@ NTNU

Norwegian University of
Science and Technology

OTN switching

Per Harald Knudsen-Baas

Master of Telematics - Communication Networks and

Networked Services (2 year]
Submission date: June 2011

Supervisor: Steinar Bjgrnstad, ITEM
Co-supervisor: Raimena Veisllari, ITEM

Norwegian University of Science and Technology
Department of Telematics

Problem description

The OTN (Optical Transport Network) standard is an ITU-T standard (G.709)
describing a method for wrapping in signals of different protocol-formats for
transport across an optical network. OTN is considered as the predecessor
of SDH, enabling much of the same monitoring and management capabilities
known from SDH. While the first versions of the OTN-standard describes
transport at 2.5 and 10 Gb/s wavelength-channel bitrates, the standard has
recently been extended to include bitrates up to 100 Gb/s and down to 1
Gb/s. Furthermore, while OTN originally were only described as a method
for reliable data-transport, switching of sub-wavelength bitrates has recently
been proposed. This enables e.g. add/drop at the OTN layer of parts of e.g.
a 100 Gb/s stream, enabling the use of 10 Gb/s interfaces on IP-routers in a
100 Gb/s transport network.

The thesis will study recent progress in OTN, including OTN switching ca-
pabilities. Performance of a pure packet switched network shall be compared
with the performance of an OTN switching based network. The performance
comparison will be performed on a proposed network scenario. Performance
results shall be found using discrete event simulation.

Assignment given: 17.01.2011
Supervisor: Steinar Bjgrnstad, ITEM /Transpacket

Abstract

Increasing traffic volumes in the Internet put strict requirements to the archi-
tecture of optical core networks. The exploding number of Internet users, and
massive increase in Internet content consumption forces carriers to constantly
upgrade and transform their core networks in order to cope with the traffic
growth. The choice of both physical components and transport protocols in
the core network is crucial in order to provide satisfactorily performance.

Data traffic in the core network consists of a wide variety of protocols.
OTN is a digital wrapper technology, responsible for encapsulating existing
frames of data, regardless of native protocol, and adding additional over-
head for addressing, OAM and error control. The wrapped signal is then
transported directly over wavelengths in the optical transport network. The
common OTN wrapper overhead makes it possible to monitor and control
the signals, regardless of the protocol type being transported.

OTN is standardized by the ITU through a series of recommendations,
the two most important being ITU-T G.709 - "Interfaces for the Optical
Transport Network", and ITU-T G.872 - "Architecture of the Optical Trans-
port Network". OTN uses a flexible TDM hierarchy in order to provide high
wavelength utilization. The TDM hierarchy makes it possible to perform
switching at various sub-wavelength bit rates in network nodes.

An introduction to OTN and an overview of recent progress in OTN
standardization is given in the thesis. An OTN switch which utilizes the
flexible multiplexing hierarchy of OTN is proposed, and its characteristics is
tested in a network scenario, comparing it to the packet switched alternative.

Simulation results reveal that OTN switching doesn’t provide any per-
formance benefits compared to packet switching in the core network. OTN
switches do however provide bypass of intermediate IP routers, reducing the
requirements for router processing power in each network node. This reduces
overall cost, and improves network scalability.

An automatically reconfigurable OTN switch which rearranges link sub-
capacities based on differences in output buffer queue lengths is also proposed
and simulated in the thesis. Simulation results show that the reconfigurable
OTN switch has better performance than both pure packet switching and
regular OTN switching in the network scenario.

1

Preface

I want to thank my supervisor Steinar Bjgrnstad for his valuable support
during the work with this thesis. His guidance has helped me keep on the
right path from start to end. I also want to thank my co-supervisor Raimena
Veisllari for helpfull hints and support during the spring.

il

iv

Contents

Abstract i
Preface iii
List of Figures ix
List of Tables xiii
Abbreviations XV
1 Introduction 1
1.1 Optical transport network evolution 1

1.2 Motivationo 3

1.3 Previouswork 4
1.4 Problem definition 4

1.5 Methodology)

1.6 Organization of the report 5

2 Optical core networks 7
2.1 Background 7

2.2 'WDM transmission system 8
23 TDM 10
2.4 Evolution of optical transmission systems 11
2.5 Crossconnects 11
2.6 Core network transport protocols 13

3 OTN (G.709) 15
3.1 Background 15

3.2 OTN frame structure 16
321 OPU-k 16

322 ODU-k...... 17

323 OTU-k 17

324 OCh
325 ODUflex
3.3 TDM Multiplexing oo
3.3.1 Tributary slots L.

34 OTNsignalrates
3.5 OTNlayers
3.6 FEC
3.7 TCM . . .o

3.8 Recent progress in OTN

OTN switching

4.1 Backgroundo

4.2 Node architecture oL

4.3 OTN switch proposal
4.3.1 OTN interface cards
4.3.2 Ethernet interface cards
4.3.3 TDM space-division crossbar switch

Network scenario

5.1 Basic three-node network scenario
5.2 Three-node packet switching scenario
5.3 Three-node OTN switching scenario

Simulation model

6.1 Background oo
6.2 Common simulator implementation parts
6.3 IP simulator o
6.4 OTN simulator
6.5 Reconfigurable OTN simulator

Simulation results

7.1 IPsimulator
7.1.1 N.E.D. interarrival distribution
7.1.2 Hyperexponential interarrival distribution

7.2 OTN simulator
7.2.1 N.E.D. interarrival distribution
7.2.2 Hyperexponential interarrival distribution

7.3 1P vs. OTN comparison
7.3.1 N.E.D. interarrival distribution
7.3.2 Hyperexponential interarrival distribution

vi

29
29
31
33
34
34
34

37
37
38
39

41
41
42
44
45
47

7.4 OTN Hyperexponential vs. N.E.D. interarrival distribution

COMPATISOTL« . o ottt e e 65

7.5 Reconfigurable OTN simulator 67
7.5.1 N.E.D. interarrival distribution 68

7.5.2 Hyperexponential interarrival distribution 70

7.6 1P vs. OTN vs. reconfigurable OTN comparison 72
7.6.1 N.E.D. interarrival distribution 72

7.6.2 Hyperexponential interarrival distribution 75

7.7 Discussion 7

8 Conclusion 79
8.1 Further work 80
References 80
Appendix 85
A Simulator source code 85
Al IP simulator 85
A.1.1 N.E.D. interarrival distribution 85

A.1.2 Hyperexponential interarrival distribution 90

A2 OTNsimulator 97
A.2.1 N.E.D. interarrival distribution 97

A.2.2 Hyperexponential interarrival distribution 102

A.3 Reconfigurable OTN simulator 107
A.3.1 N.E.D. interarrival distribution 107

A.3.2 Hyperexponential interarrival distribution 112

B DEMOS library changes 119
B.1 demos.atr and demos new.atr difference 119

C Input parameter file 120
C.1 Packet size distribution 120

vii

viil

List of Figures

1.1

2.1
2.2

2.3

24

2.5

3.1

3.2
3.3
3.4

3.5
3.6

4.1
4.2
4.3

Evolution of transport network protocols; OTN provides trans-
port for a wide range of protocols over DWDM networks. . . .

Block diagram of a WDM transmission system [1]

WDM: N incoming signals on separate wavelengths are multi-
plexed together, utilizing the available frequency spectrum in
the fiber.

TDM: N individual streams with a bit rate of B bps on sepa-
rate wavelengths are combined into a signal with bit rate NB
bps. The outgoing signal is divided into N timeslots. Each
of the incoming signals are assigned to a given timeslot of the
outgoing signal in a repeating cycle.
Evolution of optical transmission systems: From single wave-
lengths using TDM and regenerators to multiple wavelengths
with WDM and optical amplifiers [2].

The figure shows an electrical crossconnect (top) and an opti-
cal crossconnect (bottom) [3].

OTN frame structure showing FAS, OTU overhead, ODU over-
head, OPU overhead, payload and FEC

OTN structure and relationships [4]
Example of the flexible multiplexing structure in OTN [4] . . .

Allocation of OPU4 1.25G tributary slots in a 320 row by 3810
column OTN frame format

OTN layers [B]
Example of nested and cascaded TCM connections [5]

OTN node architecture
OTN switch proposal

TDM space-division switch capable of switching ODUs be-
tween timeslots [6]. L

X

35

5.1
5.2
5.3

6.1
6.2
6.3

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

Three-node basic network scenario 37

Three-node packet switching scenario 38
Three-node OTN switching scenario 39
IP simulation model 44
OTN simulation model 45
Reconfigurable OTN simulation model. 47
Average packet delay with increasing traffic load - IP simula-
tor, N.E.D. interarrival distribution 51
Average packet loss with increasing traffic load - IP simulator,
N.E.D. interarrival distribution 52
Average packet delay with increasing traffic load - IP simula-
tor, Hyperexponential interarrival distribution 54
Average packet loss with increasing traffic load - IP simulator,
Hyperexponential interarrival distribution 55
Average packet delay with increasing traffic load - OTN sim-
ulator, N.E.D. interarrival distribution 57
Average packet loss with increasing traffic load - OTN simu-
lator, N.E.D. interarrival distribution 58
Average packet delay with increasing traffic load - OTN sim-
ulator, Hyperexponential interarrival distribution 59
Average packet loss with increasing traffic load - OTN simu-
lator, Hyperexponential interarrival distribution 60
IP vs. OTN average packet delay comparison, N.E.D. interar-
rival distribution L 61
IP vs. OTN average packet loss comparison, N.E.D. interar-
rival distribution oL 62
IP vs. OTN average packet delay comparison, Hyperexponen-
tial interarrival distribution L. 63
IP vs. OTN average packet loss comparison, Hyperexponential
interarrival distribution00 64
OTN average packet delay comparison with hyperexponential
interarrival distribution vs. N.E.D. interarrival distribution . . 65
OTN average packet loss comparison with hyperexponential
interarrival distribution vs. N.E.D. interarrival distribution . . 66
Average packet delay with increasing traffic load - Reconfig-
urable OTN simulator, N.E.D. interarrival distribution 68
Average packet loss with increasing traffic load - Reconfig-
urable OTN simulator, N.E.D. interarrival distribution 69

7.17 Average packet delay with increasing traffic load - Reconfig-

7.18

7.19

7.20

7.21

7.22

urable OTN simulator, Hyperexponential interarrival distri-
bution
Average packet loss with increasing traffic load - Reconfig-
urable OTN simulator, Hyperexponential interarrival distri-
bution
Average packet delay with increasing traffic load - IP vs. OTN
vs. reconfigurable OTN simulator, N.E.D. interarrival distri-
bution
Average packet loss with increasing traffic load - IP vs. OTN
vs. reconfigurable OTN simulator, N.E.D. interarrival distri-
bution
Average packet delay with increasing traffic load - IP vs. OTN
vs. reconfigurable OTN simulator, Hyperexponential interar-
rival distributiono
Average packet loss with increasing traffic load - IP vs. OTN
vs. reconfigurable OTN simulator, Hyperexponential interar-
rival distribution oL

x1

xii

List of Tables

3.1 OTN interface card linerates [4] 22
6.1 Empirical distribution of IP packet sizes in the Internet[7] . . 42
7.1 Simulation parameters, IP simulator 50
7.2 Simulation parameters, OTN simulator 56
7.3 Simulation parameters, Reconfigurable OTN simulator 67

xiil

Xiv

Abbreviations

AMP
ATM
BER
BMP
CAIDA
CBR
DWDM
FAS
FEC
GFP
IaDI
IEEE
IrDI
ITU
MPLS
OCC
oCG
OCh
ODTU

Asynchronous Mapping Procedure
Asynchronous Transfer Mode

Bit Error Rate

Bit-synchronous Mapping Procedure
Cooperative Association for Internet Data Analysis
Constant Bit Rate

Dense Wavelength Division Multiplexing

Frame Alignment Signal

Forward Error Correction

Generic Framing Procedure

Intra-domain Interface

Institute of Electrical and Electronics Engineers
Inter-domain Interface

International Telecommunication Union
Multiprotocol Label Switching

Optical Channel Carrier

Optical Channel Group

Optical Channel

Optical Data Tributary Unit

XV

ODTUG Optical Data Tributary Unit Group

ODU Optical Data Unit

OMS Optical Multiplex Section
OPU Optical Packet Unit

OTH Optical Transport Hierarchy
OTN Optical Transport Network
OTS Optical Transmission Section
OTU Optical Transmission Unit
OXC Optical crossconnect

PDH Plesiochronous Digital Hierarchy
SDH Synchronous Digital Hierarchy
SNR Signal-to-Noise Ratio

SONET Synchronous Optical Networking
TCM Tandem Connection Monitoring
TDM Time Division Multiplexing

TS Tributary Slot

TSOH Tributary Slot Overhead

WDM Wavelength Division Multiplexing

Xvi

Chapter 1

Introduction

1.1 Optical transport network evolution

Over the last two decades we have been witnessing a tremendous growth in
generated data traffic volumes. The amount of global IP traffic is expected
to quadruple from 2009 to 2014 [8]. Bandwidth-demanding applications and
services are launched at an incredible pace, and customers are constantly
requiring higher connection speeds.

Telecommunication networks look very different nowadays than what they
did in the end of the 19-th century when the phone was invented by Mr. Bell.
In the early days of telecommunication, transport networks were constructed
to provide analog voice circuits with regional connectivity. The infrastructure
was based on copper cables and switching was carried out by switchingboard-
ladies who manually patched circuits correctly to provide connection between
endpoints. Automation in the transport networks didn’t happen until the
digital era in the 1960’s. At this time, the transport network was responsible
for transporting voice signals [9]. Since then, the Internet bubble has made
the core networks undergo a shift from transporting voice to transporting
data. Todays core networks transport mostly data traffic consisting of a
wide variety of protocols [9].

Optical networks make it possible for carriers to handle the explosive
growth in traffic volumes. The enormous capacity avilable in optical fiber
cables enables transport at constantly higher bit rates. 100 Gb/s per wave-
length is the next step in the fiber transmission capacity evolution.

The OTN standard is developed by the ITU and is considered as the
predecessor of SDH. OTN is designed with future bandwidth and protocol-
demands in mind, while maintaining the advantages of SDH like flexibility
and resiliency. OTN provides the possibility for sub-lambda switching, and

offers high wavelength utilization through its flexible TDM hierarchy. It is
gradually replacing SDH as the new transport standard, enabling future-
proof multi-wavelength transport and management capabilities.

OTN was initally only used on point-to-point links because of its strong
FEC-feature, but is now used as an entirely new network layer [9]. It is
used to build transparent, scalable and cost-effective networks where existing
standards like Ethernet and SDH are the client signals.

IP

ATM IP/Ethernet ATM SDH
SDH OTN
Fiber (Single wavelength) Fiber (DWDM)

Figure 1.1: Evolution of transport network protocols; OTN provides trans-
port for a wide range of protocols over DWDM networks.

As seen from Figure 1.1; OTN is a new core transport layer, and replaces
SDH. SDH only supports client transport over a single wavelength, and isn’t
suitable for management of wavelength services, and addressing typical im-
pairments in multi-wavelength optical systems. OTN accepts a wide variety
of client signals (for instance Ethernet, ATM and SDH) and provides trans-
port and management directly over DWDM networks.

Reducing the number of layers in the protocol stack has a lot of advan-
tages. Each layer requires separate equipment, maintainance and manage-
ment systems. Unnecessary duplication of functionality in the network is
avoided if some layers are omitted, and cost and complexity is improved.

As the interconnection bandwidth between backbone routers reaches tens
or hundreds of Gb/s, it becomes a major goal to transport as much traffic as
possible over one fiber. One way is to decrease the frequency span between
wavelengths in the fiber, thus increasing the total number of wavelengths.
The other approach is to increase the utilization of each wavelength by using
efficient TDM techniques. OTN utilizes the capacity of each wavelength by

multiplexing lower rate signals into higher rate signals. By utilizing the TDM
hierarchy in OTN, it is possible to perform sub-lambda granularity switching.
This might be an attractive and future-proof way of performing switching in
optical networks.

1.2 Motivation

A society is totally dependt upon basic necessities as roads and infrastructure
for power transmission and water to work. A power failure might put whole
communities out of action. Businesses stop working, schools and universities
must temporarily shut down. Failures in the telecommunication core network
have a similar impact on the society. We are living our lives in a digital, in-
terconnected era where people rely on telecommunication systems on a daily
basis. Businesses, government and individuals are dependent upon the core
telecommunication infrastructure to function. Either being a phone call tak-
ing place over the mobile network, surfing the web or sending a SMS; all these
services rely on the core network. Design and implementation concerning the
core network is thus just as important as planning and constructing roads,
power- and water supply. A modern society simply stops working if the core
network shuts down.

Humans have a desire to interact. We are experiencing a rapid growth
of video and content consumption while users constantly expect better ser-
vices across any device, at any network, at any time. With soaring IP traffic
volumes, several considerations must be made concerning the architecture
of core networks. A major goal is to transport traffic as efficiently as pos-
sible from network ingress to network egress, consuming as little resources
as possible. Choosing an adequate core network architecture is crucial both
in terms of user percieved performance and carriers balance between invest-
ment /operational cost and profit.

There are at the same time other perspectives of technology choices. One
is for instance power consumption, which involves both cost and enviromental
issues. Core IP routers are known to use much power for each bit that is pro-
cessed [10]. The telecommunication equipment vendor Alcatel-Lucent often
uses the slogan: "Switch where you can, route where you must'. Switching
aggregated coarse chunks of data instead of performing routing on a per-
packet basis might be the most future proof solution in core networks. This
might save carriers of cost both in terms of investment (switches that are
cheaper than routers) and operation (power consumption).

The ITU is an international telecom standardization association and is
based in Geneva, Switzerland. The association coordinates and standardizes

global use of telecommunication facilities including e.g. satellite communi-
cation, radio networks, broadcasting and optical core networks [11].

The ITU-T is a division of the ITU consisting of different groups which is
responsible for studying and creating recommendations for the telecommuica-
tion field. ITU-T standardizes the OTN through several recommendations.

With the ITU-T standards as basis, OTN switching is proposed and eval-
uated in this thesis. OTN sub-lambda switching might be the future solution
for optimum transport efficiency in optical core networks.

1.3 Previous work

This master thesis is a continuation of the project assignment with simi-
lar title performed in the specialization project (TTM4511) at NTNU fall
2010 [12]. An OTN switch which performs switching at ODU level using a
space-division TDM switch was proposed in the project assignment. Possi-
ble improvements in resource usage was evaluated using a six-node network
scenario, comparing it to a packet switched scenario consisting of IP-routers
with and without optical crossconnects. The evaluation clearly showed ben-
efits in favour of OTN switching. Wavelength utilization is very high due
to the flexible multiplexing architecture of OTN, thus improving the total
transmission capacity. Bypass of intermediate IP-routers saves at the same
time unneccessary processing of transit traffic. The traffic matrix used for
evaluation purposes in the network scenario was however static, and might
thus have been optimal for the use of OTN switches.

1.4 Problem definition

OTN is considered as the predecessor of SDH. It takes single wavelength SDH
technology a step further, enabling transport of a wide variety of services over
DWDM networks. OTN combines backward compatibility for existing pro-
tocols with the bandwidth expandibility of future transport networks, while
keeping the benefits of SDH like reliability and manageability. There are cur-
rently several standardization documents defining OTN. The most important
of them are ITU-T G.709 - "Interfaces for the Optical Transport Network"
and I'TU-T G.872 - "Architecture of the Optical Transport Network".
Switching technique used in the core network gets increasingly important
as the traffic volume increases. OTN switching is based on the ITU-T OTN
standards, and is a new switching method which is currently being considered
as a switching alternative for optical networks. This thesis aims to give an

4

introduction to OTN and OTN switching. Potential benefits of utilizing
OTN switching in optical core networks will be investigated and compared
to traditional packet switching.

1.5 Methodology

A common network scenario will be used in order to compare OTN switch-
ing with alternative network implementations. The network scenario will
be realized using two different network options; packet switching and OTN
switching. A simulator in DEMOS (Discrete Event Modelling on Simula)
will be developed for each of the network options. Simulation runs with the
simulators will then be carried out with increasing traffic load and various
traffic arrival processes. Performance of the network options will be com-
pared based on results obtained from the simulation runs. OTN switching
characteristics will be evaluated based on these results.

1.6 Organization of the report

The thesis is organized as follows; chapter 1, 2 and 3 contains background
material covering optical core networks and the OTN standard. Chapter 4
proposes a possible high-level OTN switch implementation. Chapter 5 in-
troduces a network scenario which is realized by using packet switching and
OTN switching. Chapter 6 presents the DEMOS simulator implementation
(simulation models) of the network scenarios. Chapter 7 presents and dis-
cusses simulation results, while the conclusion is found chapter 8.

Chapter 2

Optical core networks

Optical core networks form the backbone of telecommunication systems. This
chapter gives an introduction to the most important aspects of optical core
networks: WDM, TDM, basic optical components and transport protocols.

2.1 Background

Optical core networks form the basis for all forms of digital communication.
Although the infrastructure is invisible for the users, it is responsible for
transporting all types of traffic. Either it is voice or data originating from the
mobile network, a conversation taking place over the public circuit switched
telephone network, or Internet traffic. All these types of communication rely
on the underlying optical core network infrastructure. It is thus not only
crucial that the core network works perfectly, it also has to be available at
all time. Mechanisms must ensure that the correct actions are performed if
failures occur, to ensure contionous connectivity.

Optical fiber has a range of benefits that makes it the number one choice
for transmission medium in core networks. First of all is the incredibly
wide frequency spectrum that can be utilized for communication purposes.
Very low attenuation in certain frequency areas makes it possible to send
signals over very long distances (hundreds of kilometers) without the need
for reamplification of the signals. The fiber offers very low bit error rates
(less than 10E-11), and is immune to electromagnetic interference. Because
the fiber is made of sand, it is also cheap to produce and environmentally
friendly [1].

