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Distributed Kalman Filtering and Control Through
Embedded Average Consensus Information Fusion
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Abstract—This work presents a unified framework for dis-
tributed filtering and control of state-space processes. To this
end, a distributed Kalman filtering algorithm is developed
via decomposition of the optimal centralized Kalman filtering
operations. This decomposition is orchestrated in a fashion so
that each agent retains a Kalman style filtering operation and
an estimate of the state vector. In this setting, the agents mirror
the operations of the centralized Kalman filter in a distributed
fashion through embedded average consensus fusion of local state
vector estimates and their associated covariance information. For
rigor, closed-form expressions for the mean and mean square
error performance of the developed distributed Kalman filter
are derived. More importantly, in contrast to current approaches,
due to the comprehensive framework for fusion of the covariance
information, a duality between the developed distributed Kalman
filter and decentralized control is established. Thus, resulting in
an effective and all inclusive distributed framework for filtering
and control of state-space processes over a network of agents. The
introduced theoretical concepts are validated using simulations
that indicate a precise match between simulation results and
the theoretical analysis. In addition, simulations indicate that
performance levels comparable to that of the optimal centralized
approaches are attainable.

Index Terms—Sensor networks, consensus Kalman filtering,
distributed adaptive sequential estimation, decentralized control.

I. INTRODUCTION

In recent years, multi-agent networked systems have
emerged as a feasible solution in a wide range of engineering
applications [1]–[8]. Therefore, making the task of devel-
oping reliable distributed filtering and decentralized control
techniques an attractive research topic [1,9,10]. Owing to
the flexibility of the state-space representation for modeling
real-world systems, optimality of the single-agent Kalman
filter, and the duality of the Kalman filter with the linear
quadratic regulator [11], there has been a concerted effort for
developing Kalman filtering techniques for distributed filtering
and decentralized control applications [1,12]–[15].

In order to present filtering solutions for sensor networks
that are robust to link/agent failure and scalable with the
size of the network, distributed filtering algorithms have been
proposed in the context of consensus [12,16,17] and diffu-
sion [9,15] literatures. These techniques incorporate consensus
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or diffusion steps where agents of the sensor network average
their intermediate state vector estimates with their neighbors
allowing the agents to establish a consensus on the estimate of
the state vector [12,15,16,18]. However, the current literature
on distributed Kalman filtering is mostly concerned with
estimation problems; hence, the developed frameworks are not
readily expandable to decentralized control applications. This
issue is further elaborated upon in Section II.

In the control arena, decentralized control techniques have
emerged as frameworks that are not only scalable to large
networks and robust to link/agent failure, but also allow
each agent to be reasonably aware of the network status;
thus, providing for advantageous performance characteristics
as compared to their single agent non-cooperative duals.
This has made decentralized control techniques an essential
part of multi-agent control systems [1,2,19]–[21]. However, a
computationally efficient and analytically tractable framework
directly linking decentralized control to both the centralized
approach and distributed filtering, akin to what was performed
in [11] for single agent systems, is still lacking. Establishing
such a flexible framework is of paramount importance as it
can pave the way for extending various concepts in control to
the decentralized setting.

In this work, a comprehensive distributed Kalman filtering
technique is derived. This is achieved through distributing the
operations of the centralized Kalman filter over the network
via embedded average consensus information fusion filters.
Then, performance of the derived distributed Kalman filter is
analyzed and closed-form expressions for the mean and mean
square error are formulated. The analysis indicates that the
introduced distributed Kalman filter operates in an unbiased
fashion and can achieve mean square error performance levels
on par with that of the centralized Kalman filter. In addition,
using results from the conducted performance analysis in
combination with the inherent duality between filtering and
control, the framework of the derived distributed Kalman filter
is expanded to decentralized control applications. The work
is unique among its contemporaries in that it is simple to
implement, mathematically tractable, and rigorously extends
the duality between filtering and control problems to the
distributed setting. Finally, the introduced concepts are verified
in a number of simulations.
Mathematical Notations: Scalars, column vectors, and ma-
trices are denoted by lowercase, bold lowercase, and bold
uppercase letters. The state vector at time instant n is denoted
by xn, while I represents the identity matrix with the same
number of rows as the state vector. The Kronecker product is
denoted by ⊗. The transpose operator is denoted by (·)T with
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E {·} denoting the statistical expectation operator.

II. PROBLEM FORMULATION

Consider a connected multi-agent network modeled as an
undirected graph G = {N , E}, where the node set N denotes
the agents of the network, with |N | representing the number of
nodes in the network, while the edge set E represents bidirec-
tional communication links between the agents of the network.
The neighborhood of node l is defined as the set of nodes that
can communicate with it, including self-communication. The
neighborhood of node l is represented by the set Nl whose
cardinality is denoted as |Nl|.

