be conducted to test scalability
and convergence of the algorithm and also to evaluate its behavior compared to other
relevant optimization methods that support distributed execution. This is a possible
direction for future work, however, we advocate that a thorough comparison could in
fact be a separate paper in itself as it would require fine tuning of multiple parameters
in case of many available methods to be able to look into the scenario at hand with
confidence.
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Abstract Large-scale computing platforms that serve thousands or even millions of users through
the Internet are on a path to become a pervasive technology available to companies of
all sizes. However, existing technologies to enable this kind of scaling are based on a
hierarchically managed approach that does not scale equally well. Moreover, existing
systems are also not equipped to handle the dynamism that may emerge as a result of
severe failures or load surges.

In this paper, we conjecture that using self-organizing techniques for system
(re)configuration can improve both the scalability properties of such systems as well as
their ability to tolerate churn. Specifically, the paper focuses on deployment of virtual
machine images onto physical machines that reside in different parts of the network. The
objective is to construct balanced and dependable deployment configurations that are
resilient. To accomplish this, a method based on a variant of Ant Colony Optimization is
used to find efficient deployment mappings for a large number of virtual machine image
replicas that are deployed concurrently. The method is completely decentralized; ants
communicate indirectly through pheromone tables located in the nodes.

An example scenario is presented and simulation results are obtained for the method.

1. Introduction

Cloud computing infrastructures have in recent years become increasingly important
for provisioning services that demand reliability and performance, yet are capable to
utilize the computing resources efficiently. A major benefit of cloud infrastructures
is their ability to dynamically scale up or down as the demand curve changes. One
approach in which such dynamic service delivery can be accomplished is through
the use of Virtual Machine (VM) images that can be deployed on demand within the
cloud. Such VM images are packaged in a standardized way that allows for dynamic
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deployment, e.g. the Amazon Machine Image format [LLC]. Moreover, use of a
common VM packaging format also enable a computing model where both public and
private cloud providers can interoperate. In this context, a public cloud provider offers
a large infrastructure of compute resources that are provided to (paying) users over the
Internet. This is sometimes called Infrastructure-as-a-Service, and Amazon EC2 [LLC]
is an example of a public cloud provider. On the other end, we have private clouds
that offer a more limited scale of resources, typically accessible only to users directly
affiliated with the private cloud owner, e.g. a single organization. These organizations
may be running Ubuntu’s Enterprise Cloud solution [WGB09], which is compatible
with Amazon EC2 in packaging format. The intention of the Eucalyptus project,
for example, is to support multiple cloud computing interfaces while preserving the
back-end infrastructure [NWG+09].

Lack of service management facilities and interoperability between cloud providers
have been identified as major obstacles limiting scalability of federated cloud com-
puting environments [RBL+09]. Such environments need a unified interface for
dynamically managing VMs forming cloud services. Moreover, a heterogeneous
cloud computing architecture must also tackle the placement, migration, and monitor-
ing of VMs across interoperability boundaries [EL09]. In this work however, we rely
on the presumed existence of such interoperability and service management facilities,
and focus our attention on the service placement problem. As such, our approach is
independent of the specific flavors of the underlying interoperability and management
facilities provided.

In this paper, we examine the effects of a hybrid environment in which services are
deployed in either the private cloud, public clouds, or both depending on the present
usage pattern. Such a scenario is especially interesting with respect to handling load
overshoots that may be caused by dependability and/or performance requirements. For
example, as the service usage pattern change, VM instances may be added or removed
from the public cloud, while retaining the same number of VM instances within the
private cloud. During execution in such a hybrid cloud environment, a plethora of
highly dynamic parameters influence the optimal deployment configurations, e.g. due
to the influence of concurrent services and varying client load. Ideally, the deployment
mappings should minimize and balance resource consumption, yet provide sufficient
resources to satisfy the dependability requirements of services. However, Fernandez-
Baca [FB89] showed that the general module allocation problem is NP-complete
except for certain communication configurations, thus heuristics are required to obtain
solutions efficiently.

Our approach is based on a heuristic and decentralized optimization method aimed
at finding suitable mappings between VM replicas and nodes, in the various clusters of
the network, capable of hosting them. The set of mappings selected are constrained in
three dimensions ensuring: cloud internal load balancing, cloud global load balancing,
and availability of VM replicas in multiple clusters for improved dependability. To
accomplish this we use the Cross-Entropy Ant System (CEAS) [HHW08], which is
based on Ant Colony Optimization (ACO) [DMC96]. CEAS uses ant-like agents,
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denoted ants, that can move around in the network, identifying potential locations
where replicas might be placed.

1.1 Related Work

The notation of regenerating replicas to replace crashed ones was first proposed
by Pu [PNP88] in the context of the Eden system. More recent systems [MG08,
MMHB08] provide automatic reconfiguration and regeneration of replicas in the
context of group communication systems, and Om [YV05] focus on regeneration in
a peer-to-peer wide-area storage system. Another recent initiative [EL09] propose
similar mechanisms for placement, migration and monitoring of components in the
cloud. Such systems provide the underlying mechanisms that are necessary to sup-
port service deployment in cloud environments. However, focus is mostly on failure
recovery by regeneration of new replicas to improve availability and reliability, and
do not try optimize the replica-to-node mappings. Yu and Gibbons [YG09] show
theoretically that replica placements of inter-correlated objects can significantly im-
pact system availability if not placed appropriately. Our work is focused on finding
suitable (near optimal) replica-to-node mappings that improve both availability and
load balancing properties. Albrecht et al. [AOVP08] describe a generic wide-area
resource discovery system taking a database-like approach to enable querying for
available resources; they use a centralized group-finding optimization algorithm to
find mappings. Their approach rely on extensive measurement data collection, in some
sense not unlike our ants. However in our approach, measurements are not stored
centrally in a database or in a DHT. Instead, ants encode such measurement data
using a decentralized mathematical framework that enable us to heuristically find near
optimal solutions rapidly. Many other frameworks have focused on finding optimal
placements for virtual machines under a variety of constraints [VAN08, JHJ09]. Maxi-
mizing the utility of services via deployment decision making has been investigated
in [KHD08]. An algorithm has been devised by the authors that is based on calculating
the usefulness of the alternative configurations as weighted sums. Nevertheless, the
resulting approach is not computationally effective and serves as a trial to show that
deployment decision making is important and necessary to apply. However, these
approaches rely on a centralized optimizer that often has to crawl through the entire
state-space of decision alternatives. The SmartFrog [Sab06] deployment and man-
agement framework from HP Labs describes services as collections of components
and applies a distributed engine comprised of daemons running on every node in a
network. Collections of components together with their configuration parameters can
be activated and managed to deliver the desired services even in large-scale systems.
The scale of these systems and the execution framework is close to the environment
we envisage for the successful execution of autonomic component-based software
services and which we target with our deployment logic. Xu et al., in [XZF+07],
applies a novel approach in similar server environments for configuration management
based on fuzzy learning and targeting efficient resource utilization. Others, e.g. the
authors of [HJ06], have turned to biologically-inspired resource allocation algorithms
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to solve service distribution problems. We as well have chosen to follow the path of
bio-inspired algorithms.

Our approach is self-organizing and uses a fully decentralized optimization tech-
nique based on the CEAS system [HHW08] which is adaptive to network dynamics
and is particularly suited for multi-constrained optimization problems. Our previ-
ous work [CMHH09] has focused on finding efficient mappings within relatively
small scale clusters; and we experimented with different pheromone encodings for
improving scalability in [CMH09]. We have targeted a decentralized solution to avoid
the burden of maintaining centralized databases and to eliminate performance and
dependability bottlenecks. The trade-off of decentralization and heuristic search is
that our approach might not always find the global optimum, especially when dealing
with large problems, but it may converge to a near optimal solution. We advocate,
however, that satisfactory deployment, e.g. in terms of redundancy and load-balancing,
can be achieved using a mapping close to optimal as in dynamic environments the
global optimum can be invalidated by the time it would be found and installed.

To further study the efficiency of our approach and cross-validate our results against
centralized solutions we are also working on integer programs capable of calculating
optimal replica mappings based on a global view of the system. Centralized solutions
requiring a global view, in particular integer linear programs (ILPs), have previously
been applied to clustering problems, for example in grid file systems [SME09]. Similar
techniques can be used to build an ILP for checking how close mappings obtained
by our algorithm are to the optimum solution. Preliminary results of this evaluation
can be found in [CH10]. In this paper we discuss an extension to our bio-inspired
algorithm to consider resource allocation in federated public and private clouds as
well as to obtain optimal utilization of resources in case of overshoot scenarios.

In the next section we introduce the system model and notation we use, how the
deployment rules and the cost function are defined. The basics of the CEAS are
presented in Sec. 3, followed by a description of the algorithm we propose in Sec. 4.
An example scenario and corresponding simulation results are shown in Sec. 5. Finally,
in Sec. 6 we conclude and touch upon future work.

2. System Model

In this section we introduce the system model and the notation that we use. We
also clarify our assumptions, and define dependability constraints and rules related to
deployment mapping. Finally, we present a cost function aimed to guide our heuristic
search algorithm.

2.1 Model and Notation

We model the system as a large collection, N , of interconnected nodes. N is
partitioned into a set D of clusters, as illustrated by d1 and d2 in Figure 1. Clusters are
usually formed according to geographical location or otherwise distinct administrative
region. We assume that compute clouds are provided by a single administrative entity
that can consist of several clusters. Our objective is to find deployment mappings for
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this environment for a set of services, S = {S1,S2, . . .}. Each service may contain
replicated VMs to provide the service with fault tolerance and load-balancing. The
deployment mapping for Sk is defined as a set of mappings M : Sk →N . Let V k

i
be the ith VM of Sk, where Sk = {V k

1 , . . . ,V
k
q } is the set of VMs constituting service

Sk, q being the number of VMs in the service, |Sk|. Accordingly, let Rk
i j denote

the jth replica of V k
i so that V k

i = {Rk
i1, . . . ,R

k
ipi
}, where pi ≥ 1 is the redundancy

level of VM V k
i . Then, for service Sk, the set of VM instance replicas becomes

Sk = {Rk
11, . . . ,R

k
1p1

, . . . ,Rk
i1, . . . ,R

k
ipi
}. In the remainder of the paper, we use the terms

VM replica and VM instance interchangeably.

Figure 1: Overview of the deployment environment and service specification.

The objective of our deployment logic is to find suitable mappings between VM
replicas and nodes, capable of hosting them in the various clusters of the network.
Using CEAS, ants move around in the network, trying to identify potential locations
where replicas might be placed. Ants have associated state; as such they can be
implemented as messages on which our algorithm is executed in every node they
visit. For each service, there is one ant species responsible for finding the deployment
mapping for its associated service. This is illustrated in Figure 1 by the green and
blue ant species representing the green and blue service, respectively. It is important
to notice that a species of ants corresponds to a service, i.e. a set of VM replicas
Sk = {Rk

11, . . .}. Thus, an increase in the number of VM instances within a service in
itself does not lead to impairment of scalability.

As shown in Figure 1, every node contains an execution runtime, that supports in-
stalling, running and migrating replicas. Furthermore, each node also has a pheromone
table that will be updated and read regularly by the ants. The purpose of the pheromone
table is to assist ants in selecting suitable deployment mappings; this is in contrast to
the original ant system proposed by Dorigo et al. [DMC96], in which pheromones are
used for ant routing. For every service that has to be deployed, at least one node must
also host an ant nest. The tasks of a nest are twofold:

1 – to emit ants for its associated service, and
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2 – trigger installation of VM replicas onto nodes according to the deployment
mappings found.

Installation is triggered once a predefined convergence criteria is reached, e.g. after
a certain number of iterations of the algorithm, or when a sufficiently low deployment
cost level is reached. The actual installation of the VMs of a service is taken care of
by the execution runtime, details of which are not discussed here, instead we refer to
related work (in Sec. 1). Our goal is to build a core logic for optimizing the deployment
mappings and, at the same time, enable compatibility with existing frameworks and
interfaces for deployment in the clouds.

An iteration, r, of the algorithm is defined as one round-trip trajectory of the ant.
During an iteration r, the ant builds and carries along a hop list, Hr, keeping track of
the visited nodes. The nest can also be replicated for fault tolerance, thereby emitting
ants for the same service from multiple nodes. Synchronizing these nests is not
necessary, however, only one designated nest is allowed to trigger physical placement
of VMs. In Figure 1, the green service has two nest replicas.

2.2 Mapping Rules

The CEAS approach is a heuristic optimization method, and as such our target
is not to find the globally optimal solution. This is simply because by the time the
optimal mapping configuration could be found and installed, it might be suboptimal
due to dynamics of the system. Instead, we aim to find a feasible mapping, meaning
that it satisfies the requirements for the deployment of the service, e.g. in terms of
redundancy and load-balancing. Below we will define a set of rules, denoted Φ, to
encapsulate these requirements. One of the key functions in CEAS is the use of a cost
function, denoted F(), that evaluates the quality of a mapping Mr found in iteration
r of the algorithm. Thus, the objective of the algorithm is to minimize the cost of
the mapping F(Mr) subject to Φ. It should be noted that the algorithm continues to
optimize the mapping after an appropriate mapping has been found and applied in
the network, once a (significantly) better mapping is found, reconfiguration can take
place. The dependability rules that constrain the minimization are defined using the
two mapping functions, f j,d and g j, below that apply to service k.

DEFINITION 1 Let fR,d : R→ d be the mapping of replica R to cluster d ∈D .

DEFINITION 2 Let gR,n : R→ n be the mapping of replica R to node n ∈N .

Using the two mapping functions defined above we now specify two dependability
rules. The first rule, φ1 below, requires replicas to be dispersed over as many clusters
as possible, aimed to improve service availability despite potential network partitions
between the clusters. Specifically, replicas of VM V k

i are mapped to different clusters,
until all clusters are present in the mapping or all replicas have been mapped to distinct
clusters. If the redundancy level of the VM is greater than the number of available
clusters in the network, i.e. |V k

i | > |D |, at least one VM replica is placed in each
cluster. Hence, when j = u, replicas of V k

i may be mapped to the same cluster. The
second rule, φ2, prohibits two replicas of V k

i to be placed on the same node, n.
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RULE 1 φ1 : fR j,d 6= fRu,d ⇔ (R j 6= Ru) : ∀d ∈D ,∀R ∈V k
i , ∧|V k

i |< |D |

RULE 2 φ2 : gR j,n 6= gRu,n ⇔ ( j 6= u) : ∀R ∈V k
i

Combining the rules above we obtain a dependability constraint set for services
Φ = φ1∧φ2. In order to adhere to φ1, the ant gathers data about the clusters utilized
for mapping VM replicas; hence, the set of clusters used in iteration r is denoted by Dr.
Similarly, the set of replicas from service k mapped to node n in iteration r is denoted
by mn,r ⊆ Sk. Thus, the ant builds a deployment mapping set Mr = {mn,r}∀n∈Hr for all
visited nodes. Finally, ants also collect load-level samples, denoted ln,r, from every
node n ∈ Hr visited. The ant uses a load list, Lr to carry along all the samples. Load-
levels observed by the ant, at the nodes that it visits, are a result of many concurrently
executing ant species reserving resources for their respective VM instances. Two
different possibilities of implementing this reservation mechanism that serves as a
means of indirect communication between ant species have been explored in [CHH08a]
and [CMH09], here we omit the description of them.

Each VM replica, Rk
i j, of a service k has a node-local execution cost (weight of

the replica), denoted by wk = {wk
i j}, i = 1 . . .q, j = 1 . . . pi. This cost is used when

ants allocate resources for their corresponding services. Note that, to keep the model
simple initially, we consider only identical VM replicas (wk = w,∀i, j,k). However,
in future work we will extend the model to cater for more detailed service models
that contain information on individual execution costs for the VM replicas and also
communication costs for the communication links between VMs of a service. We
have already experimented with these types of costs in previous work in the field of
software component deployment [CHH08b, CHH08a].

2.3 Cost Function

In what follows, we will define some equations that will be used to define the cost
function. Let Cx be a list of values, one for each node visited by an ant. Each value
refers to the execution load of the corresponding node.

Cx[n] = (
ϑx(n)

∑
i=0

1
Θx + 1− i

)2 (1)

The algorithm uses two versions of Eq. (1), depending on the parameter x∈ {0,1}. For
x = 1, load-level observations, Lr, are used, accounting for all concurrently executing
services on the respective nodes. When x = 0, the mappings, Mr, made by the ant
itself are used, only taking into account the load of those VM instances that are part of
the service. The two different usages differ in the upper-bound of the summation and
the constant in the denominator, ϑx and Θx respectively. They are presented next in
Eq. (2) and (3).