2.2 WDM transmission system

WDM is an efficient technique for utilizing the extremely wide frequency
spectrum available in optical fibers. The frequency spectrum that is usefull
for transmitting signals over large distances is located in the 1380 and 1550
nm region. These are the low-attenuation regions of the optical fiber with
very low loss, approximately 0.2 dB/km. The usable frequency spectrum for
communication purposes in the fiber sums up to a vast total of 50 Thz [1].
By using lasers that transmit at different wavelengths, and multiplexing the
signals together, the available fiber frequency spectrum is utilized.

Figure 2.1 shows a block diagram of a WDM transmission system. The
transmitter consists of one or more lasers which either is fixed to a certain
wavelength or tunable over a range of wavelengths. Each laser is either
directly modulated (the laser itself is switched on and off), or has an external
modulator in order to impose data on the light stream (present 1’s and 0’s).
An optical filter is usually used for tuning purposes. If multiple lasers are used
to transmit simultaneously at different wavelengths, a multiplexer or coupler
is used to combine the signals. The receiver may either consist of a tunable
filter followed by a photodetector receiver, or a demultiplexer followed by
several photodetectors.

The signal quality is gradually degraded when propagating through the
fiber. As seen from Figure 2.1; amplifiers are used to regenerate the signals
at certain intervals. There are two main categories of amplifiers; optical and
electrical. Optical amplifiers keep the signal in the optical domain, and per-
forms reamplification of the signals without any reshaping or retiming. This
process is known as 1R (Regeneration). Electrical amplifiers, on the other
hand, convert the signal into the electrical domain, amplifies, reshapes and
retimes the signal. This process is known as 3R (Regeneration, Reshaping
and Retiming).

 E— Amplifier /”f T Amplifier —
Transmi ™~ Network - sceive
[ransmitter 1~ .\ Mi:d“::::‘-n : |> Receiver
\/ — \/

Fiber Links Fiber Links

Figure 2.1: Block diagram of a WDM transmission system [1]

Figure 2.2 exemplifies wavelength division multiplexing. Lasers tuned to
different wavelengths ("colours') transmit simultaneously through the same
fiber. Employing DWDM in the transmission system enables each fiber to
carry up to 160 channels, depending on the channel spacing [13]. If each
channel carries a 10 Gb/s signal, and 128 channels are used, the total trans-
mission capacity of the fiber is 1,28 Tb/s. This is enough to carry up to 20
000 000 phone calls simultaneously (given the bit rate of one phone circuit;
8Khz sampling rate * 8 bits quantization = 64 Kb/s).

B b/s

Figure 2.2: WDM: N incoming signals on separate wavelengths are multi-
plexed together, utilizing the available frequency spectrum in the fiber.

2.3 TDM

TDM can be used to provide higher utilization of the transmission medium.
This is done by multiplexing lower-rate streams into higher-rate streams.
TDM works by dividing access to the transmission medium into timeslots,
and assigning incoming signals into a given timeslot in a repeating cycle. Fig-
ure 2.3 shows how TDM is used to provide higher utilization of the available
transmission capacity by combining the signals coming from three different
wavelengths.

Tt
> LT L TUUUyUUL
T

At Aot Aj

Figure 2.3: TDM: N individual streams with a bit rate of B bps on separate
wavelengths are combined into a signal with bit rate NB bps. The outgoing
signal is divided into N timeslots. Each of the incoming signals are assigned
to a given timeslot of the outgoing signal in a repeating cycle.

10

2.4 Evolution of optical transmission systems

As seen from the top of Figure 2.4; early generation optical transmission
systems were designed using only a single wavelength in each fiber. The
bit rate was increased by using TDM on a single wavelength (explained in
Figure 2.3). Electrical regenerators were used to regenerate the signal at
fixed points. The regenerators first converted the signal from the optical to
the electrical domain, regenerated it, and converted it back to optical. Using
only a single wavelength in each connection doesn’t utilize the extremely
wide frequency range available in the fiber.

Current optical transmission systems is seen in the bottom part of Figure
2.4. WDM is used to utilize the available frequency spectrum in the fiber,
and optical amplifiers is used instead of electrical amplifiers. In this way, the
total transmission capacity is increased while cost is severly reduced.

W prevousy
&

Optical amplifier

Dremultipl
Multiplexer multiplexer

Figure 2.4: Evolution of optical transmission systems: From single wave-
lengths using TDM and regenerators to multiple wavelengths with WDM
and optical amplifiers [2].

2.5 Crossconnects

Crossconnects are important components used to create connectivity in the
optical core network. The crossconnect works by crossconnecting (switching)
a single wavelength on one input to a different output. As seen from Figure
2.5; the crossconnect can either be optical or electrical[3]:

11

Dpagque OXC

= - outpu
(e ot
ek paed
Transpanent OXC
o

T - ~ -
= _ I
&= - A L

5

Conniect

Figure 2.5: The figure shows an electrical crossconnect (top) and an optical
crossconnect (bottom) [3].

Optical crossconnects are all-optical devices, and keeps the signal in the
optical domain. They are transparent to bit rate and client signal and big
amounts of ports are offered at a reasonable cost. It is however not possible
to perform signal regeneration or monitoring when the crossconnecting is
performed in the optical domain.

Electrical crossconnects converts the incoming optical wavelength to the
electrical domain, cross connects it to an output port, and reconverts it back
to the optical domain. The signals are regenerated when using this approach,
leaving the node free of dispersion and attenuation. Digital signal monitoring
is also possible to achieve. The main drawback is that the electrical cross-
connect is opaque to bit rate and client signal format. Only signals with the
properties supported by the crossconnect are accepted.

12

2.6 Core network transport protocols

Core networks span huge distances and serve thousands of people. There
are thus strict requirements to performance, uptime and failure recovery
capabilities in the core network. This is seen when comparing protocols
used in local area networks with protocols used in core networks. Local
area networks serve a limited number of users in a limited area, and thus
have less stringent requirements for uptime and failure recovery. Protocols
used in local area networks are thus "lightweight" compared to the transport
protocols used in the core networks.

Transport protocols work as containers, and are responsible for transmit-
ting aggregated volumes of traffic, consisting of a wide range of protocols
between nodes in the core network. Transport protocols must have mecha-
nisms for failure detection, notification, localization and recovery.

Early generation transport networks were built to carry voice circuits.
The first digital transport networks were PDH networks. PDH is based
on how traditional voice circuits were multiplexed together. A single voice
circuit is digitized by sampling the voice signal at 8 kHz and using 8 bits
quantitization. A single voice circuit thus has a bit rate of: 8 kHz * 8 bits
= 64 kb/s. 64 kb/s is thus used as the basic multiplexing unit in PDH. The
voice circuits were then multiplexed into aggregate signals of 2.048 Mb/s (30
voice channels, E1), 8.488 Mb/s (120 voice channels, E2), 34.368 Mb/s (480
voice channels, E3), and 139.264 Mb/s (1920 voice channels, E4) [9]. PDH
had several shortcomings, and has gradually been replaced by SDH. The
main problem was the asynchronous nature of PDH. Each node had its local
clock, something which led to bit rate variations in the nodes. Bit stuffing
had to be used in order to compensate for the bit rate variations. Bit rates in
the PDH multiplexing hierarchy werent’t exact multiples of 64 kb/s because
of the bit stuffing. It was of this reason not possible to extract a low rate
stream directly from the higher order multiplex. Instead, the whole higher
order multiplex had to be demultiplexed before the single stream could be
extracted. This led to the need for "multiplexer mountains" which is an
inefficient, complex and costly solution [14].

Todays core networks are mainly based on SDH and OTN as client trans-
port technology [9]. SDH solved many of the problems that PDH suffered
from. All node clocks are synchronized with a common master clock in SDH.
The information streams are thus exactly integer multiples of 64 kb/s. It is
of this reason possible to extract low bit rate streams from higher bit rate
streams without demultiplexing the whole signal. SDH also offered improved
operation and maintenance procedures that PDH was missing [9].

OTN is, in contrast to SDH, asynchronous. OTN carries synchronization

13

data in the payload, and there is of this reason no need for a common master
clock that synchronizes all the nodes in the network [5]. This simplifies the
network design, and reduces cost. OTN is the next step in the evolution of
transport protocols, and offers many other important and attractive features
for future networking that SDH lacks. The details of OTN is given in the
next chapter.

14

Chapter 3

OTN (G.709)

3.1 Background

As previously explained; DWDM allows for maximum utilization of the fiber
transmission capacity by splicing the available frequency spectrum in the
fiber into a range of wavelengths. The wavelengths serves as channels through
the fiber, making it possible to transmit multiple signals, each on its own
wavelength, simultaneously through the fiber. In this way, the total band-
width is increased by simultaneous transmission of signals on several wave-
lengths, rather than increasing the bit rate on one of the wavelengths.

WDM technology was at an early stage when SDH was developed in the
80’s. SDH was thus developed with support for transport and management
of only a single wavelength. Huge advances in fiber technology was made
during the 80’s and 90’s, including the development of DWDM][15]. Since
the late 90’s, there has also been a tremendous increase in Internet traffic
volume [8]. Apparently, there is need for a transport standard that takes
single wavelength SDH technology a step further. OTN is similar to SDH,
but is designed with future protocol and bandwidth needs in mind. It offers
the same reliability and manageability as SDH, but with a number of im-
provements. OTN makes the foundation for transparent, multi-wavelength
manageable networks.

OTN is the I'TU’s answer for maximum utilization, manageability and
wide client signal support for future DWDM networks. Many standardiza-
tion documents belong in the OTN category. The two most important are
the G.872 and G.709. G.872 is called "Architecture of optical transport net-
works". It describes the network architecture and transport technology for
the OTN called the Optical Transport Hierarchy. The OTH consists of OMS,
OTS and Och. G.709 is called "Interfaces of the OTN". It defines the stan-

15

dard interfaces and rates for high-bandwidth optical signals, and focuses on
structures, interfaces and mappings. Frame format, supported client signals,
multiplexing structure, and supported signal rates are found in the G.709
standard.

OTN provides a flexible multiplexing hierarchy, transparent transport of
client signals with backward compatibility for existing protocols, forward
error correction for increased fiber span lengths and link monitoring. An
important feature is the offered switching scalability made possible by the
TDM multiplexing hierarchy. The proposed OTN switch, which is presented
in chapter 4, demonstrates how sub-lambda ODU switching may be used
to add and/or drop various lower rate signals from the higher rate OTN
multiplex.

OTN provides maximum utilization of fiber capacity by combining TDM
and DWDM. TDM utilizes the capacity of a single wavelength by multiplex-
ing low rate streams into higher rate streams, while DWDM utilizes the wide
frequency spectrum in the fiber.

As previously mentioned; a difference from SDH is the fact that OTN
is asynchronous. This is achieved by transporting network synchronization
within the payload in the OTN frame, mainly by SDH tributaries. An OTN
network element thus doesn’t require synchronization interfaces or complex
clocks [5]. This helps reducing both cost and complexity when designing the
network.

A drawback for operators that are upgrading their infrastructure from
PDH and/or SDH to OTN is that new hardware and management systems
are required [5].

3.2 OTN frame structure

OTN incorporates a flexible multiplexing and mapping hierarchy in order
to support a wide variety of client signals and bit rates. The multiplexing
structure works as containers, accepting a wide variety of data payloads at
different bit rates. Multiplexing low bit rate client signals into high bit rate
signals allows for the creation of bigger data containers that are transported
over a wavelength.

3.2.1 OPU-k

The OPU accepts incoming client signals of various types. Supported signals
include CBR clients (such as a constant bit rate ATM cell stream, SONET
or SDH signals) and packet-based clients (such as IP and MPLS packets,

16

and Ethernet frames)[4]. The OPU is responsible for mapping of the client
signals and adding the first layer of overhead. The OPU header consists of the
Payload Structure Identifier which includes the payload type and overhead
bits associated with the mapping of client signals into the payload.

3.2.2 ODU-k

Overhead is added to the OPU, forming the ODU. The ODU overhead in-
cludes information for maintenance and operational functions to support op-
tical channels. Fields found in the ODU header are: PM - path performance
monitoring, FTFL - fault type and fault location, GCC - generic communi-
cations channel, APS/GCC - automatic protection switching and protection
communications channel, TCM - tandem connection monitoring and a set of
reserved bytes for experimental purposes.
The ODU has several bit mapping schemes to accomodate new clients in the
ODU [16]. Available bit mapping schemes include AMP, BMP and GFP.
AMP or BMP are used to map CBR clients into the ODU. GFP-F is used
for packet-/frame-based clients [4]. The details of AMP, BMP and GFP are
found in [4].

An important feature in the ODU overhead is the TCM fields, allowing
up to six different monitor levels across operator domains.

3.2.3 OTU-k

The OTU consists of an ODU with additional overhead. The OTU is the low-
est layer belonging to the electrical domain. It is reponsible for making the
data ready for transport over an optical channel. Fields found in the OTU
header are: SM - section monitoring, GCCO - general communication chan-
nel 0 and two bytes that are reserved for future international standardization
[4]. FEC is added at the end of the OTU frame. FEC is a very important
feature for long-haul optical transport networks. It allows for longer signal
spans without signal regeneration. This is a essential feature in e.g. sub-sea
installations where long fiber spans are used. The use of active regenerators
in need of power supply is costly and unpractical in these cases, and can be
avoided with the use FEC.

Figure 3.1 illustrates the parts that make up the OTN frame structure.

17

Column
Row 1 14 1516 17 3824 3825 4080

1 FAS | OTUOH

(o]
2 P

v Payload FEC
3 ODU OH 0

H

Figure 3.1: OTN frame structure showing FAS (Frame Alignment Signal),
OTU overhead, ODU overhead, OPU overhead, payload and FEC

As seen from the figure; the Frame Alignment Signal is located in the
top left of the frame (row 1, column 1-7), followed by the OTU overhead
(row 1, column 8-14). The Frame Alignment Signal consists of six bytes, and
is used to provide framing for the entire signal. A Multiframe Alignment
Signal is located in in the last byte of the FAS (row 1, column 7), and is
used to extend command and management functions over several frames.
The MFAS counts from 0 to 255, providing a 256 multiframe structure. The
ODU overhead is located in row 2-4, columns 1-14. The OPU overhead is
located in columns 15-16, rows 1-4. The rest of the OTN frame consists of
data payload (columns 17-3824) and FEC (columns 3825-4080).

3.2.4 OCh

The OCh is described in the ITU-T G.872 standard. It represents a wave-
length in the fiber, and transports client signals between 3R regeneration
points. The OCh has associated overhead in order to support management
of multiple wavelengths in the OTN.

Figure 3.2 illustrates the relationship between the different OTN building
blocks. As seen from the figure; overhead is added to the incoming client
signal, forming the OPU. Additional overhead is then added to the OPU,
forming the ODU. One to six TCM levels are added at the ODU level. Ad-
ditional overhead and FEC is then added to the ODU, forming the OTU.
The OTU is then transmitted over a wavelength (OCh). The OCh payload
is modulated onto the OCC payload, and the OCh overhead is modulated
onto the OCC overhead. Several OCC payloads can be mapped into the
OMS payload and further into the OTS payload. The OCh, OMS and OTS

18

payloads all have their own overhead for management purposes at the optical
level.

Client

OPUk
OH

OPUK OPUK payload

ODUK|

ODUkpath |5 OPUK
. [opuk
ODUK TC L1 |reyop] 1t06 levels
: of ODUk
. ODUK H tandem
ODUK tandem connection ODUKk TC Lm H connection

TCMOH

ODUK monitoring
[TeMO

OTUK[V] FE(“

OTUK[V] [OTUK[V]|
ection | OH

:
oCh .

OMU-n.m

OTM-n.m ‘
G.709/Y.1331_F6-2

Figure 3.2: OTN structure and relationships [4]

3.2.5 ODUflex

It’s hard to predict future client signal bit rates. In addition to Ethernet,
many other client signals must be supported by OTN (such as Fibre Channel
and video distribution signals). Most of these would not fit into any existing
ODUk without significant loss of bandwidth. Defining a new ODU container
for each new client signal that should be supported was considered to be
unpractical [17].

To ensure flexible and easy adaptation for support of future client-signal
rates, an extension known as ODUflex has been introduced to the OTN
standard. ODUflex is a flexible lower order container that can be right sized
to fit any client rate. It does this by occupying a minimum needed number
of time slots in the higher order ODUk for accomodation of the client signal.
The ODUflex container can easily be adapted to support higher or lower
client signal bit rates simply by occupying a higher or lower number of 1.25
Gb/s slots in the ODU payload area.

19

3.3 TDM Multiplexing

The multiplexing structure in OTN is based on putting containers in contain-
ers, stepwise multiplexing the data to higher bit rates before putting it on a
wavelength. An ODU can either be put directly into an OTU, or multiplexed
with other ODUs to fit inside an OTU. Figure 3.3 illustrates how client sig-
nals are multiplexed and/or mapped into an OTU3 (40 Gb/s). A non-OTN
client signal is firstly mapped into a lower order OPU, named OPU(L). The
OPU(L) is mapped into the ODU(L), and further into the OTU[V]. OTN-
signals are first mapped into the ODTU in various multiples depending on
the bit rate (the ODTU is an ODU with justification overhead). The ODTUs
are then multiplexed into an ODTUG. The ODTUG is mapped into a higher
order OPU, named OPU(H). The OPU(H) is then mapped into an ODU(H)
which is mapped into the OTU[V] [4]. The OPU(L) and OPU(H) have the
same information structures, but with different client signals [4].

As seen from Figure 3.3; it is possible to either map a client signal directly
or an ODTUG consiststing of interleaved lower order ODUs into the OPU
payload area.

opu3

to ODU (H) PRI m- Client Signal
x1 -0DU3
. e i (L & OPU3’ e Client Signal
oTUIM ATy
X T e W X1B mm———
~._|opus /OPU3/| x 1 -] FODTUI opuA
(H) oo HE [P CODTUZS = oDu2
opus o ODTUGS | x32 fiic ==
to ODU(H) PT=21 FODTU3.1 « oouo
x1 X3 SopTUs S oDU2e
PR e ODUflex
. x18 —
| obTUGs FODTU13 oo
PT=20 & *% Z5pTU23 oDu2

Figure 3.3: Example of the flexible multiplexing structure in OTN [4]

The ODUk (k = 0,1,2,3,4) is used as the basic multiplexing unit in OTN.
Figure 3.3 shows only one of several multiplexing possibilities in the OTN
hierarchy. It is for instance possible to multiplex two ODUOs into an OPU1,
four ODU1s into an OPU2, four ODU2s into an OPU3 or eighty ODUO into
an OPUA4.

20

3.3.1 Tributary slots

The overhead area of an ODUk consists of 16 columns and 4 rows, while the
payload area consists of 3808 columns and 4 rows. The ODU payload area,
which consists of OPU overhead and payload, is divided into tributary slots
(time slots) in order to accomodate lower order ODUs. The tributary slots
in the ODU payload area is assigned according to the required bandwidth
for each client signal that is transported inside the OTN frame. The first
tributary slot starts at column 17 (TS1), column 18 is used for tributary slot
2 etc. Column 3824 is used for T'S4 in an OPU2 or TS16 in an OPU3 [15].

The slots are interleaved within the OPUk. Each slot includes part of the
OPUk overhead area, and a part of the OPUk payload area. Two types of
tributary slots are defined in the G.709 standard [4]:

-Tributary slot with a bandwidth of approximately 2.5 Gbit/s, the OPUk
is divided into n tributary slots, numbered 1 to n
-Tributary slot with a bandwidth of approximately 1.25 Gbit/s, the OPUk
is divided into 2n tributary slots, numbered 1 to 2n

The arrangement of tributary slots is done according to the multiplexing
pattern.

An example of 1.25G tributary slot allocation in an OPU4 is seen in
Figure 3.4. In this case, the OPU4 is divided into 80 1.25G tributary slots
which are located in columns 17 to 3816 of the OTN frame. 8 columns of
fixed stuff is located in columns 3817 to 3824. There are two options of
presenting the OPU4 frame; a 320 row by 3810 column format or in a 160
row by 7620 column format (Figure 3.4 shows the 320 row by 3810 column
format.) A 1.25G tributary slot occupies 1.247% of the OPU4 payload area.
Each tributary slot has an associated tributary slot overhead area (TSOH).
As seen from Figure 3.4; the TSOH for a 1.25G tributary slot is available
once every 80 frames [4].

21

OMFI
bits
2345678

0000000

0000001

1001110

1001111

Multi

DOMNODO T ND T

vvvvv NN NN

Frame Fral 1 e WO~ ... DON®© ..., WOND .. 00 CO G0 00 GO 60 0O 00 6O O

Row Row = wownn [N R OOOOMOMOMOOMO

e alol=[a olo]-[a REERRRRREAR

1 1 Eea haltal 3|2|5|§ R|8 S22 2|2 (22|22

0l =l REIEM olol=|w AR RARRRRARERAR

2 2 2ES i -1l ol O SRS L] 1 e [g e o

= oo oo alo|lo|ln|n|w|u|n]n|xn

3 3 |~ o|ls|w|+ @ ||~ i g g [v [g [[

s lOM = [REIEN R REIEEEREREARE

4 4 P w9 ~|® o|F || [k] g g g i [g [g [

5 1 e~ olo[=|x olo|-la PIEIAEERRARRARERE

= [-[] HEEE SE HEHERRREEE

P E REIEM >lol=|~ BEERRRRRRERER

6 2 PR =l HE BEEE HERERRREAEE

7 3 =~ 3|2|5]¢ R(8|—|~ el e el el [frd

. REIEN RIEIERE] REEEERRAERAEE

8 4 FlT| S ~|o IR IEE] e g i v g g v g

H | [[[I A A A R O |

| Il R R RN

| [[[| I T A A A O A A |

: | [[L e

313 1 T o [3|:|5e R 8[|~ ke (el frd trd el 1l [l [

2= =

314 2 R@=s] ... Rlsl T 2lslelelelelz]elele

- D D|D|D DD DB

315 3 -l HEEE HEER HERERRRREER
OM' =T e oo RIEIEE oo

316 4 EHEE 28]~ EIEIEE HERRRRRARER

317 1 ol 8|e[=[¢ 28]« 1 4

oo -

318 2 gg«-: AAAAA 2lgl-[~] . slel=ls] L HERREREARR

-3 = olg ool v nln|n|nlnln

319 3 |~ 3|2|5|¥ R 8[|~ el il b v v g I [i s
OM] — oy oo IR oo

320 4 SEEE 2le[-[~ EIEEE =[e[e[e[e]elelelele

Column

Figure 3.4: The figure shows allocation of OPU4 1.25G tributary slots in a
320 row by 3810 column frame format. 80 slots in columns 17 to 3816 of the
OTN frame is used to accomodate lower order signals in the OPU4 frame [4].