The aim is to track a state vector sequence through local
observations, which are related via the state-space model

xn =Anxn−1 + νn (1)
yl,n =Hl,nxn + ωl,n (2)

where xn and An denote the state vector and state evolution
matrix at time instant n, whereas yl,n and Hl,n represent the
observation and observation function at node l at time instant
n, while the process noise νn and observation noise ωl,n are
independent zero-mean white Gaussian noise processes with
joint covariance matrix given by

E
{[

νn

ωl,n

] [
νT
m ωT

i,m

]}
=

[
Cνn 0

0 Cωl,n
δl,i

]
δn,m (3)

where δn,m denotes the Kronecker delta function.
The optimal solution to this problem, in the mean square

error sense, comes in the form of the centralized Kalman
filter [12], the operations of which are summarized in Al-
gorithm 1 where x̂n|n−1 and x̂n|n denote the a priori and
a posteriori estimates of xn.

Algorithm 1. Centralized Kalman Filter [12]
Initialize with:

x̂0|0 = E {x0}

M0|0 = E
{

(x0 − E {x0}) (x0 − E {x0})T
} (4a)

Model update:

x̂n|n−1 =Anx̂n−1|n−1 (4b)

Mn|n−1 =AnMn−1|n−1A
T
n + Cνn

(4c)

Measurement update:

Sn =
∑
∀l∈N

HT
l,nC

−1

ωl,n
Hl,n (4d)

qn =
∑
∀l∈N

HT
l,nC

−1

ωl,n
yl,n (4e)

M
−1

n|n =M
−1

n|n−1 + Sn (4f)

x̂n|n =x̂n|n−1 + Mn|n
(
qn − Snx̂n|n−1

)
(4g)

Although the centralized Kalman filter can be implemented
using a central processing unit, this method makes the filtering
operation vulnerable to failure of its processing unit. In addi-
tion, calculation of {Sn,qn} (see (4d) and (4e)) obligates the

central processing unit to communicate with all agents of the
network in a timely manner, requiring complex communication
protocols [14,22]. Thus, distributed solutions are perused.

In the context of consensus Kalman filtering, each agent
employs low- and band-pass consensus filters to approximate
qn and Sn in a distributed fashion [12,22,23]. Then, using
these approximations, each agent implements the operations
in Algorithm 1 in order to determine an intermediate estimate
of the state vector. These intermediate state vector estimates
are then fused using additional consensus filters in order to
achieve a final estimate of the state vector [12,22,23].

In the context of diffusion Kalman filtering [9,15,24], each
agent calculates an intermediate state vector estimate through
implementing the operation in Algorithm 1 while replacing
{Sn,qn} with their local approximations so that

Sl,n =
∑
∀i∈Nl

HT
i,nC

−1

ωi,n
Hi,n and ql,n =

∑
∀i∈Nl

HT
i,nC

−1

ωi,n
yi,n

denote the approximations of Sn and qn at node l. Then,
these intermediate state vector estimates are diffused in order
to formulate the final state vector estimate [9,15,24].

Remark 1. In comparison to diffusion and average consensus
filters, implementing the required band-pass consensus filters
in the consensus Kalman filtering approach is computationally
demanding and generates a larger amount of communication
traffic. Moreover, analysis of their behavior is not straightfor-
ward and is often reliant on the assumption that these filters
have fully converged [23]. These factors hinder efforts for ex-
panding such approaches to decentralized control applications.

Remark 2. Note that Sl,n (cf. ql,n) is an approximation of
Sn (cf. qn) that only accounts for information available to an
agent and its neighbors. This limits the use of diffusion-based
approaches to decentralized control applications. Thus, a more
comprehensive approach is developed in this work.

Remark 3. In both the consensus and diffusion approaches, the
motivation for fusion of intermediate state vector estimates is
to improve the accuracy of the state vector estimate at each
node. However, a mathematically tractable link between the
operations of the centralized Kalman filter in Algorithm 1 and
these distributed Kalman filtering approaches is lacking.

III. THE PROPOSED DISTRIBUTED KALMAN FILTER

Using the operation of the centralized Kalman filter as the
basis for our work, replacing (4d) and (4e) into (4g) yields

x̂n|n =x̂n|n−1 + Mn|n

( ∑
∀l∈N

HT
l,kC

−1

ωl,n
yl,n

)
−Mn|n

( ∑
∀l∈N

HT
l,nC

−1

ωl,n
Hl,n

)
x̂n|n−1.

