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Abstract

We will use the quasiclassical theory of superconductivity in the diffusive limit to look at
two different research projects. The first project looks at a lateral Josephson junction with
intrinsic Rashba type spin-orbit coupling which we show is able to carry a long-ranged super-
current in a strongly polarized ferromagnet. This setup has focused on being experimentally
feasible, and only an in-plane rotation of the magnetic field is needed to effectively turn off
the long-ranged supercurrent. For some parameters, the in-plane rotation can also cause
0−π transitions which means there exists an angle of the in-plane rotation where the current
is zero.

The next project looks at heterostructures where a ferromagnet has a precessing magnetic
field. These systems are driven out of equilibrium, and we have created a framework for cal-
culating observables by finding the Green’s functions and distribution functions in a frame
where the magnetic field is stationary. With this framework, we show how the superconduc-
tive ordering changes the results compared to a precessing magnetic field in a ferromagnet in
proximity to only normal state materials. We are also able to show that a Josephson junction
with a non-zero precession and non-zero macroscopic phase difference may experience charge
accumulation which drives a resistive current. The resistive current can be tuned by the
angular frequency of the magnetic field, and there may exist a frequency where the charge
accumulation is zero. This charge accumulation is also present in the superconductors and
therefore induces a voltage difference across the junction. We therefore conclude that the
phase difference will change over time due to this voltage difference.
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Sammendrag

Vi vil bruke den kvasiklassiske teorien om superledere i det diffuse grensesjiktet for å gjen-
nomføre to forskjellige forskningsprosjekt. Det første prosjektet ser på et sidestilt Josephson-
kobling med iboende, Rashba-type spinn-bane kobling som vi viser kan bære en langt-
rekkende superstrøm i en sterkt polarisert ferromagnet. Dette oppsettet har fokusert på
å være eksperimentelt gjennomførbart, og bare en rotasjon av magnetfeltet i planet trengs
for å effektivt skru av den langt-trekkende superstrømmen. For noen parametere kan rotasjo-
nen i planet også forårsake en 0−π-transisjon som betyr at det finnes en vinkel i planet hvor
strømmen er null.

Det neste prosjektet ser på heterostrukturerer hvor en ferromagnet har et preseserende mag-
netfelt. Disse systemene er drevet ut av likevekt, og vi har laget et rammeverk for å regne ut
observabler ved å finne Greens-funksjoner og fordelingsfunksjoner i en ramme der det mag-
netiske feltet er stasjonært. Med dette rammeverket viser vi hvordan superledende orden
endrer resultatet sammenlignet med et preseserende magnetfelt i en ferromagnet i nærheten
av bare metaller i normal tilstand. Vi viser også at en Josephson-kobling med en presesjon og
makroskopisk faseforskjell ulik null kan erfare en ladningsakkumulering som driver en resistiv
strøm. Den resistive strømmen kan bli stilt inn av den angulære frekvensen til magnetfeltet,
og det kan finnes en frekvens hvor ladningsakkumuleringen er null. Denne ladningsakkumu-
leringen finnes også sted i superlederne som induserer en spenningsforskjell over koblingen.
Vi konkluderer derfor at faseforskjellen vil endre seg over tid på grunn av denne spennings-
forskjellen.
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Notation

Throughout this thesis we will use SI units, but we will allows ourselves to set the reduced
Planck’s constant equal to 1, h̄ = 1, to reduce the immense amount of typing this would
bring. We set e equal to the charge of the electron, e = −|e|.
The size of the matrices in this thesis will be symbolized as following:

dim(A) = 2× 2, (1)

dim(Â) = 4× 4, (2)
dim(Ǎ) = 8× 8. (3)

If matrices of different sizes are multiplied or summed that should be interpreted as the
smaller matrix being repeated along the diagonal. For example:

ÂB̌ = diag(Â, Â)B̌. (4)

The Pauli matrices are given as

σ1 =

[
0 1
1 0

]
σ2 =

[
0 −i
i 0

]
σ3 =

[
1 0
0 −1

]
. (5)

In spin-Nambu space, we will also for n ∈ {1, 2, 3} define the matrices

σ̂n = diag(σn, σ
∗
n). (6)

We may write these matrices as vectors which should be interpreted as σ = (σ1, σ2, σ3) and
σ̂ = (σ̂1, σ̂2, σ̂3).

We will also generalize the Pauli matrices to a 4× 4 dimensional space,

τ̂1 =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 τ̂2 =




0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0


 τ̂3 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 . (7)

We will write the identity matrix as the 0-th component of these matrices depending on its
size, i.e. σ0 = diag(1, 1) and τ̂0 = diag(1, 1, 1, 1).

The following notation to differ between the different directions in three dimensional space
will be used:

ex = (1, 0, 0) ey = (0, 1, 0) ez = (0, 0, 1). (8)

For two arbitrary matrices Â and B̂ we will use the following notation for the commutator
and the anti-commutator:

[A,B]− = AB −BA [A,B]+ = AB +BA. (9)
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1 | Introduction

The field of spintronics revolves around the spin property of electrons rather than their
charge. This has the potential of superseding the classical charge-based computer processing
devices in terms of both higher energy and time efficiency [16]. Spintronics has already found
its way to current computer hardware: Some hard drives and random access memories are
based on the giant magnetoresistive effect (GMR) [17]. When two ferromagnetic layers are
placed in contact through a normal metal, the electrical resistance will significant depend on
the alignment between the two exchange fields. If they are parallel, the resistance is low,
and an anti-parallel alignment gives a much higher resistance. There are however two main
challenges with today’s development of spintronics devices [18]. The first problem is Joule
heating which destroys thin-film layers, and the second is short decay lengths due to spin-
flip scattering. The former of these problems can be solved by putting the materials into
proximity to superconductors. As we will explain later, the proximity effect happens when a
superconductor is placed in proximity to a normal state material and the Cooper pairs leak
across the interface and into the adjacent material. Thus, the materials in proximity will
start exhibiting superconducting properties which can combat Joule heating. Supercurrents
experience zero resistance, and thus Joule heating is greatly minimized. In addition, the
symbiosis between magnetic and superconductive order can also enhance effects found in
non-superconductive spintronics by several orders of magnitude such as an enhanced spin
Hall effect [64], quasiparticle lifetime [65] and thermoelectric currents [66].

The field of superconducting spintronics has emerged to investigate how superconducting
order can be used to enhance the effects of spintronics. This field is made possible by
taking the conventional, Cooper pairs of electrons with opposite spin, and rotate them into
having same spin-projection which makes the pair similar to a boson with a spin-projection
equal to Sz = 1. This spin-rotation can be made possible with a nonhomogeneous exchange
field, either by two or more ferromagnetic layers with noncollinear exchange fields, or one
ferromagnet where the exchange field spatially varies [23, 28]. It has also been shown that
a time-varying exchange field can create these triplets states [7], and recently, intrinsic spin-
orbit coupling of type Rashba and Dresselhaus has been proposed to generate such triplets
[29].

Since these triplets can align themselves with the exchange field of a ferromagnet, they will
decay over much longer distances than singlet states or triplet states with a zero-projection
along the exchange field. This means that a SFS Josephson junction, a ferromagnet sand-
wiched between two superconductors, with these triplets can carry a supercurrent over longer
lengths of the ferromagnetic layer than an ordinary homogeneous ferromagnet would. Triplets
with a non-zero spin projection can also carry a current of spin which can have several ap-
plications in the future of spintronics devices.
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1.1 Structure of Thesis

This thesis is the final product of two different research projects. The first was started last
semester during my specialization project, and shows how one can control a long-ranged
supercurrent in a lateral Josephson junction with spin-orbit coupling and a ferromagnet
as the weak link by making in-plane rotations of the exchange field. The motivation for
considering such a setup is that an in-plane magnetization is experimentally more feasible
in a lateral structure. In addition, one needs the momentum of the quasiparticles to couple
with the spin-orbit coupled field which requires a change in momentum from a z-direction
to a x-direction. This research project was not finalized last semester and will therefore be
fully covered in this thesis. A research article is currently being written and will be sent for
review at Physics Review B. A draft of this article can be found in Appendix E.

The other research project was started on in the beginning of this semester, and this project
looks at superconductor hybrid structures with a precessing exchange field. Such a setup will
be driven out of equilibrium, and therefore contains a lot more ’physics’ than the previous
project. A lot more pages have thus been given to this topic.

The next chapter will qualitatively explain the rich physics of Josephson junctions, proximity
effect, triplet pairs and their applications. Chapter 3 will then go into the theory behind the
diffusive limit and its corresponding diffusion equation in the quasiclassical approximation.
We will also go into the specific theories behind the two different research projects. Then
in chapter 4, we will show how we can calculate observables like currents, gap energy and
density of states with the quasiclassical Green’s functions in the diffusive limit. The two
next chapter will then focus on the two different research projects. Chapter 5 looks into
the physics of heterostructures with a ferromagnet with a precessing exchange field, while
chapter 6 will show that a lateral Josephson junction with Rashba type spin-orbit coupling
can carry a long-ranged supercurrent and can be controlled by an in-plane rotation of the
exchange field. We will then in the last chapter conclude our findings and go into details
about future prospects.
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2 | Fundamental Concepts

2.1 Superconductivity

The first microscopic theory of superconductivity was made by Bardeen, Cooper and Schri-
effer (BCS) in 1957 [51], and the theory stated something that many would deem impossible
in metals; there was an effective potential in superconductors which attracted electrons to
each other even though their charge repel each other. Cooper first showed the year before
[52] that such a hypothetical potential would force two electrons of opposite momentum and
spin to bound to each other and reach an energy level less than the Fermi energy. The pair
of electrons in this potential became later known as a Cooper pair. But it wasn’t until the
discovery of the BCS theory that anyone where able to explain what this potential could be.
This theory explained that such a potential could be achieved by vibrations in the positive
lattice of ions that makes up a metal. This vibration can overcome the electrons’ repulsion
of each other, but the energy of a Cooper pair is low and can easily be destroyed by thermal
energy. Therefore, superconductors can only exist at low temperatures. Such conventional
BCS superconductors also have a s-wave symmetry since the electrons of a Cooper pair
have opposite momentum, and thus their wavefunctions are symmetric under an exchange of
position coordinates.

There does exist another class of superconductors which does not have the s-wave symmetry
of conventional, BCS superconductors. These are high-temperature superconductors and are
governed by d-wave symmetries. Even though they are superconductive at high temperatures
they require a very high purity which makes them difficult to manufacture. Therefore, we
are exclusively going to be looking at conventional BCS superconductors.

2.2 Josephson Effect

As a 22 year old PhD student at Cambridge University, Brian Josephson released a paper
predicting that two superconductors separated by a thin insulating barrier would be able to
carry a zero voltage supercurrent [2][3],

IQ = Ic sin(∆φ). (2.1)

Here, Ic is the maximum current the junction can carry and ∆φ is the macroscopic phase dif-
ference between the two superconductors. Josephson showed this to be true for an insulator,
but the predictions are also true for any type of ’weak link’ between two superconductors.
This weak link could be a simple normal metal which would be called a SNS-junction or
a ferromagnetic material, SFS. His predictions were shortly after shown to be true experi-
mentally, and this young physicist’s discovery ended up earning him a Nobel Prize in Physics
eleven years later in 1973. Shortly after Josephson released his paper, Ambegaokar and
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Baratoff were able to calculate the exact critical current Ic for the same system as Josephson
considered, namely two equal superconductors with s-wave symmetry and an insulator in
between [4],

IcRn =
π∆(T )

2e
tanh

(
β∆(T )

2

)
, (2.2)

where Rn is the resistance in the normal metal. β = 1/kBT where kB is the Boltzmann
constant and T is the temperature. If the temperature is close to the critical temperature
Tc, we can use the well known BCS result ∆(T ) ∝

√
1− T/Tc to show that the current is

linearly with temperature, Ic ∝ T − Tc. On the other hand, if T → 0, then ∆ becomes
constant and independent of temperature, and thus Ic(0)Rn = π∆0/2e. More advanced
microscopic theories for superconductors have shown that the value of Ic(0)Rn are 1.32 and
2 times greater in dirty and clean superconductors, respectively [3]. They all give the same
predictions for Ic(T )Rn for temperatures close to Tc.

Josephson also predicted that a voltage difference V across the junction would make the
phase difference ∆φ change over time

d∆φ

dt
=

2eV

h̄
. (2.3)

Zero-voltage would give rise to a DC current, but with a non-zero and constant voltage,
the phase difference would be ∆φ = ∆φ0 + 2eV t/h̄, and thus the current would become
alternating and can now be written as

IQ = Ic sin(∆φ0 + 2eV t/h̄). (2.4)

The AC current would have a frequency of fJ = 2eV/h. Due to the acceleration of charges,
this process emits electromagnetic radiation at the frequency ωJ = 2πfJ = 2eV/h̄ [75]. If one
were to send microwave radiation onto the junction, one can elevate the potential to constant
intervals V = n h̄

2e
ωJ which are caused by the absorption of n quanta of microwave radiation.

Josephson’s theory was shown to be true experimentally a year later by Shapiro [45], and
these constant voltage regions in an AC Josephson junction are today called Shapiro steps.

2.3 Proximity Effect

Long before Josephson discoveries, the proximity effect was discovered experimentally by
the German physicists Holm and Meissner in 1932 [9], 30 years before Josephson released
his papers. They saw that the resistance of normal state metals sandwiched between two
superconductors had a drastically lower resistance. 20 years later, Holm’s student I. Dietrich
continued working on the problem, and she was able to show that the current was in fact
dissipationless, and thus a supercurrent [10]. At the time, few physicists seemed to care
about their discoveries, which is why Josephson was unaware when doing his calculations in
1962. Josephson did on the other hand solve the problem theoretically for the first time by
the use of the 5 year old theory of BCS superconductivity.

When a normal state metal is placed in proximity to a superconductor, the metal starts
exhibiting superconductive properties over mesoscopic distances. Due to the non-locality of
Cooper pairs, they can not immediately break down when entering the metal. The pair will
then loose its coherence as it experience scattering in the metal and soon decay. On the
other hand, quasiparticles in the metal with energies less than the gap energy are able to
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enter the superconductor which lowers the gap energy and the critical temperature of the
superconductor. In addition, if the metal is a ferromagnet, the superconductor can also start
exhibiting magnetic ordering in the region close to the interface. This effect is called the
inverse proximity effect and with both effects considered they are called the full proximity
effect. To explain the proximity effect on a microscopic level we have to understand Andreev
reflections.

2.4 Andreev Reflection

If an electron in a normal metal reaches the interface of a superconductor with zero barrier
resistance, then the electron can become a quasiparticle in the superconductor as long as
ε > ∆ where the energy is measured from the chemical potential µ. If the energy of the
electron is less than the gap energy, there are no quasiclassical states for the electron to
inhabit. In this case, the Russian physicist Andreev showed in 1964 [5] that the electrons can
cross the interface if the transparency of the interface is low and then be reflected as a hole.
Two electron charges 2e will be transferred across the interface and become a Cooper pair
in the superconductor. This transition will conserve momentum, charge, spin and energy,
and with a low barrier transparency and ε � ∆ most of incident electrons will be Andreev
reflected. This effect transfers twice the amount of electrons than if the superconductor was
in a normal metal state, and thus the conductance is twice the normal state if the energies
of the incident electrons are low. This conductance will converge to the normal state as the
temperature moves closer to Tc. The opposite case is also possible where an incident hole
from the normal metal is reflected as an electron. This process breaks apart a Cooper pair in
the superconductor and 2e is also transferred across the interface and into the normal metal.
The most important part of the Andreev reflection is the phase coherence between the hole
and electron. If the energy of the incoming electron (hole) is equal to the Fermi energy,
ε = 0, then the reflected hole (electron) will have the exact same energy since the Cooper
pair created in the superconductor will have a zero center-of-mass momentum. If however the
energy is different from the Fermi energy, the mismatch in momentum will be on the order
of ∆k = 2ε/h̄vf where vf is the Fermi velocity [74]. Thus, the difference in momenta will
destroy the coherence between the electron and hole, and in diffusive materials the coherence
lengths will be on the order of ξN =

√
h̄D/ε where D is the diffusion constant. Scattering

from impurities will also affect the phase coherence and make the pair decay. The retroflected
hole (electron) will then in a SFS junction move to the other superconductor interface, and
as long as there is a non-zero phase difference between the two superconductors then there
will be differences in preferred retroflection of holes or electrons at the two interfaces, and
thus there will be a flow of charge in a certain direction which creates a supercurrent.

2.5 Transforming Singlet Cooper Pairs to Triplet Pairs

Conventional superconductors are well described by the BCS theory. This theory tells us
that the two electrons that make up a Cooper pair have a singlet spin state, and that a
conventional BCS superconductor can be characterized as a s-wave with even-frequency. s-
wave pairing implies that an exchange of spatial coordinates will leave the wave function
unchanged, while an even-frequency wave function is invariant under an exchange of time-
coordinates. Thus, the Fermi principle is satisfied since the overall wave function switches
sign if the two electrons are switched (-1 from spin, +1 from spatial coordinates, and +1

9



Figure 2.1: SNS and SFS Josephson junctions where the black lines represents singlet states
(↑↓ − ↓↑) while the red lines represents triplet states with zero spin-projection along the
magnetic field (↑↓ + ↓↑). The figure is adapted from reference [24].

from time coordinates).

We are exclusively going to be looking at diffusive materials, especially diffusive ferromagnets
in this thesis. The frequent scattering in such materials forces the change of spatial coordi-
nates to be even under parity. This restriction will be assumed to be strict in this thesis,
so the two other wave functions (spin and time coordinates) have to switch sign when mul-
tiplied. Thus there are two possibilities: Spin-singlet and even in time coordinate exchange
as a conventional BCS superconductor, and the other possibility of being a spin-triplet and
be anti-symmetric in time coordinates [23]. Note that this anti-symmetric in time property
must mean that such a wave function has to be zero at equal times t1 = t2. Such parings
are called odd-frequency pairings and are realized in diffusive ferromagnets in proximity to
superconductors.

When a supercurrent is flowing through a superconductor-normal-superconductor (SNS)
Josephson junction, only spin-singlet Cooper pairs will exist in the normal state metal, but
if the normal state metal has an exchange field, i.e. is a ferromagnet, then the exchange
field will energetically favour one spin direction. This Zeeman effect causes a split in the
energy bands and effectively destroys the phase correlation between the two, and thus an
exchange field causes the pairs to decay on a length scale comparable to ξF =

√
h̄D/(ε±M)

in diffusive materials where D is the diffusion coefficient, ε is the energy of the quasiparticle
and M is the magnitude of the exchange field. This decay length is normally much shorter
than the decay length of singlet pairs in the normal metal in SNS junctions, which has the
coherence length ξN =

√
h̄D/ε. The coherence length of a supercurrent flowing through

normal state materials will be affected by the decay length of the pair coherence. A su-
percurrent flowing through a diffusive metal without an exchange field has a decay length
of order ξN =

√
h̄D/kBT , but if the metal has an exchange field, the decay length of the

supercurrent is ξF =
√
h̄D/M . The former is normally much longer, and thus a supercurrent

can flow over longer lengths in a metal without an exchange field than a ferromagnet. The
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Zeeman effect however has an interesting property of converting the singlet states into triplet
states with zero spin-projection along the magnetic field. The energy band splitting causes
a shift in the momentum of the two electrons to k↑ = kf + Q/2 and k↓ = kf −Q/2 [24],
and thus the Cooper pair gains a center-of-mass momentum ±Q. This momentum causes a
modulation in the pair amplitude which varies over position R,

(↑↓ − ↓↑)→
(
↑↓ eiQ·R/h̄− ↓↑ e−iQ·R/h̄

)

= (↑↓ − ↓↑) cos(Q ·R/h̄) + i (↑↓ + ↓↑) sin(Q ·R/h̄). (2.5)

Thus, the pair correlations in the ferromagnet will oscillate with the wavenumberQ/h̄ and be
a mixture of both singlet and triplet pairs with zero spin-projection along the exchange field,
i.e. Sz = 0, see figure 2.1. This state is called the FFLO (Fulde–Ferrell–Larkin–Ovchinnikov)
phase named after two independent discoveries in 1964; one by the American physicists
Fulde and Larkin [25], and the other by the Soviet Russians Larkin and Ovchinnikov [26]. In
addition, due to the inverse proximity effect, the triplet states generated in the ferromagnet
will leak across the interface and into the superconductor. We see from the equation above
that the singlet state can switch sign and become negative in the ferromagnet, (↑↓ − ↓↑)→
− (↑↓ − ↓↑). If two superconductors are separated by a length where the singlet states have
opposite signs at the two SF interfaces, we end up with a so-called π state [67]. These
states have a lower free energy than the normal 0-states, and thus, in those cases, the system
switches its ground state to a π-state. A transition between these two states also gives the
current a sign shift at a given phase difference, and is therefore easily detectable in plots of
supercurrents. Note that a stable π state is not possible in a conventional SNS Josephson
junction since the FFLO phase can not be achieved.

The transition between singlet and zero-projection triplet states is called spin-mixing and
is not able to create equal spin pairs that are aligned with the magnetic field. Such pairs
generally have more appreciable properties than zero-projection triplets. Firstly, such pairs
can not be deteriorated by the exchange field since the pair will not experience any Zeeman
split. Thus, equal spin pairs decay in ferromagnets on the same length scale as in normal
metals and are thus called long-ranged triplets. SFS Josephson junctions with these long-
ranged pairs will thus be able to carry long-ranged currents that decay on the order of
ξN =

√
h̄D/kBT . In addition, these pairs are also able to transport spin since the two spins

do not cancel each other out, which is of great importance in the field of superconducting
spintronics in which transport of spin can be used to create spin-based electronic devices.
Then the question becomes: How do we generate triplet pairs with a non-zero projection?

One way is to take the zero-projection triplet states created by the spin-mixing effect and
consider them from a different angle in spin space [24]. The singlet states are invariant under
a rotation in spin space since they have a zero spin magnitude, i.e. |S| = 0. But a zero
projection triplet state in the y-basis (↑↓ + ↓↑)y is equal to a the non-zero projection triplet
state in the z-basis i(↑↑ + ↓↓)z. This means that if we have a SFF ′-trilayer where the
ferromagnet F has an exchange field along the y-axis and while F ′ points in the z-direction,
then F will create opposite spin triplet pairs in the y-basis due to spin-mixing which in F ′
will be equal spin triplets when viewed with respect to the z-axis. Thus these pairs will
be aligned with the exchange field in F ′ and be long-ranged triplets. This effect is called
spin-rotation and can be realized in several ways. One way is as we already mentioned
to have two ferromagnetic layers with misaligned magnetic fields. It can also be realized
in heterostructures with magnetic interfaces. For example, it is possible to generate such
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states carrying long-ranged charge and spin supercurrents in Josephson junctions with a non-
magnetic metal as weak link with magnetic insulators as interfaces [27]. Another option of
creating long-ranged triplets is to have a single ferromagnet with a nonhomogenous exchange
field [28]. It is also possible with a single ferromagnet with a time-varying exchange field [7]
which is something we are going to be closely looking at later.

It was commonly believed that only magnetic inhomogenities could spawn long-ranged com-
ponents, but in 2013 Bergeret and Tokatly [36] showed that there could exist other sources
for such triplets and established a universal condition for long-ranged triplets. A year later,
the two showed [29] that intrinsic spin-orbit coupling of type Rashba [31] and Dresselhaus
[30] satisfied the condition of long-ranged triplets.

Other sources of long-ranged components have been proposed such as inhomogenous distri-
bution functions [37], or unconventional superconductors with intrinsic spin-triplet pairings
[38]. But this thesis is only going to focus on two sources of long-ranged triplets, namely the
presence of a precessing magnetic field or intrinsic spin-orbit coupling.

2.6 Precessing Magnetic Field in Superconducting Hy-
brid Structure

When a ferromagnet with a precessing magnetic field is placed in proximity to a normal state
metal, the ferromagnet will pump a spin-current polarized in the direction of the precessing
axis into the adjacent metal. This effect is known as spin-pumping, and is a well understood
phenomena today. The past two decades there has been more focus on the presence of
superconductive ordering in a setup with a precessing exchange field both theoretically and
experimentally. The presence of a superconductor has shown to suppress these spin-currents
at the superconductor interface [77, 78]. There are two ways for a quasiparticle to enter a
superconductor: Either it can enter as a quasiparticle, but then it needs an energy above the
gap energy, and thus the spin carried by these low-energy quasiparticles are suppressed close
to the superconductor interface. The other possibility is for an electron-like quasiparticle to
enter through Andreev reflection where it is coupled to the retroflected hole with opposite
spin to create a zero-spin Cooper pair in the superconductor, but in this process, no spin is
transported into the superconductor. It was however recently showed experimentally that
layers with strong spin-orbit coupling added to the superconductors would on the other hand
enhance spin-currents [79]. The researchers argued that this was most likely due to the
transport of equal-spin triplets and not quasiparticles.

The presence of a spin-current polarized along the precession angle will also alter the tilt
angle of the precession. The spin-current will force the magnetic field to align itself more
with the axis of precession which in turn will slow down the angular velocity of precession.
A precessing magnetic field will have a damping term which over time makes the magnetic
field converge to a zero tilt angle. This damping term is called Gilbert damping, and since
the spin-current in a precessing exchange field in proximity to a superconductor is weakened,
the effective Gilbert damping will be lower than in the normal state case. Interestingly, last
year, it was reported that a SFS Josephson junction with a precessing magnetic field induced
a large spin-transfer torque at temperatures under the transition temperatures [76]. This
effect was not seen in a FS bilayer, and the researchers concluded that this was due to the
charge current of equal-spin triplet pairs flowing through the SFS junction which lowered the
tilt angle.
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2.7 Applications

While getting a fundamental understanding of quasiparticle correlations in heterostructures
with superconducting ordering is interesting in its own right, such structures also have real
life applications today and possible several future applications. First of all, in the field of
measurements, metrology, a voltage applied Josephson junction has been used as a standard
of the volt by using the equation previously mentioned ν = 2eV/h. By using the definition of
frequency, the cesium standard, and the most precise measurement of the magnetic quantum
flux 2h/e, one can make a standard of one volt. Today, the National Institute of Standards
and Technology standard of one volt can be created by having 20208 Josephson junctions in
series [46].

Josephson junctions also have the exciting application of representing a quantum bit [47, 48,
49]. This is due to the high non-linearity of the inductance which we can calculate by taking
the time derivative of equation (2.1) and entering it into (2.3). The resulting equation is

dIQ
dt

= Ic
2eV

h̄
cos(∆φ). (2.6)

By using the definition of inductance V = LdIQ/dt, the Josephson inductance becomes

L =
h̄

2eIc cos(∆φ)
, (2.7)

which shows the non-linearity in the variable ∆φ. While conventional circuit elements are
linear and therefore have highly degenerate energy levels, the non-linearity of the inductance
of a Josephson junctions is crucial since a quantum bit (qubit) is restricted to be in the two
lowest energy levels, and the non-linearity allows a bigger spacing between these two energy
levels. This non-linearity can even make a single photon increase the inductance by an order
of unity and breaks the degeneracy of the energy levels [50].
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3 | Theory

3.1 Green’s Functions

As a starting point to describe the electrons in our heterostructures we will use the language
of Green’s functions. These functions act as building blocks as to how electrons correlate to
each other, and we will develop differential equations so that we can find numerical values for
these functions. With them we can find observable of interest such as currents and density
of states.