3.4 OTN signal rates

Table 3.1 shows the various line rates used in OTN.

OTU type

OTU nominal bit rate

OTU-1

2.5 Gb/s

OTU-2

10 Gb/s

OTU-3

40 Gb/s

OTU-4

100 Gb/s

Table 3.1: The table shows OTN interface card line rates [4]. OTU-0 (1.25
Gb/s) is not included in the table as it isn’t defined as an interface, but used
as a multiplexing entity (ODU-0).

The line rates in OTN span from 2.5 (OTU-1) to 100 Gb/s (OTU-4).
OTU-0 is not defined as an optical interface in OTN, but used as a basic
multiplexing entity (ODU-0) [4].

22

3.5 OTN layers

The OTN layers (Optical Transport Hierarchy) are defined in the G.872
standard.

OTN

/ optical subnetwork \

op;Eal ‘

optical |'> S
sub-nyeztwork g sub-networl IrDI :
. OTS' OTS : OTS i 0TS ‘OTS :OTS ' OTS
" OMS | OMS OPS: OMS ‘' OMS
OCh ~ OoCh ' OChr OCh ~
) OoTU 7 OTU : OTU: OoTU €
i i ODU: i
D Optical line amplifier (OTS termination) B 3-R regeneration (OCh, OTU termination
D %Pﬂ;i'e‘r:mizt‘i‘g:)”ecuaddr°plterminaI mux . Client access (ODU termination)

Figure 3.5: OTN layers [5]

Figure 3.5 presents the different layers in the OTN hierarchy. As seen
from the figure; the ODU is terminated at OTN domain edges, the OTU and
OCh are terminated at optical sub-network edges, the OMS is terminated in
multiplexers/demultiplexers and OTS at optical line amplifier /regeneration
points.

Figure 3.5 also shows the location of the Inter-domain interface (IrDi)
and Intra-domain interfaces (IaDIs). The G.872 recommendation defines the
IrDI as the location between the networks of two operators, between the
sub-networks of two vendors in the same operator domain or the location
within the sub-network of one vendor [18]. IrDI interfaces are defined with
3R processing at each end of the interface [5]. IaDI is defined as the location
between the equipment of an individual manufacturer’s sub-network [18].

23

3.6 FEC

Optical core networks transport signals over long spans reaching tens or
hundreds of kilometers. Signals that are tranported over these distances are
affected by severe impairments. The trend in long-haul optical transport
networks is to use an increasing number of transparent all-optical network
elements (OXCs, OADMSs), without electrical/optical conversion [9]. While
electrical components regenerates signals, the all-optical network elements
transparently forwards signals without any signal regeneration.

An important and attractive feature with OTN is FEC. REED-Solomon
code generates error-correcting bits that are added to the payload. Correction
of bit errors that occur over the signal span can then be performed at the
receiving end [5]. The FEC coding adds 6.7% overhead to the payload [4].

FEC can provide up to 6.2 dB increase in SNR [5]. In other words;
a signal at a certain BER can be transmitted at 6.2 dB less power than
possible without FEC. This SNR increase can be used to extend the span
between generators, increase the number of channels in a DWDM system
(which is limited by the output power of the amplifiers), and decrease the
need for 3R regeneration [5].

24

3.7 TCM

TCM enables fault detection and monitoring between predifined sections in
the network. It is possible to monitor signal quality spanning over several
operator domains or sections between operator domains.

While SDH only allowed a single level of monitoring, OTN allows six
levels of TCM to be defined independently [5]. TCM is manually configured
by adding overhead to the ODU.

Figure 3.6 shows an example of nested and cascaded TCM connections.

TCM6 TCM6 TCM6 TcMs | | ToMs TCM6 TCM6
TCMS TCMS TCMS TCMS | | TOMS TCMS TCMS
TCM4 TCM4 TCM4 TOM4 | | TOM4 TCM4 TCM4
177

TCM3 TCM3 Jtonsg | tows | [Tows TCM3 TCM3
TCM:2 TCM2 TOM2 TCM:2
TCMI TCMI TCMI TeMl | | ToMl TCMI TCMI

Al Bl | ct | ¢ i B2 B3 B4 | A2

Cl1-C2
€ B1-B2 » B3-B4
< Al-A2 ﬁ
TCM OH field not in use
TCM OH field in use G.709/Y.1331_F15-16

Figure 3.6: Example of nested and cascaded TCM connections [5]

Connections A1-A2/B1-B2/C1-C2 and A1-A2/B3-B4 are nested, while
B1-B2/B3-B4 are cascaded.

25

3.8 Recent progress in OTN

OTN serves as the underlying technology for optical core networks, and must
evolve as industry trends and requirements change. The set of recommenda-
tions that form the OTN standard is under constant development in order
to support future demands for new services and higher bit rates.

The evolution of OTN is closely related to standardization activities in
the IEEE on higher speed Ethernet, 40GbE and 100GbE. The maximum
transmission distance in the Ethernet standards is 40 km, so a wide-area
transport technology like OTN is necessary to support Ethernet connections
above this distance [16].

The ITU-T Study Group 15 is responsible for the standardization activ-
ities in OTN. A new version of the G.709 recommendation was approved in
December 2009 [19]. It had many additions compared to the former G.709
recommendation from 2003. No changes were however made that would im-
pact networks and equipment built on the previous versions of the G.709
recommendation [20].

Important enhancements in the December 2009 G.709 release include [20]:

e Specification of ODUOQ The lowest multiplexing entity defined in the
G.709 recommendation from 2003 was the ODU1, which corresponds to
a bit rate of approximately 2.5 Gb/s. No ODU in the OTN hierarchy
was tailored for transporting a single GbE (1.25 Gb/s) signal. The
GbE signals had to be transported in the ODU1 containers, something
which wasted approximately 50% of the capacity in the ODU1 payload
area. The newly defined ODUO has a bit rate of approximately 1.25
Gb/s and is perfectly suitable for transporting and monitoring Gigabit
Ethernet connections.

e Specification of a new transcoding mechanism for 40GbE trans-
port The bit rate of 40GbE (41.25 Gb/s) is greater than that of the
ODU3 payload (40.15 Gb/s). A new transcoding mechanism was thus
needed in order to accomodate 40GbE in an ODU3. Transcoding is the
conversion of client signal coding, and was used to decrease the code
redundancy. This resulted in a decrease in bit rate from 41.25 Gb/s to
40.12 Gb/s, enabling the possibility for transport of the 40GbE signal
in the ODU3 payload.

e Specification of ODU4/0OTU4 After the standardization of 100GbE
by the IEEE in June 2010 [21], it was desirable to transport this signal
directly over OTN. ODU3 (40 Gb/s) provided the highest bit rate in
the previous G.709 recommendation. This led to the specification of the

26

ODU4/0TU4. The bit rate of the ODU4 is slightly higher than what
is needed to transport 100GbE (the ODU4 payload capacity is 104.356
Gb/s). This was done so that it can carry up to 10 x ODU2e signals.
(The ODU2e was standardized in 2006 as a solution for transporting
10GbE over OTN, because the bit rate of 10GbE (LAN PHY: 10.3125
Gb/s) is greater than the payload capacity of ODU2 (9.99528 Gb/s)
[16]. The bit rate of ODU2e is approximately 10.3995 Gb/s.) All the
previously defined ODUs can be multiplexed into the ODUA4.

e New size of tributary slots Prior to the release of the newest G.709
recommendation, the tributary slots had a size of 2,5 Gb/s. After the
release of the newest recommendation, the tributary slot size is also
defined at 1,25 Gb/s granularity.

e Specification of ODUflex As previously explained; the ODUflex con-
tainer is used to give support for future client bit rates. This is done
by occupying a higher or lower number of 1.25Gb/s tributary slots in
the ODU payload area.

The highest client signal rate currently supported by OTN is the ODU4/0OTU4
which has a bit rate slightly higher than 100 Gb/s. TEEE is currently dis-
cussing the next higher speed Ethernet standard. This might be 400GbE,
1TbE or possibly higher rates. ODU5/OTUb5 is being considered by the
ITU in order to support higher client signal bit rates. The bit rate of the
ODU5/0OTU5 will be decided on basis of the future client signal rates.

27

28

Chapter 4

OTN switching

4.1 Background

Switching technology used in the optical core network gets increasingly im-
portant as router interconnection speeds continuously reaches higher levels.

A lot of research is currently carried out on all-optical packet switching.
With optical packet switching, the packet stays in the optical domain from
network ingress to network egress. This is very attractive from a performance
point of view, but many obstacles are still to overcome before these types of
switches will be seen in real life action. The main challenge is the buffering
of packets (by the use of e.g. fiber delay lines) in order to avoid contention
in the switch [22].

Currently available all-optical switching is performed by optical cross con-
nects. OXCs offer full transparency to protocol format and bit rate, but is
only able to perform switching at wavelength granularity. Electrical switching
(the signal is converted from optical to electrical, switched, and reconverted
to optical) is still the only way of performing switching at sub-lamda level.

SDH and SDH-based switches were originally designed for transport-
ing/switching voice traffic. There has been a shift from transporting voice
traffic to transporting data traffic in the core networks since SDH was de-
veloped in the 80’s. Today, almost all traffic transiting the core network is
data [3]. Data traffic differs largely from voice both in transmission rates
and format. Switching must now take place at much higher bit rates than
previously required.

It is preferable to perform OTN switching in network nodes if OTN is
used as transport technology. OTN switching offers a flexible form of elec-
tronic switching, and the full potential of OTN is first unleashed when OTN
switching is used in the nodes. The flexible TDM multiplexing hierarchy in

29

OTN is based on the organization of data in ODUs. The main benefit of
this multiplexing structure is that lower order ODUs that are mapped into
higher order ODUs remains individually switchable. This allows for switch-
ing at ODU bit rate granularities.

Almost 70% of all traffic that arrives at a node in the core network is
through-passing traffic (destination is another node) [3]. IP routers are forced
to unnecessarily process all through-passing traffic if no bypass capabilites
are available. IP routing works by examining the header of each incoming
packet. The addressing information contained in the header is matched with
the routing table in the IP router, and the next hop is determined. The packet
is then copied to the correct outgoing interface. This process is resource
consuming. If bypass of intermediate IP routers is impossible, the router
processing resources are unnecessarily wasted. The routers must be more
powerful, and thus more costly than what is actually needed. A sufficient
increase in bypass traffic will at the same time require an increase in IP router
capacity. Routers that can scale to terabit capacities have been developed.
The cost and complexity of such routers are however very high. Bypass of
IP routers is thus increasingly important as the core traffic volume increases.

OTN switching offers effective bypass of intermediate IP routers by switch-
ing bulks of data at layer 1. A higher level of throughput, and a more cost-
efficient network architecture is probably achieved if data is switched on a
coarse granularity instead of routed on a per-packet basis.

OTN offers switching at the different ODU granularities that the OTN
multiplexing hierarchy offers; 1.25, 2.5, 10, 40, and 100 Gb/s. Traffic in the
core network is highly aggregated, and big amounts of traffic are usually fol-
lowing the same path between central nodes, destined for the same edge node
in the network. Switching traffic towards its destination in coarse bulks of
data is thus a much more effective way of forwarding traffic, than performing
routing on a per-packet basis.

Lambda switching performed with optical crossconnects lacks grooming
and degrooming capabilities. OTN switching, on the other hand, has the
ability to combine (groom) and split (degroom) signals from various flows
in OTN switching nodes. It combines the speed of low layer switching with
the features of layer-3 routing, achieving high node throughput by coarse
granularity switching and router bypass.

It is also possible to combine OTN switches with optical crossconnects.
This makes it possible to establish direct connections between OTN switching
nodes, bypassing intermediate nodes in the optical layer, and at the same
time providing high wavelength utilization.

30

4.2 Node architecture

There are two possible approaches to switching with OTN. One approach
is at OCh-level performed in optical cross connects. This approach implies
switching at wavelength granularity in the optical layer (lambda switching).
If wavelength switching is used, it is not possible to switch at lower gran-
ularities (sub-lambda) than wavelength granularity. The switching rate is
thus bound to the signal rate. The signal is switched all-optical and is fully
transparent. No conversion to the electrical domain is needed to perform this
type of switching. Keeping the signal in the optical domain implies no signal
regeneration, and performance monitoring is not possible.

The other approach is electrical switching at ODU level. This approach
is needed to add/drop lower speed streams to/from a higher speed multiplex
(sub-lambda switching). This feature is needed in order to provide higher
efficiency in filling of the optical channels and in order to de-couple the
topology of the ODU connections from the topology of the OCh connections
[23]. Regeneration of the optical signal is performed in the electrical switch,
and signal performance monitoring is possible. Electrical switching is opaque
because of its dependence of client signal type, bit rate and modulation
format. The electrical switch can, in contrast to the optical switch, only
switch supported client signal types.

The proposed switch is an opaque electrical switch, which performs switch-
ing at ODU level. The client interface cards thus limits the supported input
signals.

Figure 4.1 illustrates how the OTN switch is located between the optical
crossconnect and IP router in the network node. OTN switching performs, as
illustrated in the figure, "medium coarse" granularity switching. The OTN
switch switches ODUs at ODU bit rate granularities instead of switching
single packets (IP router), or whole wavelengths (optical crossconnect).

Figure 4.1 also illustrates how a group of incoming wavelength division
multiplexed signals enter the node (OCG is the OTN term for a group of
multiplexed OCCs). The OCG is demultiplexed to OCCs (individual wave-
lengths) and enters the optical crossconnect. The optical crossconnect is
configured to cross connect wavelengths arriving at certain input ports to cer-
tain output ports. Wavelengths which transport data that should be added
and/or dropped in the current network node is cross connected to the OTN
switch. The OTN switch receives/transmits optical signals, converts them
to/from the electrical domain, adds/extracts Ethernet frames to/from ODUs,
and performs switching to the correct output.

31

IP router

E OTN switch

oCcC Optical mux/demux

Ethernet

Optical mux/demux

Optical
crossconnect

Figure 4.1: OTN node architecture. The figure shows how the OTN switch
is located between the optical crossconnect and IP router.

The OTN switch improves filling of the wavelengths by multiplexing lower
rate streams into higher rate streams. Using an optical crossconnect in com-
bination with the OTN switch makes it possible to bypass the network node
in the optical layer (optical bypass). The OTN switch also makes sure that
only IP traffic that is destined for the current node is dropped. In this way,
unnecessary processing of bypass traffic in the IP routers is avoided.

32

4.3 OTN switch proposal

OTM Interface card

0O/E conversion
0CC
g i i —»
Optical transceiver OTN mu/ demux Interconnection
-«]
occC ?
Controller —————]
OTN Interface card |
O/E conversion
OcCc / L2
» — ;
Optical transceiver OTN mu/ demux Interconnedtion
- (_
T
OCC
Space-division
1 Gh/s Ethemet Interface card TDM switch
GbE
— —]
Buffer OTN wrapper/dewrapper Interconnedtion
< «—
GbE
Controller
10 Gb/s Ethemet Interface card #
10GhE
—» }
Buffer OTN wrapper/dewrapper Interconnedtion
* €
10GbE

Figure 4.2: OTN switch proposal. Interface cards are seen in the left part of
the figure. The TDM space-division crossbar switch in the rightmost part of
the figure is used for switching ODUs/Ethernet frames between the different
interface cards.

The main parts of the proposed OTN switch seen in Figure 4.2 are client
interface cards and a TDM space-division crossbar switch. The client in-
terface cards are responsible for receiving and sending various client signals.
It is possible to add other types of client interface cards as the switch is
made in a modular design. Other types of client interface cards that could
be added to the switch is for instance SDH and ATM line cards. This would
make it possible to add/drop SDH and ATM signals to/from OTN frames
in the transport network. With the proposed OTN switch, it is possible to
add and/or drop Ethernet frames to/from higher-order OTN frames in the
optical transport network.

33

The OTN and Ethernet interface cards as well as the TDM space-division
crossbar switch that are part of the proposed OTN switch are explained in
the three following sections.

4.3.1 OTN interface cards

The OTN interface cards are located in the top left of the proposed switch
in Figure 4.2. These cards are responsible for receiving and transmitting
OTN signals which are modulated onto a wavelength. The interface cards
accept an incoming OCC (wavelength) in the optical transceiver. The optical
transceiver is responsible for converting optical signals into electrical, and
vice versa. The OCC is converted to the electrical domain (OTU-n) in the
transceiver, and the OTU-n is forwarded to the OTN mux/demux. The
OTU-n is demultiplexed into the ODTUs that form the OTU (ODTUs are
ODUs with extension overhead) in the OTN mux/demux. The extension
overhead is removed, and the ODUs are now individually switchable. The
controller keeps track of the individual ODUs. The TDM space-division
crossbar switch is used to switch the ODUs between the different interface
cards.

4.3.2 FEthernet interface cards

The Ethernet interface cards makes it possible to add and drop 1 and 10 Gb/s
Ethernet client signals to/from the OTN switch. Incoming Ethernet frames
are first sent through the buffer in the interface card. After passing the buffer,
the frame is handled in the OTN wrapping unit. The OTN wrapping unit is
responsible for extracting Ethernet frames from the ODU (Ethernet traffic
that is dropped from the switch), or wrap Ethernet frames into an OPU and
further into an ODU (Ethernet traffic that is added to the switch). This
ODU can be switched to the desired OTN interface card, and multiplexed to
a higher order OTU together with other ODUs in the OTN muxing unit.

4.3.3 TDM space-division crossbar switch

A possible implementation of a TDM space-division crossbar switch taken
from [6] is seen in Figure 4.3.

34

Input circuits

4 | 4 |
1 3 4
s/p
converter __
A T - a3]2 [0 |
— N I'&—”—E N
N3 / —CIIEP':
] —,@ 24 Jalll] e
=) AT —
. — N \-AE‘ + £
5 A \+g} 5
= = 2/ k — g
E] —(@\ — i 4 falz]i]¢
5 — S Z) pa o
? —emawawmin- S AN py B

(

AN

4

%

e
N
B
_d/
:

G
¢

&

A

Figure 4.3: TDM space-division switch capable of switching ODUs between
timeslots [6].

The switch consists of input, output and control circuits in addition to
the crossbar matrix. The control signals are used to control which time slot
of the input circuit that is passed to a certain time slot of the output circuit.

The TDM space-division switch makes it possible to switch individual
ODUs between timeslots and interface cards.

35

36

Chapter 5

Network scenario

This chapter presents a basic network scenario that will be realized using IP
packet switching and OTN switching. The goal of the network scenarios, and
subsequent simulator implementations, is to evaluate the potential benefit
of performing OTN switching in the core network. Simulation results will
be used for comparing the performance of IP packet switching with OTN
switching.

5.1 Basic three-node network scenario

The basic network scenario is seen in Figure 5.1, and consists of three nodes.
The leftmost node is an aggregation node which aggregates incoming traffic
from several interfaces. The middlemost node (router 2) has three client
interfaces. Router 3 has seven client interfaces, and drops all traffic that is
received to its client interfaces. As previously mentioned; almost 70% of the
traffic that arrives at a node in the core network is through-passing traffic
[3]. Based on this fact, 30% of the incoming traffic is on average dropped
to the client interfaces in router 2, while 70% of the traffic is forwarded to
router 3. The three routers are interconnected with optical fiber.

IP router
. B
1P traffic I I |
Router 1 Router 2 Router 3
Edge router 70% bypass

Traffic aggregation

Figure 5.1: Three-node basic network scenario

37

5.2 Three-node packet switching scenario

3 x 10 Gb/s client interfaces

10 Gb/s 7 x 10 Gb/s client interfaces
IP router 10 Gb/s 10 Gb/s
e E@ ML, 100 Gb/s e AL 100605, L.
IP traffic - -
Router 1 Router 2 Router 3
Edge router 70% bypass
Traffic aggregation

Figure 5.2: Three-node packet switching scenario

The three-node packet switching scenario is a realization of the basic network
scenario and is seen in Figure 5.2. The fiber is connected directly between
the routers, and a single wavelength of 100 Gb/s is used in each fiber. This
is also known as a "big fat pipe". The 100 Gb/s wavelength capacity is fully
shared for all traffic. There is no way of bypassing traffic in router 2. All
traffic destined to router 3 is processed by router 2 before being forwarded,
and is dropped to the client interfaces when arriving at router 3. Router 2
has three 10 Gb/s client interfaces, while router 3 has seven 10 Gb/s client
interfaces. 30% of the traffic is on average dropped to the interfaces in router
2, while 70% on average is forwarded to router 3.

38

5.3 Three-node OTN switching scenario
The three-node OTN switching scenario is seen in Figure 5.3.

3 x 10 Gb/s client interfaces

10 Gb/s 7 x 10 Gby/s client interfaces
10 Gb/s 10 Gb/s
IP router R2 R3
At - 100 Gb/s
M - 30 Gb/s M - 70 Gbfs

3 sub-A (3 x 10 Gb/s)

N ARk Y : _S.um_(_z_x_mw_s)_@
IP traffic - S I
7 sub-A (7 x 10 Gb/s)

OTN switch 1 OTN switch2 . OTNswitch3
Edge router 70% bypass
Traffic aggregation

Figure 5.3: Three-node OTN switching scenario

The OTN switching scenario is the basic network scenario "solved" with
OTN switches in addition to IP routers.

As seen from the figure; the main difference from the packet switching
scenario is the division into sub-lambda granularities. By using the TDM
hierarchy offered by OTN, it is possible to divide the wavelength bit rate
(100 Gb/s) into sub-bit rates. Three sub-lambdas (3 x 10 Gb/s) are assigned
to router 2, while seven sub-lambdas (7 x 10 Gb/s) are assigned to router
3. In this way, the network is statically configured for the expected network
load. OTN switch 2 only drops traffic that is destined for router 2 to its
Ethernet client interfaces, while traffic destined for router 3 is forwarded by
the OTN switch. Traffic destined for router 3 is thus bypassed, avoiding
processing in router 2.