(5)

The expression in (5) is now rearranged to give

x̂n|n =x̂n|n−1 +
∑
∀l∈N

Mn|nHT
l,kC

−1

ωl,n

(
yl,n −Hl,nx̂n|n−1

)
=

1

|N |
∑
∀l∈N

ψl,n (6)
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where ψl,n denotes the intermediate state vector estimate at
node l at time instant n and is given by

ψl,n = x̂n|n−1 + Gl,n

(
yl,n −Hl,nx̂n|n−1

)
(7)

with Gl,n denoting the local gain matrix, that is given by

Gl,n = |N |Mn|nHT
l,nC

−1

ωl,n
. (8)

Substituting the expression in (4d) into (4f) and after some
mathematical manipulations, we have

M
−1

n,n =M
−1

n|n−1 + Sn (9)

=M
−1

n|n−1 +
∑
∀l∈N

HT
l,nC

−1

ωl,n
Hl,n =

1

|N |
∑
∀l∈N

Γl,n

where the matrix Γl,n contains the local covariance informa-
tion at node l at time instant n and is given by

Γl,n = M
−1

n|n−1 + |N |HT
l,nC

−1

ωl,n
Hl,n. (10)

Remark 4. In order to formulate (4f) in form of a network
average of matrices {Γl,n : ∀l ∈ N}, in (10), the parameter
HT

l,nC
−1

ωl,n
Hl,n is scaled by a factor of |N |. In a similar

fashion, the gain in (8) is scaled by a factor of |N | in order to
preserve the equivalence between the implementation in (4g)
and the implementation in (6)-(8).

Note that the operations of the centralized Kalman filter as
given in Algorithm 1 can now be implemented in a distributed
fashion through the averaging of the local covariance infor-
mation, Γl,n, as given in (10) and local state vector estimates,
ψl,n, given in (7). Thus, based on the work in [25,26], next
a framework for distributed calculation of the averages in (9)
and (6) is established. To this end, consider a set of matrices
{Fj,(0) : j = 1, . . . , |N |} as inputs of the iterative consensus
filter given by

Fi,(k) = Fi,(k−1) +
∑
∀j∈Ni

wi,j

(
Fj,(k−1) − Fi,(k−1)

)
(11)

where Fi,(k) denotes the output of the iterative consensus filter
at node i after k iterations, while wi,j denotes a positive real-
valued weight. The iterations of the consensus filter in (11)
can be expressed in a more comprehensive fashion as

F(k) = (W ⊗ I)F(k−1) = (M⊗ I)F(0) (12)

where M = Wk, I is an identity matrix of appropriate
dimensions, F(k) = [FT

1,(k),F
T
2,(k), . . . ,F

T
|N |,(k)]

T, and the
element on the ith row and jth column of W is

Wi,j =


1 + wi,i −

∑
∀l∈Ni

wi,l if i = j,

wi,j if i ∈ Nj\j
0 otherwise.

If the weights wi,j are selected so that W is also doubly
stochastic and meets conditions in [25]; then, it follows that

∀i ∈ N : lim
k→∞

Fi,(k) =
1

|N |
∑
∀j∈N

Fj,(0) (13)

which is the average consensus filter (ACF) required to cal-
culate the averages in (9) and (6). For the sake of simplicity

in presentation, the operation of the ACF at node i after k
iterations is represented via the schematic

Fi,(k) ← ACF← {∀j ∈ N : Fj,(0)}

where {∀j ∈ N : Fj,(0)} are the network-wide inputs to the
ACF, that is initial inputs at all nodes in the network, and
Fi,(k) is the output at node i after k iterations.

The operations of the derived distributed Kalman filter are
summarized in Algorithm 2, where x̂l,n|n−1 and x̂l,n|n denote
the a priori and a posteriori state vector estimates at node l at
time instant n, while the ACF is iterated a predefined number
of times in order to achieve consensus.

Algorithm 2. Distributed Kalman Filter Through Embedded
Average Consensus Information Fusion
For nodes l = {1, . . . , |N |}:
Initialize with:

x̂l,0|0 = E {x0} (14a)

Ml,0|0 = E
{

(x0 − E {x0}) (x0 − E {x0})T
}

(14b)

Model update:

x̂l,n|n−1 = Anx̂l,n−1|n−1 (14c)

Ml,n|n−1 = AnMl,n−1|n−1A
T
n + Cνn

(14d)

Measurement update:

Γl,n = M
−1

l,n|n−1 + |N |HT
l,nC

−1

ωl,n
Hl,n (14e)

M
−1

l,n|n ← ACF← {∀i ∈ N : Γi,n} (14f)

Gl,n = |N |Ml,n|nHT
l,nC

−1

ωl,n
(14g)

ψl,n = x̂l,n|n−1 + Gl,n

(
yl,n −Hl,nx̂l,n|n−1

)
(14h)

x̂l,n|n ← ACF← {∀i ∈ N : ψi,n} (14i)

IV. PERFORMANCE EVALUATION

Throughout this section, the following standard assumptions
in Kalman filtering analysis are held to be true [23,27]:
Assumption 1: The state evolution and observation function

become time invariant, i.e.,

lim
n→∞

An = A and ∀l ∈ N : lim
n→∞

Hl,n = Hl.