ϑx(n) = |mn,r| ·w + x ·Lr(n) for x ∈ {0,1} (2)

Θx = ∑
∀n∈Hr

ϑx(n) for x ∈ {0,1} (3)
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Θx is a constant representing the overall execution load of one service or all services
(depending on the parameter x). More specifically, Θ0 is the total processing resource
demand of the service deployed by the ant, whereas Θ1 = Θ0 +L , where L represents
the additional load of replicas of other concurrently executing services. For L , we
account only for those instances that are mapped to the nodes visited by the ant, and
as such have reserved processing power for themselves. Note that in (3), Θx is applied
only for the subset of nodes that the ant has visited, Hr. This is favorable for the
scalability of the algorithm, since it does not have to explore the entire network N
exhaustively.

With the notational framework in place we are ready to introduce the cost function
used to evaluate deployment mappings obtained with CEAS. To take into account the
requirements of load-balancing and dependability (according to Φ) when obtaining
VM replica mappings the following cost function is defined.

F(Dr,Mr,Lr) =
1
|Dr|
· ∑
∀n∈Hr

C0(n) · ∑
∀n∈Hr

C1(n) (4)

Note that, we use (1) to favor globally balanced mappings, i.e. to distribute VM
instance load on the network as evenly as possible. In (4) the first term corresponds to
enforcing φ1. The second term, C0 applies solely to the VM replicas of the service the
ant is responsible for, thus penalizing the violation of φ2. The last term, C1, is used for
load-balancing and, as such, it takes into account load imposed on nodes by the other
services in the network.

Next, we discuss how the CEAS uses the cost function to guide the ants in finding
an optimal deployment mapping and we present the definition of pheromone values.

3. Cross Entropy Ant System for Replica
Deployment

This section describes the basics of the CEAS method necessary for presenting our
deployment algorithm.

The core of our deployment logic is built around the CEAS method [HHW08],
which can be considered a subclass of ACO algorithms [DMC96]. ACO systems
have proven to be able to find the optimum solution to a problem at least once with a
probability close to one. Once the optimum has been found, convergence is assured
in a finite number of iterations. The logic employs ants searching iteratively for
a solution. Solutions found by ants are evaluated using a predefined cost function
(F(Mr)) that takes into account the constraints of the problem. Every iteration consists
of a round-trip by the ant and has two distinct phases. In the first phase, the ant
conducts a forward search and tries to find a mapping for all VMs in the service it
is responsible for. Once a complete mapping has been found, the suggested solution
is evaluated using the cost function. In the second phase of the lifetime of an ant,
called backtracking, ants deposit pheromone markings at each node they have visited,
much like it is done in the real world when ants forage for food. The key idea is that
these pheromone values are proportional to the quality of the solution, which was
determined by the cost function. The optimum is then approached gradually by using
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the pheromone tables during forward search for selecting VM instance mappings in
nodes. Note that, ants have two modes of operation denoted explorer ants and normal
ants. Normal ants behave as described above, using pheromone tables during forward
search. On the other hand, explorer ants ignore pheromone markings during forward
search; instead they do a random exploration of the search space. The ratio of normal
vs explorer ants is configurable; typically 5-10 % are dedicated as explorer ants. The
concept of explorers is used two ways, first to detect changes or better opportunities
in the environment, and second, to reduce the occurrence of premature convergence
leading to sub-optimal solutions.

A cornerstone in CEAS is the Cross-Entropy (CE) method proposed by Rubin-
stein [Rub99]. In CEAS, the CE method is used both to evaluate solutions and for
updating pheromone values. Specifically a probability matrix, pr, is modified gradually
according to the cost returned by the cost function F(). The objective of applying the
CE method is to minimize the cross entropy between consecutive probability matrices
pr and pr−1. For an introduction and other example applications, see [HHW08].

Let τmn,r denote the pheromone value. This value is essentially an encoding of
the VM instance mapping mn,r at node n in iteration r. Hence, the pheromone
database must be able to store pheromone values that encode the various deployment
configurations for various services. Three possible pheromone encoding techniques
are discussed and evaluated in [CMHH09]; herein the best encoding is used.

While visiting a node, explorer ants select a set of VM replicas to map to that
node with the uniform probability 1/|V k

i |, where |V k
i | is the number of replicas to be

deployed. On the other hand, normal ants select VM replicas to deploy based on a
random proportional rule. This rule is encoded as a probability matrix, pr = {pmn,r}.

pmn,r =
τmn,r

∑l∈Mr τln,r
(5)

Updates to the pheromone values are controlled by a temperature parameter, γr. The
temperature is chosen so as to minimize the performance function, H(), below.

H(F(Mr),γr) = e
−F(Mr)

γr (6)

H() is applied consecutively to all mappings (samples) obtained in all iterations. The
expectation of the overall performance then satisfies

Epr−1(H(F(Mr),γr))≥ ρ (7)

Epr−1(X) is the expected value of X s.t. the rules in pr−1; ρ is a search focus parameter
close to 0 (we use ρ = 0.01). Further, the CE method is used to obtain a new set
of rules for the next iteration, pr, by minimizing the cross entropy between two
consecutive rules with respect to γr and H(F(Mr),γr). This is achieved by applying
the random proportional rule, Eq. (5), for ∀mn using the pheromone value

τmn,r =
r

∑
k=1

I(l ∈Mr)β
∑

r
j=k+1 I( j∈Mk)H(F(Mk),γr) (8)
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where the indicator function I(x) = 1 if x is true, or 0 otherwise. For details and proofs
of the CE method see [Rub99].

To avoid centralized tables or control, or batches of synchronized iterations, the cost
values have to be calculated immediately when a new sample (Mr) has been obtained,
i.e. in each iteration. To enable this, an auto-regressive version of the performance
function is used, as follows

hr(γr) = βhr−1(γr)+(1−β )H(F(Mr),γr) (9)

where β ∈ 〈0,1〉 is a memory factor. β is used to give proper weights to the output of
the performance function introduced above. To avoid rapid undesirable changes in
the deployment mapping, the performance function will smooth variations in the cost
function. The temperature parameter, γr, is determined by minimization s.t. h(γ)≥ ρ

(cf. [HHW08])

γr = {γ | 1−β

1−β r

r

∑
k=1

β
r−kH(F(Mk),γ) = ρ} (10)

To avoid having to store and process the entire mapping history F(Mr) = {F(M1), . . .,
F(Mr)} for each iteration r, which would make the system impractical, we instead
assume that subsequent changes in γr are relatively small. Hence, we can apply a
first order Taylor expansion on Eq. (10). Similarly, for Eq. (8) a second order Taylor
expansion can be applied to save memory and processing power [HHW08].

After discussing the basic methods in CEAS we proceed describing its application
to build the deployment mapping algorithm.

4. Virtual Machine Replication in Cloud Computing

We have developed an optimization algorithm using CEAS that aims to find suit-
able deployment configurations for VM replicas in a cloud computing setting. This
algorithm is described in this section.

Figure 2: Class Diagram for the CEAS-based Deployment Algorithm
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The components of the logic are summarized in the class-diagram in Fig. 2. The
mayor component is the Nest that is placed on one of the nodes in the network. It is
allowed for one species to have more than one nest for additional dependability. Every
node must have some additional properties to support the deployment logic, including
an instance of the PheromoneTable that is used as a container for the distributed
information needed by the logic, i.e. τmn,r. A Nest has in addition a set of CEAS
related parameters and variables represented by the component CEASParams, which
information is shared by all the nests of the same species, e.g. β , ρ . In addition,
a Nest must be able to access information about the service that the species has to
deploy, this component is called the ServiceRecord, corresponding to Sk. The second
mayor building block, Ant, of the logic is realizing the ants emitted iteratively by the
Nest. Most of the intelligence is carried by the Ant, represented by methods, as well
as some of the variables used during one iteration of the optimization process, e.g. the
VM instance mapping set mapping corresponding to Mr.

Algorithm 1 Summary of the behavior of Nestk at any node n ∈N
1: init();

2: while r < R {Stopping criteria}
3: emitAnt(serviceRecord, ... );
4: r← r + 1 {Increment iteration counter}

In Algorithm 1 the behavior of a nest is summarized briefly. Omitting the details,
a Nest emits (creates and resets) Ants sequentially during the optimization process
and continues until a stopping criteria, such as a convergence criteria, is fulfilled.
Alternatively, nests can continue emitting ants even after the system has stabilized and
converged to a given solution, this way providing the capability of adaptation should
changes occur in the execution context. Discovery of new, higher utility mappings
resulting from context change is supported by explorer ants. Modifying the placement
of the services once they are initially deployed can be conditioned by thresholds
such as the cost of VM instance migration. Several authors estimate the durations
required for migrating operational VMs by conducting experiments. Durations vary,
as expected, depending on the hardware context, e.g. bandwidth, and naturally on
the VM package size. However, for realistic VM sizes estimates lie typically around
60 to 90 seconds, see [CFH+05], [HON+09], [JHJ09]. These migration costs can be
factored in as threshold values to allow changes in the deployment mappings only if
the benefit is higher than the costs of migrating.

The number of iterations required for convergence to an initial stable solution
depends on the problem size. For the example scenario, introduced in the next section,
the maximum number of iterations allowed for the algorithm was 2000 explorer
ants followed by an additional 3000 (10% explorer and 90% normal) ants for each
species that were executed in parallel. The algorithm was able to find a solution in all
simulation runs within this amount of iterations. Increasing the number of nodes in
itself does not make the deployment problem more difficult. An increased network
size actually allows to algorithm to find lower cost mappings easier due to the larger
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amount of available resources. The number of services and the amount replicas within
the services is what impacts scalability more, as the number of species executed in
parallel is proportional to the number of services and the complexity of one species’
task increases as the number of replicas increases [CMH09]. The behavior of an Ant
is briefly presented in Algorithm 2.

Algorithm 2 Summary of the behavior of a single ant
1: Initialization:
2: Hr ← /0 {Hop-list; insertion-ordered set}
3: Mr ← /0 {Deployment mapping set}
4: Dr ← /0 {Set of utilized domains}
5: Lr ← /0 {Set of load samples}

6: γr ← Nestk.getTemperature() {Get nest temp.}
7: while not fwdSearchDone() {More replicas to map}
8: n← selectNextNode() {Select next node to visit}
9: if explorerAnt

10: mn,r ← random(⊆V l
i ) {Randomly select replicas}

11: else
12: mn,r ← rndProp(⊆V l

i ) {Select using Eq. (5)}
13: if {mn,r} 6= /0∧n ∈ dk {Cluster used in mapping}
14: Dr ← Dr ∪dk {Update utilized clusters}
15: Mr ←Mr ∪{mn,r}
16: V l

i ←V l
i −{mn,r}

17: Lr ← Lr ∪{ln,r} {Estimated proc. load at node n}

18: cost← calcCost(Mr) {Compute cost of mapping}
19: γr ← calcGamma(cost) {Compute temp., Eq. (10)}
20: foreach n ∈ Hr.reverse() {Backtrack along hop-list}
21: n.updatePhTable() {Update pheromones, Eq. (8)}
22: Nestk.setTemperature(γr) {Update temp. at Nestk}

Every ant that is emitted receives the appropriate parameters from the nest, such
as the explorer flag, the description of the service to be deployed, CEAS-related
parameters, etc. After initialization the Ant proceeds with visiting new nodes during
forward search until the search is done, i.e. a mapping has been found for all the
VMs in the service. In other words, the stopping criteria incorporated into the method
f wdSearchDone() checks whether the set V l

i , which is listing the VM instances not
yet mapped by the ant during the current iteration, has become empty. Next nodes are
selected via the method selectNextHop() that takes into account cluster taboo-lists
and node taboo-lists. Taboo-lists are built by the ant during its forward search and are
updated continuously adding references to clusters and nodes visited to the two lists
respectively. The purposes of the two taboo-lists are to cover all available clusters first,
to aid satisfying cluster-disjointness, and if the ant has to proceed even after visiting
all the clusters then to avoid revisiting the same nodes. Beside the taboo-lists nodes
are selected in a random manner. Mappings at each node are selected by the method
selectPlacement() that, depending on whether the ant is an explorer or not, uses the
local PheromoneTable via Eq. 5 or not. Before leaving the node the Ant also has
to sample load-levels (Lr(n)) at the node to achieve load-balancing. When forward
search is done the Ant calculates the cost of the mapping (F(Mr)), then recalculates
the temperature (Eq. 10) and updates the pheromone tables going backward according
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to its hop-list, Hr, applying Eq. 8. When the ant successfully returns to its nest it is
reset and emitted again in the following iteration.

Further improvements in the scalability of CEAS can be made by applying elitism,
pheromone sharing and self-tuned packet rate control, additional mechanisms that are
described in [HW10]. Next, we present an example scenario we experimented with
and the results obtained using our algorithm.

5. Example Scenario and Results

In this section we present an example cloud computing scenario demonstrating the
behavior of our deployment logic. The scenario, as in Figure 3, consists of 5 private
clouds (Cloud C, . . . ,G) that are connected to the public Internet, thereby enabling
connections to public cloud providers (Cloud A,B). Capacities in the public area can
thus be utilized on demand, but are subject to economic costs. Conversely usage of
the private clusters is free for a service with a home location in that private cloud.
Thus, deploying and hosting a VM instance in a node within one of the clouds implies
additional costs |ni|, ∀ni ∈N ; these costs are summarized in Table 1.

The tangible meaning of the above partitioning and cost assignment is the following
concept. It is natural for any organization to execute all VM instances within their
privately owned clusters as long as requirements allow, e.g. replication requirements
can be satisfied with the available amount of private clusters, as hosting VMs in
the private cloud can be considered free compared to costs of the public clouds. In
the example setting, there is a trade-off between a large cloud provider with several
clusters and plenty of nodes available for placement, which is more expensive to use
than paying for hosting in the smaller cloud offering with less resources.

Table 1: Usage costs for the clouds in the example

Cloud A Cloud B Cloud C . . .G
Cost |ni| 10 1 0

The deployment task in the case studied in this paper is then to deploy 125 services
in total. Administrators in each private cloud have the task of deploying 25 services
using their own available resources and, if needed, using public resources as well.
It is not allowed, however, to utilize nodes in a private cloud other than the home
location for a service (∞ cost for the neighboring private clouds). In this example
every service consists of 5 VM instances, among others for dependability reasons, that
have to be deployed, thus giving the task of deploying a total number of 625 VMs to
the deployment mapping algorithm.

Deployment of the set of VM instances is done in a network environment partitioned
into the set of public and private clouds, which in turn are partitioned further into
clusters. Every private cloud has two clusters possibly in a private network domain
administered by a single authority. In addition the two public clouds Cloud A and
Cloud B contain 5 and 3 clusters respectively, resulting in a total of di, i = 1 . . .18
clusters. Furthermore, each cluster is a collection of nodes. Clusters in the private
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Figure 3: Example scenario

clouds consist of 5 nodes, whereas clusters in the public clouds contain 10 nodes each,
which gives a total of 130 nodes available in this network.

We employ one ant species for each of the services, i.e. there will be exactly 25 ant
species for each private cloud responsible for deployment mapping of the 25 services
local to the corresponding clouds. In other words, 25 ant nests are placed within
every private cloud that execute our algorithm and emit ants accordingly. We define
a variable Λ accounting for the additionally incurring costs of using hosts in public
clouds as a sum over all hosts that participate in mapping M obtained during the
given iteration

Λ = ∑
∀ni∈M

|ni| (11)

In our experiment, we executed our algorithm using two extended variants of the cost
function. The extension to the original function Eq. (4) is shown in the following

F ′ = F(Dr,Mr,Lr) · (1 + g(x)), (12)

where function g(x) is defined in two variants using parameter x and Eq. (11).

g(x) =

{
x ·Λ, if linear weighting
1− e−(x·Λ)2

, if exponential weighting
(13)

To see the resulting VM instance mapping when cloud-related costs are absent we set
x = 0. On the contrary, to include cloud-related costs the scaling parameter is set to
x > 0. The exact value of parameter x is dependent on the values we apply as costs
of using public clouds, hence it is a scaling parameter. In the example scenario with
cloud costs {10,1} the scaling parameter we applied was x = 0.1.
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Figure 4: VM instances per node, x = 0, no weighting

The two different alternatives in Eq. (13) represent a linear increment (the former)
and an exponential increment (the latter alternative) in cloud costs, when x > 0. By
applying a more fine-grained exponential weighting to cloud-related costs VM map-
pings are expected to become more balanced, avoiding under-utilization or overload
of clusters.

To investigate the three alternatives we executed simulations of the example setting,
running the logic 100 times using each variant of the cost function presented above. In
Figure 4, VM instance mapping is presented in case cloud-related costs are not taken
into consideration, i.e. every node has zero cost for hosting a VM. Simulation results
are averaged after the algorithm has converged to a solution and deviation from the
average number of instances per node is shown as error bars. We can observe that in
the first case 2 VMs are mapped on average to hosts within the private clusters, i.e.
on nodes n81..90, n91..100, n101..110, n111..120, n121..130. That means that for the 10 nodes
within each private cloud approximately 20 VMs are mapped for hosting, leaving
(5 ·25)−20 = 105 VMs for mapping into the public network. Then, as anticipated
we have an average around the (105 ·5)/80 = 6.6 VMs mapped to the public hosts in
the network, which lies between the two extremes of mapping 3 VMs in public and 2
in private clusters (3 ·125)/80 = 4.7 and mapping all 5 VMs of a service to public
clusters (5 ·125)/80 = 7.8, as shown by the horizontal dashed lines. Naturally, the
algorithm does not distinguish between the two public cloud offerings in this case.