As with the packet switching scenario; 30% of the traffic is on average
destined to router 2, while 70% on average is destined to router 3.

39

40

Chapter 6

Simulation model

A simulation model has been developed for each of the two previously de-
scribed network scenarios (packet switched and OTN switched three-node
scenario). The simulators have been developed using the SIMULA program-
ming language. The DEMOS context class is used to enable the use of
discrete events.

This chapter explains the implementation of the simulation models. The
next chapter presents and discusses results obtained from the simulation runs.

6.1 Background

Simulation is a simple and flexible way of analyzing systems. The simulator
can be designed to include exactly the needed level of details to give a good
representation of the real system [24].

A discrete-event system is a system which behavior is governed by events
occuring at discrete points in time and resulting in distinct changes of the
state of the system [24]. In this case, the discrete events are packet arrival-
s/departures.

When developing a simulator that is based on a given scenario, some sim-
plifications must be made. In this thesis, the goal for the simulation runs
is to evaluate the difference in queueing systems experienced when using a
pure packet switched network and an OTN switching based network. Pro-
cessing/switching delay in routers/switches is thus neglected in order to get
simulation results that reflect the difference between the alternative queueing
systems.

41

6.2 Common simulator implementation parts

Simulator implementation parts that are used both in the IP and OTN sim-
ulators are as follows:

Packet generator The packet generator is scheduled at simulation start,
and is responsible for generating IP packets. Each IP packet that is generated
draws a sample from a packet size distribution in order to determine the
packet size.

Packet size distribution CAIDA gathers statistics about packet sizes in
the Internet. Traffic investigations made by CAIDA show that there are a
predominance of small packets, with peaks at the common sizes of 44, 552,
576 and 1500 bytes in the Internet [7]. From [7], we find the cummulative
distribution of packet sizes in the Internet. The distribution is seen in Table
6.1.

Packet length | Cummulative percent
40 0.00
44 0.62
552 0.75
D76 0.83
1500 1.00

Table 6.1: Empirical distribution of IP packet sizes in the Internet|7]

This distribution is used for setting packet lengths in the simulator. The
size of each generated packet is determined by pulling a sample from the
packet size distribution. The average packet size is 286,36 bytes, and the
maximum packet size is limited to 1500 bytes.

Packet arrival process The packet generator holds for an interarrival
time between the creation of each packet. Two possible packet arrival pro-
cesses are implemented for the simulators; a negative exponential interarrival
distribution and a Hy hyperexponential interarrival distribution.

When the N.E.D. distribution is used to control the interarrival of packets,
a sample is drawn from the distribution, and the simulator holds for the
duration of this sample between the creation of packets. A mean value is
inputted into the distribution in order to control the average load on the
links.

42

The hyperexponential interarrival distribution is implemented in order to
reflect the possible burstiness in the Internet. The distribution is realized by
using a combination of two negative exponential distributions. One distri-
bution is set to generate a normal traffic load, while the other is put to a
much higher expected arrival rate (e.g. 50 times higher than the normal) in
order to create burstiness in the traffic pattern at moments in time. After
the generation of a packet, the interarrival distribution with low interarrival
time (bursty traffic) is chosen with a probability of A, while the distribu-
tion with normal interarrival times is chosen with a probability of 1-A. This
generates in total a much more bursty traffic pattern than the single N.E.D.
interarrival distribution.

A counter named "generatedPackets" is increased with one after the cre-
ation of each packet.

Measuring packet delay and loss Each packet that is generated is times-
tamped with the current clock time (timestamp 1). If the packet reaches its
destination (gets dropped to the client interfaces in router 2 or 3), the packet
gets a second timestamp (timestamp 2). The packet delay is found by ex-
tracting timestamp 1 from timestamp 2. The counter "receivedPackets" is
increased by 1 when the packet successfully reaches its destination.

If a packet arrives at a full buffer, the packet is dropped (lost). The
counter "droppedPackets" is then increased by one. In this case, the delay is
not calculated.

The statistics of all three counters (generatedPackets, receivedPackets
and droppedPackets) are printed in the trace file at simulation end.

Simulation parameters Four different parameters are important in or-
der to obtain good statistical results from the simulation runs. These are
transient simtime, holdtime, number of replications and simulation seed.

The transient simtime is used to make sure that the simulator is in steady
state before statistics are logged. The holdtime controls the length of the
simulation run, and must be long enough to provide trustworthy results.
Number of replications controls the number of individual simulation runs
that should be run to create reasonable statistical variance. The simulation
seed can be put to any integer, and provides an arbitrary simulation seed to
each replication.

43

6.3 1P simulator

The IP simulation model is seen in Figure 6.1. The IP simulator is based on
the three-node packet switching scenario presented in the previous chapter.
An edge router aggregates traffic and forwards all incoming packets into the
first shared output queue (router_out_Q1). A single wavelength with a bit
rate of 100 Gb/s is used for transmission between the routers. Router 2 drops
30% of the incoming traffic to its client interfaces, while 70% of the traffic is
forwarded to a second shared output queue (router_out_ Q2). All forwarded
traffic is dropped to the client interfaces at router 3.

3 x 10 Gb/s client interfaces Drop
Packet timestamp.1 10 Gb/s 7 x 10 Gb/s client interfaces
10 Gb/s 10 Gb/s
IP router / E Packet timestamp.2
;@E...’.‘L.i‘??.?yi. LD o so0gs Packe timestamp.2
IP traffic router_out_Q1 router_out_Q2 - ’
Router 1 Router 2 Router 3
Edge router) 70% bypass
Traffic aggregation

Figure 6.1: IP simulation model. The simulation model is the "DEMOS
view" of the three-node packet switching scenario.

Implementation parts that are special for the IP simulator are as follows:

Queues and transmission The pure IP simulator uses shared output
queues on the routers. The queues are modelled by using the inbuilt waitq
entity in DEMOS. The maximum time for a packet to be buffered in a router
should be maximum 200 ms. The output queues in the simulator have a
buffer size of 12,5 kilobytes, providing capacity for an average of 43 packets
in a full buffer. A packet that enters a buffer with one free slot (42 packets
already in buffer) will not experience a bigger delay than 200 ms.

The transmission delay is simulated by holding the simulator for the
packet length divided by link capacity for each packet that leaves the output
queue. The link capacity is scaled down in the simulator because of length
limitations in the DEMOS variables. The 100 Gb/s links connecting routers
1, 2 and 3 is thus each set to a capacity of 10° b/s.

When a packet arrives at router 2, a random number between 1 and 10
is drawn. If this number is bigger than 3 (70%), the packet is forwarded to
router 3 (put in output queue 2). If the number is smaller than 3 (30%),

44

the packet is dropped to the client interfaces in router 2, and the counter
"'receivedPackets" is increased by 1.

6.4 OTN simulator

The OTN simulator is an implementation of the three-node OTN switching
scenario presented in the previous chapter.

The OTN simulator models the impact of using OTN switches combined
with IP routers in the core network. As previously explained; OTN switches
makes it possible to perform sub-lambda switching, meaning that it is pos-
sible to switch individual ODUs at sub-wavelength bit rate. Switching at
sub-wavelength bit rate makes it possible to drop or bypass traffic in the
OTN switches depending on whether packets contained in the OTN frame
should be forwarded to the IP router in the network node or not.

The DEMOS implementation of the three-node OTN switching scenario
is seen in Figure 6.2.

3 x 10 Gb/s client interfaces

10 Gb/s

10 Gb/s 10 Gb/s

R2

IP router

Packet timestamp.1 Link capacity = 30 Gb/s Packet timestamp.2
out g to R2
@ Weight: 30%
E I 111
IP traffic | 111

Weight: 70%
OTN switch 1 °*-4--R3
Edge router
Traffic aggregation

Link capacity = 70 Gb/s R3

Packet timestamp.2

7 x 10 Gb/s client interfaces

Figure 6.2: OTN simulation model. The simulation model is the "DEMOS
view" of the three-node OTN switching scenario.

The implementation of the simulator in terms of packet generator, packet
size distribution and measurement of packet delay and loss is similar to the
IP simulator. The difference is in how the queues and links are configured.

Queues and transmission An edge router (OTN switch) aggregates traf-
fic and forwards all incoming packets in the OTN simulation model.

45

As explained in chapter 3 (G.709 chapter); the OPUk area in the OTN
frame is divided into a number of tributary slots (time slots) in order to share
the bandwidth amongst different streams. If the edge router was a real OTN
switch it would accept IP traffic on several input interfaces and bundle this
into OTN frames which would be sent on a single wavelength. In the OTN
simulator, the packets are shared amongst two separate output queues in or-
der to simulate the behaviour of the OTN switch (sharing bandwidth by the
use of timeslots and bypassing intermediate nodes). Each output queue has
its own router destination. Out_q to R2 sends all traffic to router 2, while
out_ q to R3sends all traffic to router 3. An individual link is connected to
each of the output queues. The link connecting the aggregation switch and
router 2 has a capacity of 30 Gb/s, while the link connecting the aggregation
switch and router 3 has a capacity of 70 Gb/s. In the simulator, the 30 Gb/s
link is set to 0.3*10° b/s and the 70 Gb/s link is set to 0.7¥10° b/s.

The incoming IP packets at the aggregation switch is tagged with a des-
tination node and is put directly in the output queue associated with the
destination node. 30% of the traffic arriving at the aggregation switch is on
average put in out_ ¢ to_R2 (destined to router 2), while 70% of the traffic
on average is put in out_q to R3 (destined to router 3). As with the IP
simulator; the traffic is put in the two different queues based on sampling of
a random number between 1 and 10. If the number is below 3, the packet
is put in output queue to R2. If the number is above 3, it is put in output
queue to R3.

The output queues are, as with the IP simulator, also modelled with

the waitq entity in DEMOS. The same buffer size (12500 bytes/average 43
packets) is used for each queue.

46

6.5 Reconfigurable OTN simulator

The reconfigurable OTN simulator is, in contrast to the regular OTN sim-
ulator, capable of reconfiguring the link capacities according to the traffic
arrival intensity to the two output buffers. The switch measures the current
queue lengths in both output buffers for each packet that is generated, and
adjusts the link capacities based on the measurements. If the length of one
output queue is longer than the other, then the link capacity of the link con-
nected to the output buffer with higher queue length is increased, and the
capacity of the link connected to the output buffer with shorter queue length
is decreased. In this way, the capacity is dynamically adjusted based on the
current traffic pattern.

The DEMOS implementation of the reconfigurable OTN switch is seen
in Figure 6.3.

3 x 10 Gb/s client interfaces
10 Gb/s

10 Gb/s 10 Gby/s

R2

Link capacity = 25 Gb/s <--> 50 Gb/s
IP router
Packet timestamp.1 Packet timestamp.2
out_g_to R2

Weight: 30%
(= [T
IP traffic E

Weight: 70%
OTN switch 1 -0 /
Edge router
Traffic aggregation
Link capacity = 50Gb/s <--> 75 Gb/s
7 x 10 Gb/s client interfaces

R3

Packet timestamp.2

Figure 6.3: Reconfigurable OTN simulation model.

As seen from the figure; the reconfigurable OTN simulation model is
similar to the regular OTN simulation model, but the link capacities are
automatically reconfigurable. Each of the link capacities can be adjusted
with +/- 1 Gb/s for each packet that is generated based on the current
measured queue lengths. The link connecting output buffer out_q to R2
and R2 can be adjusted between 25 and 50 Gb/s, while the link connecting
output buffer out _q to R3 and R3 can be adjusted between 50 and 75
Gb/s. The distribution of traffic amongst the two output queues is still the
same; 30% of the traffic is on average put in output queue to R2, and 70%
on average in output queue to R3.

47

48

Chapter 7

Simulation results

This chapter firstly presents the configuration of the simulation runs with
the previously presented IP and OTN simulators. Secondly, the results from
the simulation runs are presented. Parameters that are used for performance
evaluation are average packet loss and average packet delay.

All simulators are first run with the negative exponential packet interar-
rival distribution with increasing network load. This is considered to be a
distribution with low level of traffic burstiness. The second run is carried out
with the hyperexponential packet interarrival distribution with increasing
network load. This distribution generates a much higher level of burstiness
in the traffic patterns, thus generating dense bulks of traffic in periods of time.

Lastly, the results are compared in common graphs. Each simulation run
is replicated 10 times with individual seeds. The results are plotted with
95% confidence interval with 9 degrees of freedom using the Student’s t-
distribution.

49

7.1 IP simulator

The IP simulator is set up with simulation parameters seen from Table 7.1.

Parameter Value

Holdtime 10000

Transient simtime 2000
Number of replications 10
Simseed 30

Buffer size (bytes) 12500

Table 7.1: Simulation parameters, IP simulator

The holdtime, which controls the duration of the simulation is put to
10000. This is a level which is long enough to provide reasonable results, but
at the same time short so that the simulation runs are practically feasible
to carry out. The transient simtime is put to 2000. This parameter makes
sure that the simulator is in steady state (transient period has ended) before
statistics are logged. 10 replications, each with different seeds are run to
obtain results with good statistical properties. The simulation seed can be
put to any valid integer. The simseed parameter is thus put to 30. The
buffersize of the two output queues is each put to 12,5 kilobytes. The average
packet length in the simulator is 286,36 bytes. The buffer has thus on average
room for 12500/286,36 bytes = 43 IP packets.

7.1.1 N.E.D. interarrival distribution

The IP simulator is first run with the negative exponential interarrival dis-
tribution.

Delay Figure 7.1 shows the average packet delay with increasing average
link load and N.E.D. interarrivals from the IP simulator. The increasing
network load (A, offered traffic) is plotted along the x-axis, while the average
packet delay (ms, milliseconds) is plotted along the y-axis.

50

Boverage packet delay [ms]

j y

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 00

Figure 7.1: Average packet delay with increasing traffic load - IP simulator,
N.E.D. interarrival distribution

The simulator is run with the average link load increasing in steps from
0.1 to 0.9 Erlang. As seen from the graph; the average packet delay increases
with increasing link load. The average packet delay is 0.365 ms at 0.1 Erlang,
and 29.37 ms at 0.9 Erlang.

The links connecting router 1, 2 and 3 are shared between all packets
when they are sent between routers in the IP scenario. The increase in delay
is due to the increasing number of packets sharing the capacity offered by the
links. Few packets share the transmission capacity when the load is low, and
filling of the output buffers is thus also low. The packets have low queuing
delay when the output buffer filling is low, and are efficiently transmitted
from router to router without spending much time in the queue. A heavy
increase in delay is experienced in the area above 0.7 Erlang. This is because
the output buffers reaches its maximum capacity and starts dropping pack-
ets when the network load reaches this level. When the buffers on average
contain more packets (are full), the average packet delay also increases.

Packet loss Figure 7.2 shows the average packet loss ratio (generated pack-
ets/average dropped packets) with increasing network load. The network
load ranging from 0.7 to 0.9 Erlang is plotted along the x-axis, while the
average packet loss ratio is plotted along the y-axis.

51

0.0030]
0.0025 '/‘
0.0020

0.0015 //

0.0010 /
h /
L——-.--_-'_.--|

00000 % |
0.70 0.75 0.80 0.85 0.80

Packet. loss mtio

Figure 7.2: Average packet loss with increasing traffic load - IP simulator,
N.E.D. interarrival distribution

As seen from the graph; packet loss starts occuring above 0.7 Erlang, and
increases heavily as the load approaches 0.9 Erlang. The experienced packet
loss in the range from 0.70 to 0.75 Erlang is very low. The packet loss ratio
is 5.24E-6 (average 12.8 dropped packets of 2444000 generated packets) at
0.70 Erlang, and 1.25E-5 (average 32.2 dropped packets of 2619000 generated
packets) at 0.75 Erlang. The loss in this area is thus just barely visible on
the graph. The packet loss ratio increases heavily from 0.8 to 0.9 Erlang.

Packet loss occurs because of full buffers. The buffers get full when the
traffic arrival rate to the buffer exceeds the departure rate from the buffer. As
seen from the graph; 0.7 Erlang is the "breaking point" where the arrival rate
to the buffer exceeds the departure rate, and packet loss starts occuring. The
breaking point at 0.7 Erlang was also experienced with the average packet
delay, which had a steep increase above 0.7 Erlang. This is because the
output buffers on average are full at 0.7 Erlang and above.

Increasing the buffersize will make the system more loss tolerant (a higher
traffic load is needed before packet loss occurs), but the average packet delay
will increase. This is because the packets then on average will experience
a higher waiting time in the buffer. Reducing the buffersize works in the
opposite way; packet loss is increased and packet delay decreased.

52

7.1.2 Hyperexponential interarrival distribution

The hyperexponential distribution is now used for controlling the interar-
rival of packets. Samples from the interarrival distribution is used to decide
for how long the simulator should hold before a new packet is generated.
As previously explained; the hyperexponential distribution generates more
burstiness in the traffic arrival pattern compared to the N.E.D. distribution.
Groups of interarrival samples with low interarrival times are experienced
when the hyperexponential interarrival distribution is used.

Based on parameters from [25], the interarrival intensities is put so that
A2 =50 A1, and A = 0.2. When A is put to 0.2, the distribution with high
traffic intensity is picked with a probability of 0.2, while the distribution
with low intensity is picked with a probability of 0.8. The average link
load is controlled by adjusting the expected interarrival times of the two
distributions proportionally. A2 is constantly kept 50 times bigger than A1.
The traffic pattern will now contain bursts of packets in periods of time
during the simulation runs.

53

Delay Figure 7.3 shows the average packet delay with hyperexponential
interarrival distribution from the IP simulator.

40

/

Boverage packet. deloy [ms]
=

Figure 7.3: Average packet delay with increasing traffic load - IP simulator,
Hyperexponential interarrival distribution

The average packet delay is higher with the hyperexponential interarrival
distribution compared to what is experienced with the N.E.D. interarrival
distribution. The average packet delay is 5.26 ms at 0.1 Erlang, and 37.1 ms
at 0.9 Erlang. This is because of the bursty traffic pattern. Bursts of packets
makes the filling of the buffers on average higher than without the bursty
pattern. The packets are thus experiencing higher average waiting times in
queue. It is also observed from the graph that the average packet delay, with
this interarrival distribution as well, increases more heavily above 0.7 Erlang.

o4

Packet loss Figure 7.4 shows the average packet loss ratio with hyperex-
ponential interarrival distribution.

0.005 /'
0.004
T /

/
2

=
=
@

Packt. logs matio

=
=
[+

0.001 /

0.000 1 1 1 1 1 1 1 1 1 1 1
0.70 075 0.80 083 0.20

Figure 7.4: Average packet loss with increasing traffic load - IP simulator,
Hyperexponential interarrival distribution

The average packet loss ratio is higher with the hyperexponential inter-
arrival distribution compared to the N.E.D. interarrival distribution. The
packet loss experienced between 0.7 and 0.75 Erlang is also low with this
packet arrival process, but higher than with the N.E.D. interarrival distribu-
tion. The packet loss ratio is 6.82E-6 at 0.7 Erlang (16.7 dropped packets
of 2444000 generated packets), and 4.93E-5 at 0.75 Erlang (129.3 dropped
packets of 2619000 generated packets). A heavy increase in packet loss is
observed above 0.8 Erlang.

The average packet loss ratio is higher with the hyperexponential inter-
arrival distribution because of packet bursts arriving at output buffer 1 at
some time instants. This increases the average filling of the output buffers
and thus the average packet loss ratio.

95

7.2 OTN simulator

Simulation parameters used in the OTN simulator is seen from Table 7.2.
These are the same parameters as used with the IP simulator. Each of the
two output buffers have a buffer size of 12500 bytes.

Parameter Value

Holdtime 10000

Transient simtime 2000
Number of replications 10
Simseed 30

Buffer size (bytes) 12500

Table 7.2: Simulation parameters, OTN simulator

The total buffer capacity in the OTN simulator is thus twice as big as in
the IP simulator. This is because the two output buffers together share the
total 100 Gb/s link capacity.

56

7.2.1 N.E.D. interarrival distribution

The OTN simulator is also first run with the negative exponential interarrival
distribution.

Delay Figure 7.5 presents the average delay experienced per packet with
increasing network load.

&0

| /
| /

/

Dowrerage packet delay [ms]
&
Mo

L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8

Figure 7.5: Average packet delay with increasing traffic load - OTN simulator,
N.E.D. interarrival distribution

As seen from the figure; the average packet delay increases with increas-
ing link load. This is, as with the IP simulator, because of the increased
filling of the output buffers when the network load increases. Higher delay is
experienced per packet with the OTN simulator than with the IP simulator.
The average packet delay is 5.312 ms at 0.1 Erlang, and 56.81 ms at 0.9
Erlang.

57

Packet loss Figure 7.6 presents the average packet loss ratio (generated
packets/average dropped packets) with increasing network load.

0.004 —

0.003

0.002

Packet loss

0.001 /,_

0.000|]

L L
.70 0.75 0.80 0.85 0.50
A

Figure 7.6: Average packet loss with increasing traffic load - OTN simulator,
N.E.D. interarrival distribution

As seen from the graph; packet loss starts occuring around 0.7 Erlang
and increases gradually above 0.75 Erlang. As experienced with the previous
simulation runs; the packet loss is very low between 0.7 and 0.75 Erlang. A
packet loss ratio of 3.85E-6 (9.4 dropped packets out of 2444000 generated
packets) is experienced at 0.7 Erlang, and 1.88E-5 (49.2 dropped packets out
of 2619000 generated packets) at 0.75 Erlang.

A heavy increase in packet loss ratio is observed above 0.8 Erlang.

58

7.2.2 Hyperexponential interarrival distribution

The hyperexponential interarrival distribution is now used to control the

packet arrivals. The same burstiness parameters as with the IP simulator is
used (A2 =50 A1, A =0.2).

Delay Figure 7.7 presents the average packet delay with hyperexponential
interarrival distribution.