Assumption 2: The state evolution noise and observation
noises become stationary, i.e.,

lim
n→∞

Cνn = Cν and ∀l ∈ N : lim
n→∞

Cωl,n
= Cωl .

which consequently results in

lim
n→∞

Cνcol,n
= Cνcol and lim

n→∞
Cωcol,n

= Cωcol

where

Cνcol,n
= E

{
νcol,nν

T
col,n

}
and Cωcol,n

= E
{
ωcol,nω

T
col,n

}
with

νcol,n = [νT
n, . . . ,ν

T
n]T and ωcol,n = [ωT

1,n, . . . ,ω
T
|N |,n]T

denoting column-block matrices composed of |N | repe-
titions of νn and {ωl,n : ∀l ∈ N} respectively.
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Assumption 3: The matrix pairs ∀l ∈ N : {A,Hl} are jointly
observable over the communication matrix M = Wk

(see (12)) and the matrix pair {A,C
1
2
ν } is controllable.

Assumption 4: The matrices ∀l ∈ N : {Γl,n,Ml,n} remain
positive definite at all time instances.1

First, it is shown that the matrix set {Ml,n|n−1,∀l ∈ N},
and by extension {Ml,n|n,∀l ∈ N}, converge to a unique
stabilizing solution. To this end, substituting (10) and (11)
into (14f) gives

M
−1

l,n|n =
∑
∀i∈N

Ml,iΓi,n (15)

=M−1
l,n|n−1 +

∑
∀i∈N

Ml,i

(
M

−1

i,n|n−1 −M
−1

l,n|n−1

)
+
∑
∀i∈N

Ml,i|N |HT
i,nC

−1

ωi,n
Hi,n

where Ml,i is the element on the lth row and ith column of
M = Wk. Replacing (14d) into (15) allows the dynamics of
matrix set {Ml,n|n−1 : ∀l ∈ N} to be rearranged as

∀l ∈ N :


Ml,n|n−1 = AnMl,n−1|n−1A

T
n + Cνn

Φ
−1

l,n ← ACF←{∀i ∈ N : M
−1

i,n|n−1}

M
−1

l,n|n = Φ
−1

l,n + HT
l,nC

−1

ωcol,n
Hl,n

(16)

with

Hl,n =
√
|N |

[√
Ml,1H

T
1,n, . . . ,

√
Ml,|N |H

T
|N |,n

]T
.

Alternatively (16) can be expressed as

∀l ∈ N :

{
Ml,n|n−1 = fl,n(Φl,n−1)

Φ
−1

l,n ← ACF←{∀i ∈ N : M
−1

i,n|n−1}
(17)

where

fl,n(Φl,n) = An

(
Φ

−1

l,n+HT
l,nC

−1

ωcol,n
Hl,n

)−1

AT
n+Cνn

. (18)

Focusing on the recursive functions

∀l ∈ N : Λn = fl,n(Λn−1) (19)

it follows from Assumption 1 and Assumption 2 that the
function fl,n(·) and matrices {Hl,n,C

−1

ωcol,n
} become time

invariant. Thus, (19) constitutes an algebraic Riccati equation
that will converge to a unique stabilizing solution given
that {A,Hl} are detectable and the matrices {A,C

1
2
ν } are

stabilizable, i.e., Assumption 3 and Assumption 4 are satisfied.
Finally, from Theorem 1 and Theroem 2, it follows that this
is a sufficient condition for matrices {Ml,n|n−1 : ∀l ∈ N} to
converge to unique stabilizing solutions.

Theorem 1. If the recursions in (19) converge to a unique
set of stabilizing matrices; then, the recursion in (17) also
converges to a set of stabilizing matrices.

1This holds true as the matrices in question are calculated from the
summation of positive and positive semi-definite matrices. Note that this
ensures the matrices {Ml,n|n : ∀l ∈ N} are invertible. In practice,
if required, at each time instance these matrices can be substituted with
their positive definite approximations through replacing of their negative
eigenvalues with a sufficiently small positive valued variable.

Proof of Theorem 1: Consider the matrix set

{∆l,n = Ml,n+1|n −Ml,n|n−1 : ∀l ∈ N}.

After some mathematical manipulations and using the frame-
work of Lemma 4.2 in [28], we have

∆l,n =LT
l,n∆̃l,nLl,n (20)

− LT
l,n∆̃l,nHT

l,nZ
−1

l,nHl,n∆̃l,nLl,n

where ∆̃l,n = Φl,n −Φl,n−1 while

Kl,n =
(
Hl,nΦl,n−1HT

l,n + Cωcol,n

)−1

Hl,nΦl,n−1A
T
n

Ll,n =AT
n −HT

l,nKl,n

Zl,n =Hl,n∆̃l,nHT
l,n + Hl,nΦl,n−1HT

l,n + Cωcol,n
.

