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Abstract: Decomposition methods have been applied to in-plane Mueller
matrix ellipsometric scattering data of the Spectralon reflectance standard.
Data were measured at the wavelengths 532 nm and 1500 nm, using an
achromatic optimal Mueller matrix scatterometer applying a photomul-
tiplier tube and a high gain InGaAs detector for the two wavelengths. A
parametric model with physical significance was deduced through analysis
of the product decomposed matrices. It is found that when the data are
analyzed as a function of the scattering angle, similar to particle scattering,
the matrix elements are largely independent of incidence angle. To the
first order, we propose that a Guassian lineshape is appropriate to describe
the polarization index, while the decomposed diagonal elements of the
retardance matrix have a form resembling Rayleigh single scattering. New
models are proposed for the off diagonal elements of the measured Mueller
matrix.
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1. Introduction

It is important to have a well characterized Mueller matrix of white reflectance standards, such
as the Spectralon, in order to obtain correct measurements whenever applying this standard,
and in particular, in cases where the polarization of light intervene in the measurement pro-
cess [1–4]. For un-polarized and linearly polarized illumination, Spectralon white reflectance
standards are well documented and often used as calibration standards for optical instruments,
but for applications involving other polarization states, more documentation is needed [1]. The
Spectralon is the commercial product closest to a Lambertian surface, and is a white diffuse
material (based on polytetrafluoroethylene) with excellent reflection properties, produced by
Labsphere, USA. It is formed as a thermoplastic resin by heat and pressure treatment. The ther-
moplastic materials are resin machined into flat, thermally stable, high permittivity surfaces
with porosity within the top layer (generally a few tenths of a millimeter thick) that randomizes
the phase of the incident light-due to internal multiple reflections-to produce diffuse reflected
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light [4]. Indeed, the Spectralon has the highest diffuse reflectance values of any known sub-
stance (up to 99%) in the ultraviolet, visible, and near-infrared spectral ranges [1, 2], and the
reflection properties are spectrally flat between 400 and 1500 nm.

It is further fundamentally interesting to understand how a scattering Mueller matrix from
a strongly diffuse medium may be interpreted. It concerns both the interpretation of Mueller
matrices resulting from rough surfaces [5–7], powder samples, or extremely diffuse materials
such as the Spectralon [2], and the important related problem of Mueller matrices resulting
from biological tissue, which has recently regained considerable interest [8–12]. A parametric
model of the Mueller matrix elements of the Spectralon diffuser, which relates to basic physical
phenomena within the diffuser appears useful in order to develop the understanding of other
strongly scattering media, such as biological tissue.

Two recent studies by Svensen et al. [1] and Germer et al. [2] reported the Mueller matrix
measurements of the Spectralon using the wavelengths 532 nm [1] and 632.8 nm [2]. In the
work of Svensen et al., the Mueller matrix was presented for several incidence angles (0◦, 30◦,
45◦ and 60◦), and it was shown that the Mueller matrix could to the first order be seen as the
sum of an ideal diffuser and a correction matrix [1]. Furthermore, the degree of polarization
was observed to be a key parameter in order to develop a parametric model for each of the
elements of the Mueller matrix. The origin of the structure in the scattering Mueller matrix
elements reported in the work of Svensen et al. was not found, but in a recent study by Germer
et al. [2], it was noted that particle scattering is an important process for the Mueller matrix
of the Spectralon. Therefore, we have here pursued the idea that the Mueller matrix of the
Spectralon appears to belong to a more general class of particle scattering problems.

Considerable effort has been made in order to increase the understanding of the Mueller
matrix using various decomposition methods [8,9,13–18]. Decomposition of the Mueller matrix
allows to separate different polarization phenomena, and thus to identify the basic building
blocks of a complicated Mueller matrix consisting of both dichroism, retardance and diffuse
scattering [9]. In the current work, several decomposition methods have been applied to the
in-plane Mueller matrix scattering measurements of the Spectralon. As a result, more detailed
information about the sample has been extracted, and an improved parametric model for the
Mueller matrix has been obtained. In particular, the parametric model was found by studying
the data as a function of the Rayleigh scattering angle used in particle scattering experiments,
and by using the basis functions revealed from the decomposition.

