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Abstract

The aim of this Master’s thesis is to use density functional theory calculations together with a

cluster expansion method, in such a way that iron-silicon alloys on a fixed body-centered cubic

lattice can be studied using Monte Carlo simulations in the canonical and semi-grand canonical

ensemble. The density functional theory calculations are done using GPAW, and the exchange-

correlation functional used is the Perdew-Burke-Ernzerhof functional. Several calculated material

properties of iron and silicon are presented, highlighting the capability of density functional theory

calculations. Two iron-silicon phases with silicon concentrations of 25 % and 50 % are obtained

using Monte Carlo simulated annealing. A phenomenon studied in this thesis is the atomic

dissolution of cubes and octahedra, made of the two phases mentioned above, encapsulated in a

pure iron phase. It is shown that, in general, higher temperatures are needed to dissolute 50 % of

the silicon atoms in the internal structures if the structures are constructed as cubes, as opposed

to octahedra. The FeSi phase is found to withstand higher temperatures than the Fe3Si phase

before silicon atoms dissolve into the iron surroundings. Phase boundary tracing is done for low

silicon concentrations, showing that there is a temperature and concentration range within which

the bcc Fe3Si and pure iron phases co-exist. The surface energy associated with the intersect

between the Fe3Si and pure iron phases is found to be 99.96 mJ/m2. This result is obtained from

density functional theory calculations with slab structures.
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Sammendrag

Målet med denne masteroppgaven er å bruke tetthets-funksjonal-teori sammen med en cluster-

ekspansjons-metode, slik at jern-silisium legeringer p̊a et statisk kubisk romsentrert gitter kan

bli studert ved bruk av Monte Carlo-simuleringer i det kanoniske og semi-store-kanoniske en-

semblet. Tetthets-funksjonal-teori beregningene er gjort med GPAW, og utveksling-korrelasjons

funksjonalen brukt er Perdew-Burke-Ernzerhof funksjonalen. Flere beregnede material-egenskaper

til jern og silisium er presentert. Dette fremhever mulighetene med tetthets-funksjonal-teori

beregninger. To jern-silisium-strukturer med silisium-konsentrasjoner p̊a 25 % og 50 % er funnet

ved hjelp av Monte Carlo simulert nedkjøling. Et fenomen studert i denne oppgaven er dissolusjo-

nen av kuber og oktaeder laget av de to ovennevnte fasene plassert i en ren jern-fase. Det er vist at

det, i det generelle tilfellet, kreves høyere temperaturer for å dissolvere 50 % av silisium-atomene

i den interne strukturen hvis strukturen er konstruert som en kube i stedet for et oktaeder. FeSi-

fasen er funnet å motst̊a høyere temperaturer enn Fe3Si-fasen før silisium-atomer dissolverer i

den omringende jern-fasen. Fase-grense-søk er gjort for lave silisium-konsentrasjoner, som viser

at det eksisterer et temperatur- og konsentrasjons-domene hvor bcc Fe3Si-fasen og den rene jern-

fasen eksisterer sammen. Overflateenergien assosiert med et sjikt mellom Fe3Si- og jern-fasen er

funnet til å være 99.96 mJ/m2. Dette resultatet ble funnet ved å bruke tetthets-funksjonal-teori-

beregninger med skive-strukturer.
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1 INTRODUCTION

1 Introduction

Metals are found all around, and modern society is dependent on the mass production of metals

and alloys to be used in the construction of large scale projects such as railroads and skyscrapers,

and the making of transistor-based electronics such as mobile phones and medical devices. This

has lead to the need for research and development within the materials industry, where the goals

can be to develop new processing techniques to increase production capacity, reduce environmental

impacts of processing, or to develop new materials with sought-after properties.

Amongst the most common elements vital for production and development of modern tech-

nological appliances are the transition metal iron and the metalloid1 silicon. Understanding the

fundamental properties of these materials is crucial for furthering the technological evolution in

such a way that scientists and engineers can construct the solutions of tomorrow. Iron, being one

of the most abundant elements on the Earth, has various uses and is extracted and processed at

a large scale across the world. Iron can be combined with carbon to form steel, which makes a

durable and rigid material, and steel is excellent for making such products as rebars in construc-

tion work and drive shafts in the automotive industry. Solid-state devices used in computers and

microelectronics are dependent on materials based on silicon, where it enters as a medium for

microchip manufacturing. Silicon is also widely used as a semiconductor in modern devices such

as solar panels, where silicon is doped to manipulate its electrical properties. Ferrosilicons are

iron-silicon alloys with silicon concentrations between 15 and 90 weight percent. These materi-

als have different properties depending on the silicon concentration, therefore entering in many

appliances. The more iron-rich alloys in combination with carbon have been extensively used in

electrical motors and transformers, due to the magnetic properties, conductivity, and high melting

point of the materials. Ferrosilicon is also used as an additive to create silicon steel and stainless

steel [2]. In cast iron production ferrosilicon is used as an inoculant [3], changing the microscopic

properties of the carbon nucleation in the material [4], drastically altering the properties of the

final iron product.

Exploring new macroscopic and microscopic properties of materials has been the goal of ma-

terials scientists and physicists for decades, and how experiments for understanding the nature of

physical phenomena have been carried out are diverse. As manufacturers and industries are more

concerned about the macroscopic properties of materials, it has been the task of the physicists

and chemists to explore the fundamentals. This often requires to analyze materials on the atomic

level. The exploration of the microstructure of materials can provide a deeper understanding of

electronic and chemical reactions, which again is closely linked to macroscopic properties. This

research can enhance how materials are produced as well as provide new exotic materials for

engineers and manufacturers to apply in their work.

In more recent years the development of supercomputer and cluster technologies has made it

1“oides” is a Greek adjectival suffix, and its English derivative form is “oid”. The meaning of the word is “being
like” or “having the form of” [1, p. 72]. Metalloids have properties in between those of metals and non-metals.
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possible to carry out large scale simulations, allowing for increasingly computationally expensive

approaches to be viable for solving system equations that in the past would not have been solvable

in an appropriate manner. The density functional theory (DFT) has been the backbone of such

simulations [5], and has allowed researchers to explore aspects of solids, enhancing how materials

are produced in the industry as well as giving scientifically backed information on materials to

manufacturers.

The computational resources needed to do DFT calculations increase drastically with the

number of atoms in the system, as the scaling is typically O(N3). It is therefore not suitable

to solely rely on DFT when doing calculations with larger systems. Thus, other computational

methods are often utilized to examine larger atomic systems. One method for linking DFT

calculations, which are from first principles, to more effective and less time-consuming simulation

tools, is with the use of the cluster expansion (CE) method [6]. The first step of this method is to

calculate the energy of different atomic configurations on the desired lattice with DFT. A fit can

then be made to these energies, where the energy of different clusters in the configurations are

coupled with effective cluster interactions (ECIs) to predict the energies. These ECIs can then

be used with Monte Carlo (MC) simulations, which in practice makes it possible to study larger

atomic systems more efficiently. By employing MC methods, the simulations can be carried out

in different statistical ensembles, allowing for thermodynamic properties to be calculated. Thus,

macroscopic properties can be extracted, and phase diagrams and free energies can be studied

[7].

In this thesis, DFT calculations are done for body-centered cubic (bcc) iron-silicon alloys.

These results are used to develop a CE model, and the obtained ECIs are further used in MC

simulations. Firstly, Chapter 2 presents important aspects of solid state physics, such as properties

of crystalline materials and electronic properties, as well as relevant themes within the fields of

DFT, CE, and MC simulations. Chapter 3 sums up the main components of the simulation tools

and computational methods used. The obtained results are presented and discussed in Chapter

4, before Chapter 5 concludes the report. Lastly, the thesis ends with suggestions for future work

in Chapter 6.

2



2 THEORY

2 Theory

This chapter is comprised of relevant background material for the following chapters and is meant

to give insight into some fundamental theoretical aspects of materials science, DFT, CE and

MC methods. Some useful concepts from the theory behind crystalline structures, electronic

systems, and quantum mechanics are presented, as to lay the foundation for the later discussion

regarding material properties of iron and silicon. Some core themes of DFT are included, giving

a theoretical base for the computations done and the associated simulation environment. The CE

method is also presented, introducing the configurational space for an alloy and the configurational

energy. Lastly, the theory behind doing MC simulations in the canonical and semi-grand canonical

ensembles for binary alloys is discussed.

2.1 Solid state physics background

This section contains theory from within the field of solid state physics. Theoretical framework

of crystalline materials are presented, and [8] is the main reference.

2.1.1 Definition of the crystal system

Within the field of solid state physics an ideal crystal can be described as set of atoms, with a

discrete translational symmetry. The group of atoms is periodically repeated in space infinitely,

with the same distance between each group. Defining this system in 3 dimensions, the translation

vectors, a1,a2 and a3 are used. These vectors are such that, when viewing the crystal from r

and from r′ = r +n1a1 +n2a2 +n3a3, the lattice will look identical, given that n1, n2 and n3 are

integers. T = r′ − r thus defines the translation vector of the system.

A unit cell is the smallest cell possible to construct, containing one atom or more, which when

repeated infinitely constructs the crystal lattice. The lattice constants describe the physical

distance between unit cells. In 3 dimensions there are three lattice constants a, b and c, which

may or may not be identical, depending on the crystal lattice symmetry.

The supercell can be constructed by combining several unit cells, thus defining the same overall

crystal structure when expanded in space. Even though the unit cell and the supercell describe

the same system, the supercell has a larger volume and is among other things used to accurately

model crystal defects and crystal vibrations.

2.1.2 Face-centered, diamond and body-centered cubic crystal structures

One common crystal arrangement found in many crystalline materials is the face-centered cubic

(fcc) arrangement of atoms. This lattice is constructed as a cube, together with lattice points

centered on the faces of the cube. For the fcc lattice system, the lattice constants are equal, such

that a = b = c. The unit cell is constructed by four lattice points, and its basis is a single atom

3



2.1 Solid state physics background 2 THEORY

located in the origin. In three dimensions the fcc unit cell is defined by the vectors,

a1 = (
a

2
,
a

2
, 0), a2 = (

a

2
, 0,

a

2
), a3 = (0,

a

2
,
a

2
). (2.1)

If an fcc space lattice is constructed with two identical atoms in the basis at (0, 0, 0) and (
a

4
,
a

4
,
a

4
)

the structure is called a diamond cubic structure. This arrangement of atoms is commonly found

in semiconductors, such as silicon.

Another crystal structure with a = b = c is the bcc structure. This structure is cubic, but

with an additional lattice point placed in the center of the cube. The unit cell is constructed by

2 lattice points, and is in three dimensions defined by the vectors,

a1 = (
a

2
,
a

2
,
−a
2

), a2 = (
−a
2
,
a

2
,
a

2
), a3 = (

a

2
,
−a
2
,
a

2
). (2.2)

At room temperature and below iron has this bcc structure.

In three dimensions the unit cells of the fcc and the bcc structures, as defined by the above-

presented vectors, span a volume,

V = |a1 · a2 × a3|, (2.3)

where the volume of the fcc unit cell is found to be Vfcc = a3/4, and the volume of the bcc unit

cell is Vbcc = a3/2.

2.1.3 Reciprocal lattice and the Brillouin zone

Due to the translational symmetry of the crystal system, any properties within it should be

periodic with respect to the lattice, such that x(r) = x(r + T). This periodicity of the lattice

makes it possible to study the properties of the lattice through its Fourier Transform, called the

reciprocal lattice. The periodicity of the lattice in 3 dimensional reciprocal space is represented

by the reciprocal translation vectors,

b1 = 2π
a2 × a3

a1 · a2 × a3
, b2 = 2π

a3 × a1

a1 · a2 × a3
, b3 = 2π

a1 × a2

a1 · a2 × a3
. (2.4)

These vectors are the reciprocal equivalent to the real space lattice vectors, and can construct a

translational invariant vector in reciprocal space,

G = m1b1 +m2b2 +m3b3, (2.5)

where m1,m2 and m3 are integers.

When studying the reciprocal lattice, the Brillouin zone is a local area or volume which

contains information about the structure of interest. From a reciprocal lattice point in the

origin, the Brillouin zone is defined as all points in space closer to the origin than any other
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reciprocal lattice point. For a lattice with repeat distance a, the first Brillouin zone is defined

as −π/a ≤ K ≤ π/a, where K is the magnitude of the wave vector. This range for the allowed

K, scaling as an inverse of the repeat distance, is a direct result of the Fourier transform, and it

follows that the volume of the first Brillouin zone scales as the inverse of the volume of the real

space unit cell.

Within the Brillouin zone, several points with a high degree of symmetry are shown to be

of particular interest. These points are referred to as critical points. The Γ-point indicates the

center of the Brillouin zone [9]. These symmetric points differ between lattice structures, as the

reciprocal space representing the lattice structures have different symmetries.

2.2 Electron characteristics and thermodynamics

As the nature of crystal structures and symmetries has been discussed, the next step is to introduce

relevant concepts from statistical physics and quantum mechanics to give an introduction to

properties of electronic systems. Some aspects of thermodynamics are also discussed, with the

motivation to connect microscopic and macroscopic properties of materials. This section uses [8]

and [10] as main references.

2.2.1 Bloch functions

In many cases, the Schrödinger equation has to be solved for a periodic potential. If static

nuclei are present, their potential can be viewed as such a periodic potential, when solving the

equations for a single particle. Bloch’s theorem states that the eigenfunctions of a wave subjected

to a periodic potential can be expressed as a product of a plane wave and a function containing

the periodicity of the lattice, i.e., the periodicity of the fixed nuclei. In mathematical terms, this

can be expressed as

ψk(r) = uk(r)eik·r, (2.6)

where uk(r) exhibits the periodicity of the crystal lattice, uk(r) = uk(r + T), and T is the

translation vector of the system, as discussed in Subsection 2.1.1. Bloch’s theorem thus states

the translational properties of the wavefunction. With this in mind, it is possible to construct

the wavefunction as a Fourier series. Introducing a potential U(r), which is invariant under a

lattice translation, and assuming that the crystal is symmetric about r = 0, the potential can be

expressed as

U(r) =
∑
G

UGe
iG·r. (2.7)

Here the reciprocal lattice vector, G, is as defined in (2.5), and U(r) is taken to be real. The

orbital ψ(r) describes the motion of an electron moving in the external potential, such that the

5
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wave equation becomes

[
−~2

2m
∇2 +

∑
G

UGe
iG·r

]
ψ(r) = εψ(r), (2.8)

Where ε is the energy eigenvalue. By the same logic as for the potential, the wave function can

be expressed as a Fourier series summed over allowed values of k, subjected to the boundary

conditions,

ψ(r) =
∑
n,k

Ck,ne
ik·r. (2.9)

This is a packet of Bloch waves, and one Bloch wave can be expressed as

ψk,n(r) = uk,n(r)eik·r. (2.10)

Again, the periodicity of the lattice is contained in uk,n(r), and the energy eigenstate is repre-

sented by n, the energy state, and k, the wave vector of the state. If the solutions for the Ck,n

are found by obtaining the wave equation (2.9) as a sum, the resulting algebraic equation is the

well known Central equation.

