KALMAN FILTERING AND CLUSTERING IN SENSOR NETWORKS

Sayed Pouria Talebi', Stefan Werner*, and Visa Koivunen'

TDepartment of Signal Processing and Acoustics, Aalto University, Espoo FI-02150 Finland
*Department of Electronic Systems, Norwegian University of Science and Technology,
Trondheim NO-7491 Norway
E-mails: {pouria.talebi, visa.koivunen} @aalto.fi & stefan.werner @ntnu.no

ABSTRACT

In this work, a distributed Kalman filtering and clustering frame-
work for sensor networks tasked with tracking multiple state vector
sequences is developed. This is achieved through recursively up-
dating the likelihood of a state vector estimation from one agent
offering valid information about the state vector of its neighbors,
given the available observation data. These likelihoods then form
the diffusion coefficients, used for information fusion over the sen-
sor network. For rigour, the mean and mean square behavior of the
developed Kalman filtering and clustering framework is analyzed,
convergence criteria are established, and the performance of the de-
veloped framework is demonstrated in a simulation example.

Index Terms— Adaptive learning over networks, distributed
Kalman filtering, adaptive clustering, multi-task sensor networks.

1. INTRODUCTION

In recent years, distributed learning and optimization techniques
have become the prevailing method for implementing signal process-
ing and control operations over large-scale sensor networks [1-16].
In this context, due to the optimality of the Kalman filter for track-
ing linear Gaussian systems and the flexibility of the state space
representation for modeling a wide range of real-world dynamic
systems, a great deal of interest has been shown in developing dis-
tributed Kalman filtering frameworks [4,8—15], where in-network
cooperation between agents of the sensor network is used to enhance
various performance criteria, such as accuracy. However, coopera-
tion is not beneficial in all incidences. In so-called multi-task sensor
networks, that are used for tracking multiple state vector sequences
or targets [17-20], information fusion between agents tasked with
tracking different targets can degrade their performance and lead to
undesired results that propagate throughout the network [21]. Thus,
adaptive real-time techniques that can cluster together agents of a
network that are tracking a common target are highly desired.

A number of effective clustering techniques have been proposed
in the literature relying upon the assumption that partial prior knowl-
edge is available about the network cluster structure, such as a sub-
set of agents that belong to a given cluster or signal characteristics
of interest to agents of different clusters [22-24]. Although partial
prior information might be available about the cluster structure of
the network in some incidences, in general information of this kind
is either not available or it is time dependent. In order to introduce a
more inclusive framework for clustering multi-task sensor networks,
adaptive approaches have been investigated in [21,25]. Moreover,
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a class of algorithms originally developed for adaptive estimation
of optimal diffusion coefficients in diffusion-based distributed least
mean square algorithms have been modified for clustering purposes,
conjuring that diffusion cross-coefficients of agents in different clus-
ters tend to zero essentially eliminating cooperation between them
and thus resulting in a clustered network [21].

Most adaptive clustering techniques are developed for sensor
networks using the distributed least mean square algorithm as their
main learning scheme [21-25]. Although these techniques are ap-
plicable to sensor networks that employ distributed Kalman filter-
ing frameworks, they fail to exploit the extra level of information
available in Kalman filtering such as the estimate of the state vector
estimation error covariance matrices and the state evolution model.
Based on the available information in Kalman filtering and borrow-
ing ideas from covariance intersection, a number distributed Kalman
filtering frameworks with optimal diffusion coefficients have been
proposed in the literature [26,27]. However, the results are not ap-
plicable for clustering of multi-task sensor networks, as these results
were obtained under the firm assumption that all agents of the sen-
sor network are tracking the same state vector sequence. In addition,
a fault detection scheme for detecting and isolating agents produc-
ing faulty measurements in Kalman filtering networks has been pro-
posed in [28]; however, the results are not efficiently adaptable to
clustering applications dealing with large-scale sensor networks.