Moreover, from the expression in (11)-(12) and (17), we have

∆̃
′
l,n ← ACF←{∀i ∈ N : ∆′i,n−1} (21)

where ∀i ∈ N : ∆′i,n−1 = M
−1

l,n|n−1 − M
−1

l,n−1|n−2 and

∆̃
′
l,n = Φ

−1

l,n −Φ
−1

l,n−1.
If Assumption 1-Assumption 4 hold true; then, from [28],

the expression in (20) will be a contracting function (with
regards to input ∆̃l,n and output ∆l,n). In addition, taking
into account that W is doubly stochastic, the spectral radius
of M = Wk is equal to one, and hence, the ACF will have a
non-expanding effect on recursions in (20)-(21). Finally, note
that the recursions in (20)-(21) have a stable point at ∀l ∈ N :
∆l,n = 0. Therefore, ∀l ∈ N : ∆l,n → 0 as n → ∞. This
indicates that matrices {Ml,n|n−1 : ∀l ∈ N} become time
invariant, i.e., they converge to a stabilizing solution.

Theorem 2. Under Assumption 1-Assumption 4, the stabiliz-
ing solution of (17) is unique.

Proof of Theorem 2: Assume that as n → ∞ both matrix
sets {Ml,n+1|n,Φl,n : ∀l ∈ N} and {M′

l,n+1|n,Φ
′
l,n :

∀l ∈ N} stabilize (17). Then, for l ∈ N , the evolution
of Ml,n+1|n −M′

l,n+1|n is attainable from (21)-(20) where
Ml,n|n−1 and Φl,n−1 are to be replaced by M′

l,n+1|n and
Φ′l,n.2 Once again, if Assumption 1-Assumption 4 hold; then,
from [28], as n→∞, the recursions in question converge to
their stabilizing solution at Ml,n|n−1 = M′

l,n|n−1 indicating
a unique solution.

The error of the intermediate state vector estimate at node
l at time instant n is given by εl,n = xn −ψl,n, which using
the expression in (14h) can alternatively be expressed as

εl,n = xn − x̂l,n|n−1 −Gl,n

(
yl,n −Hl,nx̂n|n−1

)
. (22)

Now, substituting (2) and εl,n|n−1 = xn − x̂l,n|n−1 into the
expression in (22) yields

εl,n = (I−Gl,nHl,n) εl,n|n−1 −Gl,nωl,n. (23)

Moreover, denoting εl,n|n = xn − x̂l,n|n, from (1) we have

εl,n|n−1 = Anεl,n−1|n−1 + νn.

2Once more, this result is a direct implication of Lemma 4.2 in [28].
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This allows (23) to be reformulated as

εl,n = (I−Gl,nHl,n) Anεl,n−1|n−1

+ (I−Gl,nHl,n)νn −Gl,nωl,n.
(24)

In order to analyze the impact of the ACF and to express
the state estimation error term in a regressive fashion, we need
to consider the network-wide dual of the expression in (24)
which can be formulated as

En = PPP nEn−1|n−1 +QQQ nνcol,n −TTT nωcol,n (25)

where PPP n, QQQ n, and TTT n are block-diagonal matrices with the
following structures

PPP n =block-diag{(I−Gl,nHl,n) An, l = 1, . . . , |N |}
QQQ n =block-diag{(I−Gl,nHl,n) , l = 1, . . . , |N |}
TTT n =block-diag{Gl,n, l = 1, . . . , |N |}

while

En =

 ε1,n...
ε|N |,n

 and En−1|n−1 =

 ε1,n−1|n−1...
ε|N |,n−1|n−1

 .
Now, considering the ACF given in (11), we have

εl,n|n ← ACF ← {∀i ∈ N : εi,n}

which using the expressions in (12) and (25) can be formulated
in a more mathematically rigorous manner as

En|n =(Wk ⊗ I)En

= (Wk ⊗ I)PPP n︸ ︷︷ ︸
Pn

En−1|n−1 + (Wk ⊗ I)QQQ n︸ ︷︷ ︸
Qn

νcol,n

− (Wk ⊗ I)TTT n︸ ︷︷ ︸
Tn

ωcol,n. (26)

Remark 5. Taking the statistical expectation of (26) and
considering that νn and {ωl,n, l ∈ N} are zero-mean, yields

E
{
En|n

}
= PnE

{
En−1|n−1

}
=

(
n∏

i=1

Pi

)
E
{
E0|0

}
. (27)

Moreover, from (14a) we have ∀l ∈ N : x̂l,0|0 = E {x0}
resulting in E

{
E0|0

}
= 0. Therefore, the expression in (27)

proves the proposed algorithm operates in an unbiased fashion.
From the regressive expression of the state vector estimation

error derived in (26) we have

En|nET
n|n =PnEn−1|n−1ET

n−1|n−1PT
n (28)

+ Qnνcol,nν
T
col,nQT

n −PnEn−1|n−1ω
T
col,nT T

n

−Qnνcol,nω
T
col,nT T

n + PnEn−1|n−1ν
T
col,nQT

n

− Tnωcol,nET
n−1|n−1PT

n + Tnωcol,nω
T
col,nT T

n

+ Qnνcol,nET
n−1|n−1PT

n − Tnωcol,nν
T
col,nQT

n.