In the second experiment (Figure 5) we turned on cloud-related costs and executed
our algorithm under the same circumstances otherwise as before. In this case results
show that the logic manages to find a mapping that considers the financial penalties
of using public clouds. The public cloud with plenty of resources and high cost
(nodes n1.50) is barely used for deployment, whereas the lower cost public offering
is heavily loaded with VMs, while all the dependability requirements are fulfilled,
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Figure 5: VM instances per node, x > 0, linear weighting
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Figure 6: VM instances per node, x > 0, exponential weighting

i.e. cluster-disjointness and node-disjointness. At the same time in the private clouds
containing 10 nodes, as expected, 5 VMs are mapped to each node on average. This
means that each one of the 25 services that are executed within a given private cloud
places 1 VM in each of the two local clusters available at 0 cost ((2 · 25)/10 = 5).
However, due to the cluster-disjointness criteria the 3rd, 4th and 5th VM replica has to
be placed to a public cloud with the lowest increment in costs possible, nonetheless
taking into account the rest of the requirements.

In the third set of simulations (Figure 6) we executed our deployment mapping
algorithm applying the exponential cost function, the second alternative in Eq. (13).
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Changes from the previous example can mainly be observed in mappings in the
public clouds. Mappings in private clouds are not changed due to the application
of the same requirements. Using a slightly more complicated cost evaluation in the
algorithm, however, we obtained more balanced deployment mappings. Under the
given cost values assigned to the different public offerings the cheaper public cloud
gets less overloaded with VMs while the number of mappings in the larger public
cloud increases to take over some of the execution load while the original requirements
remain satisfied.

In the examples above we have shown that the deployment logic we are developing
can be applied in a cloud computing scenario by adjusting the corresponding cost
functions evaluating VM mappings, thus adapting to different costs related to usage
of resources offered by public providers. Using the logic we are able to obtain VM
instance mappings that satisfy dependability and performance requirements while
minimizing financial penalties in the special case of handling overshoot scenarios in
private clouds.

6. Conclusions

We have presented a swarm intelligence framework targeting the deployment of
VM instances in a cloud computing environment. We have designed an algorithm that
is fully distributed, scales well by decomposing the problem of deploying multiple
services, and paves the way for a deployment logic capable of finding near optimal
mappings.

Through the evaluation presented in this paper, we are convinced that our deploy-
ment logic is applicable in a cloud computing setting. Nevertheless, we are currently
working on a more thorough validation of our approach with new examples. We are
also developing a centralized solution using integer linear programming to obtain
exact optima as a lower bound for our simulation results. As such, we emphasize
the fact that our approach is a heuristic method and may not reach the lower bounds;
however, our approach offers the significant advantages of decentralization.
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Máté J. Csorba and Poul E. Heegaard

In proceedings of 16th EUNICE/IFIP WG 6.6 Workshop (EUNICE’10)

Trondheim, Norway, June 28-30, 2010





SWARM INTELLIGENCE HEURISTICS
FOR COMPONENT DEPLOYMENT
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Abstract We address the problem of efficient deployment of software services into a networked
environment. Services are considered that are provided by collaborating components.
The problem of obtaining efficient mappings for components to host in a network is
challenged by multiple dimensions of quality of service requirements. In this paper we
consider execution costs for components and communication costs for the collaborations
between them. Our proposed solution to the deployment problem is a nature inspired
distributed heuristic algorithm that we apply from the service provider’s perspective. We
present simulation results for different example scenarios and present an integer linear
program to validate the results obtained by simulation of our algorithm.

1. Introduction

Implementing distributed networked software systems requires many important
design decisions to be made that have strong influence on the Quality of Service (QoS)
perceived by the user of the service. A major factor in satisfying QoS requirements
of a software service is the configuration of the elementary building-blocks of the
service and their mapping to the suitable network elements and resources that are
available during execution. Moreover, it is also important for next generation software
systems to be capable to (self-)adapt to foreseen and unforseen changes that appear
in the execution context. This dynamism in the context of services is even increased
by enabling swiftly reconfigurable hardware, allowing mobility and changes in the
cardinality of users. Simply improving the QoS metrics without planing is, however,
inevitably increasing the costs on the providers’ side leading to multifaceted optimiza-
tion problems.

We address the issue of obtaining efficient and adaptable mappings for software
components of networked services as an optimization problem in a distributed envi-
ronment. We model services as being built by collaborating components with several
dimensions of QoS requirements including but not restricted to dependability, perfor-
mance or energy saving aspects. Correspondingly, our service models are extended
with costs relevant for the various dimensions of requirements in a more detailed
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model. Based on the service models we apply heuristics and a nature-inspired opti-
mization method, called the Cross Entropy Ant System (CEAS) [HW01], [HHW08],
[HW10] to solve the problem of deploying service components into the network.

Distributed execution of our deployment mapping algorithm has been an important
design criteria to avoid the deficiencies of existing centralized algorithms, e.g. per-
formance bottlenecks and single points of failure. Moreover, we intend to conserve
resources by eliminating the need for centralized decision-making and the required
updates and synchronization mechanisms. In our earlier work [CHH08b] we selected
a well-known example in the domain of task assignment problems and converted it to
our context of collaborating components with execution and communication costs. In
this paper we extend the initial example from [CHH08b] with two additional example
system models, present an Integer Linear Program (ILP) able to solve component
mapping problems with load-balancing and remote communication minimization
criteria, and compare simulation results obtained by executing our algorithm on the
examples presented with the optimum cost solutions given by the ILP.

Related to our work a fair number of approaches aim at improving dependability
and adaptability through influencing the software architecture. QoS-aware metadata is
utilized together with Service Level Agreements (SLAs) in the planning-based middle-
ware in the MUSIC project [REF+08]. SLAs are common means to target policy based
research allocation, e.g. [ATZ07]. The SmartFrog deployment and management frame-
work from HP Labs describes services as collections of components and applies a
distributed engine comprised of daemons running on every node in a network [Sab06].
Fuzzy learning is applied for configuration management in server environments tar-
geting efficient resource utilization by Xu et al. in [XZF+07]. Biologically-inspired
resource allocation algorithms in service distribution problems have been targeted
earlier too, such as by the authors of [HJ06]. A different approach, namely layered
queuing networks are employed by Jung et al. in an off-line framework for generating
optimal configurations and policies [JJH+08]. Changing the deployment mapping
of applications is investigated by others as well, however due to the fact that com-
plexity of exact solution algorithms becomes NP-hard already in case of 2-3 hosts
or several QoS dimensions applicability of these methods is restricted. Heuristics,
such as greedy algorithms and genetic programming are used by Malek to maximize
utility of a service from the users’ perspective in [Mal06], whereas we formulate the
problem from the providers’ view, while still considering user requirements. The
various middleware approaches can be very good candidates serving our approach as
a means of instrument for deployment that is guided by our logic.

The remainder of this paper is organized as follows. First, in Sect. 2 we discuss
the component deployment problem in more detail. Next, an introduction to CEAS
follows in Sect. 3. In Sect. 4 an ILP is formulated for the general component deploy-
ment problem discussed in this paper. Sect. 5 presents service examples and the
corresponding simulation results are evaluated. Finally, in Sect. 6 we conclude and
touch upon future work.
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2. The Component Deployment Problem

We define the component deployment problem as an optimization problem, where a
number |C| of components (labelled ci; i = 1, . . . , |C|) have to be mapped to a set N of
nodes. Components can communicate via a set K of collaborations (k j; j = 1, . . . , |K|).
We consider three types of requirements in the deployment problem. Components
have execution costs ei; i = 1, . . . , |C|, collaborations have communication costs f j;
j = 1, . . . , |K| and some of the components can be restricted in deployment mapping.
Components that are restricted to be deployed to specific nodes are called bound
components. Accordingly, we distinguish between the three concepts of component
mappings, meaning a set variable obtained and refreshed in every iteration of our
algorithm; component bindings, which represent a requirement that fixes the mapping
of components to a constant value; and component deployment that is the actual phys-
ical placement of components to nodes, including the bound components. Physical
deployment of components is triggered after the mappings obtained and refreshed
in every iteration by the deployment algorithm converges to a solution satisfying the
requirements.

Furthermore, we consider identical nodes that are interconnected in a full-mesh and
are capable of hosting components with unlimited processing demand. We observe
the processing load components hosted at a node impose and target load-balancing
between the nodes available in the network. By balancing the load we mean mini-
mizing the deviation from the global average per node execution cost. Total offered
execution load is obtained from the service specification by the sum ∑

|C|
i=1 ei, thus the

global average execution cost can be obtained as

T =
∑
|C|
i=1 ei

|N|
. (1)

Communication costs are considered only if a collaboration between two components
happens remotely, i.e. it happens between two nodes. In other words, if two compo-
nents are colocated (are placed onto the same node) we do consider communication
between them to be free (not consuming any network bandwidth).

Our deployment logic is launched with the service model enriched with the re-
quirements specifying the search criteria and with a resource profile of the hosting
environment specifying the search space. In our view, however, the logic we develop
is capable of catering for any other types of non-functional requirements too, as
long as a suitable cost function can be provided for the specific QoS dimension at
hand. In this paper, costs in the model are constant, independent of the utilization of
underlying hardware. This limitation has been removed and explored in [CHH08a] by
the authors. Furthermore, we benefit from using collaborations as design elements as
they incorporate local behavior of all participants and all interactions between them.
That is, a single cost value can describe communication between component instances,
without having to care about the number of messages sent, individual message sizes,
etc. For more information on how we use collaborations for system modelling we
refer to [CHH08b] and [CHH08a].
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We, then define the objective of the deployment logic as obtaining an efficient
(low-cost if possible optimum) mapping of components to nodes, M : C→N, one that
satisfies the requirements in reasonable time. More importantly, the actual placement
of components does not change with every iteration of the algorithm but is changed
only on a larger timescale, once a mapping is converged to a solid solution to avoid
churn. Re-deployment, for adaptation to changes in the execution context involves
migrating components, which naturally incurs additional costs. In principle migration
costs can be considered as thresholds prohibiting changing the deployment mapping if
the benefit is not high enough. In this work, however, we do not consider adaptation
and migration costs.

The heuristics we use in our deployment logic is guided by a cost function, F(M)
that is used to evaluate the suggested mappings iteration-by-iteration. The construction
of the cost function is in accordance with the requirements of the service. How we
build the corresponding cost function is discussed in Sect. 3.2.

3. Component Deployment using the Cross Entropy
Ant System

3.1 The Cross Entropy Ant System

The key idea in the CEAS is to let many agents, denoted ants, iteratively search
for the best solution according to the problem constraints and cost function defined.
Each iteration consists of two phases; the forward ants search for a solution, which
resembles the ants searching for food, and the backward ants that evaluate the solution
and leave markings, denoted pheromones, that are in proportion to the quality of the
solution. These pheromones are distributed at different locations in the search space
and can be used by forward ants in their search for good solutions; therefore, the
best solution will be approached gradually. To avoid getting stuck in premature and
sub-optimal solutions, some of the forward ants will explore the state space freely
ignoring the pheromone values.

The main difference between various ant-based systems is the approach taken
to evaluate the solution and update the pheromones. For example, AntNet [CD98]
uses reinforcement learning while CEAS uses the Cross Entropy (CE) method for
stochastic optimization introduced by Rubinstein [Rub99]. The CE method is applied
in the pheromone updating process by gradually changing the probability matrix p
according to the cost of the solutions found. The objective is to minimize the cross
entropy between two consecutive probability matrices pr and pr−1 for iteration r and
r−1 respectively. For a tutorial on the method, [Rub99] is recommended.

The CEAS has demonstrated its applicability through a variety of studies of dif-
ferent path management strategies [HHW08], such as shared backup path protection,
p-cycles, adaptive paths with stochastic routing, and resource search under QoS con-
straints. Implementation issues and trade-offs, such as management overhead imposed
by additional traffic for management packets and recovery times are dealt with using a
mechanism called elitism and self-tuned packet rate control. Additional reduction in
the overhead is accomplished by pheromone sharing where ants with overlapping re-
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quirements cooperate in finding solutions by (partly) sharing information, see [HW10]
for details and examples on application.

In this paper, the CEAS is applied to obtain the best deployment mapping M :
C→ N of a set of components, C, onto a set of nodes, N. The nodes are physically
connected by links used by the ants to move from node to node in search for available
capacities. A given deployment at iteration r is a set Mr = {mn,r}n∈N, where mn,r ⊆C
is the set of components at node n at iteration r. In the CEAS applied for routing the
path is defined as a set of nodes from the source to the destination, while now we
use the deployment set Mr instead. The cost of a deployment set is denoted F(Mr).
Furthermore, in the original CEAS we assign the pheromone values τi j,r to interface i
of node j at iteration r, while now we assign τmn,r to the component set {m} deployed
at node n at iteration r.

In CEAS applied for routing and network management, selection of the next hop
is based on the random proportional rule presented below. In our case however, the
random proportional rule is applied for deployment mapping. Accordingly, during
the initial exploration phase, the ants randomly select the next set of components with
uniform probability 1/|C|, where |C| is the number of components to be deployed,
while in the normal phase the next set is selected according to the random proportional
rule matrix p = {pmn,r}, where

pmn,r =
τmn,r

∑l∈Mn,r τln,r
(2)

The pheromone values τr are updated by the backward ants as a function of the
previous pheromone value τr−1, the cost of the deployment set Mr at iteration r, and
a control variable γr (denoted the temperature) that captures the history of the cost
values such that the total cost vector does not have to be stored. The CEAS function
was first introduced in [HW01], for later extensions, details and examples see [HW10].

3.2 The Component Deployment Algorithm

To build a distributed cooperative algorithm, in contrast to a centralized approach,
we employ the autonomous ant-like agents (denoted ants) of the CEAS method that
cooperate in pursuing a common goal. Ants base their decisions solely on information
available locally at a node they currently reside in. Accordingly, in our logic the
information required for optimization is distributed across all participating nodes, this
being a contributing factor to robustness, scalability and fault tolerance of the method.

In our deployment algorithm ants are emitted from one designated place in the
network, from the so-called ant-nest. When an ant starts its random-walk over the
available nodes it is assigned with the task of deploying the set of components, C. One
round-trip (not necessarily visiting every node, but arriving back at the nest eventually)
of an ant is called an iteration of the algorithm, which is repeated continuously until
convergence or until the algorithm is stopped. During its random-walk the ant selects
the next hop to visit entirely randomly. When arriving at a node the ant’s behavior
depends on if the ant is an explorer or a normal ant. The difference between the two
types of ants is in the method they use to select a mapping, mn ⊂M, for a (maybe
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empty) subset of C at each node n ∈ N they visit. Normal ants decide on whether to
deploy some components at a particular node based on the pheromone database at the
given node, whereas explorer ants make a decision purely randomly, thus enforcing
exploration of the state-space. Explorer ants can be used both initially to cover up
the search space and later, after the system is in a stable state as well to discover
fluctuations in the network and, thus to aid adaptation. The useful number of initial
explorer iterations is depending on the given problem size (e.g. can be estimated
by the number of components in a service). Normal ants, on the other hand focus
entirely on optimizing the mapping (M) iteration-by-iteration using and updating the
pheromone tables.

An important building-block of the algorithm is the cost function applied to evaluate
the deployment mapping obtained by one ant during its search. We denote the
application of the cost function as F(M). The function itself is built in accordance
with the requirements. As discussed in Sect. 2, in this paper we consider load-balancing
and remote cost minimization. Every ant doing its search for a mapping is capable
of sampling load-levels at the nodes visited, thus the execution load imposed on the
nodes in the network can be obtained by each ant as a list of sample values in the form
of

l̂n = ∑
ci∈mn

ei,n ∈ N,m ∈M. (3)

The overall cost function evaluating the mapping obtained in an iteration using Eq. (1)
and Eq. (3) then becomes

F(M) =
N

∑
n=1
|l̂n−T |+

K

∑
j=1

I j f j (4)

where

I j =

{
1, if k j remote
0, if k j internal to a node (5)

is an indicator function for evaluating collaborations between pairs of components.
Optimization of mappings is achieved by gradually modifying pheromone values

aligned to sets of components. Pheromone values are organized into tables and are
stored in every node participating in hosting the service being deployed. We use
bitstring encoding to index the pheromone table, each entry representing a given com-
bination/subset of components, i.e. a flag is assigned to every (unbound) component
in the service model. Thus, the pheromone database has to accommodate 2|C| floating
point entries using this encoding. Normalizing the entries in a node an ant can obtain a
probability distribution of component sets to be mapped at the particular node. Using
CEAS, which is a subclass of Ant Colony Optimization (ACO) algorithms, the optimal
solution emerges in a finite number of iterations once the optimum has been observed,
which does in fact happen with probability close to one in ACO systems.