A Green’s function G(r1, t1, σ1; r2, t2, σ2) can be thought of as a measure of the probability
that a particle with the position r2 with spin σ2 at time t2 will propagate and exist at
position r1 with spin σ1 at time t1. These functions will not only describe electrons, but also
the absence of electrons called holes, or more generally, they describe quasiparticles. These
quasiparticles can be different from electrons in that they may have a different effective mass
and charge.

There are two main formalism of Green’s functions in quantum condensed matter physics:
The Keldysh formalism and Matsubara formalism. The former is the one we are going to be
using, but the Matsubara technique can be useful when the system is in equilibrium. This
is because the distribution function then will be ĥ = tanh(βε/2)τ̂0 where β is the inverse
temperature and ε is the energy of the quasiparticle. When calculating the supercurrent
through a metal in a SNS Josepshson junction in the weak proximit limit, we have to integrate
over all energies which can easily be done by contour integration. Only tanh(βε/2) will have
zeroes in the upper half-plane when ε = i(2n+1)πkBT where n in any positive integer. Thus,
we arrive at an infinite sum as an expression for the supercurrent, see appendix A for an
example.

The Keldysh formalism gives us three different components, the first being the retarded com-
ponent which describes particles propagating forward in time, and the advanced component
which describes particle propagating backwards in time. Electrons moving back in time can
be though of as holes moving forward in time, and thus one can think of the advanced compo-
nent as describing the propagation of holes while the retarded component describes electrons.
These components only describe equilibrium properties in that they are assumed to begin
and return to the initial state over long periods of time, thus they describe only how the
processes at times t1 and t2 have changed the initial state [34]. This assumption is however
wrong if the system does not return to the initial state, and thus the third component of the
Keldysh formalism is the Keldysh component. This component does not assume any final
state due to the special choice of contour in time utilized by Keldysh, and is thus suitable to
describe non-equilibrium phenomena.

Following the notation of J.P. Morten in reference [6], the 8×8 Green’s function is in Keldysh
space
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Ǧ(1, 2) =

[
ĜR(1, 2) ĜK(1, 2)

0 ĜA(1, 2)

]
, (3.1)

where R, A and K denotes the retarded, advanced and Keldysh component, respectively,
and the coordinates are (1) = (r1, t1). Each of these matrices are 4× 4 where the outer 2× 2
matrices lie in Nambu space, which describe electron-hole symmetries, and the inner matri-
ces lie in spin-space. The diagonal components in Nambu space are called normal Green’s
functions Gσσ′ and the off-diagonal components are called anomalous Green’s functions F σσ′ .
In Nambu space the retarded and advanced Green’s function are [6]

ĜR(A)(1, 2) =

[
GR(A)(1, 2) FR(A)(1, 2)(
FR(A)

)∗
(1, 2)

(
GR(A)

)∗
(1, 2)

]
, (3.2)

while the Keldysh component is

ĜK(1, 2) =

[
GK(1, 2) FK(1, 2)

−
(
FK
)∗

(1, 2) −
(
GK
)∗

(1, 2)

]
. (3.3)

Each of the components can be written as an average value of the product of creation and
annihilation operators for electrons, ψ†σ′(r′, t′) and ψσ′(r′, t′). In spin space, the different
Green’s functions are defined as follows [6]:

GR
σσ′(1, 2) = −iΘ(t1 − t2)〈

[
ψσ(1), ψ†σ′(2)

]
+
〉, (3.4)

GA
σσ′(1, 2) = iΘ(t2 − t1)〈

[
ψσ(1), ψ†σ′(2)

]
+
〉, (3.5)

GK
σσ′(1, 2) = −i〈

[
ψσ(1), ψ†σ′(2)

]
−
〉, (3.6)

where Θ(t) is the well known Heavyside function. 〈...〉 denotes the average value and is
defined as 〈O(t)〉 = Tr(ρO(t)) in the Heisenberg picture where ρ is the density matrix. The
anomalous Green’s functions are defined as

FR
σσ′(1, 2) = −iΘ(t1 − t2)〈[ψσ(1), ψσ′(2)]+〉, (3.7)
FA
σσ′(1, 2) = iΘ(t2 − t1)〈[ψσ(1), ψσ′(2)]+〉, (3.8)
FK
σσ′(1, 2) = −i〈[ψσ(1), ψσ′(2)]−〉. (3.9)

As we can see from the definition of the anomalous Green’s functions, they describe the
correlation of electron pairs. This if especially useful in our case when we are looking at
Cooper pairs and pairs of electrons with equal spin projection, namely long-ranged triplets.
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3.2 Quasiclassical Approximation

The Green’s functions described in the last section oscillates rapidly over the relative coordi-
nates t = t1 − t2 and r = r1 − r2, and the oscillations happen over distances comparable to
the Fermi wavelength λF [6, 16, 34, 39]. We are more interested in longer length scales, both
longer materials on the scale of at least 5 nm, and coherence length of superconductors on the
length scale of around ξS ≈ 25 nm. These are both much larger than the Fermi wavelength,
and thus the fast oscillation does not give us any information of interest. We can therefore
choose to focus on the center-of-mass coordinates R = (r1 + r2)/2 and T = (t1 + t2)/2. We
can thus average out the relative coordinates by taking the Fourier transformation of both
relative time and relative position. This yields in the case of relative time the energy of the
quasiparticles ε and the momentum of the particles p in the case of relative position. This
approximation is called the gradient approximation and is the first step of the quasiclassical
approximation. The next step is to assume that all the quasiparticles that contribute to any
physical observables lie close to the Fermi energy. This is especially true for low temperatures
where most states below the Fermi energy are full. This means that we fix the momentum
we got from the Fourier transform to be equal to the Fermi momentum pf . Note that we are
only fixing the magnitude, and not the direction of the momentum. One can then define the
quasiclassical Green’s function ǧ(R,pf ;T, ε) to follow these constraints, and we can define it
as

ǧ(R,pf ;T, ε) ≡
i

π

∫ ∞

−∞
dξpǦ(R,p;T, ε). (3.10)

where p is the momentum, and pf is the Fermi momentum. And ξp = p2/2m − µ where µ
is the chemical potential. This definition is equal to the approximation

Ǧ(R,p;T, ε) = −iπδ(ξp)ǧ(R,pf ;T, ε). (3.11)

In reality, the integral above diverges as an integral of 1/ξp for large kinetic energies [6], and
thus we either need to introduce a cut-off energy or solve the integral by introducing contour
integration. Nevertheless, this approximation changes our normal and anomalous Green’s
functions, and the retarded quasiclassical Greens’ function has the form

ĝR =

[
g f

−f̃ −g̃

]
. (3.12)

For an arbitrary function of energy a(ε) the definition of the tilde operation is ã(ε) = (a(−ε))∗.
From now on, we will often denote the retarded quasiclassical Green’s function as simply
ĝR = ĝ. With this quasiclassical theory, it is now possible to describe the propagation
of quasiparticles in heterostructures by starting with Gorkov’s equation or Bogoliubov-de
Gennes equation [16, 40, 41] and then deriving the Eilenberger equation [42] first done in
1968. This equation is an effective transport equation for the quasiclassical Green’s function
and is much more suitable for calculations. Two years later, Usadel discovered [43] that in
in diffusive materials, when the mean path ways of quasiparticles are much shorter than
any characteristic length scales, the Greens function is mainly isotropic in space. He took
advantage of this fact and found an equation of motion for the spherical symmetric Green’s
function and also showed that it is possible to express the small anisotropic part of Green’s
function as a function of the spherical symmetric one. The now known Usadel equation has

16



then become the starting point of most numerical and analytical calculations of heterostruc-
tures in diffusive materials. For a full derivation of the Eilenberger and Usadel equation, we
suggest the reader to look at the references [6, 19, 34, 39].

3.3 Diffusion Equation

The Usadel equation is given as

iD∇̃ ·
(
ǧ ◦ ∇̃ǧ

)
=
[
ετ̂3 + ∆̂ +M · σ̂ ◦, ǧ

]
−
, (3.13)

where the gap energy matrix is

∆̂ =




0 0 0 ∆
0 0 −∆ 0
0 ∆∗ 0 0
−∆∗ 0 0 0


 , (3.14)

and the ring product ◦ is defined in Appendix B.

It is easy to show that if ǧ is a solution to the Usadel equation then so will ǧ ◦ ǧ and ǧ ◦ ǧ ◦ ǧ
and so on. Seeing that ǧ = 1 is a solution we can make the normalization condition

ǧ ◦ ǧ = 1. (3.15)

This condition can also be showed explicitly in the case of thermal equilibrium and in a
spatially homogeneous state [6]. With this condition we get following identities

ĝR ◦ ĝR = ĝA ◦ ĝA = 1, (3.16)

ĝR ◦ ĝK + ĝK ◦ ĝA = 0, (3.17)

and as a consequence of the last line, we can make the following ansatz [19]:

ĝK = ĝR ◦ ĥ− ĥ ◦ ĝA, (3.18)

where ĥ is known as the distribution function. It is immediately clear that this ansatz
satisfies the identity in equation (3.17) with the normalization condition in equation (3.16).
Note that the distribution function is not unique, and by substituting ĥ → ĥ + ĝR ◦ Â +
Â ◦ ĝA will also satisfy (3.18), where Â is an arbitrary matrix. The distribution function
describes the occupation of states, and in equilibrium this function is simply ĥ = 1−2f0(ε) =
tanh(βε/2), where β = 1/kBT and f0(ε) = 1/(eβε + 1) is the Fermi-Dirac distribution. If
a system is out of equilibrium, then certain spin directions might be favoured or electron-
hole distribution might change over position in our system, and the distribution function
ĥ will give us information about this. Using the notation of Schmid and Schön [20], we
can parameterize the distribution to be ĥ = hLτ̂0 + hT τ̂3. They denotes hL as longitudinal
and hT as transverse. This parameterization is useful in cases where a material is subjected
to an electric voltage, but useless in the case of a spin-voltage, where the distributions of
quasiparticles with different spin directions are unequal which is the case in a system with a
precessing ferromagnet. We will therefore instead use a notation similar to that of Ouassou,
Vethaak and Linder [21]. They parameterized the distribution function as
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ĥ =
8∑

n=1

hnρ̂n (3.19)

where

ρ̂1 = τ̂0σ̂0 ρ̂2 = τ̂0σ̂1 ρ̂3 = τ̂0σ̂2 ρ̂4 = τ̂0σ̂3

ρ̂5 = τ̂3σ̂0 ρ̂6 = τ̂3σ̂1 ρ̂7 = τ̂3σ̂2 ρ̂8 = τ̂3σ̂3 (3.20)

and hn = Tr(ρ̂nĥ)/4. The authors also derived equations of motion for these distribution
functions by looking at the Keldysh component of the Usadel equation. Thus, we not only
need to solve the Usadel equation for the retarded Green’s function, but we then also need
to solve the differential equation for the distribution functions hn with the retarded Green’s
function and the advanced Green’s function. The latter can be calculated from the relation
ĝA = −τ̂3

(
ĝR
)†
τ̂3. In the case of equilibrium, these equation of motions will conveniently

yield constant distribution functions i.e., ∇hn = 0, and we need to provide the equilibrium
solution h1 = tanh(βε/2) as a boundary condition in order for the system to yield the
equilibrium solution throughout the whole system. This also means that if a system is out-of
equilibrium, we need to provide information to the system what the distribution function
should be at the boundaries. For example, in the article of Ouassou et.al. [21] the authors
had a voltage-biased superconductor which they modelled by having two metal reservoirs
on either side of the superconductor. These reservoirs had fixed distribution function with
shifted energies in the electron-hole space to model the voltage across the superconductor.

3.4 Boundary Condition

A differential equation can not be solved without a proper set of boundary conditions.
Kupriyanov and Lukichev (KL) were the first to formulate a boundary condition in the
diffusive limit in 1988 [1], and is given as

2ζLǧ(ε, T ) ◦ ∇ǧ(ε, T ) = [ǧL(ε, T ) ◦, ǧR(ε, T )]−. (3.21)

Here, ζ = RB/RN is the interface transparency and is given as the ratio between the barrier
resistance RB and the normal state material resistance RN , and L is the length of the material
in the direction of propagation. A more general boundary condition for arbitrary transmission
channels, but without spin-active interfaces was made by Nazarov eleven years later. With
a notation similar that of reference [56], the Nazarov boundary condition is given as

L

RN

ǧ ◦ ∇ǧ = 2
e2

π

∑

n

Tn[ǧL ◦, ǧR]−
4 + Tn ([ǧL ◦, ǧR]+ − 2)

. (3.22)

The transmission eigenvalues Tn give the probability of scattering for different channels n.
These eigenvalues can be found from the transmission matrix which characterizes the scat-
tering in a junction [57, 58]. In a tunnel junction, these eigenvalues will be small Tn � 1,
and thus the Nazarov boundary condition can be written as

L

RN

ǧ ◦ ∇ǧ =
1

2

e2

π

(∑

n

Tn

)
[ǧL ◦, ǧR]−. (3.23)
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The conductance of the barrier is given as the sum of all transmission eigenvalues, and thus
the barrier resistance is RB = 1

e2
∑
n Tn/π

, and we arrive at the KL boundary condition. We
therefore do not need to know all transmission eigenvalues, but instead only a single scalar
ζ.

We will throughout this thesis assume that the interfaces are not spin-polarized, and thus the
KL boundary condition will be adequate. There has however been made several progresses
in deriving more general boundary conditions, and a derivation of a fully generalized bound-
ary condition in the diffusive limit can be found in reference [55]. In addition, boundary
conditions for spin-orbit coupled interfaces were very recently derived in reference [80].

3.5 Bulk Superconductor and Normal State Metal Solu-
tions

Deep inside a superconductor we can assume that the Green’s function is constant over
position, and so the Usadel equation becomes

[
ετ̂3 + ∆̂, ĝR

]
−

= 0. (3.24)

This equation in itself is not enough to find the bulk BCS Green’s function, but it can be
shown [6] that the solution will be

ĝRBCS =

[
cosh(θ(ε))σ0 sinh(θ(ε))iσ2e

iφ

sinh(θ(ε))iσ2e
−iφ − cosh(θ(ε))σ0,

]
(3.25)

where θ(ε) = atanh(|∆|/ε). This is the BCS solution for a bulk superconductor, and it will
be used as a starting point in numerical simulations and will be used as a boundary condition
when looking at the weak proximity effect. It is easy to show that this equation both satisfies
the Usadel equation and the constraint

(
ĝR
)2

= τ̂0.

In a normal metal the gap energy is zero and we simple get

ĝR =

[
1 0
0 −1

]
= τ̂3. (3.26)

3.6 Numerical Calculations

The Usadel equation for the retarded Green’s function is a 4× 4 matrix differential equation
which yields a total of 16 coupled differential equations. There is absolutely no hope in
trying to solve such a problem analytically. It is however possible to make approximations
such as the weak proximity approximation, which simply sets g = σ0, and we thus only need
to solve the anomalous Green’s functions f . However, if the proximity effect is strong, this
approximation can fail to capture essential details of our system. We therefore have to resolve
to numerical methods to find our Green’s function.

3.6.1 Theta-Parameterization

One way to solve the Usadel equation is to use the so-called theta-parameterization. This is
based on using the following parameterization [6]:
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g = cosh(θ(x, ε))σ0 (3.27)

f = sinh(θ(x, ε))eiφ(x,ε)iσ2. (3.28)

One would then plug the corresponding retarded Green’s function into the Usadel equation
and KL boundary condition to solve θ(x, ε) and φ(x, ε). Such a parameterization is useful
when considering a bulk BCS superconductors. In that case we simply get the BCS solution
we mentioned on the last page,

ĝRBCS =

[
cosh(θ(ε))σ0 sinh(θ(ε))eiφ(ε)iσ2

sinh(θ(ε))e−iφ(ε)iσ2 − cosh(θ(ε))σ0

]
. (3.29)

which is independent of position and by using equation (3.26), we find that φ(ε) = φ which
is simply the macroscopic phase of the superconductor and θ(ε) = atanh(∆/ε). This param-
eterization is however not useful when wanting to describe triplet states since the diagonal
components of f are zero and can only describe singlet states, and thus, this parameterization
is useless in our case.

3.6.2 Riccati-Parameterization

The Green’s function comes with a great deal of symmetries and constraints which can be
satisfied by making the parameterization [8, 73]:

ĝR =

[
N
(
1 + γγ̃

)
2Nγ

−2Ñ γ̃ −Ñ
(
1 + γ̃γ

)
,

]
(3.30)

where the normalization matrix is N =
(
1− γγ̃

)−1, and the tilde conjugation means chang-
ing the sign of ε and complex conjugating. This parameterization effectively turns the 16
differential into eight differential equations for every element of the matrices γ and γ̃. It
also has the advantage of being restricted to the interval γ → [0, 1]; when elements of the
retarded Green’s function goes to zero, then ||γ|| → 0, and if some elements of the Green’s
function diverges, then ||γ|| → 1. This gives a high numerical stability when solving the
Usadel equation since γ is bounded to a small interval. With this parameterization, it is
possible to derive the Usadel equation for γ with intrinsic spin-orbit coupling which was first
derived by Ouassou in reference [8],

D

[
∇2γ + 2∇γÑγ̃∇γ

]

=− 2iεγ −∆σ2 + γ∆∗σ2γ − iM ·
(
σγ − γσ∗

)

+D
[
A2γ − γ (A∗)2 + 2

(
Aγ + γA∗

)
Ñ
(
A∗ + γ̃Aγ

)]

+ 2iD
[
∇γÑ

(
A∗ + γ̃Aγ̃

)
+
(
A+ γA∗γ

)
N∇γ

]
. (3.31)

We get the other four differential equations by taking the tilde conjugation of the equation
above. The KL boundary condition with this parameterization becomes

ei · ∇γL =
1

Lζ

(
1− γ

L
γ̃
R

)
NR

(
γ
R
− γ

L

)
+ iei ·

(
Aγ

L
+ γ

L
A∗
)
, (3.32)

ei · ∇γR =
1

Lζ

(
1− γ

R
γ̃
L

)
NL

(
γ
R
− γ

L

)
+ iei ·

(
Aγ

R
+ γ

R
A∗
)
. (3.33)
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Here, ei is the normal vector of the interface pointing from what we define as left to what we
define as right. In a normal metal, the retarded Green’s function is simply ĝ = τ̂3 and thus

NN = σ3 γ
N

= 0. (3.34)

And in a superconductor, we can from the theta-parameterization in equation (3.29) get

NBCS =
1

2
(cosh(θ(ε)) + 1)σ0 γ

BCS
=

sinh(θ(ε))eiφ

cosh(θ(ε)) + 1
iσ2. (3.35)

3.7 Spin-Orbit Coupling

We are also interested in how we can incorporate spin-orbit coupling into our equations.
Later, we will look at both Rashba and Dresselhaus spin-orbit coupling [30, 31] which couples
to the momenta of the quasiparticles. Thus, the spin-orbit coupling terms will be on the form

HR +HD =
1

h̄m
(p ·W )σ =

1

h̄m

∑

ij

piWijσj (3.36)

where W is the interaction matrix and m is the effective mass of the quasiparticles. The
interaction matrix describes how the different spin-orbit coupling effects interact with the
momentum p. So for example, if we have a planar structure in the xy-plane with a very
small width in the z-direction, we have the following interaction matrix:

W =



β −α 0
α −β 0
0 0 0


 , (3.37)

where α and β are the Rashba and Dresselhaus constants, respectively. With this W the
spin-orbit coupling Hamiltonian becomes

HSOC = HR +HD =
α

h̄m
(σ1py − σ2px) +

β

h̄m
(σ1px − σ2py) . (3.38)

If we assume that both the Rashba and Dresselhaus constant is small, we can incorporate the
Hamiltonian into the vector potential in the canonical momentum operator. This operator
is normally defined as

p = mv − eA = −ih̄∇. (3.39)

We then define a new vector potential as

A→ A = eA+Wσ. (3.40)

The vector potential normally exhibits a U(1) gauge field, but now with the spin-orbit cou-
pling present, the vector potential becomes a vector of Pauli matrices and thus becomes a
SU(2) gauge field. We will later assume that there is no ordinary vector potential present
and only spin-orbit coupling and so we set the original vector potential to zero, i.e. A = 0.
To incorporate this into our equations later, we simply define [29]

∇̃(·) = ∇(·)− i
[
Â, (·)

]
−
, (3.41)
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where Â = diag(A,−A∗), and we can combine the kinetic and spin-orbit coupled Hamilto-
nian as

H0 +HSOC = − h̄2

2m
∇̃2. (3.42)

It is possible to show that this new SU(2) gauge-invariant derivative, will substitute the
normal derivatives ∇ → ∇̃ in both the Usadel equation and in the Kupriyanov-Lukichev
boundary condition.

3.8 Precessing Magnetization

When a ferromagnet is placed in an external magnetic field, its magnetic field M (t) will
start precessing around the axis of the external field if a torque is added. This precession is
governed by the Landau-Lifshitz-Gilbert (LLG) equation [13, 53, 68]

dM (t)

dt
= −γM (t)×Heff(t) + αM(t)× dM (t)

dt
. (3.43)

Here, Heff is the effective magnetic field, γ is the gyromagnetic ration and α is the Gilbert
damping constant. The two terms on the right hand side decide two different factors: The
first term decides how fast the precession of the magnetic field is. The bigger γ, the faster
the angular precession Ω. The second term is the damping term, and it is responsible for
decreasing the angle θ between the magnetic field M(t) and the externally applied field. To
combat this damping term we can apply a microwave field with a magnetic component ht
perpendicular to the applied field Heff = H0ez [14, 15]. This method is called ferromagnetic
resonance (FMR), and at resonance, we get that the magnetic field precesses as

M(t) = M

(
sin(θ) cos(Ωt), sin(θ) sin(Ωt), cos(θ)

)
. (3.44)

Where the tilt angle θ and the angular frequency at resonance Ω, also called Larmor frequency,
are independent of time. A more realistic precessional motion of the magnetic field is possible
to find [53] which includes the Gilbert damping, but we will use the above magnetization
for simplicity. To find the variables we have to solve the LLG equation with the material
specific γ. We will not do so in this thesis, but merely assume that we can manipulate both
variables, θ and Ω, as we see fit.

At resonance, one can estimate the tilt angle from the LLG equation to be θ ≈ µ|ht|/αh̄Ω
µ is the Bohr magneton [7]. A large tilt angle θ ≈ 15◦ can be obtained in soft ferromagnets.
The resonance frequency Ω can be calculated from the LLG equation by using the magnetic
field in equation (3.44) with Heff(t) = H0ez. This yields Ω = γH0. And for moderate fields
H0, the resonance frequency can become on the order of h̄Ω ≈ kBT , which for T = 1K is
approximately Ω = 30GHz. This yields energies on the order of h̄Ω ≈ 2 · 10−2 meV, which is
much less than the Fermi energies in metals of around 1 − 10 eV. We will therefore neglect
any spin-relaxation and therefore assume that spin-accumulation does not decay [13].

It was recently shown that the tilt angle θ in a ferromagnet in a SFS Josephson junction
decreases at resonance when the temperature is decreased from above the transition temper-
ature Tc to under it [76]. This tells us that the Gilbert damping term in the LLG equation has
increased. The researchers only showed this to be true in a ferromagnet in a SFS Josephson
junction, and not in a FS bilayer. The researchers argued that this is due to the supercurrent
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Figure 3.1: SFS Josephson junction with a precessing magnetic field. C is a contour in the
xz-plane.

carried by equal spin up triplet pairs that are aligned with the applied magnetic field H0, and
thus, they add a torque to the exchange field of the ferromagnet which effectively decreases
the tilt angle θ. Since no current can flow in an isolated FS bilayer, this effect is not seen in
such a hybrid structure.

3.8.1 Gauge-Invariant Phase Difference

When calculating the properties of a Josephson junction within the quasiclassical framework,
one usually use the macroscopic phases as an input variable which one sets to an arbitrary
value. One thus do not calculate the gauge-invariant phase which in the case of a precessing
magnetization will change the phase over time. The gauge-invariant phase difference γ will
then become [3]

γ ≡ ∆φ− 2π

Θ0

∫

C
A(T ) · ds. (3.45)

Here, Θ0 is the magnetic quantum flux defined as Θ0 = h/2e, and the integration goes along
a contour C going through both superconductors as seen in figure 3.1. The vector potential
can be found from the equation B(T ) = ∇ ×A(T ). Using Stokes’ theorem, one can write
the gauge-invariant phase difference as

γ = ∆φ− 2π

Θ0

∫
B(T ) · da. (3.46)

Since the integration area has to connect both superconductors, the flux will have the y and
z-component of the exchange field, By(T ) and Bz. Both components will depend linearly
on position and if the flux area is large then the current may move in both directions for
different transverse positions, (y, z), in the junction. For small junctions, one assumes the
flux area is small and one can thus neglect the flux, but we are interested in seeing how the
time-dependent flux through By(T ) changes the gauge-invariant phase difference, and so we
only neglect the z-component of the flux. The gauge-invariant phase then becomes

γ = ∆φ− 2π

Θ0

ABy(T ) (3.47)
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Here, A is the cross section area, and can be written as A = LF z where LF is the length of
the ferromagnet. This shows that the gauge-invariant phase difference gets a term that is
proportional to sin(ΩT ). This phase difference can be picked up by the Usadel equation if we
consider the contribution from the vector potential, but we will later neglect this contribution
when solving the Usadel equation for simplicity. The point is that there is in fact a time-
dependent contribution to the gauge-invariant phase difference. One other way to get a
time-contribution to the phase difference is to have an applied voltage difference between
two superconductors in a Josephson junction. One can easily show that this gives the phase
difference an additional term that is linear in time in the quasiclassical framework [59, 60],
which yields the time-varying phase relation Josephson showed in his paper in equation (2.3).

The time-varying and gauge-invariant phase difference above will not be used in our calcula-
tions later since the time convolution operator will make the problem close to impossible to
solve, and we will simply assume that it is small and can be neglected.

3.8.2 Green’s Function Transformation

We will in this section see how we can transform the Green’s function into a frame where
the magnetization is constant in time. We therefore need to find a transformation Û(t)
such that we transform into a stationary frame where the magnetization in (3.44) becomes
time-independent,

Û(t)M (t) · σ̂Û †(t) = M (0) · σ̂. (3.48)

Such a transformation is known [7, 13] and is simply Û(t) = exp(iΩtτ̂3σ̂3), and the equation
above can easily be verified by the identity exp(iaτ̂3σ̂3) = cos(a)τ̂0 + i sin(a)τ̂3σ̂3. Note that
we will in this section, and most of the thesis, neglect the time-dependence of the phase
difference stemming from the time-dependent magnetic flux through the junction. If we had
not neglected this contribution, the transformation Û(t) would not leave the phase difference
time-independent in the stationary frame. However, in a FS bilayer, we have no phase
difference across the ferromagnet, and thus the transformation Û(t) will always leave the
new frame stationary.