Given that noise sequences νn and {ωl,n,∀l ∈ N} are
white zero-mean Gaussian processes with joint the covariance
matrix given in (3), taking the statistical expectation of the
expression in (28) allows the network state vector estimation
error covariance matrix to be formulated as

Σn = PnΣn−1PT
n + QnCνcol,n

QT
n + TnCωcol,n

T T
n (29)

where Σn = E
{
En|nET

n|n

}
. Moreover, the matrices

{Ml,n|n, l ∈ N} converge, i.e., ∀l ∈ N : lim
n→∞

Ml,n|n = Ml;
thus, resulting in matrices {Gl,n, l ∈ N} becoming time
invariant. From (24)-(26) and (28)-(29) it becomes clear that
if the matrices {Gl,n, l ∈ N} become time invariant; then, the
matrices {Pn,Qn,Tn} also become time invariant, i.e.,

lim
n→∞

Pn = P , lim
n→∞

Qn = Q, and lim
n→∞

Tn = T

and as a result Σn in the formulation given in (29) converges,
that is, Σn → Σ as n → ∞, where Σ is the solution of the
discrete time Lyapunov equation given by

Σ = PΣPT + QCνcol
QT + T Cωcol

T T. (30)

Remark 6. In the case for which ACF iterations are large
enough so that ∀i, j ∈ N : Mi,j ≈ 1\|N |; then, from the
derivation processes in Section III, it becomes clear that the
matrices {Ml,n|n : ∀l ∈ N} converge to the same value as
their centralized counterparts in Algorithm 1, obtainable from
replacing (4c) and (4d) into (4f). In a similar manner, it follows
that the state vector estimates of the proposed distributed
Kalman filter will be close to those obtained by the centralized
Kalman filter, that is, ∀l ∈ N : x̂l,n|n ≈ x̂n|n.
Remark 7. In a steady-state situation, where the matrices
{Ml,n|n : ∀l ∈ N} have converged, from Algorithm 2,
it becomes apparent that the need for implementing ACF
operations with regards to {Γl,n : ∀l ∈ N} is eliminated.
In this setting, only the local state vector estimates, ψl,n, are
required to be communicated. This reduces the communica-
tion traffic and implementation complexity to a minimum.
In comparison, other consensus and diffusion approaches
(see [10,15,16,18,22,23]) that require the observation infor-
mation, HT

i,nC
−1

ωi,n
yi,n, to also be shared (see Section II)

introducing an extra level of complexity.
Remark 8. From (14e) and (14f) in Algorithm 2, note that
the observation covariance information at node l ∈ N , i.e.,
HT

l,nCωl,n
Hl,n, is integrated into the local covariance infor-

mation, Γl,n, and then fused over the network via the ACF.
This provides a comprehensive framework for fusion of the
covariance information and sets this work apart from its peers.
For example, current consensus Kalman filtering techniques
require more computationally complex band-pass consensus
filters for the fusion of their covariance information, while
in the diffusion Kalman filtering framework each node only
has access to the observation covariance information from its
neighboring nodes (see Section II).

V. CONTROL APPLICATIONS

The comprehensive fusion of covariance information in the
proposed distributed Kalman filtering algorithm and the duality
established in [11], allows the framework to be expanded
to solving linear quadratic regulator problems, commonly
encountered in model predictive control applications [1,28].
To this end, we next consider the noise-free linear quadratic
regulator problem in its distributed formulation [14].

Given the dynamic system

xn+1 = Axn +
∑
∀l∈N

Blul,n (31)
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with Bl representing the actuator matrix at node l, the goal
is to find control vector sequences, {ul,n : ∀l ∈ N , n =
1, . . . , N}, that minimize the cost function

J =
1

2
xT
NTxN +

1

2

N∑
n=1

(
xT
nQxn + uT

col,nRucol,n

)
(32)

with R = block-diag{Rl, l = 1, . . . , |N |} and

ucol,n =
[
uT
1,n, . . . ,u

T
|N |,n

]T
where N is referred to as the control horizon, while T, Q,
and {Rl : ∀l ∈ N} are transpose symmetric positive definite
weighting matrices.

