
Steinar B
rattøy G

undersen
M

aster's thesis in A
pplied P

hysics and M
athem

atics

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 N
at

ur
al

 S
ci

en
ce

s
D

ep
ar

tm
en

t o
f P

hy
si

cs

M
as

te
r’

s
th

es
is

Steinar Brattøy Gundersen

Implementing and reviewing a
published cellular automaton model
for simulating erosion and deposition
processes due to turbidity currents

Master’s thesis in Applied Physics and Mathematics
Supervisor: Tor Nordam and Raymond Nepstad

June 2019

Steinar Brattøy Gundersen

Implementing and reviewing a published
cellular automaton model for simulating
erosion and deposition processes due to
turbidity currents

Master’s thesis in Applied Physics and Mathematics
Supervisor: Tor Nordam and Raymond Nepstad
June 2019

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Physics

Abstract
The mining industry has, for a long time, used the sea for tailings placement. In these
disposal sites, turbidity flows commonly occur as a result of the tailings discharge, in
which particles may be transported some distance away from the discharge point. As
the discharge can contain environmentally harmful particles, it is desirable to be able
to predict the interaction between the turbidity flow and the seabed. Motivation is
also given by the ability to predict areas of erosion and deposition. The main objective
in this thesis has been to review and implement a published cellular automata (CA)
model. During the implementation, it became clear that the published description was
not complete, and that it contained some errors. Thus the goal became to implement
and test as much as possible of the model, creating a complete and correct description
of the implementation.

To obtain an efficient implementation, selected parts of the code was written in Cython,
to avoid the Python overhead associated with e.g., for-loops. Additionally, the code was
parallelized using the Message Passing Interface (MPI) standard. The halo-exchange
technique was combined with a self-composed algorithm (dubbed as the inverse-halo-
exchange) in order to parallelize the CA. The program achieved superlinear speedup
for tests conducted with up to about 64 CPUs, indicating that CAs are well suited for
parallelization.

Some numerical simulations have been run, including a simplified case with Ranfjorden as
bathymetry, where the results to some extent reflect the expected behavior of a turbidity
current. Some simulations display signs of numerical instability. Potential causes and
solutions are discussed.

i

Sammendrag
Gruveindustrien har i lengre tid benyttet seg av sjødeponi for lagring av “tailings”. I slike
sjødeponi er det vanlig at turbiditetsstrømmer oppstår som følge av utslippet, hvilket
medfører at partiklene fraktes en lengre distanse unna utslippspunktet. Blant annet på
grunn av at utslippet kan inneholde miljøskadelige partikler, er det ønskelig å kunne
predikere interaksjonen mellom turbiditetsstrømmen og havbunnen. Samtidig er det
ønskelig å kunne forutsi hvilke områder som blir erodert og i hvilke områder sediment
blir deponert. Hovedformålet med prosjektet har vært å gjennomgå og implementere
en publisert cellular automata (CA) modell. Under implementasjonsprosessen, ble det
klart at modellen ikke var fullstendig, og at den inneholdt noen feil. Slik ble målet å
implementere så mye som mulig av denne modellen, og lage en fullstendig og korrekt
beskrivelse av implementasjonen.

For å oppnå en effektiv implemetasjon, ble utvalgte deler av koden skrevet i Cython.
Dette for å unngå “overhead” som Python induserer i for eksempel for-løkker. I tilegg,
ble koden parallelisert ved å bruke standarden “Message Passing Interface” (MPI). En
teknikk kalt “halo-exchange” ble benyttet i kombinasjon med en selvkomponert algo-
ritme (som ble navngitt “inverse halo-exchange”) for å parallelisere CAen. Programmet
oppnådde superlinær speedup i tester med opptil omtrent 64 CPUer, hvilket indikerer
at en CA er velegnet til parallelisering.

Noen numeriske simuleringer har blitt kjørt, inkludert en forenklet simulering med Ran-
fjorden som batymetri. Resultatene reflekterer til en viss grad den forventede oppførselen
til en turbiditetsstrøm. I noen tilfeller viser simuleringene tegn til numerisk ustabilitet.
Potensielle årsaker og løsninger til dette blir diskutert.

iii

Preface
This thesis is the result of a rather arbitrary choice I made last year. I had researched the
available thesis proposals at the NTNU website, and I was determined I wanted to work
within the field of numerical physics. One of the proposals that caught my eye was by
Tor Nordam and was titled “Parallel simulations of transport and mixing in the ocean”.
However, as I made an inquiry about the project, it became clear that this proposal was
from a previous year, and had already been explored by another student. New ideas
were spun. Tor mentioned he had a collegue at SINTEF Ocean that had been exploring
the idea of simulating turbidity currents with a cellular automaton (CA). I already had
some experience working with CAs from my classes in parallel computation, and so I
was intrigued by the idea. Thus, I was introduced to Raymond Nepstad, and the three
of us started outlining a thesis proposal. This random choice has led down a path with
seemingly endless hours of programming and debugging, and a roller-coaster of ups- and
downs; exactly what I had in mind. Yes, debugging in the late a.m. can be tough, but
the view from the summit makes it worth it. I am grateful to Tor and Raymond for
letting me experience this journey, and for always lending counsel when I’ve reached a
“particularly steep hill”.

I would like to thank Tristan Salles, the author of the cellular automaton model upon
which this thesis is based. The paper describing the model was written in 2007. Despite
it being a long time ago, Salles responded to my emails, and answered my questions to
the best of his abilities. For that I am grateful.

I want to thank my family and friends for supporting me, and keeping me sane while
pursuing this degree. In particular, I would like to thank my brother and housemate
Magnus Brattøy Gundersen for tolerating my lack of participation in house cleaning,
during the final hours of this thesis. I would also like to thank my friend and fellow
student Mauhing Yip, for reminding me to use the correct formatting for this thesis.

Steinar Brattøy Gundersen
Trondheim, Norway

June 2019

v

Contents
1 Introduction 1

2 Theory 3
2.1 Gravity and turbidity currents . 3

2.1.1 Sediment gravity flows . 3
2.1.2 Interactions with the ambient . 4
2.1.3 Near-bed concentration . 6
2.1.4 Numerical models and self-accelerating turbidity currents 6

2.2 Cellular Automata . 7
2.2.1 Hexagonal grids . 8

2.3 Concepts and equations related to transition function σ 9
2.3.1 Angle of repose . 9
2.3.2 Reduced gravity . 10
2.3.3 Numerical stability . 10
2.3.4 Run-up height . 11
2.3.5 Sphere settling velocity . 11
2.3.6 Chézy formula and speed of a turbulent current 12

3 Python programming 15
3.1 Cython . 15

3.1.1 Why use Cython? . 15
3.1.2 Compatibility . 16

3.2 Parallel computing . 16
3.2.1 Performance . 17
3.2.2 High performance computing and MPI 18
3.2.3 Parallelizing a cellular automaton using MPI 19

4 Implementation of the cellular automaton 23
4.1 Cell states S . 23

4.1.1 Notation, substate indices and arguments 24
4.1.2 Initial and boundary conditions 25
4.1.3 Source cells . 25
4.1.4 Concentration of deposited sediment 26

4.2 Parameters P . 26
4.3 Time step ∆t . 27
4.4 Transition function σ . 28

4.4.1 Internal transformation (T1): water entrainment 28
4.4.2 Internal transformation (T2): erosion and deposition 29
4.4.3 Local interaction (I1): turbidity current outflow update 30
4.4.4 Local interaction (I2): turbidity current thickness and concentra-

tion update . 32

vii

Contents

4.4.5 Local interaction (I3): turbidity current flow speed update 33
4.4.6 Local interaction (I4): slope failure model/toppling rule 34

4.5 Implementation specific considerations 36
4.5.1 Cythonizing the CA implementation 37
4.5.2 Parallelizing the CA implementation 37

5 Verifying the transition function σ 41
5.1 Internal transform T1: water entrainment 41
5.2 Internal transform T2: erosion and deposition 42
5.3 Local interaction I1: turbidity current outflow update 45
5.4 Local interaction I2: turbidity current thickness and concentration update 46
5.5 Local interaction I3: turbidity current flow speed update 47
5.6 Local interaction I4: slope failure model/toppling rule 48

5.6.1 Test scenario with no terrain . 48
5.6.2 Test scenario in Ranfjorden . 49
5.6.3 Demonstration of inverse halo-exchange 50
5.6.4 Discussion of the slope failure model 50

6 Testing the complete cellular automaton 53
6.1 Test case 1: 1D channel . 53

6.1.1 Configuration, initial and boundary conditions 53
6.1.2 1D channel results . 55
6.1.3 Discussion . 55

6.2 Test case 2: Rupert Inlet . 57
6.2.1 Configuration, initial and boundary conditions 58
6.2.2 Results . 58
6.2.3 Discussion . 60

7 Simulating turbidity currents in Ranfjorden 69
7.1 CA configuration, initial and boundary conditions 69
7.2 Results . 71
7.3 Discussion . 72

8 Numerical performance 79
8.1 MPI benchmarking . 79
8.2 Performance evaluation . 80

9 Miscellaneous discussion 83
9.1 Known issues, suggestions, and potential improvements to the cellular

automaton . 83
9.1.1 Turbidity current outflow update I1 83
9.1.2 Turbidity current flow speed update I3 83
9.1.3 Erosion and deposition T2 . 85
9.1.4 Toppling rule I4 . 86
9.1.5 General implementation . 86

9.2 Parallelization of the cellular automaton 87

viii

Contents

10 Conclusions and future work 89

Appendices A Configuration files i
A.1 Template config file . i
A.2 Test case 1: 1D channel config (IC1) . iii
A.3 Test case 1: 1D channel config (IC2) . iv
A.4 Test case 2: Rupert Inlet lower reach config v
A.5 Ranfjorden config file . vi
A.6 Benchmarking config file . vii

Appendices B Additional models ix
B.1 Imran sediment entrainment model . ix
B.2 Imran deposition rate model . ix
B.3 Fukushima sediment entrainment model ix

ix

1 | Introduction
Ranfjorden [1] is a fjord of length 68 km located in northern Norway. The fjord runs
narrowly, in a north-easterly direction into the country before it “bottoms out” near the
town of Mo i Rana. Through the town runs the Rana River before connecting with
the fjord. At its deepest, the fjord reaches 525 m. As is the case with several other
Norwegian fjords, e.g., Bøkfjorden and Frænfjorden, this fjord is used as a means of
depositing so-called mine tailings.

Tailings is a common term for the waste product of the mining industry. Commonly
used ore refinement processes rely on chemical reactions for extracting the mineral. In
such a process, the ore is milled into fine particles and chemicals are added to extract
the desired mineral. The material left over from this process is a slurry of different
sized particles, which is referred to as tailings. For the projected Nussir copper mine
in Finnmark, northern Norway, the ore grade is estimated at 1.15 %, implying that the
majority (∼ 99 %) of the mined material is considered as waste [2].

The disposal of mining tailings is a problem of major environmental and financial concern.
On a world basis, the most commonly used method for tailings disposal involves land-
based permanent storage. This is usually in the form of dedicated dams. There are
several potential risks to using dams as storage, the most typical examples being dam
failure, or contamination of the surrounding area from chemicals seeping through the
dam. Consequences of such risks are severe, as the environmental impact may last
anywhere from 100-1000 years [3]. As land-based storage methods require a large area,
competition with agriculture, residential areas, and other space intensive activities may
complicate matters on the financial side.

The potentially devastating risks associated with dams has led to a search for alternative
disposal methods, and the discharge of tailings in the sea. This type of discharge may be
divided into three categories: coastal shallow-water disposal (CTD), submarine tailing
disposal (STD) and deep-sea tailing placement (DSTP). As the names imply, these
categories are mainly differentiated by the depth at which the tailings end up. In CTD,
tailings are disposed near the water surface. This category includes riverine discharge
methods. In STD and DSTP, tailings are discharged by an underwater pipe at some
depth beneath the surface. For STD the outlet depth is < 100 m, and for DSTP the depth
is > 100 m [3]. Riverine discharge used to be a popular method, before environmental
impacts were known.

In present Norway, the primary methods for tailings placement are STD and DSTP.
These discharge methods induce a phenomenon known as turbidity currents. Turbidity
currents are phenomena that also occur naturally, in which a current consisting of parti-
cles and water are propelled due to density differences. These currents may redistribute
sediment from the sea floor through erosion and deposition. Put in context of STDs and
DSTPs, turbidity currents are induced by the fine particles contained in the tailings.

1

Chapter 1. Introduction

As the chemicals contained within the tailings are distributed by the turbidity current,
there is some interest in predicting the location of such deposits, and the evolution of
the bathymetry in general.

The ambition for this thesis has been to review and implement a published cellular
automaton (CA) model capable of simulating a turbidity current, and predict erosion
and deposition. The model in question is due to T. Salles et al. [4]. In Ref. [4], the model
is applied to various bathymetries, and several figures illustrate their time evolution due
to the turbidity current. The provided examples indicate that the model is well suited
for studying turbidity currents due to tailings discharges.

During the work on this thesis, it became clear that all details of the model are not
completely described in Ref. [4], and that some of the equations contain errors. Hence,
the goal has been to fill in the blanks, and implement and test as much as possible of the
model, creating a complete and correct description of the implementation. To achieve
good computational efficiency, the implementation has been parallelized using the mes-
sage passing interface (MPI) standard, and Cython was used to gain additional speedup.
Some tests have been carried out, revealing that the model may become numerically
unstable in some cases, and still has some errors. What these errors may be, and how
to handle the instabilities, is discussed.

This thesis is divided into chapters. In Chapters 2 and 3, some preliminary theory will
be introduced, and in Chapter 4 information regarding implementation of the cellular
automaton will be provided. This is followed by Chapter 5 in which the CA transition
function is verified and discussed. Further testing and verification of the CA is performed
and discussed in Chapter 6, followed by a numerical simulation performed on the case
Ranfjorden in Chapter 7. The numerical performance of the implementation is presented
and evaluated in Chapter 8, and a final discussion and conclusion is given in Chapters 9
and 10, respectively.

2

2 | Theory
The theory presented in this chapter provides some fundamental information about tur-
bidity currents and cellular automata. This information will be referenced in later chap-
ters, when discussing implementation and results. The reader may want to skip this
chapter at first, and refer back to it as needed.

A turbidity current is a special case of the more general phenomena known as a gravity
current. In Section 2.1, the characteristic features of a turbidity current will be explored.
In Section 2.2 the cellular automaton will be defined, and some notation and terminology
is presented. Lastly, in Section 2.3 some useful concepts and equations are defined, to
be used for reference in subsequent chapters.

2.1 Gravity and turbidity currents
Gravity currents are mainly horizontal flows induced by differences in density, i.e., when
a fluid of density ρc flows in a fluid of density ρa < ρc. Gravity currents are phenomena
commonly experienced in everyday life. As an example, consider a “cube” of water
being released on a horizontal plane. The water has a density much higher than the
surrounding air. Thus, we have ρwater = ρc > ρair = ρa inducing a gravity current,
causing the water to spread [5].

2.1.1 Sediment gravity flows
When the current fluid consists of a mix of (heavy) particles and a fluid identical to the
ambient fluid, the gravity current is known as a particle-driven current, or a sediment
gravity flow [5]. These flows are commonly encountered in the ocean, where gravity acts
on the suspended particles, inducing the motion of the current. The particles can be
kept from settling on the sea bed by some “support mechanisms”, as will be elaborated
below. Keeping the particles in suspension keeps the gravity current from terminating.

The particle support mechanisms, i.e., the phenomena keeping the particles in suspen-
sion, are used to distinguish between four types of sediment flow. The support mech-
anisms and corresponding type of sediment flow is illustrated in Figure 2.1. Turbidity
currents are sediment flows, in which the particles are mainly supported by the upward
velocity component of the turbulence [6].

The volumetric concentration of particles, is also commonly used to distinguish between
different types of sediment flows. Following the nomenclature of Mulder and Alexander
in Ref. [7], flows with volumetric concentration of sediments Qcj are named according
to Eq. (2.1).

3

Chapter 2. Theory

Sediment gravity flows

Turbulence

General term

Specific term Turbidity
current Fluidized

sediment flow
Grain
flow

Debris
flow

Matrix
strength

Grain
interaction

Upward
intergranular
flow

Sediment
support
mechanism

Figure 2.1: Diagram illustrating four types of sediment gravity flows and their support mechanisms.
Adapted from [6].

Sediment flow→


Turbidity current if Qcj ≤ 0.09
Concentrated density flows if 0.09 < Qcj < 0.4
Hyperconcentrated density flows if Qcj ≥ 0.4.

(2.1)

In this thesis, let a turbidity current at most consist of 9 % sediment per unit volume.
At this concentration the interaction between sediment particles may be neglected [8].

Turbidity currents can be triggered by an avalanche or earthquake, in which case they
are known as surge flows, or may be due to continuous sediment input from e.g., a river
mouth or the discharge of mine tailings. The cause of the flow may determine its shape.
A surge type turbidity current typically consists of a solitary “ball” of particles, while a
more continuous flow typically consists of a head, a body and a tail. The head precedes
body, and typically has a larger height than the succeeding parts. Particles deposited
by a turbidity current form what is known as turbidites.

2.1.2 Interactions with the ambient
In the marine environment, a turbidity current interacts with the sea bed and the ambient
fluid through several processes, two of which are entrainment and sediment deposition.
These processes will be defined below.

Formally, entrainment refers to the process in which the volume and density of a turbidity
current is affected by viscous effects [5]. These effects are acting on both the upper
current interface and at the sea bed interface. At the upper interface, entrainment may
be considered a process in which the current fluid is mixed with the ambient fluid. At
the lower interface, entrainment refers to the process in which sediment is lifted from
the sea bed into the current, i.e., erosion.

4

2.1. Gravity and turbidity currents

Considering first the upper interface, this effect is called water entrainment. Garcia
and Parker found in 1986 [9] that the coefficient of water entrainment ew could be
approximated by,

ew = 0.075√
1 + 718Ri2.4

, (2.2)

where Ri is the Richardson number. Here Ri = g′Qth/Q
2
v, for a turbidity current with a

reduced gravity g′ (see Section 2.3.2), a thickness of the current Qth, and speed Qv [4].

Erosion and deposition are the processes describing mass exchange between the sea bed
and the current flow. These processes are described by the Exner equation [10], which
is the conservation equation of mass in the bed and the current. The Exner equation is
given by

(1− γ)∂z
∂t

= −∇ · qs, (2.3)

where z is the bed elevation, t is time, γ is the bed porosity, and ∇ · qs is the divergence
of the sediment flux.

Erosion rate

In a turbidity current with speed Qv and Nj different types of particles, each with a
density ρj, the erosion rate can be approximated by Ejvsj [11]. Here, vsj is the settling
velocity for particle type j (see Section 2.3.5) and Ej is a sediment entrainment coeffi-
cient. Garcia and Parker found in 1993 [12] that the sediment entrainment coefficient
Ej, could be approximated by

Ej = a
Z5
eff

1 + a
0.3Z

5
eff

. (2.4)

Here a is a constant equal to 1.3 · 10−7, and

Zeff = λZu = λ
u∗
vs
f(Rpj) (2.5)

with u∗ =
√
Q2
vcD being the shear-velocity of the density flow [11]. The shear-velocity u∗

is here defined differently than in Ref. [4], where ũ∗ = QvcD is used. cD is a bed friction
coefficient, and λ = 1− 0.228σ, where

σ2 =
Nj∑
j=1

(ϕ− ϕ̄)2, (2.6)

is the variance of the particle size Dsj, on the ϕ scale. The relation ϕ = − log2 dsj is
used for conversion to and from the ϕ scale. Note that dsj is the particle size in mm,

5

Chapter 2. Theory

while Dsj is given in m. The ϕ̄ denotes the arithmetic average of the particle sizes on
the ϕ scale.

Lastly the function f and the particle Reynolds number for particles of type j, Rpj, are
given by

Rpj =
√
g(ρj − ρa)Dsj

ρa

Dsj

ν
, (2.7)

f(Rpj) =
R0.6

pj if Rpj ≥ 3.5
0.586R1.23

pj if 0 < Rpj < 3.5,
(2.8)

where ν is the kinematic viscosity of water. Note that the domain of f is expanded here
in comparison with the definition given in Ref. [4] and [12], in which f is undefined for
Rpj < 1.

2.1.3 Near-bed concentration
In 1993, Garcia found [13] a relation describing the near-bed concentration cnbj for a
turbidity current with poorly sorted sediment. Poorly sorted sediment implies that the
variance of the particle sizes is large, while for well sorted sediment the variance is small
[14]. The near-bed concentration is given by,

cnbj
Qcj

= 0.40δ1.64
j + 1.64, with δj = Dsj

Dsg

. (2.9)

Here Qcj is the layer-averaged volume concentration, and Dsj is the diameter of sediment
type j in the turbidity current. The geometric mean size of the suspended sediment,
Dsg, is defined as

Dsg =
 Nj∏
j=0

D
Qcj

sj

1/
∑Nj

j=0 Qcj

, (2.10)

for a turbidity current with Nj particle types.

2.1.4 Numerical models and self-accelerating turbidity currents
The three-equation model (TEM) and the four equation model (FEM) denote two groups
of models often used for modeling turbidity currents. These models were developed in the
1980s by Fukushima et al. [15], and have since then spawned several modified variants
[16]. At its conception, the TEM was believed to be insufficient for adequately modeling
turbidity currents, due to a violation of the turbulent kinetic energy balance, giving rise
to the FEM. However, it has later been shown that the TEM does indeed give meaningful
results, when the parameters of the current fulfill certain criteria called “ignition criteria”.
When these criteria are met, TEM predicts the formation of “self-accelerating” turbidity

6

2.2. Cellular Automata

currents. A turbidity current with velocity Qv and sediment transport rate ψ, is said
to be self-accelerating if these values increase downstream without limit after a finite
downstream distance [16], i.e., limx→∞Qv, ψ =∞, if x is the downstream coordinate.

The TEM scope is limited to the turbidity current itself, and does not include the
evolution of the sea bed. The TEM may be used to resolve the evolution of the thickness
Qth, speed Qv and sediment transport rate ψ of the current. Note that the volumetric
sediment concentration of the current Qcj is related to these variables through

Qcj = ψ

QthQv

. (2.11)

2.2 Cellular Automata
A cellular automaton (CA) can be considered a time-evolving uniform grid G of cells.
Each cell has a state S, and a set of neighbors N [17]. The number of possible states
and the number of neighbors may be arbitrarily chosen. In a Cartesian grid, the cell
neighborhood is typically the northern, southern, eastern and western neighboring cells,
i.e., a von Neumann neighborhood. In Conway’s “Game of Life” CA, the cells are either
“dead” or “alive” [18], meaning that there are two possible cell states.

Characteristic for a CA is that the time-evolved state of a cell is determined locally, i.e.,
by considering the neighboring cells’ states. In a CA, time-evolution is discretized. For
each time step, a cell evolves by using a specified set of rules. Through these rules the
neighbor states affect a cell. In a CA with binary states, one such rule could be “any
cell with “state 1” with fewer than two “state 1” neighbors evolves to a “state 0” cell”.
This rule is an example from Conway’s “Game of Life”. These “time evolution rules”
constitute a transition function σ.

The laws of a CA system are said to be local and uniform. Local because the state of a
cell is determined by its neighboring states. And uniform because the laws are the same
for all cells [17]. Thus a cellular automaton may be defined by:

< G,N, S, P, σ >,

with G defining the grid of cells, N defining the neighborhood of a cell, S defining
the states of a cell, and σ defining the transition function of the CA. P is a set of
parameters that may be input to the CA. These parameters can be physical constants,
initial conditions, source terms, or other specified parameters. Cells that are on the edge
of the grid G, are called border cells.

In using a CA to simulate a physical phenomenon, in particular the state S may be very
complex. By complex, it is meant that the state of a cell may describe several physical
quantities, e.g., a density, a height and an energy value. Thus, the state S is in fact a
“combination” of several substates. For a set of possible density values ρ, and a set of
possible height values h, the cell state S is the Cartesian product [19] of the substates:
S = ρ× h.

7

Chapter 2. Theory

In light of this information on substates, one may make a distinction between the update
rules in the transition function σ. A local interaction I is an update rule which involves a
cell’s neighbors. Local interactions are the most common update rules for CAs with non-
complex states S. However, when the cell state of a CA consists of several substates, an
update rule could use a substate A to update another substate B of the same cell. Update
rules that do not involve neighboring cell states are called internal transformations T .

An update rule X, that uses a substate A to update a substate B is denoted

X : A→ B.

An update rule provides the next iteration of the substate. To differ between old and
new iterations of a substate, superscripts are used, e.g., A(n+1) is the next iteration of
A(n).

Perhaps somewhat confusingly, superscripts are also used in the notation X : A → B,
to indicate the number of substates which enter the update rule. For, e.g., a hexagonal
grid, Y : A6 → B, may indicate that all six neighbors’ substate A values are used to
update the center cell B substate. Observe however, the use of parenthesis when used
to indicate iterations.

2.2.1 Hexagonal grids
In this section some theory on hexagonal grids is presented. The motivation of this is
the intention of using these as G in a cellular automaton. When working with hexagonal
grids, one prominent issue is the choice of indices, i.e., how do you refer to a specific
hexagon in the grid? There are several conventions for index labeling. What convention
is best suited will depend on what operations are to be performed on the grid. One way
to label the hexagons is illustrated in Figure 2.2A and B. With this convention, a grid
of hexagonal cells can easily be stored using a 2-dimensional array.