&0 F

I

Svernpe packet. delay [ms]

3
. /

10 /

Figure 7.7: Average packet delay with increasing traffic load - OTN simulator,
Hyperexponential interarrival distribution

The average packet delay is higher with the hyperexponential interarrival
distribution than with N.E.D. interarrivals. This is, as with the IP simulator,
because of the bursty traffic pattern that increases the filling of the buffers.
When the filling of the output buffers on average is high, the average packet
delay increases. The average packet delay is 5.85 ms at 0.1 Erlang, and 60.6
ms at 0.9 Erlang.

59

0.006 —

0.005 / i
0.004 /
0.003 / T

0.002 /
0.001 /;

0000 =

Packet loss mtio

Figure 7.8: Average packet loss with increasing traffic load - OTN simulator,
Hyperexponential interarrival distribution

Packet loss Figure 7.8 presents the average packet loss rate with hyper-
exponential interarrival distribution.

The packet loss rate is also higher for the OTN simulator with hyperexpo-
nential interarrival distribution than with N.E.D. interarrivals. The packet
loss rate is still low in the area ranging from 0.7 to 0.75 Erlang; 6.99E-6
(17.1 dropped packets out of 2444000 generated packets) at 0.7 Erlang, and
4.79E-5 (125.6 dropped packets out of 2619000 generated packets) at 0.75
Erlang. The packet loss ratio increases heavily above 0.8 Erlang.

60

7.3 IP vs. OTN comparison

7.3.1 N.E.D. interarrival distribution

Delay A comparison of average packet delay experienced with the IP and
OTN simulator with N.E.D. interarrival distribution is seen in Figure 7.9.

/
/

v

&0

5

Severage packet delay [ms]
B

=
=)

\

|
|
AR

L
0.8 (%]

Figure 7.9: IP vs. OTN average packet delay comparison, N.E.D. interarrival
distribution (Blue line (top) - OTN, purple line (bottom) - IP)

As seen from the graphs; the average packet delay experienced with OTN
is higher than with IP. This is because the total transmission capacity is
divided into smaller entities (sub-capacities) with OTN. 30% of the total
link capacity (3 x 10 Gb/s) is statically configured to handle traffic destined
to router 2, while 70% (7 x 10 Gb/s) is statically configured to handle traffic
destined to router 3.

The total transmission capacity of 100 Gb/s is however shared between
all packets on the links in the IP simulator. The transmission resources are
thus higher utilized, improving the network performance. This is reffered to
as the statistical multiplexing gain, which is achieved by using pure packet
switching.

The average packet delay is thus lower for the IP simulator than the OTN
simulator.

61

Packet loss A comparison of average packet loss with the IP and OTN
simulator with N.E.D. interarrival distribution is seen in Figure 7.10.

0.004 —

T

0.003

0.002 ¥

Packet. loss mtio

0.001 /

sool _’___.___d’/

I L
0.70 0.75 0.30 0.85 0.90
A

Figure 7.10: TP vs. OTN average packet loss comparison, N.E.D. interarrival
distribution (Blue line (top) - OTN, purple line - IP (bottom))

As seen from Figure 7.10; the average packet loss rate experienced with
both IP and OTN are overlapping up to about 0.85 Erlang. The packet loss
rate increases more heavily for OTN than IP above 0.85 Erlang however. This
is because of the statical assignment of transmission capacity to each output
queue in the OTN scenario. Although the capacity is provisioned on basis of
the expected traffic pattern (on average 30% of the traffic destined for router
2, 70% of the traffic destined for router 3), there will be variations in the ac-
tual traffic load. The problem arises when the distribution of traffic amongst
the two output queues change compared to the expected traffic pattern. At
some time instants, more than 30% of the generated traffic will be destined
to router 2, or more than 70% to router 3. With pure packet switching this
problem is avoided. Statistical multiplexing is performed in this case, and
the total transmission capacity is fully shared amongst all packets regardless
of destination. When the traffic pattern changes in comparison to what is
expected with OTN however, a percentage of the total available bandwidth
remains unused. One group of sub-lambdas might be fully congested while
the other might be underutilized. A higher drop ratio is thus experienced

62

with OTN switching than with packet switching when the traffic load is high.

7.3.2 Hyperexponential interarrival distribution

Delay Figure 7.11 shows the average packet delay for IP vs. OTN with
hyperexponential interarrival distribution.

0 F

/
]

)4

]

Boverapge packet. delay [ms]
=

L " " " "
0.1 0.2 0.3 0.4 0.3 (LX) 0.7 0.8 00

Figure 7.11: IP vs. OTN average packet delay comparison, Hyperexponential
interarrival distribution (Blue line (top) - OTN, purple line (bottom) - IP)

The average packet delay is higher for both IP and OTN when the hyper-
exponential interarrival distribution is used. This is, as previously explained,
because of random packet bursts that occur at some time instants. This
causes the buffers to fill up with packets, thus increasing the average packet
delay. As seen from the figure; average packet delay is about the same for
both IP and OTN in the area ranging from 0.1 to 0.4 Erlang. The average
packet delay experienced with OTN increases more heavily when the traffic
load increases beyond 0.4 Erlang. This is, as with the N.E.D. interarrival
distribution, experienced because of the static link configurations in OTN.

63

Packet loss Figure 7.12 shows the average packet loss rate for IP vs. OTN
with hyperexponential interarrival distribution.

0.006 —

) /
/

. /
P

____‘___,_..-4/

0000 =)
0.70 0.75 0.30 0.85 0.90

Packet loss mtio

Figure 7.12: TP vs. OTN average packet loss comparison, Hyperexponential
interarrival distribution (Blue line (top) - OTN, purple line (bottom) - IP)

As seen from the graphs; the packet loss rate is higher for both IP and
OTN with the hyperexponential interarrival distribution compared to the
N.E.D. interarrival distribution. The packet loss rate is similar for both
IP and OTN up to 0.81 Erlang. The IP simulator is more tolerant to the
bursty traffic pattern than the OTN simulator when the average traffic load
increases above 0.81 Erlang. OTN has a higher average packet loss ratio
than IP above this point. This is, as previously explained, because of the
statically configured link capacities in OTN.

64

7.4 OTN Hyperexponential vs. N.E.D. inter-
arrival distribution comparison

Figure 7.13 shows a comparison of average packet delay for the OTN simu-
lator with hyperexponential and N.E.D. interarrival distributions.

0 F

/
4, /

Boverapge packet. delay [ms]
s

0 /

Figure 7.13: OTN average packet delay comparison with hyperexponential
interarrival distribution vs. N.E.D. interarrival distribution, (Blue line (top)
- Hyperexponential, purple line (bottom) - N.E.D.)

As seen from the graph; the average packet delay is higher with the hy-
perexponential than the N.E.D. interarrival distribution. The higher average
packet delay is, as previously explained, because of traffic bursts that are
generated with the hyperexponential distribution. The difference in average
packet delay increases with increasing average network load. The difference
is however not very big. The biggest difference in average packet delay is
found at 0.9 Erlang, where the difference is 3.79 ms.

65

Figure 7.14 shows a comparison of average packet loss for the OTN sim-
ulator with hyperexponential and N.E.D. interarrival distributions.

0.006 —

/
/
| v

0.000} = .
0.70 0.75 0.30 0.85 0.80

Packet loss mtio

Figure 7.14: OTN average packet loss comparison with hyperexponential
interarrival distribution vs. N.E.D. interarrival distribution, (Blue line (top)
- Hyperexponential, purple line (bottom) - N.E.D.)

As seen from the graphs; the average packet loss ratio is very low from
0.7 to 0.75 Erlang with both distributions. The difference in packet loss ratio
is however clearly seen above 0.75 Erlang. From this point, the packet loss
ratio with the hyperexponential interarrival distribution increases much more
heavily than with the N.E.D. interarrival distribution, and the gap increases
with increasing traffic load. It is clearly seen from the hyperexponential loss
graph that the statically configured OTN switched system doesn’t handle
the bursty traffic pattern very well.

66

7.5 Reconfigurable OTN simulator

The reconfigurable OTN switch is, as previously explained, capable of recon-
figuring link sub-capacities based on the current traffic pattern. The queue
length of the two output buffers are measured and compared for each packet
that is generated. The capacity of the link connected to the output buffer
with more packets is increased with 1 Gb/s. No adjustment of the link ca-
pacities occur if the output queues have the same queue length, or if the
limits of capacity rearrangement is reached.

The adjustment of capacity is limited so that the capacity of the link
connected to R2 can vary between 25 and 50 Gb/s, while the link connected
to R3 can vary between 50 and 75 Gb/s.

Simulation parameters used in the reconfigurable OTN simulator is seen
from Table 7.3. These are the same parameters as used with the IP and OTN
simulators. Each output buffer has a capacity of 12500 bytes.

Parameter Value
Holdtime 10000
Transient simtime 2000
Number of replications 10
Simseed 30
Buffer size (bytes) 12500

Table 7.3: Simulation parameters, Reconfigurable OTN simulator

67

7.5.1 N.E.D. interarrival distribution

The reconfigurable OTN simulator is first run with the N.E.D. interarrival
distribution.

Delay Figure 7.15 presents the average packet delay experienced with in-
creasing link load.

50

,,3 /

Bernpe packet. delay [ms]
k
=

Figure 7.15: Average packet delay with increasing traffic load - Reconfig-
urable OTN simulator, N.E.D. interarrival distribution

As seen from the graph; the packet delay increases when the average link

load increases. The average packet delay is 5.573 ms at 0.1 Erlang and 45.1
ms at 0.9 Erlang.

68

Loss Figure 7.16 presents the average packet loss with increasing link load.

0.0012 —

0.0010

0.0008 t/
0.0006 /
0.0004 //

0.0002
o

/

L L L L
0.70 0.75 0.80 0.85 0.90

Packet logs matio

0.0000 -

Figure 7.16: Average packet loss with increasing traffic load - Reconfigurable
OTN simulator, N.E.D. interarrival distribution

As seen from the graph; the packet loss is very low from 0.7 to 0.8 Erlang.
The packet loss is 9.82E-7 (2.4 dropped packets out of 2444000 generated
packets) at 0.7 Erlang, and 3.33E-5 (93.1 dropped packets out of 2793000
generated packets) at 0.8 Erlang.

69

7.5.2 Hyperexponential interarrival distribution

The reconfigurable OTN simulator is now run with the hyperexponential
interarrival distribution. The same burstiness parameters as with the IP and
regular OTN simulators are used (A2 = 50 A1, A = 0.2).

Delay Figure 7.17 presents the average packet delay experienced with in-
creasing link load.

| /
/
/

—

Meverapge packet. delay [ms]

Figure 7.17: Average packet delay with increasing traffic load - Reconfig-
urable OTN simulator, Hyperexponential interarrival distribution

The average packet delay is higher with the hyperexponential interarrival
distribution than with the N.E.D. interarrival distribution. The packet delay
is 6.18 ms at 0.1 Erlang, and 49.5 ms at 0.9 Erlang.

70

Loss Figure 7.18 presents the average packet loss with increasing link load.

0.0025 —

0.0020

|
A
o0000]. /

L L L L
0.70 0.75 0.80 0.85 0.90

Packet logs matio

0.0005

Figure 7.18: Average packet loss with increasing traffic load - Reconfigurable
OTN simulator, Hyperexponential interarrival distribution

As seen from the graph; the packet loss is very low from 0.7 to 0.75
Erlang with the hyperexponential interarrival distribution. The packet loss is
2.046E-6 (5 dropped packets out of 2444000 generated packets) at 0.7 Erlang,
and 1.214E-5 (31.8 dropped packets out of 2619000 generated packets) at 0.75
Erlang. The packet loss rate increases gradually above 0.75 Erlang.

71

7.6 IP vs. OTN vs. reconfigurable OTN
comparison

7.6.1 N.E.D. interarrival distribution

Delay Figure 7.19 presents the average packet delay with increasing link
load for the IP, OTN and reconfigurable OTN simulator with the N.E.D.
interarrival distribution.

&0

/
| /s
/
A/
S/

Beyerage packet delay [ms]

/
‘ T ""'F/ / =]
. __————————""‘/ n

0.1 0.2 03 0.4 0.5 0 0.8 0.2

Figure 7.19: Average packet delay with increasing traffic load - IP vs. OTN
vs. reconfigurable OTN simulator, N.E.D. interarrival distribution, (Blue line
(top) - OTN, green line (middle) - reconfigurable OTN, purple line (bottom)
- IP)

As seen from the graphs; the average packet delay for OTN and recon-
figurable OTN is similar up to 0.6 Erlang. The packet delay increases more
heavily for OTN than reconfigurable OTN above 0.6 Erlang, however. This
is because reconfiguration of link capacities in the reconfigurable OTN simu-
lator starts occuring above 0.6 Erlang, while the regular OTN simulator has
static link capacities. The reconfigurable OTN simulator makes sure that
the output buffer with highest queue length gets its link capacity increased.
The average time spent in the output buffers for packets in the reconfigurable
OTN simulator is thus lower than with the regular OTN simulator, and the

72

average packet delay is thus lower for the reconfigurable OTN simulator.

The average packet delay for the IP simulator is however lower than
both the regular and reconfigurable OTN simulator. This is, as previously
explained, because of the statistical multiplexing gain in the IP simulator,
where the total transmission resource is shared between all packets.

Loss Figure 7.20 presents the average packet loss with increasing link load
for the IP, OTN and reconfigurable OTN simulator with the N.E.D. interar-
rival distribution.

0.0 —

T
0.003 /

—

0.002 T

Pcket loss mtio

0.001 ’I

/
#4

0.70 0.75 0.80 0.85 0.50

0.000 |

Figure 7.20: Average packet loss with increasing traffic load - IP vs. OTN
vs. reconfigurable OTN simulator, N.E.D. interarrival distribution, (Blue line
(top) - OTN, purple line (middle) - IP, green line (bottom) - reconfigurable
OTN)

As seen from the graphs; the average packet loss experienced with the
reconfigurable OTN simulator is much lower than with the regular OTN and
IP simulators. The difference in packet loss is seen from 0.76 Erlang and
above, where the packet loss of the IP and OTN simulators increases more
heavily than the reconfigurable OTN simulator.

The packet loss ratio of both IP and regular OTN increases heavily above
0.8 Erlang. Both have the same increase in packet loss ratio up to 0.85 Erlang.
The OTN simulator has a higher packet loss ratio than IP above 0.85 Erlang.

73

The increase in packet loss ratio with increasing traffic load for the recon-
figurable OTN simulator is much lower than with the OTN and IP simulators.
An increase in packet loss ratio is first barely seen above 0.8 Erlang with the
reconfigurable OTN simulator, and the packet loss ratio has a much less steep
curve than the IP and OTN simulators. At 0.9 Erlang, where the packet loss
ratio is at its highest, the packet loss ratio is 0.00327 (on average 10279.6
dropped packets out of 3143000 generated packets) for the IP simulator and
0.003447 (on average 10834.5 dropped packets out of 3143000 generated pack-
ets for the OTN simulator. The reconfigurable OTN simulator has however
a packet loss ratio of only 0.00107 (on average 3369.3 dropped packets out
of 3143000 generated packets). The low packet loss ratio experienced with
the reconfigurable OTN simulator is because of the dynamical adjustment of
the link capacites. Measuring the potential difference in queue lengths for
each packet that is generated makes the system responsive to changes in the
traffic pattern. A link is assigned extra transmission capacity at once if the
output queue connected to it starts growing in length. Assigning higher link
capacity makes the queue length decrease rapidly. In this way, maximum
filling of the buffers is avoided, and a lower packet loss rate is achieved.

74

7.6.2 Hyperexponential interarrival distribution

Figure 7.21 presents the average packet delay with increasing link load for
the IP, OTN and reconfigurable OTN simulator with the hyperexponential
interarrival distribution.

60 F

| /
5,3 //
A/

)y’
&

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 (%]

Dowrerage packet delay [ms]

Figure 7.21: Average packet delay with increasing traffic load - IP vs. OTN
vs. reconfigurable OTN simulator, Hyperexponential interarrival distribu-
tion, (Blue line (top) - OTN, green line (middle) - reconfigurable OTN, purple
line (bottom) - IP)

Delay Still, the average packet delay of the IP simulator is lowest and the
average packet delay of OTN and reconfigurable OTN is overlapping up to
0.6 Erlang. The average packet delay of OTN increases more than reconfig-
urable OTN above 0.6 Erlang. This is, as previously explained, because the
reconfiguration of link capacities in the reconfigurable OTN simulator starts
occuring above this point. The reconfiguration of link capacities makes sure
that the buffer with most packets gets its link capacity increased, thus de-
creasing the overall average packet delay. The gap in packet delay between
the IP simulator and the OTN simulators is however smaller than with the
N.E.D. interarrival distribution. This is because the buffers on average con-
tain more packets with the hyperexponential interarrival distribution.

I6)

Loss Figure 7.22 presents the average packet loss with increasing link load
for the IP, OTN and reconfigurable OTN simulator with the hyperexponential
interarrival distribution.

s

0.002

A

0.000 =

Figure 7.22: Average packet loss with increasing traffic load - IP vs. OTN vs.
reconfigurable OTN simulator, Hyperexponential interarrival distribution,
(Blue line (top) - OTN, purple line (middle) - IP, green line (bottom) -
reconfigurable OTN)

A heavier increase in packet loss rate with increasing average traffic load
than with the N.E.D. interarrival distribution is observed for all simulators.
This is because of the bursty traffic pattern generated by the hyperexponen-
tial interarrival distribution. The packet loss ratio of IP and regular OTN
is overlapping up to 0.81 Erlang, while the packet loss ratio with reconfig-
urable OTN is much lower. At 0.9 Erlang, the packet loss ratio is 0.00478
(on average 15045.1 dropped packets out of 3143000 generated packets) for
the IP simulator, and 0.00512 (on average 16108.4 dropped packets out of
3143000 generated packets for the OTN simulator). The reconfigurable OTN
simulator has however a packet loss ratio of only 0.00201 (on average 6334.3
dropped packets out of 3143000 generated packets).

The difference in packet loss ratio between regular OTN and IP, and re-
configurable OTN is seen already from 0.75 Erlang with the hyperexponential
interarrival distribution.

76

7.7 Discussion

The results are better both in terms of average packet delay (lower delay) and
packet loss (lower loss) for the IP simulator than the regular OTN simulator,
both with N.E.D. and hyperexponential interarrival distribution.

The results illustrates the performance benefit of sharing transmission
resources and performing statistical multiplexing (IP), rather than statically
assigning transmission capacity based on expected traffic loads using time
division multiplexing (OTN). The main advantage of packet switching is, as
seen from the simulation results, the statistical multiplexing gain. The trans-
mission resources are fully shared, and the link sharing is instantaneously
adapted to the traffic demands of the data streams. High link utilization and
tolerance to sudden changes in the traffic pattern is thus achieved. Regular
OTN is, on the other hand, statically configured based on expected link loads.
The link utilization is of this reason lower, and the system isn’t tolerant to
changes in the traffic pattern.

The reconfigurable OTN simulator provides however better results than
both the IP simulator (lower packet loss) and the regular OTN simulator
(lower delay above 0.6 Erlang and lower packet loss). This is because the re-
configurable OTN simulator combines two important features; bypass of the
intermediate IP router, and dynamic reconfiguration of link capacities. In
this way, both output links are fully utilized, and the system automatically
adapts to changes in the traffic pattern. It thus combines the benefits of
packet switching and circuit switching. The reconfigurable OTN simulator
did however perform queue length checking for each packet that was gener-
ated. This is not practically feasible in real-life switches. A real-life OTN
switch will have limitations in the electronics that put constraints on how
often the checking of output buffer queue lengths can be performed. A real-
life implementation of the reconfigurable OTN switch will thus have poorer
performance than the one that is proposed in this thesis.

The main benefit of the regular OTN switched network approach is the
predictable behavior of the circuit switched configuration. The bandwidth is
fixed, making it possible to give guarantees for bandwidth, delay and packet
loss for separate connections. This is different from the unpredictable na-
ture of packet switching where all traffic shares the same bandwidth. Circuit
switching involves provisioning static connections. This works fine as long as
the traffic pattern keeps somewhat the same. As experienced from the simu-
lation runs; the problem arises when the traffic pattern change. Because the
connections with given bandwidths are nailed up, there is no dynamic rear-
rangement of the available bandwidth. Some connections might in worst case
turn idle, being totally unused, while other circuits are overloaded, resulting

7

in loss and increased delays. In presence of variation in traffic pattern, bursts
and flow demands, circuit switched networks have to conservatively allocate
bandwidth to handle peak capacity of the flow. The utilization of link capac-
ities is thus lower than with packet switching, which shares the transmission
capacity, and performs statistical multiplexing based on current bandwidth
demands from the various flows.

Employing packet switching with statistical multiplexing in the network
does however mean that a "bet" is placed, hoping that multiple flows will
make it through the the pipe that is provisioned. If the required bandwidth
for the sum of peaks of all flows exceeds the bandwidth that is provisioned,
congestion, and subsequently packet loss will occur.

Using OTN switches in the core network provides a potential simpler
network design. The OTN switches work as a transport layer, switching
aggregated data at coarse granularities between nodes in the core network.
Unnecessary processing of transit traffic in intermediate IP routers is avoided,
reducing the requirement for processing power, line card interface bit rates
and number of ports in the routers. Implementation of the core network is
thus potentially simpler and more cost-effective if OTN switches are used as
a transport layer beneath the IP routers.

OTN switching also offers lower equipment cost than IP routing (OTN
switches are cheaper than IP routers), but has, as seen from the simulation
results, poorer performance. The performance cost of using OTN switches
with circuit switching instead of IP routers with pure packet switching is
seen both in higher packet delay and loss. The average packet delay is higher
with OTN than with IP at all traffic loads. This is, as previously explained,
because of the division into link sub-capacities with OTN. The average packet
loss is however similar for both OTN and IP up to 0.85 Erlang (N.E.D.
interarrival), and 0.81 Erlang (Hyperexponential interarrival).

78

Chapter 8

Conclusion

The choice of an adequate core switching architecture is crucial in order to
handle the heavy traffic growth in the Internet. Switching technology used in
core network nodes shouldn’t be the transmission bottleneck, but rather make
sure that the fiber capacity is highly utilized, and perform data forwarding
in the most efficient way possible.