In this work, we derive a distributed Kalman filtering algorithm
drawing upon ideas from one of the authors previous work in [29].
The derivation provides insight into the operations of the distributed
Kalman filter allowing for a cost-effective adaptive clustering tech-
nique to be developed. The developed clustering technique exploits
the covariance information available in the Kalman filtering proce-
dure to recursively update likelihoods of state estimates from one
agent in the sensor network offering valid information about the state
vector sequence of its neighbors. Then, these likelihoods are used for
information fusion and clustering purposes. Finally, the performance
of the developed distributed Kalman filtering and clustering frame-
work is analyzed, indicating that it operates in an unbiased fashion
and establishing mean square error convergence criteria.

Mathematical Notations: Scalars, column vectors, and matrices are
denoted by lowercase, bold lowercase, and bold uppercase letters re-
spectively. The identity matrix is represented by I. The value of the
probability density function of a random vector at a conditional on
b is denoted as p(a|b) and hereafter is referred to as the likelihood
of a. The value of the probability density function of a zero-mean
Gaussian random vector with covariance matrix B at a is denoted as
g(a,B). The transpose and statistical expectation operators are de-
noted by (-) and E {-} respectively, whereas &(-) denotes the Kro-
necker delta function. The set of natural numbers is denoted by N.



2. PROBLEM FORMULATION

Consider a connected sensor network modeled as an undirected
graph G = (N, £), where the node set N represents agents of the
sensor network, while the edge set £ denotes bidirectional commu-
nication links between agents in the network. The neighborhood
of node i € N, is denoted as A; and is defined as the set of all
nodes connected to node ¢ including itself, with the cardinality of
the set V; denoted by \./\/;| The nodes of the network are tasked
with estimating the state vector sequences {x;, : i € N,n € N}
through local observation sequences {y; . : ¢ € N,n € N}. The
observation and state vector sequences are coupled via a state space
model given by

Lin =

Yin =
where A, is the state transition matrix at time instant n which is
assumed identical throughout the network!, while H ,, is the obser-
vation matrix at node ¢ at time instant n, whereas the process noise
sequences {v;,n : ¢ € M, n € N} are assumed to be white Gaussian
processes that are identical for all nodes in a cluster and finally the
observation noise sequences {w;  : 4 € N,n € N} are temporally
uncorrelated and spatially independent zero-mean white Gaussian
noise processes. The joint covariance matrix of the observation and
process noise sequences can be expressed as

e{ [ i wlal} = [T o2 ] omm
@)
where o« = 1 if 7 and [ are in the same cluster and o = 0 otherwise,
while 8 = §(i — 1).

The optimal solution to this problem, in the mean square error
sense, comes in the form of a centralized Kalman filter implemented
at each node [15,29], the operations of which are summarized as:
For node i € N
Initialize with:

Anmi,n—l + Vin
Hi,nwi,n + Wi,n

&)

Zioo = E{xzio} 3)
Mi,o\o = E {(ﬂfzo - E{l’z‘,o})(mi,o —E {mzo})T}
Model update:
:ﬁi,n\nfl - An:ﬁi,n—“n—l (4)
Mi,n|n71 = AnMi,nfl\nflA:—L + Cl’i,n
Measurement update:
Sin=Y H[,C. H., (52)
lec; '
-1
@in=y H,Cy yin (5b)
lec;
-1 -1
Mzn\n :Mi,n|n71 + Sln (5¢)

Si,ni:i,n\n—l) (Sd)

where ; n|n—1 and &; |, denote the a priori and a posteriori es-
timates of x; ,, whereas C; denotes the set of nodes in the same
cluster as node 7. From [29], if ¢ and [ are in the same cluster, we
have M; | = Mj ). Finally, note that it is assumed a central
regulating unit that has prior knowledge of the network clustering
structure organizes the distribution of information over the network.

Linln =Lin|n—1 + Mi,n|'n (qi,n -

IThe results obtained in this work are readily expandable to the case
where state transition matrices are only assumed identical within a cluster;
however, discussions on this case have been omitted due to space restrictions
of the venue.

3. DISTRIBUTED TRACKING AND CLUSTERING

Although the centralized Kalman filter presents the optimal solution,
the assumption of prior knowledge of the cluster structure of the
network and reliance on a central organizing unit for distribution
of data make the algorithm impractical for implementation in large-
scale sensor networks with a changing clustering formation. To this
end, a fully decentralized Kalman filtering and clustering framework
is developed in this section.