Indexing of the database based on component set identifiers is illustrated in the
following example. Let us start with a service provided by 4 components, i.e. |C|= 4,
C = {c1,c2,c3,c4}, the database size is 24 = 16. If an ant needs to collect or update
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information e.g. regarding the deployment of the component set {c2,c4}, the set
labelled by the bitstring ′1010′B has to be addressed, which is equivalent to accessing
the ′1010′B = 10th element of the pheromone table at the node the ant resides in. The
lifetime of an ant, which is equivalent to one iteration of the algorithm, contains two
phases. First forward search is conducted during which the ant looks for a deployment
mapping M for the set C visiting arbitrary nodes in the network. Once a complete
mapping M is obtained by the ant the mapping has to be evaluated using the cost
function F(M). Using F the cost of the mapping is obtained using which the ant
updates the pheromone databases in the nodes visited (the forward route has been
stored in the hop-list, H) during forward search during the second phase of its lifetime
called backtracking. Once an ant is finished with backtracking and arrives back to its
nest a new iteration can start and a new ant will be emitted. With convergence of the
(distributed) pheromone database a strong value will emerge indicating the suggested
deployment mapping, while inferior combinations will evaporate. The algorithmic
steps of ants’ behavior are summarized briefly in Algorithm 1.

Algorithm 1 Deployment mapping of the set of components C = {c1, . . . ,c|C|}

1 Select next node to visit, n randomly and add n to the hop-list H = H +{n}.

2 Select a set of components mn ⊆ C according to the random proportional rule
(normal ant), Eq. (2), or in a random manner (explorer ant). If such a set cannot
be found, goto step 1.

3 Update the ant’s deployment mapping set, M = M +{mn}.

4 Update the set of remaining components to be deployed, C = C−mn.

5 If C 6= /0 then goto 1., otherwise evaluate F(M) and update the pheromone
values corresponding to the list of mappings {mn} ∈M going backwards along
H.

6 If stopping criteria is not met then initialize and emit new ant and goto 1.

In the algorithm we presented we have a trade-off between convergence speed and
the quality of the obtained solution. However, during the deployment of services
in a dynamic environment a pre-mature solution, which does satisfy the functional
and non-functional requirements often suffices. In the next section we establish a
centralized, off-line model to evaluate our deployment logic and to form a basis for
cross-validation of the results obtained by simulation of the algorithm.

4. An Integer Program to Validate the Algorithm

To validate the results we obtain via simulation and using various deployment
scenarios we have developed an Integer Linear Program (ILP), which we solve using
regular solver software. In this ILP we take into account the two counteracting
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objectives we presented in Sect. 2 and define a solution variable mi, j that will show
the optimal, i.e. lowest cost mapping of components to nodes.

We start the definition of the ILP with two parameters. First bi, j

bi, j =

{
1, if component ci is bound to node n j,
0, otherwise. (6)

which enables the model to fix some of the mappings to cater for bound components,
if any, in the model of a given service. Second, T

T = b∑
|C|
i=1 ei

|N|
c (7)

that is used to approximate the ideal load-balance among the available nodes in the
network. Beside the binary solution variable showing the resulting mapping, mi, j

mi, j =

{
1, if component ci is mapped to node n j,
0, otherwise. (8)

we utilize two additional variables. One variable for checking whether two components
that communicate via a collaboration, ki, are colocated or not, in variable coli.

coli =

{
0, if cl,ck ∈ ki and cl is colocated with ck,
1, otherwise. (9)

Moreover, another variable, Delta j, for calculating the deviation from the ideal load-
balance among the nodes participating in hosting the components.

∆ j ≥ 0,∀n j ∈ N (10)

The objective function we use in the ILP is naturally very similar to Eq. (4), however
to keep the model within the linearity requirement of the ILP here we use addition.

min
|N|

∑
j=1

∆ j +
|K|

∑
i=1

fi · coli (11)

Having established the objective function we have to define the constraints the solu-
tions are subjected to to obtain feasible mappings. First we stipulate that there has to
be one and only one mapping for all of the components.

|N|

∑
j=1

mi, j = 1,∀ci ∈ C (12)

In addition, the ILP has to take into account that some component mappings might be
restricted in the case of components explicitly bound in the model. Thus, we restrict
the mapping variable mi, j using bi, j.

mi, j ≥ bi, j,∀ci ∈ C,∀n j ∈ N (13)
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Next we introduce two constraints to implicitly define the values of the variable ∆ j
that we apply in the objective function. We use two constraints instead of a single
one to avoid having to use absolute vales (i.e. the abs() function) and thus we avoid
non-linear constraints.

|C|

∑
i=1

ei ·mi, j−T ≤ ∆ j,∀n j ∈ N (14)

T −
|C|

∑
i=1

ei ·mi, j ≤ ∆ j,∀n j ∈ N (15)

Lastly, we introduce constraints, again for implicitly building the binary variable
indicating colocation of components.

mi, j + mk, j ≤ (2− coll),kl = (ci,ck) ∈K,∀ci,ck ∈ C,∀n j ∈ N (16)

mi, j1 + mk, j2 ≤ 1 + coll,kl = (ci,ck) ∈K,∀ci,ck ∈ C,∀n j1,n j2 ∈ N (17)

Based on this definition the ILP can be executed by a solver program and mapping
costs can be obtained by submitting the appropriate data describing any given scenario
corresponding to our general definition of the deployment problem in Sect. 2. The
optimum mapping of components to nodes will be obtained according to the objective
Eq. (11) subject to Eq. (12) – (17).

In the next section we present the example models we used in our simulations and
also evaluate the mapping costs obtained by finding a lower bound using the ILP
presented in this section.

5. Example Scenarios

In this section we present the three example models we simulated and validated the
corresponding results for.

The first example we consider has been investigated, solved and the solutions were
compared to other authors work by Widell et al. in [WN04]. This example originates
from heuristical clustering of modules and assignment of clusters to nodes [Efe82],
which problem is NP-hard. We translate the module clustering and assignment problem
to execution costs and communication costs while the complexity remains NP-hard
even if we only deal with a single service at a time. Fig. 5a shows the first example
set of components and the collaborations between them, it comprises |C|= 10 com-
ponents interconnected by |K|= 14 collaborations. Out of the ten components three
(shaded) are bound to one of the nodes, c2 to n2, c7 to n1 and c9 to n3. The execution
costs of components and communication costs of collaborations are shown as UML
note labels.

The next figure (Fig. 2) shows the single optimal solution of mapping the compo-
nents of the first example to three available nodes, n1..3, i.e. it shows the optimum
mapping M : C→ N. In this optimum cost mapping, the deviation from the total
load-balance (T = 68) among the nodes are 2,−8,7 respectively and the mapping
incurs a communication cost of 100 for the remote collaborations. Thus, this mapping
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Figure 1: Example 1, costs

results in an overall cost value equal to 117. More details are discussed about this
example in [CHH08b].
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Figure 2: Example 1, optimum mapping

The second example we considered is obtained by extending the first setting into a
larger service model and at the same time increasing the number of nodes available
for deployment mapping (Fig. 3). The number of components has been increased to
15, out of which 5 components are bound, more collaborations have been introduced
and one additional node is added to the deployment environment.

This extended example is introduced to examine how our deployment algorithm
behaves with the same type of problem as the computational effort needed increases
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or, in other words, as the solution state-space is extended.
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Figure 4: Example 2, optimum mapping

The next figure, Fig. 4 presents the resulting mapping of components of the second
service model to four equivalent nodes after a solution with optimum cost has been
found.

In the third example the cardinality of C remains the same but the configuration is
changed as well as the number of collaborations. In addition, the number of available
nodes is increased to 6, as shown in Table 1. Due to the even more complex collab-
oration pattern between the components in Example 3 we omit the figure showing the
corresponding model and its optimal mapping to 6 nodes.
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Table 1 also shows the absolute minimum cost values (Optimum cost) in the three
example settings obtained by the ILP presented in Sect. 4. The presented values were
generated by executing the algorithm in the simulation environment 100 times for
each example model. We can see from the resulting solutions that in the first example
our algorithm finds the optimum in 99 simulation runs. The somewhat larger scenario,
Example 2 is more difficult to solve for the algorithm, thus we have a larger deviation
in the mapping costs. The average cost found is slightly above the optimum as well in
this case. However, it is to be noted that the adjective slightly is appropriate here as
by changing the placement of a single component from the optimum configuration
to a near-optimal one increases the costs not only by 1 but significantly more, this
is also the reason for the increased deviation in this case. (In fact, the algorithm has
generally found a variety of three different configurations, the optimum with cost 180
and two sub-optimal configurations with costs 195 and 200, this gave the average of
193 shown in Table 1.

Table 1: Example scenarios

|C| (bound) |K| |N| Optimum cost Sim. avg. Sim. stdev.
Example 1 10(3) 14 3 117 117.21 2.1
Example 2 15(5) 21 4 180 193 9.39
Example 3 15(5) 28 6 274 277.9 5.981

In Example 3 the algorithm managed to obtain solutions with costs closer to the
absolute optimum obtained by the ILP, with less deviation at the same time. The main
cause of this lies in the fact that the collaboration costs in the example are more fine
grained, thus, the algorithm managed to find near-optimum solutions with only slightly
higher costs. The average mapping costs obtained in the 100 runs and the number of
normal-ant iterations our CEAS-based algorithm had to perform are shown in Fig. 5.
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Figure 5: Simulation results for the three examples

The most significant difference for the algorithm in complexity between the original
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example and the extended ones lies in the size of the pheromone database needed. As
the algorithm uses a binary pheromone encoding, in the first example the number of
pheromone entries required is 27 as the number of components free to map is 7. In the
larger examples, however, the pheromone database size increases to 210 in each node,
which results in a theoretical state-space of 4 ·210 and 6 ·210 for CEAS. Correspond-
ingly, in the experiment we applied 2000 explorer-ants for the initial example, but
5000 of them in the larger examples. One iteration of a centralized global-knowledge
logic, such as the ILP in Sect. 4, is not really comparable with one iteration in the
distributed CEAS, which is a tour made by the ant. Nevertheless, the iterations and
cuts required by the ILP while solving the three example settings are shown in Table 2.
The number of required (explorer and normal) iterations in CEAS is naturally higher
than what is required for the ILP with a global overview. However, we advocate that
we gain more by the possibility of a completely distributed execution of our algorithm
and also because of the capability of adaptation to changes in the context, once the
pheromone database is built up after the initial phase. For more on the adaptation
capabilities of CEAS in component deployment problems we refer to [CHH08a] and
[CMHH09].

Table 2: Computational effort needed by the ILP

Example 1 Example 2 Example 3
Simplex iterations 86 495 1075
Branch and cut nodes 0 5 33

6. Closing Remarks

We presented how the deployment of distributed collaborating software compo-
nents can be supported by swarm intelligence and we have introduced our ACO-based
algorithm for obtaining optimal mappings of components to execution hosts. The
software components we consider are described by a model enriched with relevant
costs, in this particular paper with execution and communication costs. The logic we
have developed can be executed in a fully distributed manner, thus, it is free of the
deficiencies most existing centralized approaches suffer from, such as performance
bottlenecks or single points of failure. We have showed that our algorithm is able to
obtain load-balancing among the execution hosts and minimize remote communica-
tion at the same time that constitute two contradictory objectives in the deployment
mapping problem.

The two main contributions of this paper are the ILP model applicable for com-
ponent deployment scenarios and the cross-validation of the results obtained by our
algorithm and the ILP using the three example scenarios presented. We have used
the ILP to find the optimum mappings and a lower bound for the mapping costs
obtained by heuristics. It is difficult, however, to compare execution times or required
iterations of the two different approaches. During service deployment in a dynamic
environment we are often satisfied with pre-mature solutions as long as they adhere to
all the functional and non-functional requirements. ACO-based systems are proven
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to be able to find the optimum at least once with a probability near one, afterwards
convergence to this solution is assured within a finite number of steps. CEAS, the
main cornerstone in our algorithm can be considered as a subclass of ACO algorithms.

As future work we can identify several directions, out of which we are currently
focusing on extending the ILP definition to cater for requirements other than the ones
discussed in this paper, such as dependability aspects. Besides, we will continue
validating the behavior of our deployment algorithm with extended service models
and network scenarios.
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Abstract We look at the well-known problem of allocating software components to compute
resources (nodes) in a network, given resource constraints on the infrastructure and the
quality of service requirements of the components to be allocated to nodes. This problem
has many twists and angles, and has been studied extensively in the literature. Solving it is
particularly problematic when there is extensive dynamism and scale involved. Typically,
heuristics are needed.

In this paper, we present a new breed of heuristics for solving this problem. The
distinguishing feature of our approach is a decentralized optimization framework aimed at
finding near optimal mappings within reasonable time and for large scale. Three different
incarnations of the problem are explored through simulations. For one problem instance,
we also provide exact solutions, and show that our technique is able to find near optimal
solutions with low variance. In the largest example, a public-private cloud computing
scenario is used, where different clouds are associated with financial costs, and we show
that our approach is capable of balancing the load as expected for such a scenario.

Keywords: Service Deployment, Biologically-inspired Systems, Decentralized Optimization

1. Introduction

Many popular web applications and services are currently being deployed in large-
scale data center environments due to the inherent scaling needs of such applications.
Moreover, data center environments may consist of hundreds of thousands of nodes,
and at this scale, there is bound to be a constant flux of topology changes due to
scheduled maintenance and failures, and dynamism due to varying usage patterns
and characteristics of the different applications deployed within the hosting data
centers. Accounting for all the parameters involved in such a system is a challenging
undertaking, and flexible methods are necessary to maintain the desired Quality of



218 COST-EFFICIENT DEPLOYMENT OF DIST. SOFTWARE SERVICES

Service (QoS) levels at acceptable costs. A fundamental problem in this scenario is the
mapping of components1 to nodes within the hosting data center(s), while accounting
for the necessary tradeoffs that characterize the environment and the services to be
deployed. This is what we refer to as the deployment problem.

The main contribution of this work is a bio-inspired, decentralized optimization
technique for solving the deployment problem. The method is a search-based heuristic
aimed at finding near optimal mappings even under harsh network conditions. We
explore several incarnations of this problem through simulations; each at a different
level of granularity and targeting different QoS requirements, as a mean to demonstrate
the flexibility of our approach. For comparison, one instance of the problem is
also solved with a traditional centralized optimization technique that finds the exact
optimum. We show that for three problem sizes, the simulations of our decentralized
approach can still achieve close to the optimal value, with low variance. Note however,
techniques that find the exact optimum fall short as the problem size grows, whereas
our heuristic is shown to scale conveniently to large problem sizes. Moreover, due
to the inherent dynamism that exists in the systems we are targeting, a solution
would quickly become suboptimal. However, our approach is able to rapidly adapt to
changes in the environment, e.g. a network partition/merge event, by recalculating the
deployment configurations, constrained by a threshold reflecting the migration costs.
This ability of our approach is invaluable for deploying services in large-scale data
center networks.

Our decentralized optimization framework is built around the Cross Entropy Ant
System (CEAS) [HW01, HHW08], which is derived from Ant Colony Optimiza-
tion (ACO) [DMC96]. CEAS uses ant-like agents, denoted ants, that can move around
in the network, identifying potential locations where components might be placed, and
leave pheromone trails as a means to facilitate indirect communication about suitable
locations for placement. The CEAS framework requires the definition of a cost func-
tion for the specific optimization problem at hand. The purpose of the cost function
is to evaluate the utility of a given deployment configuration during the optimization
process, eventually leading to the preferred deployment configuration. The proper
selection of these functions is crucial for guiding the search for a deployment mapping
that satisfies the QoS requirements of the service, which can then be deployed using
some execution framework. Essential are also the constraints of the problem; be it
load balancing or a certain availability level.

The remainder of the paper is organized as follows. In the following, we fur-
ther elaborate on the deployment problem and place it in the context of a software
development and deployment cycle. Then in Sec. 1.2, we discuss the complexity
and scalability issues that are facing us in solving large scale deployment problems,
followed by a discussion on how to capture and consider costs and requirements of the
services that are deployed. In Sec. 1.4 we present candidate target environments for
our deployment framework. Cost function design is discussed in Sec. 2, while Sec. 3

1A component is assumed to be any software component that can be placed on a physical compute node, e.g. a building
block of a service or application, or a virtual machine. Herein these concepts are used somewhat interchangeably.
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gives a general introduction to the CEAS framework that we build upon and presents
a general definition of our algorithm. In Sec. 4 three example scenarios are shown:
(i) deployment of collaborating components with communication costs (Sec. 4.1), (ii)
deployment of replicas constrained by dependability requirements (Sec. 4.3), followed
by our approach to mapping virtual machines in a public-private cloud computing
environment (Sec. 4.4). In Sec. 4.5, we present a centralized approach for finding
optimal mappings under certain sets of requirements and validate our results obtained
by the decentralized algorithm. Finally, we review some related research and conclude.