It will be useful to be able to convert between the indices [l,m], and the spatial coor-
dinates (x, y) of a hexagon in the grid. The neighborhood of a hexagon in a hexagonal
grid is isomorphous, i.e., we have a 6-fold symmetric neighborhood. This means that if
the center-to-center distance between two neighboring hexagons is ∆x, we can find the
relation between indices and coordinates by using the blue triangle in Figure 2.2A. With
a = ∆x/2, and c = ∆x, b is determined to be

√
3

2 ∆x. Thus, if (l = 0,m = 0) corresponds
to (x = 0, y = 0), one finds

x = ∆x(m+ 1
2 l) (2.12)

y = l

√
3

2 ∆x. (2.13)

In Figure 2.2B a convenient way of referring to a cell’s neighbors is shown. Using the
ordering 1-6 as shown, the k’th neighbor of a cell is defined by this value. The k values
are valid for cells away from the domain boundary. Cells at the grid boundary do not

8

2.3. Concepts and equations related to transition function σ

[l,m] [l,m+ 1]

[l + 1,m]

a

bc

A: B:

0
1 2

3
45

6

Figure 2.2: A: The figure illustrates one indexing convention for hexagonal grids. The blue triangle
(edges a,b,c) illustrates geometrical length scales in the hexagonal grid. B: Using the
indexing convention in subfigure A, the cells in a horizontal line share the first index, and
the shaded hexagons share the second index. The k’th neighbor of a center cell 0 is defined
according to the ordering 1-6 shown in the figure.

have certain neighbors, and will possess fewer valid k values. Table 2.1 indicates the
relative array indices of a center cell and its neighbors.

Table 2.1: For some center cell 0 with indices [l,m], the relative array indices for neighbor k is given
by this table.

k Relative indices of cell
1 [l − 1,m]
2 [l − 1,m+ 1]
3 [l,m+ 1]
4 [l + 1,m]
5 [l + 1,m− 1]
6 [l,m− 1]

2.3 Concepts and equations related to transition func-
tion σ

This section defines relevant equations and concepts which will be needed to define the
CA update rules for modeling of turbidity currents.

2.3.1 Angle of repose
The angle of repose is a concept that enters when considering the geometry of a pile of
e.g., sand. With the pile of sand in mind, the (critical) angle of repose θr, is the steepest
angle the pile can make with a horizontal plane. Adding more sand to the top of the
pile will result in an avalanche, in which mass is redeposited such that the radius of the
pile increases [20]. See Figure 2.3.

9

Chapter 2. Theory

Figure 2.3: The figure illustrates
the concept of the an-
gle of repose θr.

The physical properties of the material being stacked,
determines the value of θr. A typical example used to
gain an intuition for the topic is how wet sand can be
used to make sandcastles, while dry sand cannot. Thus,
wet sand must have a larger θr, in comparison to the
dry sand.

2.3.2 Reduced gravity
The reduced gravity g′, is a concept relevant to gravity currents. For a two-fluid system
it can be defined [5] as,

g′ = g
ρc − ρa
ρa

, (2.14)

where g is the gravitational acceleration, and ρc and ρa, is the density of the current
and the ambient fluid, respectively. For a particle flow consisting of Nj different types
of particles, each with a corresponding density of ρj, and a volumetric concentration of
Qcj, the current density may be defined as

ρc =
Nj∑
j

Qcjρj + (1−
Nj∑
j

Qcj)ρa. (2.15)

Inserting Eq. (2.15) in Eq. (2.14) yields

g′ = g
Nj∑
j=1

Qcj
ρj − ρa
ρa

. (2.16)

2.3.3 Numerical stability
A partial differential equation (PDE) can be solved numerically through spatial and
temporal discretization. There are several ways to discretize the terms in a PDE, and
there are varying advantages and drawbacks to most of them. The term numerical
scheme refers to a method of discretizing a PDE.

The amplification factor G for a numerical scheme can be defined as G ≡ ϕ̂(k+1)

ϕ̂(k) , where
ϕ̂(k) is any Fourier mode of the numerical solution of the PDE at time step k. For this
numerical scheme to be stable [21], G must fulfill

G ≡ ϕ̂(k+1)

ϕ̂(k) ≤ 1 +K∆t (2.17)

for a constant K. ∆t is the time discretization. This condition on G will, for certain
discretization schemes involving explicit time integration, lead to the CFL condition:

10

2.3. Concepts and equations related to transition function σ

C ≡ u∆t
∆x ≤ Cmax, (2.18)

where u is some characteristic speed in the PDE, and ∆x is the spatial discretization.
The value of Cmax depends on the discretization scheme [22].

2.3.4 Run-up height
When a turbidity current of thickness Qth, encounters an obstacle with a heightH > Qth,
then by conversion of kinetic to potential energy, the turbidity current thickness will at
most rise by an amount

h = 1
2
Q2
v

g′
, (2.19)

where Qv is the current speed, and g′ is the reduced gravity of the flow [23, 4]. The run-up
height r is thus defined as the maximum attainable height of the turbidity current:

r = Qth + h. (2.20)

2.3.5 Sphere settling velocity
The terminal velocity of a sphere vs (also known as the sphere settling velocity) in laminar
flow can be found by equating Stokes’ law [24] for drag, and the net gravitational force.
This yields an equation which can be solved for vs:

vs = 1
18
g′

ν
D2
s . (2.21)

Here ν is the kinematic viscosity of the ambient fluid, g′ is the reduced gravitational
acceleration and Ds is the diameter of the particle.

For larger particles, flow around the sphere is not laminar, and T. Salles suggests in [25]
the following formula for calculating the terminal velocity of a sphere of diameter Ds in
a turbidity current:

vs =


1
18
g′

ν
D2
s . if Ds ≤ 100 µm

10ν
Ds

[√
1 + 0.01g′D3

s

ν2 − 1
]

if 100 µm ≤ Ds ≤ 1000 µm

1.1
√
g′Ds if Ds ≥ 1000 µm

(2.22)

Eq. (2.22) is derived from Van Rijn’s formula for the settling speed for natural sand [26].
Inserting the settling velocity into the following equation by W. Dietrich [27] gives the
dimensionless settling velocity ṽs,

ṽs = ρav
3
s

(ρj − ρa)gν
. (2.23)

11

Chapter 2. Theory

Figure 2.4 shows the sinking speed as calculated by Eqs. (2.22) and (2.23), for a range
of particle diameters Dsj, using particle density ρj = 2600 kg/m3, water density ρa =
1000 kg/m3 and ν = 1 · 10−6 m2/s.

100 101 102 103 104 105

Ds (m)

10 6

10 5

10 4

10 3

10 2

10 1

100

v s
 (m

/s
)

Settling speeds

10 12

10 9

10 6

10 3

100

103

106

v s

Figure 2.4: This figure displays the sinking velocity vs for a sphere of various diameters. vs is calculated
by Van Rijn’s formula, Eq. (2.22), and the dimensionless speed ṽs is by Dietrich Eq. (2.23).

2.3.6 Chézy formula and speed of a turbulent current
Antoine Chézy is credited for finding a formula for the speed U of water flow in an open
channel [10]. Let a portion of the channel have length L, height h and width `. By
equating the parallel component of the gravitational force with a frictional force, and
solving for the speed U , Chézy found,

U2 = 2g
Cf

V

A
sin θ. (2.24)

Here Cf is some frictional coefficient, g is the gravitational acceleration, V = L · h · ` is
the volume of the fluid, A = L(2h + `) is the area of the channel in contact with the
fluid and θ is the angle of the channel with respect to the horizon [25]. The ratio V/A
is known as the hydraulic channel radius, and for channels satisfying h/`→ 0, it can be
approximated by V/A ≈ h. Combining this with the small-angle approximation applied
to sin θ, yields U = C

√
hθ, where C = 2g/Cf . Using this, Middleton [28, 29] derived a

formula suited for use in turbidity currents,

U =
√

8g′
f0 + fi

hs, (2.25)

where g′ is the reduced gravity given by Eq. (2.16), f0 ≈ 0.04 is the Darcy-Weisbach
constant, fi is the upper interface friction coefficient, h and s are the thickness and slope
of the channel, respectively. For sediment flows with Nj sediment types, each sediment
having a concentration of Qcj, Salles et al. suggests [4] using Eq. (2.25), with two
alterations:

12

2.3. Concepts and equations related to transition function σ

1. (f0 + fi)→ f0(1 + a), where a ≈ 0.43 is an emperical constant.

2. U → U/
√
ϕ, where ϕ = ∑Nj

j=1Qcj is the concentration of all Nj sediment types.

Note that ϕ here is unrelated to the prveiously described ϕ scale for the particle size
(Section 2.1.2.

13

3 | Python programming
In this chapter some information regarding implementation in the programming language
Python 3 is presented. The contents of this chapter mainly focuses on reducing the run
time of Python code. Section 3.1 contains information about the Python library Cython,
and Section 3.2 contains information about parallelizing Python programs.

3.1 Cython
This section contains some information about the Cython library for Python. Motiva-
tion for using Cython will be presented along with an example illustrating the superior
performance of Cython loops.

In essence, Cython is a library for Python that can be used to speed up Python code.
This is done by translating the Cython code into C/C++ and compiling it into Python
extension modules [30]. The Cython language is a mix of Python and C/C++, and
the source files usually have the extension .pyx. Pure Python can be translated and
compiled, but the potential speedup gained would not necessarily be that good. The
strength of the Cython language is the ability to specify explicit C type declarations to
variables.

3.1.1 Why use Cython?
There are several factors motivating the use of Cython. One example is the Python im-
plementation of low-level computational loops. The performance of for-loops in Python
suffers due to the dynamic nature of the language [30]. Making use of the explicit type
declarations, Cython provides the possibility of running for-loops at C speed. In Figure
3.1 two snippets of code are shown, each containing a function that adds all integers
from 0 up to the input variable x. The function test_py is a pure Python function, and
test_cy is a Cython function showcasing the use of type declarations.

def test_py(x):
a = 0.0
for i in range(x):

a += i
return a

def test_cy(int x):
cdef int i = 0
cdef int a = 0
for i in range(x):

a += i
return a

Figure 3.1: The figure displays two functions performing the same operation to produce a result.
The function test_py is a pure Python function, and the function test_cy is a Cython
function.

15

Chapter 3. Python programming

The following example illustrates the performance increase due to adding type declara-
tions to variables in Cython. Consider now that a matrix of size 1000 × 1000 is to be
traversed by a for-loop. For simplicity, assume that this is equivalent to running either
test_py or test_cy with x = 106. Then, test_py(x) and test_cy(x) have runtimes
of approximately 31.2 ms and 56.4 µs, correspondingly. This means the Cython function
is about 553 times faster than the Python function. Although both of the runtimes
may seem small, consider running a simulation on a grid where cell data is stored in 7
matrices with size 1000×1000, and that those are traversed e.g., 10000 times during the
simulation. The computational time then becomes 36 min for the Python version and
4 s for the Cython version.

As mentioned above, the Cython compiler accepts pure Python code. This means that
during the development phase of a program, one can use Python as usual, then once
functionality is in place, one can apply Cython to computationally intensive parts of
the code. Using Cython to speed up a small (but frequently used) section of code can
make a noticeable difference in runtime. As the Pareto Principle states: 80 percent of
the runtime is spent in 20 percent of the code [30].

3.1.2 Compatibility
Cython is compatible with NumPy and message passing parallelism (see Section 3.2).
Cython is able to directly manipulate the memory buffers of NumPy arrays by using
“memoryviews”, removing the Python overhead from the runtime in Cython. This allows
efficient use of NumPy arrays both in the Python part and in the Cython part of the
code.

Note that for-loops can often be avoided by using vector operations when working with
NumPy arrays. The NumPy vector operations are written in optimized C code, thus
eliminating the need for Cython in most cases. In comparing runtimes, a NumPy oper-
ation and the corresponding Cython code should yield about the same result. However,
there are situations where NumPy operations are less memory efficient than the corre-
sponding Cython code [30], or an algorithm is difficult to write without using for-loops.

3.2 Parallel computing
In this section some basic concepts and relevant theory [31] on parallelization of computer
programs will be introduced.

Modern computers are usually equipped with a multicore processor, i.e., a processor
consisting of several CPUs or cores. The CPUs exchange information with the computer’s
memory to do computations. In parallel computation, one distinguishes between shared-
and distributed memory systems. The main difference between the two is the way the
cores are connected to memory. In shared memory systems, the CPUs are all connected
to a common memory trough an interconnect, and may access all data locations. In a
distributed memory system, each core has its own private memory, and a core – memory
pair can be referred to as a process. As each process has its own private memory,
information from another process cannot be accessed directly.

16

3.2. Parallel computing

A serial program is a program running on one core (or thread). Serial programs may be
parallelized by splitting the work load between several processes. Doing so usually leads
to reduced computation time and performance increase.

3.2.1 Performance
The speedup s of a program is a measure of how much faster a parallelized program is
when compared to the serial program. Speedup may be defined as

s = tserial
tparallel

. (3.1)

Where tserial and tparallel is the serial and parallel computation time, respectively. Fur-
ther, these values may be expressed by,

tserial = σ + ϕ (3.2a)
tparallel = σ + ϕ/p+ κ, (3.2b)

where σ denotes the inherently sequential part of the program, ϕ is the parallelizable
part and p is the number of CPUs used. κ denotes the parallelization overhead, i.e.,
extra code introduced by the parallelization process. The code comprising the overhead
κ usually depends on whether the system uses shared or distributed memory.

In essence, Eq. (3.2b) is the manifestation of Amdahls law [32] in its simplest form, the
only difference being that Amdahl neglects the overhead κ. Amdahls law says that the if
a parallel program contains a serial part σ, the speedup s will be bounded by the serial
part. Define f = σ/(σ + ϕ) as the fraction of time spent (by a serial program) in the
inherently sequential part of the program. Then, Amdahls law says that the speedup of
the program is bounded by

s ≤ 1
f + (1− f)/p. (3.3)

Hence, even if p → ∞ the best possible speedup is 1/f . Observe that if f → 0 the
speedup is p. This is known as linear speedup, and implies that the program perfectly
divides the workload.

Gustafson’s law states that for a particular program, the fraction f will decrease as the
problem size increases. The size of a problem is usually measured in the number of
floating point operations (FLOPs) required to complete it. The larger the problem, the
more FLOPs must be performed. As f decreases the potential speedup increases. In
other words, to achieve high speedup, the problem size should be large, to minimize the
sequential fraction of the program [31]. For large problem sizes Gustafson predicts that
the speedup is bounded by

s ≤ p+ (1− p)f. (3.4)

17

Chapter 3. Python programming

The experimental serial fraction of a program e = (σ+κ)/(σ+ϕ), differs from f in that
it includes the overhead κ. The Karp-Flatt metric [32] can be used for estimating e,

ep = 1/sp − 1/p
1− 1/p . (3.5)

In the case where a program is not gaining the desired speedup, calculating ep may bring
insight into the reason for this. If the experimental serial fraction ep is increasing as p
is increasing, the culprit is probably parallel overhead. If ep is constant for increasing p,
the speedup is limited by the actual parallelization. That is, a large part of the program
is still serial.

Efficiency E is a measure of how “well utilized” the cores are in a parallel program. It
is defined as

E = s

p
= tserial
p · tparallel

. (3.6)

For a linear speedup E = 1. Note that super-linear speedups can in some cases be
obtained. This implies s > p (and E > 1), and can usually be attributed to e.g., efficient
caching. In these situations a sub-problem fits into the CPU cache, and thus less time
is spent accessing the computer’s main memory than in the serial program.

3.2.2 High performance computing and MPI
Distributed memory systems are most commonly used in high performance computing
(HPC) scenarios. In such systems the cause of overhead usually originates from commu-
nication between processes.

Message-passing interface (MPI) [31] is a standard that provides functions for handling
generation of processes and communication between them, and libraries such as Open-
MPI or MPICH make MPI accessible from C, C++ or FORTRAN. The Python package
mpi4py [33], makes MPI accessible from Python. Note however that, mpi4py depends
on having an MPI implementation already installed on the system.

In MPI, each CPU is given a “rank” as identification. The ranks are unique, non-negative
integers starting at 0. MPI can also generate and handle CPU topologies. This means
that ranks are distributed to some grid, and assigned coordinates. A Cartesian topology
may be created by specifying the number of processors in each grid dimension. Then,
with px and py denoting the number of CPUs in directions x and y, respectively, a 2-
dimensional MPI topology with px × py CPUs may be created. Figure 3.2 illustrates
how 4 processors may be assigned to coordinates in a MPI Cartesian grid. Further
context for Figure 3.2 will be presented in the section below. For the 2D Cartesian
topology, the CPU ranks follows the labeling scheme in the figure, with increasing rank
values in a “row-major order” fashion. In addition to the rank identification, CPUs are
assigned a column and a row in 2D Cartesian topologies. Thus, the CPU with coordinate
(row, col) = (0, 0) in Figure 3.2 is CPU 0.

18

3.2. Parallel computing

The reduction function [31] is a function implemented in the MPI standard, that “reduces
a set of numbers into a smaller set of numbers” by performing an operation on the set.
Common operations are MPI_MAX which returns the maximum element, or MPI_MIN which
returns the minimum element. These operations are useful in situations where each rank
calculates some number, and e.g., the minimum value must be determined. The reduction
function returns the result of the operation to one of the ranks. The Allreduce function
performs a reduction operation and distributes the result to all ranks. Note that a
variable is said to be local if it is accessible or readable by only one rank. A global
variable is one that is shared by several CPUs. In MPI, global variables does not exist,
as no ranks can manipulate the same memory location.

3.2.3 Parallelizing a cellular automaton using MPI
In order to parallelize a cellular automaton, recall that the problem consists of applying
a transition function to a cell state, and that a cell evolution only depends on the state
of its neighbors. Thus, a CA problem is in principle well suited for parallelization.

As a CA consists of a grid of cells, with each cell state interacting only with its neighbours,
the grid may be divided into subgrids and iterated independently. Assigning each process
to a subgrid, each CPU now only has to iterate part of the complete grid. Figure 3.2
illustrates how MPI may be used to divide a CA grid G among 4 CPUs. There is
however an issue. To iterate a border cell the CPU requires information located in
another subgrid, i.e., outside the local memory of the CPU.

Halo-exchange is a technique that may be used for solving this problem. In this technique,
the subgrid is padded with an additional layer of cells, resembling a halo (see subgrid
illustration in Figure 3.2). The “halo-cells” must be updated with current values from
neighboring subgrids between each CA iteration. Let a halo-cell and the cell from which
its value was copied, be referred to as “mirror cells”. This communication between two
CPUs is illustrated in Figure 3.3. Equivalent halo-exchanges must be performed to all
sides of a subgrid. Note that only the interior cells of a subgrid are part of the local
computational domain, and that the halo-cells are “read-only” during the iteration.

Thus, a CA may be parallelized by using MPI to generate a 2D Cartesian grid of size
px × py, assigning each CPU to a subgrid, exchanging halos and iterating the subgrids
independently. Note that halo-exchanges must be performed between each CA iteration.
After the desired number of iterations, each subgrid may be “gathered” and assembled
into the full-size grid, using MPI functions.

Let a subgrid be of size A×B. Then the number of halo cells becomes Nh = AB− (A−
2)(B − 2). Ideally, Nh should be much smaller than the total number of cells Nt = AB,
i.e., Nh/Nt should be small. If the ratio Nh/Nt is large, a subgrid iteration will be
dominated by operations related to MPI communication, and not actual computation.
Regarding the relation between the subgrid dimensions A and B, it can be shown that
the area (number of interior cells) is maximized when A = B, i.e., the subgrids should
be square to minimize communication. Figure 3.4 shows the ratio Nh/Nt for a square
subgrid, indicating for which subgrid size the communication overhead becomes accept-

19

Chapter 3. Python programming

able.

Subgrid with haloComputational domain

CPU0 CPU1

CPU3CPU2

Figure 3.2: The left figure illustrates how a computational domain may be divided into subgrids,
and given to separate CPUs, in order to reduce computation time. The color of the cell
indicates subgrid association. The grey colored cells indicate the edge of the grid, and its
values may be defined by some boundary condition. The right figure illustrates the subgrid
of CPU 2 padded with an extra cell-layer, known as a halo. In halo-exchange, the halo
cells are updated with values from subgrids of neighboring CPUs. Figure 3.3 illustrates
how the halo cells are updated using the halo-exchange technique.

0 1 2 3 4 5 4 5 6 7 8 9
CPU 0 CPU 1

4
-1
-1

-1-1
-1
-1

-14
-1

-1 -1

Figure 3.3: This figure illustrates communication between two CPUs during a halo exchange. Two
columns are exchanged between CPU 0 and CPU 1, providing the required information
to iterate the border cells. Each column is labeled according to the corresponding column
index in the complete computational domain (see Figure 3.2). The arrows indicate com-
munication between processes. Some dummy values in the cells help indicate the exchange.
An equivalent operation is performed for all borders.

20

3.2. Parallel computing

0 20 40 60 80 100
Grid size (A)

0.2

0.4

0.6

N
h/N

t

MPI halo fraction (A × A grid)

Figure 3.4: The plot indicates the ratio between the number of halo cells Nh and the total number
of cells Nt in an MPI subgrid of size A × A. For small subgrids, the amount of MPI
communication may surpass the amount of actual computation performed in the grid.

21

4 | Implementation of the cellular
automaton

In this thesis a cellular automaton (CA) has been used for simulating turbidity currents.
This chapter is dedicated to discussing the implementation and functionality of the
CA. This CA is mostly based on the implementation described by Salles et al. in Ref.
[4]. Some modifications were made during implementation, as will be clearly stated in
the relevant sections. The source-code for this thesis was written in the programming
language Python 3, using the packages “NumPy” and “Cython”, and can be found on
Github [34]. The implementation was parallelized in MPI using the python package
“mpi4py” [33].

Put in context of the definition of a CA, given in Section 2.2, the CA implemented for
this thesis can be defined by:

< G,N, S, P, σ > .

Here G is a grid of hexagonal cells, with indexing as specified in Section 2.2.1. N is the
set of neighborhood-cells adjacent to the hexagonal cell, illustrated in Figure 2.2B. The
σ, and the sets S and P , will be elaborated in their own respective sections. S is the set
of possible cell states, P is a set of parameters which are used in the CA computations
and σ is the transition function. Section 4.5 contains some practical information about
how to initialize and run the CA, and how the implementation was “cythonized” and
parallelized.

4.1 Cell states S
The state S of a cell depends on seven substates. These substates are denoted by
Qa, Qth, Qv, Qcj, Qcbj, Qd, Qo. Thus,

S = Qa ×Qth ×Qv ×Qcj ×Qcbj ×Qd ×Qo, (4.1)
with each substate corresponding to a physical quantity specified in Table 4.1. Note
that Nj is the number of different particle types included in the simulation, and that
the index j = 1, 2, ..., Nj denotes different sediment types. All substates (except Qv)
are illustrated in Figure 4.1. The substates Qth, Qv, Qcj and Qo describe the turbidity
current, and may be denoted as “turbidity current states”. The remaining substates
Qa, Qd and Qcbj describe the sea bed, and may be denoted “bed states”.

23

Chapter 4. Implementation of the cellular automaton

4.1.1 Notation, substate indices and arguments
When specifying an update rule, a substate may be denoted with an argument, e.g.,
Qd(k). In this case k refers to neighbor number k, following the scheme presented in
Section 2.2.1. The substate Qo may be specified using two arguments, e.g., Qo(a, b).
In this case the outflow from cell a to cell b is meant. If no argument is given or the
argument 0 is used, the substate of the center cell is implied. The notation [] is used
to specify a specific cell in the grid (see Figure 2.2), e.g., Qd [l,m] refers to substate Qd

of the cell with indices [l,m]. Iterations of substates are specified by a superscript, i.e.,
Q(n+1) refers to the iterated state of Q(n). Iteration is not specified however, if a substate
is unaltered by that transformation (T) or interaction (I). If a substate is unaltered by
that particular I or T , the most recently updated value is implied, as specified by the
order in Section 4.4.

Table 4.1: This table explains the physical meaning for all substates in S, what unit they have, and
how many values are stored per cell.

substate Physical quantity Unit stored values
cell

Qa Cell altitude: bathymetry + Qd m 1
Qd Thickness of soft sediment m 1
Qv Speed of turbidity current m/s 1
Qcj Concentration of jth sediment type in turbidity current 1 Nj

Qcbj Concentration of jth sediment type in soft sediment 1 Nj

Qth Thickness of turbidity current m 1
Qo Outflow of turbidity current m 6

H1

Qa

Qth

Qc1 = V1/(QthA)

Bedrock
Qcb1 = H1/Qd1

2

...
Nj

Qd

Qo(0, 1) Qo(0, 2)

Qo(0, 3)

Qo(0, 4)Qo(0, 5)

Qo(0, 6)

Figure 4.1: These figures illustrate some of the substates (see Table 4.1) constituting the cell state S.
The left figure represents a cross section of a cell, the right figure is an overview of a cell
and its six neighbors. Nj is the number of different sediment types in the simulation. V1
is the total volume of all particles of type 1, and A is the base area of the hexagonal cell.
Qo(0, 1) is the flow from cell 0 to neighbor 1. Note that in reality, the sediment types may
be mixed, and that the well-defined segmentation shown here is just for illustration.