Considering the expression in (5a)-(5d), replacing (5a) and (5b)
into (5d) yields

—1

~ ~ T
Linln = Linln—1 + Mi,n|n § Hl,ncul)nyl,n
viee;

T -1 o
- Mz,n|n E Hl,nCwlynHl,nwi,nM,fl-
VieC;

which in a similar fashion ot [29] can be rearranged to give
:ﬁi,n\n :dji,n|n71

1 R
+ Z Ml,n|nH2—,nCwlyn (yl,n - Hl,nmi,n\nfl) . ©)
Viec;

Now, the principle of diffusion can be used to simultaneously force
a consensus among nodes of the same cluster and approximate the
a posteriori estimate of the state vector as given in (6) through
the summation

. 1
Lin|ln = m Z wl,n @)

viec;

where |C;| is the cardinality of C;, while?
1/Jl,n :ﬁ:l,n|n71

S X (6]

+ ‘CZ‘Ml,MnHl,nCwLn (yl,n - Hl,nwl,n\nfl) .

In a similar fashion to what was described for the state vector esti-
mation, replacing (5a) into (5¢) yields

—1 1

1 _
Mi,n\n :Mi,n\n—l + Z H;r,ncwl:nHl,n
viec;
Ly "
=747 Fl,n
IC:il viec;
where
Ty =M, +I[CGH,CL Hin (10)

Now, M |, in the formulation given in (9) and &; |, in the
formulation given in (7) can be calculated through the use of diffu-
sion and/or consensus filters over local state vector estimates given
in (8) and their associate covariance information given in (10), that
is, if each node can detect other nodes in its neighborhood that are
estimating the same state vector. To this end, we wish to determine
the likelihood of the local estimate at one node, 1), ,, also being
a valid estimate for the state vector at its neighboring node, given
the available information, that is VI € N; : p(¥1,n|Yi,1:n), Where
Yiim = {Yix + kK = 1,...,n} is the collection of observation
information available to node ¢ up to time instant n.

The value of the posterior density function, p(41,|Yyi,1:n), ac-
cording to Bayes theorem, can be calculated up to a scaling factor as

p(¢lyn|yi,1:n) x p(yi,n|¢l,n)p(¢l,n|yi,1:n71) . (11)
Z p(yi,n|¢j,n)p(’¢’j,n|yi,1:n71)
VieN;

2Note that if nodes 7 and [ belong to the same cluster, we have C; = C;.



Considering the mapping of the local state estimate at node ! onto
the observation space at node i, that is H; 1 », we have

H'L,n'l,bl,n = Hi,n (mi,n - 'l,bl,n) + Wi, n- (12)

Then, if 4y, is indeed a valid estimate of x; ,, given the linear
Gaussian framework of the Kalman filter, v; , and by extension
6(i,1),n» also have Gaussian distributions, where based on (12), it
can be conjectured that

-1
Ce(i,l),n =E {o(i,l)ynea,l),n} = HiﬁnrlynH;‘ry”ﬂ + C“’i,n‘ (13)

Thus, from the expressions in (12) and (13), the likelihood of ob-
serving y; , under the assumption that 1); ,, is a valid estimate of
the state vector at node ¢ is given by

i) =& (8ims Copi. ) (14)

which can be evaluated at node ¢ as node [ is required to share
{¥1,n, "1, } with all of its neighbors.