2.2.2 Fermi-Dirac distribution

Within the fields of statistical mechanics and quantum mechanics, the use of various distributions

is common. For fermions, the Pauli principle states that only two fermions can be in the same

quantum state at the same time, and these fermions must have opposing spins. For half-integer

spin fermions, such as electrons in thermal equilibrium, the Fermi-Dirac distribution is given as

[11, p. 143]

F (E) =
1

e(E−µf )/kB ·T + 1
, (2.11)

which is interpreted as the probability of finding an electron in a state with energy E. kB is the

Boltzmann constant, and µf is the Fermi level. When the energy, E, is equal to µf , F (E) = 1/2,

such that the Fermi level is the energy at which the probability of finding an electron in a state

with energy µf is 50%. Also, as the temperature approaches 0 K, the probability of finding an

electron with energy higher than the Fermi level becomes zero.

2.2.3 Electronic density of states

The electronic density of states (DOS), g(E), is another distribution from which interesting

properties in different systems can be extracted. In short, it describes the number of available

states per unit volume per unit energy in an energy interval which states can occupy. In general,

6
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it is given as

g(E) =
1

V

∑
n

∑
k

δ(E − En(k)), (2.12)

Where n represents the desired energy state or band index, k is the wave vector and En(k) follows

from the dispersion relation.

2.2.4 Electron band structure

For a system of electrons, there exist restrictions depending on the system, which differentiates

between allowed and forbidden electron energies. These regions of allowed energies are called

bands and are derived from the allowed wave functions of the electrons in the energy region. For

each k, as in Equation (2.10), there can exist several energy states, n, which can be used to obtain

the energy state dispersion relation for electrons in the band n. In 3 dimensions, the Brillouin

zone has different shapes depending on the system. It is therefore common to view the electronic

bands along directions of high symmetry, the so-called critical points.

To categorize different systems, the electron bands can be analyzed. Metals have the Fermi

level, µf , inside one or more bands, and semiconductors, as well as insulators, have µf in so-called

forbidden regions between bands. For metals, having the Fermi level inside a band corresponds

to metals having bands which are partially filled with electrons.

2.2.5 Energy of formation

When chemical reactions occur, it is interesting to look at the energy needed for an endothermic

reaction or the energy released for an exotherm reaction when reactants combine to form products

and to examine whether the formed products are energetically favorable or not, compared to the

separate reactants. The enthalpy of formation can be thought of as the change in enthalpy

when two or more elements combine to form a substance [12]. More precisely, it is the difference

between the enthalpy of formation for the products and the reactants. Hess’ law gives this change

in formation enthalpy as

∆H0
Reaction = ∆H0

f (Products)−∆H0
f (Reactants), (2.13)

where superscript 0 indicate that an equilibrium state is reached. A similar logic can be used

to examine whether two or more atoms forming an alloy combine or segregate. The enthalpy is

defined as

H = U + pV, (2.14)

where U is the internal energy of the system, p is the pressure, and V is the volume. If the system

is equilibrated to a state where p = 0, the enthalpy is equal to the systems internal energy. This

7
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can again be used to express the formation energy. For an alloy consisting of two atom types i, j

and N = Nj +Ni atoms in the cell, the energy of formation can be expressed as

Ef = Ealloy
b −X(i)Eib −X(j)Ejb. (2.15)

Here the atomic concentrations of element i and j are X(i) = Ni/N and X(j) = Nj/N , and

subscript b indicate that the energies are for the bulk. The energies on the right hand side are

total energy of the alloy, the total energy of the bulk of N atoms of type i, and the total energy of

the bulk of N atoms of type j respectively. A negative formation energy corresponds to an alloy

structure which is energetically favorable compared to the bulk consisting only of the segregated

elements i and j.

2.2.6 Free energy and heat capacity

At constant temperature, a physical system such as an alloy will try to minimize its free energy.

Calculating the free energy thus gives information about the direction of the reactions happening

as an equilibrium is reached. The Gibbs free energy can be expressed as [13, p. 72]

G = U + pV − TS = H − TS, (2.16)

where U is the internal energy, p is the pressure, V is the volume, T is the temperature, and H

and S are the enthalpy and entropy of the system respectively. This free energy is a measure

of the amount of reversible work that can be performed at constant p and T . The Gibbs free

energy can be used to identify stable states and phase equilibria in alloys. From the second law

of thermodynamics it is known that a state is stable if and only if it minimizes the Gibbs free

energy at constant p and T [14]. At a composition X this would mean reducing G(X). The

system may however reduce the Gibbs free energy by splitting into phases. If the composition X

is split into two phases, one with composition Xi of fraction f1 and one with composition Xj of

fraction f2 = 1− f1, the Gibbs free energy of the two-phase system, Gsys(X), can be written as

Gsys(X) = f1G(X1) + f2G(X2), (2.17)

where X = f1X1 + f2X2. It follows that if Gsys(X) < G(X) it is energetically favorable for

the system to split in the two phases. For the Gibbs free energy to be minimized, all possible

phases and combinations of phases must be considered. This concept of investigating the Gibbs

free energy for different phases gives rise to the convex hull, which can be used to identify phase

equilibria or ground states [15]. It should be noted that at T = 0 and p = 0, the Gibbs free

energy (2.16) is simply the internal energy of the system, and the phase exploration can be done

using the formation energy as discussed in Subsection 2.2.5.

If the system is not subjected to any pressure, the Gibbs free energy (2.16) reduces to the

8
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Helmholtz free energy,

F = U − TS. (2.18)

The partition function for the canonical ensemble, Z, is defined as [11, p. 55]

Z =
∑
i

e−βEi , (2.19)

where β =
1

kBT
, Ei is the total energy of microstate i, and the sum over i represents a summation

over all possible microstates of the system. At zero pressure the relationship between this partition

function and the internal energy is [11, p. 58]

Z = e−βF , (2.20)

and the connection between the partition function and the internal energy is [11, p. 56]

U = − 1

Z

∂Z

∂β
= −∂ lnZ

∂β
. (2.21)

Combining equations (2.20) and (2.21) by inserting Z, taking the natural logarithm and differ-

entiating, the result can be written as

U =
d

dβ
(βF ). (2.22)

Integrating this over a range of β, with a corresponding temperature range yields

∫ β1

β0

dβU = β1F1 − β0F0 (2.23)

Thus, F1 can be expressed as

F1 =
β0F0

β1
+

1

β1

∫ β1

β0

dβU, (2.24)

where the integral can be computed numerically, and has to be evaluated at each β1 corresponding

to a temperature T1. When F1 is computed, Equation (2.18) can be used to calculate the entropy

for a given temperature when the system is subjected to zero pressure.

Another thermodynamic quantity describing the state of a system and the way it behaves

when a change in temperature occurs is the heat capacity, CV (T ). The heat capacity is defined

as the amount of energy required to be added to a system to increase its temperature by 1 K in

equilibrium. It is therefore related to the internal energy of the system [13, p. 28],

CV (T ) =

(
∂U

∂T

)
V,N

, (2.25)

where the subscripts V and N indicate that it is the heat capacity at constant volume and
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constant number of particles respectively. Through thermodynamic relations, CV (T ) can also be

expressed through the change in entropy [13, p. 54],

CV (T ) = T

(
∂S

∂T

)
V,N

, (2.26)

showing that the heat capacity is directly related to the change in the disorder of the system.

2.2.7 Surface energy

While the formation energy and Gibbs free energy are helpful to understand why ground states

occur and why different phases are observed in alloys, the surface energy is important when

studying the interface between different phases. The shape and the size of phase clusters, as

well as the number of clusters located inside a bulk material, is crucial for macroscopic material

properties [16]. When combining two phases, the surface energy can be analyzed to understand

why two phases co-exist, or why the phases dissolve. n-layer thick slabs of the two combined

phases can be used for calculating the surface energy. n then represents the thickness of one of

the phases in the slab, where both phases have the same sized cell. Defining En as the total

energy associated with one such n-layer slab, the surface energy, Es(n), can be expressed as [17],

Es(n) =
1

2
(En − 2∆E(n)) , (2.27)

where ∆E(n) = En−En−1. The 1/2 is introduced as with periodic boundary conditions the slab

has two surfaces. As the slab size is associated with a surface area between the two phases in the

slab, the surface energy per area can be defined as

γ = Es(n)/As, (2.28)

where As is the area of the intersection between the two phases.

2.3 Magnetic systems and the Schrödinger equation

This section contains aspects regarding quantum mechanical interactions of electrons and nuclei

and is largely based on [10]. The theory is laid out in such a way to demonstrate magnetic

phenomenon and the complexity and demands of solving the many-body interacting particle

equations.

2.3.1 Magnetism

Free atoms have a magnetic moment, which arises from three different quantum mechanical

effects, namely the electron spins, the electrons orbital angular momentum and the change in

the orbital momentum stemming from an applied magnetic field. In the absence of an external
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magnetic field, the magnetic moment of an atom is given by

µ = −gµBJ, (2.29)

where J is the sum of orbital and spin angular momenta. g, or the g factor, stems from the Landé

equation [8, p, 302], and µB is the Bohr magneton,

µB =
e~

2me
. (2.30)

The Bohr magneton is a natural constant, where e is the electron charge, me is the electron mass,

and ~ is the reduced Planck constant. The Bohr magneton constant represents the unit magnetic

moment. Defining the magnetization, M , as the magnetic moment per unit volume, the magnetic

susceptibility per unit volume is

χ =
µ0M

B
. (2.31)

Here B is the intensity of the macroscopic magnetic field, and µ0 is the permeability of free

space. A material with positive χ is called paramagnetic, meaning that if the substance is in the

proximity of an applied magnetic field, the induced magnetization in the substance will be directed

in the same direction as the applied field. If the induced magnetization in the substance points

in the opposite direction as the applied field, χ is less than zero, and the material is diamagnetic.

Paramagnetic and diamagnetic substances have no induced magnetization in the absence of an

external magnetic field, as the magnetic moments of the materials are randomly oriented due

to thermal fluctuations. Ferromagnets, on the other hand, have a magnetic moment, and thus

non-zero magnetization in zero external magnetic field. In the presence of an external magnetic

field, the magnetization of a ferromagnetic material will be magnified if the magnetic moments

in the material are oriented in the same direction as the external field. Figure 2.1 illustrates the

above mentioned magnetic properties of the materials discussed.

Figure 2.1: Magnetization and magnetic susceptibility for paramagnetic, diamag-
netic and ferromagnetic materials in an external magnetic field. The blue arrow
indicates the applied magnetic field, the red arrows show the magnetization, and
the black lines show the resulting magnetic susceptibility. The size of the arrows
indicate the intensity.
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2.3.2 Particle interactions and the wave function

To solve the system equations for a system involving several atoms, with many nuclei and even

more electrons, the starting point is the time-independent many-body Schrödinger equation. The

time-independent Schrödinger equation can be evaluated here, as the ground state energy is time

independent. To get the energy eigenvalues, one must therefore consider

ĤΨ(x1, ...,xn) = EΨ(x1, ...,xn), (2.32)

where E the ground state energy and ψ(x1, ...,xn) is the many-body stationary wave function.

Note that the coordinate xi contains spin as well as position for the particles. The Hamiltonian

is given as

Ĥ = − ~2

2me

∑
i

∇2
i −

∑
i,I

Zle
2

|ri −RI |
+

1

2

∑
i 6=j

e2

|ri − rj |
− ~2

2

∑
I

1

MI
∇2
I +

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |
, (2.33)

where subscripts i, j represent electrons, and I, J represent the nuclei. This Hamiltonian includes

the kinetic energy of both electron and nuclei, as well as the Coulomb interactions between

electrons and electrons, nuclei and electrons, and between the nuclei. The use of the Born-

Oppenheimer approximation [18] is essential when proceeding with the Hamiltonian (2.33). Here,

the nuclei are treated as stationary, providing a static potential for the electrons. To justify this

the main idea is that the nuclei are much more massive than the electrons, such that when the

nuclei and electrons experience forces, the electrons will respond rapidly to any changes in the

position of the nuclei, but the nuclei will essentially remain stationary when interacting with the

electrons. The consequences of this allow for a more compact Hamiltonian,

Ĥ = T̂ + V̂ext + V̂e-e + El-l. (2.34)

Here, the first term is the kinetic energy operator for the electrons. The second is the interaction

between the electrons and the stationary nuclei, and the third is the electron-electron interaction.

The last term, El-l, now represents the nuclei-nuclei interaction, as well as all other energies that

contribute to the total energy of the system but not to the description of the electrons. This term

is regarded only as a simple classical additive term. It is this Hamiltonian which will be essential

when analyzing the electronic structure.

The next step is to link the expectation value of the Hamiltonian to the electron density,

where ri represent spin and position for electron i. As such, the density operator is introduced,

n̂(r) =

N∑
i=1

δ(r− ri). (2.35)

Introducing bra-ket notation, the particle density is given by the expectation value of n̂(r), where
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the electron many-body wavefuntion is introduced as Ψ(r1, r2 · · · , rN ),

n(r) =
〈Ψ| n̂(r) |Ψ〉
〈Ψ|Ψ〉

= N

∫ ∑N
i=2 d3ri

∑
σ1
|Ψ|2∫ ∑N

i=1 d3ri|Ψ|2
. (2.36)

If the density does not obey n↑(r) = n↓(r) = n(r)/2, the density for each spin is obtained by

excluding the sum over each spin configuration, σ1. Likewise, the total energy is found by taking

the expectation value of the Hamiltonian (2.34),

E = 〈T̂ 〉+ 〈V̂e-e〉+

∫
d3rVext(r)n(r) + El-l. (2.37)

Finding the eigenstates of the many-body Hamiltonian can be done by identifying the saddle

points of (2.37), and the ground state wavefunction can be obtained by finding the minimum

total energy with respect to all ri in Ψ(r1, r2 · · · , rN ). Even though the Born-Oppenheimer

approximation is used, this is a very demanding task, especially when handling larger systems, as

the systems have at least 3N variables in 3 dimensions. Thus, the stage is set for a theory which

introduces a way to solve this problem, namely DFT.

2.4 Density functional theory

This section is mostly based on [10], and gives a short presentation of the basics of the DFT.