24

4.1. Cell states S

4.1.2 Initial and boundary conditions
In this section the initial values of the substates are described. Let X be the set of cells
considered as sources, and B be some submarine terrain of non-erodible bedrock. The
initial conditions may be specified by,

Q
(0)
d = Qd,0

Q(0)
a = B[l,m] +Qd,0

Q
(0)
cbj = Qcbj,0

Q(0)
o = 0


∀[l,m] ∈ G

Q(0)
γ [l,m] =

0 if [l,m] 6∈ X
Qγ,0 if [l,m] ∈ X

with γ = {th, v, cj}.

Here Qd,0 is some constant specifying the initial height of the erodible, soft sediment
layer. Qcbj,0 specifies the initial concentration of each sediment type on the sea bed.
Qth,0, Qv,0, Qcj,0 specifies the initial properties of the turbidity current. Respectively, they
represent the initial thickness, the initial velocity, and initial concentration of sediment
type j in the turbidity current. The substate Qo is initialized to zero for all cells, and
later calculated as part of the transition function σ.

The state S of a border cell, [border], is excluded from time evolution. The idea is that
the substates of border cells are given appropriate values in order to not influence the
cells in the simulation domain. In other words, the simulation should behave as if the
grid G was infinitely large, and as there were no boundaries. An attempt to achieve this
effect has been made by letting the boundary-cells receive values from interior-cells, and
subsequently resetting the value of the boundary cells (back to their initial conditions),
thus removing e.g., current thickness Qth or sediment Qd from the system.

4.1.3 Source cells
This section will explain how the source cells X of the grid are updated for each CA
iteration. This is relevant because it is of interest to simulate a continuous sediment
input. The source cells could correspond to the location of, e.g., a river mouth or some
submarine tailing disposal process.

In order to simulate simulate this process, the current thickness Qth, speed Qv, and
particle concentration Qcj of the source cells must be updated between each iteration n.
The new substate value is a weighted mean of the present value and the fixed input/source
value. Using the notation specified above, let Qγ,0 (with γ = {th, v, cj}) correspond to
the source values. Then the updated substates become:

Q(n+1)
v = Q(n)

v +Qv,0Qth,0∆t
Qth,0∆t+Q

(n)
th

, (4.2)

25

Chapter 4. Implementation of the cellular automaton

Q
(n+1)
cj =

Q
(n)
cj +Qcj,0Qth,0∆t
Qth,0∆t+Q

(n)
th

, (4.3)

Q
(n+1)
th = Q

(n)
th +Qth,0∆t. (4.4)

∆t is the time discretization used in the simulation and will be elaborated below. By
accounting for the time discretization, these update rules ensure that mass is added to
the system at a constant rate.

4.1.4 Concentration of deposited sediment
This section introduces the concentration C of the amount of sediment type j deposited,
which is a concept relevant for analysis of results produced by the CA.

Consider a cell with an erodible soft sediment layerQd = ∑Nj

j Hj, whereHj is the amount
of sediment of type j in the cell (see Figure 4.1). During the course of a simulation, Hj

may change through erosion and deposition. When considering only deposition, the
amount of sediment of type j deposited in n iterations can be found by,

∆H(n)
j =

H
(n)
j −H

(0)
j = Q

(n)
cbjQ

(n)
d −Q

(0)
cbjQ

(0)
d if H(n)

j ≥ H
(0)
j

0 otherwise.
(4.5)

Then the concentration of particle type j in the sediment deposited after n iterations
can be found by,

C
(n)
j =

∆H(n)
j∑

j ∆H(n)
j

. (4.6)

Note that Cj is different from Qcbj, which gives the concentration of particle type j for
the total amount of sediment in that cell.

4.2 Parameters P
The global parameters P consist of twelve predefined constants which are input to the
CA, and one run-time determined variable ∆t.

The calculation of ∆t is elaborated in Section 4.3. The rest of the global parameters are
constants, defined in Table 4.2. These parameters are used in various calculations for the
transition function σ, see Section 4.4. In this implementation the spatial discretization
∆x is defined as the intercellular distance (see Section 2.2.1), while in Ref. [4], the
apothem of the hexagon is used.

26

4.3. Time step ∆t

Table 4.2: This table describes the global parameters that must be specified prior to running the CA.
The ”Relevant calculation” column specifies whether the parameter is used in an update
rule or another calculation. The update rules are elaborated in Section 4.4.

Parameter Description Relevant calculation Unit
∆x Spatial discretization ∆t, I1 m
padh Unmovable amount of density current I1 m
θf Friction angle limit I1 °
θr Angle of repose I4 °
g Gravitational acceleration g′ m/s2

Dsj Diameter of sediment type j T2 m
vsj Fall velocity of sediment type j T2 m/s
ρj Density of sediment type j T2 kg/m3

ρa Density of ambient fluid g′ kg/m3

γ Porosity of sea bed T2 1
cD Drag coefficient of sea bed T2 1
ν Kinematic viscosity of water T2 m2/s

4.3 Time step ∆t
Components of the transition function σ update each substate in S using equations
which will be defined in Section 4.4. Some of the update rules are derived from PDEs or
ODEs in time, which are discretized using the explicit Euler method. Explicit Euler is a
conditionally stable scheme [22], which means there will be restrictions on the parameters
involved in the relevant PDEs or ODEs. In this implementation, the restriction is put
on the time step ∆t.

Let all cells with a non-zero current thickness Qth be denoted as [`]. In other words [`] is
the set of cells in which there is a turbidity current. With r [`] being the run-up height
(defined in Eq. (2.20)) and g′ [`] the reduced gravity (defined in Eq. (2.16)) for cells in
[`], a characteristic speed can be defined as u [`] =

√
2r [`] g′ [`]. Using u [`] in the CFL

condition (defined in Eq. (2.18)) and solving it for ∆t yields:

∆t[`] = ∆x/2
u [`]Cmax

(4.7)

where ∆t[`] contains the ∆t value for all cells in [`]. In this implementation Cmax → 1 is
used. ∆t[`] may be referred to as the maximum relaxation time [4]. The smallest value
in ∆t[`] is chosen as the global time step:

∆t = min
[`]

∆t[`]. (4.8)

This calculation of ∆t is identical to the procedure described in Ref. [4]. However, some
additional remarks on the parallelization of the ∆t calculation are made in Section 4.5.2.

27

Chapter 4. Implementation of the cellular automaton

4.4 Transition function σ

As mentioned in Section 2.2, the transition function σ defines the time evolution of the
CA. The transition function for this CA consists of two internal transformations and
four local interactions. One CA time step constitutes running the six transition function
components in the order specified by the following list:

1. Internal transformation (T1): water entrainment

2. Internal transformation (T2): erosion and deposition

3. Local interaction (I1): turbidity current outflow update

4. Local interaction (I2): turbidity current thickness and concentration update

5. Local interaction (I3): turbidity current flow speed update

6. Local interaction (I4): slope failure model/toppling rule

Each component of the transition function, contains one or several update rules, which
will be elaborated in the following sections. As mentioned, the transformations and
interactions are mostly based on the transition function in Salles et al. [4]. However,
some rules are slightly modified, as will be explained.

Because the implementation uses a dynamic time step, ∆t must be calculated prior to
running the transition function. Denoting ∆t(n) as the time step value at time iteration
n, one time step in the CA constitutes:

1. Calculate new ∆t: ∆t(n)

2. Run transition function σ(∆t(n), S(n−1))→ S(n)

where S(n) are the states of the CA at time iteration n.

4.4.1 Internal transformation (T1): water entrainment
This internal transformation accounts for the entrainment effect (see Section 2.1.2) of
the turbidity current. The update rule is denoted by

T1 : Qth ×Qcj ×Qv → Qcj ×Qth. (4.9)
The water entrainment is expected to “dilute” the turbidity current with ambient water,
increasing the current volume and decreasing the particle concentration. This effect is
implemented through the water incorporation rate Ew,

Ew ≡ ewQv = 0.075Qv√
1 + 718Ri2.4

, with Ri = g′Qth

Q2
v

. (4.10)

Ri is the Richardson number, as explained in Section 2.1.2. Thus, the update rules are
the following [4],

28

4.4. Transition function σ

Q
(n+1)
th = Q

(n)
th + Ew∆t, (4.11)

Q
(n+1)
cj =

Q
(n)
cj Q

(n)
th

Q
(n+1)
th

. (4.12)

4.4.2 Internal transformation (T2): erosion and deposition
This internal transformation accounts for the erosion and deposition, i.e., the exchange
of mass between the sea bed and the turbidity current. The update rule can be denoted
by

T2 : Qa ×Qth ×Qcj ×Qcbj ×Qv → Qa ×Qd ×Qcj ×Qcbj. (4.13)
This rule is expected to either remove or add thickness to the soft sediment layer at
the sea bed, Qa and Qd. The concentrations of particle types in the turbidity current
and the sea bed, Qcj and Qcbj, are updated accordingly. Some changes are made to this
implementation of T2, with respect to the rule presented in Salles et al. [4].

The Exner equation (Eq. (2.3)) determines the amount of mass to be moved between
the bed and the turbidity current. In our case, with several sediment types, the Exner
equation can be expressed as

∂z

∂t
= ∂Qd

∂t
= ∂Qa

∂t
= D − E

1− γ = 1
1− γ

Nj∑
j=1

(Dj −QcbjEjvsj), (4.14)

D is the deposition rate, i.e., amount of deposited mass per time unit. E is the erosion
rate, i.e., amount of eroded mass per unit time. Correspondingly, Dj and QcbjEjvsj are
the deposition and erosion rates of sediment type j. The settling velocity of sediment
type j, vsj, is found by Eq. (2.22). Note that in Ref. [4], the dimensionless settling
velocity, i.e., Eq. (2.23) is used instead of Eq. (2.22). The settling velocity is discussed
when verifying T2, in Section 5.2. Also note that the erosion term in Eq. (4.14) differs
from the term as it is presented in Salles et. al [4], where the sinking velocity vsj is
omitted. However, as this leads to an inconsistency in the physical dimensions of the
expression, it is assumed to be a typo. Furthermore, the corresponding bed-sediment
conservation equation in e.g., Ref. [11] or Ref. [35] includes vsj.

The deposition rate Dj is found by

Dj = vsjcnbj. (4.15)
Here cnbj is the near-bed concentration, which can be calculated using Eq. (2.9). The
erosion rate Ej is found by using Eq. (2.4). Here, the definition of f (Eq. (2.8))
differs from the definition used in Ref. [4]. The definition of f was changed for this
implementation in order to accommodate a larger range of particle sizes Dsj. Notice

29

Chapter 4. Implementation of the cellular automaton

that the particle Reynolds number Rpj (Eq. (2.7)) may become much less than 1 for
sufficiently small particles. For instance, a particle with diameterDsj ∼ 1 µm and density
ρ = 2650 kg/m3 in water, has Rpj � 1.

Using Eqs. (4.15) and (2.4), the new values of Qa and Qd can be found by discretizing
Eq. (4.14) using the explicit Euler scheme. This yields

z(n+1) = z(n) + ∆t
∑Nj

j=1 (Dj −Q(n)
cbjEjvsj)

(1− γ) , (4.16)

where z represents substates Qa and Qd. The updated values of Qcj and Qcbj are found
by

Q
(n+1)
cj = Q

(n)
cj −∆t

Dj −Q(n)
cbjEjvsj

(1− γ)Qth

, (4.17)

Q
(n+1)
cbj = Q

(n)
cbj + ∆t

Dj −Q(n)
cbjEjvsj −Q

(n)
cbj

∑Nj

j=1 (Dj −Q(n)
cbjEjvsj)

(1− γ)Q(n+1)
d

. (4.18)

In Ref. [4], in the equation corresponding to Eq. (4.17), the net-change in concentration,
∆tDj−Q

(n)
cbj
Ejvsj

(1−γ)Qth
, is added to the state Qcj, instead of being subtracted as it is in Eq.

(4.17). The turbidity current concentration Qcj is expected to decrease if the current is
depositing sediment, i.e., Dj > QcbjEjvsj. And conversely, Qcj is expected to increase if
the current is erosive. To achieve this, the sign must be negative, and thus this must be
a typo in Ref. [4].

Additionally, Eq. (4.18) differs from the corresponding rule in Ref. [4], in that the new
iteration value Q(n+1)

d is used in the denominator, instead of the old value Q(n)
d . Using

Q
(n)
d leads to incorrect normalization, and is assumed to be a typo.

Note that these update rules may result in substates attaining unphysical values, i.e.,
concentration values Qcj, Qcbj that are outside the range [0, 1], or negative sediment
height Qd. In this implementation, this is handled in the following way: if unphysical
values occur for one of the cells to which this rule has been applied, then that cell state
is reverted to its state prior to T2 application. This correction, or a similar one, is a
necessary addition to the rule T2 as it is presented in Salles et al. [4].

4.4.3 Local interaction (I1): turbidity current outflow update
This local interaction calculates the outflows Qo for each cell. It can be denoted by

I1 : Q7
a ×Q7

th ×Qv ×Qcj → Q6
o. (4.19)

To find the outflow in each direction Qo(0, k), a minimization algorithm is used. This
algorithm was composed by Di Gregorio et al. [36], and rewritten by D’Ambrosio et al.
[37].

30

4.4. Transition function σ

Initially, let A be the set {1, 2, 3, 4, 5, 6} where each number represents a neighbor of the
center cell (see Figure 2.2). In the algorithm, cells that shall not receive any outflow will
be eliminated from A.

Step 1:

Define the angle βk, specified by the differences in height (see Figure 4.2) between the
central cell and the neighbor cell k,

βk = arctan
(

(Qa + r)− (Qth(k) +Qa(k))
∆x

)
(4.20)

Here r is the run-up height, as defined by Eq. (2.20). Comparing βk with the friction
angle limit θf , all neighbor cells whose βk < θf are eliminated from the set A. Note that
θf , and not the angle of repose θr, is used here (see Table 4.2).

Qa

Qth

hk

r

Bedrock

∆x

βk

Qa(k)

Qth(k)

Center Neighbor k
Figure 4.2: This figure illustrates how the angle βk is defined in the local interaction I1. hk is the

height reachable by a turbidity current due to its kinetic energy, see Section 2.3.4.

Step 2:

Let Na =Card(A) be the number of cells in A. Define an average Γ:

Γ = 1
Na

(
r − padh +

∑
k∈A

(Qa(k) +Qth(k))
)
, (4.21)

where padh is some unmovable amount of turbidity current thickness (see Table 4.2).

Step 3:

If (Qa(k) +Qth(k)) ≥ Γ remove cell k from A. If any cell is eliminated, go back to Step
2. The purpose is to have no outflow to any cells with an above average height among
the neighbors.

31

Chapter 4. Implementation of the cellular automaton

Step 4:

Let f(k), k ∈ [1, 6] be the non-normalized outflows for a cell. Then f(k) is found by

f(k) =
Γ− (Qa(k) +Qth(k)) if k ∈ A

0 if k 6∈ A
. (4.22)

Finally, the normalized outflow Qo(0, k), k ∈ [1, 6] is found by

Q(n+1)
o (0, k) = Qth

r
prf(k). (4.23)

Here pr =
√

2rg′ ∆t
∆x/2 is a relaxation factor [4, 37] that is constant, and shared by all cells

during a CA iteration n. The relaxation factor should satisfy 0 < pr ≤ 1 according to
Ref. [37]. In this implementation the constraint 0.2 ≤ pr ≤ 1 is used. This is enforced by
comparing the calculated pr to the predefined limits. The lower limit of pr is determined
through numerical experiment. While testing the CA, it was observed that without a
lower boundary on pr, the turbidity current did not distribute itself to the grid. In other
words, it was confined to a small area about the source cells. Raising the lower boundary
too high, led to excessive amounts of turbidity current flow, and a checkerboard pattern
for the turbidity current height Qth was observed.

4.4.4 Local interaction (I2): turbidity current thickness and
concentration update

This local interaction calculates the new turbidity current thickness, and corresponding
sediment concentration, due to sediment flow between cells. The update rule can be
denoted by

I2 : (Qth ×Qcj ×Q6
o)7 → Qth ×Qcj. (4.24)

The expected behaviour is that when a cell has an outflow, its turbidity current thickness
will decrease, and if there is an inflow, the thickness increases. The new concentration
then becomes a weighted average of the old concentration Qcj, and the neighbor cells’
concentration Qcj(k).

The update rules are defined by

Q
(n+1)
th = Q

(n)
th +

6∑
k=1

(Qo(k, 0)−Qo(0, k)), (4.25)

Q
(n+1)
cj =

(
Q

(n)
th −

∑6
k=1 Qo(0, k)

)
Q

(n)
cj +∑6

k=1Qo(k, 0)Q(n)
cj (k)

Q
(n+1)
th

. (4.26)

32

4.4. Transition function σ

4.4.5 Local interaction (I3): turbidity current flow speed up-
date

This local interaction updates the speed of the turbidity current. The update rule can
be denoted by

I3 : Q7
a ×Q7

th ×Q7
o ×Qcj → Qv. (4.27)

This update rule calculates the “open channel speed” for each direction k out of a cell
using Eq. (2.25) with alteration 1, made by T. Salles (see Section 2.3.6). Alteration 2,
i.e., the factor ϕ, is omitted from U in this implementation. The reason behind this is
that the volumetric concentration Qcj is already accounted for in the reduced gravity g′.
This claim is supported by the corresponding equations in e.g., Refs. [29] and [38].

This rule considers the flow towards each of the 6 neighbor cells as an open channel flow,
and so Eq. (2.25) is solved for each direction k ∈ [1, 6]. In Ref. [4], the slope s in each
direction, sk, is defined as, “the difference in height between the central cell (Qa +Qth)
and the neighbor cell (Qa(k) +Qth(k))”. This is interpreted as,

sk = 1
∆x [(Qa +Qth)− (Qa(k) +Qth(k))] . (4.28)

Here, the factor 1/∆x is included in order to account for the distance between grid cells.
Continuing the open channel flow analogue, the “height of the flow” h will in this case
be the outflow Q̃o(0, k) in direction k, i.e., in Eq. (2.24), h → Q̃o(0, k). Note that
here, Q̃o is the non-scaled outflow, i.e., Q̃o = Qo/pr, where pr is the global relaxation
constant (see Section 4.4.3). The model described in Ref. [4] uses the substate Qo for
this purpose. However, numerical experiments indicate that the non-scaled outflow Q̃o

provides the best results.

Using sk and Q̃o in Eq. (2.25), the speed in each neighbors’ direction Uk can be calculated.
Note that, in using the definition Eq. (4.28), sk may become negative. As Uk ∝

√
sk,

the slope sk must be set to zero if sk < 0 before computing the speed in that direction,
to avoid complex numbers. The speed of the cell Qv is then found by the arithmetic
mean of the nonzero Uk:

Q(n+1)
v = 1

N

6∑
k=1

Uk, (4.29)

where N ≤ 6 is the number of nonzero Uk.

Note that Eq. (4.28) is not explicitly defined in Ref. [4]. The slope sk could also be
defined using the absolute difference,

sk = 1
∆x |(Qa +Qth)− (Qa(k) +Qth(k))| . (4.30)

33

Chapter 4. Implementation of the cellular automaton

The motivation behind using the absolute difference lies with the fact that a cell may
have an outflow Qo(0, k) > 0, even if the height difference in sk is negative, due to the
run-up effect (see Sections 2.3.4 and 4.4.3). However, as shall be seen in Section 6.2,
the intention of Salles et al. may have been for sk to be defined without absolute value,
i.e., as Eq. (4.28). For either slope definition, all that is described above holds. Unless
explicitly stated, the slope definition Eq. (4.28) will be used throughout this thesis.

4.4.6 Local interaction (I4): slope failure model/toppling rule
This local interaction accounts for the effect of avalanches on the sea bed, in which an
oversteepened hill collapses, and some soft sediment is transferred between cells. The
corresponding bed concentrations are also updated. The interaction is denoted by

I4 : Q7
a ×Q7

cbj ×Q7
d → Q7

a ×Q7
cbj ×Q7

d. (4.31)
The implementation used in this thesis uses elements from Ref. [4] and from a model
used in Ref. [20]. Extra motivation is given for the Qd and Qa update rules, as these
were formed during the implementation of this project.

As grid cells attain different soft sediment height values Qd, the angle to neighbor k, θk
may be defined, as illustrated in Figure 4.3A. In the figure, b ≡ Qa − Qd is the height
of the bedrock. The angle θk is compared with the angle of repose θr: if θk > θr, some
fraction of the soft sediment, ∆Q̃d, is transferred from the center cell to the neighboring
cell. The time evolution is illustrated in Figure 4.3B and 4.3C. The non-normalized
fraction of mass ∆Q̃d,k, to be moved from the center cell to its neighbor k ∈ [1, 6] is
given by,

∆Q̃d,k =
0 if θk ≤ θr

min
{
ξk,

1
2

}
if θk > θr and Qd > 0

with ξk = 1
2
dhk −∆x · tan(θr)

Qd

.

(4.32)

This implies that a cell may at the most transfer half of its soft sediment. From this the
amount of mass to be transferred from a cell to a neighbor k is given by

∆Qd,k = ∆Q̃d,k ·Qd

N
, (4.33)

where ∆Q̃d,k/N is the normalized fraction of mass, and N is the number of neighbors
satisfying the condition in Eq. (4.32), i.e., θk > θr. Scaling with 1/N ensures that the
amount of soft sediment to be distributed does not exceed the amount present in the
cell.

The update rules become for the center cell,

z(n+1)(0) = z(n)(0)−
∑
k

∆Qd,k, (4.34)

34

4.4. Transition function σ

b

Qd θk

dhk

∆x

Sediment

Bedrock

t = 0 t = ∆t

A:

B: C:t = 0

Figure 4.3: Slope failure model. A: Illustration of relevant variables for the slope failure model.
b ≡ Qa − Qd is the bedrock height, and dhk is the height difference between a center
cell and its neighbor k ∈ [1, 6] (see Figure 2.2). B+C: Illustration of ideal behaviour of
the slope failure model. The color intensity represents Qd, i.e., the amount of mass in the
cell. At t = 0 mass is concentrated in the center cell, while one time step ∆t later, the
mass is spread out to its neighbors.

with z = {Qd, Qa}, and

Q
(n+1)
cbj (0) = Q

(n)
cbj (0). (4.35)

And for any neighbor cell k with θk > θr:

z(n+1)(k) = z(n)(k) + ∆Qd,k, (4.36)

with z = {Qd, Qa}, and

Q
(n+1)
cbj (k) = 1

Q
(n+1)
d (k)

(
Q

(n)
d (k) ·Q(n)

cbj (k) + ∆Qd,k ·Q(n)
cbj (0)

)
. (4.37)

This rule reaches convergence when no toppling occurs, i.e., when θk ≤ θr is satisfied for
all cells and all directions. The rule also does not account for the size of the time step
∆t. This means that the same amount of mass will be moved during a toppling event
regardless the size of the time step.

The approach used here is slightly different to the approach used in T. Salles’ model [4], in
which an avalanche can only occur in one direction, thus exchanging sediment between
only two cells at a time. Using the approach outlined above, sediment is exchanged

35

Chapter 4. Implementation of the cellular automaton

between all eligible neighbor cells. Although, it is expected that both models produce
similar results, the model described above was chosen for two reasons. Firstly, it would
be reasonable to expect all neighbor cells to receive mass simultaneously during a slope
failure (see demonstration in Section 5.6). Secondly, this model is expected to reach
convergence in fewer CA iterations n than the alternative. Recall that I4 is applied once
per CA iteration (see Section 4.3). The number of iterations spent on a single toppling
event, nI4, could add up to a significant amount of simulated time ∑nI4 ∆t(n) (depending
on the size of ∆t). A faster converging model implies less elapsed simulation time, and
thus the implemented model was the better choice.

Note that this local interaction is the only update rule that may alter the substate of
another cell, and that this slightly complicated the parallelization process of the CA.
Some remarks on this are made in Section 4.5.2.

4.5 Implementation specific considerations
This section aims to clarify the practicalities of using the CA implementation. Dependen-
cies are listed, the configuration procedure is specified, and an implemented “failsafe” is
presented. Sections 4.5.1 and 4.5.2 elaborates on how Cython and MPI has been applied
for this CA.

Table 4.3 provides an overview of the Python package dependencies in this CA imple-
mentation. Additionally, mpi4py requires a working MPI implementation, and Cython
requires a C/C++ compiler to be installed on the system.

Table 4.3: This table lists Python libraries used in the implementation of the CA, and briefly explains
what they are used for.

Package Use

NumPy
Various functions/operations
ndarrays used for storing grid states S.
One ndarray used for each substate (see Table 4.2).

Cython Used to compile .pyx files
Configparser Importing initial values and parameters.
xarray Importing bathymetry data from netCDF.
Matplotlib Producing figures/output
mpi4py Running the CA in parallel

All simulation inputs, e.g., parameters in Table 4.2, initial conditions and bathymetry
preferences are specified in a .ini file. This .ini file will from now on be called the
“config file”. At runtime this file will be read, and the settings are applied to the simula-
tion. Note that source cells may be specified by using indices (x, y in config file) or UTM
33 coordinates (N,E in config file). UTM 33 coordinates are available for bathymetry
loaded from NetCDF-files. Appendix A contains a sample/template config file.