Considering the Kalman filter produces optimal estimates of the
state vector given the available observation sequence, it is held true
that a}i,n—nn—l is indicative of the information held in y; 1., ; hence,
we use the approximation (see Remark 2)

p(d)l,n yi,l:nfl) ~ p(’lnbl,nla?:i,nfﬂ'nfl)' (15)

Once again, taking into account the Gaussian linear framework in
Kalman filtering approaches, mapping &; ,_1j,—1 onto the next
time instant yields

E@i,l),n = ¢l,n - Anwi,n71|n71 =

e(i,l),n =Yin —

P(Yi,n

11bl,7l - :i‘i,n|n71 (16)

which given the expression in (4) and conditional on ; ,, being con-
vergent to &; , we have

Cetrinn = E{eimelinn} =Migns.  (17)

Thus, from (15)-(17), the value of the prior density function,
P(%1,n|Yi,1:n—1), can be approximated as

P(1n|Yi1im—1) ~p(Pin
~g (s(i,l),m Cs(u).n) :

Given the expressions in (11)-(18), each agent can now calculate
required values of the posterior distribution as expressed in (11) for
all of its neighbors, allowing these values to be used as coefficients
of diffusion filters that approximate the summations in (7) and (9)
which in turn allow the operations of the centralized Kalman filter
to be implemented in a distributed fashion. The operations of such a
distributed Kalman filter are summarized in Algorithm 1.

ii,n71|n71)

18)

Algorithm 1. Distributed Kalman Filtering and Clustering
Fornodei € N:

Initialize as in (3).

Implement model update equations as given in (4).
Implement measurement update as:

—1 T —1
Fi,n = Mi,n\nfl + Hiv’ﬂcwi,nHiv”
—1
Mi,n|n = Z p(wl,n71|yi,1:n71)1—‘l,n
VIEN;

Gi,n - Mi,n\nH-ir,‘fLC;il,n
Vi = Einpn—1 + Gin (Yin — Hininin1)
Share {tpi n, s n} and evaluate {p(P1 n|Yi1:n) : VI € N} using

the received information; then, calculate:

Z p("/’l,n“]vﬁ,l:n)"/ﬂ,n

VIEN;

Tinln =

Remark 1: In Algorithm 1, diffusion coefficients are updated using
the a priori state vector estimates that are in turn calculated using
the diffusion coefficients at the previous time instant, resulting in a
recursive updating pattern.

Remark 2: From the expression in (11), it can be observed that
Vi € Nt X ien, P(¥inlyia) = 1, providing for unbiased
information fusion over the network and indicating that: i) only
the nominators in (11) have to be calculated and normalized to find
the suitable diffusion coefficients, ii) the approximation in (15) only
needs to hold true up to a scaling factor for the nodes in N;.

4. CONVERGENCE ANALYSIS

The error of the local state vector estimate at node ¢ at time instant n
can be formulated as

€in =Lin — '¢i,n

. . (19)
=Zin — Linln-1 — Gz‘,n (yi,n - Hi,nwi,n\n—l)
where substituting
Yin = HinTin +win and € njn_1 = Tin — Tinjn_1

into the expression in (19) yields
€in=0-GinHin) € nn-1— GinWin. (20)
From (4) it can be concluded that €; 1,1 = An€; n_1jn—1+Vin,
which upon replacing into (20) yields
€in = (I — Gi,nHi,n) Anei,n,”n,l
+(I—-GinHin)vin —
Given the expression in (1), error of the a posteriori state vector

estimate at node ¢ can be formulated as

€7.',1'1,|'rL =Tin — ii,n\n = Tin — E p(’d’l,n
VIEN;

= Z p(wl,nlyi,lzn)el,n-

VieN;

21
Gi,nwi,n- ( )

yi,l:n)'(/’l,n
(22)

Now, replacing (21) into (22) gives a recursive expression for the
state vector estimation error as

€injn = Z P(1n|Yiim) (I — GinHin) An€rpn_ijn_1

VIEN;

+ Z p(wl,n|yi,1:n) (I - Gl,nHl,n) Vin
VIEN;

— > p(inlyirn)Grnwin. (23)
VIEN;

Assuming the network cluster structure becomes time invariant
and diffusion coefficients {p(¢i,n|yi,1:n) : VI € N;} have stabi-
lized®, taking the statistical expectation of €; ,,|,, as expressed in (23)
and considering that

VieN: E{Vlm} =0 and E{wl,n} =0
we have
E{€imm} = > YinE{€rn 11} (24)
VIieN;
where Y;., = p(¥i,n|Yi,1:n) I — GinH; ) Ay, Hence, given
the initialization condition in Algorithm 1, the expression in (24) in-
dicates that the developed algorithm operates in an unbiased fashion.