Next, we are interesting in knowing how this transformation effects the Usadel equation in
the new, stationary frame. We therefore go back to the roots of the Usadel equation, namely
Gorkov’s equation. From now on, we will start setting h̄ = 1. Gorkov’s equation in a system
with ferromagnetism and superconductive ordering is given as [6, 34]

i
∂

∂t1
τ̂3Ǧ(1, 2) + i

∂

∂t2
Ǧ(1, 2)τ̂3 =

[
ξ(1) + λ(1) −∆(1)
−∆∗(1) ξ(1) + λ∗(1)

]
Ǧ(1, 2)− Ǧ(1, 2)

[
ξ(2) + λ†(2) −∆(2)
−∆∗(2) ξ(2) + λT (2)

]
. (3.49)

Here, we have defined the matrices

∆(1) = iσ2∆(1), (3.50)
ξ(1) = eφ(1)− µ+ Vimp(1), (3.51)

λ(1) = − 1

2m
∇2 −M (1) · σ. (3.52)
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Here, ∆ is the gap energy, Vimp is the potential due to non-magnetic impurities. µ is the
chemical potential and φ is the electrical potential. Note, that we do not include any intrinsic
spin-orbit coupling like Rashba and Dresselhaus type in this equation. We then apply the
transformation to a new Green’s function, Ǧ(1, 2) → Ǧ(r,R, t, T ) = Û †(t1)Ǧ′(r,R, t)Û(t2).
Thus, the center-of-mass time T dependence lies in the transformation Û . And we are now
interested in finding an equation of motion for the new Green’s function Ǧ′(r,R, T ) in the
stationary frame. Applying this Green’s function to the part of Gorkov’s equation that
contains any exchange fields above gives us,

−M(t1) · σ̂Û †(t1)Ǧ′(1, 2)Û(t2) + Û †(t1)Ǧ′(1, 2)Û(t2)M(t2) · σ̂
= Û †(t1)

(
−Û(t1)M (t1) · σ̂Û †(t1)

)
Ǧ′(1, 2)Û(t2)

− Û †(t1)Ǧ′(1, 2)
(
−Û(t2)M (t2) · σ̂Û(t2)†

)
Û(t2) (3.53)

= Û †(t1)
[
−M(0) · σ̂, Ǧ′(1, 2)

]
− Û(t2). (3.54)

In the last line, we used that Û(t)M (t) · σ̂Û †(t) = M(0) · σ̂, and we explicitly see that the
transformation yields a stationary exchange field. Then we need to do the transformation on
the left hand side of Gorkov’s equation,

i
∂

∂t1
τ̌3Û

†(t1)Ǧ′(1, 2)Û(t2) + i
∂

∂t2
Û †(t1)Ǧ′(1, 2)Û(t2)τ̌3

= iτ̌3Û
†(t1)

(
−iΩ

2
τ̂3σ̂3 +

∂

∂t1

)
Ǧ′(1, 2)Û(t2)

+ iÛ †(t1)

(
i
Ω

2
Ǧ′(1, 2)τ̂3σ̂3 +

∂

∂t2
Ǧ′(1, 2)

)
Û(t2)τ̌3

= Û †(t1)

(
Ω

2
σ̂3 +

∂

∂t1

)
Ǧ′(1, 2)Û(t2)

+ Û †(t1)

(
−Ω

2
Ǧ′(1, 2)σ̂3 +

∂

∂t2
Ǧ′(1, 2)

)
Û(t2)

= Û †(t1)

([
Ω

2
σ̂3, Ǧ

′(1, 2)

]

−
+ iτ̂3

∂

∂t1
Ǧ′(1, 2) + i

∂

∂t2
Ǧ′(1, 2)τ̂3

)
Û(t2) (3.55)

Here, we used the fact that τ̂3, σ̂3, Û †(t1) and Û(t2) all commute with each other and that
τ̂ 2

3 = τ̂0. By combining the left term above with the new, stationary exchange field, we get

Û †(t1)

[
−M (0) · σ̂ − Ω

2
σ̂3, Ǧ

′(1, 2)

]

−
Û(t2) (3.56)

= Û †(t1)

[
−
(
M (0) · σ̂ +

Ω

2
σ̂3

)
, Ǧ′(1, 2)

]

−
Û(t2) (3.57)

= Û †(t1)
[
− (M sin(θ)σ̂1 + (M cos(θ) + Ω/2) σ̂3) , Ǧ′(1, 2)

]
− Û(t2). (3.58)

We get a new, effective exchange field M ′ = (M sin(θ), 0,M cos(θ) + Ω/2) in this new,
stationary frame. Note that the transformation leaves every other matrices in Gorkov’s
equation invariant, such as ∆̂(1), i.e. Û(t)∆̂(1)Û †(t) = ∆̂(1). This is unlike a Josephson
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junction with an applied voltage as shown in references [59, 60]. With an applied voltage
the transformation is on the form Û(t) = eieV tτ̂3 . Applying this transformation to ∆̂ will
give a time-varying phase, and in turn give an AC current. This does not happen with our
spin-space rotation transformation.

By multiplying our new Gorkov’s equation with Û(t1) on the left side, and Û †(t2) on the
right side, we can get rid of the unwanted transformations, and we are left with the old
Gorkov’s equation, but with a new, stationary exchange field M ′. It should be noted that
we will get an effective, non-zero exchange field even when M = 0. In that case, we get
M ′ = Ω/2ez. Thus, the stationary frame causes a Zeeman split which energetically favors a
spin-up direction if the rotation is counter-clockwise, Ω > 0.

We have therefore shown that by making the transformation Ǧ(1, 2) → Ǧ(r,R, t, T ) =
Û †(t1)Ǧ′(r,R, t)Û(t2), we get a stationary Gorkov’s equation for the new Green’s function
Ǧ′(r,R, t). With this new equation, one can derive the Usadel equation in the usual way,
obtaining a stationary Usadel equation valid for the new, stationary Green’s function, except
that we have to use the new, effective exchange fieldM ′, and the ring products will be reduced
to regular matrix multiplications in this frame. We will later show how we can go back go
back to laboratory Green’s function in energy space for the quasiclassical Green’s function.
It is important to note that we will use an apostrophe to denote variables and functions in
the stationary frame such as Ǧ′ and M ′, while the corresponding variables and functions
without an apostrophe will mean they are given in the laboratory frame. It will later prove
effectively to find the Green’s functions in the stationary frame and express observables in
the laboratory frame with these stationary Green’s functions.

Note that the transformation Û(t) repeats itself along the diagonal in Keldysh space, and
thus it acts equally on the three components of the Green’s function in Keldysh space, namely
the retarded, advanced and Keldysh Green’s function.
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4 | Observables

So far we have found a transport equation for the Green’s functions and distribution function
in the quasiclassical theory, but they themselves are not observables. We are therefore inter-
ested in using these functions to express currents and other observables that can be measured
in a laboratory. The derivations in this chapter are mostly following the derivations found
in references [6, 34, 81].

4.1 Gap Energy

We are now interested in how we can acquire the gap energy from the quasiclassical Green’s
functions. The superconducting order parameter is defined as [6, 12]

∆(1) = λ(1)〈ψ↓(1)ψ↑(1)〉, (4.1)

where λ is the coupling constant of the electron-lattice interaction. This can be expressed by
either of the two off-diagonal Keldysh anomalous Green’s functions

FK
↑↓(1, 1) = −i〈[ψ↑(1), ψ↓(1)]−〉 = −2i〈ψ↑(1)ψ↓(1)〉, (4.2)

FK
↓↑(1, 1) = −i〈[ψ↓(1), ψ↑(1)]−〉 = 2i〈ψ↑(1)ψ↓(1)〉, (4.3)

where we have used the anti-commutation relations for fermions. Thus the gap energy can
be written in the two following ways:

∆(1) =
λi

2
FK
↑↓(1, 1), (4.4)

∆(1) = −λi
2
FK
↓↑(1, 1), (4.5)

but later on it will be to our advantageous to combine both off-diagonal anomalous Keldysh
Green’s functions to express the gap energy. Doing so gives us

∆(1) =
λi

4

(
FK
↑↓(1, 1)− FK

↓↑(1, 1)
)
. (4.6)

So far this expression for the gap energy is exact as long as the superconductor is a conven-
tional BCS superconductor. We are now interested in expressing this with our quasiclassical
Green’s function. In doing so, we also switch over to mixed coordinates
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FK(1, 1) = lim
r→0

lim
t→0

FK(R+ r/2, T + t/2;R− r/2, T − t/2)

= lim
r→0

lim
t→0

1

(2π)4

∫
dpdεei(p·r−εt)FK(R, T )

=
1

(2π)4
4π

∫
p2dpdε

dΩ

4π
FK(R, T ). (4.7)

We then express the angular average over momentum space as
∫

dΩ
4π
FK(R, T ) = 〈FK(R, T )〉.

We also convert the momentum integral into an integral over the kinetic energy ξ = p2

2m
− µ.

This gives p2dp = m3/2
√

2(ξ + µ)dξ. The quasiclassical approximation states that the kinetic
energy p2/2m of quasiparticles lie close to the Fermi energy, so we can approximate ξ = 0.
We then get

FK(1, 1) =
1

4π3
m3/2

√
2µ

∫
dξdε〈FK(R, T )〉. (4.8)

Expressing this with the quasiclassical Green’s function yields

FK(1, 1) = − i
2
N0

∫
dεfK(R, T ), (4.9)

where N0 is the density of states at Fermi level. We can now express the gap energy as

∆(R, T ) =
N0λ

8

∫ ωc

−ωc
dεfK↑↓(R, T )− fK↓↑(R, T ). (4.10)

Only electrons with energies less than the Debye frequency ωc will experience the positive
attraction from the electron-lattice interaction λ [8, 12], and thus the integration interval
has been set accordingly. We can express the Debye frequency as a function of the coupling
constant λ and density of states N0 by solving the above equation in a bulk BCS supercon-
ductor at zero temperature T = 0. This bulk BCS gap will throughout the thesis be called
∆0. Taking the limit limβ→∞ h1 = limβ→∞ tanh(βε/2) = sgn(ε), and using the known bulk
BCS Green’s function with the identity ĝA = −τ̂3

(
ĝR
)†
τ̂3, we get

∆0 =
N0λ

4

∫ ωc

−ωc
sgn(ε)∆0

[
sgn(ε)√
ε2 − |∆0|2

+

(
sgn(ε)√
ε2 − |∆0|2

)∗]
. (4.11)

The integrand is obviously even in ε, and thus we only need to integrate over positive energies.
We can also compact the right side of the integrand to a real number, and we can divide
both sides by ∆0. The equation now becomes

1 = N0λ

∫ ωc

0

<
(

1√
ε2 − |∆0|2

)
(4.12)

= N0λ

∫ ωc

|∆0|

1√
ε2 − |∆0|2

. (4.13)

This integral can be solved exactly [8], and by reordering we get that the Debye frequency is

ωc = |∆0| cosh(1/N0λ). (4.14)
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Later, when we will calculate the gap energy self-consistently, we will use the value N0λ =
0.25 which yields ωc ≈ 27.3|∆0|. This choice is on the lower end of what is true for most
conventional superconductors. For example, for Beryllium N0λ = 0.23 while for Niobium
N0λ = 0.82, and Tin N0λ = 0.6 [35]. We choose a low N0λ to lower the amount of numerical
calculations we have to make later when calculating the gap energy numerically in the inverse
proximity effect.

4.2 Charge and Spin-Currents

We are in this section interested in how we can describe a flow of both charge and spin in
the diffusive limit. The charge and spin densities are given as

ρe(1) = e
∑

σ

〈ψ†σ(1)ψσ(1)〉

= e
∑

σσ′

〈ψ†σ(1)σ0
σσ′ψσ′(1)〉, (4.15)

ρs(1) =
1

2

∑

σσ′

〈ψ†σ(1)σσσ′ψσ′(1)〉. (4.16)

As we can see, both the charge density and spin density are similar, and we will thus only
show the derivation for the charge-current. But the derivation will be similar for the spin-
currents. All densities must satisfy the continuation equation which yields the following
known charge current:

jQ(1) =
∑

σ

e

m
<〈ψ†σ(1) (p(1)− eA(1))ψσ(1)〉, (4.17)

we introduce the momentum operator p(1) = −i∇1, and we get

jQ(1) =
e

2m

∑

σ

(
〈ψ†σ(1)(−i∇1 − eA(1))ψσ(1)〉+ 〈ψ†σ(1)(−i∇1 − eA(1))ψσ(1)〉∗

)
(4.18)

=
e

2m

∑

σ

(
〈ψ†σ(1)(−i∇1 − eA(1))ψσ(1)〉+ 〈ψ†σ(1)(i∇1 − eA(1))ψσ(1)〉

)
. (4.19)

We then make an infinitesimal difference in the coordinates of the right brackets so that we
can make use of the anti-commutation relations,

[
ψσ(1), ψ†σ(2)

]
+

= δ(1 − 2). The charge
current can now be written as

jQ(1) = lim
2→1

−ie
2m

∑

σ

[(∇1 − ieA(1))− (∇2 + ieA(2))] 〈ψ†σ(2)ψσ(1)〉 (4.20)

We have here removed the term with the Dirac delta function since we are not allowing the
coordinates (1) and (2) to ever be equal, but only be close to each other. We now incorporate
the normal Keldysh Green’s function,

GK
σσ′ = i

(
〈ψ†σ(2)ψσ(1)〉 − 〈ψσ(1)ψ†σ(2)〉

)
, (4.21)
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by using the anti-commutation relation and ignoring its Dirac delta function again. This
gives us

jQ(1) = lim
2→1
− e

4m
Tr
[
(∇1 −∇2 − ieA(1)− ieA(2))GK(1, 2)

]
(4.22)

.
We then switch over to mixed coordinates by inserting the Fourier transformed Green’s
function in the equation above. In this case, the limit 2 → 1 is equal to r → 0 and t → 0.
This also gives us ∇1 −∇2 = 2∇r. We now have

jQ(R, T ) = lim
(r,t)→(0,0)

− e

4m
Tr
[
(2∇r − ieA(1)− ieA(2))

∫
dε

1

2π
e−iεt

∫
dp

1

(2π)3
eir·pGK(R,p;T, ε)

]

= − e

2m

∫
dpdε

1

(2π)4
Tr
[
(ip− ieA(R, T ))GK(R,p;T, ε)

]
. (4.23)

It can be shown that the term proportional to A(R, T ) only gives an imaginary contribu-
tion [34] and is therefore un-physical. We will therefore remove it. We continue by making
the quasiclassical approximation, that is, we force the momentum to be equal to the Fermi
momentum. We also rewrite dp = dΩp2dp = dΩm3/2

√
2(ξ + µ)dξ and by using the quasi-

classical approximation in equation (3.10) we get

jQ = −eN0

4m

∫
dεTr

(∫
dΩ

4π
pfg

K(R,pf ;T, ε)

)
. (4.24)

In the diffusive limit, it is possible to show that

pf ǧ = −pfτvf ǧs ◦ ∇ǧs, (4.25)

where ǧs is the spherical harmonics Green’s function, vf is the Fermi velocity, τ is the lifetime
of the particle. By then defining the diffusion constant to be D = 1

3
v2
fτ and averaging over

the angular space, we get

jQ =
N0e

4

∫
dεTr

((
g ◦ ∇g

)K)
. (4.26)

So far we have only found the charge current for electrons. We must also add the current
of holes which propagate in the opposite direction of electrons, and thus by expanding to
Nambu space. By expressing this as a current rather than a current density we arrive at

IQ =
N0DeA

4

∫
dεTr

(
τ̂3 (ǧ ◦ ∇ǧ)K

)
, (4.27)

where A is the cross section. As we mentioned, the calculations for finding the spin-currents
are similar to derive, and they become

Ivs =
N0DA

8

∫
dεTr

(
τ̂3σ̂v (ǧ ◦ ∇ǧ)K

)
, (4.28)

for v ∈ {1, 2, 3}. Note that we have not incorporated intrinsic spin-orbit coupling into our
equations, but it is possible to show [8] that making the transformation in equation (3.41) in
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the expression for the charge-current above will preserve the supercurrent in a material with
spin-orbit coupling, i.e. ∇IQ = 0.
We will later be curious about the decomposition of the currents since they are not neces-
sarily supercurrents. As can be seen from the expressions for the currents, some terms will
contain the position derivative of the distribution functions, while some other will contain
the distribution functions themselves. We can expand as follows:

(ǧ ◦ ∇ǧ)K = ĝR ◦ ∇ĝR ◦ ĥ− ĥ ◦ ĝA ◦ ∇ĝA (4.29)

+∇ĥ− ĝR ◦
(
∇ĥ
)
◦ ĝA. (4.30)

In equilibrium, ĥ will be constant in space and thus the upper line gives the contribution
from the dissipationless supercurrent. The lower line on the other hand requires a non-
zero gradient of the distribution function and thus a non-constant chemical potential. This
drives a flow of quasiparticles in the direction of the gradient of the distribution function.
This current is not dissipationless, and thus we will call the lower line the resistive current.
Note that in a normal state metal which is not in proximity to a superconductor, we have
ĝR = τ̂3 = −ĝA, and using that

[
ĥ, τ̂3

]
−

= 0, the bottom line simply becomes 2∇ĥ.

4.3 Charge and Spin-Accumulation

Starting from equation (4.15) and (4.16), we can derive the charge and spin densities, which
we will call charge and spin-accumulations, using the same approach as when we derived
the currents. By separating the coordinates of the creation and annihilation operator by an
infinitesimal difference, and using the definition of the Keldysh component (4.21) with the
anti-commutation relations for fermions, we get

ρQ = lim
2→1
−ie

2
Tr
(
GK(1, 2)

)
(4.31)

ρs = lim
2→1
−i1

4
Tr
(
σGK(1, 2)

)
. (4.32)

We then continue by doing pretty much the same thing when deriving the currents: We
switch over to mixed coordinates, use the quasiclassical approximation and take the dirty
limit. We also have to remember to add the negative charges and opposite spins of holes,
and we end up with

ρQ = −N0e

4

∫
dεTr

(
ĝK
)
, (4.33)

ρs =
N0

8

∫
dεTr

(
σ̂ĝK

)
. (4.34)

To understand how the distribution function affects these accumulations, we can look at the
case of a normal state metal with no pair correlations. Then we have ĝK = 2τ̂3ĥ, and thus

ρQ = −2N0e

∫
dεTr

(
τ̂3ĥ
)
/4

= −2N0e

∫
dεh5, (4.35)
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Figure 4.1: Density of states in a bulk BCS superconductor

and

ρs = N0

∫
dεTr

(
σ̂τ̂3ĥ

)
/4

= N0

∫
dε (h6, h7, h8) , (4.36)

where we have used the identity hn = Tr
(
ρ̂nĥ
)
/4 and ρ̂n is defined in equation (3.20). We

thus see that these distribution functions describe the accumulation of charge and spin. If
we had calculated the currents above in a normal state metal without pair correlations, we
would see that the currents are simply described by a gradient of their respective distribution
functions.

4.4 Density of States

These spin-dependent density of states Dσ(R, T, ε) can be found by taking the imaginary
part of the Green’s function [44],

Dσ(R, ε) = lim
r→0
− 1

π
=
(
GR
σσ(R, r;T, ε)

)
(4.37)

= lim
r→0
− 1

π
=
(∫

dp

(2π)3
eip·rGR

σσ(R, p;T, ε)

)
. (4.38)

By then rewriting dp = p2dpdΩ = m3/2
√

2(ξ + µ)dξdΩ, using the quasiclassical approxima-
tion and average over all spherical angles, we end up with
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Dσ(R, T, ε) = N0< (gσσ(R, T, ε)) . (4.39)

If we are not interested in the spin, we can average both spin-directions and get a spin-
independent density of states

D(R, T, ε) =
N0

2
Tr
(
g(R, T, ε)

)
. (4.40)

In a conventional bulk BCS superconductor, the density of states can be seen in figure 4.1.
We see that no quasiparticles can exist with energies less than the energy gap |ε| < |∆0|, and
therefore, these quasiparticles are pushed outside this region and to energies close to, but
larger than |∆0|.
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5 | Project 1: Precessing Exchange Field
in Heterostructures

We are now going to look at the first of two research projects in this thesis which is FS
bilayers and SFS Josephson junctions where the ferromagnet has a precessing magneti-
zation on the form M (t) = M(sin(θ) cos(Ωt), sin(θ) sin(Ωt), cos(θ)). In section 3.8.2 we
showed how we can make the problem stationary by making the transformation Ǧ(1, 2) →
Ǧ(r,R, t, T ) = Û †(t1)Ǧ′(r,R, t)Û(t2). In this stationary frame, the effective exchange field
is M ′ = (M sin(θ), 0,M cos(θ) + Ω/2), and we get the stationary Usadel equation for the
transformed Green’s function ǧ′(ε) with this stationary exchange field. We still need to know
what the laboratory Green’s function is to be able to find observables like the gap energy
and currents. The question is then, how do we go from the transformed Green’s function to
laboratory Green’s function?

5.1 Going from the Transformed Frame to the Labora-
tory Frame

In the relative time space the quasiclassical retarded Green’s function is given as ĝ(t, T ) =
Û †(t1)ĝ′(t)Û(t2). Here, t = t1−t2 is the relative time and the center-of-mass time is T = t1+t2

2
.

We are interested in finding ĝ′ in energy space. In this section, we will only do so for the
retarded Green’s function, but the same procedure is valid for the advanced and Keldysh
components as well since the transformation Û(t) acts in the same way on these components,
as we showed in section 3.8.2. We have an equation of motion for the transformed Green’s
function in energy space ĝ′, and so we have to Fourier transform to relative time space, apply
the transformation, and Fourier transform back to energy space. Thus

ĝ(ε, T ) =

∫
dteiεtĝ(t, T ) (5.1)

=

∫
dteiεtÛ †(t1)ĝ′(t)Û(t2) (5.2)

=

∫
dteiεtÛ †(t1)

(
1

2π

∫
dε′e−iε

′tĝ′(ε)

)
Û(t2) (5.3)

=
1

2π

∫
dε′dtei(ε−ε

′)tÛ †(t1)ĝ′(ε)Û(t2). (5.4)

Applying the transformation to ĝ′(ε) will give some terms in the matrix a center-of-mass
time dependent phase, i.e. e±iΩT while the other terms will get a relative time dependent
phase, e±iΩt/2. The center-of-mass time dependent elements will not be affected by the Fourier
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transform, but the relative time dependent elements will undergo an energy shift. This can be
shown by looking at a singe element in the product Û †(t1)ĝ′(ε)Û(t2) that becomes dependent
on the relative time t,

gij(ε) =
1

2π

∫
dε′dtei(ε−ε

′)tg′ij(ε
′)e±iΩt/2 (5.5)

=
1

2π

∫
dε′dtei(ε−ε

′±Ω/2)tg′ij(ε
′) (5.6)

=

∫
dε′δ(ε− ε′ ± Ω/2)g′ij(ε

′) (5.7)

= g′ij(ε± Ω/2). (5.8)

To see which elements are affected by the relative and center-of-mass time phases, we calculate
all elements

Û †(t1)ĝ′(ε)Û(t2) =




g′11e
−iΩt/2 g′12e

−iΩT g′13e
−iΩT g′14e

−iΩt/2

g′21e
iΩT g′22e

iΩt/2 g′23e
iΩt/2 g′24e

iΩT

g′31e
iΩT g′32e

iΩt/2 g′33e
iΩt/2 g′34e

iΩT

g′41e
−iΩt/2 g′42e

−iΩT g′43e
−iΩT g′44e

−iΩt/2


 , (5.9)

which after doing the Fourier transformation in equation (5.4) becomes

ĝ(ε, T ) =




g′11(ε− Ω/2) g′12(ε)e−iΩT g′13(ε)e−iΩT g′14(ε− Ω/2)
g′21(ε)eiΩT g′22(ε+ Ω/2) g′23(ε+ Ω/2) g′24(ε)eiΩT

g′31(ε)eiΩT g′32(ε+ Ω/2) g′33(ε+ Ω/2) g′34(ε)eiΩT

g′41(ε− Ω/2) g′42(ε)e−iΩT g′43(ε)e−iΩT g′44(ε− Ω/2)


 . (5.10)

Thus, we see that every element of the laboratory Green’s function either becomes center-
of-mass time dependent or experiences an energy shift. Before going further, we will look at
how the anomalous Green’s function is affected by this transformation from the stationary
frame to the laboratory frame. We choose to take use of the so-called d-vector [11]:

f = (fs + d · σ) iσ2 =

[
idy − dx dz + fs
dz − fs idy + dx

]
, (5.11)

which expressed with the stationary Green’s function ĝ′ in equation (5.10) becomes

f(ε) =

[
(id′y(ε)− d′x(ε))e−iΩT d′z(ε− Ω/2) + f ′s(ε− Ω/2)

d′z(ε+ Ω/2)− f ′s(ε+ Ω/2) (id′y(ε) + d′x(ε))e
iΩT

]
. (5.12)

Solving dx and dy as a function of the transformed function d′x and d′y yields

dx(ε) = d′x(ε) cos(ΩT )− d′y(ε) sin(ΩT ) (5.13)
dy(ε) = d′x(ε) sin(ΩT ) + d′y(ε) cos(ΩT ). (5.14)

If we write dx and dy as a vector [dx, dy], the equation above can be written as
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[
dx(ε, T )
dy(ε, T )

]
=

[
cos(ΩT ) − sin(ΩT )
sin(ΩT ) cos(ΩT )

] [
d′x(ε)
d′y(ε)

]
. (5.15)

The matrix above is a well-known matrix in physics; it is simply the rotation matrix in
Euclidean space in a given plane which in our case is the xy-plane. We will later show
analytically in the weak proximity limit and numerically in the full proximity limit that
if we choose the stationary exchange field to point along the x and z-axis and to be zero
in the y-direction, then in the transformed frame we get d′y(ε) = 0. This shows that the
triplet state vector [dx(ε, T ), dy(ε, T )] = d′x(ε) [cos(ΩT ), sin(ΩT )] will always be parallel to
the precessing exchange field in the xy-plane (Mx,My) = M [sin(θ) cos(ΩT ), sin(θ) sin(ΩT )] =
M sin(θ) [cos(ΩT ), sin(ΩT )].