The goal is to find properties of interacting many-particle systems, without doing the tedious ab

initio method of solving the many-body Schrödinger equation directly. The proposed solution is

surprisingly simple, namely that any property of the interacting system can be evaluated as a

functional of the ground state density, which is local in the sense that it depends solely on the

position. Theorems that claim such a density exists and the methods of solving the emerging

equations are presented.

2.4.1 The Hohenberg-Kohn theorems

The main idea behind the approach of Hohenberg and Kohn is to incorporate a precise theory

of many-body systems when formulating the DFT. This theory should apply to any interacting

system of particles, and thus also to systems of electrons and fixed nuclei, such as systems with

a Hamiltonian as presented in Equation (2.33). Two theorems summarize and set the starting

point of DFT [19]. The two theorems could be stated as the following [10, p. 122].

• Theorem 1: “For any system of interacting particles in an external potential Vext(r), the

potential Vext(r) is determined uniquely, except for a constant, by the ground state particle

density n0(r).”

• Theorem 2: “A universal functional for the energy E[n] in terms of the density n(r) can

be defined, valid for any external potential Vext(r). For any particular Vext(r), the exact
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ground state energy of the system is the global minimum value of this functional, and the

density n(r) that minimizes the functional is the exact ground state density n0(r).”

Thus, finding the electron density which corresponds to the ground-state many-body wave equa-

tion should make it possible to obtain the exact properties of the system. This is due to the fact

that all the properties of the system can be determined from the ground state electron density.

This leads to the Hohenberg-Kohn definition of the energy as a functional,

EHK[n] = T [n] + Eint[n] +

∫
d3rVext(r)n(r) + El-l. (2.38)

Here [n] is introduced, as to show that the energy is a functional2 of the electron density. Also,

the last term, El-l, is the nuclei interaction energy. This is the fundation for the Hohenberg-Kohn

functional,

FHK = T [n] + Eint[n]. (2.39)

The kinetic and interaction energies of the electrons are functionals of the density, and this

functional contains both the kinetic and the potential energies of the interacting electron system.

2.4.2 Constrained search formulation

The formalism developed by Levy and Lieb [20][21] provides an instructive definition of the

functional. The ground state energy of the system can be found by starting with the many-body

wavefunction and minimizing with respect to all variables present in the desired wavefunction,

which can be a tedious task. Levy and Lieb introduced a concept where the class of many-body

wavefunctions Ψ with the same density n(r) is considered. The energy for any wavefunction can

be expressed as

E = 〈Ψ| T̂ |Ψ〉+ 〈Ψ| V̂e-e |Ψ〉+

∫
d3rVext(r)n(r) + El-l, (2.40)

where the first term on the right-hand side is the kinetic energy of the electrons, the second is

the electron-electron interaction energy, and the second to last term represents the interaction of

the electron density with the external potential from the fixed nuclei. The last term is simply the

remaining nucleus-nucleus interaction. The unique lowest energy for the density corresponding

to the class of wavefunctions can be obtained by minimizing (2.40),

ELL[n] = min
Ψ→n(r)

[〈Ψ| T̂ |Ψ〉+ 〈Ψ| V̂e-e |Ψ〉] +

∫
d3rVext(r)n(r)d3r + El-l. (2.41)

2The importance of differentiating between a function and a functional becomes apparent when considering
that a functional maps a space X to the real or complex numbers. A simple example of this is the integral where
F is a functional of g(x), F [g] =

∫ x2
x1

dxg(x)
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The definition of the Levy-Lieb functional of the density is then,

FLL[n] = min
Ψ→n(r)

[〈Ψ| T̂ |Ψ〉+ 〈Ψ| V̂e-e |Ψ〉]. (2.42)

The functional (2.42) is so called “N-representable”, meaning that for a wavefunction for N elec-

trons with any n(r) derivable from this wavefunction, the functional is defined. This representabil-

ity is different from that of the Hohenberg-Kohn functional (2.39), which is “V-representable”,

meaning that the functional is only defined for n(r) that are generated by some known external

potential. For such a known external potential, at the minimum of the total energy of the system

the Levy-Lieb functional is equal to the Hohenberg-Kohn functional, given by the fact that the

minimum corresponds to a density that can be generated by the external potential. Regarding

the electron density, there exists a few restrictions for the density that must be obeyed, but theses

restrictions will not be discussed in detail. Given that this functional could be defined for any

density, the exact density - as well as the energy of the system - can be found in theory.

2.4.3 The Kohn-Sham equations and the auxiliary system

The idea behind the Kohn-Sham approach is to omit the problematic interacting many-body

system discussed in Subsection 2.3.2, by introducing a simpler auxiliary system. The concept

involves doing calculations on a non-interacting system, representing the interacting system with

the same ground state density. The independent particle equations should be possible to solve,

and the many-body effects are represented in the exchange-correlation (xc) functional of the

density. The Hamiltonian for the auxiliary system is given as

Ĥσ
aux = − ~2

2me
∇2 + V σ(r), (2.43)

where V σ(r) represent a local potential acting on an electron of spin σ at position r. The ground

state satisfying this Hamiltonian have Nσ orbitals, denoted ψσi (r). The kinetic energy and the

density of the auxiliary system is given as a sum over spins and orbitals. These properties can

be expressed as

Ts =
1

2

∑
σ

Nσ∑
i=1

∫
d3r|∇ψσi (r)|2, (2.44)

and

n(r) =
∑
σ

Nσ∑
i=1

|ψσi (r)|2. (2.45)

Here Hartree atomic units are introduced, ~ = me = e = 4π/ε0 = 1. The concept of Kohn-Sham

is to rewrite the ground state energy functional (2.38) as

EKS [n] = Ts[n] +

∫
drVext(r)n(r) + EH[n] + El-l + Exc[n]. (2.46)
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Here El-l represents the nuclei-nuclei interaction, and Vext(r) is the external potential, from both

the nuclei and external fields. The Hartree energy, EH [n], takes care of the Coloumb interaction

the electron density has with itself,

EH[n] =
1

2

∫
d3rd3r′

n(r)n(r′)

|r− r′|
. (2.47)

If the electron density is well defined, the remaining problem is Ts[n] and Exc[n], which must

be unique functionals of the density by the Hohenberg-Kohn theorems. By comparison of the

Hohenberg-Kohn definition of the energy as a functional (2.38), since the density of the auxiliary

system must be equal to the density of the interacting system, the xc energy can be expressed as

Exc[n] = FHK − Ts[n]− EH[n] =
〈
T̂
〉
− Ts[n] +

〈
V̂e−e

〉
− EH[n]. (2.48)

Here the expectation values of the operators are introduced, as
〈
T̂
〉

= T [n], and
〈
V̂e−e

〉
= Eint[n],

showing that Exc[n] is a functional. Equation (2.48) shows that the xc energy is the difference

between the kinetic energy and the electron-electron interaction energy for the interacting many-

body system and the auxiliary non-interacting system. Approximating Exc[n] is a major part of

any DFT calculations, and its importance and some of its aspects will be discussed in Section

2.5.

Solving the equations for the ground state Kohn-Sham auxiliary system can be done by

minimizing with respect to the particle density. Seen as EKS is given as a functional, and Ts

from Equation (2.44) and n(r) =
∑
σ n(r, σ) from Equation (2.45), are functionals of the orbitals,

varying the wavefunctions leads to the variational equation. The orthonormalization constrains

are

〈
ψσj

∣∣∣ψσ′

i

〉
= δi,jδσ,σ′ , (2.49)

and the variational equation can be written as

δEKS
δψσ∗i (r)

=
δTs

δψσ∗i (r)
+

[
δEext

δn(r, σ)
+

δEH

δn(r, σ)
+

δExc

δn(r, σ)

]
δn(r, σ)

δψσ∗i (r)
= 0. (2.50)

Introducing equations (2.44) and (2.45) for Ts and n(r, σ) the Schrödinger-like eigenvalue equa-

tions with the Kohn-Sham effective Hamiltonian becomes

Hσ
KSψ

σ
i (r) =

[
−1

2
∇2 + V σKS(r)

]
ψσi (r) = εσi ψ

σ
i (r), (2.51)

where the effective potential is

VKS(r) = Vext(r) +
δEH

δn(r, σ)
+

δExc

δn(r, σ)
= Vext(r) + VH(r) + V σxc(r). (2.52)

A self-consistent loop can be used to solve the Kohn-Sham equations. The start of this loop
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consists of an initial guess of n↑(r), n↓(r), for which the loop must be carried out for each

spin density. Note that this must be done simultaneously, as the potential for each density

is a functional of the density of both spins. Then the effective potential is calculated, and

Equation (2.51) can be solved. New spin densities are calculated by Equation (2.45), and a

consistency check is done. If the new densities are self-consistent with the previously generated

densities with an appropriately small error, it means that the ground state density has been

obtained, and the minimization is done. If the densities are not self-consistent, a new potential

is calculated and the process is repeated. Once the correct ground state densities are found,

properties of the system can be extracted, as predicted by the Hohenberg-Kohn theorems. This

approach has many advantageous features, as the Hartree energy and the kinetic energy of the

non-interacting system are easy to calculate, and Equation (2.51) is easier to solve than the

many-body interacting Schrödinger equation. Obtaining an approximation for Exc[n] and thus

also Vxc(r) is the motivation for the following section.

2.5 Approximations of the exchange-correlation functional

The main source of errors in DFT calculations is the approximation of the xc functional. If

the functional were precisely known, the Kohn-Sham equations would give the exact answers for

the electronic system. The approximations done are therefore essential for the correctness and

precision of any properties gathered from the calculated electron density. In this section, the

local spin density approximation (LSDA) and the generalized gradient approximation (GGA) are

discussed. This section is based on [10].

2.5.1 Local spin density approximation

The simplest approximation for the xc functional, Exc[n], is the local spin density approximation.

This approximation is based on the presumption that the system and properties studied can be

modelled as being close to that of the homogeneous electron gas [22], such that the exchange and

correlation effects are considered to be only local. Therefore, the xc energy is a space integral,

where the xc energy density is set to be the same as for the homogeneous electron gas with the

same density. This results in the following expression for the xc energy,

ELSDA
xc [n↑, n↓] =

∫
d3rn(r)εhom

xc (n↑(r), n↓(r)) (2.53)

This equation assumes two collinear spin densities, n↑(r) and n↓(r), and εhom
xc is the known local

xc energy density per particle of a homogeneous electron gas with the same density as the system

analyzed. For cases where the system is unpolarized, the local density approximation (LDA) is

simply found by setting n↑(r) = n↓(r) = n(r)/2, where n(r) is the total density. The L(S)DA has

its uses, but the approximation is not suited to handle systems where the self-interaction of the

electron density is a crucial factor. As this xc energy functional (2.53) does not take into account
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the local gradients of the electron density, more sophisticated approximations are often desired.

2.5.2 Generalized gradient approximation

The idea behind the GGA is to introduce a weight that depends on the gradients of the electron

density. This weight can be used when constructing functionals superior to the LSDA, as the

GGA does not solely depend on the xc energy density of a homogeneous electron gas with the

same density as the studied system. The GGA xc energy functional can be defined as

EGGA
xc [n↑, n↓] =

∫
d3rn(r)εxc(n↑, n↓, |∇n↑|, |∇n↓|, |∇2n↑|, |∇2n↓|, · · · ), (2.54)

and also introducing the weight,

EGGA
xc [n↑, n↓] =

∫
d3rn(r)εhom

x (n)Fxc(n↑, n↓, |∇n↑|, |∇n↓|, |∇2n↑|, |∇2n↓|, · · · ), (2.55)

where εhom
x is the exchange part of the xc energy for the unpolarized homogeneous electron gas.

It is possible to reduce Equation (2.55) into two parts, one containing the exchange part and one

containing the correlation part. When this is done, the exchange parts, EGGA
x [n] and Fx(n, |∇n|)

are the same as for an spin-unpolarized system of density n(r). It is common to work with the

exchange part of the weight as Fx(si), where si is the i’th order reduced density gradient, defined

as

si =
|∇in|

2i(3π2)i/3n1+i/3
, (2.56)

such that the weighted exchange energy can be written as

EGGA
x [n] =

∫
d3rn(r)εhom

x (n)Fx(si). (2.57)

The correlation part of EGGA
xc [n↑, n↓] = EGGA

x [n] +EGGA
c [n↑, n↓] is much more complex than the

exchange part. Its overall contribution to the xc energy is in some cases small but not in any way

neglectable, compared to the contribution stemming from the exchange part. More discussion

about the convergence of the correlation part with respect to si and the reduced density gradient

expansion of the correlation weight can be found in [23] and [24].

2.6 Cluster expansion for alloy systems

In this section, theoretical framework for the CE method is presented to show the relation between

the configurational energy of an alloy and the ECIs. The statistics behind the CE evaluation and

a way of obtaining the ECIs with linear regression are also included.
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2.6.1 Cluster expansion and the configurational energy

A binary alloy consisting of atoms of type A and B can be represented discretely by a configura-

tional variable σ. At a given lattice point σ = ±1, depending on whether the point is occupied

by an atom of type A or B. A point cluster with one lattice point has a one dimensional configu-

rational space associated with it, and the scalar product of two functions in this space, f(σ) and

g(σ), is defined as [6]

〈f, g〉 =
1

2 cosh(µ)

∑
σ=±1

eµσf(σ)g(σ), (2.58)

where µ is a constant. Given a value of µ, the one-dimensional configuration space spanned

by σ has a complete and orthonormal basis given by two polynomials. Setting µ = 0, the two

polynomials of order 0 and 1 are expressed as

φ0(σ) = 1, φ1(σ) = σ. (2.59)

This basis is for the point cluster, but the orthogonal basis can be expanded to any finite cluster

or the whole crystal of N lattice sites, given the initial polynomials for the point cluster. Such a

finite cluster can be defined as

α = {p1, p2, . . . , pnα}, (2.60)

where pi represents point i in the cluster α containing nα cluster sites. The configurational space

representing this cluster is given by the product of the subspaces at each site in α, and can now

be expressed as an nα-dimensional vector,

σ = {σ1, σ2, . . . , σnα}. (2.61)

An orthonormal basis for the cluster α in the space spanned by this discrete vector is given by

the functions Φα(σα), and is constructed by all possible products of the two polynomials from

Equation (2.59),

Φα(σα) =
∏
i∈α

φ1(σi). (2.62)

This function is called the characteristic function of the cluster α, and as the polynomials from

Equation (2.59) are inherently orthonogal so is Φα(σα). Given that α and β are subclusters of

cluster γ the orthogonality of the characteristic functions is expressed as

〈Φα,Φβ〉 =
1

2nγ

∑
σ1=±1

· · ·
∑

σn=±1

Φα(σα)Φβ(σβ) = δα,β , (2.63)

where δα,β is the Kronecker delta. The scalar product between two functions f(σγ) and g(σγ),
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equivalent to Equation (2.58), in the configurational space of cluster γ is defined by

〈f, g〉 =
1

2nγ

∑
σ1=±1

· · ·
∑

σn=±1

f(σγ)g(σγ). (2.64)

By using the orthonormal basis, Φα(σ), it is possible to expand a function dependent on the

configuration σ of cluster α using the ECIs defined as the scalar product,

Vα = 〈Φα(σ), E〉, (2.65)

where E is the energy. Expanding the configurational energy as a sum, using the ECIs and the

orthonormal basis yields

E(σ) =
∑
α

VαΦα(σ). (2.66)

Having introduced the complete and orthogonal basis in the configurational space of the clusters,

system properties can be expressed through the CE by the use of the ECIs. The main challenge of

the construction of a CE model is thus to find clusters that map the configuration to the desired

physical quantity with a proper degree of precision.