Optical packet switching is under heavy research, and is the future vision
of core network evolution. Many obstacles are still to overcome before this
technology will be seen in real-life.

OTN is gradually replacing SDH-based transport networks. OTN is based
on a range of [TU-T standards, and takes single wavelength SDH technology
a step further, providing future-proof multi-wavelength manageable trans-
port networks. Protocol transparency makes OTN the transport vehicle for
any type of service, and the TDM multiplexing hierarchy provides high uti-
lization of wavelength capacity. With OTN, the operators can switch pay-
loads that contain SDH, Ethernet and IP within a unified transport layer.
OTN switching makes it possible to switch circuit services at the circuit layer
(lambda or OTN), and to switch packet services at the packet layer (layer 3).
This makes it possible for operators to perform data transport and switching
in the most cost-effective layer possible.

Data is organized in ODUs when OTN is used as transport technology.
The ODU is used as the basic multiplexing unit in the TDM hierarchy, and
can contain any type of supported client signal. An OTN switch capable of
switching ODUs has been proposed in this thesis. OTN switching was then
compared to using pure packet switching in a three-node network scenario.

The simulation results show better performance for packet switching than
regular OTN switching. Both average packet delay and packet loss is found
to be lower with the IP simulator than the regular OTN simulator. This is
because of the static bandwidth assignment that is performed with regular

79

OTN switching. Nailed-up link capacities are configured based on expected
traffic patterns. Time-division multiplexing used in OTN switches doesn’t
provide any performance benefits compared to statistical multiplexing per-
formed with IP routers. The performance benefit gained with choosing a
regular OTN switching layer beneath the IP routing layer is bypass of inter-
mediate IP routers, thus saving the intermediate IP routers for unnecessary
packet processing. OTN provides a potential network design benefit because
of its ability to effectively switch aggregated traffic at coarse granularities in
the OTN layer, and forward traffic destined to IP routers in network nodes
for fine-granularity routing. The network design benefit does however come
at the cost of poorer network performance because of the time division mul-
tiplexing performed by OTN switches.

The financial expenses of OTN switches is lower than IP routers. A cost-
effective core network architecture is thus possible to achieve if OTN switches
is used in combination with IP routers. Combining an OTN switch with the
IP router in each network node makes it possible to reduce the required IP
router processing capacity in each node, thus reducing the overall network
cost.

The reconfigurable OTN switch provides better performance results than
both regular OTN switching, and packet switching. The combination of
both circuit and packet switching clearly has its benefits. The reconfigurable
OTN switch proposed in this thesis did however perform reconfiguration of
link capacities by comparing the output queue lengths for each packet that
is handled. Checking of output buffer queue lengths with this interval is
difficult to achieve in real-life switches.

Many considerations must be made when the core network switching ar-
chitecture is chosen. OTN switching provides a cost-effective alternative
to a pure packet switched core although the performance of regular OTN
switching isn’t as good as packet switching. Reconfigurable OTN switching
combines the features of the regular OTN switch with the features of packet
switching, providing efficient network node bypass, and high link utilization.
Reconfigurable OTN switching might thus be the future optimum solution
for core network switching.

8.1 Further work

Performance evaluation of OTN switching vs. packet switching took place
in a three-node network scenario in this thesis. Further work may involve
extending the evaluation by testing OTN switching in a larger scale network
scenario.

80

References

1]

2]

3]

[4]

[5]

Michael S. Borella et al. Optical components for wdm lightwave net-
works. Proceedings of the IEEE, Vol. 85, No. 8, pages 1274-1307, August
1997.

Steinar Bjornstad. Terabit kapasitets nettverk ved bruk av optikk. Te-
lenor FoU- Fornebu/NTNU - Trondheim/UNIK - Kjeller.

E. Zouganeli. Optical networks: From point-to-point transmission to
full networking capabilities. Telektronikk, February 2005.

International Telecommunication Union. Itu-t g.709, interfaces for the
optical transport network. Recommendation, 2009.

International Telecommunication Union. Optical transport network tu-
torial, 2005. URL: https://www.itu.int/ITU-T/2005-2008/com15/
otn/OTNtutorial.pdf.

Jan A. Audestad. Technologies and systems for access and transport
networks. Artech House, 2008.

Kevin Thompson K. Claffy, Greg Miller. The nature of the beast: Recent
traffic measurements from an internet backbone, 1998. URL: http:
//www.caida.org/publications/papers/1998/Inet98/Inet98.pdf.

Cisco Systems. Cisco visual networking index. White paper, June 2010.
URL: http://www.cisco.com/en/US/solutions/collateral/ns341/
ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf.

Manohar Naidu Ellanti Lakshmi G. Raman et al. Next Generation
Transport Networks - Data, Management and Control Planes. Springer,

2005.

81

https://www.itu.int/ITU-T/2005-2008/com15/otn/OTNtutorial.pdf
https://www.itu.int/ITU-T/2005-2008/com15/otn/OTNtutorial.pdf
http://www.caida.org/publications/papers/1998/Inet98/Inet98.pdf
http://www.caida.org/publications/papers/1998/Inet98/Inet98.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf

[10]

[11]

[12]

[13]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Filip Idzikowski. Power consumption of network elements in ip over wdm
networks. Technical report, Berlin Tecnical University, Telecommunica-
tion Networks Group, July 2009. URL: http://www.tkn.tu-berlin.
de/publications/papers/powerNumbers final.pdf.

About itu. URL: http://www.itu.int/net/about/.

Per Harald Knudsen-Baas. Otn switching. Technical report, NTNU,
Department of Telematics, December 2010.

International Telecommunication Union. Optical fibres, cables and sys-
tems. ITU-T Manual, 2009. URL: http://www.itu.int/dms_pub/
itu-t/opb/hdb/T-HDB-0UT.10-2009-1-PDF-E. pdf.

K. N. Sivarjan R. Ramaswami. Optical Networks - a practical perspec-
tive. Academic Press, 2002.

Steve Gorshe. A tutorial on itu-t g.709 optical transport networks (otn).
White paper, PMC-Sierra, 2010. URL: http://www.elettronicanews.
it/01NET/Photo_Library/775/PMC_OTN_pdf .pdf.

Osamu Ishida Takuya Ohara. Standardization activities for the optical
transport network. NTT Technical Review, Vol. 7 No. 3, 2009.

TPack. Odu0 and oduflex - a future-proof solution for otn client map-
ping. White paper, 2010.

Andreas Schubert. G.709 - the optical transport network (otn). JDSU,
White paper, 2007.

Itu-t study group 15. URL: http://www.itu.int/ITU-T/
studygroups/com15/index . asp.

Martin Carroll et al. The operator’s view of otn evolution. Communi-
cations Magazine, IEEE, pages 46-52, 2010.

leee p802.3ba 40gb/s and 100gb/s ethernet task force. URL: http:
//www.ieee802.0rg/3/ba/.

M.J. O’Mahony, D. Simeonidou, D.K. Hunter, and A. Tzanakaki. The
application of optical packet switching in future communication net-
works. Communications Magazine, IEEE, 39(3):128-135, mar 2001.

82

http://www.tkn.tu-berlin.de/publications/papers/powerNumbers_final.pdf
http://www.tkn.tu-berlin.de/publications/papers/powerNumbers_final.pdf
http://www.itu.int/net/about/
http://www.itu.int/dms_pub/itu-t/opb/hdb/T-HDB-OUT.10-2009-1-PDF-E.pdf
http://www.itu.int/dms_pub/itu-t/opb/hdb/T-HDB-OUT.10-2009-1-PDF-E.pdf
http://www.elettronicanews.it/01NET/Photo_Library/775/PMC_OTN_pdf.pdf
http://www.elettronicanews.it/01NET/Photo_Library/775/PMC_OTN_pdf.pdf
http://www.itu.int/ITU-T/studygroups/com15/index.asp
http://www.itu.int/ITU-T/studygroups/com15/index.asp
http://www.ieee802.org/3/ba/
http://www.ieee802.org/3/ba/

23]

[24]

[25]

[26]

Matthias Berger et al. Optical transport networks (otn) - techincal
trends and assessment. ITG, 2006. URL: http://www.eusar.de/
NR/rdonlyres/6633CE02-7567-4143-A62A-99FC2E083C03/14356/
ITGPosipapOTN1.pdf.

Bjarne E. Helvik Peder J. Emstad, Poul E. Heegard and Laurent Paque-
reau. TTM4110 Compendium, Dependability and performance in infor-

mation and communication systems - Fundamentals. Tapir akademisk
forlag, 2008.

H. Overby N. Stol. Effects of bursty traffic in service differentiated
optical packet switched networks. OSA Optics Express 12(3), p. 410-
415, 2004.

International Telecommunication Union. Itu-t g.872, architecture of op-
tical transport networks. Recommendation, 2001.

83

http://www.eusar.de/NR/rdonlyres/6633CE02-7567-4143-A62A-99FC2E083C03/14356/ITGPosipapOTN1.pdf
http://www.eusar.de/NR/rdonlyres/6633CE02-7567-4143-A62A-99FC2E083C03/14356/ITGPosipapOTN1.pdf
http://www.eusar.de/NR/rdonlyres/6633CE02-7567-4143-A62A-99FC2E083C03/14356/ITGPosipapOTN1.pdf

84

Appendix A

Simulator source code

A.1 IP simulator

A.1.1 N.E.D. interarrival distribution

BEGIN

"

external class demos="C:\cim\demos\demos new.atr";
demos begin

INTEGER bufferSize; comment Bytes;

INTEGER randomNumber;

INTEGER hopCount ;

INTEGER, i ;

INTEGER linkCapacity ;

INTEGER packetSum;

INTEGER simSeed ,simTime, transient_simtime ,numReps;
REAL packetLength;

REAL averageLoad ,packetsPerTimeUnit ,averageBitrate;
LONG REAL averagePacketLength

REF(count) generatedPackets ,droppedPackets ,receivedPackets;
REF(rdist) packetLengthDist,interarrivalDist;
REF(tally) packetDelay;
REF(idist) r;

REF(waitq) r_out_ql,r out_q2;

REF(infile) packetDist_infile;

COMMENT sk sk sk sk sk ok sk sk ok sk ok ok skok sk ok ok okokokok ok G LAS S @8 5 sk ok ok sk sk sk sk ok sk sk ok ok ok ok ok ok ok ok ok ok ok

COMMENT s sk % 5k % % ok % ok ok % ok % %k PACKET GENERATOR, CLASS 5 % s sk sk % s sk sk % sk ok ok % % 5k ok

entity CLASS packetGenerator;
Begin

INTEGER i ;
i:=1;

85

loop:

comment sk %%k k% kGENERATING PACKETS DESTINED TO R sk sk sk sk sk sk sk ok sk ok sk ok
new packet(edit ("packet",i),1).schedule (0.0);

IF time > transient_ simtime THEN BEGIN
generatedPackets.update (1);

packetSum:=packetSum+1;

END;
hold (interarrivalDist .sample);
i:=i41;
repeat;

End;

COMMENT sk sk sk sk sk sk sk ok sk sk ok sk ok ook ok sk ok ok ok k PACKET CLASS s ok st sk sk sk sk sk sk skosk ok sk koo ook sk ok ok ok k)
entity CLASS packet (hopCount);

INTEGER hopCount;
Begin

REAL timestamp;
REAL packetLength ,maxSize;

timestamp:=time;

COMMENT sk s s 5k sk 5k ok ok sk ok ok ok ok ok ok ok ok kK PACKIET STZIIN G s ok sk ok sk sk ok 3 ok sk ok ok ok ok ok ok ok ok % %ok ok
maxSize := 1500; COMMENT max ip payload size;
packetLength:= packetLengthDist.sample;

IF packetLength>0 THEN

BEGIN
IF packetLength > maxSize THEN
BEGIN
packetLength := packetLength — maxSize;
END;
END;

COMMENT' skososkoksosksoskkxokkkkxend of packet ST1zing sk sokoskok sk skok sokosk ok kok k)

COMMENT s sk % % %k ok k k ok ok * PUTTING PACKET IN - QUEUE s sk s % sk sk s % 5% sk 3 % sk ok sk ok ok %

IF (hopCount=1) THEN BEGIN

86

IF r_out_ql.lengthxpacketLengthDist.avg < bufferSize THEN BEGIN
r_out_ql.wait;
comment outtext ("Putting packet in ql");
comment outimage;

END ELSE BEGIN
IF time > transient simtime THEN BEGIN
droppedPackets.update (1);

comment outtext ("Dropping packet from ql");
comment outimage;

END;
IF (hopCount=2) THEN BEGIN
IF r_out_q2.lengthxpacketLengthDist.avg < bufferSize THEN BEGIN
r_out_q2.wait;
comment outtext ("Putting packet in q2");
comment outimage;
END ELSE BEGIN
IF time > transient_simtime THEN BEGIN
droppedPackets.update (1);

comment outtext ("Dropping packet from q2");
comment outimage;

End;

comment sk sksokskskokokskokkokkkokkkk [P ROUTER, CLASS st sk sk sk sk sk st sk sk sk sk ok sk sk ok skok ok ok 0%
entity CLASS ip_router (outQueue);

ref (waitq) outQueue;

Begin

ref (packet) packet_;

LOOP:

packet_ :—outQueue. coopt;

IF time>0 THEN BEGIN

hold (((packet .packetLength)x8)/(linkCapacity));

87

comment Transmission delay;
comment outtext ("Holding for: ");

comment outfix (((packet_ .packetLength)*8)/(linkCapacity),5,10);
comment outimage;

packet__ . hopCount:=packet__.hopCount+1;

comment %% %% x*CHECKING DESTINATION NODE —
—— 0,7 PROBABILITY OF TRANSIT IN ROUTER 2.
IF AT ROUTER 3 — NO TRANSIT s s s % % % % ;
IF packet_ .hopCount=2 THEN BEGIN
randomNumber:=r . sample;
IF randomNumber>3 THEN BEGIN

packet_ .schedule (now);

comment outtext (" Transiting packet to R3");
comment outimage;

END ELSE BEGIN
IF time > transient_simtime THEN BEGIN
packetDelay . update (time —(packet_ .timestamp));

comment outtext ("Dropping packet at R2");
comment outimage;

receivedPackets.update (1);

IF packet__ .hopCount=3 THEN BEGIN
IF time > transient_ simtime THEN BEGIN
packetDelay . update (time —(packet__.timestamp));

comment outtext ("Dropping packet at R3");
comment outimage;

receivedPackets.update (1);
END;

END;

repeat;

End;

88

comment skksokksoksskokxokkxokkkkxEnd of entity classes sosskokorsskokoksskokkoxokskokxok;

COTIMIMIENT sk sk k3 3k ok sk sk ok 3 ok ok ok ok ok ok ok ok ok ok ok ok ok TILAUTTL sk ok ok sk ok ok ok ok ok ok ok ok ok ok 3 ok ok ok K ok ok ok ok ok ok ok ok ok
comment sk sk sk sk skosk sk ok ok sk skokokok ok skokoskokokokok A IS TTID U E 10T sk ok sk sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk koo ok ok ok
comment skxskkkkkkkkkk Getting packet size distribution soskskskskosksok sk skokkokk;
packetDist infile:—new infile ("packet dist.txt");

packetDist infile.open(Blanks(100));

inf:—packetDist__infile;

readdist (packetLengthDist ," packet_dist");

comment ok ok ok ok ok ok ok ok ok sk sk ok ok ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok ok ok sk ok sk ok skok skok kok kok kok kok kok kok k]

interarrivaldist:—new negexp("interArrival" ,43.6513);
comment This parameter is used to vary traffic load.

generatedPackets:—new Count (" Generated packets");
receivedPackets:—new Count (" Received packets");
droppedPackets:—new Count (" Dropped packets');
packetDelay:—new tally ("Delay");

r:—new randint ("Random number" 1,10);

COTNIMENT sk sk sk o sk sk ok sk okok R okok Rk ok ok ok VAT 1A D L@ S sk sk sk sk sk sk ok ok ok ok sk ok ok ok o ok ok ok K oK ok ok KoKk KKK

bufferSize:=12500;
linkCapacity:= 1000000;

simSeed :=30;

setseed (simSeed);

numReps:=10;

transient__simtime:=2000;

simTime:=10000;

comment skksokskskokxkkkokkkk Initializing variables sk sokoksk ok skok ok skokokoxok
packetsPerTimeUnit:=0;

packetSum:=0;

averagePacketLength:=0;

averageBitrate:=0;

averageLoad:=0;
averagelLoadR2:=0;

WHILE replication <= numReps DO
BEGIN

r_out_ql:—new waitq("r_out_ql");
new ip_router ("R2",r_out_ql).schedule (0.0);

r_out_q2:—new waitq("r_out_q2");
new ip_router ("R3",r_out_q2).schedule (0.0);

comment skxskskskskkskkkokskkkkok Creating packet generator sk sk sk sk k ko skosk %k

new packetGenerator (" PacketGenerator").schedule (0.0);

89

hold (simTime) ;

replicate;

END;

COTNINENT sk sk sk sk sk ok sk sk skok sk ok skoskok ok ok ok ok ok SE AT TS T TCS ok ok ok sk sk sk sk sk ok sk ok ok ok ok ok ok ok ok ok skok ok ok ok ok ok %
packetsPerTimeUnit:=(packetSum /(simTime—transient simtime))/numReps;
averagePacketLength:=packetLengthDist.avg;
averageBitrate:=(packetsPerTimeUnitxaveragePacketLength x8);

averageLoad:=(averageBitrate/linkCapacity); comment Erlang;

comment skokskoskokskokkskokskkokkokkkok Printing Statistics sosskoksksokokksokoskokskokoskokskokokokk

outtext ("Packets per time unit: ");
outimage;

outfix (packetsPerTimeUnit ,10,20);
outimage;

outtext ("Average packet length: ");
outimage;

outfix (averagePacketLength ,10,20);
outimage;

outtext ("Average bit rate: ");
outimage;

outfix (averageBitrate ,10,20);
outimage;

outtext (" bps");

outimage;

outtext ("Link capacity: ");

outimage;

outint (linkCapacity ,10);
outimage;

outtext (" bps'");
outimage;

outtext ("Average load: ");
outimage;
outfix (averageLoad ,10,20);
outimage;

end demos;
end;

A.1.2 Hyperexponential interarrival distribution

BEGIN

"

external class demos="C:\ cim\demos\demos_ new.atr";
demos begin

INTEGER bufferSize; comment Bytes;
INTEGER randomNumber ;

INTEGER hopCount;

INTEGER i ;

INTEGER linkCapacity;

90

INTEGER packetSum ;

INTEGER simSeed ,simTime, transient__simtime ,numReps;
REAL packetLength;

REAL averageLoad ,packetsPerTimeUnit ,averageBitrate;
LONG REAL averagePacketLength ;

REF(count) generatedPackets ,droppedPackets ,receivedPackets;
REF(rdist) packetLengthDist ,interArrivalDistl ,interArrivalDist2;
REF(tally) packetDelay;

REF(idist) r,random;

REF(waitq) r_out_ql,r_out_q2;

REF(infile) packetDist infile;

COMMENT sk sk s sk sk sk s ok sk ok stk okoskoskokoskokokoskok ok ok G LaS S @8 sk sk sk ok sk sk s ok sk sk ok ok sk sk ok ok ok ok Kk Ko ok ok
COMMENT sk st stk st sk ok sk ok sk ok ok ok ok ok k PACKET GENERATOR, CLASS s sk st sk sk sk sk sk sk ok sk sk sk ok ok ok ok

entity CLASS packetGenerator;
Begin

INTEGER sample ,i;
i:=1;

WHILE TRUE DO BEGIN
comment k%% k%% % x GENERATING PACKETS DESTINED TO R s s sk s s sk ok sk % 5k
sample:=random.sample;
IF sample=1 THEN BEGIN
hold (interArrivalDistl.sample);
END ELSE BEGIN

hold (interArrivalDist2.sample);

new packet(edit ("packet",i),1).schedule(0.0);
IF time > transient_simtime THEN BEGIN
generatedPackets.update (1);

packetSum:=packetSum+1;

END;
hold (interarrivalDist .sample);
ir=i+1;

END;

End;

COMMENT sk sk 5k 5k sk % ok ok ok ok ok ok ok ok ok ok ok K PACKIEET CLASS s 5% 5k ok s 5% 5k sk ok sk ok ok % ok ok ok ok ok % ok ok %
entity CLASS packet (hopCount);

91

INTEGER hopCount;
Begin

REAL timestamp ;
REAL packetLength ,maxSize;

timestamp:=time;

COMMENT sk s sk 5k sk 5k ok ok ok ok ok ok ok ok ok ok ok ok kPACKIET STZIIN G s ok sk ok sk ok sk sk o ok ok ok o ok ok ok o ok ok ok ok ok
maxSize := 1500; COMMENT max ip payload size;
packetLength:= packetLengthDist.sample;

IF packetLength>0 THEN

BEGIN
IF packetLength > maxSize THEN
BEGIN
packetLength := packetLength — maxSize;
END;
END;

COMMENT' sk skoksskksokkkokxend of packet STzing skoksoskokssokokksokoskokskokosk ok skokok)

COMMENT s s % % % %k ok ok %ok * PUTTING PACKET TN QUEUE s sk s % sk ok sk % sk ok 5 % sk ok sk % % ok %}

IF (hopCount=1) THEN BEGIN

IF r_out_ql.lengthxpacketLengthDist.avg < bufferSize THEN BEGIN
r_out_ql.wait;
comment outtext ("Putting packet in ql");
comment outimage;
END ELSE BEGIN
IF time > transient_simtime THEN BEGIN
droppedPackets.update (1);
comment outtext ("Dropping packet from ql");
comment outimage;
END;
END;
END;
IF (hopCount=2) THEN BEGIN
IF r_out_qg2.length*packetLengthDist.avg < bufferSize THEN BEGIN

r_out_q2.wait;
comment outtext ("Putting packet in q2");

92

comment outimage;

END ELSE BEGIN

IF time > transient_simtime THEN BEGIN
droppedPackets.update (1);

comment outtext ("Dropping packet from q2");
comment outimage;