The implementation allows for the toppling rule I4 (Section 4.4.6) to be run during the
CA initialization, i.e., prior to when the transition function σ is applied. A tolerance

36

4.5. Implementation specific considerations

keyword may be specified in the config file, along with a tolerance tol. If tol is specified,
the toppling rule will be applied to the initial sand layer Q(0)

d , until Eq. (4.38) is satisfied.

√∑
G

(
Q

(n+1)
d −Q(n)

d

)2
≤ tol (4.38)

Here G is the CA grid.

During application of σ, the cell states S are checked for unphysical values. This implies
that the substates must satisfy the following conditions after a transformation/interac-
tion is applied: 0 ≤ Qcj, Qcbj ≤ 1 + ε and 0 ≤ Qth, Qv, Qd, Qo. If any substate attains
an unphysical value, the program throws an exception. The ε is added to the limit, to
compensate for floating-point errors. In this implementation ε is arbitrarily set to 10−4.

4.5.1 Cythonizing the CA implementation
In this CA implementation, Cython has been applied to the most computationally in-
tensive parts of the code. Disregarding any post-processing (e.g., plotting), the most
computationally demanding part of running this simulation is the iteration of the CA,
i.e., application of the transition function σ. For this reason, all transformations and
interactions of the transition function were written and compiled using Cython. To en-
sure the best speedup, type declarations were applied, and “memoryviews” were used to
manipulate the substate ndarrays, as described in Section 3.1.

4.5.2 Parallelizing the CA implementation
This CA implementation was parallelized using MPI. The parallelization procedure
mostly consisted of dividing the computational domain into subgrids (as described in
Section 3.2.3), and assigning them to a dedicated MPI rank. Let the coordinate of a
rank be given by (row,col).

How the computational domain is divided, and thus what shape `x × `y the subgrids
attain, is determined at runtime, based on the number of CPUs used p, and the size
Lx×Ly of the complete CA grid. The dimensions px× py of the MPI 2D cartesian grid,
i.e., “the number of processors in each direction” is (px, py) = (√p,√p) if p is a square
number. If p is not a square number, the following method is used to determine (px, py).
Let p1 and p2 = p/p1 be the two factors dividing p, closest to √p, and let p1 > p2. Then,
the dimensions px × py is determined by,

(px, py) =


(√p,√p) if p is a square number
(p/p1, p1) if Ly ≥ Lx

(p1, p/p1) if Lx > Ly.

For instance, with p = 512, which is not a square number, the MPI grid becomes 32×16.
Using this, the subgrid size `x× `y is determined by using the following rule. For `x, the

37

Chapter 4. Implementation of the cellular automaton

rule becomes: if Lx mod px = 0, i.e., the number of processors in the x direction exactly
divides the length Lx, then `x = Lx/px. If that is not the case, `x is determined by

`x =
bLx/pxc+ Lx mod px if col = 0
bLx/pxc otherwise,

(4.39)

where b c denotes the floor operator. To determine `y, let x→ y and col→ row. Notice
that if Lz mod pz 6= 0, i.e., the number of cells in one direction cannot be divided equally
among the number of processors in that direction, then, not every subgrid will have the
same size.

Determining and distributing the global time discretization ∆t

To calculate the global time step ∆t, each rank calculates the time step value ∆trank of
its subgrid according to the rules in Section 4.3, then

∆t = min
rank

∆trank.

This minimum is found, and distributed to all ranks by calling the MPI function Allreduce.
Note that if one of the subgrids contain no turbidity current, i.e., Qth = 0 in all cells
of that subgrid, the ∆trank of that grid must be defined as some arbitrary large number
(instead of zero), for the reduction operation to work properly. In this implementation
∆trank defaults to 9999999 when a subgrid is empty.

Parallelizing the toppling rule

As mentioned in Section 4.4.6, the toppling rule not only updates the state of the center
cell, but also alters the state of its neighbors. This implies that cells near the edge of a
subgrid, may send mass to the halo-cell. In ordinary halo-exchange, no change made to
a halo-cell will affect the subgrid from which it is mirrored. As such, any mass received
by a halo cell would normally just be overwritten during the next halo exchange. To fix
this, any mass received by a halo-cell has to be sent to the correct subgrid and added to
its mirror cell. This resembles an “inverted halo-exchange”, whose communication can
be illustrated by Figure 4.4. The cells receiving mass by the MPI communication are
updated according to the “neighbor cell update rules”, i.e., Eqs. (4.36) and (4.37). A
demonstration of the inverted halo-exchange can be seen in Section 5.6.

Parallelized CA time step

The iteration of the parallelized CA is about the same as presented in Section 4.3,
with the only differences being the calculation of the time step, and that one or several
halo-exchanges have to be applied after a transformation or interaction. For instance,
transformation T1 updates the substates Qth and Qcj (see Eq. (4.9)), and thus the halos
of Qth and Qcj must be exchanged after its application.

38

4.5. Implementation specific considerations

Figure 4.4: This figure illustrates the inverted halo-exchange for an MPI topology consisting of 9
ranks. Here, changes made to a halo-cell is sent back to the corresponding mirror cell.
The arrows indicate communication, the yellow cells are halo-cells, and the red squared
cells are cells receiving data. Only information sent from the center subgrid is shown here.

Prior to the first iteration, halo-exchanges are performed for all the substate grids. Note
that this is only needed before the first iteration, and that for subsequent iterations
only the halo exchanges listed below are needed. The global time step ∆t is calculated
using Allreduce, as described above. This is followed by a slightly modified transition
function σ̃:

1. Internal transformation (T1): water entrainment

2. Exchange halos of Qth, Qcj

3. Internal transformation (T2): erosion and deposition

4. Exchange halos of Qa, Qd, Qcj, Qcbj

5. Local interaction (I1): turbidity current outflow update

6. Exchange halo of Qo

7. Local interaction (I2): turbidity current thickness and concentration update

8. Exchange halos of Qth, Qcj

9. Local interaction (I3): turbidity current flow speed update

10. Exchange halo of Qv

11. Local interaction (I4): slope failure model/toppling rule

12. Exchange halos of Qa, Qd, Qcbj

13. Inverted halo-exchange of Qa, Qd, Qcbj (toppling rule MPI modification)

39

Chapter 4. Implementation of the cellular automaton

Observe that σ̃ effectively is equivalent to σ, with only the halo-exchanges and the inverse
halo-exchange being the difference.

40

5 | Verifying the transition
function σ

The purpose of this chapter is to discuss results for isolated update rules in σ, and
determine whether the results display the expected behaviour. In this chapter, test-
results for the components of σ are presented and discussed.

Some of the parameters (see Table 4.2) are kept constant during the verification. These
are given by Table 5.1. Note that the parameters not specified in Table 5.1 assume
different test values that will be specified in the relevant section. Also note that in all
relevant update rules, only one sediment type is used, i.e., Nj = 1.

Table 5.1: Parameter values used for verifying the behaviour of σ.

Description Parameter Values
Spatial discretization ∆x 1 m
Gravitational acceleration g 9.81 m/s2

Sinking speed particle type j vsj Given by Eq. (2.22)
Density particle type j ρj 2650 kg/m3

Density of water ρa 1000 kg/m3

Porosity γ 0
Bed drag coefficient cD 0.003
Kinematic viscosity of water ν 1 · 10−6 m2/s

5.1 Internal transform T1: water entrainment
In this section the internal transform T1, defined in Section 4.4.1, is applied to an example
grid cell. First, some example substate values are presented, and the transform is applied
using these values. Second, the behaviour of the transform is illustrated by plotting the
iterated substates for a range of turbidity current speeds Qv. The expected behaviour of
the water entrainment transform, is a dilution of the turbidity current, i.e., an increase
in current thickness Qth and decrease in concentration Qcj.

By the update rule definition Eq. (4.9), the relevant input substates are turbidity current
speed Qv, thickness Qth and concentration Qcj. In this example, we define the substates
of the cell to be Qv = 1 m/s, Qth = 2 m and Qcj = 0.03. For simplicity we also define
a static time step ∆t = 1 s. Using these values and Table 5.1, g′ is calculated using
Eq. (2.16), with the result being g′ ≈ 0.5 m/s2. Inserting this into the definition of the
Richardson number from Eq. (4.10) gives

Ri = g′Qth

Q2
v

= 1. (5.1)

41

Chapter 5. Verifying the transition function σ

Applying the update rules given by Eqs. (4.11) and (4.12) gives,

Q
(n+1)
th = Q

(n)
th + 0.075Qv∆t√

1 + 718Ri2.4
≈ 2 + 2.8 · 10−3 m, (5.2)

Q
(n+1)
cj =

Q
(n)
cj Q

(n)
th

Q
(n+1)
th

≈ 0.02996. (5.3)

The result is a thickness Q(n+1)
th /Q

(n)
th > 1 and concentration Q(n+1)

cj /Q
(n)
cj < 1, which is

characteristic for the expected dilution. These ratios are plotted in the Figure 5.1 for a
range of current speeds Qv.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Q
v
 [m/s]

1

1.01

1.02

1.03

1.04

1.05

Q
th(n

+
1)

/Q
th(n

)

Entrainment

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Q
v
 [m/s]

0.95

0.96

0.97

0.98

0.99

1

Q
cj(n

+
1)

/Q
cj(n

)

0 500 1000

Qv

0

0.5

1

Q
cj(n

+
1)

/Q
cj(n

)

0 500 1000

Qv

0

5

10

Q
th(n

+
1)

/Q
th(n

)

Figure 5.1: This figure displays the behaviour of the internal transformation T1, responsible for the
water entrainment of the turbidity current (see Section 4.4.1). The plots show how the
turbidity current thickness Qth grows, and the concentration Qcj decreases, as the cell
speed Qv → ∞. In the plot insets, the range of Qv is increased to 1000 m/s to illustrate
the asymptotic behaviour of the function.

5.2 Internal transform T2: erosion and deposition
In this section the erosion and deposition rule T2, presented in Section 4.4.2 is demon-
strated. The transform is applied to a solitary cell, considering first, the erosion and
deposition rates individually, before combining them (Eq. (4.14)) in order to better
understand the characteristics of the transform. The expected behaviour is a balance
between deposition and erosion that depends on the turbidity current states, and the

42

5.2. Internal transform T2: erosion and deposition

Figure 5.2: The left figure illustrates the entrainment coefficient Ej as a function of the particle
Reynolds number Rpj (and particle diameter Dsj), for the implemented model (Salles),
and two other commonly used entrainment models by Imran [35] and Fukushima [15] (see
Appendix B). The right figure illustrates the erosion rate’s dependence on Dsj and Rpj .
The legend indicates at what turbidity current speed Qv the plot was captured.

particles it contains. From the definition Eq. (4.13), the relevant substates for this rule
are Qa, Qth, Qcj, Qcbj and Qv.

First, consider the entrainment coefficient Ej, as given by Eq. (2.4). Since Nj = 1, the
bed-concentration is Qcbj = 1. Then, by specifying a current speed Qv and a particle
diameter Dsj, and using the values specified in Table 5.1, Ej can be calculated. The left
plot in Figure 5.2 illustrates the dependence of Ej on the particle Reynolds number Rpj

and the particle diameter Dsj, for the current speed Qv = 1 m/s. Here, the implemented
entrainment model (Salles) is plotted alongside two alternative entrainment models, by
Imran [35] and Fukushima [15] (see Appendix B). Observe that the only significant
difference between the Salles and Imran models is the sharpness of the Salles model at
Dsj ≈ 1 · 102 µm.

The erosion rate is obtained by Ejvsj, and is shown in the right plot of Figure 5.2. The
plot was made using the same initial conditions as described above, with the current
speeds Qv = {0.5, 1, 2}m/s. The dashed line indicates Ejvsj for Qv → ∞. Observe
that the erosion rate is bounded: Ejvsj ≤ 0.3vsj. This is because limZeff→∞Ej = 0.3
(see Eq. (2.4)). Notice that the erosion rate “dips” significantly near Dsj ≈ 5 · 102 µm
for speeds Qv . 2 m/s. This is because when Qv is sufficiently large, it can dominate
Zeff , but when this is not the case, the factor f(Rpj)/vsj, which carries the particle
size dependence, has more influence. The factor f(Rpj)/vsj has a global minimum close
to Dsj ≈ 5 · 102 µm, and is strictly increasing for both smaller and greater Dsj. This
explains why the erosion rates seem to converge to the dashed line for Dsj . 1 · 102 µm
and Dsj & 1 · 104 µm.

43

Chapter 5. Verifying the transition function σ

The deposition rate Dj (see Eq. (4.15)) depends on the current concentration Qcj and
particle size Dsj. For currents with one particle type Nj = 1, the deposition rate becomes
Dj = 2.04Qcjvsj. Recall that a turbidity current implies a concentration Qcj ∈ [0, 0.09].
This gives an upper boundary on the deposition rate: Dj . 0.2vsj. As there is no other
particle dependence in the deposition rate for Nj = 1, Dj will behave similarly to the
sinking velocity vsj for changes in particle size. vsj is illustrated in Figure 2.4. Note that
for turbidity currents with several particle types Nj > 1, the near-bed concentration cnb
depends on particle diameter Dsj and the mean particle diameter Dsg.

Now consider the rate of change in bed sediment height ∂z/∂t. Using γ = 0, Nj = 1,
and Qcbj = 1, the Exner equation (Eq. (4.14)), becomes ∂z/∂t = Dj − Ejvsj. For
∂z/∂t > 0, there is net deposition, while for ∂z/∂t < 0 there is net erosion. From the
above estimated boundaries of the deposition and erosion rates, it is evident that the
two can be of similar order, indicating that ∂z/∂t can both be positive and negative.

The boundary of the deposition rate is lower than the erosion rate boundary, meaning
that erosion should dominate in dense (Qcj ≈ 0.1), fast (Qv →∞) turbidity currents. As
the current speed decreases, one expects the erosion rate to decrease, and the deposition
term may dominate.

Combining the erosion model by Imran and a deposition model (see Appendix B) by the
same author, the Imran erosion/deposition model [35] can be implemented. In Figure 5.3,
∂z/∂t is plotted as a function of Dsj, for some values of Qcj and Qv = {0.5, 2, 3}m/s,
both for the model described in Section 4.4.2 and the Imran model. Notice that the

Figure 5.3: These plots serve the purpose of illustrating the behaviour of transition rule T2, and as a
comparison of the erosion/deposition model used in this implementation against a model
due to Imran et al. [35]. The change in bed sediment height ∂z/∂t is plotted as a function
of the particle diameter Dsj . The solid lines represent the implemented model, while the
dashed lines indicates the behaviour of the model by Imran. The figure title indicates the
turbidity current speed Qv and shear-velocity u?. The legend indicates for which turbidity
current concentration Qcj the curves were captured.

44

5.3. Local interaction I1: turbidity current outflow update

models display similar behaviour for all concentrations except Qcj = 0.15. However,
as for the purpose of this implementation, the turbidity currents concentration will be
bounded by 0.09 (see Section 2.1.1), so any discrepancy for concentrations Qcj > 0.09 is
of little relevance in this thesis.

The sinking speed vsj used in this implementation, and the one used by Salles et al. [4]
differs. In Ref. [4] it is stated that the dimensionless sinking speed (see Section 2.3.5) is
used. When using the dimensionful vsj, Eq. (2.22) the models by Imran and Salles seem
to agree, producing the results shown in the figures above, while using the dimensionless
speed ṽsj, yields large deviations between the models. Furthermore, upon inquiry, the
corresponding author of Ref. [4], states that it is indeed the dimensionful sinking speed,
i.e., Eq. (2.22), that should have been used in Ref. [4]. These arguments constitute the
reasons for using the dimensionful sinking speed over the dimensionless speed.

5.3 Local interaction I1: turbidity current outflow
update

This section demonstrates the internal transform I1, presented in Section 4.4.3. The
expected result is an outflow that depends on the value of Qa(k) + Qth(k), for the
neighboring cells, and the height and energy of the center cell. The relevant substate is
Q6
o.

In order to verify the implementation of I1, the Qo value is compared with an example
provided in D’Ambrosio [37]. The example is adapted to fit this implementation, and
the result can be seen in Figure 5.4.

qa = 16
r = 2
qth = 1

α1 =20 α2 =14

α3 =14

α4 =15α5 =19

α6 =20

Step 1: Eliminate cells with
βk < θf

Cell 1,5,6 are eliminated

Step 2: Calculate Γ
Γ = 15

Step 3: Eliminate cells with
αk ≥ Γ
Cell 4 is eliminated

Step 2: Calculate Γ
Γ = 15

Step 3: Eliminate cells with
αk ≥ Γ
No cells are eliminated

Step 4: Calculate
non-normalized outflow f(i)
f(2) = f(3) = 1

Configuration at t = 0
Using θf = 0° and padh = 0

qa = 16
r = 2
qth = 1

α2 =14

α3 =14

α4 =15

qa = 16
r = 2
qth = 1

α2 =14

α3 =14 qa = 16
r = 2
qth = 1

α2 =14

α3 =14

Figure 5.4: Example of correct behaviour of outflow update rule I1. Here αk ≡ Qa(k) + Qth(k).
Adapted from Ref. [37].

45

Chapter 5. Verifying the transition function σ

5.4 Local interaction I2: turbidity current thickness
and concentration update

In this section the local interaction I2 is applied to the cell neighborhood illustrated in
Figure 5.4. Recall that the local interaction I2 is responsible for updating the thickness
Qth and concentration Qcj of the turbidity current, based on cell outflows Qo.

The normalized outflows of the center cell, Qo(0, 2), Qo(0, 3), are assumed to be 1
4f(k) =

0.25, calculated in the previous section. The center cell has cell bathymetry height
Qa = 16, and turbidity current thickness Qth = 1, and the current concentration is
assumed to be Qcj = 0.03, before application of I2. Assume that the neighbor cells have
no turbidity current, i.e., Qth(k) = 0, so that αk = Qa(k) (see Figure 5.4). With these
assumptions, the update rules Eqs. (4.25) and (4.26) gives for the center cell:

Q
(n+1)
th = Q

(n)
th︸ ︷︷ ︸
1

+
6∑

k=1
(Qo(k, 0)−Qo(0, k))︸ ︷︷ ︸

−0.5

= 0.5,

and,

Q
(n+1)
cj =

0.5·0.03︷ ︸︸ ︷(
Q

(n)
th −

6∑
k=1

Qo(0, k)
)
Q

(n)
cj +

0︷ ︸︸ ︷
6∑

k=1
Qo(k, 0)Q(n)

cj (k)

Q
(n+1)
th︸ ︷︷ ︸
0.5

= 0.03.

Assuming the neighbor cells 2 and 3 (in Figure 5.4) only receive flow from the center
cell, their new substate values are given by:

Q
(n+1)
th = Q

(n)
th︸ ︷︷ ︸
0

+
6∑

k=1
(Qo(k, 0)−Qo(0, k))︸ ︷︷ ︸

0.25

= 0.25,

and,

Q
(n+1)
cj =

0︷ ︸︸ ︷(
Q

(n)
th −

6∑
k=1

Qo(0, k)
)
Q

(n)
cj +

0.25·0.03︷ ︸︸ ︷
6∑

k=1
Qo(k, 0)Q(n)

cj (k)

Q
(n+1)
th︸ ︷︷ ︸
0.25

= 0.03.

Consider the turbidity current thickness Qth update rule, i.e., Eq. (4.25). This equation
alters the previous iteration of Qth, based on the net-flux of the cell. This update rule
is then effectively a continuity equation for turbidity current flow. Next, consider the
turbidity current sediment concentration Qcj update rule, i.e., Eq. (4.26). The first term
in the denominator,

(
Q

(n)
th −

∑6
k=1Qo(0, k)

)
Q

(n)
cj , gives the amount of sediment type j

left (in the current) in the cell after the outflow Qo is removed. The second term,

46

5.5. Local interaction I3: turbidity current flow speed update

∑6
k=1Qo(k, 0)Q(n)

cj (k), calculates the amount of sediment type j flowing into the consid-
ered cell from the neighbor cells. Thus, the denominator calculates the net-amount of
sediment type j in the cell after the turbidity current flow Qo is accounted for. This is
then normalized by the updated turbidity current height, to give the volumetric concen-
tration Qcj.

5.5 Local interaction I3: turbidity current flow speed
update

In this section the local interaction I3, which updates the turbidity current speed Qv,
is applied to a cell. Let the cell neighborhood be similar to Figure 5.4, except that the
alterations made by interactions I1 and I2, in the previous sections, are applied. Thus, the
relevant substates of the center cell are Qth = 0.5 m, Qa = 16 m and Qcj = 0.03. Using
these values, with values from Table 5.1, the reduced gravity becomes g′ ≈ 0.5 m/s2.

The slope s given by Eq. (4.28), becomes

s = (16 + 0.5)− (14 + 0.25) = 2.25.

The speed of the center cell Qv(0) can be calculated by using Eq. (2.25) in Eq. (4.29),
as specified in Section 4.4.5. For simplicity, assume that the relaxation factor pr (from
local interaction I1) is 1. Since Uk ∝

√
Qo(0, k), only cells that are receiving an outflow

from the center cell will have a nonzero Uk. Thus,

Uk =
0 for k = 1, 4, 5, 6√

8g′
f0(1+a)Qo(0, k)sk ≈ 6.27 m/s for k = 2, 3.

(5.4)

As there are only two nonzero Uk, both of which are equal, the turbidity current speed
becomes

Qv ≈ 6.27 m/s. (5.5)

Note that the slope sk is calculated using the new turbidity current thickness values
Qth, i.e., the current thickness after the flow Qo(0, k) calculated in I1 has already been
“moved” between cells. Applying this local interaction before the interaction I2, would
result in a slope sk where the flow Qo has not yet reached the cells, and could thus yield a
larger speed Uk. This insight could prove useful when running the complete simulation,
as shall be seen in Chapter 6.

Recall that in Section 4.4.5, there was some ambiguity as to the implementation of
the local interaction. Specifically, to how the height difference between cells should
be defined, and thus, the definition of the slope s. Two possible definitions of s were
presented in Section 4.4.5. Considering this local interaction in isolation provides limited
insight into how the two will behave in the context of the full transition function σ. For

47

Chapter 5. Verifying the transition function σ

this reason, results are presented in Section 6.2 illustrating the different outcomes for
the two slope definitions.

An important remark regarding the substate Qv, is that the substate is merely used as
an indicator of the turbidity current energy. The speed does have some influence on
the amount of outflow between cells through the run-up effect, and which cells receive
outflow, but the actual speed at which the current moves through cells in the CA grid,
is unaffected by Qv.

5.6 Local interaction I4: slope failure model/top-
pling rule

This section is dedicated to demonstrating the results of the slope failure model presented
in Section 4.4.6. This update rule is expected to spread the soft sediment, as if there was
an avalanche. The effect may be somewhat comparable to diffusion in that it tends to
decrease gradients. The relevant substates are Qd, Qa and Qcbj, as seen by Eq. (4.31).
The results of applying I4 to selected scenarios are presented, as well as a demonstration
of the MPI toppling rule implementation elaborated in Section 4.5.1.

Let the source of sediment be a single cell [m0, l0], such that the relevant initial conditions
(ICs) are

z(n=0) [m, l] =
z0 if [m, l] = [m0, l0]

0 else
(5.6)

with z = {Qd, Qcbj}, and z0 corresponds to an initial sediment height Qd,0 and concen-
tration Qcbj,0. In this case the boundaries are set to be impenetrable barriers, i.e., Qd,
Qa →∞. Two test scenarios are used: one on a horizontal plane B = 0, where B is the
height of the non-erodible bedrock, on a hexagonal grid G of 200 × 200 cells, and one
with some submarine terrain B 6= 0 using a hexagonal grid of 200× 150 cells.

5.6.1 Test scenario with no terrain

Let the cell altitude be equal to the sediment height, Q(n)
a ≡ Q

(n)
d , i.e., the bedrock height

B is 0. Figure 5.5 illustrates the result of applying the toppling rule for n = 10000
iterations. The plots use the same simulation parameters, except for the repose angle
which takes on the values θr = 0° and θr = 10° for the left and right plot, respectively.
In reference to Eq. (5.6), the following initial conditions are used l0 = m0 = 100,
Qd,0 = 5000, and, Qcbj,0 = 1. The large plots show the erodible sand height normalized
by its max height Qd/max(Qd), and the inset plots show the concentration Qcbj. This
figure was produced using MPI with 4 CPUs.

Now consider the result of θr = 0°. Calculating ∑[l,m] Q
(n)
d [l,m] at n = 10000, yields

5000.0 m, implying that the system mass is conserved. The average cell Qd value, and
the standard deviation are correspondingly Q̄d ≈ 12.5 cm and std(Qd) ≈ 3.40 cm. The

48

5.6. Local interaction I4: slope failure model/toppling rule

minimum and maximum grid Qd values are respectively, 4.17 cm and 16.5 cm. Calculat-
ing the system mass after n = 10000 iterations, for θr = 10°, also yields 5000.0 m.

In Figure 5.6, a cross section of Q(n)
d , through the center of the sediment pile is plotted

for some selected time iterations n. The cross section corresponds to the horizontal
dotted lines shown in each of the plots in Figure 5.5. In the θr = 10° plot, the sediment
is observed to form a “hill”, with peak at m = 100 and base at m = 70 and m = 130.
At n = 10000, the peak of the hill has a height 5.32 m. Using the calculated values
Q

(10000)
d [l0, 69] and Q(10000)

d [l0, 100], the average incline is calculated to be θ̄ ≈ 10.1°.