2.6.2 Cross-validation score and errors in CE models

In practice, only a finite number of ECIs can be used when mapping the configurational space to

a physical quantity, even though, theoretically, an infinite number of unknowns exists. If too few

terms are used, the truncated CE could fail to predict all sources of energy fluctuations, and if too

many terms are kept, overfitting could occur. The mean-squared-error of the predicted energies

for structures included in the CE model could be small, especially if similar structures are used

to develop the CE model. A small mean-square-error is not in itself a proof that the model is

accurate, as the model could fail to accurately predict properties of structures differing to a large

degree from those included in the initial data set used for training the CE. For evaluating a CE

model, the cross-validation (CV) score of the model can be examined, by comparing the energy

of a structure found by DFT with the energy of the structure predicted by the CE model [25].

The CV score can be expressed as

CV =
1

n

n∑
i=1

(Ei − Êi)2, (2.67)

where n is the total number of structures, Ei is the energy of structure i found by DFT calcula-

tions, and Êi is the energy of structure i predicted by a fit to the energies of all the structures

included in the training set, excluding structure i. The CV score can hide some information

about the power of the model, as it is an average value. If the energy of one of the n structures

is predicted with much larger error than other structures, the residual of this energy prediction

will be large compared to the residuals of the other energy predictions, as the residual of the
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predicted energy of structure i is defined as

ei = Ei − Epi , (2.68)

where Ei is as above the energy of structure i calculated by DFT, and Epi is the energy predicted

for structure i by a fit to the energies of all the structures, including structure i. In the same way,

the leave-one-out residual can be defined similarly to Equation (2.68), where the leave-one-out

residual is the difference between the DFT energy and the energy predicted by a fit to the energies

of all the structures, excluding structure i. Thus, by examining the residuals statistical outliers

can be identified. The square of the residuals of the energy predictions for the set of n structures

can be used to calculate the root-mean-square error (RMSE) of the CE model,

RMSE =

(
1

n

n∑
i=1

e2
i

)1/2

. (2.69)

2.6.3 Selection of the ECIs

For fitting the ECIs to the energy of the different configurations, linear regression is used. Some

regression methods are better suited for handling the DFT calculated energies, but a theme for

the methods used is that they need to take overfitting into account. This is due to the selection

of the ECIs, since there are many possible clusters to choose from. Therefore it is often regression

methods that set some ECIs to zero that gives the best predictive power. If w is an N × 1 signal

where most of the coefficients are zero, the system can be expressed as [26]

y = Φw + n. (2.70)

Here, y is M × 1 linear measurements of the unknown signal w, and n is the acquisition noise.

For the case of fitting to the DFT energies, w represents the ECI. The measurements, y, are

taken with a measurement matrix Φ,

Φ = [φ1, φ2, · · · , φN ], (2.71)

of size N × M with M � N . The original signal w can be in some cases be reconstructed

accurately by a reconstruction algorithm when the number of measurements is less than the

number of coefficients, given mathematically by the condition M � N . This is according to the

theory of compressive sensing [27]. Utilizing the sparsity of w the reconstruction algorithm can

be expressed by restricting the lp norm of w, where the lp norm of w is defined as

||w||p = (|w1|p + |w2|p + · · ·+ |wN |p)1/p. (2.72)

The constraint set upon ||w||p is 0 ≤ p ≤ 1, and the resulting reconstruction algorithm can be
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formulated as

ŵ = argmin
w
{||y − Φw||22 + τ ||w||p}, (2.73)

where τ is introduced as a regularization constant. In the Bayesian approach, all unknowns are

assumed to be stochastic quantities which are associated with certain probability distributions.

The motivation behind introducing priors in Bayesian statistics is that in some cases properties

of the input signal can be assumed, giving the algorithm extra information about the system

studied. For obtaining the ECIs, priors can be utilized to take into account information about

the physical system when doing calculations. The Bayesian compressive sensing method utilizes a

Laplace prior with the unknown coefficients of w to model the sparsity of the signal, and creates

an iterative algorithm for finding the ECIs which reproduce the calculated DFT energies. How

the priors are introduced in the model and the restrictions set on the probability distributions

are further discussed in [26].

2.7 Monte Carlo methods and simulations

When doing calculations with DFT the energies are extrapolated to 0 K, making it difficult

to obtain any thermodynamic properties for the systems studied. Also, the systems have to be

relatively small when doing DFT calculations, limiting the structural properties which are possible

to calculate. Using MC methods, atomic systems can be analyzed at any given temperature, and

the size of the structures can be expanded to include more than 1000 atoms [28, p. 165]. Here,

doing MC simulations in the canonical and the semi-grand canonical ensemble is discussed, with

a focus on binary alloy systems. The main references for this section is [11], [28] and [29].

2.7.1 Monte Carlo simulations in the canonical ensemble

For a system containing N particles, the canonical ensemble is a statistical collection containing all

possible microstates of the system. For a binary alloy, the microstates in the ensemble correspond

to all configurations possible to construct at a given concentration. Some parameters restrict the

behaviour of the system, as it has a fixed concentration and volume as well as a fixed total number

of particles. The system is surrounded by a heat bath with temperature T , which it is in thermal

equilibrium with. It is therefore the temperature that determines the statistical properties of the

system, such energy fluctuations as well as the probability distribution determining the occupation

of the different microstates.

When doing MC simulations in the canonical ensemble, the number of possible configurations

in a binary alloy with respect to which atoms are located at which sites becomes large, even if the

atomic concentration is kept constant. The MC methods are advantageous as they are constructed

in such a way that the configurations with greatest statistical importance are those extracted from

the possible configurations. Using MC methods, equilibrium states, thermodynamic properties
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and ground states can be identified. Let the configurational space of a binary alloy be defined

as in Equation (2.61), and choose a random configuration of atoms at a given concentration as a

starting point. The total number of atoms in the structure must be kept constant. For a given

temperature, T , NMC MC steps are performed. The first part of a MC step consists of randomly

swapping two atoms of different types. If v is the configuration of atoms,

v = {. . . , 1,−1, 1, 1,−1,−1, . . . }, (2.74)

a new configuration, v′, could be illustrated as

v′ = {. . . , 1,−1,−1, 1, 1,−1, . . . }, (2.75)

where two randomly picked atoms of different types A and B have been swapped. The next

step is to evaluate the energy difference between the two configurations, using the expression for

the configurational energy from Equation (2.66) which can be obtained by using the ECI for the

binary system obtained through the CE. The energy difference is expressed as

∆E = E(v′)− E(v), (2.76)

which is negative if the new configuration, v′, is energetically favorable compared to v. The

temperature dependence is introduced through the Boltzmann distribution, which is included in

the probability of accepting the new state. The Metropolis-Hastings algorithm [29] is a com-

monly used algorithm that uses such a temperature-dependent selection method. The selection

probability used in this algorithm is expressed as

min(1, exp(−∆E

kBT
)), (2.77)

and the process is repeated for the configuration v or v′, depending on which one is picked.

Choosing the number of MC steps to be performed can depend on which properties of the system

is sought after. One choice is to let NMC depend on the number of atoms and the concentration of

the system, as the number of possible microstates of the system is dependent on these properties.

Another possibility is to equilibriate the system with an unknown NMC, but terminating the

process when the variance of the energy between states has reached a given value. When a near-

ground or ground state is obtained, thermodynamic properties can be extracted, and the path of

atomic configurations chosen by the algorithm can be traced.
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2.7.2 Monte Carlo simulations in the semi-grand canonical ensemble

The semi-grand canonical ensemble is constructed in much the same way as the canonical en-

semble. This ensemble can be though of as a mixture of the canonical and the grand-canonical

ensemble, which in the latter both the concentration as well as the total number of particles can

vary. In the semi-grand canonical ensemble, while the concentration is allowed to vary, the total

number of particles is fixed. Also, the temperature and the chemical potential are fixed, while

the total energy of the system is allowed to fluctuate.

When doing MC simulations in this ensemble, the selection method for selecting a new state

can be done as in the canonical ensemble, using Equation (2.77), but the way of constructing

new configurations is different. Instead of swapping two atoms of different types, a random

site in the structure is selected, and the atom type at this site is swapped. Analogous to the

configurations in the canonical ensemble, equations (2.78) and (2.79), the configurations in the

semi-grand canonical ensemble can be defined in the configurational space as

v = {. . . , 1,−1, 1, 1,−1,−1, . . . }, (2.78)

and a new configuration can be illustrated as

v′ = {. . . , 1,−1, 1, 1, 1,−1, . . . }, (2.79)

where one atom have been replaced by an atom of the other type. This changes the chemical

composition of the system and allows for energy fluctuations. The temperature, T , and the

chemical potential, µ, are therefore externally imposed parameters determining the statistical

properties of the system.

2.7.3 Phase boundary tracing

A phase diagram for a binary alloy is often used to determine macroscopic and microscopic

material properties at different compositions and temperatures. MC simulations can be used

to trace phase boundaries, and thus used to identify regions where first-order phase transitions

occur, as well as regions containing stable phases. A thermodynamic potential per atom for a

system in the semi-grand canonical ensemble can be expressed using the partition function as [30]

φ(β,µ) = − 1

βN
ln

(∑
i

exp(−βN(Ei − µxi))

)
. (2.80)

Here, N is the fixed total number of particles in the system, Ei is the internal energy per atom

for state i, xi is the concentration of state i and β = 1/(kBT ), where kB is Boltmann’s constant,

and T is the temperature. µ is referred to as the chemical potential, or rather the difference in

the chemical potential for the two atoms types A and B, µ = µA − µB. The thermodynamic
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potential can also be expressed as a differential,

d(βφ) = (E − µx)dβ − βxdµ, (2.81)

where E is the systems average energy, and x is the average concentration. This differential

equation allows for finding the thermodynamic potential through integration,

φ(β1,µ1) =
β0

β1
φ(β0,µ0) +

1

β1

∫ (β1,µ1)

(β0,µ0)

(dβ(E − µx)− dµβx). (2.82)

If MC simulations are done with constant µ, Equation (2.82) reduces to

φ(β1,µ) =
β0

β1
φ(β0,µ) +

1

β1

∫ β1

β0

dβ(E − µx), (2.83)

where the integral can be solved numerically along a path in β which does not cross a phase

transition. This way, MC simulations in the semi-grand canonical ensemble can calculate E and

x for a given β and µ.

Identifying φ(β0,µ) in the low temperature limit can be done through the definition of the

thermodynamic potential with the partition function. Defining Ẽi = Ei − µxi and Ẽ0 as the

energy in the low temperature limit, Equation (2.80) can be written as

exp(−βφ) =
∑
i

exp(−βẼi)exp(−βẼ0)exp(βẼ0). (2.84)

This equation can again be rewritten by taking the logarithm on both sides, changing signs and

dividing by β,

φ = Ẽ0 − kBT ln

(∑
i

exp

(
− Ẽi − Ẽ0

kBT

))
. (2.85)

As Ẽi ≥ Ẽ0, it is clear that limT→0 φ = Ẽ0, making it possible to calculate the first term in

Equation (2.83).

When calculating the thermodynamic potential. it is computationally advantageous to trace

the phase boundaries, instead of calculating the potential in the entire region where a phase is

stable. At one such boundary, there should exist β and µ such that a phase-separated mixture

between phases α and γ are stable. At this point the condition βφα = βφγ must be true. When

the total differential of this equation is taken, the result can be written as

dµ

dβ
=

Eγ − Eα

β(xγ − xα)
− µ

β
. (2.86)

Here Eγ and Eα are the energy for phase α and γ, while xγ and xα is the thermal average singlet

correlation function for phase γ and α [7]. Requiring
dµ

dβ
= 0 at T = 0 gives the initial conditions
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of Equation (2.86),

µ(T = 0) =

[
Eγ − Eα

(xγ − xα)

]
T=0

. (2.87)

Here energies for the two phases calculated by DFT can be used to locate a starting point when

searching for µ and β for tracing the phase boundaries.
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3 Computational methods

This chapter briefly explains the background of the computational methods used later on. The

most relevant aspects of the chosen software for doing DFT calculations as well as user input

data are discussed. The method of training the CE model from DFT data is presented. Lastly,

computational details about the MC algorithm used is included, as well as discussion about doing

calculations in different statistical ensembles.

3.1 DFT calculations

The use of DFT calculations for simulating atomic-scale systems such as molecules and atoms

has increased vastly in recent years, and the evolution of both the theoretical ideas as well as the

computational methods have accumulated to the modern DFT implementations used today [5].

As more powerful computers and data-centers have emerged, with greater core counts, bandwidth

and memory, several research communities have embraced precise parallelized DFT codes such

as GPAW [31][32][33] and VASP [34] in conjunction with simulation environments as the atomic

simulation environment (ASE) [35], to understand more about the fundamental properties of

materials.

3.1.1 GPAW

GPAW is a program package for doing electron structure calculations, using the projector aug-

mented wave (PAW) method for numerical approximations. It is written in Python and C lan-

guages and can be used as a calculator with ASE objects. The 90/10 rule within computer science

states that approximately 90% of the time spent running a program is used within 10% of the

code. Therefore, even though most of the GPAW code is written in Python, the time consuming

linear algebra and matrix operation functions used are written in C and uses several C-extensions

from BLAS [36] and ScaLAPACK [37] to speed up performance. The reason for using C to im-

prove the performance of the calculations is due to C often being faster than Python when doing

numerical calculations [38]. The GPAW code is also highly parallelized by using the message

passing interface (MPI) [39, p. 83], which is a huge advantage, especially when running simu-

lations on supercomputers or large computer clusters. For these reasons GPAW can in certain

cases reach close to 25% peak floating point performance, and do calculations on large data sets,

even though parts of the code scale as O(N2) and O(N3) [40], where N is the input data size.

Using GPAW as a calculator in conjunction with an ASE Atoms object, the many function-

alities of GPAW need to be taken into account. Different parameters are given to the GPAW

calculator, specifying different limits and aspects of the calculations being done. The following

discussion handles the most relevant GPAW input parameters for the calculations done later.