End;

comment sk soskokskok ok skokskokokskokokskok ok [P ROUTER, CLASS sk sk sk sk sk sk sk ok sk sk sk ok sk sk sk ok sk sk ok ok skosk o sk ok
entity CLASS ip_router (outQueue);

ref (waitq) outQueue;
Begin

ref (packet) packet_;
LOOP:

packet__:—outQueue. coopt;
IF time>0 THEN BEGIN

hold (((packet_ .packetLength)*8)/(linkCapacity));
comment Transmission delay;

comment outtext ("Holding for: ");

comment outfix (((packet_ .packetLength)=*8)/(linkCapacity),5,10);
comment outimage;

packet_ .hopCount:=packet_ .hopCount+1;
comment s #%%x+*CHECKING DESTINATION NODE —
— 0,7 PROBABILITY OF TRANSIT IN ROUTER 2. IF AT ROUTER 3 — NO TRANSIT # s # s # % %
IF packet__ .hopCount=2 THEN BEGIN
randomNumber:=r . sample;
IF randomNumber>3 THEN BEGIN
packet__ .schedule (now);

comment outtext (" Transiting packet to R3");
comment outimage;

END ELSE BEGIN

IF time > transient_ simtime THEN BEGIN

93

packetDelay . update (time —(packet__ .timestamp));

comment outtext ("Dropping packet at R2");
comment outimage;

receivedPackets.update (1);

IF packet_ .hopCount=3 THEN BEGIN
IF time > transient simtime THEN BEGIN
packetDelay . update (time —(packet_ .timestamp));

comment outtext ("Dropping packet at R3");
comment outimage;

receivedPackets.update(1);
END;

;
END;
repeat ;

End;

comment s kskkkskkokkkrkkkkkkxkkEnd of entity classes ksskoskonskkkskonskokkkkkx;
COTIMIEIIE 3 % 5 % ok ok ok ok % 3 ok % K ok ok K ok ok K ok ok K ok ok TILATTL ok % 36 ok ok ok ok ok ok ok ok % ok ok K koK ok kK K oK k%
COMIMENT sk sk sk sk ok sk ok sk sk okskoskokskokoksk ok ook ok A IS TTTID UG T O NS sk ok sk sk sk sk sk sk ok sk sk sk ok sk sk ook skok ok ok ok ok
comment skkxkkkkxkxkxk Getting packet size distribution sk sk sokskkxskok;
packetDist__infile:—new infile ("packet_dist.txt");
packetDist_infile.open(Blanks(100));

inf:—packetDist__infile;

readdist (packetLengthDist ," packet dist");

comment Kok 3k ok okook skook skook skosk kok skosk sk ok sk sk ok ok ok sk sk sk ok sk ok sk sk sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok skok ko ko kok kok k]

interArrivalDistl:—new negexp ("interArrival" ,1757.295);
interArrivalDist2:—new negexp ("interArrival" ,35.1461);

generatedPackets:—new Count (" Generated packets");
receivedPackets:—new Count (" Received packets");
droppedPackets:—new Count (" Dropped packets");
packetDelay:—new tally ("Delay");

random:—new randint ("Random",1,5);
r:—new randint ('Random number",1,10);

COTNINENT 3 % % sk sk sk 3k ok ok ok sk ok sk ok sk okok ok ok ok ok ok VAT 1A D1 @S sk sk sk ok ok ok sk sk sk sk ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok o ok ok %

bufferSize:=12500;

94

linkCapacity:= 1000000;
simSeed :=30;

setseed (simSeed);
numReps:=10;
transient__simtime:=2000;
simTime:=10000;

comment skksokkskokxkksokkkk [Initializing variables sosskoksosokoksksokokokskok kokskok koxk g
packetsPerTimeUnit:=0;
packetSum:=0;
averagePacketLength:=0;
averageBitrate:=0;

averagelLoad:=0;
averageLoadR2:=0;

WHILE replication <= numReps DO
BEGIN

r_out_ql:—new waitq("r_out_ql");
new ip_router ("R2",r_out_ql).schedule (0.0);

r_out_q2:—new waitq("r_out_q2");
new ip_router ("R3",r_out_q2).schedule(0.0);

comment skcksockkskoksskoksokkkokx Creating packet generator sk soksk sk sokosk kxkok;
new packetGenerator ("PacketGenerator").schedule (0.0);

hold (simTime);

replicate;

END;

COTNIMENT sk 3 sk ok sk sk sk sk sk sk okok koo ok ok ok ok ok S 6 AT TS 6T CS sk sk sk sk sk ok sk ok ok ok ok ok o ok ok ok K oK ok kK Kok K%K

packetsPerTimeUnit:=(packetSum /(simTime—transient_simtime))/numReps;
averagePacketLength:=packetLengthDist.avg;
averageBitrate:=(packetsPerTimeUnit*averagePacketLength*8);
averageLoad:=(averageBitrate/linkCapacity); comment Erlang;

comment skksokkskokskskkskokkkokxk Printing statistics sokssokssokoksksokkokskokkokskok k)

outtext ("Packets per time unit: ");
outimage;

outfix (packetsPerTimeUnit ,10,20);
outimage;

outtext ("Average packet length: ");
outimage;

outfix (averagePacketLength ,10,20);
outimage;

outtext ("Average bit rate: ");

outimage;
outfix (averageBitrate ,10,20);

95

outimage;
outtext (" bps'");
outimage;

outtext ("Link capacity: ");
outimage;

outint (linkCapacity ,10);
outimage;

outtext (" bps'");

outimage;

outtext ("Average load: ");
outimage;
outfix (averageLoad ,10,20);
outimage;

end demos;
end ;

96

A.2 OTN simulator

A.2.1 N.E.D. interarrival distribution

BEGIN

"

external class demos="C:\cim\demos\demos new.atr";
demos begin

INTEGER bufferSize; comment Bytes;

INTEGER randomNumber ;

INTEGER i ;

INTEGER simSeed ,simTime, transient_simtime ,numReps;
INTEGER packetSum ;

INTEGER linkCapS1R2,linkCapS1R3;

REAL averagePacketLength ,averageLoadS1R2 ,averageLoadS1R3,
packetsPerTimeUnit ,averageBitrate;

REF(count) generatedPackets ,droppedPackets ,receivedPackets;
REF(rdist) packetLengthDist ,interarrivalDist;

REF(tally) packetDelay;

REF(idist) r;

REF(waitq) out_q to_r2,out_q_to_r3;

REF(infile) packetDist_infile;
COMMENT sk sk sk sk sk sk ok sk sk ok sk ok ok skok sk ok ok okokokok ok G LAS S @8 5k ok ok ok sk sk sk ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok
COMMENT s sk 5k % 5k % % ok % ok ok % ok % % k PACKET GENERATOR, CLASS 5 % s ok sk % s sk sk % % ok ok % % 5k ok

entity CLASS packetGenerator;
Begin

INTEGER i ;
i:=1;

loop:
randomNumber:=r . sample;
IF (randomNumber > 3) THEN BEGIN
new packet(edit ("packet",i),3).schedule (0.0);
END ELSE BEGIN
new packet(edit ("packet",i),2).schedule(0.0);
END;
IF time > transient_simtime THEN BEGIN
generatedPackets.update (1);

packetSum:=packetSum+1;

hold (interarrivaldist .sample);

97

ir=i41;
repeat ;

End;

COMMENT s 5k 5k sk 5k % 3k sk ok ok ok ok ok ok ok ok ok ok kPACKIET CLASS 5k s sk 5k 5 5k 3 sk 3 sk sk % ok ok ok ok ok ok % ok %ok ok |
entity CLASS packet(destinationNode);

INTEGER. destinationNode;

Begin

REAL timestamp ;
LONG REAL packetLength ,maxSize;

timestamp:=time;

COMMENT sk s sk 5k sk 5k ok ok ok ok ok ok ok ok ok ok kK PACKIET STZIIN G sk sk ok sk ok sk ok 3 ok ok ok ok ok ok ok ok ok ok %ok
maxSize := 1500; COMMENT max ip payload size;
packetLength:= packetLengthDist.sample;

IF packetLength >0 THEN

BEGIN
IF packetLength > maxSize THEN
BEGIN
packetLength := packetLength — maxSize;
END;
END;

COMMENT' stk ko kkxkokxkkxxkkend of packet S1zIng sk skon ko skor s ok ok okok ok %0k
COMMENT s sk % % k% ok ok ok ok ok ok %k PUTTING PACKET IN QUEUE % 5 sk s sk sk sk s % sk sk % % ok ok % % 5k
IF destinationNode=2 THEN BEGIN
IF out_q_to_r2.lengthxpacketLengthDist.avg < bufferSize THEN BEGIN

out_q_to_r2.wait;

comment outtext ("Putting packet in out_q_ to_r2");

comment outimage;
END ELSE BEGIN

IF time > transient_simtime THEN BEGIN

droppedPackets.update (1);

comment outtext ("Dropping packet from out g to r2");
comment outimage;

98

END;

)

END;

IF destinationNode=3 THEN BEGIN

IF out_q_to_r3.lengthxpacketLengthDist.avg < bufferSize
THEN BEGIN

out_q_to_r3.wait;
comment outtext ("Putting packet in out_q_ to_r3");
comment outimage;

END ELSE BEGIN

IF time > transient simtime THEN BEGIN
droppedPackets.update (1);

comment outtext ("Dropping packet from out_q_to_r3");
comment outimage;

End;

comment skksxokkskokkokokkokokk [P ROUTER, CLASS stk ok sk sk sk s ok sk koo ok sk ok

entity CLASS ip_router (outQ);

ref (waitq) outQ;

Begin

ref (packet) packet_;

LOOP:

packet_ :—outQ.coopt;

IF packet_ .destinationNode=2 THEN BEGIN
hold ((packet_ .packetLength=*8)/linkCapS1R2);
comment outtext ("Holding for S1R2: ");
comment outfix (((packet_ .packetLength*8)/linkCapS1R2),5,10);
comment outimage;

END;

IF packet_ .destinationNode=3 THEN BEGIN;
hold ((packet_ .packetLength=*8)/linkCapS1R3);
comment outtext ("Holding for S1IR3: ");

comment outfix (((packet_ .packetLength*8)/linkCapS1R3),5,10);
comment outimage;

99

END;

IF time > transient_simtime THEN BEGIN
packetDelay . update (time —(packet__.timestamp));
receivedPackets.update (1);

END;

repeat ;

End;

comment skokskoskokskokoksokkkokskokokxokkk nd of entity classes sokoskoksoskokoksskokokokoskok ko oskok)

COMMIENt sk % sk sk 5k sk ok ok ok ok ok ok ok ok ok ok ok ok kK Kk Rk ok TILATTL sk sk ok ok sk sk ok ok ok sk sk sk ok ok sk sk ok ok ok sk sk sk ok ok ok skok sk ok ok

COTNIMENt sk sk sk ks sk sk skt ok sk sk skokok ok ok ok LTS TTID UG T 0TS shookok s sk skook s sk skt s sk ok sk ook ok sk skok ok ok
comment skkkkkkkkkkx Getting packet size distributiomn ssksksskssorsokskskkskskx;
packetDist__infile:—new infile ("packet_dist.txt");
packetDist_infile.open(Blanks(100));

inf:—packetDist__infile;

readdist (packetLengthDist ," packet dist");

interarrivaldist:—new negexp('"interArrival",43.6513);
comment Controls the average bit rate;

generatedPackets:—new Count (" Generated packets");
receivedPackets:—new Count (" Received packets");
droppedPackets:—new Count (" Dropped packets");
packetDelay:—new tally ("Delay");

r:—new randint ("Random number",1,10);

comment sxxkkkkkkkkkkkkkkkkk%x%x variables 3k ok ok ok ok ok ok ok ok ok ok ok ook ok ok okook kok kok kok kok kok kok

linkCapS1R2:=300000;
linkCapS1R3:=700000;

bufferSize:=12500;

simSeed :=30;

setseed (simSeed);

numReps:=10;

transient__simtime:=2000;

simTime:=10000;

comment skoksokksokkskokskokkskokk Initializing variables sokoskoksokoskosk sokok o sokoskok ok ok ok skok)
packetsPerTimeUnit:=0;

packetSum:=0;
averagePacketLength:=0;

100

averageBitrate:=0;
averageLoadS1R2:=0;
averagelLLoadS1R3:=0;

WHILE replication <= numReps DO
BEGIN

out_q_ to_r2:—new waitq("out_q to_r2");
new ip_router ("R2",out_q_to_r2).schedule (0.0);

out_q_to_r3:—new waitq("out_q_to_r3");
new ip_router ("R3",out_q_to_r3).schedule (0.0);

new packetGenerator ("PacketGenerator").schedule (0.0);
hold (simTime);

replicate;

END;

packetsPerTimeUnit:=(packetSum /(simTime—transient_simtime))/numReps;
averagePacketLength:=packetLengthDist.avg;
averageBitrate:=(packetsPerTimeUnitxaveragePacketLength*8);
averageLoadS1R2:=((averageBitrate*0.3)/linkCapS1R2);
averageLoadS1R3:=((averageBitrate*0.7)/linkCapS1R3);

comment skoksokokskokskskokskokkskokkkok Printing St atistics soskoskoks ok skok ko skok sk okoskosk ok kok

outtext ("Packets per time unit to R2/R3: ");
outimage;

outfix (packetsPerTimeUnit ,10,20);

outimage;

outtext ("Average packet length to R2/R3: ");
outimage;

outfix (averagePacketLength ,10,20);

outimage;

outtext ("Average bit rate to R2/R3: ");

outimage;

outfix (averageBitrate ,10,20);
outimage;

outtext (" bps');

outimage;

outtext ("Average load to R2: ");
outimage;

outfix (averageLoadS1R2,10,20);
outimage;

outtext ("Average load to R3: ");
outimage;

outfix (averageLoadS1R3,10,20);
outimage;

end demos;
end ;

101

A.2.2 Hyperexponential interarrival distribution

BEGIN

external class demos="C:\cim\demos\demos new.atr";

demos begin

INTEGER bufferSize; comment Bytes;

INTEGER randomNumber ;

INTEGER i ;

INTEGER simSeed ,simTime, transient__simtime ,numReps;

INTEGER. packetSum ;

INTEGER linkCapS1R2,linkCapS1R3;

REAL averagePacketLength ,averagelLLoadS1R2 ,averagelLoadS1R3,
packetsPerTimeUnit ,averageBitrate;

REF(count) generatedPackets ,droppedPackets ,receivedPackets;
REF(rdist) packetLengthDist ,interArrivalDistl ,interArrivalDist2;
REF(tally) packetDelay;

REF(idist) r,random;

REF(waitq) out_q to_r2,out_q to_r3;

REF(infile) packetDist_infile;

COMMENT sk s st sk sk 5k ok ok ok okok sk ook ok ok okokokok ok ok G LA SS @S 5 % sk ok o ok ok ok % ok ok o ok ok ok o oK oK ok K oK ok ok KoK

COMMENT sk s sk % 5% % ok o ok ok % ok ok x kK PACKET GENERATOR, CLASS sk % sk sk sk s % sk sk o ok ok ok k% %k

entity CLASS packetGenerator;
Begin

INTEGER i ,sample;
i:=1;

WHILE TRUE DO
BEGIN

sample:=random .sample;
IF sample=1 THEN BEGIN
hold(interArrivalDistl.sample);
END ELSE BEGIN
hold(interArrivalDist2 .sample);
END;
randomNumber:=r .sample;
IF (randomNumber > 3) THEN BEGIN
new packet(edit ("packet",i),3).schedule (0.0);
END ELSE BEGIN

new packet(edit ("packet",i),2).schedule (0.0);

102

IF time > transient_simtime THEN BEGIN
generatedPackets.update (1);
packetSum:=packetSum+1;

END;

i=i+1;

repeat;

End;

COMMENT sk sk st sk ok sk s ok sk ok ook ok ook ok ok ok ook k PACKIET CLASS st sk sk sk ok sk sk sk sk sk ok sk sk ok ok skok ok ok skok ok
entity CLASS packet (destinationNode);

INTEGER destinationNode;

Begin

REAL timestamp ;
LONG REAL packetLength ,maxSize;

timestamp:=time;

COMMENT sk sk st sk sk sk ok ok ok ook ok ok ko ok ok ok k PACKIETT STZIIN G sk sk sk sk sk sk sk sk ok sk sk sk ok sk sk s ok skok ok sk ok %
maxSize := 1500; COMMENT max ip payload size;
packetLength:= packetLengthDist.sample;

IF packetLength>0 THEN

BEGIN
IF packetLength > maxSize THEN
BEGIN
packetLength := packetLength — maxSize;
END;
END;

COMMENT' sskskoskskoskskskskokskkskkokkkkend Of packet SI1z1m g sk skok sk skosk ok sk ok sk skosk ook
COMMENT' sk sk sk sk ok sk ok sk sk ok sk ok ok sk ok ok PUTTING PACKET IN - QUEUE st sk sk sk sk sk sk ok sk sk sk ok sk ko ok sk ok ok
IF destinationNode=2 THEN BEGIN
IF out_q_to_r2.lengthxpacketLengthDist.avg < bufferSize THEN BEGIN
out_q_to_r2.wait;
comment outtext ("Putting packet in out_q_ to_r2");

comment outimage;

END ELSE BEGIN

103

IF time > transient simtime THEN BEGIN
droppedPackets.update (1);

comment outtext ("Dropping packet from out_q_ to_r2");
comment outimage;

IF destinationNode=3 THEN BEGIN
IF out_q_to_r3.lengthxpacketLengthDist.avg < bufferSize THEN BEGIN
out_q_to_r3.wait;
comment outtext ("Putting packet in out_q to_r3");
comment outimage;
END ELSE BEGIN
IF time > transient_ simtime THEN BEGIN
droppedPackets.update (1);
comment outtext ("Dropping packet from out_q_to_r3");

comment outimage;

END;

End;

comment sksxkokskokkskokxokkk [P ROUTER CLASS s sk sk ok sk sk sk ok sk skosk ok sk ok %

entity CLASS ip_router (outQ);

ref (waitq) outQ;

Begin

ref (packet) packet_;

LOOP:

packet_ :—outQ.coopt;

IF packet_ .destinationNode=2 THEN BEGIN
hold ((packet_ . packetLength*8)/linkCapS1R2);
comment outtext ("Holding for S1R2: ");
comment outfix (((packet_ .packetLength=*8)/linkCapS1R2),5,10);
comment outimage;

ENDj;

IF packet_ .destinationNode=3 THEN BEGIN;

104

hold ((packet__ .packetLength=*8)/linkCapS1R3);
comment outtext ("Holding for S1R3: ");
comment outfix (((packet__.packetLength+8)/linkCapS1R3),5,10);
comment outimage;
END;
IF time > transient simtime THEN BEGIN
packetDelay . update (time —(packet__.timestamp));
receivedPackets.update (1);
END;
repeat ;

End;

comment skksokksokkskoksokkskokkskokxkEnd of entity classes sokoksksokoskoksokoskokskokosk ok kokok)

COTIIIMIEIIT 3% sk 3 sk ok 3 sk ok % 5k 3k ok ok ok ok ok o ok ok K ok ok K ok ok ok TTLATTL ok ok % 5k ok 3 ok ok ok K ok ok 3 oK oK ok o oK oK ok oK ok kK Kok K%K

COTNINENT 3 % sk sk ok sk sk sk sk ok sk ko skosk ok ok ok ok okok ok A IS TTID U T 0TS skosk sk sk sk sk sk ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok
comment skksckkkkkkxkx Getting packet size distribution sskskskssokssskokskkskoksk;
packetDist__infile:—new infile (" packet__dist.txt");
packetDist_infile.open(Blanks (100));

inf:—packetDist__infile;

readdist (packetLengthDist ," packet__dist");

interArrivalDist1l:—NEW negexp ("interArrival",1757.295);
interArrivalDist2:—NEW negexp ("interArrival "' ,35.1461);

generatedPackets:—new Count (" Generated packets");
receivedPackets:—new Count ("Received packets");
droppedPackets:—new Count (" Dropped packets");
packetDelay:—new tally ("Delay");

random:—NEW randint ("Random" ,1,5);
r:—new randint ("Random number" ,1,10);

COTIIMENT sk 3 sk ok 3 sk sk ok sk okok sk okok Rk ok ok ok VAT 1A D L@ S sk sk sk s sk sk ok ok ok o ok ok ok o ok ok ok K ok ok kK Kok k%K

linkCapS1R2:=300000;
linkCapS1R3:=700000;

bufferSize:=12500;
simSeed :=30;
setseed (simSeed);
numReps:=10;

transient__simtime:=2000;
simTime:=10000;

105

comment skkskkksxockkskkxkkskckk Initializing variables sokskorsokosksk ok sokoskokskok ko skok)

packetsPerTimeUnit:=0;
packetSum:=0;
averagePacketLength:=0;
packetLengthCounter:=0;
averageBitrate:=0;
averageLoadS1R2:=0;
averageLoadS1R3:=0;

WHILE replication <= numReps DO
BEGIN

out_q_to_r2:—new waitq("out_q_to_r2");
new ip_router ("R2",out_q to_r2).schedule (0.0);

out_q_ to_r3:—new waitq("out_q_ to_r3");
new ip_router ("R3",out_q_ to_r3).schedule (0.0);

new packetGenerator ("PacketGenerator").schedule (0.0);
hold (simTime);
replicate;

END;
packetsPerTimeUnit:=(packetSum /(simTime—transient__simtime))/numReps;
averagePacketLength:=packetLengthDist.avg;
averageBitrate:=(packetsPerTimeUnit+xaveragePacketLength x8);
averageLoadS1R2:=((averageBitrate=*0.3)/linkCapS1R2);
averageLoadS1R3:=((averageBitrate*0.7)/linkCapS1R3);

comment skskoskokskokksokskokokskokkkk Printing statistics soswsoksosskorskorskokskosroskokokskokokoxok

outtext ("Packets per time unit to R2/R3: ");
outimage;

outfix (packetsPerTimeUnit ,10,20);

outimage;

outtext (" Average packet length to R2/R3: ");
outimage;

outfix (averagePacketLength ,10,20);

outimage;

outtext ("Average bit rate to R2/R3: ");

outimage;

outfix (averageBitrate ,10,20);
outimage;

outtext (" bps'");

outimage;

outtext ("Average load to R2: ");
outimage;
outfix (averageLoadS1R2,10,20);

outimage;

outtext ("Average load to R3: ");
outimage;

outfix (averageLoadS1R3,10,20);
outimage;