Figure 5.5: The plots illustrate the results of the slope failure model on a 200 × 200 cell grid, with
initial conditions as described in Section 5.6.1, and θr = 0° (left figure) and θr = 10° (right
figure). The colorbar indicates the value of Qd and Qcbj . These figures were captured after
10000 time steps. The horizontal and vertical lines indicate the position of [l0,m0].

Figure 5.6: The figures show Q
(n)
d [l0,m], i.e., a cross section of Qd through the center of the sediment

pile (corresponding to the horizontal lines in the plots of Figure 5.5) for an angle of repose
θr = 0° (left plot) and θr = 10° (right plot). The legend indicates the time iteration n for
which the plot was captured. In the right figure the dotted lines indicate the height of the
pile and index where the hill begins for n = 10000.

5.6.2 Test scenario in Ranfjorden
Let the cell altitude be Q(n)

a ≡ Q
(n)
d + B, with B 6= 0. Define B = B(x, y), so that B

resembles a portion of the Norwegian fjord Ranfjorden, as shown in Figure 5.7. Note

49

Chapter 5. Verifying the transition function σ

that in this case ∆x = 50 m. This bathymetry can be selected in the simulation by using
the configuration bathymetry=ranfjorden in the config file.

Figure 5.8 shows the sediment distributionQ(n)
d , and concentrationQ(n)

cbj (inset plots) after
applying the slope failure model with the Qa specified, for n = {500, 750, 1000, 10000}
iterations. In this case θr = 0°, and the initial conditions are given by Eq. (5.6), with
Qd,0 = 5000, and, Qcbj,0 = 1. The source area is selected by specifying the UTM 33
coordinates E = 461022, N = 7356967, which for ∆x = 50 m corresponds to indices
[l0,m0] = [161, 100], and is indicated by the red dot in the Figure 5.7. The data used in
Figure 5.8 was collected by running I4 with MPI, using 4 CPUs.

Figure 5.7: This figure illustrates the submarine terrain (bedrock) B used in Section 5.6.2. The col-
orbar indicates the height of the bedrock relative to the sea surface. Zero height indicates
either the approximate shoreline location, or areas not included in the bathymetry data.
The red dot indicates the source area.

5.6.3 Demonstration of inverse halo-exchange
The Figure 5.9 illustrates how the toppling rule I4 would behave without employing the
inverse halo-exchange (see Section 4.5.2), while using MPI. Both figures use the initial
condition described in Section 5.6.1, with θr = 0°. In the left figure the sediment Qd

is localized to just one of the MPI ranks, and any sediment sent to a border/halo cell
will be overwritten by the “normal” halo-exchange (see Section 3.2.3), and lost to the
system. In the right figure the sand spreads to the entire grid, implying that mass is
transferred across ranks.

5.6.4 Discussion of the slope failure model
Consider the case with no bathymetry, and angle of repose θr = 0°. In the left plot of
Figure 5.5, both Qd and Qcbj indicate that sediment Qd has been propagated from the
initial cell [l0,m0] to all cells in the grid.

The expected result in this case, is a steady state in which the sediment resembles a
completely level, horizontal surface. With a constant amount of sediment in the system,

50

5.6. Local interaction I4: slope failure model/toppling rule

Figure 5.8: The plots illustrate the results of the slope failure model on a 200 × 150 cell grid, with
initial conditions as described in Section 5.6.2. The large plots show Qd/max(Qd), and
the insets show Qcbj . The angle of repose θr is 0°, and the colorbar indicates the value of
Qd/max(Qd) and Qcbj . The title indicates at which iteration n the figure was captured.

Figure 5.9: The figures illustrates the result of applying the toppling rule, without (left figure) and
with (right figure) the inverse halo-exchange, described in Section 4.5.2. The large figures
display the normalized sand height Qd/max(Qd), at time iteration n = 1000, and the
inset figures display the concentration Qcbj . The colorbar is valid for both the large and
inset figures.

51

Chapter 5. Verifying the transition function σ

the initial sediment height of 5000 m is expected to be equally distributed among the
200× 200 interior cells. Thus, the steady state of the system is achieved when every cell
has a sediment height 5000 m

2002 ≈ 12.5 cm. For n = 10000, the cell average was computed
to 12.5 cm, with a standard deviation of std(Qd) ≈ 3.40 cm, indicating that most of
the cells have a value close to the steady state value. Further iteration of the CA is
expected to decrease the standard deviation, i.e., std(Qd) → 0 as n → ∞. However,
due to the angle between cell heights θ (see Section 4.4.6) decreasing as steady state is
approaching, the fraction of mass to be transferred in each iteration (cf. Eq. (4.32)) is
also decreased. This implies that the majority of sediment redistribution occurs for low
n, since the height differences, and thus θ is greatest for those iterations. The evolution
of the cross section (left plot in Figure 5.6), confirms this. The pile of sediment shrinks
significantly during the first 3000 iterations, compared to the change between 3000 and
10000 iterations. In the evolution of the cross section, the diffusive behaviour of the
toppling rule is easily seen.

In Figure 5.5, Qd does not appear to be isotropic when viewed from the initial cell,
contrary to ones expectations. This is a consequence of the fact that the initial cell
is closer to the top-left and bottom-right corners than the top-right and bottom-left
corners. As the walls are impenetrable (Qd, Qa →∞ at boundary), sediment will build
up near the closest walls more quickly.

Considering now the case with no bathymetry and θr = 10°. With the angle of repose
θr = 10°, the steady state (n → ∞) should be a 10° hill of sediment Qd, according to
the theory in Section 2.3.1. This is confirmed both by visual comparison with Figure
5.5, and by calculating the average incline of the hill, which was found to be 10.1°. The
concentration Qcbj plot confirms that all sediment is confined to a “hexagonal shape”
about the initial cell [l0,m0].

The hexagonal shape of the sediment pile, Qcjb and Qd in Figure 5.5, is probably due
to the hexagonally shaped cells used in the implementation, and the fact that height
differences are only compared in 6 directions.

For the results using Ranfjorden (Figure 5.7) as bedrock, the expected behaviour is for
most of the sediment Qd to move in the direction of greatest descent. The results (Figure
5.8) indicate that the sediment follows a path that is reasonable, when considering the
indicated bathymetry contour lines. The concentration Qcbj plots indicate that as n
increases, most cells at high altitude have lost their sediment.

52

6 | Testing the complete cellular
automaton

In this chapter the implemented cellular automaton model for turbidity currents will
be tested. The tests consists of several simplified scenarios, for which there exist other
models or results to compare with.

6.1 Test case 1: 1D channel
This section contains information about the configuration that was used to test the
implemented CA against the behaviour of the three equation model (TEM), briefly
described in Section 2.1.4. The test was inspired by the paper by Hu et al. [16], and
consists of running two simulations with similar initial conditions. TEM predicts that
one of the ICs will “ignite” a self-accelerating turbidity current, while the other will not.
The TEM predicts the steady state (n→∞) of the turbidity current speed Qv and mass
transport rate ψ, and is shown in Figure 4 Ref. [16]. Note that the results in this section
were acquired using 1 CPU, i.e., the non-parallelized CA.

6.1.1 Configuration, initial and boundary conditions
In this case, the grid G is a hexagonal grid with 1500×3 cells, with boundary conditions
specified such that the turbidity flow is constricted between the two grid boundaries in the
downstream direction, i.e., the sides of length 1500. Thus, Q(n)

d [border], Q(n)
a [border] →

∞ is used for these boundaries, and absorbing boundaries are used for the short edges,
following the description in Section 4.1.2. This effectively provides a one-dimensional
domain in which the turbidity flow can move. One particle type is used, i.e., Nj = 1,
and the parameters are specified in Table 6.1. Note that of the parameters listed in
Table 6.1, Dsj, vsj, ν, ρj, ρa, and cD were specified in Ref. [16], and the rest were chosen
through numerical experimentation. Simulation config files are given in Appendices A.2
and A.3.

These simulations were run with an upper limit constraint on the time step ∆t. That is,
the dynamically calculated time step defined in Section 4.3 is compared against a prede-
fined maximum value τ , such that ∆t ≤ τ always is satisfied. Here τ is experimentally
determined to 1 ms. This is discussed in Section 6.1.3.

In this case, a plane with slope s = 0.05 is used as the layer of non-erodible bedrock
B = B(l). By the cell geometry shown in Figure 2.2, observe that B(l) can be defined
by,

B(l) =
√

3
2 ∆x tan (s)l, (6.1)

53

Chapter 6. Testing the complete cellular automaton

Table 6.1: This table shows parameter values used by the simulations in the 1D channel case.

Description Parameter Values
Spatial discretization ∆x 1 m
Unmovable amount of density current padh 0 m
Friction angle limit θf 0°
Angle of repose θr 30°
Gravitational acceleration g 9.81 m/s2

Particle diameter Dsj 0.1 mm
Particle sinking speed vsj 0.0084 m/s
Particle density ρj 2650 kg/m3

Water density ρa 1000 kg/m3

Sea bed porosity γ 0
Sea bed drag coefficient cD 0.004
Water kinematic viscosity ν 1 · 10−6 m2/s

where l is the index increasing in the downstream direction.

As mentioned, two sets of initial conditions, acquired from Ref. [16], are used in this
simulation. Let IC1 and IC2 denote the set of ICs generating a non-ignitive and ignitive
turbidity current, respectively. Some of the IC values are common for the two sets.
Initially, the entire grid interior is covered by an erodible sand cover Qd,0 of height 1 m.
As Nj = 1, there is only one particle type in the sea bed, and so Qcbj,0 = 1. Let the source
area S be defined as a single cell with indices

[
l̃, m̃

]
= [50, 1], that is approximately 50 m

away from the edge of the grid. Then, the remaining substate values are given by,

Q
(0)
ξ [l,m] =

0 if [l,m] 6∈ S
Qξ,0 if [l,m] ∈ S

with ξ = {th, v, cj}, (6.2)

where Qξ,0 are constants specified for each member of ξ. Specific ξ values for IC1 and
IC2 are given in Table 6.2. Note the sediment transport rate ψ provided in Ref. [16]
is replaced by an initial volumetric concentration Qcj through the relation Eq. (2.11).
Both ψ and the calculated Qcj is shown in Table 6.2.

Table 6.2: This table shows the numerical values used for the sets of initial conditions IC1 (non-
ignitive) and IC2 (ignitive) in test case 1.

ξ\Qξ,0 IC1 IC2
th 2 m 1 m
v 0.652 m/s 0.699 m/s
c0 0.00291 0.00672
ψ 0.0038 m2/s 0.0047 m2/s

The TEM results (figure 4 Ref. [16]), display the turbidity current speed Qv, and the
mass transport rate ψ in its steady state, i.e., at time t→∞. As an indicator of steady
state, the two-norm of the change in turbidity current thickness L2 =

√∑
[l,m](Q

(n)
th −Q

(n−1)
th)2,

54

6.1. Test case 1: 1D channel

was calculated. The steady state is reached at L2 ≤ tol, where tol is a predefined toler-
ance.

6.1.2 1D channel results
For both sets of initial conditions, the amount of simulated time was 100.0 s, in n =
100000 CA iterations. The source cell was active for all n. At this point the calculated
two-norm was 0.029 m, and 0.085 m, for IC1 and IC2, respectively.

Figure 6.1 shows the dependence on the downstream coordinate l, for the change in bed
soft sediment ∆Q(n)

d = Q
(n)
d − Q

(0)
d , the turbidity current speed Q(n)

v , and the sediment
transport rate ψ(n), at n = 100000 CA iterations, using the IC1 configuration. Figure
6.2, shows the corresponding results for the IC2 configuration.

Figure 6.1: This figure shows the result of simulating an 1D channel using the implemented CA with
the initial conditions IC1. TEM (see Section 2.1.4) predicts that these ICs produce a
turbidity current that terminates after < 500 m. From left to right the figures show
respectively, the bed evolution ∆Q(n)

d = Q
(n)
d − Q(0)

d , the turbidity current speed Q
(n)
v ,

and the sediment transport rate ψ(n) at n = 100000 CA iterations. The red line in the
∆Qd plot indicates Qd = 0.

6.1.3 Discussion
Recall that a self-accelerating turbidity current with speed Qv, and a mass transport rate
ψ, is characterized by Qv, ψ → ∞ as the current propagates downstream (see Section
2.1.4). By visual inspection of the turbidity current speed Qv, and mass transport rate ψ,
it is evident that neither the initial condition IC1, nor IC2, produce a self-accelerating
turbidity current. Both ICs produce results in which Qv, ψ → 0. Furthermore, the
speed and mass transport rate is observed to oscillate violently between a finite value
and zero. The speed is influenced by the flow between a cell and its k’th neighbor
Qo(0, k), and the height difference between them (Qa(0) + Qth(0)) − (Qa(k) + Qth(k))
(see Section 4.4.5). For the speed Qv to become zero, either of these terms have to
become zero. The outflow is also influenced by the difference in Qa, and Qth. Thus,
zero speed Qv, may be due to (Qa(0) + Qth(0)) ≈ (Qa(k) + Qth(k)). For small slopes,
∆Qa(k) = Qa(0) − Qa(k) ≈ 0, this implies that the turbidity current thickness of the

55

Chapter 6. Testing the complete cellular automaton

Figure 6.2: This figure shows the result of simulating an 1D channel using the implemented CA with
the initial conditions IC2. TEM (see Section 2.1.4) predicts that these ICs produce a
self-accelerating turbidity current. From left to right the figures show respectively, the
bed evolution ∆Q(n)

d = Q
(n)
d − Q(0)

d , the turbidity current speed Q(n)
v , and the sediment

transport rate ψ(n) at n = 100000 CA iterations. The red line in the ∆Qd plot indicates
Qd = 0.

two cells is similar, ∆Qth(k) = Qth(0) − Qth(k) ≈ 0. This is a known weakness of the
Chézy formula: at zero slope, the speed becomes zero.

In order to achieve Qv →∞ (and ψ, through Eq. (2.11)), either of the factors above has
to grow to a very large value. Which for small bathymetry slopes, ∆Qa(k) ≈ 0, implies
that ∆Qth(k) has to be large. As Qth tends to grow downstream due to water entrain-
ment, ∆Qth(k) is expected to become negative in the downstream direction. However,
for negative ∆Qth(k) and |∆Qth(k)| > |∆Qa(k)|, the speed Qv becomes zero, due to
the slope definition Eq. (4.28) (see Section 4.4.5). This is an argument for using the
mentioned alternative slope definition Eq. (4.30), as the speed Qv can be greater than
zero for negative ∆Qth(k). The implemented slope definition was selected for reasons
that will be elaborated in the subsequent Section 6.2.

An alternative to the Chézy formula, is to integrate the acceleration of the turbidity
current in time. This way, the (n+ 1)’th iteration speed depends on the (n)’th iteration
speed, and Qv can be nonzero at zero slopes. The alternative model is derived by Mulder
et al. in Ref. [38]. Replacing the present speed model I3, with the model by Mulder et
al., could be a solution for the oscillating speeds.

For these simulations, the dynamically calculated time step ∆t was constrained by
∆t ≤ τ . Unphysical behaviour of the turbidity current was observed when using the
unconstrained ∆t, in that the cellular automaton was not able to propagate the cur-
rent at a rate faster than what was added by the source term (see Section 4.1.3). This
resulted in the current thickness Qth assuming a “bell-shaped” curve about the source,
that grew in magnitude for each iteration, i.e., maxQ(n)

th > maxQ(n−1)
th . This seemingly

numerically unstable behaviour propagated to other substates, and for instance resulted
in speeds Qv oscillating between ∼ 80 m/s and 0 m/s. With the restriction on ∆t, the
current thickness does not accumulate in one cell, but is distributed to the grid.

56

6.2. Test case 2: Rupert Inlet

The values assumed by Qv and ψ, is not on the scale of the specified initial condition-
s/source values. One reason for this is the way source cells S are updated (see Section
4.1.3). The amount of turbidity current added, is proportional on the time step ∆t.
Attempts at running this simulation with constant source cell values, i.e., replacing the
expressions in Section 4.1.3 with Qth[S] = Qth,0, Qcj[S] = Qcj,0, and Qv[S] = Qv,0,
yielded a similar problem as described above, where the thickness of the turbidity cur-
rent increased faster than what the CA was able to move, i.e., the outflow calculated
outflow Qo becomes too small. Attempts at forcing greater cell outflow by modifying
the lower boundary of the relaxation factor pr (see Section 4.4.3) has been made, but
yielded no noticeable difference to the result.

Contrary to what is expected [16] of the two ICs, the speed of IC2 drops off faster
than the speed of IC1. This is simply due to the difference in initial turbidity current
thickness Qth,0 between the ICs. As the source cell thickness for IC1 is larger than it is
for IC2, this presumably leads to greater outflow Qo for the IC1, and thus a larger Qv.

Both the bed evolution plots ∆Qd, reflect the low speed of the turbidity current, as
only deposition (and no erosion) occurs. In both cases, the deposited sediment forms
a “wedge shape” that reaches a height of approximately 2 cm. The figure may give the
impression that such a shape would collapse due to slope failure. But this is not the
case, as the ∆Qd axis is displayed in the log-scale. Assuming that the neighbor cell has
sediment height 0 m, a 2 cm sediment peak merely results in a arctan 0.02 = 1° angle,
which is much smaller than the angle of repose θr = 30°.

In the CA, each grid cell contains a finite amount of sediment Qd, while the TEM does
not account for changes in the bed (see Section 2.1.4). In the TEM, the bed must thus
be an infinite source of sediment. This difference may explain different behaviours of the
models in cases where the CA results contain erosion.

The results gathered in this test case, indicate that the CA implementation is not well
suited for for predicting the properties of a turbidity current in its steady state. In order
for the CA to reliably show the steady state as it is predicted by the three equation model,
the implemented rules would probably have to be reformulated. Part of the problem,
is believed to lie with the fact that the speed Qv is merely used as an indicator of the
turbidity current energy (see Section 5.5), and not as an actual parameter determining
the speed at which the turbidity current moves through cells, i.e., distance.

6.2 Test case 2: Rupert Inlet
Here, the implemented CA model is compared against the results of Salles et al. in
Ref. [4]. A simulation configuration resembling the setup “Second conceptual case” in
Ref. [4] is used. Recall that the slope s used in local interaction I3 (see Section 4.4.5)
was ambiguously defined in Ref. [4]. In this section, results using the alternate slope
definition (Eq. (4.30)) are compared to the implemented definition (Eq. (4.28)).

The bathymetry used in this section is inspired by the “lower reach” of the Rupert Inlet
channel, in British Columbia, Canada, as it is described by A. Hay [39]. In this test,

57

Chapter 6. Testing the complete cellular automaton

the turbidity current is expected to follow a bathymetry resembling a sinusoidal channel.
By the figures in Ref. [4], the current is expected to be mostly erosive in the channel
thalweg, while depositing sediment at the banks. Three different sized sediment types
Dsj are used. The distribution of these sediment types are expected to be such that
smaller particles Dsj are propagated and deposited farther onto the banks, while the
coarser particles remain in the thalweg. The results in this section were gathered using
the parallelized implementation with 4 CPUs.

6.2.1 Configuration, initial and boundary conditions
Let the CA grid G be a hexagonal grid with 320× 120 cells. All grid boundaries are set
to absorbing, as described in Section 4.1.2. Note that some of the details about the case
were omitted in Ref. [4], and that some parameters used here deviate from the values
provided. Any deviation or modifications made to the parameters will be clearly stated,
and are discussed in Section 6.2.3.

Three sediment particle types are used, i.e., Nj = 3. These particle types are given
properties similar to clay, silt, and fine sand, which are listed in Table 6.3. All particle
types are assumed to have the density ρj = 2600 kg/m3. In Table 6.3, the simulation
parameters used here are listed alongside the corresponding values used in Ref. [4]. The
config file can be found in Appendix A.4.

The bedrock B used in this case is shown in Figure 6.3, and can be selected in the
config file by specifying terrain=salles2, with a slope of 0.7° (see Appendix A.4). The
channel depth and width are 2.75 m and 6 m, respectively, and the channel cross section
has a parabolic shape as can be seen in Figure 6.6. More context on Figure 6.6 will be
given when the simulation results are presented below. The meanders of the channel are
in the shape of a sinousoid with amplitude 3 m and wavelength 80 m. At the end of the
channel, is a planar area.

In this case the source area S is defined to be two cells in the center of the channel.
These cells have indices [l̃1, m̃1] = [5, 64] and [l̃2, m̃2] = [6, 64], and are indicated in
Figure 6.3. The source is active for the first n = 10000 CA iterations. Using the
notation in Section 4.1.2, the initial substate values are specified in Table 6.4. Note
that the initial value Qcj,0 was not provided in Ref. [4]. An assumption was made that
the simulated turbidity current had a volumetric sediment concentration of 9 %, and a
relative sediment concentration equal to the provided bed sediment concentration Qcbj.

6.2.2 Results

Figure 6.4 shows the evolution of the soft sediment layer ∆Q(n)
d = Q

(n)
d − Q

(0)
d , for

n = 2000, n = 5000, n = 10000 and n = 20000 CA iterations.

The simulated time, i.e.,∑n ∆t(n) was 5909 s (about 1 hour and 40 minutes) at n = 20000
iterations. The source was active for n = 10000 iterations, corresponding to 444 s, and
the amount of sediment discharged by the source was about 225.5 tonnes. In Figure
6.5 the concentration C (see Section 4.1.4) of clay, silt, and fine sand deposited after

58

6.2. Test case 2: Rupert Inlet

Table 6.3: This table shows parameter values used in this simulation, as well as the corresponding
parameters used by Salles et al. in ref [4]. Values omitted in Ref. [4] are tabulated
as “Omitted”, and blank table cells indicate that the parameter value is shared in both
configurations. All particle types are assumed to have the density ρj . Recall that the
spatial discretization ∆x is defined differently in Ref. [4] (see Section 4.2). The value listed
in Ref. [4] (cell apothem) has been converted to the corresponding intercellular distance
∆x.

Description Parameter This simulation Ref. [4]
CA grid G 320× 120 160× 60
Spatial discretization ∆x 0.5 m 2 m
Unmovable amount of density current padh 0.1 m Omitted
Friction angle limit θf 1° Omitted
Angle of repose θr 50° 30°
Gravitational acceleration g 9.81 m/s2

Clay particle diameter Ds,clay 5 µm
Silt particle diameter Ds,silt 60 µm
Fine sand particle diameter Ds,fine sand 135 µm
Particle sinking speed vsj By Eq. (2.22) By Eq. (2.23)a
Particle density ρj 2600 kg/m3

Water density ρa 1000 kg/m3

Sea bed porosity γ 0.3
Sea bed drag coefficient cD 0.003
Water kinematic viscosity ν 1 · 10−6 m2/s

a Eq. (2.23) is stated used in Ref. [4]. In correspondence with the author, Eq. (2.22) is
said to be used.

Table 6.4: This table shows the numerical values used as initial conditions in test case 2.

Description Substate Value
Initial erodible sand cover Qd,0 0.5 m
Source TC height Qth,0 2.5 m
Source TC speed Qv,0 0.2 m/s

Initial sand cover concentration Qcbj,0

clay: 0.8
silt: 0.15
fine sand: 0.05

Source TC concentration Qcj,0 0.09 ·Qcbj,0

n = 20000 iterations is illustrated. Figure 6.6 shows the evolution of the channel cross
section at indices l = 5 and l = 40, for various CA iterations n.

Ambiguous slope definition in local interaction I3

To differentiate between the results gathered using the alternative slope definition, i.e.,
Eq. (4.30), and the “regular” definition, i.e., Eq. (4.28), let the results be denoted Ĩ3

and I3, respectively. In Figure 6.7, the bed evolution ∆Q(n)
d , is illustrated at n = 20000

iterations, for Ĩ3. The amount of time simulated was 4821 s (about 1 hour and 20 minutes)

59

Chapter 6. Testing the complete cellular automaton

source area

Top view3D view

-4 0
Colorbar (m)

m

l

Figure 6.3: The figure shows the bedrock B used in test case 2: Rupert Inlet. The colorbar indicates
the height (in meter) of the bedrock. Also indicated is the source area S, and the direction
of positive array indices [l,m].

at n = 20000 iterations. The source was active for 10000 iterations, corresponding to
606 s and about 307.5 tonnes of sediment was discharged.

The time-averaged cell max speed in cells sharing the m index,

Q̄v[l] = max
m

1
N

∑
n′
Q(n′)
v [l,m],

is shown for Ĩ3 and I3, in Figure 6.8. The value Q̄v[l], was calculated using N = 10
samples of Qv between n = 1000 and n = 10000, with a sampling rate of 1000 iterations.

6.2.3 Discussion
Parameter alterations

In this test case, the grid G size of the simulation was doubled, and the spatial discretiza-
tion ∆x was decreased in order to achieve a better resolution output. Initial tests using
the original grid size and ∆x, yielded results in which the bathymetry channel width
consisted of 3 cells. This motivated a higher resolution.

The value of the parameters padh and θf were experimentally determined. Increasing padh
had the effect of slowing the advancement of the turbidity current, i.e., more iterations
are needed for the current to move across the grid. Adjusting θf seems to influence the
“climbing” ability of the turbidity current, as a higher value led to more current spilling
out of the channel. This makes sense as θf determines how big the height difference
between two cells needs to be in order to get an outflow Qo(0, k) (see Section 4.4.3).