When choosing which mode used in the GPAW calculator, the choice is between expanding

the wave functions in a real space grid, in a basis-set from atomic orbitals or as plane waves.
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The calculations done in this project are done in reciprocal space, so the wave functions are

expanded as plane waves. One of the reasons this expansion is used is because of the efficient

way of calculating the stress tensors of the system in reciprocal space. The plane wave approach

is also beneficial for doing calculations with smaller systems with a given periodicity, as the code

implemented in GPAW for plane wave expansion parallelizes well. When using the plane wave

approach one can specify the plane wave cutoff, Ec. This parameter is set as a boundary for the

waves, such that only plane waves with energies |k+G|2/2 < Ec are allowed, where k is the wave

vector and G is the reciprocal translation vector.

There is also an option for choosing how many bands are included for each spin. When

doing calculations on metals, it can be beneficial to include several unoccupied bands for proper

convergence.

The Brillouin-zone sampling is also taken care of in the GPAW calculator. The default sam-

pling is with the Γ-point, and specifying the number of k-points, or the k-point density (points

per Å
−1

) is essential for stable DFT calculations. The k-point density is defined as

kdens = N
L

2π
, (3.1)

where N is the number of k-points, and L is the length of the unit cell along the corresponding

reciprocal lattice vector. A Monkhorst-Pack sampling [41] can be used when specifying the

number of k-points in each of the three directions of the reciprocal space is desired. It is also

important to note the dependency of the number of k-points required for a given system volume.

Due to the inverse nature of the Fourier Transform, i.e., m → m−1, small systems require more

k-points than large systems to keep the k-point density roughly the same across the different sized

systems.

GPAW also allows for controlling the smearing of the occupation numbers of the system. This

parameter is set as kBT in Equation (2.11), in units of eV, and the energies are extrapolated

to 0 K afterward. For metals, the smearing around the calculated Fermi Level is useful, since

occupancies near the Fermi Level can be between 0 and 1, due to the metals having partially

filled bands [8, p. 162].

Lastly is choosing an appropriate xc functional. Different xc functionals are possible to choose

from, as GPAW can use the xc functionals from libxc [42]. Both local density, generalized gradient,

and hybrid density approximations are available. The simplest functional used in later calculations

is the LDA [43][44]. This functional gives reasonable results for some systems, but for metals as

researched in this work, a commonly used functional is the Perdew-Burke-Ernzerhof (PBE) xc

functional [24]. This is a GGA functional, which is suitable, as it takes into consideration the

large gradients of the electron density which often occurs in metals. The PBE functional is first

order in the reduced density gradient si from Equation (2.56), so its weight depends both on the

density and the first order derivative of the density.
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3.1.2 The atomic simulation environment

ASE is used for handling the initialization of several simulation settings, such as geometry, cell size,

and the organization of the atoms. This simulation environment provides many functionalities

such as tools for constructing bcc and fcc cells, setting the desired system size and lattice constants

as well as defining the boundary conditions of the system. The ASE Atoms objects can be viewed

for controlling the crystal structure. Some of the initialized values used with ASE can decrease the

run time of other tasks done with the joined ASE Atoms object and the GPAW calculator. The

initial lattice constant and the initial magnetic moment for spin-polarized calculations should

be set close to the expected values of the system, as less computer resources are used for the

relaxation of the lattice as well as the convergence of the magnetic moment. The ASE database

is also convenient, as e.g., Atoms objects, initial parameters, and GPAW input parameters can

be stored properly for later use.

3.1.3 Local structure optimization

When doing calculations with atomic systems generated by ASE, it is often beneficial to optimize

the atomic structures. The goal of the optimization algorithms is to scout the potential energy of

the system, trying to find local saddle points. By moving the atoms around, e.g., by changing the

lattice constants, the cell or the atomic positions, the algorithm tries to reduce the force on each

individual atom such that the maximal force the atom is subjected to is less than some fmax. In

the following work, the preconditioned LBFGS algorithm and the BFGS algorithm are used [45].

The algorithms use the force returned by the calculator object, as well as the Hessian matrix of

second derivatives with respect to atom positions, ∂2E/(∂xi∂xj), to decide where to move the

atoms in the next step. The LBFGS algorithm updates the inverse of the Hessian, and some

approximations such as initial guesses for the Hessian are used to save computer resources. The

LBFGS is used in conjunction with a sparse precondition algorithm, which helps with accelerating

the geometry optimization and the identification of the local energy minima [46].

3.2 Development of the CE model

Here, details about the software used for doing CE with obtained DFT data and evaluating

the results are discussed. The CE implementation used in this thesis is CLEASE [47], which is

integrated with ASE. Theoretical aspects of the CE method and the statistical evaluation of the

ECIs were discussed in Section 2.6.

3.2.1 Obtaining ECIs with CLEASE

When preparing structures for use in the CE model, it is crucial to select structures that cover

most of the possible configurational space. To accomplish this, structures with atoms in random

positions, covering the desired concentrations could be used. The simplest way of doing this is to
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start with doing DFT calculations for small structures, evaluating the CV score, and increasing

the size of the structures if all atom configurations for a given size are included in the model.

Finding a set of small structures that through CLEASE provide a satisfying CV score and RMSE

error is beneficial since it could save computer resources doing DFT calculations for the smallest

structures possible. CLEASE accepts structures of any size, with both cubic and conventional

unit cells. When preparing structures of different sizes, it is advantageous to check for symmetry

equivalence between structures, as to avoid spending computer resources on doing DFT calcula-

tions on equivalent structures. ASE has this functionality for evaluating the symmetry between

Atoms objects.

When evaluating the CE model and the ECIs it has produced, the convex hull [48] based on

the CE predicted energies and the DFT energies could be examined. Structures on the convex

hull could be near-ground or ground states, and it is paramount for further analysis that the CE

model predicts the energies of these structures to a high degree of precision.

Some tuning of the regression is allowed, to minimize the CV score and to create ECIs which

better predict the physical properties of the system. The noise, n, from Equation (2.70) can be

used to affect the linear regression as it enters in the first iteration of the algorithm. Also, an

upper threshold for how far away the atoms in the ECIs can be distance wise, and an upper

threshold for the number of atoms included in the ECIs can be used. These parameters allow for

controlling the algorithm in such a way that the ECIs produced are not based on self-interaction

between atoms due to the periodic boundary conditions employed in the calculations. Also, τ , in

the reconstruction algorithm (2.73) can be used to regularize the CE evaluation method.

3.3 Monte Carlo simulations

When the ECIs for the atomic system studied are obtained through the CE, the ECIs can be used

with MC simulations to expand the analysis further, as discussed in Section 2.7. In this thesis,

a Markov chain MC simulation code developed by David Kleiven [49], based on the Metropolis-

Hastings algorithm [29] is used. Here, details about the software are elaborated, and aspects of

how it is used in this thesis are discussed.

3.3.1 Aspects of the Monte Carlo code

Several input parameters can be used to tune the MC code, such that the desired physical

properties can be examined. The algorithm uses the ECIs obtained through the CE to calculate

the energy of the system. It is therefore paramount that the CE model predicts the correct ground

states of the system for the MC code to converge and obtain states which are representative of

the physical system.

When initializing the system, the size of the system, the elements to include, their concentra-

tions and the lattice structure are given as input parameters. The number of MC steps done at

a given temperature, NMC, is an important input parameter when doing simulations in all en-

30



3.3 Monte Carlo simulations 3 COMPUTATIONAL METHODS

sembles. When sampling different configurations, it is essential that a large enough sample space

is checked to obtain the near lowest or lowest energy states. For this reason, systems with high

amounts of possible configurations require higher NMC to obtain representable physical results.

When doing simulated annealing in the canonical ensemble, a random alloy configuration

restricted by the input parameters is created. For obtaining the near-ground or ground states of

a system, the simulation starts at a high temperature and performs NMC MC steps, before the

temperature is decreased and a new series of MC steps are performed. The configurational energy

of the system at different temperatures can be obtained, and thermodynamic properties such as

the heat capacity (2.25) can be calculated. This method of annealing also allows for obtaining

ground states at different atomic concentrations.

It is also possible to start from a non-random configuration, e.g., a known ground state, and

increase the temperature through the MC simulations. These simulations can be done in both

the canonical ensemble and the semi-grand canonical ensemble, depending on whether the atomic

concentration should be allowed to vary. This simulates, among other things, the dissolution of

the atoms as the thermal fluctuations are introduced.

The MC code has utilities that can be attached to the MC process when doing calculations.

The trajectories of atoms in the system at different temperatures can be recorded, such that

the movement of the atoms can be analyzed. From the tracing of the atoms in the canonical

ensemble, the site order parameter can be obtained. The site order parameter (SOP) is defined

as the number of atoms in the system which have moved positions one or more times due to

thermal fluctuations. Thus, for a system of Z atoms, the SOP is 0 for a system at 0 K, and the

maximum value is Z if all atoms have changed their initial positions. The reason for the SOP

being a precise quantity for studying the behavior of the system at different temperatures lies in

the systems desire to reduce its energy. Swapping two different types of atoms is the only possible

way to alter the energy of the system in terms of the configuration in the canonical ensemble, as

in this ensemble the atomic concentrations are kept constant.

3.3.2 Creating a domain of iron and silicon

This subsection explains how structures used later in MC simulations are constructed. The

results are found in Subsection 4.5.2, where two phases are studied. The Fe3Si structure is used

to illustrate the setup for the calculations, as they are done in the same way for the FeSi system.

The systems are constructed as a cube of bcc iron containing an empty volume inside shaped as a

cube or an octahedron. This vacant volume is then filled with Fe3Si such that the entire structure

is dense. The cube of Fe3Si is constructed the same way as in Figure 4.15a, and an example of

an octahedron structure is shown in Figure 3.1a. The octahedron is created in such a way that

the (111) planes of the bcc structure are exposed, as illustrated in Figure 3.1b. It is important

to note that the octahedron does not solely contain repetitions of Fe3Si structures. The smallest

structure able to recreate the ordering of atoms in the Fe3Si structure contains 16 atoms, such
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that the octahedron shape can be considered a mapping of atom types from a cube of Fe3Si to

the shape of an octahedron.

(a) Illustration of the Fe3Si octahedron. (b) Illustration of how the octahedron is con-
structed with respect to the axis.

Figure 3.1: Illustrations of the octahedron and its symmetries.

Illustrations of the Fe3Si cube and octahedron situated inside the iron cube can be seen in

Figure 3.2a and Figure 3.2b respectively. The structures are shown sliced in half, revealing the

structure in the interior of the iron box. For the FeSi cube and the octahedron, the setup is the

same, except that the configuration of the atoms in the interior cube and octahedron are such as

illustrated in Figure 4.15b.

(a) Fe3Si cube inside. (b) Fe3Si octahedron inside.

Figure 3.2: Illustrations of a Fe3Si cube and an octahedron situated inside a larger
iron encasement. The structures are shown sliced in half.
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4 RESULTS AND DISCUSSION

4 Results and discussion

This chapter contains presentations of the results in this thesis, as well as discussion. Comparison

with other works is done when appropriate, and relevant theory is linked to the results. Firstly,

the convergence of energy calculations is presented to study how total energy calculations depend

on the GPAW input parameters. Following this, the magnetic moments for iron and iron-silicon

alloys and the electronic band structure for iron and silicon are calculated with DFT. Then follows

a presentation of the development of a CE model for a bcc iron-silicon alloy. The results obtained

when doing simulated annealing and heating with MC based on the ECIs obtained from the CE

are then presented. Lastly, phase boundary tracing is done for the iron-silicon system, and the

surface energy associated with an interface between Fe3Si and iron is investigated.

4.1 Energy convergence and GPAW input parameters

To obtain appropriate numerical values for the GPAW input parameters discussed in Section

3.1.1, a series of total energy convergence tests are done for bcc iron. The tests consist of doing

energy calculations for the system, keeping all input parameters fixed except for one, which is

varied over a suitable range. As DFT calculations take time and computer resources, it is wise

to find parameters that give stable results as well as diminish the time used for computationally

expensive tasks. The time needed to do a calculation is not only dependent on the system size, but

also the numerical value of such parameters as the number of k-points and the energy cutoff. The

following convergence tests for different parameters are all done by energy calculations, where the

energy per atom for the systems are obtained, keeping all but one parameter fixed. If the varying

parameter is h and the increment is h′, convergence is obtained when |E(h + h′) − E(h)| < c,

where E is the energy per atom, and c is a constant which determines the level of convergence.

Calculations on different system sizes might require different values of h+h′ before they are seen

as converged. Therefore, it is common to do convergence tests when doing calculations with an

unfamiliar system. It should be noted that the value of c is not specified by any literature, and is

solely dependent on the specific system and which calculations are needed to be done. The fixed

parameters used for the following energy calculations for iron systems of 1 atom and 64 atoms

are listed in Table 4.1, and periodic boundary conditions are used throughout to represent the

bulk. The structures are not relaxed with respect to the lattice, but the magnetic moment per

atom is allowed to relax to its equilibrium value. The calculations are done this way since the

two different sized structures could relax to different magnetic moments per atom.

Table 4.1: Fixed GPAW input parameters for the 1 and 64 atom iron systems.

k-points Ecut [eV] kBT [eV] nbands

1 atom 343 500 0.05 −5

64 atoms 27 700 0.05 −8
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The first parameter studied is the number of k-points. In reciprocal space, the k-points form

a cube in 3 dimensions, such that the total number of k-points is evenly distributed in all three

directions. Figure 4.1 shows that for the one atom system the changes in energy per atom are

small above 512 k-points such that using 512 or more k-points should provide stability for energy

calculations for a structure of 1 atom. The structure of 64 atoms also displays stable energy

calculations, albeit for a smaller number of k-point. This system shows stable energy calculations

for 27 k-points. As seen here, it is a general rule that the larger the structure volume is, the less

k-points are needed. This has do do with the Brillouin zone being smaller for larger systems, as

discussed in Subsection 2.1.3. This is also the reason for no data for one k-point for the system

of 1 atom, as the calculations did not converge.
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Figure 4.1: Potential energy per atom as a function of number of k-points for bulk
bcc iron systems of 1 and 64 atoms.

Figure 4.2 shows how the energy calculations vary with different plane wave energy cutoffs

and how they converge. At Ecut = 600 eV the energy per atom seems to converge for both

systems, and calculations with energy cutoff above this value should be stable, given that the

other parameters used also provide stability. It is also interesting to note that the energies per

atom overlap for the two systems, as the values Ecut are the same. The number of available bands

and the number of k-points for the two calculations are different, but these variables do not seem

to impact the numerical value of the energy to a large extent.
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Figure 4.2: Potential energy per atom as a function of the plane wave energy
cutoff, for bulk bcc iron systems of 1 and 64 atoms.