According to classical results in control theory, the optimal
solution to this problem is given by [11,29]

ucol,n = −
(
R + BT

rowΥn+1Brow

)−1

BT
rowΥn+1Axn (33)

where Brow is the row-block matrix given by

Brow =
[
B1,n, . . . ,B|N |,n

]
and the matrices {Υn : n = 1, . . . , N} are found from the
backward propagation of the discrete time algebraic Riccati
equation, given by

Υn−1 =ATΥnA + Q (34)

−ATΥnBrow

(
R + BT

rowΥnBrow

)−1

BT
rowΥnA

with terminating condition ΥN = T.
The expression in (34) can be rearranged using the matrix

inversion lemma in reverse to yield

Θn−1 =

((
ATΘnA + Q

)−1

+ BrowR
−1

BT
row

)−1

(35)

where Υn−1 = ATΘnA+Q. Considering the block-diagonal
structure of R, the expression in (35) is rearranged to give

Θ
−1

n−1 =
(
ATΘnA + Q

)−1

+
∑
∀l∈N

BlR
−1
l BT

l . (36)

On the other hand, replacing (4c) and (4d) into (4f) yields

M
−1

n|n =
(
AnMn−1|n−1A

T
n + Cνn

)−1

+
∑
∀l∈N

HT
l,nC

−1

ωl,n
Hl,n.

(37)

The duality between (36) and (37) allows the values of
{Υn,Θn} to be calculated through iterations of the cen-
tralized Kalman filtering operations. In turn, a distributed
framework akin to the developed Kalman filtering framework
can be formulated. In this setting, using the expression in (33)
optimal control vector sequences can be calculated as

ucol,n =−
(
R + BT

rowΥn+1Brow

)−1

BT
rowΥn+1Axn

=
(
R

−1

BT
rowΥn+1BrowR

−1

−R
−1
)

BT
rowΥn+1Axn

=−R
−1

BT
row

(
Υ

−1

n+1 + BrowR
−1

BT
row

)−1

Axn.

(38)

Now, replacing (35) into (38) yields

ucol,n = −R
−1

BT
rowΘn+1Axn. (39)

Given the block-diagonal structure of R and the expression
in (39) it can be shown that

∀l ∈ N : ul,n = −R
−1

l BT
l Θn+1Axn. (40)

In addition, using the same framework as in (9)-(10) it can be
shown that

Θn =
1

|N |
∑
∀l∈N

Ψl,n (41)

with Ψl,n = Υ
−1

n−1 + |N |BlR
−1

l BT
l .

In a similar fashion to what was described for the pro-
posed distributed Kalman filtering framework, the operations
of the noise-free linear quadrature regulator can now be
approximated in a decentralized fashion through the distributed
implementation of the average in (41). The operations of
such a distributed linear quadrature regulator are summarized
in Algorithm 3, where {Υ̂l,n, Θ̂l,n} are local estimates of
{Υn,Θn} at node l.

Algorithm 3. Decentralized Linear Quadrature Regulator
For nodes l = {1, . . . , |N |}:
Initialize with:

∀l ∈ N : Υ̂l,N = T

Estimate output of the Riccati equation:

Ψ̂l,n = Υ̂
−1

l,n + |N |BlR
−1

l BT
l (42a)

Θ̂
−1

l,n ← ACF ← {∀i ∈ N : Ψ̂i,n} (42b)

Υ̂l,n−1 = ATΘ̂l,nA + Q (42c)

Calculate control vector sequences:

ul,n = −R
−1

l BT
l Θn+1Axn (43a)

VI. SIMULATIONS

In this section, the performance of the proposed distributed
Kalman filter and decentralized control framework is illus-
trated, where the network of 20 nodes shown in Figure 1 was
used in all simulations.

Fig. 1. The network with 20 nodes and 86 edges used in simulations.

A. Distributed Filtering and Tracking

In the first scenario, a classic target tracking problem
is considered. In this setting, the state vector, xn =
[Xn, Yn, Ẋn, Ẏn]T, consists of the positions, {Xn, Yn}, and
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velocities, {Ẋn, Ẏn}, in the horizontal and vertical directions
respectively. The state-space equations of such a dynamic
system are given by

xn =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

xn−1 +


1
2 (∆T )2 0

0 1
2 (∆T )2

∆T 0
0 ∆T

νn

yl,n =

[
1 0 0 0
0 1 0 0

]
xn + ωl,n (44)

where νn =
[
Ẍn, Ÿn

]T
represents unknown acceleration

in the horizontal and vertical directions with ∆T = 0.04 s
representing the sampling interval.

The acceleration was modeled as a white zero-mean Gaus-
sian process with covariance matrix

E
{[
Ẍn

Ÿn

] [
Ẍn Ÿn

]}
=

[
1.44 0

0 1.44

]
while the observational noise at each node was considered to
be a zero-mean Gaussian vector with covariance matrix

∀l ∈ N : Cωl,n
=

[
4.16 0.8
0.8 4

]
× 10−2.

Finally, at each time instant the ACF used for achieving
consensus on the state estimate and its associated estimation
error covariance matrix was iterated a total of 4 times.