5.2 Boundary Condition

Since the laboratory Green’s function depends on center-of-mass time, the ring product in the
KL boundary condition can not be ignored. At first glance, this seems like an impossible task
to solve analytically since the ring product is an infinite series of time and energy derivatives,
but fortunately we can use the following identity to help us: If f(ε, T ) = eiω1Tf(ε) and
g(ε, T ) = eiω2Tg(ε), then

(f ◦ g)(ε, T ) = ei(ω1+ω2)Tf(ε− ω2/2)g(ε+ ω1/2). (5.16)

The derivation of the identity can be found in Appendix C. This identity can be used on
both the left and right hand side of the KL boundary condition. With this result we can
derive a new useful identity. If we have two energy dependent matrices A′ij and B′ij in the
stationary frame, then in the laboratory frame, the matrices become

Â(ε, T ) =




A′11(ε− Ω/2) A′12(ε)e−iΩT A′13(ε)e−iΩT A′14(ε− Ω/2)
A′21(ε)eiΩT A′22(ε+ Ω/2) A′23(ε+ Ω/2) A′24(ε)eiΩT

A′31(ε)eiΩT A′32(ε+ Ω/2) A′33(ε+ Ω/2) A′34(ε)eiΩT

A′41(ε− Ω/2) A′42(ε)e−iΩT A′43(ε)e−iΩT A′44(ε− Ω/2)


 , (5.17)

B̂(ε, T ) =




B′11(ε− Ω/2) B′12(ε)e−iΩT B′13(ε)e−iΩT B′14(ε− Ω/2)
B′21(ε)eiΩT B′22(ε+ Ω/2) B′23(ε+ Ω/2) B′24(ε)eiΩT

B′31(ε)eiΩT B′32(ε+ Ω/2) B′33(ε+ Ω/2) B′34(ε)eiΩT

B′41(ε− Ω/2) B′42(ε)e−iΩT B′43(ε)e−iΩT B′44(ε− Ω/2)


 . (5.18)

With this in mind, we have the following identity: If we denote the matrix product of
(Â′B̂′)ij = C ′ij, then the ring product of the matrices in the laboratory frame is

Ĉ(ε, T ) = Â(ε, T ) ◦ B̂(ε, T ) =




C ′11(ε− Ω/2) C ′12(ε)e−iΩT C ′13(ε)e−iΩT C ′14(ε− Ω/2)
C ′21(ε)eiΩT C ′22(ε+ Ω/2) C ′23(ε+ Ω/2) C ′24(ε)eiΩT

C ′31(ε)eiΩT C ′32(ε+ Ω/2) C ′33(ε+ Ω/2) C ′34(ε)eiΩT

C ′41(ε− Ω/2) C ′42(ε)e−iΩT C ′43(ε)e−iΩT C ′44(ε− Ω/2)


 .

(5.19)
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This equation can easily be verified by using the identity in equation (5.16). We will now do
this for the two matrix elements (1, 1) and (1, 2) in the matrix above.

(
Â(ε, T ) ◦ B̂(ε, T )

)
11

= A′11(ε− Ω/2) ◦B′11(ε− Ω/2) + A′12(ε)e−iΩT ◦B′21(ε)eiΩT

+ A′13(ε)e−iΩT ◦B′31(ε)eiΩT + A′14(ε− Ω/2) ◦B′41(ε− Ω/2)

= A′11(ε− Ω/2)B′11(ε− Ω/2) + A′12(ε− Ω/2)B′21(ε− Ω/2)

+ A′13(ε− Ω/2)B′31(ε− Ω/2) + A′14(ε− Ω/2)B′41(ε− Ω/2)

= C ′11(ε− Ω/2). (5.20)

Here, we have only used the identity in equation (5.16). The next element is

(
Â(ε, T ) ◦ B̂(ε, T )

)
12

= A′11(ε− Ω/2) ◦B′12(ε)e−iΩT + A′12(ε)e−iΩT ◦B′22(ε+ Ω/2)

+ A′13(ε)e−iΩT ◦B′32(ε+ Ω/2) + A′14(ε− Ω/2) ◦B′42(ε)e−iΩT

= A′11(ε)B′12(ε)e−iΩT + A′12(ε)B′22(ε)e−iΩT

+ A′13(ε)B′32(ε)e−iΩT + A′14(ε)B′42(ε)e−iΩT

= C ′12(ε)e−iΩT . (5.21)

All other elements can be calculated in similar ways. We see that the ring product of the
two matrices Â and B̂ preserves the center-of-mass time dependencies and energy shifts that
both the two matrices exhibit.

We now have everything we need to evaluate the KL boundary condition in the laboratory
frame. We denote (i, j) component of ĝ′(ε)∇ĝ′(ε) as Γ′ij(ε) and thus, with the identity in
equation (5.19) the left hand side of the KL boundary condition in the laboratory frame
becomes

2ζLĝ ◦ ∇ĝ = 2ζL




Γ′11(ε− Ω/2) Γ′12(ε)e−iΩT Γ′13(ε)e−iΩT Γ′14(ε− Ω/2)
Γ′21(ε)eiΩT Γ′22(ε+ Ω/2) Γ′23(ε+ Ω/2) Γ′24(ε)eiΩT

Γ′31(ε)eiΩT Γ′32(ε+ Ω/2) Γ′33(ε+ Ω/2) Γ′34(ε)eiΩT

Γ′41(ε− Ω/2) Γ′42(ε)e−iΩT Γ′43(ε)e−iΩT Γ′44(ε− Ω/2)


 . (5.22)

We will now turn to the right hand side of the KL boundary condition. By denoting the
(i, j) component of [ĝ′L(ε), ĝ′R(ε)]− as Π′ij(ε), we get

[ĝL(ε, T ) ◦, ĝR(ε, T )]− =




Π′11(ε− Ω/2) Π′12(ε)e−iΩT Π′13(ε)e−iΩT Π′14(ε− Ω/2)
Π′21(ε)eiΩT Π′22(ε+ Ω/2) Π′23(ε+ Ω/2) Π′24(ε)eiΩT

Π′31(ε)eiΩT Π′32(ε+ Ω/2) Π′33(ε+ Ω/2) Π′34(ε)eiΩT

Π′41(ε− Ω/2) Π′42(ε)e−iΩT Π′43(ε)e−iΩT Π′44(ε− Ω/2)


 .

(5.23)

We therefore see that the center-of-mass dependence can be removed, and we can make an
energy substitution so that for every component we have Γ′ij(ε) = Π′ij(ε), which is the same
as the stationary KL boundary condition for the transformed Green’s function ĝ′,
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2ζLĝ′(ε)∇ĝ′(ε) = [ĝ′L(ε), ĝ′R(ε)]−. (5.24)

Therefore, we can solve for the transformed Green’s function with equations (3.13) and
(5.24), and enter them into equation (5.10) to find the Green’s function in the laboratory
frame. We will use these stationary Green’s functions to calculate any observables we need
in the laboratory frame. Note that if we had spin-active interfaces, then the boundary
condition would become time-dependent as noted in reference [70]. This time-dependence
could potentially make the problem much more difficult, but has not been investigated in
this thesis.

5.3 Observables

5.3.1 Gap Energy

By using the gap energy equation (4.10) and the laboratory Keldysh component which is
on the form (5.10), we can express the order parameter with the Green’s functions in the
stationary frame. Thus, we get

∆(x) =
N0λ

8

∫ ωc

−ωc
dεf ′

K
↑↓(ε− Ω/2)− f ′K↓↑(ε+ Ω/2). (5.25)

In principle, all eight distribution functions can be non-zero, depending on the exact non-
equilibrium conditions in our system. As we will show later, this is possible in an SFS
junction with a non-zero macroscopic phase difference and a precessing exchange field. Thus,
we will not try to express this gap equation with all the distribution functions and condensate
functions. But to decrease the amount of calculations we have to make to evaluate this
integral numerically, we can write the gap equation as

∆(x) =
N0λ

8

[ ∫ ωc−Ω/2

−ωc+Ω/2

dεf ′
K
↑↓(ε)− f ′′K↓↑(ε) (5.26)

+

∫ −ωc+Ω/2

−ωc−Ω/2

dεf ′
K
↑↓(ε)−

∫ ωc+Ω/2

ωc−Ω/2

dεf ′
K
↓↑(ε)

]
. (5.27)

Note that since the gap energy is time-independent, the phase of the gap energy will also not
change over time. This is unlike a system where we force a voltage across the sandwiched
material in a Josephson junction [59, 60]. As we argued in section 3.8.1, we will nevertheless
see a time-varying phase in order for the phase difference to be gauge-invariant. We will
however not take this effect into account due to the complexity of the ring product this
brings, and so by assuming that the this time-dependent flux change is small, we can assume
the gauge-invariant phase difference is constant in time and an input variable we can set as
we see fit.

5.3.2 Charge and Spin-Currents

The spin-currents become
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Ivs =
N0DA

8

∫
dεTr

(
τ̂3σ̂v (ǧ ◦ ∇ǧ)K

)
(5.28)

=
N0DA

8

∫
dεTr

(
τ̂3σ̂v

(
ĝR ◦ ∇ĝK + ĝK ◦ ∇ĝA

))
. (5.29)

And the charge-current is

IQ =
N0DAe

4

∫
dεTr

(
τ̂3 (ǧ ◦ ∇ǧ)K

)
(5.30)

=
N0DAe

4

∫
dεTr

(
τ̂3

(
ĝR ◦ ∇ĝK + ĝK ◦ ∇ĝA

))
. (5.31)

The three matrices ĝR, ĝK and ĝA all exhibit the same time phase and energy shift symmetries,
and thus by the identity in equation (5.19), we get by denoting the (i, j) component of
(ǧ′(ε)∇ǧ′(ε))K as η′ij

Ixs =
N0DA

8

∫
dε
(
η′21(ε)eiΩT + η′12(ε)e−iΩT − η′43(ε)e−iΩT − η′34(ε)eiΩT

)
(5.32)

Iys =
N0DA

8

∫
dεi
(
−η′21(ε)eiΩT + η′12(ε)e−iΩT − η′43(ε)e−iΩT + η′34(ε)eiΩT

)
(5.33)

Izs =
N0DA

8

∫
dε (η′11(ε− Ω/2)− η′22(ε+ Ω/2)− η′33(ε+ Ω/2) + η′44(ε− Ω/2)) . (5.34)

Thus, only the z-polarized spin-current is time-independent. The charge-current will also be
time-independent and becomes

IQ =
N0DeA

4

∫
dε (η′11(ε− Ω/2) + η′22(ε+ Ω/2)− η′33(ε+ Ω/2)− η′44(ε− Ω/2)) . (5.35)

5.3.3 Charge and Spin-Accumulation

The charge and spin-accumulations are expressed as

ρQ = −N0e

4

∫
dεTr

(
ĝK
)
, (5.36)

ρs =
N0

8

∫
dεTr

(
σ̂ĝK

)
, (5.37)

which with the stationary Green’s functions become

ρQ = −N0e

4

∫
dε
(
g′K11 (ε− Ω/2) + g′K22 (ε+ Ω/2) + g′K33 (ε+ Ω/2) + g′K44 (ε− Ω/2)

)
, (5.38)

ρxs =
N0

8

∫
dε
(
g′K21 (ε)eiΩT + g′K12 (ε)e−iΩT + g′K43 (ε)e−iΩT + g′K34 (ε)eiΩT

)
, (5.39)

ρys =
N0

8

∫
dεi
(
−g′K21 (ε)eiΩT + g′K12 (ε)e−iΩT + g′K43 (ε)e−iΩT − g′K34 (ε)eiΩT

)
, (5.40)

ρzs =
N0

8

∫
dε
(
g′K11 (ε− Ω/2)− g′K22 (ε+ Ω/2) + g′K33 (ε+ Ω/2)− g′K44 (ε− Ω/2)

)
. (5.41)

Once again we see the observables directed in the x and y-direction precess with the magnetic
field while the charge and z-polarized spin-accumulations stay constant in time.
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Figure 5.1: Top figure shows a FS bilayer, while the bottom shows a SFS Josephson junction.
Both geometries have a ferromagnet with a precessing exchange field.

5.3.4 Density of States

The spin-dependent density of states will simply become

Dσ(ε) = N0<
(
g
σσ

(ε)
)
, (5.42)

which with the stationary frame Green’s function in (5.10) becomes

D↑(ε) = N0<
(
g′↑↑(ε− Ω/2)

)
, (5.43)

D↓(ε) = N0<
(
g′↓↓(ε+ Ω/2)

)
. (5.44)

First, we see that the density of states become independent of time, but they both undergo an
energy shift going from the stationary frame to the laboratory frame. This can be interpreted
as effectively removing the Zeeman split we get in the stationary field M ′ = Ω/2ez. The
spin-independent density of states is simply the average of the two,

D(ε) =
N0

2
<
(
g′↑↑(ε− Ω/2) + g′↓↓(ε+ Ω/2)

)
. (5.45)

5.4 Weak Proximity Limit

In this section, we will show how we can calculate the anomalous Green’s function f in the
weak proximity limit. We will consider both a FS bilayer and a SFS Josephson junction found
in figure 5.1. In this limit, we are only interested in the anomalous Green’s function while
setting g = σ0. We can either Fourier transform the BCS bulk solution in the superconductor
to the stationary frame and use the transformed KL boundary condition or we can use the
laboratory frame KL boundary condition in equation (3.21). We will do the latter. The
upper-right elements of the KL boundary condition at the FS interface is
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2ζL

[
1 ◦ ∇f ′↑↑(ε)e−iΩT 1 ◦ ∇f ′↑↓(ε− Ω/2)

1 ◦ ∇f ′↓↑(ε+ Ω/2) 1 ◦ ∇f ′↓↓(ε)eiΩT
]∣∣∣∣∣
x=F/S

= σ0 ◦ iσ2 sinh(θ(ε))eiφ

+ iσ2 sinh(θ(ε))eiφ ◦ σ0. (5.46)

The ring product has no impact since one side of the ring product is 1 which is independent of
both time and energy. This is also true in a Josephson junction where we technically have a
time-varying and gauge-invariant phase difference. Therefore, a time-varying phase difference
will not be complicated by the ring product in the weak proximity limit. In the full proximity
effect, the right hand side will couple the ring product to terms that are at least dependent
of energy and possibly time. In that case, the ring product will be extremely difficult, if not
impossible, to calculate analytically because φ has a term that is proportional to sin(ΩT )
which we saw in section 3.8. But on the other hand, in the weak proximity limit this is not
a problem since the time convolution operator acts on the identity matrix. Nevertheless, we
now get

ζL

[ ∇f ′↑↑(ε)e−iΩT ∇f ′↑↓(ε− Ω/2)
∇f ′↓↑(ε+ Ω/2) ∇f ′↓↓(ε)eiΩT

]∣∣∣∣∣
x=F/S

= iσ2 sinh(θ(ε))eiφ. (5.47)

Now since the right hand side is anti-diagonal, the time dependence in the diagonal terms
can be removed. The KL boundary condition at a vacuum interface is simply the left hand
side of the equation above equals zero. We solve these equation using the d-vector formalism
[11] which have already proved to be advantageous to our situation due to the precession of
dx and dy component being similar to the precession of the magnetic field. The anomalous
Green’s function in a ferromagnet in a FS bilayer and SFS Josephson junction has been solved
and can be found in Appendix D.

Looking at the solution for both a SF bilayer and a SFS Josephson junction in Appendix D,
we clearly see that the system creates long-ranged components if the non-equilibrium con-
ditions are satisfied, namely Ω 6= 0 and θ 6= 0. In the stationary frame, the superconductor
does not only act as a source of singlet states, but also long-ranged dz-components due to the
effective Zeeman-split termM ′ = Ω/2ez being present in the superconductor in the station-
ary frame. If the tilt-angle is non-zero, the real exchange fieldM will have a component that
is perpendicular to induced Zeeman field, which cause long-ranged components according to
the d-vector condition, dLRC ∝ |d×M | 6= 0 [11].

From equation (5.10), the laboratory frame anomalous Green’s function becomes

f =

[
f ′↑↑(ε)e

−iΩT f ′↑↓(ε− Ω/2)
f ′↓↑(ε+ Ω/2) f ′↓↓(ε)e

iΩT

]
. (5.48)

Using that d′y = 0 for both the FS bilayer and SFS Josephson junction, and inserting f↑↑ =
−dx, f↓↓ = dx, f↑↓ = dz + fs and f↓↑ = dz − fs gives us

f =

[
−d′x(ε)e−iΩT d′z(ε− Ω/2) + fs(ε− Ω/2)

d′z(ε+ Ω/2)− f ′s(ε+ Ω/2) d′x(ε)e
iΩT

]

=

[
−d′x(ε) cos(ΩT ) + id′x(ε) sin(ΩT ) d′z(ε− Ω/2) + fs(ε− Ω/2)

d′z(ε+ Ω/2)− f ′s(ε+ Ω/2) d′x(ε) cos(ΩT ) + id′x(ε) sin(ΩT )

]
. (5.49)
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Using the fact that f↑↑ = +idy − dx and f↓↓ = idy + dx, we get in the laboratory frame that

dx(ε) = d′x(ε) cos(ΩT ) (5.50)
dy(ε) = d′x(ε) sin(ΩT ). (5.51)

which shows that the two triplet components dx and dy processes with the x and y component
of the exchange field as mentioned previously. The other two anomalous Green’s functions
are

fs(ε) =
d′z(ε− Ω/2) + f ′s(ε− Ω/2)− d′z(ε+ Ω/2) + f ′s(ε+ Ω/2)

2
(5.52)

dz(ε) =
d′z(ε+ Ω/2)− f ′s(ε+ Ω/2) + d′z(ε− Ω/2) + f ′s(ε− Ω/2)

2
. (5.53)

Here, we see something interesting. The long-ranged components of dz actually gets a shorter
decay length for larger frequencies Ω at energies close to the Fermi energy, ε = 0. This is due
to the long-ranged component experiencing an additional, effective Zeeman split Ω/2, which
causes the dz component to decay as ξF =

√
D/(ε± Ω/2) just like it would in a magnetic

field whereM = Ω/2ez. Note that the transverse long-ranged components dx and dy do not
have these energy shifts because the additional Zeeman split only splits the spin up and spin
down states in the z-direction. Thus only the transverse components dx and dy stay truly
long-ranged, in that they decay as ξN =

√
D/ε.

From equation (5.47), we also see something interesting at frequencies Ω = ±2|∆0|. By
setting the energy to zero ε = 0, the two derivatives formally diverge at these frequencies.
In reality the divergence will be limited by inelastic scattering processes, but nevertheless,
this tells us that both the triplet and the singlet states will for these frequencies give large
zero-energy correlations.

With our weak proximity solutions in the ferromagnet, we can do as in reference [7] and show
that we get a long-ranged supercurrent through a SFS junction with a precessing exchange
field. This has not been done analytically in this thesis, but we will later focus on solving
the system numerically where we will show that we in fact get a long-ranged supercurrent
flowing through the junction.

5.5 Distribution Function

Even though our transformed system is stationary, it is still not in equilibrium. Thus the
distribution function ĥ will depend on position, and we can expect the other distribution
functions to be non-zero hn 6= 0 for n 6= 1. The distribution function is the solution to

ĝK(ε, T ) = ĝR(ε, T ) ◦ ĥ(ε, T )− ĥ(ε, T ) ◦ ĝA(ε, T ). (5.54)

We saw in equation (5.22) and (5.23) that the ring product of two matrices with the same
center-of-mass time dependence and energy shift symmetries will also exhibit the same sym-
metries. Therefore, it would be advantageous to us if the three Green’s functions above had
these symmetries. But as we showed in section 3.8.2, the transformation is repeated along
the diagonal of the Keldysh space, and thus it acts equally on the retarded, advanced and
Keldysh component. We can also show explicitly that the advanced component will have
these symmetries by using the identity ĝA = −ρ̂3

(
ĝR
)†
ρ̂3 [6],
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ĝA =




−g′11(ε− Ω/2)∗ −g′21(ε)∗e−iΩT g′31(ε)∗e−iΩT g′41(ε− Ω/2)∗

−g′12(ε)∗eiΩT −g′22(ε+ Ω/2)∗ g′32(ε+ Ω/2)∗ g′42(ε)∗eiΩT

g′13(ε)∗eiΩT g′23(ε+ Ω/2)∗ −g′33(ε+ Ω/2)∗ −g′43(ε)∗eiΩT

g′14(ε− Ω/2)∗ g′24(ε)∗e−iΩT −g′34(ε)∗e−iΩT −g′44(ε− Ω/2)∗


 , (5.55)

where g′ij are the components of the retarded Green’s function in the stationary frame. This
shows that ĝA exhibit the same time dependencies and energy shifts as ĝR. This will also be
the case for the Keldysh component as we argued, and therefore one way to satisfy equation
(5.54) is that the distribution function ĥ also has these symmetries. We already know that
the distribution function is diagonal in Nambu space, and thus the distribution function will
be on the form

ĥ(ε, T ) =




h′11(ε− Ω/2) h′12(ε)e−iΩT 0 0
h′21(ε)eiΩT h′22(ε+ Ω/2) 0 0

0 0 h′33(ε+ Ω/2) h′34(ε)eiΩT

0 0 h′43(ε)e−iΩT h′44(ε− Ω/2)


 (5.56)

where the elements h′ij are the element in the stationary frame distribution function ĥ′, i.e.

ĥ′(ε) =




h′11(ε) h′12(ε) 0 0
h′21(ε) h′22(ε) 0 0

0 0 h′33(ε) h′34(ε)
0 0 h′43(ε) h′44(ε)


 (5.57)

which satisfies the following relation in the stationary frame: ĝK(ε) = ĝRĥ − ĥĝA. We are
later going to look at both systems were a ferromagnet with a precessing exchange field is
coupled to a superconductor or a normal metal. Deep inside the superconductor or normal
metal, far away from the precessing magnetic field, we can assume that the distribution
function is unaffected by this time varying magnetic field, and thus in the laboratory frame
ĥ(ε, T ) = ĥ(ε) = tanh(βε/2)τ̂0, which in the transformed frame becomes

ĥ′ =




tanh
(
β(ε+Ω/2)

2

)
0 0 0

0 tanh
(
β(ε−Ω/2)

2

)
0 0

0 0 tanh
(
β(ε−Ω/2)

2

)
0

0 0 0 tanh
(
β(ε+Ω/2)

2

)



. (5.58)

When solving the distribution function in a region, we will use this distribution function as
a boundary condition both in a superconductor and a normal metal. Later, when calcu-
lating the distribution functions in several materials numerically, we will require metals or
superconductors acting as equilibrium reservoirs to be coupled to our system on both sides
of the one-dimensional setup. Otherwise, the distribution functions will only converge to
zero which is nonphysical. These reservoirs will then have the stationary frame distribution
function given above.

We will continue by writing the distribution function as a set of matrices that span the
block-diagonal spin-Nambu space. These matrices are as mentioned in section 3.3

ĥ =
∑

ρ̂nhn (5.59)

where the matrices ρ̂n are
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ρ̂1 = τ̂0σ̂0 ρ̂2 = τ̂0σ̂1 ρ̂3 = τ̂0σ̂2 ρ̂4 = τ̂0σ̂3,

ρ̂5 = τ̂3σ̂0 ρ̂6 = τ̂3σ̂1 ρ̂7 = τ̂3σ̂2 ρ̂8 = τ̂3σ̂3, (5.60)

and hn = Tr(ρ̂nĥ)/4. The distribution function in the stationary frame becomes

ĥ′ =




h′1 + h′4 + h′5 + h′8 h′2 − ih′3 + h′6 − ih′7 0 0
h′2 + ih′3 + h′6 + ih′7 h′1 − h′4 + h′5 − h′8 0 0

0 0 h′1 + h′4 − h′5 − h′8 h′2 + ih′3 − h′6 − ih′7
0 0 −h′2 − ih′3 + h′6 + ih′7 h′1 − h′4 − h′5 + h′8


 .

(5.61)
And thus in the laboratory frame the distribution function becomes

ĥ(ε, T ) =




h1 + h4 + h5 + h8 h2 − ih3 + h6 − ih7 0 0
h2 + ih3 + h6 + ih7 h1 − h4 + h5 − h8 0 0

0 0 h1 + h4 − h5 − h8 h2 + ih3 − h6 − ih7

0 0 −h2 − ih3 + h6 + ih7 h1 − h4 − h5 + h8




=

[
(h′1 + h′4 + h′5 + h′8)(ε− Ω/2) (h′2 − ih′3 + h′6 − ih′7)(ε)e−iΩT 0 0
(h′2 + ih′3 + h′6 + ih′7)(ε)eiΩT (h′1 − h′4 + h′5 − h′8)(ε+ Ω/2) 0 0

0 0 (h′1 + h′4 − h′5 − h′8)(ε+ Ω/2) (h′2 + ih′3 − h′6 − ih′7)(ε)eiΩT

0 0 (−h′2 − ih′3 + h′6 + ih′7)(ε)−iΩT (h′1 − h′4 − h′5 + h′8)(ε− Ω/2)

]
,

(5.62)

where (ha + hb)(ε) should be interpreted as ha(ε) + hb(ε). Solving these equations for the
laboratory frame yield

h1(ε) =
h′1(ε− Ω/2) + h′1(ε+ Ω/2) + h′8(ε− Ω/2)− h′8(ε+ Ω/2)

2
(5.63)

h2(ε, T ) = h′2(ε) cos(ΩT )− h′3(ε) sin(ΩT ) (5.64)
h3(ε, T ) = h′2(ε) sin(ΩT ) + h′3(ε) cos(ΩT ) (5.65)

h4(ε) =
h′4(ε− Ω/2) + h′4(ε+ Ω/2) + h′5(ε− Ω/2)− h′5(ε+ Ω/2)

2
(5.66)

h5(ε) =
h′4(ε− Ω/2)− h′4(ε+ Ω/2) + h′5(ε− Ω/2) + h′5(ε+ Ω/2)

2
(5.67)

h6(ε, T ) = h′6(ε) cos(ΩT )− h′7(ε) sin(ΩT ) (5.68)
h7(ε, T ) = h′6(ε) sin(ΩT ) + h′7(ε) cos(ΩT ) (5.69)

h8(ε) =
h′1(ε− Ω/2)− h′1(ε+ Ω/2) + h′8(ε− Ω/2) + h′8(ε+ Ω/2)

2
, (5.70)

We immediately note the symmetries for the x and y spin-energy modes h2 and h3, and for
the x and y spin-modes h6 and h7. The two pairs of distribution functions can be written in
the nice form

[
h6(ε, T )
h7(ε, T )

]
=

[
cos(ΩT ) − sin(ΩT )
sin(ΩT ) cos(ΩT )

] [
h′6(ε)
h′7(ε)

]
. (5.71)

44



The same goes for the pair (h2, h3). We once again see the rotation matrix which we saw for
the triplet components dx and dy in the laboratory frame. Thus the pairs (h2, h3) and (h6, h7)
moves with the magnetic field in the xy-plane. This makes sense since h6 and h7 describe the
spin-accumulation polarized in the x and y-direction, respectively, while h2 and h3 describes
the spin-distribution of spins pointing along the x and y-axis, respectively. The amplitude
of the vectors (h2, h3) and (h6, h7) also do not change over time i.e. h6(ε, T )2 + h7(ε, T )2 =
h′6(ε)2 +h′7(ε)2. The distribution functions that describe z-polarized spin, like the spin-energy
and spin mode h4 and h8, are time-independent and only requires energy shifts going from
the stationary to the laboratory frame.