2. Decomposition theory and basis functions

Product or polar decomposition allows the decomposition of a Mueller matrix into a prod-
uct of elementary Mueller matrices, describing depolarization, retardance and diattenuation
[13,14,17]. However, a given product decomposition may not always be representing the physi-
cal phenomena taking place in the sample, particularly whenever the different polarization alter-
ing phenomena are randomly ordered or occur simultaneously. There are several possible prod-
uct decomposition methods such as the symmetrical decomposition [15], and the more common
forward [17] and reverse [13] decompositions which are strongly interrelated [13]. The differ-
ential decomposition [12, 16, 19] and the recently described roots decomposition [20, 21] are
other possibly more appropriate alternatives. On the other hand, in the work of Svensen et
al. [1], a simplified version of the sum (or spectral) decomposition [1, 14] was used to propose
a parametrization of the Mueller matrix of the Spectralon.

In the Spectralon sample, many of the scattering phenomena that are altering the polarization,
may be envisaged to occur simultaneously, and the imposed ordering of the polarizing phenom-
ena in the product decomposition methods may be incorrect. As such, the forward, reverse and
symmetrical polar decomposition are equally (un)valid. Unfortunately, the most natural decom-
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position method for such a system, the differential decomposition method, is currently strictly
only valid for transmission geometries. As a result, the application of a decomposition method
is in this work regarded as an empirical mathematical method in order to enhance and reveal an
underlying dominating trend in order to parametrize the optical response. We choose therefore
to mainly report the application of the product decomposition, due to its numerical stability in
the presence of noise, in order to reveal more information about the basis functions describing
the scattering Mueller matrix elements.

The measured Mueller matrix (M) is, in the forward polar decomposition, decomposed
as [17]

M = M∆MRMD, (1)

where M∆ is the depolarization matrix, MR is the retardance matrix, and MD is the diattenu-
ation matrix. In terms of the forward polar decomposition, the depolarization, retardance and
diattenuation matrices are [17]

M∆ = M11

[
1 0T

p m∆

]
, MD =

[
1 dT

d mD

]
, MR =

[
1 0T

0 mR

]
. (2)

The polarizance vector p =
[

p1 p2 p3
]T and diattenuation vector d =

[
d1 d2 d3

]T
are directly available from the measured Mueller matrix, while the 3× 3 submatrices m∆, mR
and mD are determined by the polar decomposition formalism [13, 17]. For an ideal diffuser,
the M∆ is diagonal and given by M11·diag(1,α,β ,γ), where α,β and γ quantify the degree of
polarization of linear, elliptical and circular polarized light, respectively [14, 17]. However, in
the work of Lu and Chipman [17] it was proposed that the eigenvalues of m∆ give the three
principal depolarization factors, and hence the average degree of polarization can be defined
by [17]

pC =
1
3
(α +β + γ) . (3)

The total retardance is calculated from the retardance matrix as [18]

R = cos−1
(

Tr(MR)−1
2

)
. (4)

A non-depolarizing matrix can in many cases be made up of the basic building blocks of a
diattenuator and a retarder. The block diagonal building block, the so-called isotropic dichroic
retarder, commonly encountered in specular reflection from an isotropic surface, or from Mie
scattering from small particles is a particularly useful reference

MDR = M11


1 m12 0 0

m21 1 0 0
0 0 m33 m34
0 0 m43 m44

 . (5)

For Mie spheres, expressions for the matrix elements are given by e.g. Bohren and Huff-
man [22], while for reflection from a plane isotropic surface, the matrix elements, for a {p̂, ŝ, k̂}
right handed geometry, are given by the normal ellipsometric angles Ψ and ∆ [23, 24]

m12 = m21 =−cos(2Ψ), m33 = m44 = sin(2Ψ)cos∆, m34 =−m43 = sin(2Ψ)sin∆. (6)

For Rayleigh particles, the normalized Mueller matrix elements are further simplified and given
by [22]

m12 = m21 =
sin2 (θR)

1+ cos2 (θR)
, m33 = m44 =

2cos(θR)

1+ cos2 (θR)
, m34 = m43 = 0. (7)
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The polarization index pD (or degree of purity) [25], which is obtained from the full Mueller
matrix was selected as the key figure to model the Spectralon Mueller matrix [1]

pD =

(
Tr
(
MT M

)
−M2

11

3M2
11

)1/2

=


4
∑

i, j=1
M2

i j−M2
11

3M2
11


1/2

. (8)

The polarization index is between 0 and 1, i.e. 0≤ pD ≤ 1. When pD = 0, the outgoing light is
fully depolarized, and when pD = 1, the outgoing light is fully polarized. This index compares
well to the average degree of polarization pc (Eq. (3)).

3. Experimental details

Spectralon

Fig. 1. Geometry for the scattering experiment, defining the incidence angle θi, the
Rayleigh scattering angle θR and the Rayleigh scattering angle θS used in [1]. The figure
also shows the right handed coordinate system {x̂, ŷ, k̂} used in the paper, where x̂ = −p̂,
ŷ = ŝ with reference to the right handed system {ŝ, p̂, k̂}. The arrows define positive direc-
tion.