1.1 The Deployment Problem

As described initially, we target the problem of mapping subsets of services to
physical resources, i.e. nodes capable of hosting such services, in an efficient manner
such that the QoS requirements of the services are satisfied. This problem can be
viewed in the context of the software development and deployment cycle as partially
illustrated in Fig. 1, where each layer captures a part of the multifaceted deployment
problem. The execution nodes are shown in the bottom part, whereas the services
to be deployed are modeled at the second layer up. The goal then is to obtain the
mapping M : C→ N between the building blocks of the service (the set C) and the
available nodes (N).

The non-functional requirements of services are captured in the QoS dimensions
layer; these can be issues such as dependability, security, performance, or energy-
saving, all of which contribute to increasing the problem size and complexity. Finally,
on the top layer we have the possible varieties of usage scenarios that can be captured
by enriching the service models with additional usage related information, e.g. arrival
rates for a component that handles user requests.

Figure 1: The multiple dimensions of the deployment problem.
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1.2 Problem Complexity and Scalability Issues

The deployment mapping problem can be formulated as a multi-dimensional bin
packing problem [KLMS84], where each physical node is a bin and each constraint
spans a dimension. The components with their associated resource requirements are
the objects that are to be packed in the bins (nodes) available in the system. Thus,
since bin packing is NP-hard [KLMS84], the deployment mapping problem is also
NP-hard. Even determining the existence of a valid packing is itself a NP-hard
problem [WSVY07]. Moreover, the general module allocation problem has been
shown to be NP-complete [FB89], except for some communication configurations.

Given the complexity of solving the deployment mapping problem, it is to be
expected that it cannot be solved even for moderately large scenarios. And especially
not in realistic scenarios, such as finding efficient mappings in large-scale data center
infrastructures, as the problem size grows exponentially with the number of hosting
nodes and the number of components to be deployed. And also because a multitude of
services are deployed simultaneously, while ensuring proper balance between load
characteristics and service availability at every data center site.

Moreover, mappings found by an algorithm can be affected by a plethora of pa-
rameters during execution, e.g. due to the influence of concurrent services. Also,
introducing dependability requirements for the services results in additional complex-
ity, e.g. due to the use of replication protocols and their need to ensure consistency.
Thus given the problem complexity and for the relevant problem sizes, our only op-
tion is to look for efficient heuristic algorithms instead of seeking to find the exact
optimum.

Furthermore, the heuristic algorithm should also be resilient to dynamics, or specif-
ically it should exhibit some degree of autonomy and adapt to changes in the en-
vironment. Such changes might include mobility of users, node churn, network
disconnection (split/merge), incremental scaling of services, among others. Thus,
our approach to develop an autonomic process for tracking the best solutions in a
dynamic environment is to build on the inherent self-organization properties of the
CEAS framework. This framework facilitates decentralized optimization, avoiding
the need for any centralized information storage and decision making. To cope with
large scale problems however, an efficient data representation (storage) is necessary at
each node participating in the decentralized algorithm. We discuss and evaluate three
different data representations in Sec. 3.3.

1.3 Costs and Constraints

Given a specific deployment problem, our optimization technique, or deployment
logic, must account for a range of parameters representing the QoS requirements and
constraints of the services being deployed. In this section we describe how these
requirements and constraints are captured and give a few examples.

The QoS requirements are captured at design time and specified in a collaboration-
oriented design model. The requirements may represent qualities such as security,
performance, availability, portability, etc. In fact, our deployment logic can capture any
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kind of system property, as long as a suitable cost function can be defined for it. Fig. 2
shows a sample collaboration diagram, enriched with two cost function attributes (QoS
requirements), namely execution and communication cost. The execution cost capture
the CPU requirement of a component to be deployed, whereas the communication
cost reflect its network usage requirement.

Comp jComp i Collab

Comm.
cost = 15

Exec.
cost = 30

Exec.
cost = 20 aa

aa

aa

k

Figure 2: A collaboration diagram with non-functional requirements.

A service may constrain the placement of its components to specific nodes by means
of a binding, e.g. a database server may have to be assigned to a specific node. Such
a binding generally reduces the search space. However, bound components are still
accounted for in the cost of a computed deployment mapping.

Our approach is designed as a continuous optimization process in order to facilitate
rapid response to dynamism; hence reconfiguration of initial component placements
are expected. However, to avoid migrating components for marginal cost savings, the
cost of migration must be accounted for; herein we use a simple threshold scheme.

The three example scenarios presented in Sec. 4 use different requirements. The
main overall aim is to load-balance execution cost across the available nodes, while
accounting for all services running in the environment, remote communication costs,
and dependability of the service being deployed. The second scenario introduces
replica management rules to enforce cluster- and node disjointness. In the last example,
we extend the set of requirements to include financial costs of using different clusters
for placement in a public-private cloud computing setting. Without loss of generality,
all cost functions are formalized as minimization problems, i.e. the less the cost the
better the solution.

1.4 System Model and Target Systems

This section describes the system model and gives some notation, followed by a
brief description of potential target systems for which our deployment logic will be of
relevance.

We consider the elementary building blocks (components) of a service as the unit to
be deployed. Each component has well-defined interfaces and communicates by means
of message exchange. A service is defined as the collaboration among its constituent
components, which may be distributed across a network of nodes. This network of
nodes offers an execution environment for the services, and can be organized into
different network topologies, e.g. multiple clusters and/or clouds, depending on the
usage scenario. Our optimization technique does not facilitate any means to find the
optimal topology, but instead will find near optimal placements of components within
a given topology. It will however, leverage knowledge about the topology in terms of
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constraints and requirements, e.g. specifying peak load scenarios and dependability
requirements. Changing the execution context might dictate addition or removal of
service instances.

Figure 3: Example target network

We model the system as a collection, ni ∈ N, of interconnected nodes. N is partitioned
into a set D of clusters, as illustrated by d1 and d2 in Fig. 3. Clusters are usually
formed according to geographical location or otherwise distinct administrative region.
Let S denote the set of services to be deployed. The objective from Sec. 1.1 is thus to
deploy a set of components C providing service Sl ∈ S, and likewise for all services.

As shown in Fig. 3, every node has an execution runtime used to support installation,
optimization and execution. Furthermore, for every service at least one instance of
the CEAS, referred to as species, is run. CEAS’s autonomous agents searching for a
deployment of a given service are shown in different colors in Fig. 3. For each of the
species at least one designated node has to be present, serving as a home location for
the agents, called the nest. A node also maintains information about the goodness of
mappings in an information table (called the pheromone table, for details see Sec. 3.3),
and capacity for installing one or more components of arbitrary services.

There exists a range of software execution frameworks and middleware that are
potential candidates for integration with our deployment logic. For example, in case
of collaborating software components one such candidate is the MUSIC middleware
platform [RBL+08] that supports some self-* properties and component based soft-
ware. When dependability aspects are of relevance, fault tolerant and self-repairing
systems such as the DARM platform [MG08] can take advantage of our deployment
logic. Finally, we mention a cloud computing scenario, where the deployment logic is
used to optimize placement of VM instances. Candidate platforms include, e.g. Ama-
zon EC2 [LLC] and VMware. Nevertheless, the aim of the deployment logic is to be
agnostic to the execution environment, i.e. optimization of the mappings can be done
based on service models, regardless of the underlying platform. Example scenarios
relevant to these execution environments will be presented in Sec. 4, followed by an
evaluation based on simulations. Having introduced our targeted architectures, we
now shift our attention to the construction of cost functions and how they are used
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throughout the optimization process. But first, we summarize our nomenclature in
Table 1.

Table 1: Nomenclature

Shorthand Usage Size Description
S Sl ∈ S |S| Set of services to deploy
C ci ∈ C |C| Set of components in Sl
K k j ∈K |K| Set of collaborations in Sl
N n ∈ N |N| Set of all existing nodes
D d ∈ D |D| Set of all existing clusters
M mn,r ∈Mr |M|=|C| Mapping C→ N in iteration r
D d ∈ Dr |D| ≤ |D| List of clusters used in M
H n ∈ Hr |H| ≤ |N| Hop-list of nodes visited
L ln,r ∈ Lr |L| = |H| Load samples taken in iteration r

2. The Cost Function

We now discuss the construction of cost functions for our optimization technique.
A cost function, denoted F(), aims to evaluate the utility of a certain deployment
configuration, and is used in each iteration of CEAS. Cost function design constitutes
an important part of our work, and it is crucial to our technique to capture all aspects
of the optimization problem. It has significant influence on the quality of the solutions
and on the convergence rate. Recent work on autonomic computing also uses utility
functions [KD07], however, our decentralized approach demands more sophisticated
functions due to lack of global knowledge at the decision logic. Within the application
scenarios considered the cost values that describe a given deployment are to be
minimized, i.e. the objective becomes min F().

The cost function used by our technique is configured as a combination of several
functions, typically one for each requirement/constraint dimension. Thus, the difficulty
of efficient design is multifaceted. One is to find the appropriate granularity for each
requirement/constraint dimension of a service. Furthermore, ensuring fast convergence
dictates keeping the functions as simple as possible, yet the output of the functions must
be fine grained enough to distinguish between two significantly different mappings. In
some cases, an abundance of possible mappings exists with different but very similar
qualities, which may lead to a non-linear cost function. Non-linearities can render their
evaluation computationally expensive, causing a significant slow down in execution
of the logic. Particular care has to be taken to weld components of the cost function
together yielding a single function that is computationally effective and, at the same
time, represents all the QoS requirements weighted by their importance. To achieve
this the most common combinations are multiplicative or additive combination of
cost function components. We begin with a simple function that uses some global
knowledge and considers deployment of a single service and then extend the function
gradually.
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2.1 Load-balancing and Communication Costs

In the first cost function, we consider only execution and communication costs, and
we use this to build more complex functions. Assume the deployment logic has access
to a service model specifying execution costs, ei for each component ci ∈ C, and
communication costs, f j for each collaboration k j ∈K. The total offered execution
load for a given service is then ∑

|C|
i=1 ei. Hence, the average load T in a network N

becomes

T =
⌊

∑
|C|
i=1 ei

|N|

⌋
(1)

To quantify remote communication costs we first introduce the indicator function I( j),
where I( j) = 1 if collaboration k j is remote and I( j) = 0 if k j is internal to a node.
That is, we assume the cost of node internal communication is negligible (I( j) = 0),
and thus only consider the execution cost needed by these components, whereas for
remote communication both costs are accounted for. To determine which collaboration
k j is remote the set of mappings, M is used. Given I( j), the remote communication
cost, Ω(M), covering all collaborations of the service is simply the sum

Ω(M) =
|K|

∑
j=1

I( j) · f j (2)

Thus, the combined cost function becomes

F1(M) =
|N|

∑
n=1
|l̂n−T |+ Ω(M) (3)

where l̂n, n = 1 . . . |N| represent CPU load samples, and M is the mappings to evaluate.
That is, load samples describe the execution load impact of the components mapped
to a given node n, i.e. ∑i ei, for ∀i where ci→ n.

2.2 Multiple Services and Eliminating Global Knowledge

So far we covered QoS requirements captured in the modeling phase of a single
service. Next, we extend the function to multiple services and eliminate the need for
global knowledge.

Finding T in (3) requires global knowledge of all the services deployed simultane-
ously. To eliminate the need for this global knowledge, we simply replace T with a
set of load samples ln ∈ L. To capture this notion of load sampling, we introduce a
reservation mechanism in the optimization process. When components of a service are
mapped to a node ni, resources equivalent to the weights of the corresponding com-
ponents will be reserved; the reservations are maintained in the actual nodes. CEAS
can use this mechanism to estimate the resource usage on nodes, and to facilitate
interaction between the different species. Agents in CEAS can then sample the current
reservations on a node, and use this to evaluate the cost of a mapping involving that
node. Samples that would exceed the capacity of a node are quickly outranked by
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better solutions as a high penalty is assigned to infeasible mappings. To keep the
resource reservations current, we also add a timestamp-based eviction mechanism to
prevent stale reservations.

To further improve scalability, only a portion of the network is considered, repre-
sented by the hop-list H, such that |H| ≤ |N|; the hop-list correspond to the set of
nodes visited to obtain load samples. Thus, the upper bound of the first summation in
(3) is reduced to |H|. In practice, this means that we are able to achieve near-optimal
results without having to sample all |N| nodes in the network. This sampling scheme
is applied to our example scenarios in Sec. 4.2-4.4.

To enable simultaneous deployment of multiple services, one species is run for each
service. These species interoperate to obtain a more holistic view of their environment.
To facilitate this cooperation, each species store information at participating nodes.
The objective of each species is to find a satisfactory mapping for the components of
its service, while accounting for services being deployed concurrently.

Formulating a cost function partly depends on the parameters used; we use the
deployment mappings in M and the load samples L. We reformulate the cost function
as a multiplicative function instead of the additive version, presented in (3), as follows
in (4). For more on experiments with additive and multiplicative functions we refer
to [CMHH09].

F2(M,H,L) =
[

∑
∀n∈H

C0[n]
]
· (1 + ω ·Ω(M)) (4)

where ω is a scaling parameter for Ω(M). F2(M,H,L) has a component, Ω(M)
identical to (2), incorporating the communication costs individually for each service.
Function C0[n], defined in (5), quantifies the node local costs for node n. Samples are
obtained over a subset H ⊆ N. This function targets load balancing among nodes.

C0[n] =
(L[n]

∑
i=0

1
Θ0 + 1− i

)2
(5)

where Θ0 is the sum of load samples Θ0 = ∑∀n∈H L[n]. The first term in (4) counteracts
the term for communication costs, Ω(M). The effects of these two counteracting terms
can be balanced using the scaling parameter ω . The quadratic nature of C0 allows
shifting focus from minimizing the communication costs to load balancing.

2.3 Dependability Rules

We now turn our attention to dependability requirements; each component of a
service may be replicated for fault tolerance and/or load-balancing. We also refine our
view of the network by introducing clusters of nodes, D. Each cluster may represent
separate geographic sites. In this context, the aim of the deployment logic is to satisfy
the dependability requirements specified in the service model and obtain an efficient
mapping in the network, for an example see Sec. 4.3.

To support this scenario, the cost function must also accommodate the additional
requirements. These requirements are specified as a set of dependability rules, denoted
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Φ, that constrain the minimization problem as min F() subject to Φ. We define Φ

with the aid of two mapping functions (that apply to a given service k).

DEFINITION 1 Let fi,d : ci→ d be the mapping of replica ci to cluster d ∈ D.

DEFINITION 2 Let gi : ci→ n be the mapping of replica ci to node n ∈ N.

The first rule, φ1 requires replicas to be dispersed over as many clusters as possible,
aimed at improving service availability despite potential network partitions. We
assume that network partitions are more likely to occur between cluster boundaries.
More specifically, replicas of a component should be placed in different clusters. If
the replication degree exceeds the number of available clusters, at least one replica
should be placed in each cluster. The second rule, φ2, simply prohibits collocation of
two replicas on the same node. Formally,

RULE 1 φ1 : ∀d ∈ D,∀ci ∈ C : fi,d 6= fu,d ⇔ (i 6= u)∧|C|< |D|
RULE 2 φ2 : ∀ci ∈ C : gi 6= gu ⇔ (i 6= u)

Let Φ = φ1∧φ2 be the set of dependability rules considered. Note that, prohibiting
collocations by φ2 is contradictory to minimizing remote communication. Thus, when
considering dependability we omit communication costs, e.g. in Sec. 4.3 and 4.4. To
cater for these new rules, the number of utilized clusters, referred to as |D|, is added
as a parameter to the cost function. Several combinations of reciprocal and linear
functions were evaluated in [CMHH09]. The function that gave the best results is
a combination of a reciprocal term targeting φ1 – using |D|, and the load-balancing
function in (5), applied in two different ways. First, we redefine (5) applicable for
each node n – previously used solely for load-balancing – to cater for φ2 as well. The
redefined function, (6) is applied in two different ways depending on the parameter
x ∈ {0,1}. Cx is a list of values, containing one element for each node covered in an
iteration of CEAS (listed in H).

Cx[n] =
(ϑx[n]

∑
i=0

1
Θx + 1− i

)2
(6)

For x = 1, load samples L are used, accounting for all concurrently executing services
on the nodes sampled in L. x = 0 in turn represents solely the mappings, M, taking
into account the load imposed by the components that are part of a given service.
The two usages differ in the upper-bound of the summation and the constant in the
denominator, ϑx and Θx respectively, defined in (7) and (8).