We will now find the stationary frame distribution function in a ferromagnet not coupled
to a superconductor, but to a normal state metal. There are two reasons for this: First, it
proved too difficult to find the solution analytically when coupled to a superconductor, and
secondly, it will be useful later when doing numerical calculations in FS bilayer and SFS
Josephson junctions to compare the differences between a ferromagnet that is coupled to a
superconductor and one that is coupled to a normal state metal. In a ferromagnet which
is not in proximity to a superconductor, the retarded and advanced Green’s functions are
ĝR = τ̂3 and ĝA = −τ̂3. Entering this into the Keldysh component of the Usadel equation,
yields the following differential equation for ĥ′:

iD∇2ĥ′ = [M ′ · σ̂, τ3ĥ
′]−. (5.72)

The energy term drops out on the right hand side since it is proportional to τ̂3 which commutes
with ĥ′ since it is diagonal in Nambu space. The boundary conditions for ĥ′ become

2ζL∇ĥ′ = [ǧ′L, ǧ
′
R]K− . (5.73)

Here L and R denotes the Green’s function on the left and right side of the interface, respec-
tively. As we already argued, their retarded and advanced Green’s function will be trivial,
but their Keldysh component will not since it will be a function of the distribution function.
With equation (3.18) the Keldysh component becomes ĝK = 2τ̂3ĥ. We will not solve the
equations here, but the solution for the distribution function in the ferromagnet in a junction
between two normal state metals can be found in Appendix D. Note that this normal state
solution for the distribution function makes use of no further approximations.

With this distribution function, we can calculate the spin-current in a ferromagnet in a NFN
junction. From equation (5.34), the laboratory frame spin-current polarized in the z-direction
becomes

Izs =
N0D

2

∫
dε

(
dh′8(ε+ Ω/2)

dx
+
dh′8(ε− Ω/2)

dx

)
(5.74)

=
N0D

2

∫
dε

(
M2

x

M ′2
tpp − tmm

2
(C1κ sinh(κx) + C2κ sin(κx))

)
, (5.75)

where tpp(mm) = tanh
(
β
2

(ε± Ω)
)
, κ =

√
−2iM ′/D, and C1 and C2 are given in Appendix D.

Only tpp and tmm depend on energy, thus taking the limits to be ±∞, we get an exact result
for the z-polarized spin-current

Izs = N0D
M2

x

M ′2 Ωκ (C1 sinh(κx) + C2 sin(κx)) . (5.76)

Here we have used the integral
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∫ ∞

−∞
dε tanh(β(ε+ Ω)/2)− tanh(β(ε− Ω)/2) = 4Ω. (5.77)

It might not look obvious, but the expression for the spin-current can mathematically be
shown to always be a real number, but an expression that explicitly shows this will be much
longer. In the two cases we get equilibrium, Mx = 0 or Ω = 0, we get no spin-current. We
also see that the spin-current is independent of temperature.

Similarly, we can calculate the x and y-polarized spin-currents:

Ixs (T ) = N0D

∫
dε

d

dx
h′6 cos(ΩT )− d

dx
h′7 sin(ΩT ), (5.78)

Iys (T ) = N0D

∫
dε

d

dx
h′6 sin(ΩT ) +

d

dx
h′7 cos(ΩT ). (5.79)

Once again we see the entrance of the rotation matrix by writing the above equations as
[
Ixs (T )
Iys (T )

]
=

[
cos(ΩT ) − sin(ΩT )
sin(ΩT ) cos(ΩT )

] [
N0D

∫
dε d

dx
h′6

N0D
∫
dε d

dx
h′7

]
. (5.80)

Thus, the x and y-polarized spin-currents are merely a time rotation of the position derivative
of its corresponding spin mode distribution function. This can be interpreted as change in
spin accumulation over distance which is equivalent to a transport of spin. We can also
easily write these spin-currents by using the distribution functions in the laboratory frame
in equation (5.71).

Ixs (T ) = N0D

∫
dε

d

dx
h6(ε, T ), (5.81)

Iys (T ) = N0D

∫
dε

d

dx
h7(ε, T ), (5.82)

so as the two distribution functions h6(T ) and h7(T ) rotate over time, so do the two spin-
currents rotate with them. Taking the limits of the energy integral to ±∞, and using the
solutions for the distribution functions in Appendix D, the two spin-currents become

Ixs = ΩN0Dκ

[
− MxM

′
z

M ′2 (C1 sinh(κx) + C2 sin(κx)) cos(ΩT )

+ i
Mx

M ′ (C1 sinh(κx)− C2 sin(κx)) sin(ΩT )

]
, (5.83)

Iys = ΩN0Dκ

[
− MxM

′
z

M ′2 (C1 sinh(κx) + C2 sin(κx)) sin(ΩT )

− iMx

M ′ (C1 sinh(κx)− C2 sin(κx)) cos(ΩT )

]
. (5.84)

Here, the currents will also always be a real number. We will later use these resistive spin-
currents to compare how superconductive ordering changes these currents.
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5.6 Numerical Analysis

We will now try to numerically solve the Green’s function and distribution function in both
a FS bilayer and a SFS Josephson junction where the ferromagnet has a precessing magnetic
field. The respective functions will be calculated in the stationary frame, and then the
equations given in section 5.3 will be used to find the observables in the laboratory frame.

Heterostructures with a precessing magnetic field and superconductive ordering could be con-
sidered self-consistently which means that we calculate the Green’s function and distribution
function in the ferromagnet first and then use those functions as boundary conditions to
calculate the same functions in any adjacent superconductors. We could do this for several
energies, and with enough energy solutions we could then apply the gap energy equation
(5.25) which is an integral over energy solutions, and we could then repeat calculating the
three functions: Green’s function, distribution function, and gap energy until these three
functions converge to a satisfying limit in all regions. This requires a lot of computer power
and has only been done to calculate the gap energy in a superconductor in a FS bilayer. If
interested in doing everything self-consistently, one should try programming it in a compiled
programming language like Fortran which would decrease the computational time by an order
of 2 or 3 in magnitude. This has already been done by Ouassou, see reference [22].

Instead, for most calculations we have set the superconductors to be in equilibrium and have
a BCS bulk Green’s function. This might not give quantitative correct results, but will still
give us all the qualitative details we need. Thus, we will mostly solve the Usadel equation
in the ferromagnetic region, and calculate observables in this region. To solve the equations
numerically we use the Riccati parameterization to find the Green’s function and use the
kinetic equation derived in reference [21]. Assuming no second-order self-energy terms, the
kinetic equation becomes

Mnm∇2hm =− (∇Mnm +Qnm) · ∇hm (5.85)
− (∇ ·Qnm + Vnm)hm. (5.86)

Here, we have defined the quantities

Qnm =
D

4
Tr
(
ρ̂mρ̂nĝ

R∇ĝR − ρ̂nρ̂mĝA∇ĝA
)
, (5.87)

Mnm =
D

4
Tr
(
ρ̂nρ̂m − ρ̂nĝRρ̂mĝA

)
, (5.88)

Vnm =
i

4
Tr
(
[ρ̂n,Σ]−

(
ĝRρ̂m − ρ̂mĝA

))
. (5.89)

The Keldysh component of the Kupriyanov-Lukichev boundary conditions can be written as

Mnm∇hm +Qnmhm = CL
nmh

L
m − CR

nmh
R
m, (5.90)

where the notation L and R means the left and right side of the interface, respectively, and
the matrix C is

Cnm =
D

8ζL
Tr
([
ĝAL ρ̂n − ρ̂nĝRL

] [
ĝRR ρ̂m − ρ̂mĝAR

])
. (5.91)

47



Here, we have assumed that the interfaces are non-magnetic with only spin-independent
tunneling. We have also assumed no spin-dependent reflection. A detailed derivation of the
equation and more general expressions including spin-active interfaces and second order self-
energies can be found in reference [21]. These quantities and equations will be solved in the
stationary frame, and we will enter them into the equations for observables in the laboratory
frame. When solving these equations, we will assume that the regions we are solving the
equations in are coupled to a reservoir in equilibrium. For example, when calculating a
FS bilayer self-consistently in both regions, we have coupled both the ferromagnet and the
superconductor to a normal metal which only acts as a reservoir for the distribution functions,
namely we effectively get a NFSN quad-layer. We thus neglect the proximity effect at the
interface to these normal state metals which means no singlet or triplet states can leak into the
normal metals, and only the distribution functions are affected by the forced equilibrium in
these metals. The equilibrium distribution functions in these reservoirs are in the stationary
frame

ĥ′ =




tanh(β(ε+ Ω/2)/2) 0 0 0
0 tanh(β(ε− Ω/2)/2) 0 0
0 0 tanh(β(ε− Ω/2)/2) 0
0 0 0 tanh(β(ε+ Ω/2)/2)


 .

(5.92)
This can be verified by inserting the matrix elements above into equation (5.56). This
distribution equation yields

h′1 =
tanh(β(ε+ Ω/2)/2) + tanh(β(ε− Ω/2)/2)

2
(5.93)

h′8 =
tanh(β(ε+ Ω/2)/2)− tanh(β(ε− Ω/2)/2)

2
, (5.94)

while all other h′n = 0. Thus, these two distribution functions will be used as boundary
conditions in the reservoirs. Note that we will normalize all energies to the bulk gap energy
|∆0|, and thus we will use the well known BCS result [3]

|∆0|
kBTc

=
1

πeγ
, (5.95)

where γ = 0.5772 is Euler’s constant, and Tc is the transition temperature. We can now write
the distribution functions by knowing the ratios T/Tc and ε/|∆0|. This means, for example,
that the equilibrium distribution function can be written as

h1 = tanh(βε/2) = tanh

(
ε/|∆0|

2πeγT/Tc

)
. (5.96)

The superconductors have a bulk Green’s function, and so we have to remember to shift the
energies in order for them to be correct in the stationary frame. By inverting equation (5.10)
for the bulk BCS Green’s function, we get in the stationary frame
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ĝ′BCS(ε) =


cosh(θ(ε+ Ω/2)) 0 0 sinh(θ(ε+ Ω/2))eiφ

0 cosh(θ(ε− Ω/2)) − sinh(θ(ε− Ω/2))eiφ 0
0 − sinh(θ(ε− Ω/2))e−iφ − cosh(θ(ε− Ω/2)) 0

sinh(θ(ε+ Ω/2))e−iφ 0 0 − cosh(θ(ε+ Ω/2))


 .

(5.97)

Note that since only the diagonal and anti-diagonal components are non-zero, the BCS
Green’s function in the stationary frame is completely time-independent. Using the identities
g = 2N − σ0 and f = 2Nγ, the Riccati parameterization becomes:

N ′BCS =
1

2

[
cosh(θ(ε+ Ω/2)) + 1 0

0 cosh(θ(ε− Ω/2)) + 1

]
, (5.98)

γ′
BCS

=
1

2
(N ′BCS)

−1

[
0 sinh(θ(ε+ Ω/2))eiφ

− sinh(θ(ε− Ω/2))eiφ 0

]
. (5.99)

5.6.1 Parameters

To justify our assumption of fixing the two superconductors to a BCS bulk state, we set the
temperature low and equal to T/TC = 0.1. If otherwise not stated, we set the length of
the ferromagnetic layer to L/ξ = 1 where ξ is the superconducting coherence length. The
interface transparency will be set to ζ = 3. We will also typically use θ = 15◦ since this is close
to the experimentally highest possible polar angle of a precessing exchange field in resonance
[7]. We give the energy a small imaginary contribution to simulate inelastic scattering ε →
ε+ iδ where δ/|∆0| = 0.01, this contribution is also called the Dynes parameter [63]. A large
Dynes parameter makes the energy integrals when calculating currents substantially easier
by smoothing out larger peaks of the integrands. If we set the Dynes parameter to zero,
which is absolutely unrealistic since it allows no inelastic scattering, the integrands of the
integrals will diverge to infinity for some energies, like for example when ε = |∆0|.

5.6.2 Charge-Current

Firstly, we will calculate the Josephson current through such a junction. It was analytically
showed in the weak proximity limit by Houzet in reference [7] that such a junction would be
able to carry a long-ranged supercurrent which is proportional to sin(θ)2 in long ferromagnets.
We have thus chosen to plot the supercurrent as a function of the length of the ferromagnetic
film L/ξ with the angle θ = 15◦ and a stronger magnetic field M = 20|∆0| in figure 5.2a,
where the charge-current normalization constant is I0 = N0DeA/4. We clearly see in the
figure that the supercurrent decays much slower if the magnetic field is precessing, but on
the other hand, we see that the majority of the current contribution comes from a resistive
current, namely the contribution from equation (4.30). But as we can see in figure 5.2b
there is possible to find an angular frequency Ω where the resistive current is zero, while the
supercurrent is non-zero. We will come back to the resistive current later when looking at
the accumulation of charge that manifests itself when the phase difference is non-zero.
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(a) M = 20|∆0| (b) M = 5|∆0|

Figure 5.2: Charge-current is plotted as a function of the length of the ferromagnet in a).
The inset plot is a logplot of the absolute value of the current, and the stippled line shows
the dissipationless contribution to the current when Ω = 2|∆0| which is clearly long-ranged.
The right plot shows the resistive and total current as a function of angular frequency Ω.
We see that the resistive current, given in equation (4.30), is zero around Ω/|∆0| = 2.7. All
plots have the phase difference ∆φ = π/2.

5.6.3 Spin-Currents

To calculate the spin-currents, we use equations (5.32)-(5.34). As we can see from the equa-
tions, only the z-polarized spin-current is time independent and only involves energy shifts.
The x and y-polarized currents on the other hand are time dependent, and by looking at
the two equations (5.32) and (5.33), one would assume that the two currents are similar but
out of phase. This has already been shown in the case of no-proximity limit in equations
(5.83)-(5.84), and can also be shown to be true numerically.

A plot of the z-polarized spin-current in a NFS trilayer and a SFS junction can be found in
figure 5.3, and the x and y-polarized spin-currents in a NFS trilayer can be found in figure 5.4.
Note that the normal metal and the superconductor are as we mentioned forced to be in equi-
librium and have their respective bulk Green’s functions. Here, the normalization constant
for spin-currents is I0 = N0DA/8. Both plots show the equivalent spin-current without the
ferromagnet being coupled to a superconductor, but instead only coupled to normal metals
which we found an analytic solution to earlier in equations (5.76), (5.83) and (5.84). Starting
with the z-polarized spin-current, we see that the superconductor suppresses the z-polarized
spin-current, especially for frequencies Ω < |∆0|. Then as the Larmor frequency increases it
will slowly converge to the normal state limit. Thus, for very large frequencies, superconduc-
tive order has no impact on the spin-currents. We see something similar when looking at the
x and y-polarized spin-currents. The spin-current that is polarized parallel to the magnetic
field in the xy-plane is seemingly suppressed by superconductive ordering. Remember that
the magnetic field has a zero y-component when the center-of-mass time T is zero, ΩT = 0,
and a zero x-component when ΩT = π/2. On the other hand, the spin-current polarized
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(a) NFS trilayer (b) SFS Josephson Junction with no macroscopic
phase difference ∆φ = 0

Figure 5.3: z-polarized spin-current in the ferromagnet at the left and right interface x =
−LF/2. The stippled line shows the spin-currents in a NFN junction, namely without the
ferromagnet being in proximity to a superconductor.

orthogonal to the magnetic field in the xy-plane seems to be enlarged by the superconductor.
This is especially true at the right interface x = LF/2 which is the interface that is coupled to
the superconductor. While on the other side of the ferromagnet x = −LF/2, the spin-current
is close to the normal state case.

Numerically, we have verified that the majority of the spin-currents are resistive with super-
conductive ordering, and the resistive contribution to the current given in equation (4.30)
can be expressed in the weak proximity limit as follows:

∇ĥ′ − ĝ′R∇ĥ′ĝ′A = 2∇ĥ′ −
[

f ′∇h′↑f̃ ′ f ′∇h′↓ −∇h′↑f̃ ′
∗

f̃ ′∇h′↑ − h′↓f ′∗ f̃ ′∇h′↓f ′∗

]
, (5.100)

where we have used the notation

ĥ′ =

[
h′↑ 0
0 h′↓

]
. (5.101)

Entering this into the equation for an arbitrary resistive current yields

Ires ∝
∫
dεTr

[
τ̂3σ̂v

(
∇ĥ′ − ĝ′R∇ĥ′ĝ′A

)]
(5.102)

where v ∈ {0, 1, 2, 3} and with the corresponding energy shifts and time dependence to make
the expression valid in the laboratory frame. The point here is that only the diagonal terms
in the matrix in (5.100) contributes to the integral because these terms are picked up by the
trace, and thus this is equivalent to
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(a) ΩT = 0 (b) ΩT = π/2

Figure 5.4: x and y-polarized spin-currents in a ferromagnet in a NFS-bilayer where the
superconductor interface is placed at x = LF/2. The stippled lines are the corresponding
spin-currents without being in proximity to a superconductor, namely a NFN junction.

Ires ∝
∫
dεTr

[
τ̂3σ̂v2∇ĥ′ −

(
σvf

′∇h′↑f̃ ′ − σ∗vf̃ ′∇h′↓f ′∗
)]
. (5.103)

We see that the correction from the condensate functions are in second order, O(f 2), and
thus has a small impact on the resistive current. We have also been able to find this to be
true numerically. Thus, we conclude that the difference in resistive spin-currents come from
the superconductors having a direct impact on the spin-accumulation distribution functions
h6, h7 and h8. Transforming back to laboratory frame will not change this conclusion since
the condensate functions will still be small. In figure 5.5 and 5.6 we have plotted the gradient
of h6 and h8, respectively, in the laboratory frame as a function of energy and position when
Ω/|∆0| = 2. First, we note that in the normal state case, the energies that contribute to the
z-polarized spin-currents have energies |ε| < 2|Ω|, while the x and y-polarized spin-current
are mediated by quasiparticles with energies |ε| < |Ω|. This can be explained from the energy
shifts in equation (5.70) which effectively removes the Zeeman splits caused by the precessing
motion of the exchange field in the stationary frame. The two other distribution functions
h6 and h7 do not undergo such energy shifts because there are no Zeeman splits from the
precession itself in the stationary frame along the x or y-axis.

In figures 5.5 and 5.6 we see two completely different behaviors of the gradient of h6 and h8,
respectively, in proximity to a superconductor. These gradients are, as we argued, the main
cause of the spin-currents polarized in the x and z-direction. It can also be shown that the
gradient of h7 will be similar to that of h6. When Ω/|∆0| = 2, they both have an increased
magnitude of gradient at Fermi energy, ε = 0, which is not true for dh8

dx
for any parameters.

Any values for Ω seem to give a zero gradient for h8 at the superconductor interface for sub-
gap energies. One could argue that the gradient of h8 is zero at the superconductor interface
for these energies |ε| < |∆| since no quasiparticle states exist in the superconductor for these
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(a) NFN trilayer (b) NFS trilayer. Superconductor interface is
placed at x/LF = 0.5.

Figure 5.5: The gradient of h6, dh6dx , is plotted as a function of energy and position both with
and without superconductive ordering when Ω/|∆0| = 2, and ΩT = 0.

sub-gap energies, but that explanation is not consistent with the behaviour of h6 and h7 at
the interface. There is probably an easy explanation for this behaviour, which would most
likely be more obvious if we were to solve the distribution functions in the weak proximity
limit analytically.

5.6.4 Gap Energy

The relative gap energy is plotted in figure 5.7 and shows how much the precession of the
exchange field changes the gap energy. Both the length of the ferromagnet and superconduc-
tor has been set to equal the superconductive coherence length ξS in a SF-bilayer, and the
temperature has been set to T/Tc = 0.5. The distribution function, Green’s function and gap
energy have been solved in the ferromagnet and superconductor until they have converged.
Both the superconductor and the ferromagnet is coupled to a normal metal that is in a forced
equilibrium. As the angular frequency Ω is raised above zero, the gap energy is weakened as
the generation of long-ranged triplets in the ferromagnet causes more singlet state Cooper
pairs to leak into the ferromagnet and this weakens the gap energy. This assumption has
been shown both experimentally and theoretically in reference [61]. There, the researchers
placed two ferromagnets in a Josephson junction and showed that the angle between the
exchange fields α gave a minimum in transition temperature of the superconductors when
α = π/2 which is the rotation that generates the most long-ranged triplet correlations. It is
therefore safe to assume that an increase in the angular frequency Ω will lower the transition
temperature of the superconductor which gives a clear experimental signature. We have not
plotted the transition temperatures in this thesis due to time-limitations. The amount of time
it requires to calculate the gap energy self-consistently is quite high, and other calculations
have been prioritized.

For very large frequencies Ω� |∆0|, the gap energy slowly converges to the stationary limit
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(a) NFN trilayer. (b) NFS trilayer. The superconductor interface is
placed at x/LF = 0.5.

Figure 5.6: The gradient of h8, dh8dx , is plotted as a function of energy and position both with
and without superconductive ordering when Ω/|∆0| = 2.

where the effective magnitude of the exchange field is the same as the z-component of M ,
M →M cos(θ). This has also been verified for a polar angle of θ = 90◦ when Ω = 10000|∆0|.
In this case, the z-component of the exchange field is zero, and thus a high Larmor frequency
will yield the same gap energy as it does in a NS bilayer, namely the effective exchange field
is zero.

This can be explained as follows: When the angular frequency is large, the rotation of the
exchange field rotates so fast that the radial component of the exchange field cancel itself out,
and thus the quasiparticles will effectively only experience the z-component of the exchange
field.

5.6.5 Zero Energy Density of States

In this section we will look at the zero energy density of states in a SFS Josephson junction.
The spin-independent density of states is given as

D(ε) =
N0

2
<
(
g′

11
(ε− Ω/2) + g′

22
(ε+ Ω/2)

)
. (5.104)

In the limit where the anomalous Green’s functions are weak, the spin-independent density
of states can with the d-vector formalism be written as

D(ε = 0) = N0

(
1 +
|d(0)|2

2
− |fs(0)|2

2

)
. (5.105)

This is a result of the normalization condition ĝ2 = τ̂0. The triplet and singlet states in the
equation above are the laboratory frame triplet and singlet states, so we still have to make
energy shifts for the stationary condensate functions, and we will therefore use equation
(5.104) to find the zero energy density of states. The point is nevertheless, that the triplet
states raise the density of states above the Fermi level while the singlet states lower it. The
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Figure 5.7: The relative gap energy at the left, ferromagnetic interface and the right vacuum
interface is plotted as a function of Larmor frequency Ω at T/Tc = 0.5.

(a) (b)

Figure 5.8: Spin-independent density of states in a SFS Josephson junction is plotted as a
function of Larmor frequency Ω.
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Figure 5.9: The charge mode h5 is plotted as a function of energy and position in the
ferromagnet. Note that the magnitude of the color scale is different in all the plots.

density of states in a SFS Josephson junction is plotted in figure 5.8. First, we see that the
values of the density of states is close to the Fermi level, and thus the approximation above
is valid. Secondly, we see that by tuning Ω close to |∆|0 we can maximize or minimize the
triplet components relative to the singlet states. This is interestingly not what researchers
in reference [13] found in their setup. They considered a FNS trilayer where they found that
the triplet components were most dominating in the normal metal when Ω = 2|∆0|. But we
are on the other hand looking at a SFS junction where there is direct contact between the
precessing exchange field in the ferromagnet and the superconductors. The researcher also
considered very different parameters such as a very long normal metal and less transparent
interfaces.

5.6.6 Charge Accumulation

In a FS bilayer, the energy spin-modes h2 − h5 stays zero for all frequencies Ω, but in a SFS
Josephson junction with a non-zero phase difference, we see that all these four distribution
functions suddenly become non-zero for a non-zero Larmor frequency Ω 6= 0. In figure 5.9,
we have plotted the charge mode h5, which in the normal state case is solely responsible for
charge accumulation as seen in equation (4.35). We have plotted it at different frequencies as
a function of both position and energy when the phase difference is ∆φ = π/2. If we change
the phase difference to be ∆φ = −π/2 the solution for h5 switches sign. This suggests that
the precession of the exchange field is able to induce a charge accumulation for some energies.
Using the expression for charge accumulation (5.38) we end up with the result in figure 5.10
where we clearly see that we in fact get a charge accumulation on each interface in the
ferromagnet with opposite sign. From what we understand, no one has before theoretically
predicted a charge accumulation in a non-voltage biased SFS Josephson junction with a
precessing exchange field. It is also interesting to see that there exists a frequency where this
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charge accumulation becomes zero, at Ω ≈ 2.7|∆0|. The charge accumulation as a function
of angular frequency should be compared to the corresponding plot in figure 5.10b. These
plots have same parameters, and we see that when Ω ≈ 2.7|∆0| both the resistive current and
the charge accumulation are zero. This is as expected since the resistive current is driven by
a gradient in charge accumulation.

This charge accumulation will in turn induce a potential difference across the junction. This
can be seen from figure 5.11 where we have solved the charge accumulation in the super-
conductors as well when Ω/|∆0| = 2. In this plot, we have not solved the gap energy
self-consistently and have simply set it equal to the bulk gap energy, |∆| = |∆0|. The voltage
difference across the junction can be calculated by using the standard equation for electric
voltage

V (x) =

∫
dx′

ρ(x′)

4πε0|x− x′|
, (5.106)

where ε0 is the electric permittivity. Since the charge accumulation is anti-symmetric in po-
sition, the voltage difference will be non-zero from the equation above. By using Josephson’s
relation d∆φ

dt
= 2eV/h̄ and approximating the charge accumulation in figure 5.10b to give a

potential difference across the junction V (T ) = V0 sin(∆φ), we get

d∆φ(T )

dT
=

2eV0

h̄
sin(∆φ(T )). (5.107)

This differential equation has a solution which is

∆φ(T ) = 2 arctan
(
C0e

2eV0T/h̄
)
, (5.108)

where C0 is a constant of integration and sets the initial condition. For C0 = 1, we get φ(T =
0) = π/2. This function will also converge to 2πn for all C0 where n is an integer number.
If C0 = 0 then the phase difference will for always stay zero, ∆φ(T ) = 0. Nevertheless, this
seems to suggest that the system will always converge to a state where the phase difference is
zero. If we start the system with no precessing frequency and a non-zero phase difference we
get a supercurrent. Then by suddenly making the magnetic field precess, the supercurrent
will seemingly go to zero and self-destruct.

If we now assume that we in addition add a constant applied voltage V1 to the junction, we
get a potential on the form

V = V0 sin(∆φ) + V1 (5.109)

which gives the differential equation

d∆φ(T )

dT
=

2e

h̄
(V0 sin(∆φ(T )) + V1) . (5.110)

This differential equation can also be solved exactly and yields two different results depending
on whether V1 or V0 is largest. If |V1| > |V0| then the phase difference will always increase
over time, but if the opposite is true, |V1| < |V0|, then the phase difference will converge to a
non-zero constant. This can be found by setting equation (5.110) equal to zero, which is the
same as setting the total potential equal to zero. This gives us the converged phase difference
to be

∆φ(T →∞) = − arcsin(V1/V0), (5.111)
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(a) ∆φ = π/2 (b) Ω/|∆0| = 2.