The last stability check done is for the value of kBT in the Fermi-Dirac distribution (2.11).

This smearing factor is checked in the temperature range from approximately 70 K to 6000 K, and

Figure 4.3 shows that the calculations are stable within most of the temperature range. However,

it is not necessary to use high temperatures for the following calculations, as an extrapolation to

0 K is done, and it should suffice to do calculations within the range of 200 K to 1000 K.
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Figure 4.3: Potential energy per atom as a function of the temperature in the
smearing factor for bulk bcc iron systems of 1 and 64 atoms.

4.2 Spin orientation and magnetic moment

Iron is a ferromagnetic material, meaning the the atom spins are aligned even with no external

magnetic field, as discussed in Subsection 2.3.1. Therefore, it is interesting to investigate if the

DFT energy calculations manage to predict whether iron is ferromagnetic or not. Three energy

calculations are done for a bcc iron system of two atoms with periodic boundary conditions. One

where the spins of the atoms are set to zero, one with the spins parallel and one with antiparallel

spins. The numerical values of the magnetic moments are fixed through calculations, such that

|µ| = 2.2 µB/atom for the parallel and antiparallel calculations and |µ| = 0 µB/atom for the

non-magnetic calculations. All other parameters are kept consistent across the calculations, and

the GPAW input parameters are set to be Ecut = 600 eV, nbands = −5, kBT = 0.05 eV and 512

k-points. The calculated energies are presented in Table 4.2.

Table 4.2: Energies for different spin configurations for a 2 atom iron system.

Energy [eV/atom]

Zero spins −8.48

Parallel spins −9.05

Antiparallel spins −8.59
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No spin configuration provide unreasonable energies, but the lowest energy is as expected associ-

ated with the parallel spin configuration. It is interesting to note that it seems as if this system

is more stable with antiparallel spins than with zero spins.

The numerical value of µ is also investigated. Energy calculations for the two atom system

with parallel magnetic moments are carried out for different values of the magnetic moment, with

the same GPAW input parameters as used previously. These results are shown in Figure 4.4. An

energy minimum is observed between 2.0 and 2.5 Bohr magnetons per atom, which agrees well

with the results obtained by J. Kübler [50], where the local spin density functional approximation

was used. Other calculations have found |µ| = 2.15 µB/atom [51, p. 84] which also agrees with

these results.
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Figure 4.4: Potential energy per atom for a two atom structure of bulk bcc iron
with parallel magnetic moments.

As the magnetic moment of pure iron has been investigated, the next step is to analyze

the magnetic moment of bcc iron-silicon alloys. A total of 108 structures are relaxed, and the

magnetic moments are calculated. The way these DFT calculations are done is further explained

in Subsection 4.4.1. The results are shown in Figure 4.5. The red circles indicate the calculated

magnetic moments per atom, while the blue line represents the contribution from the iron atoms

to the magnetic moment if the configuration and the silicon-iron atomic spin interactions are

ignored. It is seen that the magnetic moment per atom for X(Si) = 0 is in agreement with the

magnetic moment previously found for the pure iron system. Also, at X(Si) = 1 the magnetic
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moment is zero, which is as expected for a non-magnetic material in zero external magnetic field.

Structures with close to zero magnetic moment are seen for X(Si) = 0.5, and several structures

with higher silicon concentrations display similar behavior. It seems as if the silicon concentration

is high enough, the diamagnetic properties of silicon give rise to non-magnetic structures. This

property depends on the atomic configuration of the structure, as some of the structures with

higher silicon concentrations have non-zero magnetic moments. The diamagnetic properties of

the silicon atoms are observed for the rest of the structures, as the magnetic moments per atom is

smaller than the expected magnetic moment of the isolated iron atoms for all except one structure.

The structure having a higher magnetic moment is seen above the blue line for X(Si) = 1/9, and

is identified as being one silicon atom and 8 iron atoms.
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Figure 4.5: Magnetic moment per atom for bcc iron-silicon alloys with different
structure sizes and varying silicon concentrations.

4.3 Electronic band structure and density of states

This section presents the calculated electronic band structures and DOS for iron and silicon. A

single atom with periodic boundary conditions in a bcc structure is used to represent the bulk

iron system. The GPAW parameters used for these calculations are the same as for the structure

of two iron atoms studied in Section 4.2. The electronic band structure for iron is shown in Figure

4.6a, where the dashed line at zero indicates the Fermi level. All energies are shifted with respect

to the Fermi level. The Fermi level for the system studied lies inside several bands, indicating

that the material is a metal. The calculations are spin-polarized, creating two different sets of
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bands for spin up and spin down. The result for the band structure of iron agrees well with other

works [52].

The DOS for the iron bulk is also calculated, using the same parameters as for the calculation

of the electronic band structure. The results are shown in Figure 4.6b, where the red line indicates

the Fermi level. The Fermi level lies inside a region with non-zero DOS, which again supports

the argument that iron is a metal. This is as expected from the analysis of the band structure.
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(a) Electronic band structure.
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Figure 4.6: Electronic band structure and DOS for bulk bcc iron. Energies are
shifted with respect to the Fermi level.

Figure 4.7a shows the electronic band structure for bulk diamond cubic silicon. The calcula-

tions are done in the same way as for iron, except that the energy cut-off is set to 400 eV and

the calculations are non-spin polarized. In contrast to iron, silicon has band gaps and is known

to be a material with an indirect adsorption process [8, p. 190]. This is often referred to as an

indirect band gap, where the minimum energy gap between the valence band and the conduction

band involves electrons and holes separated by a wave vector which is seen between the Γ-point

and to the left of the X-point. This is also observed in previous works where calculations for the

silicon band structure were done [53].

Analyzing the electronic DOS for silicon in Figure 4.7b it is seen that silicon has many states

around the Fermi level. These peaks in the DOS correspond to regions with a high density of

electrons and holes in the band structure, where the band structure is flat over a significant range

in the wave vectors. The Fermi level, indicated by the red dashed line, lies in a region of zero DOS,

indicating that silicon is a semiconductor or an insulator. Silicon has been thoroughly studied,

and it is well known that it is a semiconductor due to the band gap being small compared to the

band gap in insulators [8, p. 186].
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Figure 4.7: Electronic band structure and DOS for bulk diamond cubic silicon.
Energies are shifted with respect to the Fermi level.

4.4 Cluster expansion

As the GPAW input parameters and certain material properties of iron and silicon have been

investigated, more DFT calculations are done for an alloy of iron and silicon, to provide input

to a CE and obtain the ECIs. The statistical outcomes of the CE, the obtained ECIs, and the

formation energies as predicted by DFT and the CE are discussed.

4.4.1 Evaluation of the CE

The input structures of the CE model are made up of initial and relaxed structures of iron and

silicon. A total of 83 initial structures are used, with X(Si) ranging from 0 to 0.525. The atoms

are arranged in a bcc lattice with periodic boundary conditions, and the number of atoms in the

structures varies from 2 to 27. An overview of the different sized structures used are given in Table

A1, Appendix A. The final structures are obtained through DFT calculations, where the BFGS

algorithm is used to relax the structures. The relaxation process is considered done when no atom

in the structure is subjected to forces greater than 25 meV/Å. As shown in Section 4.1, the energy

calculated by DFT for a given structure varies with the GPAW input parameters. It is therefore

essential to keep the parameters used consistent across all calculations. The parameters used for

these DFT calculations are Ecut = 600 eV, nbands = −100, kBT = 0.1 eV and kdens = 5.4 Å
−1

.

The xc functional used throughout the calculations is the PBE functional. The initial magnetic

moment of the silicon atoms is set to 0 µB/atom, while for the iron atoms it is set to 2.2 µB/atom.

The magnetic moments are calculated in all iterations of each BFGS step.

An evaluation of the CE for the iron-silicon alloy is shown in Figure 4.8. In this figure, a red

circle indicate the CE predicted energy for a structure using the ECIs from the CE obtained by a
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fit to the energies of all structures excluding the one corresponding to the circle. Likewise, a blue

circle shows the predicted energy of a structure where the energy of this structure is included

in the fit to calculate the ECIs. The CV score from this CE is 23.8 meV/atom. This CV score

is higher than what was obtained in other works where other alloys were investigated [47][54].

It should be noted that the numerical value of the CV score depends on the energy of the pure

elements. Iron is an element associated with high absolute value DFT energy, such that alloys

containing iron could give a higher CV score, as seen from the definition of the CV score, Equation

(2.67). Circles on the red line show that the DFT and CE predicted energies match to a large

extent, as the predictive power of the CE is not the same for all structures. Also worth noting

is that the structures with the lowest energies have the largest iron concentration, and the data

point with the lowest energy is pure bcc iron.

Figure 4.8: DFT energies and CE predicted energies. The blue circles are the
energies as predicted by a fit to the energies of all the structures. The red circles
are the energies as predicted by a fit to the energies of all other structures. The red
line indicates where the CE energies are equal to the DFT energies.

Figure 4.9 shows the residuals and the leave-one-out residuals for the CE. As expected, most

of the residuals are smaller in absolute value than the leave-one-out residuals. This is due to the

CE being most accurate when predicting the energies for structures similar to those included in

the input set of structures. This is also reflected in Figure 4.8, where some of the red circles are

further away from the red line compared to the blue circles. The largest residuals are found for

structures with higher silicon concentrations. This could be due to the fact that all structures in
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the CE are bcc, while pure silicon favors a diamond cubic arrangement of atoms. On the right-

hand side of Figure 4.9, the distribution of the residuals is plotted. Even though this distribution

does not resemble a typical normal distribution, it highlights that no systematic over or under

prediction is done in terms of the predicted energies from the CE. The RMSE obtained from the

residuals is found to be 13.4 meV/atom. Based on this it can be concluded that the average

predictive power of the CE model is acceptable.

Figure 4.9: Residuals for the CE predicted energies. The circles are leave-one-out
residuals, and the triangles are residuals.

4.4.2 Effective cluster interactions

Having obtained ECIs through the CE method, which gives accurate energy predictions, the ECIs

are further investigated. To identify the characteristics of the ECIs, an ECI naming scheme is

used. A cluster with name cA Bnn C is a cluster of A atoms, where B is the largest internal

distance in the cluster with regards to nearest neighbors and C is an identification number.

The configurational variable, σ, is -1 for silicon and 1 for iron. Using this in conjunction with

the sign of the ECI energy, the composition of the ECI can be identified, and the configurations

which are most energetically favorable can be found. If the ECI energy is positive, a negative

characteristic function is needed to reduce the configurational energy (2.66), and if the ECI energy

is negative, a positive characteristic function reduces the energy. In the evaluation of the ECIs,
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the zero- and one-body clusters, shown in Figure 4.10, are trivial in the sense that they only

contain zero or one atom. Nevertheless, these ECIs contribute to the total energy, as they are the

largest in terms of eV/atom. The four-body ECIs shown in Figure 4.12 are harder to interpret,

so the two- and three-body ECI will be discussed. It should be noted that the contribution to the

configurational energy from the four-body ECIs is comparable to that of the two- and three-body

ECIs.
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Figure 4.10: The zero- and one-body ECIs from the cluster expansion.

Amongst the two-body clusters shown in Figure 4.11, the two clusters which contribute the

most to the energy are c2 01nn 0 and c2 04nn 0. c2 01nn 0 consists of two atoms within nearest

neighbor distance, and the sign of the ECI is positive. From the discussion above, this cluster

must contain one iron and one silicon atom, as to get a negative contribution to the configurational

energy. On the other hand, the ECI c2 04nn 0 has a negative sign, with the two atoms within

fourth nearest neighbor distance from each other. This means that the cluster formed must

consist of two iron atoms or two silicon atoms.
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Figure 4.11: The two- and three-body ECIs from the cluster expansion.

For the three-body clusters, the two largest ECIs are the c3 03nn 1 and c3 04nn 2. The first

of these clusters has negative energy and is made up of three atoms within third nearest neighbor

distance. To get a negative contribution to the configurational energy it must consist of three

iron atoms or one iron atom and two silicon atoms. The c3 04nn 2 is configured in the same way,

except that the atoms are located within fourth nearest neighbor distance from each other. The

sign of this ECI is positive, such that the cluster must contain two iron atoms and one silicon

atom or three silicon atoms.
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Figure 4.12: The four-body ECIs from the cluster expansion.
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As discussed in Subsection 2.6.3 the selection algorithm used for obtaining the ECIs set many

of the ECIs to zero as only a finite number of ECIs can be used when calculating the configura-

tional energy. In this CE model a total of 22 ECIs are non-zero. The number of non-zero ECIs

included is largely dependent on the alloy system studied, as well as the selection algorithm. This

is seen in previous works where a total of 9 non-zero ECI were used in a CE model developed for

fcc aluminium-magnesium alloys [7].

4.4.3 Formation energy

The final evaluation of the CE model is to compare the formation energies for the 83 iron-silicon

structures from the DFT energies and the CE predicted energies. The formation energies per

atom are calculated using Equation (2.15), where the energies for the pure silicon and iron bulks

are set to be those calculated by DFT. The results are shown in Figure 4.13, where the convex

hull is fitted to the DFT formation energies. The formation energies in the shaded region are only

from DFT, and the structures within this region were not included in the CE for calculating the

ECIs which the CE predicted formation energies are based on. All except one of the formation

energies, excluding the formation energy for the pure silicon and iron structures, are negative.

This shows that it is energetically favorable for iron and silicon to form certain mixed structures

instead of segregating in the alloy.
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Figure 4.13: Formation energy and convex hull for the iron-silicon systems, using
predicted energies from the CE and DFT energies.

In the interior of the convex hull, the CE predicted formation energies differ from the DFT

formation energies to a varying extent, depending on the structure. What is most important

is that the CE predicted formation energies are precise for the ground states of the iron-silicon

alloy. Two of the ground states can be seen on the convex hull at X(Si) = 0.5, Fe4Si4 (FeSi), and

X(Si) = 0.25, Fe12Si4 (Fe3Si). The structures are displayed in Figure 4.14a and 4.14b respectively.

Worth noting is that the structure found to be om the convex hull for X(Si) = 0.5 has alternating

planes of silicon and iron atoms in the (100) directions. For these two structures, the formation

energies calculated from DFT energies and from CE predicted energies are an excellent match,

as the crosses lie inside the circles.
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(a) Fe4Si4. (b) Fe12Si4.

Figure 4.14: The two structures with lowest formation energy for X(Si) = 0.5 and
X(Si) = 0.25. Iron atoms are orange and silicon atoms are beige.