The angle of repose θr had to be increased, in order to prevent the channel sides from
collapsing entirely, which was the case when θr = 30. It is possible that the intent of

60

6.2. Test case 2: Rupert Inlet

Qd, n = 1000 Qd, n = 5000

Qd, n = 10000

l=5
l=40

Qd, n = 20000

0.001 0.000 0.001
Figure 6.4: This figure illustrates the sea bed evolution ∆Qd, after n = 2000, n = 5000, n = 10000 and

n = 20000 iterations, using the CA configuration specified in Section 6.2. The colorbar
indicates the eroded (blue) and deposited (red) sediment amount in meter. The locations
of cells with array indices l = 5 and l = 40 are indicated in the n = 20000 plot. Note that
the range of the colorbar is not specified as [min ∆Qd,max ∆Qd], due to the difference in
the amount of deposited and eroded sediment.

the toppling rule I4 (in Ref. [4]), was for it to only be applied to the sediment that
is deposited. That is, the initial soft sediment layer Qd,0 is assumed to be stable, and
thus excluded from I4. This may involve separating the substate Qd as it is presently
defined, into substates Qd1 and Qd2, representing the initial erodible sediment cover, and
the deposited sediment, respectively.

61

Chapter 6. Testing the complete cellular automaton

clay silt sand0 1

Deposited sediment concentration (n = 20k)

Figure 6.5: This figure illustrates the relative concentration of deposited sediment at n = 20000 CA
iterations, using the initial conditions described in Section 6.2. The source cell S is near
the bottom of the plots, such that the index l is increasing in the upward direction.

The altered sinking velocity is discussed in Section 5.5.

Simulation results

As can be seen in Figure 6.4, the turbidity current displays some erosive behaviour in
the channel thalweg, while sediment is deposited at the banks. Close to the source
S, there are significant amounts of deposited sediment, both in the thalweg and at
the banks. Downstream, near the end of the channel, sediment is deposited inside
the channel, implying that the turbidity current does not possess enough speed Qv to
support the particles it contains (see Section 5.2). The area of erosion is, as expected
by the results in Ref. [4], located in the thalweg of the bathymetry, and can be seen
expanding downstream in the plots n = 5000 through n = 20000.

The colorbar in the figure displays erosion and deposition in the range ±1 mm. This
range was selected in order for the erosive activity of the turbidity current to be visible
in the plots. That is, had the range been higher, the eroded area would be displayed as
white in the plots. In the corresponding ∆Qd plot in Ref. [4], erosion is clearly visible on
the range ±30 cm. This indicates that the amount of sediment eroded in these results are
minuscule in comparison with the results shown in Ref. [4]. In the channel cross-section
evolution at index l = 40, all sampled Q(n)

d curves overlap, indicating that the channel is
approximately unchanged. Index l = 40 is indicated in Figure 6.4, and cuts the channel

62

6.2. Test case 2: Rupert Inlet

2.5

2.0

1.5

1.0

0.5

0.0

Ch
an

ne
l d

ep
th

l = 5 l = 40

n=0
n=1000
n=5000
n=10000
n=20000

Figure 6.6: This figure shows the evolution of the cross section in the channel at indices l = 5 and
l = 40, for CA iterations n indicated by the figure legend. The location of l = 5 and l = 40
is shown in Figure 6.4.

where the erosion is strongest.

As was revealed in the Section 5.2, the main contribution to increased erosional activity
is the turbidity current speed Qv. Thus, evidence is strongly suggesting that Qv is
too low for any noticeable erosion. Figure 6.8 shows that the time-averaged cell max
speed of the current Q̄v[l] rapidly drops off, and asymptotically approaches zero as the
downstream distance increases. Note that this implies that the current does not fulfill
the criterion of a self-accelerating turbidity current, i.e., Qv[l] l→∞−−−→ ∞. From Figure
5.3 it is deduced that a speed Qv of about 1 m/s to 2 m/s is needed for a current with
concentration Qcj ∼ 0.09, to become erosive. In Figure 6.8, such speeds seems to be
barely achieved for cells very close to the source S.

Why does the speed Qv approach zero? The speed Qv is computed by averaging speed
contributions in each direction (see Section 4.4.5). Should most of the contributions to
the average speed in a cell be low, the calculated average becomes low. In the imple-
mented version all the contributions Uk are weighted equally (cf. Eq. (4.29)). It could
be that averaging all Uk using the outflow Qo(0, k) as weights would give a more accurate
result. This way, the direction in which most of the current is flowing out of the cell,
has a larger influence on the calculated speed Qv.

As was mentioned in the discussion of the 1D channel, the speed is influenced by the
differences ∆Qa(k) = Qa(0)−Qa(k), and ∆Qth(k) = Qth(0)−Qth(k). If either ∆Qa or
∆Qth is small, the speed becomes small. As the slope of the bedrock is 0.7°, the ∆Qa is
small. By the (top) Figure 6.9, the current thickness is observed to be relatively evenly
distributed, implying that for neighbor cells ∆Qth is small.

The speed shown in Figure 6.8, does not seem to be in correspondence with the specified
initial condition Qv,0 = 0.8 m/s. This is to be expected, as the source value Qv,0 is

63

Chapter 6. Testing the complete cellular automaton

Qd, n = 20000

0.001 0.000 0.001

Figure 6.7: This figure illustrates the sea bed evolution as computed after n = 20000 CA iterations,
using the same CA configuration and initial conditions as in Figure 6.4, except that the
alternate definition Ĩ3 (see Section 6.2.2) is used when calculating the turbidity current
speed. The colorbar indicates the eroded (blue) and deposited (red) sediment amount in
meter.

0 50 100 150 200 250 300
l

0

1

2

3

4

Q
v[l

]

I3
I3

Figure 6.8: This figure shows the time-averaged max speed Q̄v[l] (see Section 6.2.2) as a function of
the downstream cell indices l, for CA implementations using I3 and Ĩ3.

scaled by the time step ∆t (see Section 4.1.3), and as Q(n+1)
v is independent of Q(n)

v . As
mentioned in Section 6.1.3, a weak point of the speed model implemented in this thesis
is that for slopes s = 0, the current achieves no speed. A model derived by T. Mulder
et al. in Ref. [38], computes the speed Qv by adding the change due to acceleration.
The model is arguably more computationally intensive than the implemented model, but
for near horizontal bathymetries, using the acceleration based model could give a more
accurate result.

Another possible reason for the low amount of erosion, is the low amount of large particles
in the turbidity current. In Figure 5.3, particles with a large diameter Dsj, have a
much higher erosion rate than small particles. For instance, in a current with speed
Qv = 0.5 m/s, particles with diameter ∼ 1 µm have a net erosion rate < 10−6 m/s, while
particles with diameter Dsj & 10 µm have a net erosion rate of > 10−5 m/s. In the
CA configuration used here, the relative concentration of particles (see Table 6.4) in
the turbidity current was assumed to be identical to the concentration in the bed. This

64

6.2. Test case 2: Rupert Inlet

Figure 6.9: This figure illustrates the turbidity normalized turbidity current thickness Q(n)
th /maxQ(n)

th

for I3 (top) and Ĩ3 (bottom) at n = 20000 iterations.

resulted in 20 % of the discharged particles having a diameter > 10 µm, which could yield
a low net erosion rate, and thus a low amount of erosion. This means that increasing the
number of large particles in the turbidity current, could increase the amount of erosion.

In the area close to the source cell, a relatively large amount of sediment is deposited,
as can be seen in Figure 6.4. In the cross section plot at array index l = 5, the amount
of deposited sediment can be seen by the evolution of the channel bed. In the thalweg,
the deposited sediment has decreased the channel depth from 2.75 m, to approximately
2.5 m. And at one side of the channel, an increase in bed height indicates the formation
of a levee. The amount of sediment accumulated in the levee is small in comparison to
the results achieved in Ref. [4].

The concentration of the deposited sediment C (Figure 6.5), indicates that the particle
type with the smallest diameter, i.e., the clay, is the most easily distributed. Approxi-
mately 100 % of the sediment deposited far from the channel axis, is clay. When moving
closer to the channel axis, the larger particle types starts dominating C, i.e., these parti-
cles constitute a larger part of the sediment being deposited. All of this is in compliance
with the corresponding plots in Ref. [4]. Notice that farther downstream, clay is de-
posited inside the thalweg. As mentioned, the main reason for the turbidity current
depositing sediment is insufficient speed Qv to keep the particles in suspension. The low
speed in Figure 6.8 explains why sediment is deposited. The reason for the high clay
concentration in the deposited sediment, is believed to simply be a consequence of the
relatively high concentration of clay in the source concentration Qcj,0.

In Figure 6.10, the concentration of the turbidity current concentration Qcj drops signif-

65

Chapter 6. Testing the complete cellular automaton

2 6 10 14 18
n (1000 iterations)

0.03

0.04

0.05

0.06

0.07

0.08

m
ax l,m

 j
Q

cj
[l,

m
]

Max concentration
I3
I3

2 6 10 14 18
n (1000 iterations)

0
5

10
15
20
25
30
35
40

V
(m

)

Volume of suspended sediment
I3
I3

2 6 10 14 18
n (1000 iterations)

0.0

0.2

0.4

0.6

0.8

t (
s)

Timestep
I3
I3

Figure 6.10: The figure illustrates the dependence on n for selected values in the CA. From left to
right, the plots show the maximum turbidity current sediment concentration maxG Qcj ,
the volume Ṽ of suspended sediment in the turbidity current, and the size of the time
step ∆t as a function of the CA iteration n.

icantly at n = 10000 CA iterations, i.e., as the source becomes inactive. This drop can
also be seen in the volume of suspended sediment Ṽ . Both of these indicate a decrease in
the amount of sediment in the turbidity current, in correspondence with the deposition
dominated behaviour discussed above.

In the bed evolution plot ∆Qd, the deposited sediment is observed to have a slight
preference to landing in the direction of “increasing l, increasing m” array indices. This
must be a consequence of the combination of the way this bathymetry was generated,
and the way that the CA hexgrid is stored. The CA grid is stored by using a regular
2D array, using the technique explained in Section 2.2.1. The bathymetry seen in Figure
6.3, is then applied to the 2D array. This induces a skewness to the bathymetry. A
solution to this, is to generate the bathymetry in such a way that the induced skewness
is accounted for. In other words, the bathymetry would have to be generated such that
“south” does not follow the shaded column in Figure 2.2, but rather follows the cells
intersected in a straight vertical line. The effect is limited to this test case.

In its present state, the CA simulation displays to some extent the intended behaviour.
The particle type distribution C appears to be corresponding well with the results shown
in Ref. [4]. However, given that the CA configuration and initial conditions used here and
in Ref. [4] are as close to identical as possible, there seems to be a problem concerning
the amount of eroded and deposited sediment. This is assumed to be an issue originating
from either the speed interaction I3, or the outflow interaction I1. The amount of outflow
Qo directly influences the speed in a cell.

Comparison with the alternate speed interaction Ĩ3

When the speed of the turbidity current is calculated using Ĩ3, the bed evolution ∆Q(20000)
d

plot (Figure 6.7) reveals that no erosion is occurring. The reason for this, as is mentioned
above, must be due to the low speed Qv obtained by the turbidity current. When
comparing the curves of I3 and Ĩ3 in the time averaged max speed plot (Figure 6.8),
they appear to be of equal shape and magnitude. However, the I3 curve appears less

66

6.2. Test case 2: Rupert Inlet

smooth, with some peaks appearing. These peaks in Qv is assumed to be the reason that
erosion occurs for I3, but not for Ĩ3.

Also observed in Figure 6.7 is that more of the deposited sediment lands nearby or inside
the channel, compared to the results of I3. The reason for this is that the turbidity
current is that the thickness Qth is more intense/concentrated about the channel axis in
the Ĩ3 result, while being more dispersed for I3. This can be seen in Figure 6.9.

Fluctuating values in numerical simulations is generally a bad sign, that can indicate
numerical instability. In general, the plots gathered with I3 are observed to feature more
fluctuations than the plots using Ĩ3. This is true for the figures showing Qv, Qth, and the
time step ∆t. In the end, comparison of the bed evolution ∆Qd, and the concentration
C was what led to the selection of I3 over Ĩ3.

67

7 | Simulating turbidity currents in
Ranfjorden

In this chapter the implemented cellular automaton is tested on bathymetry data from
Ranfjorden. The bathymetry data was acquired from Kartverket [40], and has a reso-
lution of 50 m between each data point. Figure 7.1 indicates the simulation domain, in
relation to the surrounding geography.

To confirm the validity of the simulation, the results are compared to Figure 19 in
Ref. [41], in which the bathymetry evolution in Ranfjorden for the period 2012-2016 is
depicted. Additional description of the bathymetry is provided in the report, “Tiltaksori-
entert overvåking av Ranfjorden i 2018” by the Norwegian Institute for Water Research
[42], and corresponding reports from previous years [43, 44]. In Ref. [42], sediment
samples are collected from several locations in the fjord, and analyzed. Mine tailings are
found in several of these locations, the farthest out being near Bustneset (location 4 in
Figure 7.1). The fine fraction (FF), i.e., the fraction of particles with diameter < 63 µm,
is measured at several locations in the fjord, and is found to be ≥ 80 % for all locations.
The samples were collected from the top 5 cm of the bed. The authors claim the high
FF is mostly due to the mining discharge. The lowest fine fractions, were sampled near
locations 1, 3 and 4 in Figure 7.1. The authors also claim that the area close to location
3 is less prone to fine grained sedimentation.

7.1 CA configuration, initial and boundary condi-
tions

For this simulation, let the CA grid G be a 700 × 530 cell grid, with spatial discretiza-
tion 14 m. The spatial discretization was arbitrarily selected, such that the provided
bathymetry fit the grid size. Selecting ∆x smaller than the resolution of the provided
bathymetry, results in an upscaling. The primary intention behind this, is to shrink the
cell area, such that the substate values of the source cells are of an appropriate size. This
will be elaborated below. The simulation results were gathered using 25 CPUs.

Similarly to the configuration used in the Rupert Inlet test case (see Section 6.2), three
sediment particle types are used (Nj = 3), that all have the density ρj = 2650 kg/m3.
The particle types are categorized as fine, medium and coarse grained. All parameters
values (and the grid size) are listed in Table 7.1, and the simulation config file is given
in Appendix A.5.

The information given in Ref. [42] and [44] forms the basis for some of the initial
conditions used in this simulation. Recall that the bathymetry data for Ranfjorden was
illustrated in Section 5.6.2 (see Figure 5.7), and that the plot axes corresponds to the
eastern (E) and northern (N) UTM 33 coordinates.

69

Chapter 7. Simulating turbidity currents in Ranfjorden

2

3

4

1

Figure 7.1: The outlined area indicates the area included in the simulation. The red dots indicate
points of interest (POIs), that correspond to the approximate location where the fine
fraction (FF) was measured in Ref. [42]. The approximate depth for each POI is given.
POI 1 (88 m): approximate location of the tailings discharge point, FF = 86 %. POI 2
(341 m): FF = 93 %, POI 3 (427 m): FF = 80 %, POI 4 (490 m): FF = 83 %. Note that
the POIs only depict the approximate location of the sample areas.

Table 7.1: This table shows CA parameter values (and grid size) used in the Ranfjorden simulation.
All particle types are assumed to have the density ρj .

Description Parameter Value
CA grid G 700× 530
Spatial discretization ∆x 14 m
Unmovable amount of density current padh 0 m
Friction angle limit θf 0°
Angle of repose θr 50°
Gravitational acceleration g 9.81 m/s2

Fine particle diameter Ds,fine 5 µm
Medium particle diameter Ds,medium 80 µm
Coarse particle diameter Ds,coarse 135 µm
Particle sinking speed vsj By Eq. (2.22)
Particle density ρj 2600 kg/m3

Water density ρa 1000 kg/m3

Sea bed porosity γ 0.3
Sea bed drag coefficient cD 0.003
Water kinematic viscosity ν 1 · 10−6 m2/s

70

7.2. Results

Let the source S be the cell with indices corresponding to coordinates E = 461022,
N = 7356967, which for ∆x = 14 m is the cell with indices [l0,m0] = [575, 357]. The
source is active during the first 10000 CA iterations, and the red dot in the Figure 5.7
shows the location of the source cell.

For this scenario, the substate values of the source cells is calculated using the emission
permits from 2014 for the mining company Rana Gruber AS, provided in Ref. [44]. As
a simplification, the discharged sediment is assumed to consist of a mix of the coarse,
medium and fine material, in the same proportion as given in the permit. The discharged
material, and the relative amount is given by Table 7.2.

Table 7.2: This table shows the 2014 permit for fine, medium and coarse sediment types in Ranfjorden
by Rana Gruber AS [44], and the calculated relative particle concentration.

Particle type Discharge permission
(kilo tonnes)

Relative amount
(%)

Fine 60 2
Medium 290 9.6
Coarse 2650 88.4
Total 3000 100

The source values are calculated using the following assumptions. The amount of dis-
charged material D per time unit equals the permitted amount, i.e., 3 Mt/yr, which
becomes 95 kg/s on average, and the volumetric concentration of the emitted material
is Qcj,Σ = ∑

j Qcj = 0.01. Then, if the density of the sediment ρj = 2650 kg/m3, the
thickness of the turbidity current source becomes,

Qth,0∆t = D

AhexQcj,Σρj
∆t ≈ 2.1 cm ·∆t.

Here, Ahex =
√

3∆x2

2 is the area of a cell in the grid. Notice that had ∆x been set to the
“native” resolution of the bathymetry data, i.e., 50 m, the source value would be about
0.16 cm.

Thus, using the notation in Section 4.1.2, the substate initial, and source values are
given by Table 7.3. In Ref. [42] the relative amount of fine grained (particle diameter
≤ 64 µm) found on the sea bed was ≥ 80 %. For this reason, the sea bed concentration
Qcbj has been chosen to reflect this. The values Qd,0 and Qv,0 were arbitrarily chosen.

7.2 Results
The amount of time simulated ∑n ∆t(n) was 486 979 s (about 135 hours) in 20000 iter-
ations, and about 8.3 kt (kilo tonne) of suspended sediment was discharged during the
first 24 hours (10000 iterations) of simulation time.

Figure 7.2 shows the evolution of the soft sediment layer ∆Q(n)
d = Q

(n)
d − Q

(0)
d , for

n = {5000, 10000, 15000, 20000} CA iterations, and in Figure 7.3, the volume (in meter)

71

Chapter 7. Simulating turbidity currents in Ranfjorden

Table 7.3: This table shows the numerical values used as initial conditions for the Ranfjorden simula-
tion.

Description Substate Value
Initial erodible sand cover Qd,0 1 m
Source TC thickness Qth,0 2.1 cm
Source TC speed Qv,0 2 m/s

Initial sand cover concentration Qcbj,0


fine: 0.8
medium: 0.10
coarse: 0.10

Source TC concentration Qcj,0


fine: 0.01 · 0.02
medium: 0.01 · 0.096
coarse: 0.01 · 0.884

of the deposited, and eroded sediment at iteration n is plotted. Note that the volume
is given in meter, as the factor Ahex is omitted. The maximum volume of sediment
deposited is 15.8 m, which corresponds to 15.8 m ·Ahexρj ≈ 7.1 kt of deposited sediment.

The particle type distribution of the deposited sediment C (see Section 4.1.4) is shown in
Figure 7.5. Figure 7.6 shows the n dependence of the maximum volumetric concentration
in the grid, max[l,m] Qcj, the “volume” of the suspended sediment Ṽ = ∑

[i,j] QthQcj, and
time step value ∆t(n). As above, the plotted Ṽ is the volume of the sediment measured
in meter, as the factor Ahex is omitted. At n = 20000, the volume Ṽ is 0.33 m, which
corresponds to about 148 t of suspended mass.

7.3 Discussion
From the bed evolution plot (Figure 7.2), it is observed that the simulated turbidity
current (TC) is mostly depositing sediment, with the exception of some erosional activity
appearing at n = 20000 iterations. It appears that most of the sediment being deposited,
ends up tracing out a somewhat continuous path, stretching from the source cell S, and
into the deeper parts of the fjord. Considering the contour lines of the bathymetry,
the path follows what seems to be the fastest descending curve. This much is to be
expected, according to the results of Ref. [41]. Additionally, the area experiencing
erosion at n = 20000 iterations, does seem to coincide with a larger area where erosion
has occurred during the period 2012-2016, according to Ref. [41].

Running alongside the path of deposited sediment, however, there is expected to be a
trench, where the turbidity current has eroded the sediment. This is not observed in the
obtained results. In order for the current to be erosive, the current speed Qv should be
above a certain threshold, which for currents of volumetric concentration Qcj ∼ 0.01, is
about 1 m/s to 2 m/s (see Figure 5.3). This indicates that the turbidity current does not
achieve sufficient speed Qv for it to be erosive. As can be seen in Figure 7.4, the speed
Qv has a maximum value of about 0.9 m/s, which it achieves at n = 10000 iterations.

72

7.3. Discussion

However, as can be seen by comparing Figure 7.3 (right) and Figure 7.4, some erosion
does occur even when Qv is < 1 m/s. This is probably due to very diluted parts of the
turbidity current with concentration Qcj < 0.01. As can be seen in Figure 5.3, as the
concentration Qcj decreases, the amount of speed Qv needed to become erosive decreases.

The colorbar in Figure 7.2 is on the order of µm, giving the impression that the amount
of deposited sediment is small. An increase in cell height by 5 µm corresponds to about
2.25 kg worth of sediment deposited in that cell. As the calculation presented above
revealed, the amount of deposited sediment in all cells adds up to about 7.1 kilo tonnes,
i.e., 85.5 % of the discharged mass. At n = 20000 iterations, the mass of the sediment
suspended in the turbidity current amounts to 148 t, or about 2 % of the discharged mass.
This leaves about 12.5 % of the mass unaccounted for. This may be explained by the
transport of mass over the absorbing boundary. Note that the simulated domain does
not cover POI 4 in Figure 7.1, which was found to contain elements from the discharged
tailings in Ref. [42]. It is therefore probable that the 12.5 % of discharged mass is
transported out of the simulation domain. In Ref. [43] it is stated that as much as 50 %
of the discharged mass is transported past POI 4 in Figure 7.1.

The concentration plot indicates that the fine particles are easily dispersed and deposited
to the distal parts of the grid, while the coarser particles (medium and coarse) are
deposited more concentrated, in areas closer to the source. This fits with the measured
fine fractions (FF) in Ref. [42], which found that the fine fractions were low close to the
source (POI 1), high near the middle (POI 2), and low near the end of the simulation
domain (POI 3). It is somewhat suspicious that no sediment at all is deposited at the
bottom of the fjord (POI 3). The reason could be that when the current reaches this
position, it has already deposited much of its sediment due to the low speed Qv. This
means that the concentration of the current Qcj is probably very small. Then if ∆t is
too big, the rule T2 cannot be applied without Qcj turning negative (see Eq. (4.17)),
and thus being reverted to its previous state (see Section 4.4.2). This can be solved by
either, ensuring that ∆t is sufficiently small, or by modifying the “safety rules” in T2
such that the current terminates if e.g., Qcj < 0. This is elaborated further in Chapter
9.

The time step ∆t(n) features some oscillations in the first ∼ 2500 iterations, then for as
long as the source is active, no fluctuations occur. For n > 10000, it grows by a factor of
approximately 4-5, and starts oscillating between iterations. This change in magnitude
makes sense because, the characteristic speed u =

√
2rg′ of the system (see Section 4.3)

becomes very small when Qcj becomes small, due to the reduced gravity g′, thus yielding
a large ∆t. When the source becomes inactive, there is a large drop in the maximum
concentration Qcj. The fluctuating ∆t value must also be due to variations in speed
u. The reduced gravity g′ depends on Qcj, which in general is assumed to have a much
slower variation than what is observed here. The source of the fluctuations is assumed
to originate from the run-up height r, which is dependent on Qv. Although, looking
relatively smooth in Figure 7.4 (except at n = 10000), the speed substate has proven to
be somewhat unpredictable, due to the Chézy equation. By implementing, and selecting
an appropriate an upper limit τ on ∆t, as was done in Section 6.1, the large jump in
time step size and possibly the fluctuations may be avoided.

73

Chapter 7. Simulating turbidity currents in Ranfjorden

It was observed during the simulations of this bathymetry, that certain combinations of
initial conditions led to numerical instabilities. For instance, an attempt to simulate a
continuous emission (source always active) over an extended period of time (n = 100k
CA iterations), led to unphysical substate values. In that case, the current thickness Qth

and speed Qv grew to 200 m and 100 m/s, respectively, in certain areas of the grid. This
area was visible in the ∆Qd plots as an area with very high erosion. As the CA was
iterated, this area of erosion grew in size until it covered an unreasonably large part of
the grid. It could be that the reason for this, is, as was observed in Section 6.1, when
no restriction on ∆t was used, an accumulation of Qth due to large source value. If this
is the case, it could be that the solution mentioned in the previous paragraph also could
be the solution to this problem, i.e., limit ∆t.

Another possible explanation for the area of erosion is that the amount of large particles
in the current is now very big (88.4 %). In Section 6.2.3 an explanation for the low
amounts of erosion was argued to be the high concentration of fine particles. Particles
with a large diameter Dsj have a higher erosion rate than small particles (see Figure
5.3). In the area showing erosion in the ∆Qd plot, the majority of deposited particles
are coarse particles (see Figure 7.5).