In order to present a quantitative basis for evaluating the
performance of the proposed distributed Kalman filter, we
consider the mean square deviation (MSD) formulated as3

MSDl = E
{
εl,n|nε

T
l,n|n

}
.

In Figure 2, the steady-state MSD of the proposed distributed
Kalman filter is benchmarked against that of the diffusion
Kalman filter (Algorithm 2 in [15]), the consensus Kalman
filter (Algorithm 3 in [22]), and the distributed Kalman filter
in [30]. Note that the proposed algorithm achieved a steady-
state MSD close to that of the centralized Kalman filter and
outperformed the consensus and diffusion schemes.

1 2 3 44 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

15

14.5

14

13.5

13

Node

M
S

D
 (

d
B

)

Consensus Kalman filter

Distributed Kalman filter in [30]

Diffusion Kalman filter

Proposed distributed Kalman filter

Centralized Kalman filter

Fig. 2. Steady-state MSD performance of different distributed Kalman
filtering techniques across all 20 nodes.

In the previous simulation, ACF of the proposed distributed
Kalman filter was only iterated 4 times at each time instant.

3Note that the MSD at each node is the trace of its state vector estimation
error covariance matrix obtainable in its transient and steady-state formulation
from (29) and (30).

In Figure 3, the MSD performance of all nodes in the
network for different number of iterations of the ACF obtained
through both simulations and the theoretical framework in
Section IV are shown. Note that the values obtained through
the theoretical framework in Section IV precisely match those
obtained through simulations, verifying the theoretical per-
formance analysis in this work. In addition, it can be seen
that the MSD performance of all nodes tend toward that
of the centralized Kalman filter with increasing number of
ACF iterations, where in the case that the ACF was iterated
12 times, the MSD performance of the proposed distributed
Kalman filter only differs from that of the centralized Kalman
filter by a maximum of 0.16 dB.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

15.1

15

14.9

14.8

14.7

14.6

Node

M
S

D
 (

d
B

)

4 iterations (simulation)

4 iterations (theory)

8 iterations (simulation)

8 iteration (theory)

12 iterations (simulation)

12 iterations (theory)

Centralized Kalman filter

Fig. 3. Steady-state MSD performance of the proposed distributed Kalman
filtering algorithm across all 20 nodes of the network, obtained with different
number of iterations of the ACF. Performance of the centralized Kalman filter
is provided as a benchmark.

B. Decentralized Control

The control dual of the target tracking scenario in the first
simulation example was considered. Thus, in this setting, the
state vector and state transition matrix remain the same as in
(44) while

∀l ∈ N : Bl =

[
1
2 (∆T )2 0 ∆T 0

0 1
2 (∆T )2 0 ∆T

]T
and control inputs of the agents are taken to be acceleration
(or force per unit mass). The weighting matrices in the cost
function in (32) were Q = I, T = 150×Q, and

∀l ∈ N : Rl = l2 ×
[
2.16 1.8
1.8 2

]
.

The goal was to bring the object to a stand-still at the center
of the coordinate system from an initial position and speed. To
this end, the proposed decentralized linear quadrature regulator
control procedure in Algorithm 3 and its centralized dual were
implemented over the network in Figure 1. Control vector
sequences were estimated for 0.8 s long segments. The first
0.4 s portion of the estimated control vector sequences were
implemented; then, control vector sequences were re-estimated
using the new position and speed of the object. This procedure
was repeated to achieve the desired goal. The position and
speed of the object are shown in Figure 4. Note that the
developed decentralized control framework operated correctly.
Furthermore, the object followed similar position and speed
trajectories when using the centralized and developed decen-
tralized control frameworks.
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Fig. 4. Performance of the proposed decentralized linear quadrature regulator
with one iteration on the ACF is shown alongside the performance of the
proposed decentralized linear quadrature regulator with four iterations on the
ACF and the performance of the centralized linear quadrature regulator.

VII. CONCLUSION

A distributed Kalman filtering algorithm for estimation and
tracking applications over sensor networks has been devel-
oped. The developed algorithm has been realized through the
decomposition of the operations of the centralized Kalman
filter using embedded average consensus filters. The operations
of the centralized Kalman filter have been decomposed in
a fashion that allows each agent of the sensor network to
retain an estimate of the state vector and its estimation error
covariance matrix. In contrast to current distributed Kalman
filtering frameworks, the developed algorithm does not require
the exchange of observation data over the network, relaxing
communication and computational requirements. The mean
and mean square error performance of the developed dis-
tributed Kalman filter have been analyzed establishing that
the developed algorithm operates in an unbiased fashion and
can reach mean square error performance levels comparable
to that of the centralized Kalman filter. Moreover, it has
been shown that the comprehensive fusion of covariance
information established for the developed distributed Kalman
filter coupled with the duality between Kalman filters and
linear quadrature regulators, allow the framework to also be
used in decentralized control applications, providing a rigorous
framework for extending various concepts in control to the
distributed setting.
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