New Mueller matrix data were recorded for the Spectralon in the in-plane scattering geome-
try shown in Fig. 1. The experimental data are presented according to the right handed coordi-
nate system {x̂, ŷ, k̂} where x̂ =−p̂, ŷ = ŝ with respect to the right handed system {ŝ, p̂, k̂}, see
Fig. 1. All measurements were performed in the incidence plane (see Fig. 1 for the definitions
of the angles). The Stokes vector is in this case given as

S =


Ix̂ + Iŷ
Ix̂− Iŷ

Ix̂+ŷ− Ix̂−ŷ
IRC− ILC

 . (9)

Mueller matrices for an illumination wavelength of λ = 532 nm were measured at every 1◦

for scattering angles θS (see Fig. 1) relative to the normal of the Spectralon surface from −90◦

to 90◦, with the exception of a dead-zone of ±10◦ around the back-scattering angle. A rotating
diffuser was used prior to the polarization state generator in order to remove speckle effects [1].

#188283 - $15.00 USD Received 11 Apr 2013; revised 11 Jul 2013; accepted 11 Jul 2013; published 26 Jul 2013
(C) 2013 OSA 29 July 2013 | Vol. 21,  No. 15 | DOI:10.1364/OE.21.018509 | OPTICS EXPRESS  18513



Mueller matrices at λ = 1500 nm are reported for every 2◦ for θS from 10◦ to 90◦, as we will
show that the Mueller matrix was found similar to the one at λ = 532 nm. It is emphasized
that the data at λ = 1500 may contain speckle effects, as no rotating diffuser was available for
that wavelength. It is noted that all the measured Mueller matrices were found to be physical
according to the Cloude filtering criterion [26].

A well conditioned broadband (achromatic) Mueller matrix ellipsometer [27] was used to ac-
quire the experimental data at both wavelengths (see [1] for the experimental details at 532 nm).
A 45 mW laser at 1500 nm and an InGaAs detector with variable gain

(
105−109

)
were used

for the near infrared measurement.

4. Results and discussion

0

1

2 M11

-.1

0

m21

θi = 75◦ θi = 60◦ θi = 45◦ θi = 30◦ θi = 0◦ Model

0

.05
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m42

-.06

0

.06
m13

0

.08
m23

0
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−100 0 100

θR (deg)

-.12

-.06

0 m43

0

.06

.12
m14

-.06

0

.06 m24

-.1

0

.1 m34

−100 0 100

θR (deg)

0

.4

m44

Fig. 2. The measured Mueller matrix data from the Spectralon surface with illumination
at incidence angles θi of 0◦ (green x marks), 30◦ (purple crosses), 45◦ (blue circles), 60◦

(red stars), 75◦ (cyan squares) plotted as a function of the Rayleigh scattering angle θR.
The full curves show the fitted parametric model in Eq. (19). All elements, except M11, are
normalized to M11.

Figure 2 shows the Mueller matrices recorded at 532 nm for the angles of incidence 0◦,
30◦, 45◦, 60◦ and 75◦, where all elements have been normalized by M11. The M11 element is
proportional to the phase function, and is shown in the top left figure. Its form is typical for a
near Lambertian diffuser [1,4], although the total intensity has not been calibrated in the current
work. It is particularly noted that the Mueller matrix elements have been plotted and analyzed
as a function of θR. It is observed from Fig. 2 that the general trend of the normalized Mueller
matrix elements appears to be independent of the incidence angle. Deviations from this trend
can be observed for light scattered nearly parallel to the sample surface. It is also observed that
both block diagonal and off-block diagonal elements are non-zero, particularly for angles close
to the sample surface, showing that the Spectralon in these cases is far from an ideal diffuser.
The diagonal elements are seen to be strongly dominating for scattering near parallel to the
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sample surface.
It is interesting to note that the amplitudes of the m24 ≈ −m42 elements oscillate with the

azimuthal orientation (χ) of the sample (i.e. upon rotating the sample around its normal), and
that they can be close to zero in a given orientation, see Fig. 3. Such an anisotropic effect
was also observed by Germer et al. [2]. To demonstrate smaller variations in the remaining
Mueller matrix elements upon sample rotation, we have also plotted ∆m33 ≡ m33−〈m33〉 and
∆(m34−m43)≡ (m34−〈m34〉)− (m43−〈m43〉), where

〈
mi j
〉

are the averages upon a full 360◦

rotation, as a function of χ . There may be a weak oscillation in the m34 and m43 elements, while
the remaining elements are not observed to oscillate upon azimuthal rotation of the sample,
similar to ∆m33 in Fig. 3. It is thus curious that here the linear retardance between the ±45◦

axis is strongly oscillating, while the linear retardance along the x− y axis is only weakly
oscillating, when interpreted using the differential decomposition theory [12,16]. However, the
off-block diagonal elements are non-zero (except possibly m14 and m41), although only m24 and
m42 are observed to be sensitive to the azimuthal orientation of the sample (χ).