Altogether, the results fit to some extent with the description by the reference material
[41, 42, 43, 44]. Sediment is deposited, along what appears to be the curve of steepest de-
scent into the bottom of the fjord. The smaller particle types are more easily distributed
to the distal parts of the grid. The current simulation considered a temporary discharge
of suspended sediment lasting 10000 iterations. Erosion and deposition are processes
that have been acting on the fjord bathymetry for decades. To see large changes in the
bathymetry ∆Qd, a continuous tailings discharge would probably have to be simulated
for at least several years. In its present state, the implemented CA displays signs of
numerical instability, that would have to be solved before such a simulation can be run.
Further discussion and commentary to the implemented CA is featured in Chapter 9.

74

7.3. Discussion

Figure 7.2: This figure illustrates the sea bed evolution ∆Qd, after n = 2000, n = 5000, n = 10000 and
n = 20000 iterations, using the CA configuration specified in Section 7.1. The colorbar
indicate areas of net erosion (blue) or net deposition (red) of sediment in meter.

75

Chapter 7. Simulating turbidity currents in Ranfjorden

0 5 10 15
n (1000 iterations)

0

2

4

6

8

10

12

14

16
Volume deposited

0 5 10 15
n (1000 iterations)

0.000

0.002

0.004

0.006

0.008

0.010

0.012
Volume eroded

Figure 7.3: The figure illustrates the time evolution of the sea bed. The left plot displays the amount
of volume (in meter) gained by the bed, and the right plot displays the amount of volume
(in meter) lost by the sea bed.

5 10 15 20
n (1000 iterations)

0.2

0.4

0.6

0.8

m
ax [i,
j]

 Q
v

Max speed

Figure 7.4: This figure displays the maximum speed Qv attained by the turbidity current at a given
iteration n.

76

7.3. Discussion

Figure 7.5: This figure illustrates the relative concentration of deposited sediment at n = 20000 CA
iterations, using the initial conditions described in Section 7.1.

5 10 15 20
n (1000 iterations)

10 6

10 5

10 4

10 3

m
ax

 Q
cj

Max concentration

5 10 15 20
n (1000 iterations)

0.10

0.15

0.20

0.25

0.30

0.35

V
(m

et
er

)

Volume of suspended sediment

5 10 15 20
n (1000 iterations)

10

20

30

40

50

t (
s)

Timestep

Figure 7.6: The figure shows properties of the turbidity current (maximum volumetric density and
mass) and the simulation (size of time step ∆t) as functions of the CA iteration n.

77

8 | Numerical performance
This chapter discusses the numerical performance of the implemented cellular automa-
ton. For benchmarking the performance of the parallelization, the measures presented
in Section 3.2 are used. Note that all benchmarking was performed using the implemen-
tation with commit 484c0f980c758881ea87d83a9a0ad3e00d41e3fb at [34].

8.1 MPI benchmarking
Tests were run at the Linux cluster “Fram”, at the University of Tromsø. Fram consists
of 1006 nodes. Most nodes have 32 CPU cores and 64 GB memory, and are connected
by an InfiniBand network [45].

The bechmarking performed for this program consists of running the same simulation,
with identical initial conditions, for several problem sizes and a varying number of CPUs
p. The CA parameters, bathymetry, and initial conditions are identical to the ones
presented in Section 6.2, except that the size of the grid G, and the spatial discretization
is scaled, and the indices of the source cells are adjusted. Results are gathered for three
different problem sizes.

Recall that the problem size of a program, can be measured by the number of performed
floating-point operations (FLOPs). Here, the problem size is varied by altering the
grid G size of the cellular automaton, while keeping the number of CA iterations n
fixed. Let G1, G2 and G3 refer to grid sizes 1000× 1000, 2000× 2000 and 4000× 4000,
respectively. The spatial discretization ∆x for G1, G2 and G3, is respectively, 60 m

1000 ,
60 m
2000

and 60 m
4000 . The config file used in the benchmark is provided in Appendix A.6. Note that

for these benchmarks, the simulation produces no graphical output, and only npy files
of the substates are saved at the sample iterations. The intent of this is to minimize the
amount of time spent by the program running code from external libraries.

Figure 8.1 shows the time T used by p CPUs, T (p), to perform n = 100 iterations on
the grids G1, G2 and G3. The singlecore runtimes T (1) are 234.6 s, 1028.3 s and 4319.3 s
for G1, G2 and G3, respectively. The number of processors p for which T was sampled
follows the sequence 2k with k = [0, 9]. In Table 8.1 the speedup s (Eq. (3.4)) and the
experimental serial fraction e (Eq. (3.5)) has been calculated for all sampled p values.

The average values of the positive experimental serial fractions e are 0.82 %, 0.35 %, and
0.21 %, for G1, G2, and G3, respectively. Using these values as to approximate the serial
fraction f , the theoretical speedup boundaries can be calculated by Amdahls law and
Gustafsons law (see Section 3.2). The values are given in Table 8.2.

79

Chapter 8. Numerical performance

1 2 4 8 16 32 64 128 256 512
Cores

100

101

102

103

T
Runtime

1000x1000
2000x2000
4000x4000

Figure 8.1: This figure shows the runtime T (p) as a function of the number of used CPUs p, for
n = 100 CA iterations. The grid size of the CA is specified in the legend. The config
used for this benchmark resembles an “up-scaled” version of the Ruperts Inlet test case,
described in Section 6.2. The dashed lines indicate the runtime with ideal speedup, i.e.,
T (p) = T (1)/p.

8.2 Performance evaluation
Visual inspection of Figure 8.1 indicates that all problem sizes get very good speedup
when p . 32. This is supported by the calculated s values in Table 8.1. As anticipated
by the theory in Section 3.2, the larger problem sizes are able to achieve higher speedups
than programs with smaller problems.

As a consequence of the superlinear speedup s > p for certain p values, the experimental
serial fraction e of the program is negative, as can be seen in Table 8.1. As the p values
increase, and sublinear speedups are achieved, the e becomes positive and increasing.
This indicates that the parallelization overhead is causing a speedup bottleneck. Recall

Table 8.1: Performance data for running a various grid sizes, for n = 100 iterations using bathymetry
B resembling the lower reach of Ruperts Inlet (see Figure 6.3). G1, G2 and G3 refer to
grids with sizes 1000× 1000, 2000× 2000 and 4000× 4000, respectively.

Problem size\p 2 4 8 16 32 64 128 256 512 529
Nodes 1 1 1 1 2 4 8 16 32 32

G3
s 3.1 6.2 11.7 21.0 38.3 67.4 113.2 169.3 238.0 192.5

e(%) -35.0 -11.7 -4.5 -1.6 -0.5 -0.1 0.1 0.2 0.2 0.3

G2
s 3.1 6.2 11.8 20.8 38.6 67.3 101.3 138.3 171.3 154.0

e(%) -35.79 -11.68 -4.60 -1.55 -0.55 -0.08 0.21 0.33 0.39 0.46

G1
s 3.0 5.7 10.9 18.9 34.3 55.0 66.4 78.2 82.1 71.3

e(%) -32.36 -10.08 -3.81 -1.03 -0.22 0.26 0.73 0.89 1.02 1.22

80

8.2. Performance evaluation

Table 8.2: Theoretical possible speedups for the implemented CA, as calculated by Amdahls law and
Gustafsons law. Here Gustafsons law is used to predict possible speedup with p = 128, and
f is the average of the positive e values in Table 8.1.

Grid Approximate f (%) Amdahl Gustafson (p=128)
G1 0.82 121.3 127.0
G2 0.35 287.3 127.6
G3 0.21 465.1 127.7

that process startup, communication, and synchronization are examples of parallel over-
head. This makes sense as when the number of CPUs grows, the size of a subgrid is
decreased, and the ratio Nh/Nt grows, as can be seen in Figure 3.4. As mentioned in
Section 3.2, a high Nh/Nt ratio, implies a relatively large amount of MPI communication,
compared to the amount of computation performed on the subgrid. This leads to an
increase in runtime T .

Another potential bottleneck is the network communication between nodes. As p in-
creases, no single compute node is able to handle the computation, and thus CPUs on
different nodes must to communicate through the network. Network communication is
considerably slower than communication within the same node. Thus, when p increases,
not only does the ratio Nh/Nt increase (for a fixed grid size), but also the amount of
network communication increases. As mentioned, a single node on Fram can handle up
to p = 32.

In this case the p = 32 sample was benchmarked using 2 nodes. The reason is for using 2
nodes instead of 1, is due to memory. Each node has 64 GB of memory to share between
its processes. By running p = 32 on 2 nodes, and assuming 16 cores per node, yields
4 GB memory per core. If p = 32 is run on 1 node, each core has 2 GB memory per core.
The number of nodes specified in Table 8.1, was determined by assuming 1 node per 16
CPUs.

The theoretical speedups calculated by Gustafsons law, reflects that the serial fraction of
the program is low. It predicts that for sufficiently large problems, achievable speedup
at p = 128 is approximately 128. That is, a very small amount of time is spent on
inherently serial computation (see Section 3.2.1). Observe that the speedup at p = 128
approaches 128 as the problem size increases, just as predicted by Gustafson (see Table
8.1).

Now consider the speedups of p = 512 and p = 529 for G3 (see Table 8.1 and Figure 8.1).
For p = 512, the MPI grid px×py becomes 16×32. For a CA grid size of 4000×4000, each
subgrid becomes size 250× 125. For p = 529, the MPI grid becomes (px, py) = (23, 23).
But, as 4000 cells cannot be divided equally among 23 processors, some processors must
compute a larger problem, e.g., the subgrid of rank 0 has dimensions 194 × 194, while
other ranks in MPI column 0 (and row 0) has dimensions 173× 194 (194× 173). Notice
that rank 0 has to compute about 7000 more cells than “interior ranks” with subgrid
dimension 173 × 173, and about 6000 more cells than each rank in the p = 512 case.
This is an example of a load imbalance, and it explains the loss of speedup from p = 512
to p = 529.

81

Chapter 8. Numerical performance

Overall, the implemented cellular automaton displays good speedup, and a low serial
fraction. Two factors are identified to inhibit the speedup: communication, and load
imbalance. As long the ratio Nh/Nt is low, the communication is low, and the achievable
speedup should be high. And, as the previous paragraph exemplifies, load imbalance
can be an issue when the dimensions of the MPI grid does not divide the dimensions of
the computational domain. When these issues are accounted for, the cellular automaton
should be able to achieve very good speedup, for high p values.

82

9 | Miscellaneous discussion
9.1 Known issues, suggestions, and potential improve-

ments to the cellular automaton
In this section comments are made on the transition function σ and its components.
The behaviour of the entrainment transformation T1 and the turbidity current update
local interaction I2 were discussed in some detail in Chapter 5. These components of σ
are relatively trivial, which in a sense is good as there is not a lot that can go wrong.
Because the substates of the CA influence each other directly and indirectly (e.g., the
speed Qv influences the outflow Qo, which influences the current thickness Qth), detecting
the origin of an issue may be difficult. In the following, some known issues related to
selected components of σ are discussed.

9.1.1 Turbidity current outflow update I1

Recall that the outflow Qo between two cells should be scaled by a relaxation factor
pr =

√
2rg′ ∆t

∆x/2 (see Section 4.4.3). In D’Ambrosio et al. [37] the factor is said to satisfy
0 < pr ≤ 1. In this implementation the factor was restricted by an experimentally
determined lower boundary of 0.2 and an upper boundary of 1. Setting the the lower
boundary to 0, led in most simulated cases to very small cell outflows Qo, and thus
to a turbidity current restricted to a small area about the source. It was thus decided
that some lower boundary > 0 had to be implemented. However, when this boundary
was set to high (e.g., pr ≥ 0.4), the turbidity current thickness Qth began oscillating
between cells, in a checkerboard pattern. It would seem that selecting pr ≥ 0.2 was
sufficiently low to prevent the checkerboard oscillation, yet high enough to keep the
current moving. However, as numerical instabilities were observed during some of the
Ranfjorden simulations (even with pr ≥ 0.2), it could be that the factor pr indeed has
to be less than 0.2 in order for the simulation to be stable in certain situations.

The relaxation factor pr depends on the thickness Qth, speed Qv and density Qcj of
the turbidity current. It becomes small when either of these substate values are small.
Recall that the smallest pr ≥ 0.2 is used by all cells. In the results shown in previous
sections, both Qv and Qcj usually tend to zero, which may explain why pr became very
small when no lower limit was set. It is possible that if the cause of the unreasonably
low values of Qv and Qcj are resolved in some other way, there will be no need for a
lower boundary on pr (besides 0), which in turn may remove the instabilities.

9.1.2 Turbidity current flow speed update I3

A commonly observed behaviour of the CA is that the speed Qv asymptotically ap-
proaches zero, away from the source cells. This is observed for all of the simulated cases.

83

Chapter 9. Miscellaneous discussion

In the Ranfjorden case, the speed was in general observed to be very low (about 0.9 m/s).
In the following, some potential causes of this behaviour and solutions are suggested.

The computation of Qv involves averaging the speed contribution Uk for all six sides
out of a cell (see Section 4.4.5). Consider for the sake of argument, the case where a
cell has outflows Qo = {1, 99}, towards two of its neighbor cells, and the corresponding
speed contributions Uk are 1 m/s and 99 m/s. Using the implemented calculation, the
computed cell speed Qv becomes 50 m/s, even though 99 % of the outflow has speed
99 m/s. Computing the average, using the outflow as weights, the speed becomes about
98 m/s, which seems more reasonable. Implementing this may lead to an overall increase
in the calculated speeds Qv.

It is possible, that a similar effect to the weighted mean calculation suggested above, was
achieved by using the slope definition s without absolute value (see Section 4.4.5), by
favouring contributions Uk where the outflow was large. In the comparison of the results
from I3 and Ĩ3, the results using I3 must have achieved a higher speed Qv by excluding
the directions in which the slope s was negative, in order for erosion to occur. It is
assumed that only small amounts of outflow is sent to “higher” cells due to the run-up
effect, and that the majority of the flow is in the downstream direction (with positive
s), i.e., Qo,run−up � Qo,downstream. This means that the directions with positive slope s,
and larger outflow, in general has larger speed contributions Uk. Thus, it is possible that
by using the weighted mean calculation suggested above, the slope calculation may be
redefined permanently to using the absolute value, i.e., Eq. (4.30), without losing speed
Qv.

A consequence of the specified order of application of the transition function components
(see Section 4.4), is that the slopes s used in the Chézy formula, i.e., the height difference
of Qa + Qth between neighbor cells, differs from the cell heights used to calculate the
outflow Qo(0, k) between those cells. The outflow is calculated in local interaction I1,
while the speed is calculated in local interaction I3. In local interaction I2, the thickness
Qth and concentration Qcj of the turbidity current is updated due to the outflows. Thus,
as the slope s is calculated in the speed interaction (I3), the cell heights are not equal to
what was used in the Qo calculation. Changing the order of the interactions I2 and I3
in σ would possibly yield larger slopes s in the calculation of Uk, and thus larger speeds
Qv.

It is possible that the low speed of the turbidity current is simply a consequence of using
the Chézy formula (see Section 2.3.6). The speed Qv becomes zero if there is no slope,
i.e., if the sum Qa +Qth is equal for two neighbor cells, or if the outflow Qo(0, k) is zero
(see Section 4.4.5). As mentioned in several of the previous discussions, implementing
an alternative model by T. Mulder [38] could be a solution. The model computes the
next iteration of the speed as Q(n+1)

v = Q(n)
v + a∆t, where a is the acceleration of the

particles due to the various forces acting. By using this model, it is possible that the
current speed will act as if it has some inertia, and thus retain some speed when the
slope is zero, as compared to the present model.

An alternative explanation for the decreasing Qv is that the balance between erosion
and deposition is somehow offset when using three sediment types. The behaviour of

84

9.1. Known issues, suggestions, and potential improvements to the cellular automaton

T2 was only examined for the case Nj = 1 (see Section 5.2). It would be an advantage
to thoroughly verify the behaviour of ∂z/∂t for several particle types Nj > 1. The
simulation results in previous sections are all dominated by sediment deposition. If
the deposition rate is much greater than the erosion rate, the current concentration
Qcj is decreased. When the source cell is turned off at n = 10000 in figures 6.10 and
7.6, the maximum concentration immediately decreases. This could imply that, away
from the source, the concentration Qcj is very low for all iterations, and that the max
concentration shown in the figures is high for the sole reason that the source is active.
If the concentration Qcj is low away from the source, it affects the reduced gravity g′,
which in turn affects the speed Qv. Thus, ensuring that there is balance between the
erosion rate and deposition rate could be the key for preventing low speeds Qv.

9.1.3 Erosion and deposition T2

The transformation T2 has a large influence on the behaviour of the simulation. It is
the only connection between the substates describing the bed, and the ones describing
the turbidity current. Thus, as was mentioned in the previous paragraph, ensuring
that there exists a “balance” between the calculated erosion rate and deposition rate is
important. The results from the previous chapters suggest that the deposition rate may
dominate the bed conservation equation, leading to unreasonably low concentrations Qcj,
that may further affect the substates. It is therefore suggested that further study of the
T2 transformation is performed, to ensure that the erosion and deposition rates are of
reasonable relative sizes.

In the transformation T2, probably the most important modification was the implemented
“correction”, used for ensuring that the substates assume physical values (see Section
4.4.2). However, the implemented solution is not ideal. The update rules are observed to
be very unstable, often yielding unphysical values, e.g., concentrations {Qcbj, Qcj} < 0
or {Qcbj, Qcj} > 1, when no correction like this is implemented. But, ignoring the
unphysical values, the update rules does indicate that either erosion or deposition should
have occurred in the cell, while with the correction, nothing happens. As mentioned in
the discussion of the Ranfjorden results, perhaps a better way of dealing with these
unphysical values would be to implement ways for the turbidity current to terminate.
For instance, if Qcj < 0 is detected, there probably is a high deposition rate in the cell,
and thus the current should terminate. Conversely, if Qcbj < 0 is detected, then there is
probably a high erosion rate in that cell, so the concentration Qcbj could be set to zero,
and the sediment of type j “moved” from the sea bed into the turbidity current.

The update rules of T2 originate from integrating the Exner equation in time, through
the forward Euler scheme. While the Euler scheme is easy to implement, it is merely
conditionally stable, and may yield imprecise results for repeated iterations due to accu-
mulated error. The method is known to be inaccurate even with very small time steps
∆t, when used for a large number of iterations. Ideally, a higher-order method could be
applied to the PDEs. An example of this can be found in Ref. [11], where a second-order
method is applied to the bed-continuity equation.

85

Chapter 9. Miscellaneous discussion

9.1.4 Toppling rule I4

In the current implementation, the toppling rule I4 is applied to the soft sediment layer
Qd, and the initial sand cover layerQd,0 is specified as a constant over the grid. For certain
bathymetries, with steep inclines, this may lead to a large redistribution of sediment
during the first CA iterations. Recall that, for this reason the toppling rule I4 could
be specified to run until convergence, prior to the rest of the transition function σ is
applied (see Section 4.5). Another option would be to assume that the initial sand cover
Qd,0 is in its steady state, and that the toppling rule only applies to sediment that is
deposited by the turbidity current. In order to do this, the initial layer of sediment and
the deposited sediment would probably have to be divided into separate substates, e.g.,
Qd1 and Qd2, respectively. Then the toppling rule could then be applied to only Qd2.
The steepness of the initial bathymetry in examples described in Ref. [4] indicates that
an approach like this may have been used, but if so, it is not described.

9.1.5 General implementation
The application order of the components in σ, listed in Section 4.4, implies the following.
Consider an empty cell, next to a cell with a non-zero turbidity current thickness. The
cell receives a turbidity current thickness Qth when the local interaction I2 is applied.
Then, the speed is calculated by applying I3. However, since this cell has no outflow yet
(the outflow is calculated in I1, which has already been run for this CA iteration), the
speed Qv becomes zero. Now, the next iteration starts. In transformation T2, the cell
substate Qv is still zero, which means that the shear velocity u∗ = 0 (and the erosion rate
E = 0), and thus the current may only deposit sediment. If the deposition rate is very
high, or ∆t is high, this may cause the turbidity current to deposit all the sediment it
contains. This may, or may not be an issue depending on the implemented “correction”
against unphysical values in the transformation T2 (see Section 4.4.2). Either way, by
adding an additional outflow calculation I1 prior to the speed calculation I3, cells that
received a turbidity current thickness in this iteration may also get a non-zero speed,
and thus an erosion rate E > 0.

In order to save computation time, a variable grid size could be implemented. As of now,
every grid cell in the CA implementation has the same size. For certain bathymetries,
the interesting events could be isolated to a smaller section of the grid. For instance,
the object of interest in the Rupert Inlet case, is the channel (see Figure 6.3). In order
to better resolve the channel, the grid size would have to be increased and the spatial
discretization would have to be decreased. This leads to a higher density of cells, both in
the periphery, and near the channel. Thus, a large amount of computation time is spent
on areas that would be adequately resolved using a lower density grid. If several grid
densities could be combined, such that a higher density is used near areas of interest,
while a lower density is used elsewhere, this could lead to saved computation time. This
is a technique commonly used in computational fluid dynamics.

86

9.2. Parallelization of the cellular automaton

9.2 Parallelization of the cellular automaton
Benchmarking the parallel performance of the cellular automaton indicates that this is
a problem well suited for parallelization. Besides ensuring that the relative amount of
MPI communication is low, load imbalance was identified as a potential issue. The issue
arises when the MPI grid dimensions does not equally divide the dimensions of the CA
grid. The speedups at p = 512 and p = 529 CPUs demonstrate this behaviour (see
Chapter 8). This can be solved by dividing the remainder, Lx mod px, among as many
processors as possible p̃x < px, in that direction (see Section 4.5.2). Consider the scenario
that occurred for p = 529 as an example. The computational grid has size 4000× 4000,
and the MPI grid is 23× 23. The remainder becomes 4000 mod 23 = 21 cells. Thus, by
expanding the subgrid of 21 of the CPUs by one, the load imbalance can be minimized.

The simulation cases presented in this thesis are on a relatively small scale. Relatively
small grid sizes, and small simulation durations were used. Thus, the need for high com-
putational parallelism was not really justified for these cases. However, for simulations
using higher resolution bathymetries with large grid sizes, running over extended periods
of time, parallelism can be very beneficial. As was seen in Chapter 8, the CA has been
benchmarked with up to 529 CPUs, using the Linux cluster Fram. This implementation
was parallelized with the intent of running on CPU clusters. By using a graphics pro-
cessor unit (GPU), it is possible that the same performance may be achieved without
the need for a cluster.

87

10 | Conclusions and future work
In this thesis a cellular automaton (CA) used to simulate turbidity currents has been
implemented. The CA simulates the evolution of the sea bed due to erosion and depo-
sition, and was based on the work done by T. Salles et al. in Ref. [4]. The published
description of the model has been found not to be entirely complete, and to contain
some errors. Hence, a large portion of the work in this thesis has been to interpret the
published model, and try to arrive at an implementation and a description that is as
complete as possible. Tests reveal some remaining issues, and these have been discussed,
along with potential strategies to resolve them.

The implementation of the CA was done using the programming language Python. The
CA was parallelized by using the Message Passing Interface (MPI) standard, and by
combining the halo exchange technique with a self-composed algorithm that has been
named the inverse halo exchange. Cython was used on computationally intensive parts
of the code.

All of the implemented CA transition function components have been examined individu-
ally. The water entrainment component was applied to a cell, and the resulting turbidity
current thickness and concentration was plotted for a range of turbidity current speeds
Qv. The water entrainment effect was found to increase the thickness, while decreasing
the concentration of the turbidity current, as expected. Considering scenarios with one
particle type, the erosion and deposition rules were examined separately, before plotting
the net rate of change of the sea bed (the Exner equation) for different particle sizes
Dsj. The implemented model was compared with alternative models by Imran [35] and
Fukushima [15], and was found to correspond well with the Imran model.

The outflow implementation was compared with an existing example of the outflow al-
gorithm, created by D’Ambriosio [37], and was found to give the correct results. A
dynamically calculated relaxation factor pr, that is used to scale the outflow calculation,
was found to restrict the propagation of the turbidity current, and a lower limit to the
factor was implemented due to this. Two simple examples were used to demonstrate the
calculation of received turbidity current thickness in the local interaction I2, and calcu-
lation of the cell speed I3. An important remark was made, that in this implementation,
the speed Qv is merely used as a measure of energy, and it does not influence the speed
at which the current propagates through the grid.

The slope failure model was verified by application on a level bedrock, and by using the
Ranfjorden bathymetry as bedrock. For the level bedrock, the cross section of the grid
was plotted, and the inclination angle of the curve θ was compared to the given angle
of repose θr. With θr = 0°, and θr = 10° the hill inclination was found to be a close
approximation of θr. A distortion of the displaced sediment was observed for the case
with θr = 0°, and is believed to be caused by the skewness of the domain combined with
no-flux boundary conditions. The toppling rule was found to need a lot more iterations

89

Chapter 10. Conclusions and future work

n before θ approached θr, when θr was small. The implemented inverse halo exchange
was demonstrated, and confirmed to give the correct results.