ϑx[n] = |mn| ·w + x ·L[n] for x ∈ {0,1} (7)

Θx = ∑
∀n∈H

ϑx[n] for x ∈ {0,1} (8)

Θx represents the overall execution load of one service (x = 0) or all services (x = 1).
Above, we assume that all replicas have the same weight, denoted w, hence their load
can be assessed by multiplying with the number of replicas mapped to a given node,
|mn|. Accordingly, it is ϑx where parameter M of the cost function is used in this



APPENDIX: A Bio-inspired Method for Distributed Deployment of Services 227

setting. This definition can easily be changed to support individual replica weights.
In summary, Θ0 is the total processing resource demand of one service, whereas
Θ1 accounts for the added load of replicas of other concurrent components. In L
we account only for those instances that are mapped to the nodes covered in a given
iteration (given in H), and as such have reserved processing power for themselves. This
way, the list Cx[n] provides a quadratic approximation of the share of load associated
with each node as experienced by CEAS, an approximation only as CEAS does not
have an exact global overview over the total offered load. Thus, the overall cost
function used for dependability becomes

F3(D,M,H,L) =
1
|D|
· ∑
∀n∈H

C0[n] · ∑
∀n∈H

C1[n] (9)

On the one hand, C0 applies solely to replicas of one service, this way penalizing the
violation of φ2, or in other words favoring mappings where replicas are not collocated.
On the other hand, C1, is used for general load-balancing and, as such, it takes into
account load imposed on nodes by the other services in the network. Using these
separate terms we are able to smoothen the output of the cost function used in each
iteration, purposefully easing convergence by making the solution space more fine
grained, i.e. simplifying differentiation between very similar deployment mappings
with nearly the same cost. Scenarios involving dependability are presented in Sec. 4.3.

2.4 Cluster Costs

In the next scenario, we assume there are different financial costs associated with
using different clusters, see for example Sec. 4.4. Hence, we now wish to find
deployment configurations that can also minimize the financial cost, while maintaining
load balancing and the dependability requirements. To facilitate this, we extend the
function in (9) with another term. First, let Λ be the financial cost of using the nodes
mapped in M, defined as Λ = ∑∀ni∈M |ni|, where |ni| is the financial cost of using node
ni ∈M. Thus our new function becomes

F4(D,M,H,L,z) = F3(D,M,H,L) · (1 + g(z)), (10)

where g(z) comes in two variants using a scaling parameter z and Λ

g(z) =

{
z ·Λ linear weighting
1− e−(z·Λ)2

exponential weighting
(11)

Setting z = 0 eliminates the financial costs, returning to the original function in (9).
The choice of z depends on the cost of using the different clusters. The two alternatives
in (11) represent a linear and an exponential increment in financial costs, when z > 0.
When applying the more fine-grained exponential weighting to the cost function, we
expect to observe more balanced mappings, avoiding under-utilization or overloading
of clusters.

Next we present our proposed deployment logic, along with the CEAS optimization
method and associated algorithms. The cost functions presented in this section are
used in these algorithms to evaluate the deployment configurations.
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3. The Deployment Logic

To solve the deployment mapping problem presented in Sec. 1.1 we use the CEAS
method introduced by Helvik and Wittner [HW01]. CEAS is an agent-based optimiza-
tion framework, in which the agents’ behavior is inspired by the foraging patterns of
ants. The key idea in CEAS is to let many agents, denoted ants, search iteratively for
the solution to a problem taking into account the constraints and a predefined cost
function. Every iteration consists of two phases. In the forward search phase, ants
search for a possible solution, resembling the search for food in real-world ants. The
second phase is called backtracking, in which ants – after evaluating the solution found
during forward search – leave markings, called pheromones, that are in proportion to
the quality of the solution. Pheromones are then distributed at different locations in the
search space and can be used by forward ants in their search for improved solutions.
Therefore, the best solution will be approached gradually. To avoid getting stuck in
premature and sub-optimal solutions, some of the forward ants explore the search
space, ignoring the pheromones. There is a principal difference, however, between the
various existing ant-based systems and the approach taken in CEAS in evaluating the
solution and in pheromone updates. CEAS uses the Cross Entropy (CE) method for
stochastic optimization introduced by Rubinstein [Rub99]. The CE method is applied
during the pheromone updating process, gradually changing the probability matrix
pr according to the cost of the solution found in iteration r. Then, the objective is to
minimize the cross entropy between two consecutive probability matrices pr and pr−1.
For a tutorial on the method, [Rub99] is recommended. Next we present the CEAS
method in more detail, followed by a generalized version of our deployment algorithm,
which was applied in the evaluations in Sec. 4. Minor algorithmic differences between
the different scenarios are also discussed.

3.1 The Cross Entropy Ant System

We apply CEAS to obtain efficient deployment mappings in the form M : C→ N
between sets of components, C, and sets of nodes, N. Ants move between nodes
across network links in search for nodes with hosting capacities. The cost of mappings
is evaluated using the cost functions discussed in Sec. 2, i.e. applying them as F(M)
in every iteration of CEAS. The pheromone values, τmn,r, in CEAS for deployment
mapping are assigned to the component set m deployed at node n at iteration r. The
random proportional rule (rpr) in (12) is used to select deployment mappings. That
is, during normal forward search, a set of components is selected according to the rpr
matrix pmn,r

pmn,r =
τmn,r

∑l∈Mn,r τln,r
(12)

A temperature parameter γr, controls the update of the pheromone values and is chosen
to minimize the performance function

H(F(Mr),γr) = e−F(Mr)/γr (13)
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which is computed for all r iterations such that the expected overall performance
satisfies

h(pmn,r,γr) = Epr−1(H(F(Mr),γr))≥ ρ (14)

Epr−1(X) is the expected value of X s.t. the rules in pr−1, and ρ is a search focus
parameter close to 0 (typically 0.05 or less). Finally, a new updated set of rules, pr, is
determined by minimizing the cross entropy between pr−1 and pr with respect to γr
and H(F(Mr),γr).

To avoid centralized control and synchronized batch-oriented iterations the cost
value F(Mr) is calculated immediately after each sample, i.e. when all components
are mapped, and an auto-regressive performance function, hr(γr) = βhr−1(γr)+(1−
β )H(F(Mr),γr) is applied. This function is approximated by

hr(γr)≈
1−β

1−β r

r

∑
i=1

β
r−iH(F(Mr),γr) (15)

where β ∈ 〈0,1〉 is a memory factor, used for weighting (geometrically) the output of
the performance function. The temperature γr in turn is determined by minimizing it
subject to h(γ)≥ ρ . The temperature furthermore is equal to

γr = {γ | 1−β

1−β r

r

∑
i=1

β
r−iH(F(Mi),γ) = ρ} (16)

which is a complicated (transcendental) function that is both storage and processing
intensive since all observations up to the current sample, i.e. the entire mapping cost
history {F(M1), · · · ,F(Mr)} must be stored, and weights for all observations have to
be recalculated [HW01]. This can be a prohibitively large resource demand, especially
in online nodes. As a resolution we assume, given a β ≈ 1, that the changes in γr
are typically small from one iteration to the next, which enables a first order Taylor
expansion of (16) as follows

γr = br−1+F(Mr)e−F(Mr)/γr−1

(1+ F(Mr)
γr−1

)e−F(Mr)/γr−1 +ar−1−ρ
1−β r
1−β

(17)

where a0 = b0 = 0 and γ0 =−F(M0)/ lnρ . Furthermore,

ar← β (ar−1 +(1 + F(Mr)
γr

)e−
F(Mr)

γr )

br← β (br−1 + F(Mr)e−
F(Mr)

γr )
(18)

where the performance function, (13), is adopted. The pheromone values in CEAS
are a function of the entire history of mapping cost values, hence CEAS has what is
denoted a search history dependent quality function [Z+04]. Updates to the pheromone
values are made by applying the performance function, (13), combining the last cost
value F(Mr) and the temperature γr, calculated by (17). Pheromones are updated as
follows.

τmn,r =
r

∑
k=1

I((m,n) ∈Mk)β ∑
r
x=k+1 I((m,·)∈Mx)H(F(Mk),γr) (19)
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The memory factor, β , supplies geometrically decreasing weights to the output of
the performance function, enabling evaporation of pheromones. The exponent of β

is somewhat complex since ants during backtracking do not update all nodes in the
network, only those nodes that were visited during the preceding forward phase. The
exponent in (19) represents the number of ants that have updated node n between
time-step r and k when a mapping Mk was found, while r− k is the total number of
updates in the system, i.e. total number of ants that returned between time-step r and k.
Hence r− k ≥ ∑

r
x=k+1 I((m, ·) ∈Mx). However, as for (16), excessive processing and

storage requirements also apply for (19). A (second order) Taylor expansion of (19) is
appropriate, giving

τmn,r ≈ I((m,n) ∈Mr)e−
F(Mr)

γr + Amn +

{
−Bmn

γr
+ Cmn

γ2
r

1
γr
< Bmn

2Cmn

− B2
mn

4Cmn
otherwise

(20)

where

Amn← β (Amn + I((m,n) ∈Mr)e−
F(Mr)

γr (1 + F(Mr)
γr

(1 + F(Mr)
2γr

)))

Bmn← β (Bmn + I((m,n) ∈Mr)e−
F(Mr)

γr (F(Mr)+ F(Mr)
2

γr
))

Cmn← β (Cmn + I((m,n) ∈Mr)e−
F(Mr)

γr (F(Mr)
2

2 ))

(21)

The initial values for (21) are Amn = Bmn = Cmn = 0 for all (m,n). For a stepwise
explanation of the Taylor expansion and how it is applied we refer to Appendix A
in [Wit03]. Further improvements in the scalability of CEAS are described in [HW10].

3.2 The Deployment Algorithm

In this section, we present our general deployment algorithm and explain how it
is executed. First, the task of obtaining deployment mappings for a given service is
assigned a species – a given type – of ants via the service model that can be interpreted
by the logic. The service model contains the set of components, C, to be mapped.
Ants are emitted (cf. Algorithm 1) continuously and select nodes to visit depending
its type. There are two types of ants, explorer and normal ants. Normal ants select
a subset of C (can be /0) at every node they visit based on the content of the local
pheromone table at the node, whereas explorer ants select a subset based on a random
decision, ignoring the pheromones. The selections made by the ant are stored in M,
and carried along with the ant; they represent a deployment mapping made during one
iteration of the algorithm.

Initially, only explorer ants are used to explore and cover a significant portion of the
mapping problem space by random sampling. The length of initial exploration depends
on the problem size, in terms of network size and number of services. After initial
exploration, the majority of ants are normal ants, while a smaller fraction are explorers,
typically 5-10 percent. This continued exploration is meant to capture fluctuations
in the network, e.g. new nodes connecting, and thereby improve responsiveness to
dynamism in the environment. The normal ants try to find an optimal mapping.
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We also distinguish between two phases in one iteration of the algorithm. In
every iteration the ant starts with forward search and completes the iteration with
backtracking. During forward search the ant obtains a mapping M, i.e. a suggested
deployment for the service, which can then be evaluated by F(M). This ends the first
phase and backtracking can start, which consists of revisiting the nodes visited in
the first phase – according to the hop-list H – and updating the pheromone databases
in those nodes. This ends an iteration and a new ant can be emitted, starting a new
iteration of the algorithm, unless a stopping criteria is met. Usually however, the
algorithm will continue to explore the network for improved mappings; enabling
adaptation to changes (reconfiguration) in the execution context.

Generally, we have a trade-off between convergence speed and solution quality.
Nevertheless, while deploying services in a dynamic environment, a premature solution
that satisfies both functional and non-functional requirements often suffices. ACO
systems have been proven to find the optimum at least once with a probability close
to one, and after that convergence to the optimum is secured in a finite number of
iterations [SD02]. Since CEAS can be considered as a subclass of ACO the optimal
deployment mapping will eventually emerge.

Algorithm 1 Code for Nestk corresponding to service Sl at any node n ∈ N
1: Initialization:
2: r← 0 {Number of iterations}
3: γr ← 0 {Temperature}

4: while ∞ {Stopping criteria can be applied here}
5: M← antAlgo(l,k) {Emit new ant for service l from Nest k, obtain M}
6: update(availableClusters) {Check the number of available clusters}
7: if splitDetected() ∨ mergeDetected()
8: release(Sl) {Delete existing bindings for all instances ci ∈Cl}
9: if Φ(M,availableClusters)

10: bind1(M) {Bind one of the still unbound instances in Cl}
11: r← r + 1 {Increment iteration counter}

Improved dependability of the approach can be obtained by means of replicated ant
nests. The same ant species may be emitted from multiple nests, providing resilience
to node failures affecting the node hosting a nest. Note that, this nest replication does
not lead to flooding of the network with ants, as the rate of ant emission in a stable
network can be divided equally among nests. Moreover, ants emitted from different
nests, but associated with the same service, will operate on the same pheromone table
entries in the nodes they visit. During execution of CEAS, synchronization between
nests is not necessary. However, a primary nest must make the final deployment
decision, triggering physical placement of the components.

In contrast to CEAS used for routing, where the temperature is stored in the
destination node, our CEAS implementation has no notion of destination for the
deployment mapping. Instead a mapping, M, is distributed over a set of nodes. Yet,
ants are able to find the same mapping M, while visiting the same set of nodes, possibly
in a different order, and making the same mapping decision. To provision for this
capability, ants returning to their nest at the end of the backtracking phase, will pass
on the temperature parameter to their immediate successor ants.
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Algorithm 2 Ant code for mapping service Sl

1: Initialization:
2: Hr ← /0 {Hop-list; insertion-ordered set}
3: Mr ← /0 {Deployment mapping set}
4: Dr ← /0 {Set of utilized clusters}
5: Lr ← /0 {Set of load samples}

6: function antAlgo(r,k)
7: γr ← Nestk.getTemperature() {Read the current temperature}
8: foreach ci ∈ C {Maintain bound mappings}
9: if ci.bound()

10: n← ci.boundTo() {Jump to the node where this comp. is bound}
11: n.reallocProcLoad(Sl ,ei) {Allocate processing power needed by comp.}
12: ln,r ← n.getEstProcLoad() {Get the estimated processing load at node n}
13: Lr ← Lr ∪{ln,r} {Add to the list of samples}

14: while C 6= /0 {More instances to map}
15: n← selectNextNode() {Select next node to visit}
16: if explorerAnt
17: mn,r ← random(⊆ C) {Explorer ant; randomly select a set of comps.}
18: else
19: mn,r ← rndProp(⊆ C) {Normal ant; select comps. according to (12)}
20: if {mn,r} 6= /0, n ∈ dk {At least one comp. mapped to this cluster}
21: Dr ← Dr ∪dk {Update the set of clusters utilized}
22: Mr ←Mr ∪{mn,r} {Update the ant’s deployment mapping set}
23: C← C−{mn,r} {Update the set of replicas to be deployed}
24: ln,r ← n.getEstProcLoad() {Get the estimated processing load at node n}
25: Lr ← Lr ∪{ln,r} {Add to the list of samples}

26: cost← F(Dr,Mr,Hr,Lr) {Calculate the cost of this given mapping}
27: γr ← updateTemp(cost) {Given cost, recalculate temperature according to (16)}
28: foreach n ∈ Hr.reverse() {Backtrack along the hop-list}
29: n.updatePheromone(mn,r,γr) {Update pheromone table in n}
30: Nestk.setTemperature(γr) {Update the temperature at Nestk}

We clearly distinguish between the notions of component mapping, binding and
deployment. The mapping M is a variable list constantly optimized, iteration by
iteration by the logic only visible internally to the algorithm. When an instance is
bound to a node that means that the particular mapping for that instance is not changed
anymore by the ants until that binding is erased again. Lastly, by deployment we refer
to the physical placement and instantiation of an instance on a node, which is triggered
after the mapping M for the given service has converged to a satisfactory solution.
The latter property ensures that there is no undesirable fluctuation in the migration of
replicas using our method.

Improving convergence is the concept of binding of components, which allows
nests to fix one instance in the latest mapping M obtained by the ants, if some condition
applies. For example, we have a condition that checks if the mapping M satisfies Φ

as condition of a bind event. After a bind ants for the same service do not change
the fixed mapping in subsequent iterations and new searches will be conducted for
the remaining instances only. Importantly however, bound instances are also taken
into account when the cost of the total mapping is evaluated. Should a split or a
merge event occur in the network these bindings are erased in the ant nest and the
total amount of instances will be taken into consideration in the following searches. In
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Algorithm 1 and Algorithm 2 we present the version of the deployment algorithm that
uses binding as well as guided random hopping (Algorithm 3), which we discuss next.

First, an ant visits the nodes, if any, that already have a bound instance mapped
to, in order to maintain these mappings. These will also be taken into account when
the cost of the total mapping is evaluated. The pheromones corresponding to bound
mappings will also be updated during backtracking. Ants allocate processing power
corresponding to the execution costs of the bound replicas, derived from the service
specification. This first phase of an ant’s tour is denoted maintenance. After this phase,
ants turn to guided random hop-selection.