4.5 Monte Carlo simulations

Having evaluated the CE, the ECIs obtained are used to do MC simulations in the canonical

and semi-grand canonical ensembles. This way, thermodynamic properties for larger iron-silicon

systems can be examined. The predicted ground states for silicon concentrations of 25 % and 50

% are obtained by MC simulated annealing in the canonical ensemble. These ground states are

then used in MC simulated heating, and calculations are done to model the dissolution of Fe3Si

and FeSi structures in pure iron phase surroundings. Following this, phase boundary tracing is

done to obtain a part of the phase diagram for the iron-silicon alloy.

4.5.1 Simulated annealing

In this subsection, MC simulations are used to obtain the predicted ground states of the iron-

silicon alloy at two different concentrations. This is done by cooling down bcc iron-silicon struc-

tures of 1024 atoms with constant concentrations from 5000 K to 100 K. The initial structure

at 5000 K is a random configuration of iron and silicon atoms, at the given concentration. The

calculations are done in the canonical ensemble, and the total number of particles is kept fixed.

The two concentrations examined are X(Si) = 0.25 and X(Si) = 0.5.

Figure 4.15a displays the final structure from simulations with X(Si) = 0.25. Here, each

silicon atom has iron atoms as its nearest neighbors, which is consistent with the two-body cluster

c2 01nn 0. Two-body clusters consisting of iron and silicon at second nearest neighbour distance

are also observed, corresponding to the c2 02nn 0 cluster. These clusters are also accompanied by

clusters with larger nearest neighbour distances, but these are harder to interpret. The structure

corresponds to a repeated version of the structure found on the convex hull for X(Si) = 0.25,

shown in Figure 4.14b, supporting the argument that this is a ground state for this concentration.

The repeating pattern of this structure is a bcc cube with iron on the corners, and alternating
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silicon and iron atoms in the center. This corresponds to the D03 structure observed for Fe3Si at

low temperatures [55], which was obtained through experimental annealing. Obtaining the Fe3Si

structure is also as expected from the phase diagram for iron-silicon alloys for X(Si) = 0.25 [56, p.

713]. It is shown that the D03 structure forms at this concentration for temperatures sufficiently

below the melting point.

Figure 4.15b shows the final structure of the MC simulations with X(Si) = 0.5. Here each

silicon atom has four iron atoms and four silicon atoms as its nearest neighbors. This corresponds

to the two-body cluster c2 01nn 0 for the silicon and iron nearest neighbors, but not for the iron-

iron and silicon-silicon nearest neighbors.

This phase has alternating silicon and iron planes in the (110) directions. Due to this, the

structure might not at first be suspected to be a ground state of the system when examining its

atomic configuration with respect to the ECIs. If the planes instead were in the (100) direction,

each silicon atom would only have iron atoms as its eight nearest neighbors, being more consistent

with the c2 01nn 0 cluster. The reason for the planes being oriented in the (110) directions could

be due to the packing of the bcc lattice. Planes in the (110) direction give the highest atomic

density as they are the most closely packed planes.

(a) X(Si) = 0.25 (b) X(Si) = 0.50

Figure 4.15: The two final structures from MC simulations when cooling down
iron-silicon systems containing 1024 atoms. The orange atoms are iron, while the
beige atoms are silicon.

The structure obtained from simulated annealing with X(Si) = 0.5 was not included in the

set of structures used for developing the CE model. The smallest structure replicating the (110)

alternating layers of iron and silicon consists of 16 atoms. To investigate if this structure could

be a ground state for X(Si) = 0.5, DFT calculations are done. The GPAW input parameters

used are the same as the ones used in the DFT calculations done for developing the CE. The

formation energy for the structure with alternating (110) planes of iron and silicon is found to

be −0.717 eV/atom, while the formation energy for the structure observed on the convex hull for

X(Si) = 0.5, with alternating iron and silicon planes in the (100) directions, is −0.716 eV/atom.
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From these results it is seen that the formation energies for the structures with (110) and (100)

planes are similar in value and that the configuration with (110) planes has the lowest formation

energy. Interestingly, it seems as if the energy of the iron-silicon system at this concentration is

largely non-dependent on the spatial orientation of the iron-silicon layers.

4.5.2 Simulated heating

Having obtained the ground states predicted by simulated annealing for X(Si) = 0.25 and

X(Si) = 0.5, the next step is to study the dissolution of the Fe3Si and the FeSi structures in

iron encasements through MC simulated heating. Structures as discussed in Subsection 3.3.2

and illustrated in Figure 3.2a and Figure 3.2b are used with MC simulations in the canonical

ensemble. This is done to analyze how the atoms displace to reduce the total energy and to ex-

tract thermodynamic properties. The total number of atoms is kept constant at 128000, resulting

in a 40x40x40 bcc structure, where the basis consists of two atoms. The size of the cubes and

octahedra in the interior of the larger iron cube is changed across multiple simulations, changing

the silicon concentration of the systems. Worth noting is that due to the restrictions on the ge-

ometry of the interior structures, it is not always possible to construct a cube and an octahedron

containing the same number of atoms. The number of MC steps at each temperature is set to

increase with the size of the interior structures. As more silicon atoms are introduced, the number

of possible configurations for the system increases until X(Si) = 0.5, and the number of MC steps

at each temperature is therefore set to be some constant times the number of silicon atoms in the

structure.

When heating the structures the silicon and iron atoms start to switch positions to reduce

the systems total energy throughout the MC simulations. The SOP is used as a measure of the

dissolution process in the system and is obtained directly from the simulations. To normalize the

SOP, the obtained SOP is divided by two times the number of silicon atoms in the structure.

The entropy is obtained by first calculating the free energy (2.24), where the integral is

computed numerically using Simpson’s rule [57, p. 257]. The total energy is obtained in the MC

simulations using the ECIs from the CE, and the thermodynamic definition of the Helmholtz free

energy (2.18) is used to calculate the entropy. The entropy is normalized as to better illustrate

the change in entropy across different internal structure sizes and temperatures.

Firstly, the Fe3Si systems are analyzed. The number of MC steps used at each temperature

is 2000 times the number of silicon atoms. The temperature is increased from 50 K to 1000 K

with varying increments in temperature. Figure 4.16 shows the normalized SOP and entropy

for iron cubes containing Fe3Si cubes of different sizes. At 50 K a significant number of silicon

atoms have changed positions for all internal structure sizes, as seen from the SOP. This reveals

that a cubic arrangement of Fe3Si is not energetically favorable, even for low temperatures. The

SOP starts to slowly increase in a linear fashion until 150 K. Above this temperature the SOP

increases rapidly until it is close to unity. This effect is also reflected in the entropy, as a rapid
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increase in the entropy is seen at the same time as the SOP tends towards unity.
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Figure 4.16: Normalized SOP and entropy for cubes of varying sizes of Fe3Si inside
an iron box. The crosses indicate the temperatures at which MC simulations are
done. The arrow indicates the direction of increasing structure size.

Figure 4.17 shows the normalized SOP and entropy for Fe3Si octahedra situated inside the

iron cube. Below 150 K there is a significant difference between the displacement of atoms for

Fe3Si cubes and the octahedra. When Fe3Si is constructed as an octahedron, zero or close to

zero silicon atoms are displaced for temperatures below 150 K for all internal structure sizes.

This shows that Fe3Si arranged as an octahedron is more stable at low temperatures than Fe3Si

shaped as a cube. This could be due to the cubes having the (100) planes of the bcc structure

exposed, as opposed to the octahedra which have the (111) planes exposed. There seems to be

an excellent match between the SOP and the entropy across all sizes.
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Figure 4.17: Normalized SOP for octahedra of varying sizes of Fe3Si inside an iron
box. The crosses indicates the temperatures at which MC simulation are done. The
arrow indicates the direction of increasing structure size.

For the FeSi systems, MC simulations are done in much the same way as for the Fe3Si systems,

but the internal cubes and octahedra are bcc FeSi. The temperature range is changed, as the

simulations are done from 50 K to 1500 K. Also, the number of MC steps done at each temperature

is increased to 10000 times the number of silicon atoms for the cubic structures, and 3000 times

the number of silicon atoms for the octahedra.

Figure 4.18 shows the normalized SOP and entropy for different sized internal FeSi cubes

at different temperatures. For low temperatures all structures immediately have displaced a

noticeable amount of silicon atoms, showing that only a small amount of thermal energy is

needed for the FeSi cube to deform. This is the same case as for the Fe3Si cubes. For the smallest

structure the entropy is seen to decrease in the range 175 K to 200 K. From the definition of the

entropy (2.18) this could correspond to a decrease in internal energy for increasing temperatures,

as the free energy can not decrease when thermal energy is added to the system. At this drop in

entropy, a rise in the SOP for this structure is seen. This could mean that the decrease in entropy

corresponds to the internal cube changing shape to a more energetically favorable configuration,

such that the internal energy of the structure decreases. Also, it seems as if a barrier exists for

this cube to change shape. If no barrier were present, the cube would have deformed to its more

energetically favorable shape at the initial temperature of 50 K, and no drop in entropy would

be seen.
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Figure 4.18: Normalized SOP and entropy for cubes of varying sizes of FeSi inside
an iron box. The crosses indicate the temperatures at which MC simulations are
done. The arrow indicates the direction of increasing structure size.

In Figure 4.19 the SOP and entropy for the iron enclosed FeSi octahedra are displayed. Much

the same conclusions can be had for this system as for the FeSi cubes. What is interesting here is

that this system displays a significantly different behavior compared to that of the Fe3Si octahedra

in Figure 4.17. It seems as if the FeSi structure is less stable, as a significant portion of the silicon

atoms are displaced in these systems for temperatures below 200 K. From this it is possible to

argue that the Fe3Si octahedra are more stable than the FeSi octahedra for low temperatures.
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Figure 4.19: Normalized SOP and entropy for octahedra of varying sizes of FeSi
inside an iron box. The crosses indicate the temperatures at which MC simulations
are done. The arrow indicates the direction of increasing structure size.

From these results, it is observed that the Fe3Si and FeSi cubes and octahedra have some

common traits. The smaller structures seem to be the least rigid. When the temperature is

increased these structures have most of their silicon atoms displaced before the silicon atoms in

larger structures dissolute. The average distance from the silicon atoms to the iron surroundings

increases with the size of the internal structure. Thus, the average silicon atom of a large internal

structure requires more thermal energy to move outside of its initial structure than the average

silicon atom needs in a smaller structure. A small difference occurs in the high-temperature limit

of the SOP for different sizes of the internal structures. The smaller the structure, the closer the

SOP tends towards unity. This could be due to the structures with more silicon atoms having a

higher probability of having some silicon atoms at the initial temperature which are already in

positions that reduce the total energy of the system. This results from the fact that the total

number of atoms in the systems is constant across all internal structure sizes, such that the

ratio between the number of atoms in the internal structure and the number of atoms in the

surrounding iron cube increases for increasing internal system sizes. It is also evident that the

temperature range in which the SOP tends towards unity is drastically different between the Fe3Si

and FeSi systems. This will be further investigated in the next subsection. It is shown that there

are many similarities between the behavior of the SOP and entropy at higher temperatures. This

is as expected when considering that thermal fluctuations increase the disorder in the systems

analyzed, which is reflected both in the entropy and the number of silicon atoms that has moved
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from their more orderly initial positions.

4.5.3 Critical temperature

Having studied the SOP and entropy for the Fe3Si and FeSi cubes and octahedra, it is interesting

to compare the temperature regions in which the SOP increases rapidly for these phases. A

critical temperature, Tc, can be defined as the temperature for when the normalized SOP is 0.5.

Therefore, Tc can represent the temperature at which a system changes from an ordered to a

disordered state, where half the silicon atoms have dissolved. Tc for the structures is obtained

through interpolation of the SOP.

Figure 4.20 shows these critical temperatures for the four different systems, for different sizes

measured in the number of formula units in the initial interior structure. Following the previous

discussion about the SOP, it is clear that lower temperatures are needed to displace half of the

silicon atoms in the smaller structures, compared to the temperature needed to displace half the

silicon atoms in the larger structures. This shows that the dissolution process of the cluster inside

is temperature and size dependent for combinations of both phases constructed as octahedra and

cubes.

Figure 4.20: Critical temperatures for the Fe3Si cubes and octahedra inside an
iron box.

It is interesting to note the behavior of Tc for the smaller internal structures. Both for the

FeSi and the Fe3Si systems, Tc for structures containing a phase of approximately 2000 atoms or
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less are less stable if constructed as a cube than if constructed as an octahedron, due to Tc being

smallest for the cubes. Also, the FeSi cubes have a lower Tc compared to the critical temperatures

for similarly sized octahedra across all structure sizes. The cubes have the (100) planes of the bcc

structure exposed, while the octahedra have the (111) planes exposed. This difference in Tc could

be due to less thermal energy being needed to dissolute silicon atoms on (100) planes than on

(111) planes. It is important to note that if this is the only effect altering the Tc of the similarly

sized octahedra and cubes, it should be consistent for all sizes. This is not the case, since for

larger internal Fe3Si structures, Tc is essentially the same for the octahedra and the cubes.

One major difference between the Fe3Si and the FeSi phases is the range of Tc across all

structure sizes. The FeSi phase requires substantially higher temperatures to displace half the

silicon atoms, as seen by the large gap in Tc between the Fe3Si systems and the FeSi systems.

This shows that the FeSi phase is the most stable phase out of these two phases when the thermal

energy in the systems is increased. The FeSi phase has more silicon atoms per volume than the

Fe3Si phase. It could therefore be easier for the silicon atoms in the Fe3Si phase to dissolve into

the surrounding iron cube, which is reflected in Tc being lower for the Fe3Si phase.

It is interesting to compare the behavior of the SOP through the critical temperature and

the temperature at which the heat capacity is at its peak value. The heat capacity is calculated

numerically using Equation (2.25), by taking the derivative of the energy with respect to the

temperature. Tm is defined as the temperature corresponding to the maximum of the heat

capacity. Figure 4.21 shows a comparison between the two aforementioned temperatures. Worth

noting is that from the discussion about the critical temperature, it is known that the smaller

internal structures have the lowest critical temperatures. For the Fe3Si systems Tm and Tc match

well. Tc is based on the observed displacement of atoms, as it is calculated from the normalized

SOP. Tm is also based on the disorder in the systems, as the heat capacity is proportional to

the first derivative of the entropy with respect to temperature, as shown in Equation (2.26).

From the previous discussion about the SOP and entropy, it is known that for these systems, the

entropy and SOP match to a large extent. It is therefore not a surprise that Tm, even though it

is calculated directly from the energy, reflects the behavior of the SOP. This is also the case for

the systems containing smaller internal FeSi cubes and octahedra. For the larger FeSi systems Tc

and Tm do not match. While Tc increases, Tm flattens out for increasing internal system sizes.