Figure 5.10: Charge accumulation in the ferromagnet at each interface in a SFS Josephson
junction. The left plot is a function of frequency with ∆φ = π/2, and the right plot is a
function of macroscopic phase difference ∆φ with Ω/|∆0| = 2. The stippled line in the right
plot is a sine curve with same amplitude. This is to highlight that the charge accumulation has
a non-zero contribution from the second harmonics. The charge accumulation is normalized
to the constant ρ0 = −N0e/4. The Green’s functions and distribution functions have only
been solved in the ferromagnet and the corresponding functions in the superconductors have
been assumed to be the BCS bulk solution in equilibrium.

which by tuning V1 can give us any phase difference in the range ∆φ(T →∞) ∈ {−π/2, π/2}.
Before we get way ahead of ourselves we need to remember that we are violating one of
our main assumptions: Only the magnetic field changes over time, and the phase difference
is constant in time. Therefore, the result we just found is only accurate as a first order
approximation. As we saw earlier, a time-varying phase does not alter the solution for
the condensate functions in the weak proximity limit. The distribution functions on the
other hand will most likely be affected in the weak proximity limit since they require the
knowledge of the condensate functions which now will carry the time-varying phase. Since
we now suddenly get a time-varying phase difference from the assumption of a constant phase
difference suggests that the phase difference is something we have to solve self-consistently
like we often have to do for the gap energy. The problem is that the ring product will become
extremely complex and not something we can handle analytically. But the conclusion that
we see a charge accumulation that depends on the phase difference should not change if we
had calculated everything self-consistently with a time-varying phase. On the other hand,
the time-dependent phase difference might differ a lot from the first order approximation we
found in equation (5.108) if we were to calculate it self-consistently. Therefore, we can only
conclude that it will change over time, and not how it will change over time or what it will
converge to. More work needs to be done in order to conclude how the time-variation of the
phase difference will be.
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Figure 5.11: Charge accumulation in a SFS Josephson junction. The length of the ferro-
magnet is LF = ξS while the two superconductors have the length LS = 4ξS. The angular
frequency is set to Ω = 2|∆0| and phase difference is ∆φ = π/2. The small congestion of
charge at the end-points of the superconductors is due to the approximation that the adjacent
normal metals are forced to be in the equilibrium state and can not receive the accumulation
of charge.

5.7 Gauge-Invariant and Time Dependent Phase Differ-
ence

Before ending this chapter, we will in this section note how the gauge-invariant and time-
dependent phase difference affects a SFS Josephson junction, and how we can try to solve
the problem self-consistently. First, as we showed in section 3.8.2, the gauge-invariant phase
difference will due to the precession of the magnetic field be on the form γ(T ) = ∆φ +
b sin(ΩT ), where ∆φ is the phase difference which accounts for the magnetic flux along the
z-axis, and the phase difference in the absence of magnetic fields, while b is the ratio between
the flux in the y-direction and the quantum magnetic flux Θ0. Our calculations so far have
neglected this time-dependent phase difference, except when finding the condensate functions
in the weak proximity effect since a time-varying phase does not complicate the ring product.
We have therefore assumed that any flux contribution is small and can be neglected. If the
flux contribution were to be large, and we had to incorporate this phase difference into our
equations we would get into big problems with the ring product, but one could attempt to
expand the time-varying phase by using Bessel function as done in reference [62]

eiγ = ei∆φeib sin(ΩT ) (5.112)

= ei∆φ
∑

n

Jn(b)einΩT , (5.113)

where Jn(x) are the Bessel functions. With this phase difference, we can use the identity
found in Appendix D to express observables by infinite series of Bessel functions.
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As we saw in the last section, a SFS Josephson junction with a time-varying magnetic field
will give rise to a charge accumulation if ∆φ 6= 0. If one wants to solve such a system
self-consistently in time, one has to face many challenges. For one thing, the first order
approximation of ∆φ without the flux contribution in equation (5.108) is highly complex,
and it will create problems when taking the ring product required by the Usadel equation and
the KL boundary condition. One thing worth attempting is to assume the induced voltage
difference is small and find the first order Taylor series of equation (5.108) in center-of-mass
time T . One can then see if how this changes the voltage-difference and phase-difference.

In addition, one needs to remember to add the time varying electric potential to the self-
energy in the Usadel equation. In a stationary system, the electric potential will commute
with the Green’s function and can be removed from the self-energy, but due to the electric
potential being time-dependent, the ring product can not be turned into matrix multiplication
and the electric potential has to be included in the Usadel equation.
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6 | Project 2: Lateral SFS Josephson Junc-
tion with Spin-Orbit Coupling

Figure 6.1: A lateral SFS structure with a thin ferromagnetic layer connected to two super-
conducting nodes with Rashba spin-orbit coupling in the heavy metals. The exchange field
of the ferromagnetic film lies in the xy-plane and is tuned by the in-plane angle θ.

In this chapter we will be looking at the geometry depicted in figure 6.1: A lateral SFS
Josephson junction with Rashba spin-orbit coupling at the contact points in the heavy metals.
A similar system was first suggested by Bergeret and Tokatly [29] that would be able to create
long-ranged triplets (LRTs), and also a long-ranged supercurrent. We will in this section go
into much more details about such a system, and show that the long-ranged supercurrent is
extremely sensitive to the in-plane rotation of the exchange field.

The motivation to consider a lateral Josephson junction rather than a typical, one-dimensional
junction, is that the magnetization would be required to be out-of plane [8] in order to gen-
erate long-ranged triplets. This can be explained by the Rashba spin-orbit coupling at the
contact region in the heavy metals. If we have a heavy metal that is thin in the z-direction,
we will only have notable Rashba coupling perpendicular to the z-direction. Thus, if the
quasiparticles are mainly flowing through the heavy metals in this direction, their momenta
will be mainly z-directed, and their spin will not be notably affected by the Rashba coupling
and electrons of the Cooper pair will not spin-rotated to be aligned with the exchange field.
If we however force the quasiparticles to change momentum direction from a z-direction to
a x-direction, then the momentum will couple to the Rashba coupling [29] and thus the spin
of the particles will be affected and can be aligned with the exchange field. This is exactly
what is happening in our geometry in figure 6.1 where the quasiparticles are forced to change
their momentum direction in the heavy metals. Thus, in the case of Rashba coupling, a
lateral geometry is required without the need of either an out-of-plane exchange field or an
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inhomogenous exchange field to generate LRTs.

The problem with an out-of-plane exchange field is that it can create vortices in the super-
conductor, which makes it difficult to interpret measurements. It has experimentally been
proved feasible [32], but it is still desirable to find a setup without these vortices. We will
mostly focus on Rasha type spin-orbit coupling in the rest of this thesis. This is simply
because this is experimentally more feasible. The Rashba coupling occurs at interfaces due
to lack of inversion symmetry and can permeate through the material if it is sufficiently thin
[8]. This can be realized by having a thin heavy metal sandwiched between a ferromagnet
and a superconductor. We therefore suggest the materials in figure 6.1, where we have chosen
the heavy metal platinum (Pt) to be coupled to a strong ferromagnet such as cobalt. We also
suggest to use niobium as the superconducting material since it has a higher critical temper-
ature of Tc = 9 K [54] which is higher than most low temperature superconductors. We will
also derive our equations with Dresselhaus spin-orbit coupling for the sake of generality, but
it will receive much less attention than Rashba type.

6.1 Weak Proximity Approximation

Most systems are too difficult to be solved analytically, so before resorting to a numerical
analysis, we can draw several conclusions by taking use of the weak proximity approximation.
The assumption is that in any non-superconducting materials, the Cooper pair correlations
will be weak, and thus we make the approximation f � g in such materials. The normal-
ization conditions still has to be satisfied, ĝ2 = τ̂0, and thus we get g = σ0. The Green’s
function then becomes

ĝ =

[
σ0 f

−f̃ −σ0

]
. (6.1)

We will apply this 4 × 4 Green’s function matrix to the Usadel equation, and by looking
exclusively at the top-right 2 × 2 element, we will get an equation that is completely inde-
pendent of f̃ . Thus, we only need to solve for the four elements in f and to get f̃ we do
the tilde-conjugation, i.e. change sign of the energy and complex conjugate. The stationary
Usadel equation with intrinsic spin-orbit coupling is

iD∇̃ ·
(
ǧ∇̃ǧ

)
= [ετ̂3 +M · σ̂, ǧ]− . (6.2)

Where ∇̃(·) = ∇(·)− i
[
Â, (·)

]
, and Â = diag(A,−A∗) as covered in section 3.7. Since the

heavy metals exhibit intrinsic spin-orbit coupling, we first expand the left-hand side of the
Usadel equation
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∇̃ ·
(
ĝ∇̃ĝ

)
= ∇̃ ·

(
ĝ∇ĝ − iĝ

[
Â, ĝ

]
−

)

= ∇ · (ĝ∇ĝ)− i∇ ·
(
ĝ
[
Â, ĝ

]
−

)

− i
[
Â, ĝ∇ĝ − iĝ

[
Â, ĝ

]
−

]

−

= ∇ · (ĝ∇ĝ)− i∇ ·
(
ĝ
[
Â, ĝ

]
−

)

− i
[
Â, ĝ∇ĝ

]
−
−
[
Â, ĝ

[
Â, ĝ

]
−

]

−
. (6.3)

We then apply the weak proximity Green’s function matrix in (6.1) and insert Â = diag(A,−A∗).
To get an equation of motion for the anomalous Green’s functions f , we only need to worry
about the top-right 2× 2 spin-space element in the Usadel equation.

[
∇̃ ·
(
ĝ∇̃ĝ

)](1,2)

= ∇2f − i∇
(
Af + fA∗

)
− i
(
A∇f +∇fA∗

)
(6.4)

−A
(
Af + fA∗

)
−
(
Af + fA∗

)
A∗ (6.5)

= ∇2f − 2i
[
A,∇f

]∗
+
−
[
A,
[
A, f

]∗
+

]∗
+
. (6.6)

Here, we have defined the notation [A,B]∗± = AB±BA∗. The self-energy part of the Usadel
equation which exhibits an exchange field gives us the resulting linear Usadel equation,

∇2f − 2i
[
A,∇f

]∗
+
−
[
A,
[
A, f

]∗
+

]∗
+

+
2εi

D
f +

i

D
M ·

[
σ, f

]∗
− = 0. (6.7)

If we simply where to solve this equation with the KL boundary condition at the two ends
x = −G and x = G, see figure 6.1, we would simply get f = 0. This is because we haven’t
incorporated any singlet pair sources to our system. Our problem is fundamentally two
dimensional, and the Cooper pair correlations are coming from the z-direction and into the
heavy metals, so we have to incorporate the KL boundary condition into our Usadel equation
by looking at the z-directional component of the Laplace operator ∇2. By assuming that the
width of the heavy metals and the ferromagnetic film much smaller than any characteristic
length scales, we can average over the z-direction and use the KL boundary condition as
an effective source of singlet state pairs in the linear Usadel equation. The KL boundary
condition at the interface between one of the superconductors and its corresponding heavy
metal in figure 6.1 becomes

∂f

∂z
− i
[
Az, f

]∗
+
|S/F =

cosh(θ)

ζL
f − sinh(θ)

ζL
eiφiσ2. (6.8)

As we have previously seen, due to the small width of the heavy metal, Az will be assumed to
be zero. We can also neglect the first term on the right-hand side since we are assuming that
||f || � 1. We will now use this boundary condition by first expanding the Laplace operator

∇2f =
∂2f

∂x2
+

∂2f

∂z2
, average over the z-direction and use the KL boundary conditions.

1

W + d

∫ W

−d

∂2f

∂z2
dz =

1

W + d

(
∂f

∂z
|z=W −

f

∂z
|z=−d

)
=

sinh(θ)

ζ(W + d)2
eiφiσy. (6.9)
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Here, we used that the length normal to the interface is simply W + d. By now averaging
over all components in the linear Usadel equation, we get

d2

dx2
f − 2id

W + d

[
Ax,

d

dx
f

]∗

+

− d

W + d

[
A,
[
A, f

]∗
+

]∗
+

+
sinh(θ)

ζ(W + d)2
eiφiσ2

+
2εi

D
f +

i

D
M ·

[
σ, f

]∗
− = 0. (6.10)

In the middle region where only the ferromagnetic film is, there will be no spin-orbit coupling
and so we can setA = 0 in this region. There will also be no sources of singlet states from the
z-direction in this ferromagnetic-only region. In the left and right region we have to use two
different macroscopic phases such that the total difference in phase is ∆φ = φR − φL, where
φR and φL are the macroscopic phases in the right and left superconductor, respectively.
In the two superconducting nodes, the effective magnetic field will be reduced due to the
heavy metals which exhibit no exchange fields. Thus the effective exchange field will be
M → W

W+d
M in these regions.

We have effectively three sets of differential equations corresponding to the three regions,
and thus need a sufficient amount of boundary conditions. We require that the condensate
functions f will be continuous and that the current will conserved between these regions.
The latter is simply the KL boundary condition, and will in this case yield

∂xf(−L/2+) = ∂xf(−L/2−)− d

W + d
i
[
Ax, f(−L/2−)

]∗
+

(6.11)

∂xf(L/2−) = ∂xf(L/2+)− d

W + d
i
[
Ax, f(L/2+)

]∗
+
. (6.12)

We also require that the x-directed supercurrent will be zero at the ends x = G and x = −G
which with the KL boundary condition is equivalent to ∂f

∂x
− d

W+d
i
[
Ax, f

]∗
+

= 0. The width of
the heavy metals will be thin in the z-direction, and thus, we model the spin-orbit coupling
to be of the form

A = (βσ1 − ασ2, ασ1 − βσ2, 0) . (6.13)

Before moving on, we want to emphasize exactly why we choose a lateral structure. Note
that the second term in equation (6.10) couples the spin-orbit coupling A to the momentum
direction of the quasiparticle. If we had chosen a one-directional setup, this term would be
zero since the momentum of the quasiparticles would be perpendicular to A. On the other
hand, the third term will become non-zero, but first of all, it is second order in A and can
be neglected for weak spin-orbit coupling. Secondly, as noted in reference [8], this term does
not fulfill the requirement made by Bergeret and Tokatly for generation of LRTs in reference
[29]. This requirement states that [A, [A,M · σ]] can not be proportional to M · σ. But if
there is only an in-plane magnetization, Mz = 0, it will always be proportional to M · σ,
and no LRTs can be generated from this third term in equation (6.10). Therefore, only the
second term in equation (6.10) gives rise to LRTs.

Moving on, we will in this chapter as well use the d-vector to represent our anomalous Green’s
functions
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f = (fs + d · σ) iσ2 =

[
idy − dx dz + fs
dz − fs idy + dx

]
. (6.14)

This representation separates the short-ranged triplets from the long-ranged triplets. The
long-ranged component will be the component that is perpendicular to the exchange field
dLRC ∝ |d ×M | while the short-ranged component will be parallel to the exchange field
dSRC ∝ d·M . The set of Pauli matrices with the addition of the identity matrices form a basis
for the vector space of 2×2 matrices. Therefore, by using the identity σaσb = δabσ0 + iεabcσc,
where δab is the Kronecker delta and εabc is the Levi-Civita symbol, and we get four equations
for each of the four matrix elements:

∂2fs
∂x2

+
sinh(θ)

ζ(W + d)2
eiφ +

2εi

D
fs +

2i

D
(Mxdx +Mydy) = 0, (6.15)

∂2dx
∂x2

+
d

W + d

(
−4α

∂dz
∂x
− 4(α2 + β2)dx − 8αβdy

)
+

2εi

D
dx +

2iMx

D
fs = 0, (6.16)

∂2dy
∂x2

+
d

W + d

(
−4β

∂dz
∂x
− 4(α2 + β2)dy − 8αβdx

)
+

2εi

D
dy +

2iMy

D
fs = 0, (6.17)

∂2dz
∂x2

+
d

W + d

(
4α
∂dx
∂x

+ 4β
∂dy
∂x
− 8(α2 + β2)dz

)
+

2εi

D
dz = 0. (6.18)

We can immediately draw several conclusions before attempting to solve the differential
equations. First of all, we see that the transformation dx ↔ dy, α↔ β,Mx ↔My leaves the
equations invariant. If we set β = My = 0, we decouple the third equation from the rest of
the equations, and thus there is no way for the singlet state fs to be transformed into a triplet
dy state. And thus the solution for dy = 0. In this scenario, if we get a long-ranged triplet
state, it should be proportional to dz, i.e. dLRC ∝ |d ×M | = Mxdz. Due to the invariant
transformation mentioned above, setting α = Mx = 0 yields in the same way dx = 0 and the
long-ranged component, if it exists, will still be dz.

If we now set β = Mx = 0 we are able to decouple the second and fourth differential equations
from the other two. And thus dx = dz = 0. The Rashba coupling has in this case a very
small impact on the system, and there will be no way to generate long-ranged triplet pair
correlations since dLRC = |d×M | = 0.

Note that in the case of Rashba coupling with the exchange field pointing along the x-axis,
both the long-ranged component dz and the short-ranged component dx get an imaginary
contribution to the energy,

εdz = ε− i 4dD

W + d
α2, (6.19)

εdx = ε− i 2dD

W + d
α2. (6.20)

Note that the imaginary contribution to the long-ranged component dz is twice that of
the short-ranged component dx. Such imaginary energy contributions are associated with
inelastic scattering which breaks the pair coherence apart. We can immediately see that a
too large Rashba coefficient will break all triplets apart in the two superconducting nodes.
Note that in the ferromagnetic-only region, there will still be induced a FFLO phase which
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gives short-ranged triplets even with strong Rashba coupling in the heavy metals. But with a
large Rashba type spin-orbit coupling, it is not possible to generate long-ranged triplet pairs
in the heavy metals, and thus there will be no such LRTs traveling through the ferromagnetic
bridge. On the other hand, with no Rashba coupling at all (and no Dresselhaus coupling),
there is no way to generate dz-components, and we get no long-ranged components. Therefore,
there must exist a certain Rashba coefficient where the long-ranged components are largest
when the exchange field is directed along the x-axis. This also means that if these long-ranged
components can generate a long-ranged supercurrent, then there will be a certain Rashba
coefficient where the supercurrent has the largest magnitude. Thus, an in-plane rotation of
the exchange field from the x-direction to the y-direction will severely decrease the magnitude
of the supercurrent as we soon will see is true analytically and numerically.

6.2 Pure Rashba Coupling and In-Plane Magnetization

In this section, we will show that we in fact do get a long-ranged supercurrent due to the
long-ranged component generated in the heavy metals. Unfortunately, these equations have
proved too difficult to solve even in the weak proximity limit, so we will only be looking at a
pure Rashba spin-orbit coupling and set β = 0. The exchange field will be set along the x-axis,
and soMy = 0. We will let G and L be semi-infinite and much bigger than any characteristic
lengths such as the coherence length. This means the superconducting nodes will be so far
apart that the overlap between the condensate functions coming from the two regions will be
small. Therefore, the condensate functions in the ferromagnetic region will be approximated
to be a superposition of the condensate functions in two systems where only one effective
superconducting node with spin-orbit coupling is present. We thus consider a system where
we only have only one effective superconducting node with spin-orbit coupling in the region
x < 0, and the region x > 0 will be a ferromagnetic-only region. The condensate function
will converge to zero deep in the ferromagnet x � 0, and the KL boundary condition at
x = 0 is enough to solve the system. We assume the Rashba coupling is weak, α2 � |M |/D,
and all second order α in the linear Usadel equation can be neglected. The Usadel equation
then gives the general solution

fs = − 2αk

K2
p − k2

C4e
kx + C5e

Kpx + C6e
Kmx +

k2

K2
p

(
2k2 −K2

p

)heiφ1 (6.21)

dx = C5e
Kpx − C6e

Kmx − K2
p − k2

K2
p

(
2k2 −K2

p

)heiφ1 (6.22)

dz = C4e
kx − 2αKp

K2
p − k2

C5e
Kpx − 2αKm

K2
p − k2

C6e
Kmx (6.23)

when x < 0. Here, k =
√
−2iε/D,Kp(m) =

√
−2i(ε+ (−)Mx)/D and h = sinh(θ(ε))/ζ(W + d)2.

θ(ε) = atanh(|∆0|/ε) and in the region where we only have the ferromagnetic film, the general
solution is

fs = −C1e
−Kmx + C2e

−Kpx (6.24)
dx = C1e

−Kmx + C2e
−Kpx (6.25)

dz = C3e
−kx. (6.26)
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We thus see that the only long-ranged component is dz as expected. Therefore, we are mostly
interested in finding C3. The boundary conditions at x = 0 gives us

C3 = −3K4
p − kK3

p + (kKm − 6k2)K2
p + 2k3Kp + k4

(
4kK6

p − 12k3K4
p + 8k5K2

p

) d

W + d
αheiφ1 . (6.27)

We immediately see that C3 is proportional to the Rashba coefficient, and thus without
spin-orbit coupling we would get no long-ranged component. By setting |Mx| � ε, we get
|K(m/p)| � |k| and C3 is simplified to

C3 = − 3dαheiφ1

4(W + d)kK2
p

. (6.28)

We will now assume that the condensate function in the system in figure 6.1 is given as a
superposition between two superconducting nodes that have semi-infinite lengths L and G.
By placing a second superconducting node at x = L/2 and setting the superconducting node
we considered above to x = −L/2, we let f be a superposition of two systems where only
one of these superconducting nodes are present. This gives us the solution

fs = −C−1 e−Km(x+L/2) − C+
1 e

Km(x−L/2) + C−2 e
−Kp(x+L/2) + C+

2 e
Kp(x−L/2),

dx = C−1 e
−Km−(x+L/2) + C+

1 e
Km(x−L/2) + C−2 e

−Kp(x+L/2) + C+
2 e

Km(x−L/2),

dz = C−3 e
−k(x+L/2) + C+

3 e
k(x−L/2). (6.29)

Here, C−n and C+
n are the coefficient for the left and right superconducting node, respectively.

Thus, C−3 will be the coefficient in equation (6.27), and C+
3 can be found by changing the sign

of k, Kp and Km since the condensate functions are propagating in the opposite direction.
We also have to use the macroscopic phase for the right superconductor φR in C+

3 . Entering
this into the formula for the supercurrent in (4.27), we get

IQ = 4N0De

∫ ∞

0

dε tanh(βε/2)<
(

2Km

(
C+

1 C̃
−
2 − C−1 C̃+

2

)
e−KmL (6.30)

+ 2Kp

(
C+

2 C̃
−
1 − C−2 C̃+

1

)
e−KpL + k

(
C+

3 C̃
−
3 − C−3 C̃+

3

)
e−kL

)
. (6.31)

Here, we have used the equilibrium distribution function ĥ = tanh(βε/2)τ̂0. The long-ranged
supercurrent will come from the last term, and so entering the simplified C3-coefficients, the
long-ranged supercurrent becomes

IQ = 8N0De sin(∆φ)

∫ ∞

0

dε tanh(βε/2)

(
3dα

4(W + d)

)2

×<
(
− i hh̃

kK2
mK

2
p

e−kL
)
, (6.32)

where ∆φ = φR−φL. And thus, this long-ranged triplet component also gives a long-ranged
supercurrent that is proportional to α2 for small α. We have here used the simplified solution
for C3 in (6.28) which assumes that the main contribution from the energy integral comes
from the energies close to the gap energy which we have shown to be true numerically. We
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could have used the whole solution for C3 in equation (6.27), and we get a much longer
and accurate expression for IQ. But the point is nevertheless that we get a long-ranged
supercurrent when α 6= 0.

As argued before, the system is invariant under the transformation dx ↔ dy, α ↔ β,Mx ↔
My and hence we get the same expression for the long-ranged supercurrent with β instead
of α if we set α = Mx = 0 and keep β and My non-zero. Thus, we require either Rashba or
Dresselhaus spin-orbit coupling to get a long-ranged supercurrent. As we previously argued,
there will be no long-ranged triplet states if β = Mx = 0. Thus rotating the exchange field
from M = Mex to M = Mey with Rashba coupling, we should see a significant drop in the
supercurrent.

6.3 Numerical Solutions

The weak proximity approximation is only valid if ||f || � 1 which might not always be the
case. We will instead of solving the differential equations in the last chapter numerically, we
will solve the non-linear Usadel equation numerically by using the Riccati parameterization
with spin-orbit coupling which we presented in equation (3.31). We will still be making some
approximations when solving the equations. The inverse-proximity effect will be neglected
meaning that the gap energy will assumed to be unchanged close to the heavy metals and
equal to the bulk gap energy, |∆| = |∆0|. This is due to the thin width of the heavy
metal and ferromagnetic film, and this approximation can be argued to be close to true by
the numerical calculations in reference [8]. We will also make the problem effectively one-
dimensional by averaging over the z-direction in the two superconducting nodes as we did in
the weak proximity limit. The problem could be solved in two dimensions, but that would
deem much more time and computational demanding. Even if it would give more accurate
predictions, the conclusions we draw by making the problem one dimensional will hold true.

We continue by using the KL boundary condition as an effective source of singlet states in the
heavy metal and ferromagnetic region. The KL boundary condition at the superconductor-
heavy metal interface is

∂

∂z
γ =

1

Lζ

(
1− γγ̃

S

)
NS

(
γ − γ

S

)
+ iAzγ + iγA∗z (6.33)

where ζ is the ratio between the barrier resistance and the bulk resistance of the heavy metal,
and γ

S
and NS are the gamma matrix and normalization matrix in the superconductor,

respectively. And as we previously have argued, Az = 0. By now averaging over the z-
direction, we can use the above boundary condition as an effective source of singlet state
pairs. Therefore, we expand the Laplace operator ∇2 to include both the x and z-component,
average over the z-direction, and thus we get the effective Usadel equation

D

(
∂2

∂x2
γ +

1

(W + d)ζ

(
1− γγ̃

S

)
NS

(
γ − γ

S

)
+ 2

(
∂

∂x
γ

)
Ñ γ̃

(
∂

∂x
γ

))

= −2iεγ − iM ·
(
σγ − γσ∗

)

+D
d

W + d

(
A2γ − γ (A∗)2 + 2

(
Aγ + γA∗

)
Ñ
(
A∗ + γ̃Aγ

))

+2iD
d

W + d

((
∂

∂x
γ

)
Ñ
(
A∗x + γ̃Axγ

)
+
(
Ax + γA∗xγ̃

)
N

(
∂

∂x
γ

))
. (6.34)
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The corresponding equation for γ̃ can be found by tilde conjugating the equation above.
Unlike the previous project where we had a precessing exchange field, our current system
is in equilibrium. Thus, we do not need to solve the distribution function numerically
since we already know that the only non-zero distribution function is h1 = tanh(βε/2) =

tanh
(

π
2eγ

ε/|∆0|
T/Tc

)
.

6.4 Parameters

We consider the system depicted in figure 6.1. Niobium has a gap energy of around |∆0| ≈ 3
meV [71], and we will normalize all energies to this quantity. The correlation length is set to
ξS =

√
D/|∆0| = 25 nm. We will assume that the diffusion constant is equal in all materials.