The selection of the next node to visit, in contrast to e.g. ant-based routing algo-
rithms, is independent from the pheromone markings laid by the ants. Pheromone
tables are used only for selecting components or replicas to map to nodes. The ad-
vantage of using the guided selection shown in Algorithm 3 as opposed to a pure
random walk lies in that with the proper guidance, the frequency of finding an efficient
mapping is higher. In case of replica management, for example, idea is that at first
the next node is selected from a cluster that has not yet been utilized until all visible
clusters are covered, leading to better and faster satisfaction of φ1 (see Sec. 2). Then,
next hop selection continues with drawing destinations from the set of nodes not
yet used in the mapping. This can be done by checking with the variable M, before
reverting to totally random drawing.

Algorithm 3 Next-hop selection procedure for an ant
1: function selectNextNode() {Guided random jump}
2: if H = N {All nodes visited}
3: n← random(N) {Select candidate node at random}
4: else
5: if D = D {All available clusters utilized}
6: n← random(N \M) {Select a node that has not been used yet}
7: else
8: di← random(D\D) {Select a cluster not yet used}
9: n← random(di) {Select a node within this cluster}

10: H← H ∪{n} {Add node to the hop-list}
11: return n

The guided hop-selection algorithm can be used to different extents, i.e. in case of
simple settings without replication management where the network is not partitioned
into clusters this function simply can be reverted to random drawing, e.g. the scenarios
presented in Sec. 4.1 and 4.2. Whereas when replication is present and dependability
rules, Φ, have to be satisfied, the guidance and taboo-listing can be turned on. Next,
we discuss how the data in pheromone tables can be represented efficiently.

3.3 Encoding Pheromone Values

Optimization governed by the cost function starts with aligning pheromone values
with the sets of deployed components and defining the structure of the pheromone
database for the ants. With the underlying set of nodes each ant will form |N| discrete
sets from the set of available components (C) that need to be deployed and will
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evaluate the outcome of that deployment mapping at the end of each iteration. In the
simplest encoding, we assign a flag to each of the component instances and build a
bitstring for a service of size 2|C|. This way a single pheromone database instance
located at a node becomes equal in size to the number of possible combinations for
forming a subset of C. After normalizing the pheromones in a node we can observe
the probability distribution of component sets mapped to that particular node by the
ant system. Eventually, after convergence the suggested solution emerges in the dis-
tributed pheromone database with probability near to one.

In case of a normal ant the selection process for selecting a set of instances to
map to a node depends on the form of the pheromone tables, in particular on how
the pheromone values are encoded. Appropriate solutions can be found using dif-
ferent encodings, however, there are differences in terms of convergence times and
solution quality. Efficient encodings are required for scalability of the logic as well.
In [CMH09] we proposed and evaluated three different pheromone encodings. Gener-
ally, pheromone tables can be viewed as a distributed database with elements located in
each node available in the network considered for deployment. Entries in the database
have to be able, on one hand to describe arbitrary combinations of components or
replicas. On the other hand, as the distributed database consumes some memory in
every node – and the required memory grows both with the amount of services de-
ployed (|S|) and with the sizes of the services (C) –, the size of this database is crucial
for scalability. We wish accommodate as many as possible services, thus we have to
efficiently manage the memory need, which we can directly influence by choosing an
appropriate pheromone encoding. Beside the storage needs an individual ant agent
has to browse through the pheromone entries during its visit to a node. Clearly, a
more compact pheromone database helps speeding up execution of the tasks it has
to perform. The different encodings we proposed and their corresponding sizes are
shown in Table 2.

Table 2: Three pheromone encodings for a service with |C| instances

Encoding DB size in a node Encoding example w/ |Cl |= 4

bitstring 2|Cl | [0000]b . . . [1111]b
per comp. 2 · |Cl | [0/1]; [0/1]; [0/1]; [0/1]

# replicas |Cl |+ 1 [0] . . . [4]

The first encoding, called bitstring, is the largest as it holds a single value for
all possible combinations of replica mappings in every node, which can result in
prohibitively large memory need. For example, in case of 20 components per service
this encoding leads to 220 pheromone values, which by using 4 byte long floating point
numbers would require 4 MB of memory for each of such services at every node. To
reduce the table size we can apply simpler bookkeeping taking into account solely
the number of replicas mapped to a given node, shown in # replicas. This is the most
compact pheromone entry encoding, however, the tradeoff is that it cannot distinguish
between replicas in a service specification, thus it can only be applied if there is no
need to distinguish between component replicas, e.g. due to equally sized replicas. As
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a good compromise in between we have developed the per comp encoding that results
in no information loss, while still being linear in size. The per comp encoding uses
one distinct pheromone entry for every instance indicating whether or not to deploy
them at a given node. The slight disadvantage is that ants arriving at a node have to
decide on the deployment mapping of each replica, one-by-one reading the multiple
pheromone entries corresponding to the elements of the service (one separate table
element for each). Nevertheless, this encoding provides the necessary reduction in
database structure size for allowing scaling up to larger amounts of services and larger
service sizes.

In the following, examples are presented where CEAS and the deployment logic is
applied in different scenarios.

4. Example Scenarios

To demonstrate the deployment mappings that can be obtained using our deploy-
ment logic 4 different scenarios are presented in the subsequent subsections, followed
by a subsection on cross-validation of some of the results by application of a central-
ized method.

4.1 Deployment of Collaborating Software Components

As a first example we consider a scenario that has been introduced by Efe, originally
modeling clustering of modules and cluster assignment to nodes [Efe82]. The same
scenario has been investigated by several authors, including Widell et al. who com-
pared the related results in [WN04]. This artificial clustering problem is modeled as a
collaboration of components and is used to test the deployment logic. We define Efe’s
example as a collaboration of |C|= 10 components (labelled c1 . . .c10) to be deployed
and |K|= 14 collaborations between them (k1, . . .k14), as depicted in Fig. 4a. Besides,
the execution and communication costs, we have a restriction on components c2,c7,c9,
regarding their location. They must be placed in nodes n2,n1,n3, respectively.
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Figure 4: Simple example service

In this example, the target environment consists of |N|= 3 identical, interconnected
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nodes. To gather information continuously the ants employed by the logic sample the
CPU load levels, l̂n. We target minimum remote communication, i.e. we take into
account communication costs for collaborations between two components if they are
not collocated in the same node. At the same time we look for a globally balanced
CPU load over all the nodes available. Furthermore, for this first example we have
T ∼= 68 (cf. (1)) as average target load in the 3 nodes.

The optimum solution of the example is depicted in Fig. 4b, with the lowest possi-
ble cost value of 17 + 100 = 117 (cf. (3)). Finding an efficient deployment with the
lowest cost is illustrated in Fig. 5. After an initial 2000 explorer ants, optimization
starts and the overall cost is converging to the optimum value of 117. The size of the
dynamically allocated pheromone database – in which a threshold can be applied to
regulate the amount of significant entries – can also be observed in the bottom half of
the figure. The database size tops at 27 as the number of maximum available compo-
nents is 7 out of the total of 10, with 3 bound components. In case of convergence to a
single solution, like in the example at hand, solutions other than the optimum can be
evaporated from the database, thus reducing its size if needed, as shown.

Figure 5: Observed cost and pheromone database sizes

For more details and comparison of the results obtained with the CEAS and other
methods using this example we refer the reader to [CHH08b]. Accordingly, we find
that our distributed approach is capable of obtaining efficient mappings in NP-hard
deployment scenarios. Next, we continue with increasing complexity by considering
more services simultaneously in another example setting.

4.2 Multiple Species

In [CHH08a] we introduced three service models for experimental use. The first
example has been introduced originally in [KH06]. S1 operates a security door and a
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card reader with a keycode entry panel using authentication and authorization servers
and databases. The second example, models a video surveillance system. A central
control with a recording unit manages the system and uses a main and a backup storage
device for storing surveillance information. S3 is a model of a process controller that
consists of 4 main stages of processing, logging, a user interface, and a generator
component. The service models are presented in Fig. 6.

An ant species is assigned to each of the services and deployment mappings
are obtained using a network of 5 nodes. This example has multiple optimal and
near-optimal solutions with different sets of components deployed on various nodes.
In [CHH08a] we tested the effectiveness (e.g. number of iterations required for
convergence, average cost of mappings found) of the approach considering that in
the multiplicative cost function, (4), we omitted any global knowledge, i.e. we do
not use the global shared knowledge T , (1), anymore. Instead the parallel species are
aware of each others processing power demand through sampling, i.e. L. We have
found that the multiplicative function (4) allows the logic to deploy multiple parallel
species equally effectively. Synchronization of the separate ant nests is not necessary,
however, only one designated nest shall be allowed to trigger placement.

DOOR
CONTROL t

20

PANEL

AS1

DOOR

AS2

CENTRAL
UNIT

DB1 DB2

a 1

d

p

r 2

a2

r 1

10

5

10

20

15

20

20 35

25

20 10

10

15

15

n 1

n 1aa

aa

aa

aa

(a) S1

STAGE2

u1

5

STAGE1 STAGE4

GENERATOR
LOGGING

STAGE3

UI u2

g 1 g2

f2f1

l

f3

10

5 5
20

1015 1515 20

10

10 10

10
15

aa

aa

aa

aa

(b) S3

CAM3
o 3

15

CAM2

CAM5

CAM1

CONTROL

BACKUP
CAM4

REC &PLAY

STORAGE

o4

o 1

o 2

v1

o5

s

c

v3

v 4
b

v 5

v2

15

15

20

20
10

15

20

20

10

10

25
10

10

2510

20

20

n 2

aa

aa

aa

aa

n 5

n 4

n 3

n 1

2015

20

20

(c) S2

Figure 6: 3 service examples

To evaluate adaptation capabilities of the logic we investigated two simple scenarios,
a single node failure and reparation, and the appearance of a new node in the network.
The new node is added after all the species have converged to a solution with 5 nodes.
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The evolution of costs (Y-axis) – obtained by (4) – for the 3 services in the example
is shown in Fig. 7 as a function of the number of iterations (X-axis). A node error is
injected after iteration 12000 followed by a repair approximately 4000 iterations later
(Fig. 7a shows average and min-max values). The first 2000 iterations represent the
initial exploration phase. Due to the abrupt change in the context – a previously used
node disappears – costs increase quickly after the failure. Service S2 suffers most, as
indicated by the highly increased costs, mostly due the large communication demand
of that service. Deployment costs return to normal again somewhat slower after the
node has been repaired and explorer ants discover the new, more useful configuration.

In the second test a new (6th) node is added to the network of 5 nodes after around
5000 iterations, at which point the 3 species are already converged to a stable solution.
At this point, 5% of the emitted ants are explorers, which eventually (approx. after
9500 iterations) discover the new node and a new, more efficient deployment (Fig. 7b).
It is also to be noted that the species agree on a new configuration where services
S1 and S3 suffer some degradation, i.e. in terms of higher costs, but S2 has a high
gain, thus the overall utility of the new deployment is better. Regarding the number
of iterations we note that using conventional exhaustive search methods we would
have needed to explore |N||CSk | possible configurations for a service Sk and we have
to add up the numbers for ∀Sk ∈ S to represent the problem size. So, first we gain
on splitting the problem of deploying multiple services using one type of species for
each service simultaneously. Second, we increase computational effectiveness by not
having to explore the search space – e.g. of size 524 possible configurations in this
example with 3 services – exhaustively.

(a) Node error/repair (b) New node appearing

Figure 7: Costs for the 3 services in two test scenarios

4.3 Deployment of Component Replicas

We focus next on dependability achieved by efficient replication management.
Fig. 8 depicts a simple example service model. A component is actively replicated in 4
replicas, R1 to R4, with the continuous updating mechanism modeled as collaborations
between the replicas. Each replica in the service performs according to the client
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requests, thus, replicas have the same execution cost.
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Figure 8: Replicated components in example service S1

The example, furthermore, consists of 10 services (S1 . . .S10) that are being
deployed, using 10 independent species of ants. Also, we use 20 ant nests to be able
to look at a simple cluster splitting and merging scenario, with one nest remaining
for each of the species in each of the regions formed after the split. Each service
Si, i = 1 . . .10 has a redundancy level (amount of replicas) of i + 1. The network of
nodes for the experiment consists of 11 fully interconnected nodes, partitioned into
5 clusters (Fig. 9a). Simulations of the scenario were conducted in a discrete event
simulator custom built and programmed in Simula/DEMOS language.

First, we look at the objective of obtaining a balanced deployment mapping with
respect to execution load. This objective has to be followed while maintaining the
dependability rules of Φ. In Fig. 9b, we look at the average number of replicas
mapped to the 11 nodes in the test network. A total amount of 65 identically sized
component replicas are mapped, which – in a homogenous, non-clustered network
– would give an average of 5.91 replicas per node (shown as a dotted horizontal
line). As an effect of cluster disjointness (φ1) smaller clusters, such as d3, d4, suffer
from overloading, but generally replicas are placed quite evenly across the available
nodes, showing that cooperation between the species works. Furthermore, for a larger
experiment with 50 nodes and 275 replica instances we refer to [CMH09].

In the same example setting we conducted simulations to test adaptation capabilities
of the logic. Three different pheromone encodings are tested in this example, more
about the various encodings and their effects in Sec. 3.3. To test capabilities to
remedy cluster splitting and merging, cluster d1 containing 4 nodes is split from
the rest of the network at the cluster boundary and some time later it merges back,
thus restoring the original network scenario. For example, the cost output in case
of service S10 is displayed in Fig. 9c. Cluster d1 splits from the rest after iteration
4000 and we can observe how the swarm adapts and obtains new mappings for a more
expensive configuration (increased cost) due to the reduced network. Similarly, after
the merge of the two regions, around approximately iteration 5000, mappings are
adapted utilizing cluster d1 again, thus resulting in a lower cost configuration again.

Regarding the number of iterations required for obtaining reasonable and stable
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Figure 9: Example scenario with 10 services

mappings, e.g. shown on the X-axis in Fig. 9c, we conclude that they are reasonably
low and do not increase the overhead significantly, especially compared to exhaustive
search, which would require evaluation of 1165 possible configurations. Mapping
of replicas considering the dependability rules becomes harder when the number
of replicas in a service is close to the amount of available nodes. Instead of having
hard-constraints that strictly cannot be violated, like e.g. in traditional integer
programming, we utilize soft-constraints incorporated into the cost functions we
use. The tradeoff might be that sometimes the algorithm prefers a globally lower
cost mapping with better overall load-balancing that, however, violates some of the
soft-constraints for one service, e.g. for a large service that has as many replicas as
many nodes exist, there might be a single collocation (violation of φ2) due to the
better utilization of an otherwise under-utilized node.

Besides looking at adaptation, in Fig. 9c we also present how the costs evolve using
the three different encodings introduced in Sec. 3.3. After a split and merge event
the bitstring encoding converges to a solution with slightly higher overall cost than
before, whereas the lowest cost is obtained first by per comp. and somewhat later by
# replicas. The first 2000 iterations are not shown as, initially, a random cost figure
appears corresponding to exploration that is omitted here. Every simulation starts
with 2000 explorer iterations for the sake of comparability, even though the amount
of initial exploration was constrained by the bitstring encoding. The more compact
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encodings require significantly less iterations, e.g. one tenth of the amount used. The
bitstring encoding in this test case is unable to find exactly the same mapping and
converges to a somewhat more costly solution. per comp. is the fastest to obtain the
lowest cost mapping followed by the third encoding about 1000 iterations later.

Table 3: Success rates of the three encodings in the example setting

wo/ splitting φ1 φ2 w/ splitting φ1 φ2
bitstring 100% 88% bitstring 100% 87%

per comp. 100% 100% per comp. 100% 100%
# replicas 100% 100% # replicas 100% 99%

Considering the dependability rules φ1 ∧ φ2, Table 3 shows the three different
pheromone encodings and the percentage of test cases, which succeeded in satisfying
the two rules. The results were obtained by executing the algorithm 100 times for
each encoding, with different input seeds. The results indicate that choosing per
comp. not only provides the best compromise between scaling and descriptiveness but
gives more efficient results too.

4.4 VM Instance Placement in Private and Public
Clusters

In this section we look at how self-organizing techniques applied for system
(re)configuration can be used to improve scalability and dependability of virtual-
ized service systems. Specifically, we discuss deployment of virtual machine (VM)
images to physical machines in a large scale network. Simulation results with the de-
centralized deployment logic are presented for an example cloud computing scenario.
For additional details about the deployment scenario see [CMH10].

To demonstrate the behavior of the logic consider the scenario depicted in Fig. 10.
The network consists of 5 private clouds (Cloud C, . . . ,G) connected to public cloud
providers (Cloud A,B) via the Internet. The publicly available capacities can be
utilized on demand, but are subject to financial costs. Conversely usage of private
clusters is free for a service with a home location in that private cloud. Thus, deploying
and hosting a VM instance on a node within one of the clouds implies additional
costs; namely a cost of 10 for a node in Cloud A, 1 for Cloud B and 0 cost for the
private clouds C . . . G. The scaling parameter, cf. (11), we applied in the example was
z = 0.1.