0 30 60 90 120 150 180 210 240 270 300 330 360
-0,15

-0,10

-0,05

0,00

0,05

0,10

0,15

m
24

-m
42

, 
(m

34
-m

43
), 

m
33

 (deg)

 m24-m42

 (m34-m43)
 m33

Fig. 3. The difference of the off-diagonal elements (m24−m42), ∆m33 ≡ m33−〈m33〉 and
∆(m34−m43)≡ (m34−〈m34〉)− (m43−〈m43〉), where

〈
mi j
〉

are the averages upon a full
360 degrees rotation, at 532 nm. The data are plotted against the azimuthal angle of the
Spectralon for incidence angle 75◦ and Rayleigh scattering angle 35◦.

Figure 4 shows the recorded Mueller matrix for both wavelengths 1500 nm and 532 nm for
the angle of incidence 75◦. The Mueller matrix at 1500 nm has a similar form, but with small
differences that will be discussed below.

4.1. Model for pD

When the data are plotted against the Rayleigh scattering angle, the depolarization indices pD
are also observed to become nearly independent of the incidence angles. Previously it was
proposed that the following parametric model could represent the data [1]

pD =

∣∣∣∣∣ (θS +θi)
3

22

∣∣∣∣∣=
∣∣∣∣∣ (180−θR)

3

22

∣∣∣∣∣ . (10)
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Fig. 4. Measured Mueller matrix data from the Spectralon surface with illumination at an
incidence angle of θi = 75◦ and wavelengths 532 nm (red triangles) and 1500 nm (blue
crosses) plotted against the Rayleigh scattering angle θR. The full curve shows the fitted
parametric model at 1500 nm in Eq. (19). All elements are normalized to M11.

However, one may further argue that in the forward scattering direction, then both in the Mie
and the Rayleigh scattering model, light should be highly polarized while pD should be less or
equal to one. This is also the case for scattering at a grazing incidence. Therefore, we propose
that a peak function, such as the Gaussian function, is a more appropriate choice to fit the data,
see Fig. 5. As a result, the following Gaussian function is proposed to model pD

pD (θR) = p0 +(1− p0− pBS)exp

(
−0.5

(
θR−θF

wF

)2
)
+ pBS (θR) , (11)

where also a constant offset p0 is added. Furthermore, a function pBS is added in order to
express the additional polarization taking place at the backscattering angle

pBS (θR) = ABS exp

(
−0.5

(
| θR | −180

wB

)2
)

. (12)

The increased polarization at the backscattering angle is only weakly present in the data in Fig.
5, due to the design of the current Mueller matrix apparatus, but the data of Germer et al. con-
firm this trend [2]. It is clear that more structure in the data may be present at the backscattering
angle. It is noted that the model is strictly only valid for 90◦− θi ≤ θR and θR ≤ −θi− 90◦.
Furthermore, the model does not capture deviations in pD for scattered light nearly parallel to
the sample surface, as particularly seen from the data at 532 nm (Fig. 5(a)). Values for the fitted
parameters for pD on the entire data set at 532 nm are given in Table 1, and the plot is shown
in Fig. 5(a).
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A Gaussian lineshape was also observed for the pD data at 1500 nm, as seen in Fig. 5(c)
(note that data were here only recorded for positive θR). It shows that pD from 532 nm (dashed
line) is less polarized compared to 1500 nm (full line) for scattered light close to the surface
plane. For the back scattering direction, 1500 nm is less polarized than 532 nm. Elsewhere, the
differences appear small.

0.0
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 model 1500 nm
 model 532 nmp D
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(c)

exp ( i=30o,75o)
model 1500 nm
model 532 nm

=1500 nm

Fig. 5. Figures (a) and (b) show the depolarization index pD (a) and the depolarization
factors α , β and γ (b) determined from forward product decomposition for five different
incidence angles (θi = 0◦,30◦,45◦,60◦,75◦) at λ =532 nm plotted against the Rayleigh
scattering angle θR. Tentative fits are shown using the model in Eq. (11) and the parameters
in Table 1. Figures (c) and (d) show the depolarization index pD (c) and the depolarization
factor γ (d) determined from the forward product decomposition for two different incidence
angles (θi = 30◦,75◦) at λ = 1500 nm plotted against θR. The full and dotted lines in (c)
show the fitted models for pD to the data at λ = 1500 nm (see Table 2) and λ = 532 nm,
respectively. The full and dotted lines in (d) shows the fitted model for γ in Eq. (13) with
the parameters in Table 2 for λ = 1500 nm and the model for λ = 532 nm, respectively.