The slope of the SOP for these larger sizes is less steep, as seen in Figure 4.18 and 4.19, such that

the interpolation scheme used for calculating Tc could be less precise for these larger internal FeSi

structures.
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Figure 4.21: Critical temperatures and temperatures corresponding to maximum
heat capacity for the FeSi and Fe3Si cubes and octahedra inside an iron encasement.
The blue line indicates where the critical temperature equals the temperature of
maximum heat capacity.

4.5.4 Visualized dissolution of Fe3Si and FeSi.

Having analyzed the behavior of the two phases through the SOP, entropy, and critical tem-

perature, the atom trajectories from the MC simulations are investigated. Four structures, one

from each of the four previously discussed cases, are chosen to illustrate the dissolution processes.

First the Fe3Si phase is analyzed. Figure 4.22 illustrates the dissolution of an Fe3Si cube inside

the surrounding iron cube. Already at 50 K, the cube is deformed, however no silicon atoms

have dissolved into the iron encasement. This agrees well with the results for the SOP in Figure

4.16, where the SOP is shown to be non-zero for 50 K. Initially, the structure only has its (100)

planes exposed. As thermal fluctuations are introduced the structure favors a spherical shape.

The atoms on the corners of the cube are more exposed, and these atoms dissolve first. At 150

K some of the silicon atoms have started to move into the exterior iron cube, and the spherical

shape in the center is maintained. At 225 K, the temperature is close to Tc for this size, and

approximately half of the silicon atoms are displaced, and many of them have dissolved towards

the boundary of the total structure. As expected from the previous results, all silicon atoms are

displaced at 1000 K, and a random distribution of the silicon atoms is seen within the struc-

ture. This is as expected from the analysis of the SOP. Note that this is also the case at high

temperatures for the rest of the phases and structures analyzed throughout this subsection.
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Figure 4.22: Dissolution of an Fe3Si cube inside the larger iron encasement ob-
tained with MC simulated heating. Only the silicon atoms are shown. The structure
contains 500 silicon atoms. The following conditions are employed in the canonical
ensemble from top to bottom, left to right: initial, 50 K, 150 K, 225 K, and 1000 K.

The dissolution process of an Fe3Si octahedron is displayed in Figure 4.23. From the analysis

of the SOP, it is known that the structure does not deform at 50 K, as is seen here. At 175 K the

octahedron has lost its corners, and some silicon atoms have drifted into the iron surroundings.

When the corners are removed, the (100) layers of the bcc structure are exposed. Even though

these layers are the ones with the smallest atomic density the structure seems to favor this semi-

spherical shape. At 250 K, the temperature is close to Tc. Here the sphere has reduced in size,

as silicon atoms have started to randomly distribute in the iron encasement. Only a small part

57



4.5 Monte Carlo simulations 4 RESULTS AND DISCUSSION

of the initial Fe3Si remains in the center at this temperature.

Figure 4.23: Dissolution of an Fe3Si octahedron inside an iron encasement obtained
with MC simulated heating. Only the silicon atoms are shown. The structure
contains 670 silicon atoms. The following conditions are employed in the canonical
ensemble from top to bottom, left to right: initial, 50 K, 175 K, and 250 K.

Next is an analysis of the FeSi phase dissolution. Figure 4.24 shows the effect on the interior

silicon atoms in a cubic arrangement of FeSi for different temperatures. At 50 K some of the

atoms on the edges of the cube have moved to the top and bottom of the structure, creating an

oval shape. This process continues as the temperature reaches 600 K, and the oval shape is even

more pronounced. Why the structure is elongated in this specific way is unknown, as the silicon

atoms could have dissolved to create a more spherical shape. To further analyze this effect, several

simulations of the same structure could be done, as only one simulation for this specific structure

is done here. Therefore, no averages can be obtained to conclude on this. Some of the silicon

atoms have also started to move into the surrounding iron cube at this temperature. At 750 K,

the temperature is close to Tc, and the oval structure has become more spherical. The atoms

located on the top and bottom of the structure are the first to dissolve into the iron surroundings.
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Figure 4.24: Dissolution of an FeSi cube inside an iron encasement obtained with
MC simulated heating. Only the silicon atoms are shown. The structure contains
2788 silicon atoms. The following conditions are employed in the canonical ensemble
from top to bottom, left to right: initial, 50 K, 600 K, and 750 K.

In Figure 4.25 the dissolution of an FeSi octahedron is shown. Comparing the initial structure

and the structure at 50 K, the octahedron turns into a spherical shape for low temperatures,

and no silicon atoms are dissolved towards the exterior. This structure requires much higher

energy fluctuations before silicon atoms move into the iron surroundings, compared to the Fe3Si

octahedron, as this starts to happen at 450 K. From the analysis of the critical temperature it

is known that this phase has a significantly higher Tc compared to that of the Fe3Si phase. At

625 K the temperature is close to Tc, and the sphere has reduced in size, as silicon atoms on the

outer perimeter of the structure have dissolved into the iron encasement.
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Figure 4.25: Dissolution of an FeSi octahedron inside an iron encasement obtained
with MC simulated heating. Only the silicon atoms are shown. The structure
contains 1904 silicon atoms. The following conditions are employed in the canonical
ensemble from top to bottom, left to right: initial, 50 K, 450 K, and 625 K.

There are a few similarities between the four structures investigated here. At some temper-

ature all structures deform to some kind of spherical shape. It is difficult to conclude why this

happens, but it could be that the structures favor minimizing the ratio of surface area over vol-

ume. The silicon atoms on the corners of the initial structures are those that dissolve into the

iron encasement first, or re-orients to positions which makes the internal structure have more of

a spherical shape. These silicon atoms have the most iron atoms as nearest neighbors and second

nearest neighbors in the initial structures, and seem to be the most mobile.

4.5.5 Phase boundary tracing

In this subsection, phase boundary tracing is done to obtain the iron-silicon phase diagram for

silicon concentrations at 25 % and lower. All quantities needed to calculate the thermodynamic

potential (2.83) for the phases are obtained by doing MC simulations in the semi-grand canonical

ensemble with varying chemical potentials across multiple simulations. The number of MC steps

done at each temperature is 1000 times the number of atoms in the structure, and the structures
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are set to contain 8192 atoms in total. The chemical potentials used are close to the calculated

T → 0 limit of the chemical potential (2.87) for the Fe3Si phase. For both the pure iron and

Fe3Si phase, an initial structure is created for the given phase, and the temperature is gradually

increased from 100 K to 1200 K. The concentrations are allowed to vary as by the definition of

the semi-grand canonical ensemble, as shown in Figure 4.26. To reduce computation time the

simulations are stopped for the initial Fe3Si phase if X(Si) < 0.15. Calculations for the Fe3Si

phase with µ ≥ −1.25 eV/atom does not extend up to 1200 K, as the simulations are stopped

when concentrations move past this threshold. Figure 4.26 also reveals that for low temperatures

the initial concentrations of the pure iron and the Fe3Si phase, X(Si) = 0 and X(Si) = 0.25

respectively, are energetically favorable for the chemical potentials used in these calculations.

Figure 4.26: Temperature and concentration when heating an initial pure bcc iron
structure and an initial Fe3Si structure in the semi-grand canonical ensemble. The
chemical potential is varied across calculations.

The phase boundary is obtained by finding concentrations and temperatures where the two

phases co-exist. This is done by using the data from the MC simulations shown in Figure 4.26

and the corresponding energy for a given phase, temperature, T , and chemical potential, µ. The

thermodynamic potentials (2.83) for the two phases are then calculated, to obtain T ′ and µ′ such

that βφFe(T ′,µ′) = βφFe3Si(T ′,µ′). This is the thermodynamic criteria for the two phases to

co-exist. The temperature and chemical potential are then used to obtain X(Si) corresponding

to these two parameters for both phases.

In Figure 4.27, the temperature as a function of silicon concentration is shown for the two phase
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boundaries. To the left of the blue line either a pure iron phase or an iron phase with silicon

atoms scattered randomly around is expected to be seen, depending on the temperature and

concentration. Between the two boundaries, a combination of iron domains and Fe3Si domains

exists. The structure displayed in the figure for X(Si) = 0.1 supports this argument. This

structure is obtained from simulated annealing in the canonical ensemble with X(Si) = 0.1, and

it can be seen that this structure contains iron domains as well as domains of Fe3Si. It is not

possible to know to which degree the Fe3Si domains cluster together based on these results. To

the right of the red line for X(Si) ≤ 0.25 the Fe3Si phase is present, with iron atoms scattered

randomly around, depending on the concentration and temperature. For X(Si) > 0.25 it is not

possible to know which phase configuration is most favorable from these calculations.

Figure 4.27: Temperature and concentration for the two phase boundaries from
phase boundary tracing. Illustrations of structures at three concentrations are in-
cluded.

4.6 Surface energy

This section presents the calculated surface energy associated with the intersect between the Fe3Si

and pure iron phases. The smallest cell representing the Fe3Si structure contains 16 atoms, such

that a one-layered structure consists of 32 atoms in total, where 16 are the Fe3Si phase and 16

are the pure iron phase, as illustrated in Figure 4.28a. A two-layer structure is shown in Figure

4.28b. This structure is constructed in the same way, but the thickness of the Fe3Si and the pure

iron phases is doubled, creating a cell with twice the volume as for the one layer cell.
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(a) One layer structure.

(b) Two layer structure.

Figure 4.28: Illustrations of the structures used for calculating the surface energy
between the Fe3Si phase and the iron phase. The structures are shown in the xy-
plane. The Fe3Si part of the structures are located within the black boundaries.

DFT calculations are done for the two structures as shown in Figure 4.28. The GPAW input

parameters used in the calculations are as follows, Ecut = 700 eV, nbands = −100, kBT = 0.1

eV and kdens = 5.4 Å
−1

. Periodic boundary conditions are applied in all directions, the PBE

functional is used and the BFGS algorithm is employed to optimize the cell. Having obtained the

slab energies for the one and two layer structures, the surface energy is calculated using Equation

(2.28) with n = 2, as the larger structure is two layers thick. The surface energy per area between

the Fe3Si and pure iron phases is found to be γ = 99.96 mJ/m2. γ > 0 indicates that energy

is required for the two phases to mix together, essentially dissolving the silicon atoms from the

Fe3Si phase in the pure iron phase. This supports the argument that Fe3Si domains could cluster

together in a mixture of Fe3Si and pure iron phases.

There are several methods for calculating the surface energy, and which method is appropriate

to use depends on the system studied. The method used here requires only slab energies, and

methods based on solely slab related quantities when calculating the surface energy are shown

to converge for increasing layer thickness [58]. This is as opposed to methods for calculating the

surface energy that relies on the the bulk energies for the pure separated phases, as with these

methods the surface energy could diverge when the layer thickness is increased.
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5 Conclusion

In short, various material properties of bcc iron and silicon alloys have been obtained by using

computational methods based on DFT calculations from first principles. Concepts from within

the fields of solid state physics and statistical physics have been employed to calculate desired

attributes of the metals. The GGA xc functional used was the PBE functional. Suitable GPAW

input parameters for doing energy calculations for different sized iron systems were obtained by

doing total energy convergence tests. DFT calculations were shown to accurately predict the

expected ferromagnetic ordering of iron, as well as the magnetic moment associated with each

atom. For all except one structure, the iron-silicon alloys were found to have smaller or equal

magnetic moment per atom compared to that of the pure iron system. The results obtained for

the electronic band structure for bcc iron and diamond cubic silicon agreed well with previous

works.

A total of 83 iron-silicon structures with silicon concentrations ranging from 0 % to 52.5 %

were relaxed, and the DFT energies were used to develop a CE model. The model gave a CV

score of 23.8 meV/atom. From the ECIs it was discovered that having iron and silicon atoms

in nearest neighbor distance was favored for reducing the configurational energy. Two structures

on the convex hull were identified at silicon concentrations of 25 % and 50 %. The CE model

accurately predicted the energy of these structures.

MC simulated annealing in the canonical ensemble predicted the same structure as identified

on the convex hull for a silicon concentration of 25 %. For a silicon concentration of 50 %, the MC

method found a different structure than the one on the convex hull at this concentration. The

structure predicted by MC had alternating silicon and iron planes in the (110) directions, while

the one on the convex hull had planes in the (100) directions. These two systems were found

to have similar formation energies. The dissolution of the two ground state phases predicted

by MC simulated annealing in an iron encasement was further studied. It was discovered that

the FeSi phase required higher temperatures to dissolute in iron surroundings compared to the

temperatures needed to dissolute the Fe3Si phase. The two phases placed in the interior of the

pure iron phase were constructed as both cubes and octahedra of similar size. For the FeSi phase,

it was discovered that the octahedra were more stable than the cubes when subjected to the same

temperatures. This was also found to be the case for smaller structures of the Fe3Si phase.

Phase boundary tracing was done for silicon concentrations from 0 % to 25 %. From these

calculations, the phase diagram in this concentration interval was obtained, identifying a temper-

ature and concentration region in which the pure iron phase co-existed with the Fe3Si phase.

Lastly, the surface energy associated with an interface between a pure iron phase and the

Fe3Si phase was found to be γ = 99.96 mJ/m2. This result supported the claim that the Fe3Si

phase can exist as clusters in pure iron surroundings.
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6 Future work

It would be interesting to expand the iron-silicon phase diagram for higher silicon concentrations.

Doing this would at some point require calculating a new set of DFT data and obtain new ECIs

for iron-silicon structures on other lattices. This is due to silicon having a diamond cubic lattice

structure. Other lattice types could also be examined, as there may exist stable or meta-stable

iron-silicon phases on lattice types which are not bcc or diamond cubic.

Ferrosilicon alloys are often used as inoculants when making cast iron [59], and carbon is

added in the manufacturing process of this material. Introducing carbon in the alloy changes the

brittleness and rigidity of the compound. Further analysis of iron, silicon, and carbon could reveal

interesting aspects about cluster formation observed in experiments [60] and the dissolution of

Fe3Si and FeSi clusters in iron-carbon encasements. The size and shape of these clusters affect

the macroscopic properties of the final product.

One drawback of the CE method used in this thesis is that no information can be obtained

about the magnetic properties of the iron-silicon alloy. Neglecting the magnetic moments of the

individual atoms could affect the results obtained from MC simulations, as iron-silicon alloys

are known to have magnetic phase transitions [56, p. 711]. With the use of neural networks,

the magnetic moments of alloys obtained by DFT could be used as additional input data for

predicting the magnetic properties of an alloy [61]. It should be noted that the CE method used

in this thesis could be further developed to make use of the magnetic moments calculated by

DFT.
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Appendix A

Table A1: Number of structures with the same number of atoms included in the
CE model.

Number of atoms in the structures Number of structures used in the CE

2 1

4 4

6 10

8 17

9 5

16 6

27 40
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