Intuitively, this partitioning and cost assignment models a scenario where organi-
zations naturally execute VM instances within their privately owned cluster as long
as the requirements allow, i.e. satisfactory replication levels can be achieved with
the available resources in the private clusters. Accordingly, hosting VMs in private
clusters is considered free as opposed to hosting in public clouds. Moreover, in the
example a trade-off exists between a large cloud provider with several clusters and
plenty of nodes available for placement, which is more expensive to use than paying
for hosting in the smaller cloud offering less resources.

Simulations execute the deployment task of mapping 125 services, i.e. 25 in each
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private cloud, using public clouds for deployment on demand. Without allowing usage
of resources in private clusters other than the originating ones. This is practically
achieved by assigning ∞ cost for neighboring private clouds. Each of the 125 services
consist of 5 VM instances – among others for dependability reasons – that have to be
deployed, thus resulting in the task of deploying a total number of 625 VMs.

Figure 10: Cloud computing example scenario

The target network of the private and public clouds offers 130 nodes in different
clusters. 5 and 10 nodes are available in each private and public cluster respectively.
Any single authority owning a private cloud administers two clusters, which together
with the 5 (cloud A) plus 3 (cloud B) clusters result in a total of 18 clusters. Regarding
the services one species is used for each, giving 25 nests in each private cloud emitting
ants. We investigate 2 combinations of (10) and (11) with the above example setting:

1 no cloud costs, z = 0;

2 exponential weighting for cloud costs, z > 0.

We conducted simulations with the above variants of cost evaluation and checked
the resulting deployment mappings. In Fig. 11a, mapping of VM instances – after
convergence – is shown when z = 0, i.e. every node ni has zero financial cost for
hosting a VM, error bars show the deviation of the results. In case there are no
financial costs of using a node we can observe that VMs are mapped evenly – while
maintaining the dependability requirements – over all the nodes resulting in an average
of 2 VMs per node in the private clouds, which leaves 625− (5 ·20) = 525 VMs for
the public clouds A and B. Further, the VMs in the public clouds are mapped quite
evenly too over the available 80 nodes around the average of 525/80 = 6.6. Moreover,
the logic does not distinguish between the two different public cloud offerings in
this case. The two extremes of mapping 3 VMs in public ((3 · 125)/80 = 4.7) and
2 in private clusters; and mapping all 5 VMs in the services in the public clusters
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((5 ·125)/80 = 7.8) are shown by the dashed lines.
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(b) VMs per node, z > 0, exponential weighting

Figure 11: Example scenario with 10 services

When z > 0, we present the average amount of VM instances per node in case of
the exponential cost function in Fig. 11b. In this case, the deployment logic finds
mappings that successfully take into account the financial costs of hosting in public
clouds. The public cloud with plenty of resources but, thus, higher costs (Cloud
A, nodes n1...50) receives a low amount of instances, whereas the lower cost public
offering (Cloud B) is heavily loaded with VMs. Note that, the requirements of node
and cluster-disjointness are still satisfied. In the private clusters 5 VMs are mapped
to each node on average, i.e. each one of the 25 services places 1 VM in each of
the two locally available clusters, which incur 0 additional cost. However, due to the
cluster-disjointness criteria the 3rd, 4th and 5th VM instance has to be placed to a
public cloud. To handle this overshoot the algorithm looks for the lowest possible
increment in cost that gives the resulting deployment. Differences in using the two
variants of (11) lay in that with a more complex cost evaluation (exponential instead
of a simple linear) more balanced deployment mappings are obtained, i.e. given the
cost values assigned to cloud A and B the cheaper public cloud gets less overloaded
with VMs, while the number of mappings in the larger public cloud increases to take
over some of the execution load [CMH10].

The number of iterations the algorithm requires to produce the results discussed
above depends on the problem size. We used 2000 explorer ants followed by an
additional 3000 (10% explorer and 90% normal) ants for each species. An increased
amount of nodes in itself would not make the deployment problem be more difficult
to solve. In fact, an increased network size actually allows the algorithm to find better
mappings, with lower costs, easier due to the larger amount of available resources.
Scalability is impacted to a larger extent by the amount of services and the amount of
VMs within the services executed simultaneously, as the number of species executed
in parallel is proportional to the number of services and the complexity of the tasks an
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ant has to perform increases as the number of instances grows [CMH09].
With the example presented in this section we have shown that the deployment logic

can be applied in a cloud computing scenario by carefully looking at the cost functions
driving the optimization and adjusting them to the perceived utility of the various
configurations. This way concepts of financial costs in connection with resource
usage can also be used in the evaluation of deployment mappings, in addition to the
traditional non-functional requirements of performance and dependability.

4.5 Cross-validation of Deployment Mappings with ILP

Distributed execution of our deployment mapping algorithm has been an important
design criteria to avoid the deficiencies of existing centralized algorithms, e.g. per-
formance bottlenecks and single points of failure. In addition, we intend to conserve
resources by eliminating the need for centralized decision-making and the required
updates and synchronization mechanisms. In Sec. 4.1, we presented an example –
well-known in task assignment problems – converted to our context of collaborating
components (see Fig. 4 for the service and the optimum mapping). In this section,
we extend on this initial example with two additional service models, present an
Integer Linear Program (ILP) able to solve component deployment problems with
load-balancing and remote communication minimization criteria. We then compare
simulation results obtained by executing the deployment algorithm on the example
models in this section with the optimum cost solutions given by the ILP. Complexity of
the deployment examples remains NP-hard even if we only deal with a single service
at a time.

Beside the first model, the second example has an extended solution space, obtained
by extending the first example into a larger service model (15 components, 5 bound,
additional collaborations) and increasing the number of nodes (4 nodes) available for
deployment mapping. The third example leaves the cardinality of C unchanged, while
changing the model – the configuration of components – and increasing the amount
of collaborations, and the number of available nodes is increased to 6 as well. The
concrete amount of components, |C|, and collaborations, |K|, in the service models
and the amount of nodes, |N|, are shown in Fig. 12. The ILP we have developed to
validate our simulation results will be presented next. We take into account the two
counteracting objectives of load-balancing and remote communication minimization
and solve the ILP using regular solver software, for further details we refer to [CH10].

We start with defining the solution variable mi, j representing the set of mappings
M.

mi, j =

{
1, if component ci is mapped to node n j,
0, otherwise. (22)

that will indicate and efficient mapping of components to nodes; and we continue with
two parameters. First, bi, j

bi, j =

{
1, if component ci is bound to node n j,
0, otherwise. (23)



APPENDIX: A Bio-inspired Method for Distributed Deployment of Services 245

which enables the model to fix some of the mappings, if any components are bound in
the model. Second, T , defined in (1) to approximate the ideal load-balance among the
available nodes in the network.

Beside the binary mi, j we utilize two additional variables. The first for checking
collocations, in coli.

coli =

{
0, if cl,ck ∈ ki and cl is collocated with ck,
1, otherwise. (24)

Another variable, ∆ j, to indirectly calculate the deviation from the ideal load-balance
among the nodes hosting the components.

∆ j ≥ 0,∀n j ∈ N (25)

The objective function used in the ILP is naturally very similar to the linear cost
function (3).

min
|N|

∑
j=1

∆ j +
|K|

∑
i=1

fi · coli (26)

After having established the objective function, the constraints the solutions are
subjected to have to be defined. First we stipulate that there has to be one and only
one mapping for all of the components.

|N|

∑
j=1

mi, j = 1,∀ci ∈ C (27)

The ILP has to take into account that some component mappings might be restricted
(binding) to particular nodes. Thus, we restrict the variable mi, j using bi, j.

mi, j ≥ bi, j,∀ci ∈ C,∀n j ∈ N (28)

We introduce two additional constraints to implicitly define the values of the variable
∆ j that we apply in the objective function. We use two constraints instead of a single
one to avoid having to use absolute vales (i.e. the abs() function) and thus we avoid
non-linear constraints.

|C|

∑
i=1

ei ·mi, j−T ≤ ∆ j,∀n j ∈ N (29)

T −
|C|

∑
i=1

ei ·mi, j ≤ ∆ j,∀n j ∈ N (30)

Similarly, we define two additional constraints for implicitly building the binary
variable, coli, indicating collocation of components.

mi, j + mk, j ≤ (2− coll),kl = (ci,ck) ∈K,∀ci,ck ∈ C,∀n j ∈ N (31)

mi, j1 + mk, j2 ≤ 1 + coll,kl = (ci,ck) ∈K,∀ci,ck ∈ C,∀n j1,n j2 ∈ N (32)
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Using the above definitions the ILP can be executed using an appropriate solver.
By submitting the appropriate data, defining the example services introduced above,
we obtain the optimum mappings and their corresponding costs according to the
objective/cost function (26). subject to the constraints in (27) – (32).

As a result of the cross-validation we obtain the absolute minimum cost values
(Optimum) in the three example settings SEx1...3. Simulation results are generated by
executing the algorithm 100 times for each example model. Average costs (Average)
and the maximum deviation (Max.) are shown in Fig. 12a as well as the optimum
obtained by ILP. Results show that our algorithm finds the optimum 99% of the time
in case of the first example. In the somewhat larger scenario, SEx2, it is more difficult
to find the absolute lowest cost mapping, thus we observe larger deviations in mapping
costs. However, it is to be noted that by changing the mapping of a single component
from the optimum configuration to a near-optimal one increases the costs by values
larger than 1, which is also the reason for increased deviations in this case. In fact,
the two most frequent sub-optimal solutions, beside the optimum cost of 180, were
configurations with a cost of 195 and 200, giving an average of 193 in the end, shown
in Fig. 12a. In case of the third example, SEx3, the algorithm managed to obtain
solutions with costs closer to the absolute optimum – obtained by the ILP – with less
deviation at the same time. The main reason for this is that communication costs in
SEx3 are relatively more fine grained, which resulted in finding near-optimum solutions
with slightly higher costs only. The average number (and deviation) of normal ant
iterations required by the algorithm to obtain the solutions are shown in Fig. 12b.

(a) Mapping costs (b) Number of iterations

Figure 12: Cross-validation of the simulation results

It is to be noted that the difference in complexity is significant between the original
example from Sec. 4.1 and the two extended models. Using the simplest binary
pheromone encoding (cf. Sec. 3.3) the first example requires a pheromone database of
size 3 ·27 in the network of 3 nodes, as the number of unbound components is 7. In
the larger examples, the pheromone database size increases to 4 ·210 and 6 ·210 for
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CEAS. It is difficult to precisely compare the computational effort required by the
ILP and CEAS for solving the same problems. One iteration of a centralized logic
with global knowledge, e.g. an ILP, can not really be compared to one iteration in the
distributed CEAS, which is a tour made by the ant.

The solver software for the ILP provides some information regarding the iterations
and cuts that were required during execution, i.e. 86, 495 and 1075 simplex iterations;
and 0, 5 and 33 branch and cut nodes were reportedly required for the examples SEx1,
SEx2 and SEx3 respectively. The number of required (explorer and normal) iterations
in CEAS is naturally higher than what is required for the ILP with a global overview.
However, we advocate that we gain more by the possibility of a completely distributed
execution of our algorithm and also because of the capability of adaptation to changes
in the context, once the pheromone database is built up after the initial phase.

5. Related work

Influencing the software architecture by changing the deployment configuration has
been found to be an efficient way to improve utility of services. Deployment decision
making requires an optimization method to function properly and autonomicity has
to be built in as a basic functionality. An algorithm has been devised in [KHD08]
that is based on calculating the usefulness of alternative configurations as weighted
sums. Nevertheless, the resulting approach is not computationally effective and
serves as a trial to show that deployment decision making is important and necessary
to apply. Various other approaches have been followed to tackle the problem
of efficiently mapping instances to resources, or hosts for adequate execution.
Many authors start with centralized observation and control, utilizing for example
binary integer programming [BSDS98], graph cutting [HS99], or some hybrid
approach, e.g. proposed by the authors of [JHJ09], where an optimizer and a model
solver work together to find optimal mappings specifically in the field of virtual
machine technology. Computational complexity, which in most unrestricted cases
is NP-hard, often prohibits application of centralized exhaustive methods above
certain problem sizes, even as small as networks of only a handful of nodes. Other
approaches try to restrict the solution space to tractable sizes by capturing important
constraints [KIK03], but exhaustive search is still ineffective in practical problems,
especially if we consider more than one QoS property of a configuration or more than
one service at a time. Heuristics and approximative algorithms manage practical
problem sizes more effectively. Malek et al. devised heuristic algorithms for software
component deployment, based on greedy search and genetic programming in [Mal06],
approaching the problem from the user’s perspective instead that of the service
providers’. Besides, stochastic optimization appeared as an alternative first in [WN04],
suggesting the use of the Cross-Entropy method as well.

Regeneration of replicas to remedy crashed components was proposed first
by Pu [PNP88] in the context of the Eden system. More recent systems, e.g.
DARM [MMHB08], provide automatic reconfiguration and regeneration of
replicas in the context of group communication systems, and Om [YV05] focus on
regeneration in a peer-to-peer wide-area storage system. Recently, with the advent
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of cloud computing, standardized cloud interfaces propose similar mechanisms for
placement, migration and monitoring of components in the cloud [EL09]. Recent
studies [CFH+05, HON+09, JHJ09] show that the duration of virtual machine
migration is in the order of 60-90 seconds. Service deployment support, that is
intended to execute placement instructions given by our deployment logic are
provided by such systems, however, focus is usually simply on failure recovery
and improvement of availability without trying to optimize the new configurations
and mappings. Authors in [YG09] show theoretically that replica placements of
inter-correlated objects can impact system availability significantly if not chosen
appropriately. Our work, on the other hand, focuses on improving both availability
and overall performance.

Another centralized approach, namely group-finding algorithms to discover
mappings in generic wide-area resource discovery is presented in [AOVP08]. In some
way similarly to the foraging behavior of our artificial ants some approaches rely
on extensive measurement data collection, however, our deployment logic does not
store data centrally. Optimal placement of VMs under a variety of constraints has
been focus of some research, e.g. in [VAN08] and [JHJ09]. The SmartFrog [Sab06]
deployment and management framework from HP Labs describes services as
collections of components and applies a distributed engine comprised of daemons
running on every node in a network. Collections of components together with their
configuration parameters can be activated and managed to deliver the desired services
even in large-scale systems. The scale of these systems and the execution framework
is close to the environment we envisage for the successful execution of autonomic
component-based software services and which we target with our deployment logic.
Configuration management in similar server environments based on fuzzy learning,
targeting efficient resource utilization is investigated by Xu et al. in [XZF+07].
Biologically-inspired resource allocation algorithms appear in [HJ06] to tackle service
distribution problems. This is the path we too have chosen to follow while developing
our deployment logic.

The basic method we built our deployment logic upon, the CEAS has been applied
successfully to a variety of studies of different path management strategies, such
as shared backup path protection, p-cycles, adaptive paths with stochastic routing,
and resource search under QoS constraints [HHW08]. Implementation issues and
trade-offs, such as the management overhead imposed by additional traffic for
management packets and recovery times are dealt with using a mechanism called
elitism and self-tuned packet rate control. Additional reduction in the overhead is
accomplished by pheromone sharing, where ants with overlapping requirements
cooperate in finding solutions by (partially) sharing information (see [HW10] for
details). In CEAS applied to routing, a routing path, from source to destination, is the
target of the search. Instead of the cost of mappings a routing path is evaluated in each
iteration, i.e. a corresponding cost function is applied to the paths found. Furthermore,
the pheromone values for routing CEAS is given by, τi j,r and represent an assignment
between interface i and a node j at iteration r. Selection of the next hop for each ant,
in this case, is based on the random proportional rule in the contrary to our algorithms.
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6. Conclusions

In this paper, we summarize our recent research towards obtaining an intelligent
solution, a decentralized logic that is capable of finding near-optimal deployments for
building blocks of services in a dynamic network environment. We presented how
our bio-inspired heuristic approach looks for an efficient mapping between software
components and nodes iteratively. Example scenarios were discussed ranging from
the deployment of collaborating software components and management of replicas to
virtualization in hybrid cloud environments. Additionally, an ILP model was shown
that can be used to cross-validate the solutions found by our algorithm in an offline,
centralized manner.

Many interesting paths of future work are considered. The algorithms presented
are to be re-implemented in a scalable, Java-based simulator in order to explore larger
scale scenarios. Increasing problem sizes are anticipated with the introduction of larger
networks and, especially, larger amounts of parallel services. Nevertheless, efficient
pheromone encodings provide the necessary reduction in the size of database structures
and allow controlled increase in complexity as problem sizes grow. Approximative
methods, such as the heuristic algorithms presented in this paper, will continue
to dominate on-line deployment decision making due to their flexibility and faster
convergence. Besides, the core functions that describe the inner workings of the CEAS
method, such as the pheromone or the temperature updates can also be revisited. The
new, improved core functions in CEAS can possibly enhance the performance of the
deployment logic.

The ILP model presented shall be extended to capture all the example scenarios.
Regarding the scope of requirements, the next dimension to include is power-saving.
Also, service models can be extended to capture additional aspects, such as consistency
protocol costs. Besides, quantifying migration related costs is an interesting and
difficult issue to look at in itself.
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