We will have the lengths W = d = 2 nm and if otherwise not stated, L = 25 nm, and the
width of the heavy metal region is 5 nm, which gives the ratio G/L = 0.7. We also get the
ratio ξS/L = 1. The interface transparency is set to ζ = 5, and the exchange field is placed
in the xy-plane, M = M(cos(θ), sin(θ), 0). Thus, if the in-plane angle of the exchange field
is θ = 0, the exchange field points in the x-direction. Only the ferromagnet has an exchange
field, and thus if the exchange field is MF = 50|∆0| and W = d, the effective exchange field
will be M = 25|∆0| in the two superconducting nodes and M = 50|∆0| in the ferromagnetic-
only region. The macroscopic phase difference has been set to ∆φ = φR−φL = π/2, while the
temperature is T = 0.5Tc, and in addition, we will now only assume a pure Rashba coupling
which we will normalize to the length of the ferromagnetic bridge L and thus αL will be a
dimensionless quantity. Note that, as we stated above, our results will be the same for pure
Dresselhaus coupling by making an in-plane rotation of the exchange field by π/2. With only
Rashba coupling, the spin-orbit coupling term is

A = (−ασ2, ασ1, 0). (6.35)

The supercurrent is plotted 6.2a and 6.2b as a function of the in-plane exchange field angle θ
and Rashba spin-orbit coupling, respectively. We see in the latter plot that the supercurrent
is greatly enhanced by a non-zero Rashba coupling when the exchange field lies along the
x-axis, θ = 0. This is namely due to the generation of long-ranged triplets that is able
to carry the current with less decay than the short-ranged triplets found without any spin-
orbit coupling. We also confirm our theory that a too large Rashba coupling suppresses the
long-ranged components due to an imaginary contribution to the energy of the long-ranged
triplets which are associated with pair-breaking processes. Thus, an in-plane rotation from
θ = 0 to θ = π/2 has a much smaller impact on the current with large spin-orbit coupling.
With no spin-orbit coupling, the in-plane rotation makes no impact as expected. With our
parameters, the optimal Rashba constant that creates the largest difference in current when
rotating the exchange field from the x-axis to the y-axis is with SI units αL/h̄2 = 5. This
corresponds to the experimental value α/m ≈ 1.310−11eV m if one assume that the effective
mass of the quasiparticles is equal to rest mass of an electron. This is well within the interval
of experimentally measured Rashba coefficients of many materials [72], and thus a suitable
heavy metal with the right Rashba coefficient should be possible to find.

One other important finding is that an in-plane rotation of the exchange field with a non-zero
Rashba constant can create 0−π transitions close to θ = π/2. Thus, it is possible to go from
high current at θ = 0 to a low/no current close to θ = π/2. This is something that can easily
been done in situ and thus such a setup can act as a simple transistor where the in-plane
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(a) (b)

Figure 6.2: The supercurrent is plotted as a function of exchange field θ and Rashba coupling
αL. When θ = 0 the exchange field only has a pure x-direction, while θ = π/2 points the
exchange field in the y-direction. Here, I0 is a constant that is not of importance in this
discussion. Note that the length L is fixed while the Rashba constant α is varying in the
plots.

Figure 6.3: The supercurrent is plotted as a function of the length of the ferromagnetic-only
region. The right figure shows a log plot of the absolute values of the current in the left
figure. The sharp dips in the log plot shows where the current changes sign and are thus
0− π transitions.

70



rotation of the exchange field decides whether the system is in a 1 state (high current) or a
0 state (low current).

Lastly, we show in figure 6.3 that the supercurrent is in fact long-ranged when θ = 0. We
see that the short-ranged current at θ = π/2 undergoes several 0 − π transitions while the
long-ranged currents undergo no such transitions. This is due to the FFLO phase where
the short-ranged triplets and singlet states oscillate over space. Such oscillations allow for
π-states to have a lower free energy than the 0-states. The long-ranged current in long
junctions is dominated by long-ranged triplets which is not in a FFLO phase, and can thus
not create 0− π transitions.

Before finishing this section, we would like to make some comments about the approxima-
tion of making the problem effectively one-dimensional. If we had a typical, one-dimensional
SNFNS Josephson junction with spin-orbit coupling in the N layers, we would only be able
to get long-ranged component with an out-of plane magnetization. To generate long-ranged
components with an in-plane magnetization, we need to make the momenta of the quasi-
particles couple with the SU(2) gauge-invariant vector potential A. With Rashba coupling
in a thin heavy metal layer, this requires the quasiparticle to change momentum from the
z-direction to the x-direction which is exactly what is happening in the region where we
averaged over the heavy metal and ferromagnetic layer. But in reality, it is uncertain exactly
how much momentum change the quasiparticles undergo in the heavy metal regions since
they lie on top of the ferromagnetic layer, see figure 6.1. In reality, one would therefore most
likely see weaker long-ranged components and thus a weaker long-ranged supercurrent, and
one would need to solve the problem in two dimensions to get more accurate results. The
optimal setup would be to have two heavy metals with Rashba coupling on each side of the
ferromagnetic bride where the quasiparticles are allowed to propagate along the x-axis into
the other superconducting node, but this is perhaps experimentally an unrealistic setup.

We also want to point out that if one had modeled the heavy metal as a two-dimensional
interface with spin-orbit coupling by using the very recently discovered boundary conditions
in reference [80], one would see no long-ranged components at all. This is because the
quasiparticles need to be allowed to change their momenta so that they have a non-zero
momenta in the x-direction and can thus couple with the x-component of the spin-orbit
coupling vector A.
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7 | Conclusion

We have in this thesis been looking at two different research projects where we studied the
symbiosis between superconductive and ferromagnetic ordering. The first project looked at
heterostructures with a ferromagnet that exhibits a precessing exchange field. With and
without being in proximity to a superconductor, such a system is driven out of equilibrium
which meant we had to also solve the distribution function which could make all eight dis-
tribution functions non-zero. We only scratched the surface of such a complex systems, and
a lot more can be done to unravel the physics in these systems. For a starter, we did not
incorporate the fully gauge-invariant phase difference into our numerical calculations, and we
showed that a non-zero phase difference in a SFS Josephson junction with a precessing ex-
change field will yield a charge accumulation which gives rise to a potential difference across
the junction. By using the Josephson’s relation, we concluded that this potential difference
will make the phase difference time-dependent. In the weak proximity limit, we showed that
this time-varying phase does not complicate the calculations of the condensate functions, but
in the full proximity limit we will turn into problems due to the time-convolution operator
(ring product). But as we mentioned, there may be ways to overcome this problem. In
addition, we did not self-consistently solve the gap energy, Green’s function and distribution
function in all the materials we considered in all systems. We only did so in a FS bilayer
to show how the gap energy is affected by the precession of the exchange field. We did not
solve everything self-consistently due to time limitations and lack of enough computational
resources. Solving the problems numerically in a compiled language is more suitable since it
can be several order of magnitude faster, and such implementations has already been created
in Fortran [22].
In addition, it would also be interesting to see how superconductive ordering affects the
Gilbert damping of the exchange field. In reference [76] it was shown experimentally that a
SFS Josephson junction with a precessing exchange field has a much higher Gilbert damping
than a FS bilayer, which the researchers argued was due to the equal-spin triplets that is
allowed to flow as a supercurrent through a SFS junction. In our model, the Gilbert damping
can be found by fixing the angular resonance precession Ω and find the tilt angle θ by self-
consistently calculating the magnetization of the system. We made some calculations to test
this out and our findings seem to suggest that this is true in our model as well, but it has
not been pursued in this thesis due to time limitations.
In the second project we showed the possibility of a long-ranged supercurrent flowing through
a lateral SFS Josephson junction with intrinsic spin-orbit coupling. With Rashba type spin-
orbit coupling, the current only becomes long-ranged if the exchange field points in the
direction of the ferromagnetic bridge, but if we make an in-plane rotation of 90◦ of the
exchange field, the current becomes short-ranged. It can also undergo 0 − π transitions by
an in-plane rotation of the exchange field. This means the supercurrent can in long junctions
effectively be turned on and off by rotating the exchange field which can easily be done
in situ. This opens up the possibility of using the setup as a transistor where an in-plane
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rotation of 90◦ gives the difference between high current (1 bit) or low/no current (0 bit).

We mainly focused on Rashba type spin-orbit interaction, but we also showed that Dressel-
haus type is equivalent by making a 90◦ in-plane rotation of the exchange field. Nevertheless,
it would be interesting to see what would happen in a system where we would have both types
present. One could also try to solve the problem in two dimensions and self-consistently find
the gap energy close to the heavy metals. This would most likely not reveal any new details,
but would nevertheless give quantitatively more accurate results. Solving the equations in
two dimensions could require more computational resources, but an implementation using
the finite element method has been created and proved to be successfully in terms of accuracy
and time consumption [69].
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A | Supercurrent in a SNS Josephson Junc-
tion

We will in this appendix show that in a superconductor/normal-metal/superconductor Joseph-
son junction the supercurrent is proportional to IQ = Ic sin(∆φ) where Ic is the maximal
supercurrent possible. We will also show that the supercurrent decays exponentially as
ξn =

√
D/2πkBT in long junctions where D is the diffusion constant, kB is the Boltzmann

constant, and T is the temperature. We will in this section set h̄ = 1.

We will assume that the Cooper pair correlations in the normal state metal are weak, and we
can therefore take use of the linear Usadel equation. The superconductors on either side will
be conventional so only single state pairs leak through the interface and into the normal state
metal. Since there are no exchange fields, these single state will not be able to transform
into any triple states. The linear Usadel equation then simple becomes

∂2fs
∂x2

+
2εi

D
fs = 0 (A.1)

which gives the solution fs(x) = Aekx +Be−kx where k =
√
−2εi/D. The two interfaces are

placed at x = −L/2 and x = L/2 so that the length of the normal state metal is L. The
weak proximity Kupriyanov-Lukichev boundary conditions in equation (3.21) on each side
become

ζL
∂fs
∂x

(x = −L/2) = sinh(θ)eiφ (A.2)

ζL
∂fs
∂x

(x = L/2) = − sinh(θ)e−iφ, (A.3)

where ζ is the ratio between the barrier and bulk resistance. Note that the phase difference
in the two superconductors are ∆φ = 2φ. We also have θ = atanh(|∆0|/ε). We have taken
use of the BCS bulk Green’s function in equation (3.29). The solution for the coefficients A
and B now become

A = −sinh(θ) cosh(kL/2− iφ)

ζLk sinh(kL)
(A.4)

B = −sinh(θ) cosh(kL/2 + iφ)

ζLk sinh(kL)
. (A.5)

Note that Ã = −B and B̃ = −A, where the tilde conjugation is given as changing sign of
ε and complex conjugating. Now applying the the solution for fs(x) into the formula for
charge-current, we get
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IQ = N0DeA

∫ ∞

0

dε tanh

(
βε

2

)
<
[(

2fs
∂f̃s
∂x
− 2ft

∂f̃t
∂x
− f↑

∂f̃↑
∂x
− f↓

∂f̃↓
∂x

)
− ˜[...]

]

= N0DeA

∫ ∞

0

dε tanh

(
βε

2

)
<
(
−k
(
AB̃ −BÃ

))

= N0DeA

∫ ∞

0

dε tanh

(
βε

2

)
<
(
k
(
A2 −B2

))

= N0DeA

∫ ∞

0

dε tanh

(
βε

2

)
<
(

sinh(θ)2 (cosh(kL/2− iφ)2 − cosh(kL/2 + iφ)2)

ζ2L2k sinh(kL)2

)

= N0DeA sin(∆φ)

∫ ∞

0

dε tanh

(
βε

2

)
<
( −i∆2

ζ2L2 (ε2 −∆2) k sinh(kL)

)
. (A.6)

Here, β = 1/kBT , and in the last line we used the identity cosh(a − ib)2 − cosh(a + ib)2 =
−i sinh(2a) sin(2b), sinh(θ)2 = ∆2/(ε2 − ∆2) and that ∆φ = 2φ. We have therefore shown
that the supercurrent is proportional to sin(∆φ). Using <(−iz) = =(z) and noting that the
imaginary part of 1/k sinh(kL) is odd in ε which means the whole integrand is even in ε, we
can extend the lower limit of the integration to minus infinity. We thus get

IQ = I0=
(∫ ∞

−∞
dε

tanh(βε/2)

(ε2 −∆2)k sinh(kL)

)
, (A.7)

where I0 = N0DeA∆2 sin(∆φ)
2ζ2L2 . We will next add a small imaginary part to the energy ε →

ε + iδ, δ > 0 and solve the integral by the use of the Cauchy’s residue theorem. The
poles in the denominator in equation (A.7) are all in the lower half-plane, therefore, by
choosing our contour to be the upper half-plane, the only poles we need to consider would be
tanh(i(n+1/2)π)→∞ when ε = i(2n+1)πkBT = iωn where ωn is the Matsubara frequency
and n is a positive integer or zero. By first making the substitution u = βε/2 and then using
Cauchy’s residue theorem, we get

IQ = I0=
(

4πikBT
∑

n

1

(∆2 + ω2
n)k(iωn) sinh(k(iωn)L)

)

= I04πkBT
∑

n

1

(∆2 + ω2
n)k(iωn) sinh(k(iωn)L)

, (A.8)

where we used that the sum is a real number in the last line. Because of the sinh-term in the
denominator, the first term in the summation makes the biggest impact, and only considering
this term, we get

IQ = I04πkBT
1

(∆2 + (πkBT )2)
√

2πkBT/D sinh(
√

2πkBT/DL)
. (A.9)

Since 1/ sinh(
√

2πkBT/DL)→ 2e−
√

2πkBT/DL when L is large, we clearly see that the coher-
ence length of a SNS-junction is ξN =

√
D/2πkBT .
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B | Ring Product

We will in this appendix introduce the ring operator ◦. This operator has two different
definitions depending on what representations you have for the two functions A and B. If
the functions are known in absolute times, A(t1, t2) and B(t1, t2), the definition is

(A ◦B)(t1, t2) =

∫
dt3A(t1, t3)B(t3, t2), (B.1)

which after Fourier transforming to energy and momentum space becomes

(A ◦B)(T, ε) =

∫
dteiεt

∫
dt3A(t1, t3)B(t3, t2), (B.2)

where t = t1−t2. If the functions are known in its mixed coordinate form A(T, ε) and B(T, ε),
then it can be shown [6] that

(A ◦B)(T, ε) = exp
(
−i
(
∂AT ∂

B
ε − ∂Aε ∂BT

))
A(T, ε)B(T, ε). (B.3)

Here, the notation ∂AT means the derivative of A with respect to T .
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C | Convolution Identity

We will in this appendix prove the following identity: If f(T, ε) = e−iω1Tf(ε) and g(T, ε) =
e−iω2Tg(ε), then

(f ◦ g)(T, ε) = e−i(ω1+ω2)Tf(ε+ ω2/2)g(ε− ω1/2). (C.1)

We are using mixed coordinates, so t = t1 − t2 and T = (t1 + t2)/2. The definition of the
convolution operator ◦ is

(f ◦ g)(t1, t2) =

∫
dt3f(t1, t3)g(t3, t2), (C.2)

and thus, with mixed coordinates we get

(f ◦ g)(T, t) =

∫
dt3f

(
t1 + t3

2
, t1 − t3

)
g

(
t3 + t2

2
, t3 − t2

)
. (C.3)

Expanding f and g yields

f

(
t1 + t3

2
, t1 − t3

)
=

∫
f

(
ε,
t1 + t3

2

)
e−iε(t1−t3)dε (C.4)

=

∫
f(ε)e−it1(ε+ω1/2)+it3(ε−ω1/2)dε, (C.5)

g

(
t3 + t2

2
, t3 − t2

)
=

∫
g(ε)e−it3(ε+ω2/2)+it2(ε−ω2/2)dε. (C.6)

Entering these f and g into equation (C.3) thus becomes

(f ◦ g)(T, t) =

∫
dt3dεdε

′f(ε)e−it1(ε+ω1/2)+it3(ε−ω1/2)g(ε′)e−it3(ε′+ω2/2)+it2(ε′−ω2/2) (C.7)

=

∫
dt3dεdε

′f(ε)g(ε′)eit3(ε−ε
′−ω1+ω2

2 )+it2(ε′−ω2/2)−it1(ε+ω1/2). (C.8)

Integration over t3 returns a Dirac’s delta δ(ε− ε′− (ω1 +ω2)/2) which after integration over
ε′ returns

(f ◦ g)(T, t) =

∫
dεf(ε)g(ε− (ω1 + ω2)/2)eit2(ε−ω1/2−ω2)−it1(ε+ω1/2). (C.9)
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Next, we Fourier transform the equation from relative time t = t1 − t2 to energy ε. We also
substitute t1 = T + t/2 and t2 = T − t/2.

(f ◦ g)(T, ε) =

∫
dt(f ◦ g)(T, t)eiεt (C.10)

=

∫
dtdε′′f(ε′′)g(ε′′ − (ω1 + ω2)/2) (C.11)

× ei(T−t/2)(ε′′−ω1/2−ω2)−i(T+t/2)(ε′′+ω1/2)eiεt (C.12)

=

∫
dtdε′′f(ε′′)g(ε′′ − (ω1 + ω2)/2) (C.13)

× e−i(ω1+ω2)T e−it(ε
′′−ε−ω2/2) (C.14)

= e−i(ω1+ω2)T

∫
dε′′f(ε′′)g(ε′′ − (ω1 + ω2)/2) (C.15)

× δ (ε′′ − ε− ω2/2) (C.16)

= e−i(ω1+ω2)Tf(ε+ ω2/2)g(ε− ω1/2). (C.17)
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D | Analytical Solutions to Condensate
Functions and Distribution Functions

D.1 FS Bilayer with a Precessing Exchange Field

In this section we will give the solution of the condensate functions in the stationary frame
in a ferromagnet with a precessing magnetic field. This ferromagnet is placed in proximity
to a superconductor to make a FS bilayer. The vacuum interface is placed at x = 0 and
the superconductor interface is placed at x = L which makes the length of the ferromagnet
equal to L. The solutions for the anomalous Green’s functions when the gap energy in the
superconductor is real are

f ′s(x) = −M
′

M ′
z

Asm cosh(kmx) +
M ′

M ′Asp cosh(kpx) (D.1)

d′x(x) = −M
′

Mx

Al cosh(kx) +
Mx

M ′
z

Asm cosh(kmx) +
Mx

M ′
z

Asp cosh(kpx) (D.2)

d′y(x) = 0, (D.3)
d′z(x) = Al cosh(kx) + Asm cosh(kmx) + Asp cosh(kpx), (D.4)

where k =
√
−2iε/D, km(p) =

√
−2i (ε− (+)M ′) /D, M ′ =

√
M2

x + (Mz + Ω/2)2 is the
effective exchange field amplitude, and M ′

z = Mz + Ω/2 is the effective exchange field in the
z-direction. Note that the effective exchange field in the x-direction is the same in both the
laboratory and stationary frame. The coefficients are

Al =
M2

xSM
γLM ′2k sinh(kL)

(D.5)

Asp =
−M ′

z (M ′SP −M ′
zSM)

2γLM ′2kp sinh(kpL)
(D.6)

Asm =
M ′

z (M ′
zSM +M ′SP )

2γLM ′2km sinh(kmL)
, (D.7)

where SP (m) = sp+(−)sm
2

, and sp(m) = sinh(θ(ε + (−)Ω/2)) and θ(ε) = atanh(|∆0|/ε). Note
that in equilibrium, when Ω = 0 or Mx = 0, then SM = 0 and there will be no long-ranged
components.
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D.2 SFS Josephson Junction with a Precessing Exchange
Field

The anomalous Green’s functions in the stationary frame in the ferromagnetic layer in a SFS
Josephson junction are

f ′s(x) = −M
′

M ′
z

(
Aspe

kpx +Bspe
−kpx

)
+
M ′

M ′
z

(
Asme

kmx +Bsme
−kmx

)
(D.8)

d′x(x) = −M
′
z

Mx

(
Ale

kx +Ble
−kx)+

Mx

M ′
z

(
Aspe

kpx +Bspe
−kpx

)
+
Mx

M ′
z

(
Asme

kmx +Bsme
−kmx

)

(D.9)
d′y(x) = 0 (D.10)

d′z(x) = Ale
kx +Ble

−kx + Aspe
kpx +Bspe

−kpx + Asme
kmx +Bsme

−kmx (D.11)

where

Al =
M2

xSM
(
e−kL/2 + ei∆φ

)
e−i∆φ/2

2γLM ′2k sinh(kL/2)
(D.12)

Bl =
M2

xSM
(
ekL/2 + ei∆φ

)
e−i∆φ/2

2γLM ′2k sinh(kL/2)
(D.13)

Asp =
(M ′2

z SM −M ′M ′
zSP )

(
e−kpL/2 + ei∆φ

)
e−i∆φ/2

4γLM ′2kp sinh(kpL/2)
(D.14)

Bsp =
(M ′2

z SM −M ′M ′
zSP )

(
ekpL/2 + ei∆φ

)
e−i∆φ/2

4γLM ′2kp sinh(kpL/2)
(D.15)

Asm =
(M ′2

z SM +M ′M ′
zSP )

(
e−kmL/2 + ei∆φ

)
e−i∆φ/2

4γLM ′2km sinh(kmL/2)
(D.16)

Bsm =
(M ′2

z SM +M ′M ′
zSP )

(
ekmL/2 + ei∆φ

)
e−i∆φ/2

4γLM ′2km sinh(kmL/2)
(D.17)

where SP (M) = sinh(θ(ε+Ω/2)+(−) sinh(θ(ε−Ω/2))
2

, andM ′
z = Mz+Ω/2 andM ′ =

√
M2

x + (Mz + Ω/2)2

is the effective exchange field in the z-direction and magnitude, respectively. ∆φ = φ2 − φ1

is the macroscopic phase difference. The two interfaces are placed at x = −L/2 and x = L/2
which makes the length of the ferromagnet equal to L. We see that in the equilibrium case,
when Ω = 0 or Mx = 0, the long range components are zero, i.e. Al = Bl = 0.
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D.3 Distribution Functions in a Precessing Exchange Field

The distribution function in the stationary frame in a ferromagnet with a processing magnetic
field without any superconductive ordering are given by the differential equations

∇2h′1 = 0 (D.18)
D∇2h′6 = −2 (Mz + Ω/2)h′7 (D.19)
D∇2h′7 = −2Mxh

′
8 + 2 (Mz + Ω/2)h′6 (D.20)

D∇2h′8 = 2Mxh
′
7 (D.21)

and the boundary conditions at x = +(−)L/2 become

γL∇h′1 = +(−)

(
tp + tm

2
− h′1

)
(D.22)

γL∇h′6 = +(−)(−h′6), (D.23)
γL∇h′7 = +(−)(−h′7), (D.24)

γL∇h′8 = +(−)

(
tp − tm

2
− h′8

)
(D.25)

where tp(m) = tanh(β
2
(ε + (−)Ω/2)). We have here assumed the ferromagnet is coupled to

normal state metals which act as reservoirs in equilibrium. The solution to these equations
are

h′1(x) = TP , (D.26)

h′6(x) =
MxM

′
z

M ′2 TM (1− C1 cosh(κx) + C2 cos(κx)) , (D.27)

h′7(x) = −iMx

M ′ TM (C1 cosh(κx) + C2 cos(κx)) , (D.28)

h′8(x) =
1

M ′2TM
(
M ′2

z +M2
x (C1 cosh(κx)− C2 cos(κx))

)
, (D.29)

where κ =
√
−2iM ′/D and TP (M) = (tp + (−)tm)/2. M ′ =

√
M2

x + (Mz + Ω/2)2 and
M ′

z = Mz + Ω/2 are the effective exchange field magnitude and the effective exchange field
in the z-direction, respectively. Note that all other distribution functions h′n = 0. The
coefficients are

C1 =
1/2

κLγ sinh(κL/2) + cosh(κL/2)
, (D.30)

C2 =
1/2

κLγ sin(κL/2)− cos(κL/2)
. (D.31)

We explicitly see that if Ω = 0 or Mx = 0 then the solution is h′1(x) = tanh(βε/2) both in
the stationary and laboratory frame while every other h′n = 0. The other equilibrium case is
when Mx = 0, then h′1(x) = (tp + tm)/2 and h′8(x) = (tp − tm)/2 which is the same solutions
as equation (5.58) which in the laboratory frame simply becomes ĥ = tanh(βε/2)τ̂0. Thus,
these two cases give us the equilibrium solution as they should do. In other cases we will not
be in equilibrium and then to find the distribution function in laboratory frame, we insert
our answer into equations (5.63)-(5.70).
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By converting conventional spin-singlet Cooper pairs to polarized spin-triplet pairs, it is possible to sustain
long-ranged spin-polarized supercurrents flowing through strongly polarized ferromagnets. Obtaining such a
conversion via spin-orbit interactions, rather than magnetic inhomogeneities, has recently been explored in the
literature. A challenging aspect with regard to experimental detection has been that in order for Rashba spin-
orbit interactions, present e.g. at interfaces due to inversion symmetry breaking, to generate such long-ranged
supercurrents, an out-of-plane component of the magnetization is required. This limits the choice of materials
and can induce vortices in the superconducting region complicating the interpretation of measurements. There-
fore, it would be desirable to identify a way in which Rashba spin-orbit interactions can induce long-ranged
supercurrents for purely in-plane rotations of the magnetization. Here, we show that this is possible in a lat-
eral Josephson junction where two superconducting electrodes are placed in contact with a ferromagnetic film
via two thin, heavy normal metals. The magnitude of the supercurrent in such a setup becomes tunable by
the in-plane magnetization angle when using only a single magnetic layer. These results could provide a new
and simpler way to generate controllable spin-polarized supercurrents than previous experiments which utilized
complicated magnetically textured Josephson junctions.

I. INTRODUCTION

When a conventional superconductor is placed in proxim-
ity to a normal state metal, the Cooper pairs will start leak-
ing across the interface from the superconductor and into the
metal. These singlet state order parameter will, in the metal,
start decaying over a length scale of ξN =

√
D/T where D

is the diffusion constant of the metal and T is the tempera-
ture [1]. If the metal is a ferromagnet, then the anti-parallel
electrons of the singlet Cooper pair will be injected into two
different sub-bands (majority and minority) in the ferromag-
net, making their Fermi momenta different. This makes the
pair decay even faster, namely on a length scale of order
ξF =

√
D/M where M is the amplitude of the exchange

field. This pair breaking effect can be avoided if the sin-
glet pair can be converted into a triplet pair with a non-zero
spin projection along the exchange field. With these so-called
long-ranged triplets (LRTs), the pairs will decay slower and be
comparable to correlation lengths of normal metal ξN . Phys-
ical quantities like supercurrents will be on the same order,
and it is thus of great interest to be able to manipulate and
create such LRTs. This topic is currently under intense focus
[2, 3] because of the potential to develop not only cryogenic
spintronics devices, but also radically novel theoretical and
experimental aspects of how such pairs can be generated and
tuned in a controllable manner.