3That is the diffusion coefficients in question have converged with steady-
state variations reasonably low to be assumed constant or alternatively they
are held constant to their long-term averaged values.



The recursive expression for the state vector estimation error in
(23) can now be used to formulate the state vector estimation error
covariance matrix at node ¢ and time instant n as

Cornn =3 > E{Gncla}+ > Y E{enela}

leN; keN; leN; keN;
T
+ 3 3 E{xiaxia} 25)
leN; keN;
here C =E T d =7
where Ce, | = E{€inn€,n} and Cin = Yin€n 1jn1,

whereas

El,n :p('(pl,nlyi,l:n) (I - Gl,nHl,n) Vin
Xl,n :p(¢l,n|yi,1:n)Gl,nwl,n~

Now, the following typical conditions in Kalman filtering analysis
are held to be true [14,30,31]:

o The state evolution and observation functions for all nodes in
the network become time invariant.

e The state evolution and observation noises become stationary.
e The matrix pairs VI € N : {A,, H, ,} are observable and
1
the matrix pairs VI € N : {A,, Cﬁl,n} are controllable.

Then, if the diffusion coefficients {p(t)1,»|yi,1:n) : VI,i € N} are
held constant, that is the cluster structure of the network becomes
time invariant, from the framework introduced in [14,30], it follows
that the matrices {M |, : | € N} become time invariant. More-
over, from Algorithm 1, time invariant matrices {M; ,,, : | € N}
result in the matrices {Gy,» : | € N} also becoming time invariant
and therefore Ce, as expressed in (25) converges.

in|n

5. SIMULATION EXAMPLE

In order to demonstrate the performance of the developed Kalman
filtering and clustering framework, we considered a target track-
ing application over the network shown in Fig. 1. The state vec-
tor, &;n = [Xi,n,Yiyn,Xi,n,Yi,n]T, consists of the positions,
{Xin,Yin}, and velocities, {X; ., Yin}, in the horizontal and
vertical directions of the i target.

Fig. 1: The network of 40 nodes and 159 edges used in simulations.

The state is assumed to experience an unknown acceleration

which is modeled as the process noise v, = [Xin,Yin]". The
state space equations for this problem are given as

1 0 AT 0 1(AT)? 0

o0 AT 0 L(AT)?

Tin=10 0 1 o |t AT 0

0 0 O 1 0 AT

1 0 0 O
Yin = |:O 1 0 0:| Lin + Wi n

where AT = 1/25s is the sampling interval.

Vin

The network was tasked with tracking two maneuvering objects.
For the first five seconds both objects where maneuvering in a close
formation allowing all nodes in the network to cooperate with each
other, tracking the formation as one target. Then, the objects split
their formation, at which point each agent in the sensor network
committed to tracking one of the objects, requiring the developed
algorithm to correctly cluster the agents that were tracking the same
object. The estimates of the position and speed of both objects are
shown in Fig. 2. Note that the developed distributed Kalman filter-
ing and clustering technique in Algorithm 1 was able to track both
objects when they were moving collectively in a formation. In ad-
dition, when the objects had split their formation and were moving
individuality, the proposed technique successfully clustered the net-
work allowing for continuous accurate tracking of both objects.

Ml Target 1 (Estimates) |

—Target 1 (True value)
Target 2 (Estimates)
—Taeget 2 (True value)

X-Position

Y-Position
&

Y-Speed
|

0 2 4

8
Time (s)

Fig. 2: Tracking performance of the proposed distributed Kalman
filtering and clustering framework across all 40 nodes. Estimates of
the position and speed of both objects are shown.

6. CONCLUSION

A distributed Kalman filtering and clustering framework has been
developed in order to provide real-time estimation/tracking capa-
bilities over large-scale multi-task sensor networks. The developed
framework only requires the sharing of local state vector estimates
alongside their associated covariance information and imposes lim-
ited communicational and computational load on the network. The
work also includes a mathematical performance analysis resulting in
the establishment of the mean square error convergence criteria.
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