106

end demos;
end ;

A.3 Reconfigurable OTN simulator

A.3.1 N.E.D. interarrival distribution

BEGIN

"

external class demos="C:\cim\demos\demos_new.atr";
demos begin

INTEGER bufferSize; comment Bytes;

INTEGER randomNumber;

INTEGER i ;

INTEGER simSeed ,simTime, transient_simtime ,numReps;
INTEGER packetSum ;

INTEGER linkCapS1R2 ,1linkCapS1R3;

REAL averagePacketLength ,averagelLoadS1R2 ,averageLoadS1R3,
packetsPerTimeUnit ,averageBitrate;

REF(count) generatedPackets ,droppedPackets ,receivedPackets;
REF(rdist) packetLengthDist,interarrivalDist;

REF(tally) packetDelay;

REF(idist) r;

REF(waitq) out_q to_r2,out_q_to_r3;

REF(infile) packetDist infile;

COMMENT sk sk sk sk 5 sk sk ok ok stk ok ok ok ok okokokokok G LASS @S sk ok sk ok sk ok ok % ok ok o ok ok ok K ok ok koK oK ok K K oK ok
COMMENT sk 5% sk % 5k % ok ok %ok ok ok ok ok k PACKET GENERATOR, CLASS s % s sk sk % 5% sk sk % sk ok ok % 5k

entity CLASS packetGenerator;
Begin

INTEGER i ;

ir=1;
loop:
randomNumber:=r . sample;
IF (randomNumber > 3) THEN BEGIN
new packet(edit ("packet",i),3).schedule(0.0);
END ELSE BEGIN
new packet(edit ("packet",i),2).schedule(0.0);
END;
IF time > transient simtime THEN BEGIN
generatedPackets.update (1);

packetSum:=packetSum-+1;

107

hold(interarrivaldist .sample);
ir=i41;
repeat ;

End;

COMMENT sk s sk sk sk sk ok ok ok ok ok ok ok sk ok ok ok ok ok k PACIKIET CLASS s ok sk sk s ok sk sk ok 5k sk ok ok ok ok o koK ok koK ok %)
entity CLASS packet(destinationNode);

INTEGER. destinationNode;

Begin

REAL timestamp;
LONG REAL packetLength ,maxSize;

timestamp:=time;

COMMENT sk s st sk 5% 5k ok ok ok ok ok ok ok ok ok ok ok k PACKIET STZIIN G s ok sk sk sk ok sk sk o ok ok ok o ok ok ok o ok ok ok ok ok
maxSize := 1500; COMMENT max ip payload size;
packetLength:= packetLengthDist.sample;

IF packetLength>0 THEN

BEGIN
IF packetLength > maxSize THEN
BEGIN
packetLength := packetLength — maxSize;
END;
END;

COMMENT' skkostosk ok sk okskoksokkkokkkkend of packet S12z1n g sokoskokskokoskok skok sk ok skok sk ok skok sk ok skok |
COMMENT sk sk sk sk sk sk % sk sk sk 5 % sk sk ok sk PU NG PACKET IN QUEUE # s s % s # s s % s % s % s % % o % *
IF destinationNode=2 THEN BEGIN

IF out_q_to_r2.length+packetLengthDist.avg < bufferSize THEN BEGIN

out_q_to_r2.wait;

comment outtext ("Putting packet in out_q_to_r2");
comment outimage;

END ELSE BEGIN

IF time > transient_simtime THEN BEGIN

droppedPackets.update (1);

108

comment outtext ("Dropping packet from out_q to r2");
comment outimage;

IF destinationNode=3 THEN BEGIN

IF out_q_to_r3.lengthxpacketLengthDist.avg < bufferSize THEN BEGIN
out_q_to_r3.wait;
comment outtext ("Putting packet in out_q to_r3");
comment outimage;

END ELSE BEGIN
IF time > transient_simtime THEN BEGIN
droppedPackets.update (1);

comment outtext ("Dropping packet from out_q_to_r3");
comment outimage;

End;

comment sk skokkokkxokxkkx [P ROUTER CLASS sk sk sk ok sk sk sk % sk ok ok % % ok ok %

entity CLASS ip_router (outQ);

ref(waitq) outQ;

Begin

ref (packet) packet_;

LOOP:

packet__:—outQ.coopt;

IF packet_ .destinationNode=2 THEN BEGIN

IF time > transient_simtime THEN BEGIN

IF out_q_to_r2.length > out_q_to_r3.length THEN BEGIN
IF linkCapS1R3 > 500000 THEN BEGIN

linkCapS1R2:=1inkCapS1R241000;
linkCapS1R3:=1linkCapS1R3 —1000;

END;

109

END;
hold ((packet_ .packetLength=*8)/linkCapS1R2);
comment outtext ("Holding for S1R2: ");
comment outfix (((packet_.packetLength*8)/linkCapS1R2),5,10);
comment outimage;
END;
IF packet__ .destinationNode=3 THEN BEGIN
IF time > transient_simtime THEN BEGIN
IF out_q_to_r3.length > out_q_to_r2.length THEN BEGIN
IF linkCapS1R2 > 250000 THEN BEGIN

linkCapS1R3:=1inkCapS1R3+41000;
linkCapS1R2:=1linkCapS1R2 —1000;

hold ((packet__ . packetLength*8)/linkCapS1R3);
comment outtext (" Holding for SIR3: ");
comment outfix (((packet_.packetLength*8)/linkCapS1R3),5,10);

comment outimage;

END;

IF time > transient simtime THEN BEGIN
packetDelay . update (time —(packet__.timestamp));
receivedPackets.update (1);

END;

repeat ;

End;

comment skokskoskokskokokskokkkokskokokkokkk nd of entity classes sokoskoksoskokokosskokokokoskok ok okoskok)

comment **************************main******************************;

comment **********************distributions*************************;
comment skkkkkkkkkkkx Getting packet size distributiomn ssksksokssoksokskskkskskx;
packetDist infile:—new infile ("packet dist.txt");

packetDist__infile.open(Blanks(100));
inf:—packetDist__infile;

110

readdist (packetLengthDist ," packet dist");

interarrivaldist:—new negexp('interArrival",43.6513);
comment Controls the bit rate;

generatedPackets:—new Count (" Generated packets");
receivedPackets:—new Count("Received packets");
droppedPackets:—new Count (" Dropped packets');
packetDelay:—new tally ("Delay");

r:—new randint ("Random number" ,1,10);

COTNINENT 3 % sk sk ok 3k ok sk sk ok sk ok ok okosk ok ok ok ok okok ok VAT 1A D 1@ sk sk ok sk sk sk sk ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok

linkCapS1R2:=300000;
linkCapS1R3:=700000;

bufferSize:=12500;
simSeed :=30;
setseed (simSeed);

numReps:=10;
transient__simtime:=2000;
simTime:=10000;

comment skkskskskokkkskkkokkkkok Initializing variables sokskokskosk ks sk sk skoskoskokoskok skok ook

packetsPerTimeUnit:=0;
packetSum:=0;
averagePacketLength:=0;
packetLengthCounter:=0;
averageBitrate:=0;
averageLoadS1R2:=0;
averageLoadS1R3:=0;

WHILE replication <= numReps DO
BEGIN

out_q_ to_r2:—new waitq("out_q_ to_r2");
new ip_router ("R2" ,out_q_to_r2).schedule (0.0);

out_q_to_r3:—new waitq("out_q_to_r3");

"

new ip_router ("R3",out_q to_r3).schedule (0.0);
new packetGenerator ("PacketGenerator").schedule (0.0);
hold (simTime) ;

outtext ("S1IR2: ");
outimage;

outfix (linkCapS1R2,10,20);
outimage;

outtext ("S1IR3: ");
outimage;

outfix (linkCapS1R3,10,20);
outimage;

111

replicate;

END;
packetsPerTimeUnit:=(packetSum /(simTime—transient__simtime))/numReps;
averagePacketLength:=packetLengthDist.avg;
averageBitrate:=(packetsPerTimeUnit+*averagePacketLength x8);
averageLoadS1R2:=((averageBitrate=*0.3)/linkCapS1R2);
averageLoadS1R3:=((averageBitrate*0.7)/linkCapS1R3);

comment sokskoskokskokkskokskkokkokkkk Printing statistics soswsoksosskorskorskok skosrokokokskokokoxk

outtext ("Packets per time unit to R2/R3: ");
outimage;

outfix (packetsPerTimeUnit ,10,20);

outimage;

outtext (" Average packet length to R2/R3: ");
outimage;

outfix (averagePacketLength ,10,20);

outimage;

outtext ("Average bit rate to R2/R3: ");
outimage;

outfix (averageBitrate ,10,20);

outimage;

outtext (" bps");

outimage;

outtext ("Average load to R2: ");
outimage;

outfix (averageLoadS1R2,10,20);
outimage;

outtext ("Average load to R3: ");
outimage;

outfix (averageLoadS1R3,10,20);
outimage;

end demos;
end ;

A.3.2 Hyperexponential interarrival distribution

BEGIN

"

external class demos="C:\cim\demos\demos new.atr";
demos begin

INTEGER bufferSize; comment Bytes;

INTEGER randomNumber ;

INTEGER i ;

INTEGER simSeed ,simTime, transient__simtime ,numReps;
INTEGER packetSum ;

INTEGER linkCapS1R2,linkCapS1R3;

REAL averagePacketLength ,averagel.oadS1R2 ,averagelLoadS1R3,
packetsPerTimeUnit ,averageBitrate;

112

REF(count) generatedPackets ,droppedPackets ,receivedPackets;
REF(rdist) packetLengthDist ,interArrivalDistl ,interArrivalDist2;
REF(tally) packetDelay;

REF(idist) r,random;

REF(waitq) out_q_to_r2,out_q_to_r3;

REF(infile) packetDist_ infile;
COMMENT sk sk s sk sk sk s ok skok stk ok skoskokoskokokoskokokok G LAS S @8 sk sk sk ok sk sk ok sk sk ok ok sk sk ok ok sk ok koK ko ok ok
COMMENT' s s sk sk sk ok % sk ok ok % ok ok ok ok % * PACKET GENERATOR. CLASS s % % s s s s sk sk sk sk sk ok sk 5k % % ;

entity CLASS packetGenerator;
Begin

INTEGER i ,sample;
i:=1;

WHILE TRUE DO BEGIN
sample:=random . sample;
IF sample=1 THEN BEGIN
hold (interArrivalDistl.sample);
END ELSE BEGIN
hold (interArrivalDist2.sample);
END;
randomNumber:=r . sample;
IF (randomNumber > 3) THEN BEGIN
new packet(edit ("packet",i),3).schedule(0.0);
END ELSE BEGIN
new packet(edit ("packet",i),2).schedule(0.0);
END;
IF time > transient_simtime THEN BEGIN
generatedPackets.update (1);
packetSum:=packetSum+1;
END;
ir=i+1;
repeat ;

End;

COMMENT sk sk sk 5 5k ok ok ok okok ok ok ok ok ok ko ok K PACKIET CLASS sk sk sk sk sk sk ok sk sk sk ok ok ok ok ok ok koK ok ok %

entity CLASS packet(destinationNode);

113

INTEGER. destinationNode;
Begin

REAL timestamp ;
LONG REAL packetLength ,maxSize;

timestamp:=time;

COMMENT sk s sk 5k sk 5k ok ok ok ok ok ok ok ok ok ok ok ok kPACKIET STZIIN G s ok sk ok sk ok sk sk o ok ok ok o ok ok ok o ok ok ok ok ok
maxSize := 1500; COMMENT max ip payload size;
packetLength:= packetLengthDist.sample;

IF packetLength>0 THEN

BEGIN
IF packetLength > maxSize THEN
BEGIN
packetLength := packetLength — maxSize;
END;
END;

COMMENT' sk ks kkxkkxkkkxkkend of packet S1z1N g #kk kst sk sk skok sk ok ok ok ok ok ok ok %0k
COMMENT s s sk % %k % ok ok ok ok ok ok %k PUTTING PACKET IN QUEUE s s s sk s sk sk ok 5 % s ok % % sk ok % % %k
IF destinationNode=2 THEN BEGIN
IF out_q_to_r2.length+packetLengthDist.avg < bufferSize THEN BEGIN
out_q_to_r2.wait;
comment outtext ("Putting packet in out_q_to_r2");
comment outimage;
END ELSE BEGIN
IF time > transient_simtime THEN BEGIN
droppedPackets.update (1);

comment outtext ("Dropping packet from out_q to_r2");
comment outimage;

IF destinationNode=3 THEN BEGIN
IF out_q_to_r3.lengthxpacketLengthDist.avg < bufferSize THEN BEGIN
out_q_to_r3.wait;

comment outtext ("Putting packet in out_q to_r3");
comment outimage;

114

END ELSE BEGIN
IF time > transient_simtime THEN BEGIN
droppedPackets.update (1);

comment outtext ("Dropping packet from out_q_to_r3");
comment outimage;

End;

comment sk okkkokxokkkkx [P ROUTER CLASS sk sk sk ok sk ok sk % sk ok ok % % ok ok %

entity CLASS ip_router (outQ);

ref(waitq) outQ;

Begin

ref (packet) packet_;

LOOP:

packet_ :—outQ.coopt;

IF packet_ .destinationNode=2 THEN BEGIN

IF time > transient_simtime THEN BEGIN

IF out_q_to_r2.length > out_q_to_r3.length THEN BEGIN
IF linkCapS1R3 > 500000 THEN BEGIN

linkCapS1R2:=1inkCapS1R241000;
linkCapS1R3:=1linkCapS1R3 —1000;

END;
END;
END;
hold ((packet_ .packetLength*8)/linkCapS1R2);
comment outtext ("Holding for S1R2: ");
comment outfix (((packet_ .packetLength=*8)/linkCapS1R2),5,10);
comment outimage;
END;
IF packet_ .destinationNode=3 THEN BEGIN

IF time > transient_simtime THEN BEGIN

IF out_q_to_r3.length > out_q_ to_r2.length THEN BEGIN

115

IF linkCapS1R2 > 250000 THEN BEGIN

linkCapS1R3:=1inkCapS1R3+1000;
linkCapS1R2:=1linkCapS1R2 —1000;

hold ((packet_ .packetLength*8)/linkCapS1R3);
comment outtext (" Holding for SI1IR3: ");
comment outfix (((packet_ .packetLength*8)/linkCapS1R3),5,10);

comment outimage;

END;

IF time > transient_simtime THEN BEGIN
packetDelay . update (time —(packet__.timestamp));
receivedPackets.update (1);

END;

repeat ;
End;
comment sk koskokoskokskokskokskokokokokokokokk End of entity classes sokskok sk ko skokokoskok skokskok ok

comment **************************main******************************;

COMMENt % * % sk k sk x ok ok ok kokkkokk k% AISTTID U TOIIS ok ok ok ok sk ok ok o ok ok ok ok ok ok kR ok Kok K
comment skkkkkkkkkkkx Getting packet size distribution ssksksskskor sk skokskokox;
packetDist_infile:—new infile (" packet_dist.txt");

packetDist_ infile.open(Blanks (100));

inf:—packetDist__infile;

readdist (packetLengthDist ," packet__dist ");

interArrivalDistl:—new negexp ("interArrival" ,1757.295);
interArrivalDist2:—new negexp ("interArrival" ,35.1461);

generatedPackets:—new Count (" Generated packets");
receivedPackets:—new Count (" Received packets");
droppedPackets:—new Count (" Dropped packets");
packetDelay:—new tally ("Delay");

random:—new randint ("Random",1,5);

r:—new randint ("Random number",1,10);

COTNINENT 3 % sk sk sk sk sk ok ok ok sk ok sk ok sk okosk ok ok ok ok ok VAT 1 D1 @S sk ok sk ok ok ok sk sk sk sk ok sk ok ok ok ok ok ok ok ok ok okok ok ok o ok ok %

linkCapS1R2:=300000;

116

linkCapS1R3:=700000;
bufferSize:=12500;
simSeed :=30;

setseed (simSeed);

numReps:=10;
transient__simtime:=2000;
simTime:=10000;

comment skksokkskkxkkkkkkk Initializing variables soskoksosokoksksrokokokskokokokskok kokok

packetsPerTimeUnit:=0;
packetSum:=0;
averagePacketLength:=0;
packetLengthCounter:=0;
averageBitrate:=0;
averageLoadS1R2:=0;
averagelLoadS1R3:=0;

WHILE replication <= numReps DO
BEGIN

out_q_ to_r2:—new waitq("out_q_ to_r2");
new ip_router ("R2" ,out_q_to_r2).schedule (0.0);

out_q_to_r3:—new waitq("out_q_to_r3");
new ip_router ("R3",out_q to_r3).schedule (0.0);

new packetGenerator ("' PacketGenerator").schedule (0.0);
hold (simTime) ;

outtext ("S1IR2: ");
outimage;

outfix (linkCapS1R2,10,20);
outimage;

outtext ("S1IR3: ");
outimage;

outfix (linkCapS1R3,10,20);
outimage;

replicate;

END;
packetsPerTimeUnit:=(packetSum /(simTime—transient_simtime))/numReps;
averagePacketLength:=packetLengthDist.avg;
averageBitrate:=(packetsPerTimeUnit*averagePacketLength +8);
averageLoadS1R2:=((averageBitrate*0.3)/linkCapS1R2);
averageLoadS1R3:=((averageBitrate*0.7)/linkCapS1R3);

comment sskcksokkskokkkkskokkkokxk Printing statistics sokssoksosskokskorokokokskokkokskokkx
outtext ("Packets per time unit to R2/R3: ");
outimage;

outfix (packetsPerTimeUnit ,10,20);
outimage;

117

outtext ("Average packet length to R2/R3:
outimage;

outfix (averagePacketLength ,10,20);
outimage;

outtext ("Average bit rate to R2/R3: ");
outimage;

outfix (averageBitrate ,10,20);

outimage;

outtext (" bps");

outimage;

outtext ("Average load to R2: ");
outimage;

outfix (averageLoadS1R2,10,20);
outimage;

outtext ("Average load to R3: ");
outimage;

outfix (averageLoadS1R3,10,20);
outimage;

end demos;
end ;

118

")

Appendix B
DEMOS library changes

B.1 demos.atr and demos_new.atr difference

A procedure named avg is added to the DEMOS library in order to calculate
the average packet length.

Code added to line 826 in demos new.atr:

PROCEDURE Avg IS long real procedure Avg;;

Code added to lines 986-1000 in demos new.atr:

long real procedure Avg;

begin long real Q;
integer K;

K:=1;
while K < Size do begin

K:=K+1;
Q=Q + (X(K)+X(K-1))/2%(P(K)-P(K-1));

end;
Avg:=Q;

end sk k Avg sk ok ok

119

Appendix C

Input parameter file

C.1 Packet size distribution

packet__dist EMPIRICAL 5

40 0.00
44 0.62
552 0.75
576 0.83
1500 1.00

120

	Title Page
	Abstract
	Preface
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Optical transport network evolution
	1.2 Motivation
	1.3 Previous work
	1.4 Problem definition
	1.5 Methodology
	1.6 Organization of the report

	2 Optical core networks
	2.1 Background
	2.2 WDM transmission system
	2.3 TDM
	2.4 Evolution of optical transmission systems
	2.5 Crossconnects
	2.6 Core network transport protocols

	3 OTN (G.709)
	3.1 Background
	3.2 OTN frame structure
	3.2.1 OPU-k
	3.2.2 ODU-k
	3.2.3 OTU-k
	3.2.4 OCh
	3.2.5 ODUflex

	3.3 TDM Multiplexing
	3.3.1 Tributary slots

	3.4 OTN signal rates
	3.5 OTN layers
	3.6 FEC
	3.7 TCM
	3.8 Recent progress in OTN

	4 OTN switching
	4.1 Background
	4.2 Node architecture
	4.3 OTN switch proposal
	4.3.1 OTN interface cards
	4.3.2 Ethernet interface cards
	4.3.3 TDM space-division crossbar switch

	5 Network scenario
	5.1 Basic three-node network scenario
	5.2 Three-node packet switching scenario
	5.3 Three-node OTN switching scenario

	6 Simulation model
	6.1 Background
	6.2 Common simulator implementation parts
	6.3 IP simulator
	6.4 OTN simulator
	6.5 Reconfigurable OTN simulator

	7 Simulation results
	7.1 IP simulator
	7.1.1 N.E.D. interarrival distribution
	7.1.2 Hyperexponential interarrival distribution

	7.2 OTN simulator
	7.2.1 N.E.D. interarrival distribution
	7.2.2 Hyperexponential interarrival distribution

	7.3 IP vs. OTN comparison
	7.3.1 N.E.D. interarrival distribution
	7.3.2 Hyperexponential interarrival distribution

	7.4 OTN Hyperexponential vs. N.E.D. interarrival distribution comparison
	7.5 Reconfigurable OTN simulator
	7.5.1 N.E.D. interarrival distribution
	7.5.2 Hyperexponential interarrival distribution

	7.6 IP vs. OTN vs. reconfigurable OTN comparison
	7.6.1 N.E.D. interarrival distribution
	7.6.2 Hyperexponential interarrival distribution

	7.7 Discussion

	8 Conclusion
	8.1 Further work

	References
	Appendix
	A Simulator source code
	A.1 IP simulator
	A.1.1 N.E.D. interarrival distribution
	A.1.2 Hyperexponential interarrival distribution

	A.2 OTN simulator
	A.2.1 N.E.D. interarrival distribution
	A.2.2 Hyperexponential interarrival distribution

	A.3 Reconfigurable OTN simulator
	A.3.1 N.E.D. interarrival distribution
	A.3.2 Hyperexponential interarrival distribution

	B DEMOS library changes
	B.1 demos.atr and demos_new.atr difference

	C Input parameter file
	C.1 Packet size distribution