The complete CA implementation was tested against steady state values as predicted by
the three equation model (TEM). In this case the CAmodel did not perform well. Despite
the TEM predicting that one of the simulated scenarios would result in a self-accelerating
turbidity current, and that another scenario would not, the CA did not produce results
where a self-accelerating turbidity current was observed in either scenario. A large part
of the reason for this is believed to be that the speed of the turbidity current Qv is not
directly linked to the current propagation speed, and that in this implementation the
amount of sediment in the system is finite, while in TEM it is not.

A comparison between results gathered from this implementation, and the results in Ref.
[4] was conducted. The results were found to be somewhat in agreement, especially con-
cerning the distribution of deposited particle sizes. The observed amounts of deposition
and erosion did not agree with Ref. [4]. Some assumptions were made concerning the
initial conditions of this simulation, which could be the reason for the discrepancy. Other
potential reasons include too low turbidity current speed Qv. Possible explanations and
solutions for the low speed Qv have been discussed.

For the final simulation, bathymetry from the inner part of Ranfjorden was used. The
results displayed areas of deposition that seemed to agree with the described state of
the bed in Refs. [41, 42, 43, 44]. Small amounts of erosion were observed in areas
that corresponded to areas where erosion had been observed on site [41]. In certain
simulations, numerical instabilities were observed. These are believed to be due to the
relaxation factor pr. A possible solution is discussed. An issue regarding the speed of
the turbidity current has been discussed, along with possible solutions.

The parallel performance of the implemented CA has been tested by using the Linux
cluster Fram. Speedups, and the estimated serial fraction were measured for several
combinations of problem sizes and number of CPUs. The program achieved super-
linear speedups for all the problem sizes, up to a certain number of CPUs. Larger
grids/problems achieved best speedup. The highest speedup achieved was 238, when
using 512 CPUs. Higher speedup is believed to be achievable by ensuring that the
relative amount of computation is low, and that the work is equally distributed between
the MPI ranks. For instance, when the dimensions of the MPI grid does not divide
the dimensions of the computational grid, load imbalance between the MPI ranks may
occur, reducing the speedup.

The implemented CA shows promise in predicting the evolution of sea beds, under the
influence of turbidity currents. More work is, however, required in order to achieve a
tool that can be used with reliable precision.

Future work
The immediate priority for any future work would be to solve the remaining numerical
instability issue. Potential causes and solutions have been discussed.

90

When any remaining numerical issues are solved, the cellular automaton model may
be used to study the bathymetry evolution of several real tailings deposit locations.
The implementation is “HPC-ready” as has been demonstrated, and so high resolution
bathymetries may potentially be used to predict deposition and erosion activity due to
sediment discharge, in some detail. Candidates for such simulations are e.g., Ranfjorden
and Bøkfjorden.

91

Bibliography
[1] Geir Thorsnæs. “Ranfjorden”. In: Store Norske Leksikon (2016). Accessed on 30.05.19.

url: https://snl.no/Ranfjorden.
[2] Nussir. Quantities and Estimates. Accessed on 25.06.19. 2014. url: http://www.

nussir.no/en_projec_nussir.php.
[3] Eva Ramirez-Llodra et al. “Submarine and deep-sea mine tailing placements: a

review of current practices, environmental issues, natural analogs and knowledge
gaps in Norway and internationally”. In: Marine Pollution Bulletin 97.1-2 (2015),
pp. 13–35.

[4] T. Salles et al. “Cellular automata model of density currents”. In: Geomorphology
88.1-2 (2007), pp. 1–20.

[5] Marius Ungarish. An Introduction to Gravity Currents and Intrusions. 1st ed. CRC
Press, 2009.

[6] Deborah Anne Edwards. Turbidity currents : dynamics, deposits and reversals.
1991.

[7] Thierry Mulder and Jan Alexander. “The physical character of subaqueous sedi-
mentary density flows and their deposits”. In: Sedimentology 48.2 (2001), pp. 269–
299.

[8] Vanessa Teles et al. “CATS – A process-based model for turbulent turbidite systems
at the reservoir scale”. In: Comptes Rendus - Geoscience 348.7 (2016), pp. 489–498.

[9] G Parker et al. “Experiments on turbidity currents over an erodible bed”. In:
Journal of Hydraulic Research 25.1 (Jan. 1987), pp. 123–147.

[10] M. Hanif Chaudhry. Open-channel flow. 2nd ed. Springer, 2008.
[11] Scott F. Bradford and Nikolaos D. Katopodes. “Hydrodynamics of Turbid Under-

flows. I: Formulation and Numerical Analysis”. In: Journal of Hydraulic Engineer-
ing 125.10 (1999), pp. 1006–1015.

[12] Marcelo Garcia and Gary Parker. “Experiments on the entrainment of sediment
into suspension by a dense bottom current”. In: Journal of Geophysical Research:
Oceans 98.C3 (1993), pp. 4793–4807.

[13] Marcelo H Garcia. “Depositional Turbidity Currents Laden with Poorly Sorted
Sediment”. eng. In: Journal of Hydraulic Engineering 120.11 (1994), pp. 1240–
1263.

[14] Maurice E. Tucker. Sedimentary rocks in the field. Wiley, 2003.
[15] Yusuke Fukushima, Gary Parker, and H. M. Pantin. “Prediction of ignitive tur-

bidity currents in Scripps Submarine Canyon”. In: Marine Geology 67.1-2 (1985),
pp. 55–81.

[16] Peng Hu, Thomas Pähtz, and Zhiguo He. “Is it appropriate to model turbidity
currents with the three-equation model?” In: Journal of Geophysical Research F:
Earth Surface 120.7 (2015), pp. 1153–1170.

[17] Tommaso Toffoli. Cellular automata machines : a new environment for modeling.
eng. 1987.

93

https://snl.no/Ranfjorden
http://www.nussir.no/en_projec_nussir.php
http://www.nussir.no/en_projec_nussir.php

Bibliography

[18] Martin Gardner. “MATHEMATICAL GAMES The fantastic combinations of John
Conway’s new solitaire game “life””. In: Scientific American 223 (1970).

[19] S. Warner. Modern Algebra. Dover Books on Mathematics. Dover Publications,
1990.

[20] Raymond Nepstad. “DREAM for mining releases: Changing bathymetry by depo-
sition”. Memo. 2012.

[21] Dale Anderson, John C Tannehill, and Richard H Pletcher. Computational fluid
mechanics and heat transfer. CRC Press, 2016.

[22] Bernhard Müller. “Introduction to Computational Fluid Dynamics”. Lecture notes
for the course Computational Heat and Fluid Flow. 2018.

[23] James W. Rottman et al. “Unsteady gravity current flows over obstacles: Some
observations and analysis related to the phase II trials”. In: Journal of Hazardous
Materials 11 (1985), pp. 325–340.

[24] Daniel R Lynch et al. Particles in the coastal ocean: Theory and applications.
Cambridge University Press, 2014.

[25] Trisdan Salles. Evolution sedimentaire des canyons et chenaux sous-marins: Mod-
élisation numérique du remplissage sédimentaire des canyons et chenaux sous-
marins par approche génétique. Éditions universitaires européennes, 2006.

[26] R. Soulsby. Dynamics of Marine Sands. Thomas Telford Ltd, 1998.
[27] William E Dietrich. “Settling velocity of natural particles”. In: Water resources

research 18.6 (1982), pp. 1615–1626.
[28] G V Middleton. “Small-Scale Models of Turbidity Currents and the Criterion for

Auto-Suspension”. In: Journal of sedimentary research. 36.1 (1966).
[29] G V Middleton. “Sediment Deposition from Turbidity Currents”. In: Annual Re-

view of Earth and Planetary Sciences 21.1 (1993), pp. 89–114.
[30] Stefan Behnel et al. “Cython: The best of both worlds”. In: Computing in Science

and Engineering 13.2 (2011), pp. 31–39.
[31] Peter Pacheco. An Introduction to Parallel Programming. eng. Elsevier Science,

2011.
[32] Alan H Karp and Horace P Flatt. “Measuring parallel processor performance”. In:

Communications of the ACM 33.5 (1990), pp. 539–543.
[33] Lisandro Dalcín, Rodrigo Paz, and Mario Storti. “MPI for Python”. In: Journal of

Parallel and Distributed Computing 65.9 (2005), pp. 1108–1115.
[34] Steinar Brattøy Gundersen. ProjectCA on Github. Accessed on 30.05.19. url:

https://github.com/steinabg/ProjectCA/tree/using_cython.
[35] Jasim Imran, Gary Parker, and Nikolaos Katopodes. “A numerical model of chan-

nel inception on submarine fans”. In: Journal of Geophysical Research: Oceans
103.C1 (Jan. 1998), pp. 1219–1238.

[36] S. Di Gregorio et al. “Mount ontake landslide simulation by the Cellular Automata
model SCIDDICA-3”. In: Physics and Chemistry of the Earth, Part A: Solid Earth
and Geodesy 24.2 (1999), pp. 131–137.

[37] D. D’Ambrosio, S. Di Gregorio, and G. Iovine. “Simulating debris flows through a
hexagonal cellular automata model: SCIDDICA S 3-hex”. In: Natural Hazards and
Earth System Science 3.6 (2003), pp. 545–559.

94

https://github.com/steinabg/ProjectCA/tree/using_cython

Bibliography

[38] T. Mulder, J. P. M. Syvitski, and K. I. Skene. “Modeling of erosion and deposi-
tion by turbidity currents generated at river mouths”. In: Journal of Sedimentary
Research 68.1 (1998), pp. 124–137.

[39] Alex E. Hay. “Turbidity currents and submarine channel formation in Rupert Inlet,
British Columbia: 2. The roles of continuous and surge-type flow”. In: Journal of
Geophysical Research 92.C3 (1987), p. 2883.

[40] Kartverket. Dybdedata og terrengmodeller av havbunn. Accessed on 17.06.19. url:
https://www.kartverket.no/data/dybdedata- og- terrengmodeller- av-
havbunn/.

[41] Anders E. Haugen. “Distribution, deposition and impact of tailing disposal on the
seafloor in Ranfjorden, northern Norway”. MA thesis. The Arctic University of
Norway, 2018.

[42] Sigurd Øxnevad et al. Tiltaksorientert overvåking av Ranfjorden i 2018. Overvåk-
ing for Mo Industripark AS, Celsa Armeringsstål AS, Elkem Rana AS, Ferroglobe
Mangan Norge AS, Rana Gruber AS, Miljøteknikk Terrateam AS og Rana kom-
mune. Norsk Insitutt for Vannforskning, 2018.

[43] Torbjørn M. Johnsen et al.Miljøundersøkelser i Ranfjorden 1994-96. Norsk Insitutt
for Vannforskning, 2004.

[44] Sigurd Øxnevad et al. Tiltaksrettet overvåking av Ranfjorden i henhold til vann-
forskriften. Overvåking for Mo Industripark, Celsa Armeringsstål, Fesil Rana Met-
all, Glencore Manganese Norway og Rana Gruber. Norsk Insitutt for Vannforskn-
ing, 2016.

[45] UNINET. UNINET Documentation Sigma2, Fram. Accessed on 16.06.19. url:
https://documentation.sigma2.no/quick/fram.html.

95

https://www.kartverket.no/data/dybdedata-og-terrengmodeller-av-havbunn/
https://www.kartverket.no/data/dybdedata-og-terrengmodeller-av-havbunn/
https://documentation.sigma2.no/quick/fram.html

A | Configuration files
A.1 Template config file
In this section an example CA config file is shown. All variables are commented, indi-
cating the purpose or corresponding variable in the description given in the thesis.

[simulation_parameters]
ny = 100 # Number of cells in y-direction
nx = 100 # Number of cells in x-direction
nj = 3 # Number of sediment types
dx = 1 # Spatial discretization
terrain = rupert # See comment below
converged_toppling = [1, 1e-7] # [boolean, tolerance]
sphere_settling_velocity = salles # See below
slope=np.deg2rad(20) # Slope of terrain (rupert,salles2,sloped_plane)
num_iterations = 10000 # Number of iterations to perform
sample_rate = 1000 # How often should results be saved
output = 2d # Specify which output you want
x = np.ix_(np.arange(50,51)) # source area x-coordinate (m-index)
y = np.ix_(np.arange(4,5)) # source area y-coordinate (l-index)
theta_r = 10 # Angle of repose
q_th[y,x] = 1.5 # Initial turbidity current thickness
q_v[y,x] = 10 # Initial turbidity current speed
q_cj[y,x,0] = 0.03*0.2 # Initial turbidity current concentration (sediment 0)
q_cj[y,x,1] = 0.03*0.4 # Initial turbidity current concentration (sediment 1)
q_cj[y,x,2] = 0.03*0.4 # Initial turbidity current concentration (sediment 2)
q_cbj[y,x,0] = 1 # Initial source area bed concentration (sediment 0)
q_cbj[y,x,1] = 0 # Initial source area bed concentration (sediment 1)
q_cbj[y,x,2] = 0 # Initial source area bed concentration (sediment 2)
q_d[y,x] = 1 # Initial source area soft sediment height
q_cbj[interior,0] = 0.2 # Initial grid bed concentration (sediment 0)
q_cbj[interior,1] = 0.4 # Initial grid bed concentration (sediment 1)
q_cbj[interior,2] = 0.4 # Initial grid bed concentration (sediment 2)
q_d[interior] = 1 # Initial grid sediment height
g = 9.81 # gravitational acceleration
f = 0.04 # darcy-weisbach constant
a = 0.43 # empirical constant (Chzy equation)
rho_a = 1000 # density of ambient fluid (kg/m^3)
c_d = 0.003 # bed drag coefficient
nu = 1.5182e-06 # kinematic viscosity of ambient fluid
porosity = 0.3 # bed porosity
p_f = np.deg2rad(0) # friction angle limit (corresponds to theta_f in

documentation)
p_adh = 0.1 # unmovable amount of sediment

i

Appendices A. Configuration files

rho_j = np.array([2650, 2650, 2650], dtype=np.dtype("i"), order=’C’) # array
of sediment type densities (kg/m^3)

d_sj = np.array([50e-6, 100e-6, 300e-6]) # array of sediment type diameters
(m)

• Terrain may either be the name of a .netCDF file, or one of the keywords {ranfjor-
den, rupert, salles2, sloped_plane}.

• sphere_settling_velocity may either be set to ’salles’ in which case the speed is
calculated at runtime, or can be explicitly set by an array of size nj with settling
speeds with the respective settling speeds of the particle types.

ii

A.2. Test case 1: 1D channel config (IC1)

A.2 Test case 1: 1D channel config (IC1)
[simulation_parameters]
ny = 1500
nx = 3
nj = 1
dx = 1
terrain = sloped_plane
slope = 0.05
sphere_settling_velocity = np.array([0.0084], dtype=np.double)
num_iterations = 100000
sample_rate = 1000
output=npy,bathymetry
x = np.ix_(np.arange(1,2))
y = np.ix_(np.arange(50,51))
theta_r = np.deg2rad(30)
q_th[y,x] = 2.0
q_v[y,x] = 0.652
q_cj[y,x,0] = 0.00291
q_cbj[y,x,0] = 1
q_d[y,x] = 1
q_cbj[interior,0] = 1
q_d[interior] = 1
g = 9.81
f = 0.04
a = 0.43
rho_a = 1000
c_d = 0.004
nu = 1e-06
porosity = 0
p_f = np.deg2rad(0)
p_adh = 0
rho_j = np.array([2650], dtype=np.dtype("i"), order=’C’)
d_sj = np.array([0.1e-3])

iii

Appendices A. Configuration files

A.3 Test case 1: 1D channel config (IC2)
[simulation_parameters]
ny = 1500
nx = 3
nj = 1
dx = 1
terrain = sloped_plane
slope = 0.05
sphere_settling_velocity = np.array([0.0084], dtype=np.double)
num_iterations = 100000
sample_rate = 1000
output= npy,bathymetry
x = np.ix_(np.arange(1,2))
y = np.ix_(np.arange(50,51))
theta_r = np.deg2rad(30)
q_th[y,x] = 1
q_v[y,x] = 0.699
q_cj[y,x,0] = 0.00672
q_cbj[y,x,0] = 1
q_d[y,x] =1
q_cbj[interior,0] = 1
q_d[interior] = 1
g = 9.81
f = 0.04
a = 0.43
rho_a = 1000
c_d = 0.004
nu = 1e-06
porosity = 0
p_f = np.deg2rad(0)
p_adh = 0
rho_j = np.array([2650], dtype=np.dtype("i"), order=’C’)
d_sj = np.array([0.1e-3])

iv

A.4. Test case 2: Rupert Inlet lower reach config

A.4 Test case 2: Rupert Inlet lower reach config
[simulation_parameters]
ny = 160*2
nx = 60*2
nj = 3
dx = 1/2
terrain = salles2
converged_toppling = [1, 1e-7]
sphere_settling_velocity = salles
slope=np.deg2rad(0.7)
num_iterations = 20000
sample_rate = 1000
output = 2d,bathymetry,stability
x = np.ix_(np.arange(64,65))
y = np.ix_(np.arange(4,6))
theta_r = np.deg2rad(50)
q_th[y,x] = 2.5
q_v[y,x] = 0.2
q_cj[y,x,0] = 0.09*0.8
q_cj[y,x,1] = 0.09*0.15
q_cj[y,x,2] = 0.09*0.05
q_cbj[y,x,0] = 0.8
q_cbj[y,x,1] = 0.15
q_cbj[y,x,2] = 0.05
q_d[y,x] = 0.5
q_cbj[interior,0] = 0.8
q_cbj[interior,1] = 0.15
q_cbj[interior,2] = 0.05
q_d[interior] = 0.5
g = 9.81
f = 0.04
a = 0.43
rho_a = 1000
c_d = 0.003
nu = 1e-06
porosity = 0.3
p_f = np.deg2rad(1)
p_adh = .1
rho_j = np.array([2600, 2600, 2600], dtype=np.dtype("i"), order=’C’)
d_sj = np.array([5e-6, 60e-6, 135e-6])

v

Appendices A. Configuration files

A.5 Ranfjorden config file
[simulation_parameters]
ny = 700
nx = 530
nj = 3
dx = 14
terrain = rf
converged_toppling = [1, 1e-7]
sphere_settling_velocity = salles
num_iterations = 20000
sample_rate = 500
output=stability
x=357
y=575
theta_r = np.deg2rad(50)
q_th[y,x] = 0.021
q_v[y,x] = 2
q_cj[y,x,0] = 0.01*0.02
q_cj[y,x,1] = 0.01*0.096
q_cj[y,x,2] = 0.01*0.884
q_cbj[y,x,0] = 0.8
q_cbj[y,x,1] = 0.1
q_cbj[y,x,2] = 0.1
q_d[y,x] = 1
q_cbj[interior,0] = 0.8
q_cbj[interior,1] = 0.1
q_cbj[interior,2] = 0.1
q_d[interior] = 1
g = 9.81
f = 0.04
a = 0.43
rho_a = 1000
c_d = 0.003
nu = 1e-06
porosity = 0.3
p_f = np.deg2rad(0)
p_adh = 0
rho_j = np.array([2650, 2650, 2650], dtype=np.dtype("i"), order=’C’)
d_sj = np.array([5e-6, 80e-6, 135e-6])

vi

A.6. Benchmarking config file

A.6 Benchmarking config file
Parameters ny,nx,dx,x are adjusted for each grid size G1 = 1000× 1000, G2 = 2000×
2000, andG3 = 4000×4000. G1: ny=1000, nx=1000, dx=60/1000, x=np.ix_(np.arange(533,534)),
G2: ny=2000, nx=2000, dx=60/2000, x=np.ix_(np.arange(1066,1067)), and G3 is
given in completeness below.

[simulation_parameters]
ny = 4000
nx = 4000
nj = 3
dx = 60/4000
terrain = salles2
sphere_settling_velocity = salles
slope=np.deg2rad(0.7)
num_iterations = 100
sample_rate = 99
output = npy
x = np.ix_(np.arange(2133,2134))
y = np.ix_(np.arange(4,6))
theta_r = np.deg2rad(50)
q_th[y,x] = 2.5
q_v[y,x] = 0.2
q_cj[y,x,0] = 0.09*0.8
q_cj[y,x,1] = 0.09*0.15
q_cj[y,x,2] = 0.09*0.05
q_cbj[y,x,0] = 0.8
q_cbj[y,x,1] = 0.15
q_cbj[y,x,2] = 0.05
q_d[y,x] = 0.5
q_cbj[interior,0] = 0.8
q_cbj[interior,1] = 0.15
q_cbj[interior,2] = 0.05
q_d[interior] = 0.5
g = 9.81
f = 0.04
a = 0.43
rho_a = 1000
c_d = 0.003
nu = 1e-06
porosity = 0.3
p_f = np.deg2rad(1)
p_adh = .1
rho_j = np.array([2600, 2600, 2600], dtype=np.dtype("i"), order=’C’)
d_sj = np.array([5e-6, 60e-6, 135e-6])

vii

B | Additional models
B.1 Imran sediment entrainment model
The sediment entrainment coefficient Ej can be modelled [35] by

Ej = a
Z5

1 + a
0.3Z

5 , (B.1)

with a = 1.3 · 10−7, and

Z = α1
u∗
vsj
Rα2
pj . (B.2)

Where u∗ is the shear-velocity, vsj is the settling velocity of a particle, and Rpj is the
particle Reynolds number. The parameters (α1, α2) take respective values (1, 0.6) for
Rpj > 2.36 and (0.586, 1.23) for Rpj ≤ 2.36.

B.2 Imran deposition rate model
The deposition rate D can be modelled [35] by

D = vsjr0C, (B.3)
where vsj is the sediment settling velocity, r0 = 1.8 is a constant, and C is the layer-
averaged concentration.

B.3 Fukushima sediment entrainment model
The sediment entrainment coefficient Ej is modelled by Fukushima [15] as,

Ej =


0 for Z < Zc

3 · 10−12Z10(1− Zc

Z
) for Zc < Z < Zm

0.3 for Z > Zm,

(B.4)

where Z = R0.5
pj µ and µ = u∗

vsj
. Rpj is the particle Reynolds number, u∗ is the shear-

velocity, and vsj is the settling velocity of a particle. Zc ≈ 5 and Zm = 13.2.

ix

Steinar B
rattøy G

undersen
M

aster's thesis in A
pplied P

hysics and M
athem

atics

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 N
at

ur
al

 S
ci

en
ce

s
D

ep
ar

tm
en

t o
f P

hy
si

cs

M
as

te
r’

s
th

es
is

Steinar Brattøy Gundersen

Implementing and reviewing a
published cellular automaton model
for simulating erosion and deposition
processes due to turbidity currents

Master’s thesis in Applied Physics and Mathematics
Supervisor: Tor Nordam and Raymond Nepstad

June 2019

	Introduction
	Theory
	Gravity and turbidity currents
	Sediment gravity flows
	Interactions with the ambient
	Near-bed concentration
	Numerical models and self-accelerating turbidity currents

	Cellular Automata
	Hexagonal grids

	Concepts and equations related to transition function
	Angle of repose
	Reduced gravity
	Numerical stability
	Run-up height
	Sphere settling velocity
	Chézy formula and speed of a turbulent current

	Python programming
	Cython
	Why use Cython?
	Compatibility

	Parallel computing
	Performance
	High performance computing and MPI
	Parallelizing a cellular automaton using MPI

	Implementation of the cellular automaton
	Cell states S
	Notation, substate indices and arguments
	Initial and boundary conditions
	Source cells
	Concentration of deposited sediment

	Parameters P
	Time step t
	Transition function
	Internal transformation (T1): water entrainment
	Internal transformation (T2): erosion and deposition
	Local interaction (I1): turbidity current outflow update
	Local interaction (I2): turbidity current thickness and concentration update
	Local interaction (I3): turbidity current flow speed update
	Local interaction (I4): slope failure model/toppling rule

	Implementation specific considerations
	Cythonizing the CA implementation
	Parallelizing the CA implementation

	Verifying the transition function
	Internal transform T1: water entrainment
	Internal transform T2: erosion and deposition
	Local interaction I1: turbidity current outflow update
	Local interaction I2: turbidity current thickness and concentration update
	Local interaction I3: turbidity current flow speed update
	Local interaction I4: slope failure model/toppling rule
	Test scenario with no terrain
	Test scenario in Ranfjorden
	Demonstration of inverse halo-exchange
	Discussion of the slope failure model

	Testing the complete cellular automaton
	Test case 1: 1D channel
	Configuration, initial and boundary conditions
	1D channel results
	Discussion

	Test case 2: Rupert Inlet
	Configuration, initial and boundary conditions
	Results
	Discussion

	Simulating turbidity currents in Ranfjorden
	CA configuration, initial and boundary conditions
	Results
	Discussion

	Numerical performance
	MPI benchmarking
	Performance evaluation

	Miscellaneous discussion
	Known issues, suggestions, and potential improvements to the cellular automaton
	Turbidity current outflow update I1
	Turbidity current flow speed update I3
	Erosion and deposition T2
	Toppling rule I4
	General implementation

	Parallelization of the cellular automaton

	Conclusions and future work
	Appendices Configuration files
	Template config file
	Test case 1: 1D channel config (IC1)
	Test case 1: 1D channel config (IC2)
	Test case 2: Rupert Inlet lower reach config
	Ranfjorden config file
	Benchmarking config file

	Appendices Additional models
	Imran sediment entrainment model
	Imran deposition rate model
	Fukushima sediment entrainment model