It is well known theoretically and experimentally that LRT
components can be created in an inhomogenous exchange
field [4–9]. It can also be generated in ferromagnets that have

a precessing exchange field [10]. More recently, it was shown
[11] that spin-orbit coupling could act as a source of such
triplets in diffusive superconductor/ferromagnet structures. It
was proposed that lateral geometries would provide less strin-
gent requirements to generate LRTs compared to a stacked ge-
ometry which was utilized to demonstrate the appearance of
long-ranged supercurrents in Refs. [4, 5, 9]. It was shown in
Ref. [12] that in S/F bilayers with Rashba spin-orbit coupling,
the magnetization requires an out-of-plane component to gen-
erate the LRT. Although such a scenario is possible to obtain
experimentally [13–15], it complicates the unambiguous iden-
tification of spin-polarized Cooper pairs due to the additional
flux injection from domain walls from the ferromagnet and
also severely restricts the choice of materials showing a tai-
lored out-of-plane anisotropy. Very recently, Ref. [14] did not
find any clear signature of a long-ranged triplet supercurrent
in a Josephson junction including heavy metals and multilay-
ers of ferromagnets with an effective canted magnetization di-
rection. Therefore, it would be desirable to identify a setup
where the LRTs can be tuned with a sole in-plane variation
of the magnetization to minimize the stray field effect on the
superconductor itself. This would be a different result than
previous works [13, 14, 16–20] that have considered how to
control the supercurrent via magnetization in Josephson con-
tacts with spin-orbit coupling.

In this paper, we consider a lateral Josephson junction
where two superconducting electrodes are placed in contact
with a ferromagnetic layer through a heavy metal (see Fig. 1).
Due to the inversion symmetry breaking and the large atomic
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Figure 1. A lateral SFS Josephson junction with Rashba spin-orbit
coupling in the heavy metals. The exchange field lies in the plane of
the ferromagnet. A supercurrent is sent through the magnetic layer
via the superconducting electrodes and is tuned via the in-plane angle
θ of the ferromagnet.

number of such metals, Rashba spin-orbit coupling is assumed
to be present at these interfaces. As we will show, such a
setup will not only host long-ranged triplet Cooper pairs but
also give a long-ranged supercurrent for certain in-plane ro-
tations of the exchange field. Thus, the supercurrent in the
ferromagnet is extremely sensitive to this in-plane rotation as
long as there is a non-zero spin-orbit coupling present in the
heavy metals. We will also show that for some parameters, the
in-plane rotation is be able to create 0 − π transitions, which
means that for a certain in-plane rotation of the exchange field,
the supercurrent is zero. Therefore, such a geometry can work
as a transistor for supercurrents by simply rotating the in-plane
magnetization. We emphasize that the main novelty and bene-
fit of the present result and setup compared to previous works
is that the supercurrent is tuned with a single ferromagnetic
layer and the magnetization only needs to rotate in the plane
of the magnet. Experimental observation of this effect would
represent a significant advance with regard to simplifying con-
trol over long-ranged spin-polarized supercurrents, which has
proved challenging before [9].

II. THEORY

In this paper we will use the quasiclassical theory of super-
conductivity [21, 22] and consider the dirty limit so that the

quasiclassical Green’s function ǧ in the ferromagnet can be
described by the Usadel diffusion equation [23]

iD∇̃ ·
(
ǧ∇̃ǧ

)
= [ερ̂3 + M · σ̂, ǧ]−, (1)

where D is the diffusion constant for the ferromagnet, ε
is the energy of the quasiparticles, ρ̂3 = diag(1, 1,−1,−1),
and M is the exchange field. The Pauli matrix vector is σ̂ =
diag(σ,σ∗). The Green’s function ǧ is the 8 × 8 Green’s
function in Keldysh space

ǧ =

[
ĝR ĝK

0 ĝA

]
. (2)

Due to the triangular structure of ǧ, the Usadel equation
becomes the same for the retaraded Green’s function ĝR.

To incorporate spin-orbit coupling into our theory, we
have defined [11] ∇̃(·) = ∇(·) − i[Â, (·)]−. Here, Â =
diag(A,−A∗), whereA is a 2×2 matrix in spin space which
couples to the momentum k. In effect, the spin-orbit coupling
is included as an effective SU(2) gauge-like field, which is
possible if it is linear in momentum. We will include both
Rashba and Dresselhaus effects in this paper denoted by their
respective constants α and β, both being precisely linear in
momentum. However, we emphasize that the main merit of
the present setup is that only Rashba spin-orbit coupling and
an in-plane rotation of the magnetization is required to get a
tunable long-ranged spin-polarized supercurrent. The Dres-
selhaus term is thus simply included to make the results more
general. Rashba spin-orbit coupling can arise from the lack
of inversion symmetry at the interface between two materials.
We will later consider two heavy metals where the width in
the z-direction is small, and thus the Rashba Hamiltonian is
of the form

HR =
α

m
(k × σ) · ez, (3)

where k is the momentum of the quasiparticles. The Dres-
selhaus SOC, on the other hand, can be caused by lack of in-
version center in the crystal structure. For two dimensional
structures in the xy-plane this Hamiltonian becomes

HD =
β

m

(
kyσy − kxσx

)
. (4)

These are the two Hamiltonian we will consider in this pa-
per, and will give the followingA:

A =
(
βσx − ασy

)
ex +

(
ασx − βσy

)
ey. (5)

We will complement the Usadel diffusion equation with
Kupriyanov-Lukichev (KL) boundary conditions [24]

2γLǧ∇̃ǧ = [ǧL, ǧR]−, (6)
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where L and R denotes the left and right side of the inter-
face, respectively. Here, we have also added the gauge covari-
ant derivative ∇̃ to include spin-orbit coupling.

To calculate the supercurrent going through the ferromag-
netic bridge, we will use quasiclassical expression for the
electric current, following the notation of [25] and [12]

IQ =
N0DAe

4

∫ ∞

−∞
dεTr

(
ρ̂3

(
ǧ∇̃ǧ

)K)
. (7)

Here, A is the cross section, N0 is the density of states at
Fermi level, e is the electric charge. The superscript K de-
notes the Keldysh component of the 8 × 8 matrix. The sys-
tem in consideration will be in equilibrium, and thus we can
use the relation ĝK = tanh(βε/2)

(
ĝR − ĝA

)
where β in the

inverse temperature 1/kBT . The expression for the charge
supercurrent then takes the form

IQ = I0

∫ ∞

−∞
dε tanh(βε/2)Tr

(
ρ̂3

(
ĝR∇̃ĝR − ĝA∇̃ĝA

))
,

(8)
where I0 = N0DAe

4 . We can find ĝR with the Usadel equa-

tion, and with the relation ĝA = −ρ̂3
(
ĝR
)†
ρ̂3, we have ev-

erything we need to find the supercurrent. Later, we will com-
pare our result with the supercurrent through a ferromagnetic
film when no interfacial spin-orbit coupling is present. In this
case, the derivatives become normal derivatives i.e., ∇̃ → ∇.
It can easily be shown that this current is conserved in regions
that are governed by the Usadel equation, both with and with-
out spin-orbit coupling i.e., ∇ · IQ = 0 [12]. Thus the super-
current in ferromagnetic region in Fig. 1 will be conserved.

Our problem is inherently two-dimensional, but we will
make it effectively one-dimensional by assuming that the to-
tal width of the heavy metals and ferromagnetic film W + d
is much smaller than length scale over which the Green func-
tion varies. Thus, we can assume the Green’s function stays
roughly constant along the z-axis, and by averaging the con-
densate function along the z-axis we can apply the KL bound-
ary condition at the superconductor/heavy-metal interfaces.
This effectively gives the differential equations a source of
singlet Cooper pairs in the two regions −G < x < −L/2 and
L/2 < x < G.

III. RESULTS AND DISCUSSION

A. Analytical results

Before resorting to a numerical analysis, we can draw
several conclusions by making use of the weak proximity
effect approximation. The assumption is that in any non-
superconducting materials, the Cooper pair correlations will
be weak, and thus the retarded Green’s function only slightly
deviates from its normal-state value:

ĝ =

[
1 f

−f̃ −1

]
, (9)

where the tilde conjugation (̃·) changes the sign of the en-
ergy and complex conjugates. We insert this 4 × 4 Green’s
function matrix to the Usadel equation, and by looking exclu-
sively at the top-right 2 × 2 element, we will get an equation
that is completely independent of f̃ . Thus, we only need to
solve for the four elements in f and to get f̃ we perform the
tilde-conjugation, i.e. change sign of the energy and complex
conjugate.

By applying the weak proximity approximation to the Us-
adel equation, we can linearize it in the anomalous Green
function f to obtain

∇2f − 2i
[
A,∇f

]∗
+
−
[
A,
[
A, f

]∗
+

]∗
+

+
2εi

D
f +

i

D
M ·

[
σ, f

]∗
− = 0. (10)

where we have used the notation [A,B]∗+ = AB + BA∗.
We now proceed to show that the KL boundary condition pro-
vide an effective source of singlet pairs in our linearized Us-
adel equation. We will make the standard simplifying assump-
tion that the inverse proximity effect can be neglected and the
Green’s function in the superconductor is the BCS bulk solu-
tion given as

ĝ =

[
cosh(θ) iσy sinh(θ)eiφ

−iσy sinh(θ)e−iφ − cosh(θ)

]
, (11)

where θ = θ(ε) = atanh(∆/ε). We then average over the
z-direction, which causes the KL boundary condition to act
as a source of singlet state pairs in the linear Usadel equation.
Inserting the weak proximity Green’s function for the ferro-
magnetic region and the BCS bulk Green’s function, we get

∂f

∂z
− i
[
Az, f

]∗
+
|S/F =

cosh(θ)

ζL
f − sinh(θ)

ζL
eiφiσy. (12)

As we already have seen, Az = 0. Since we are assuming
that the elements of f are much smaller in magnitude than
unity, the first term on the right-hand side can be neglected.
We will now use this boundary condition by first expanding

the Laplace operator ∇2f =
∂2f

∂x2 +
∂2f

∂z2 , integrate over the
z-direction and use the KL boundary conditions,

∫ W

−d

∂2f

∂z2
dz =

∂f

∂z
|z=W −

∂f

∂z
|z=−d =

sinh(θ)

ζ(W + d)
eiφiσy.

(13)
Here, we used that the length normal to the interface is sim-

plyW+d. By now averaging over all components in the linear
Usadel equation, we get

∂2

∂x2
f − 2id

W + d

[
A,

∂

∂x
f

]∗

+

− d

W + d

[
A,
[
A, f

]∗
+

]∗
+

+
sinh(θ)

ζ(W + d)2
eiφiσy +

2εi

D
f +

i

D
M ·

[
σ, f

]∗
− = 0. (14)
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This equation has to be solved in three regions, the two su-
perconducting nodes i.e., L/2 < x < G and −G < x <
−L/2, and in the ferromagnetic bridge i.e., −L/2 < x <
L/2. In the ferromagnetic bridge, we have no spin-orbit cou-
pling and we can simply set A = 0 in this region. In the
superconducting nodes, the effective magnetization M will
be smaller than in the ferromagnetic film since there is no
exchange field present in the heavy metals, so the effective
exchange field is thus M → W

d+WM . We also allow for dif-
ferent macroscopic phases for the nodes such that the phase
difference is ∆φ = φR − φL.

Before solving equations, we have to know our bound-
ary conditions. This two-dimensional problem is solved by
making the problem effectively one-dimensional, and thus we
apply the KL boundary conditions at the vacuum interfaces
x = −G and x = G which effectively sets the current mov-
ing in the x-direction to zero at these edges. At the two inter-
faces between the three regions, x = −L/2 and x = L/2, we
require that both the Green function and the current are con-
tinuous. The last condition gives us the following boundary
conditions:

∂xf(−L/2+) = ∂xf(−L/2−)− d

W + d
i
[
Ax, f(−L/2−)

]∗
+

(15)

∂xf(L/2−) = ∂xf(L/2+)− d

W + d
i
[
Ax, f(L/2+)

]∗
+
.

(16)

For the anomalous Green’s function f , we will make use of
the so-called d-vector formalism [26] where all triplet corre-
lations are compactly expressed through a vector d. The total
superconducting anomalous Green function matrix may then
be written as:

f = (fs + d · σ) iσy =

[
idy − dx dz + fs
dz − fs idy + dx

]
. (17)

The d-vector representation has the advantage of clearly
separating the long-ranged and short-ranged triplet compo-
nent of f [12]. The long-ranged component will be com-
ponent that is perpendicular to the exchange field dLRC =
|d ×M | while the short-ranged component is parallel to the
exchange field dSRC = d·M . We can now enter our d-vector
into equation (14). The set of Pauli matrices with the addition
of the identity matrices form a basis for a general 2×2 matrix.
Therefore, by using the identity σaσb = δabI + iεabcσ

c, we
get four equations for each of the four matrices:

∂2fs
∂x2

+
sinh(θ)

ζ(W + d)2
eiφ +

2εi

D
fs +

2i

D
(Mxdx +Mydy) = 0,

(18)

∂2dx
∂x2

+
d

W + d

(
− 4α

∂dz
∂x
− 4(α2 + β2)dx − 8αβdy

)

+
2εi

D
dx +

2iMx

D
fs = 0,

(19)

∂2dy
∂x2

+
d

W + d

(
− 4β

∂dz
∂x
− 4(α2 + β2)dy − 8αβdx

)

+
2εi

D
dy +

2iMy

D
fs = 0,

(20)

∂2dz
∂x2

+
d

W + d

(
4α
∂dx
∂x

+ 4β
∂dy
∂x
− 8(α2 + β2)dz

)

+
2εi

D
dz = 0. (21)

We can immediately draw several conclusions before at-
tempting to solve the differential equations. First of all, the
transformation dx ↔ dy, α↔ β,Mx ↔My leaves the equa-
tions invariant. We will mostly look at the case where we
only have Rashba spin-orbit coupling present since this case
is experimentally more feasible, but due to this invariance, our
conclusions of the supercurrent and triplets will also be invari-
ant to this transformation.

We continue by looking at the case β = My = 0. This de-
couples the third equation from the rest of the equations, and
thus there is no way for the singlet state fs to be transformed
into a triplet dy state. In this scenario, it is in principle possible
to obtain a long-ranged triplet state dLRC = |d×M | ∝ dz .

If we now set β = Mx = 0 we are able to decouple the
second and fourth differential equations from the other two.
And thus dx = dz = 0. The Rashba coupling has in this case
a very small impact on the system and will only impact singlet
pairs and the short range triplets (SRTs) with no LRTs present.
Thus, in the case of Rashba coupling, an in-plane rotation of
the exchange field from Mxex to Myey will make all LRTs
vanish and only SRTs will remain.

In the case β = My = 0, we see that the energy of the
long-ranged component dz acquires an imaginary term,

εLRT = ε− i 4dD

W + d
α2. (22)

Imaginary contributions to the energy are normally asso-
ciated with pair-breaking processes, and therefore, these LRT
components will decay faster if the Rashba coefficient is large.
On the other hand, if the Rashba coefficient is zero, then there
will be no LRTs at all. We therefore expect to see a certain α
where the triplets and supercurrent are both at their largest and
will decay after we keep increasing or decreasing α. We will
later show numerically that this reasoning is correct, resulting
in a non-monotonic behavior of the supercurrent as a function
of α, and that an in-plane rotation of the exchange field will
drastically change the magnitude of the supercurrent.
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B. Pure Rashba Coupling and In-Plane Magnetization

We will now show explicitly that we get a long-ranged
triplet pair correlation with spin-orbit coupling which in turn
gives a long-ranged charge-supercurrent. We will only be
looking at a pure Rashba spin-orbit coupling and set β = 0.
We will also place the magnetic field in the x-direction and
thus My = 0.

We assume now that the distance L between the two su-
perconducting electrodes is so large that the solution for the
anomalous Green’s function in the ferromagnetic bridge will
consequently be the superposition of the Green function in
two systems with only one effective superconducting node. In
this way, we only need to solve the anomalous Green’s func-
tion in a lateral geometry with one effective superconducting
node with spin-orbit coupling present. Thus, we start by solv-
ing a system with only one effective superconducting node
including spin-orbit coupling in the region x ≤ 0 and a re-
gion with only the ferromagnetic film x ≥ 0. Far into the
semi-infinite regions the solutions will converge to zero, and
we only take into account the boundary conditions at x = 0
in Eqs. (15) and (16) with the addition of continuity of the
anomalous Green’s functions. We will also assume that the
Rashba coupling is weak, α2 � |M |/D, so that we can
remove any second order term in α in the differential equa-
tion. The general solution of the differential equations then
becomes

fs = − 2αk

K2
p − k2

C4e
kx + C5e

Kpx + C6e
Kmx

+
k2

K2
p

(
2k2 −K2

p

)heiφ1 (23)

dx = C5e
Kpx − C6e

Kmx − K2
p − k2

K2
p

(
2k2 −K2

p

)heiφ1 (24)

dy = 0 (25)

dz = C4e
kx − 2αKp

K2
p − k2

C5e
Kpx − 2αKm

K2
p − k2

C6e
Kmx (26)

when x < 0. Here, k =
√
−2iε/D, Kp(m) =√

−2i(e+ (−)Mx)/D and h = sinh(θ)/ζ(W + d)2 and in
the ferromagnetic bridge when x > 0 the solution is

fs = −C1e
−Kmx + C2e

−Kpx (27)

dx = C1e
−Kmx + C2e

−Kpx (28)

dz = C3e
−kx. (29)

As expected, only dz has any long-ranged triplet compo-
nents in the purely ferromagnetic region, and thus we are
mostly interested in finding C3. Applying the boundary con-
ditions at x = 0, we get to the first order in α,

C3 = −3K4
p − kK3

p + (kKm − 6k2)K2
p + 2k3Kp + k4(

4kK6
p − 12k3K4

p + 8k5K2
p

)

× d

W + d
αheiφL , (30)

which clearly shows that we only get a long-ranged triplet
component if we have Rashba spin-orbit coupling present.
Letting |Mx| � ε, we get |K(m/p)| � |k| and

C3 = − 3dαheiφL

4(W + d)kK2
p

. (31)

We now place a second superconducting electrode at x =
L/2 and push the first electrode back to x = −L/2. We solve
the differential equations for the second node and assume that
total condensate function f is a superposition of the two solu-
tions and that the superconducting nodes are so far apart that
the overlap between the two solutions is small. The complete
solution for the long-ranged component is thus

dz = C−3 e
−k(x+L/2) + C+

3 e
k(x−L/2). (32)

Here, C−3 is the coefficient for the left superconducting
node and C+

3 for the other node. C−3 will be the coefficient
found in Eq. (30), while C+

3 will be similar except with the
sign of k, K(p/m) changing sign since the anomalous Green’s
functions are propagating in the opposite direction. We also
have to remember to use a different macroscopic phase φR
for C+

3 . Entering this LRT component into the formula for
the supercurrent, we get

IQ = 4N0De

∫ ∞

0

dε tanh(βε/2) (33)

×<
(
k
(
C+

3 C̃
−
3 − C−3 C̃+

3

)
e−kL

)
. (34)

Here the tilde conjugation is as mentioned just doing the
transformation ε→ −ε and i→ −i. Using the approximated
C3 in Eq. (31), the long-ranged supercurrent becomes

IQ = 8N0De sin(∆φ)

∫ ∞

0

dε tanh(βε/2)

(
3dα

4(W + d)

)2

×<
(
− i hh̃

kK2
mK

2
p

e−kL
)
, (35)

where ∆φ = φR − φL. Therefore, this long-ranged triplet
component also gives a long-ranged supercurrent that is pro-
portional toα2 for smallα. In this expression for the supercur-
rent, we have used the simplified C3 solution which amounts
to the approximation that the main contribution to the inte-
gral for the supercurrent comes from the region ε � |Mx|.
Numerically, we have confirmed that the main contribution
indeed comes from the region near ε = ∆. Alternatively, and
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more accurately, we could simply use the whole solution for
C3 in equation (30) which results in a much longer expression
for IQ. The point is nevertheless that we get a long-ranged su-
percurrent when α 6= 0. As previously argued, if we rotate the
exchange field from a pure x-direction to lie along the y-axis,
the long-ranged component will become zero. An in-plane ro-
tation of the exchange field from M = Mex to M = Mey
with Rashba coupling should therefore result in a significant
drop in the magnitude of the supercurrent.

As mentioned above, the system is invariant under the trans-
formation dx ↔ dy, α ↔ β,Mx ↔ My and hence we get
the same expression for the long-ranged supercurrent with β
instead of α if we set α = Mx = 0 and keep β and My non-
zero. This means that pure Dresselhaus spin-orbit coupling
would also be sufficient to get a long-ranged supercurrent.

C. Numerical results

The weak proximity approximation is only valid if the mag-
nitude of the elements of f are much smaller than unity which
limits the choice of parameter values that can be explored. We
will solve the full proximity effect Usadel equation numeri-
cally in this section, which is free from this restriction.

We will solve the problem by using the Riccati parameteri-
zation with spin-orbit coupling derived in Ref. [12],

D
(
∇2γ + 2 (∇γ) Ñ γ̃ (∇γ)

)
= −2iεγ − iM · (σγ − γσ∗)

+D
(
A2γ − γ (A∗)2 + 2 (Aγ + γA∗) Ñ (A∗ + γ̃Aγ)

)

+2iD
(

(∇γ) Ñ (A∗ + γ̃Aγ) + (A+ γA∗γ̃)N (∇γ)
)
.

(36)

The corresponding equation for γ̃ can be found by tilde con-
jugating the equation above. Here, the Green’s functions are
given as g = N(1+γγ̃) and f = 2Nγ. AndN = (1−γγ̃)−1,
and thus we need to solve for γ and γ̃. We will still be ap-
proximating the system to be one dimensional with the KL
boundary conditions in the two nodes working as two sources
of singlet states. The KL boundary conditions are

∂

∂z
γ =

1

Lζ
(1− γγ̃S)NS (γ − γS) + iAzγ + iγA∗z (37)

where ζ is the ratio between the barrier resistance and the
bulk resistance of the heavy metal, and L is the width of the
normal metal and ferromagnetic layer which is L = W + d.
γS and NS are the Riccati parameters for the BCS bulk su-
perconductor. Since the width W of the heavy metal and the
ferromagnetic film is small, we will neglect the inverse prox-
imity effect and use the bulk BCS Green functions in the su-
perconductors. We will as in the last section use this boundary
condition between the heavy metal and the superconductor an
effective source of singlet state pairs. Since the normal vector
of the interface points in the z-direction, we get Az = 0. The

z-component of∇2γ will be non-zero when averaged over the
z-direction, and the effective Usadel equation becomes:

D

[
∂2

∂x2
γ +

1

(W + d)ζ
(1− γγ̃S)NS (γ − γS)

+ 2

(
∂

∂x
γ

)
Ñ γ̃

(
∂

∂x
γ

)]

= −2iεγ − iM · (σγ − γσ∗)

+D
d

W + d

[
A2γ − γ (A∗)2

+ 2 (Aγ + γA∗) Ñ (A∗ + γ̃Aγ)

]

+ 2iD
d

W + d

[(
∂

∂x
γ

)
ÑF (A∗ + γ̃Aγ)

+ (A+ γA∗γ̃)N

(
∂

∂x
γ

)]
. (38)

The corresponding equation for γ̃ can be found by tilde con-
jugation the equation above. By using the bulk BCS Green’s
function, we can easily calculate NS and γS .

D. Parameters

We consider the system depicted in Fig. 1. We will as-
sume that the the correlation length of the superconductor is
ξS =

√
D/∆ = 25 nm, where ∆ is the superconducting

gap energy. We will have the lengths W = d = 2 nm and
L = 25 nm. This will give the ratio ξS/L = 1. We will
also let the length of the spin-orbit coupled region be 5 nm,
which gives us G/L = 0.7. The interface transparency will
be ζ = 5, and the exchange field is placed in the xy-plane
M = M(cos(θ), sin(θ), 0). We normalize ε andM to the gap
energy ∆. We choose a strong ferromagnet MF = 50∆ and
withW = d, the effective exchange field will beM = 25∆ in
the two superconducting electrodes andM = 50∆ in the mid-
dle region. The value of the exchange field is reasonable con-
sidering an ultra-thin strong ferromagnet like cobalt in contact
with a heavy metal like platinum [15]. The macroscopic phase
difference has been set to ∆φ = φR − φL = π/2, while the
temperature is T = 0.5TC , and in addition, we will now only
assume a pure Rashba coupling which we will normalize to
the length of the ferromagnetic bridge L such that αL will be
a dimensionless quantity. The spin-orbit coupling term is then

A = −ασyex + ασxey. (39)

The supercurrent is plotted as a function of the exchange
field angle θ and Rashba coupling in Fig. 2 and 3, respectively,
where I0 = N0DAe. With Rashba coupling, we clearly see
an enhanced supercurrent when the exchange field points in
the x-direction (θ = 0). There also seems to be a certain
magnitude of the Rashba constant where the supercurrent is
peaked when θ = 0, namely at αL ≈ 5. Interestingly, we also
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Figure 2. The supercurrent is plotted as a function of exchange field
θ. When θ = 0 the exchange field points along the x-direction,
while θ = π/2 corresponds to the exchange field pointing in the
y-direction.

Figure 3. The supercurrent is plotted as a function of Rashba cou-
pling α in the heavy metals.

see from Fig. 3 that we are able to create 0 − π transitions
when the strength of the Rashba coupling is αL ≤ 6. Thus,
there exists an angle close to θ = π/2 where the current is
zero as long as αL < 6. It also seems that the supercurrent
becomes independent of θ when αL → ∞. This is, as we
explained in the weak proximity limit, because the energy of
the LRTs get an imaginary part which destroy the coherence
of these components.

The supercurrent is also plotted as a function of the length
of the ferromagnetic region in Fig. 4 where we have set αξ =
5. This choice corresponds to the maximum supercurrent in
Fig. 3 when L/ξ = 1. We see that the supercurrent in the
case of a pure x-directed exchange field (θ = 0) decays much

slower than in the case where the exchange field points along
the y-axis (θ = π/2). This is precisely due to the fact that
the supercurrent is now carried by long-ranged triplet Cooper
pairs. Note that the supercurrent rapidly changes sign when
θ = π/2 due to 0-π oscillations. In contrast, for θ = 0 there is
no 0−π transitions in the interval 0.5 < L/ξ < 2. This allows
for an interesting observation, namely that there exists several
possible intervals of L/ξ where a 90 degree in-plane rotation
of the magnetization essentially turns the supercurrent on and
off.

Figure 4. The supercurrent plotted as a function of the length of the
ferromagnetic bridge L. The inset is a log-plot of the absolute value
of the current and shows how vastly different the exponential decay
is for the two in-plane directions of the exchange field are. The sharp
dips in the log graph shows where the short ranged current switches
sign.

IV. CONCLUDING REMARKS

We have shown that a lateral Josephson junction with spin-
orbit coupled contacts to a ferromagnetic film that is magne-
tized in-plane is able to carry a long-ranged triplet supercur-
rent. This supercurrent is highly sensitive to the in-plane ro-
tation of the magnetic field, and our system thus effectively
acts as a magnetic transistor for the supercurrent. The main
merit of our result is that the long-ranged triplet supercur-
rent is tuned with a single ferromagnetic layer without any
requirement for an out-of-plane magnetization. We believe
this could provide a way to realize tunable triplet supercur-
rents via Rashba spin-orbit coupling in a considerably simpler
way than previous proposals.
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