We will now develop an alternative parametric model for the Mueller matrices in Fig. 2 and in
Fig. 4, by inspection of the decomposed Mueller matrices using the product decomposition, and
looking for a mathematical form of the Mueller elements which may have a common physical
interpretation. In particular, the forward polar decomposition allows to inspect the details of
the retardance matrix MR, the diattenuation matrix MD and the elements of the depolarization
matrix M∆.
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Table 1. Fitted parameters for the polarization index (pD) and the depolarization factors,
using Eq. (11) at 532 nm. The fitted data are shown in Figs. 5(a) and 5(b).

λ = 532 nm p0 wF θF(
◦) ABS wB

pD 0.06 36.8 −9.4 0.08 13.4
α 0.06 38.6 −7.9 0.11 12.6
β 0.04 33.0 −5.7 0.086 18.5
γ 0.038 36.1 −12.4 0.05 9.4

4.2. Simplified model for M∆

The decomposed Mueller matrix was found to result in a close to diagonal m∆. The other off-
diagonal elements were therefore for simplicity neglected in the analysis. Let us inspect these
diagonal components which we then for simplicity relate directly to α , β and γ of the ”diag-
onal” depolarization matrix at 532 nm (see Eq. (2)) in Fig. 5(b), where we also neglect the
fact that we are not dealing with an ideal diffuser since the polarizance is non-zero [14]. The
model in Eq. (11), was used to fit the full datasets for α , β and γ at 532 nm. The resulting
parameters from the fits are given in Table 1. Again, it is noted that the parameters describing
the back-scattering contribution are only indicative, since we have limited data in this region.
The diagonal components α , β and γ of the depolarization matrix at 1500 nm involves another
complication, as the measured matrix can be seen to change from a positive to a negative de-
terminant as a function of the Rayleigh scattering angle. We have treated this issue using the
recipe described by Ossikovski et al. [28]. However, we observe that at 1500 nm, γ has a dif-
ferent shape than at 532 nm, and at 1500 nm we had to use a Lorentzian peak function for a
reasonable fit. As a result, the model in Eq. (11), was used to fit the full datasets for α , β at
1500 nm, while the following Lorentzian function was used to fit γ

p0 +(1− p0)

[
1+
(

θR−θF

wF

)2
]−1

. (13)

The fitted parameters for α , β and γ for λ = 1500 nm are given in Table 2.

Table 2. Fitted parameters for the depolarization factors α and β using Eq. (11) and γ using
Eq. (13), at 1500 nm. The fits to pD and γ are shown in Fig. 5.

λ = 1500 nm p0 wF θF(
◦) ABS wB

pD 0.05 31 1.2 0.04 20
α 0.037 31 2.8 0.067 22
β 0.011 31 1.7 0.06 35
γ −0.04 32 6.7

4.3. Simplified model for MR and MD matrices

Let us now analyze the retardance matrix, MR. First, inspecting the retardance in Eq. (4), one
can observe a similar trend for the scattered light at 532 nm and at 1500 nm, see Fig. 6. In both
cases, the retardance increases as a function of the Rayleigh scattering angle θR and crosses
90◦ after θR = 90◦. There appears to be a definite observable difference between the two wave-
lengths. The jumps around 95◦− 110◦ in the retardance at 1500 nm, are noise believed to be
due to speckles.
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Fig. 6. Retardance (given by Eq. (4)) at 532 nm (full squares) and 1500 nm (hollow trian-
gles) with incident angle θi = 75◦ plotted as a function of the Rayleigh scattering angle θR.
The two vertical lines indicate when the retardance crosses 90◦. Note that θB (i.e. vertical
lines) were determined from Fig. 7. The Figure also shows the function R ≈ arccos(C)
(blue dotted line), with θB ≈ 7◦.

Figures 7(a) and 7(c) shows the normalized mR33 and mR44 elements of the retardance matrix
MR for all recorded angles of incidence. Figs. 7(b) and 7(d) shows the retardance data of mR34
and mR43 for all recorded angles of incidence. It is interesting to observe that mR33 and mR44
are nearly identical and follow the Rayleigh scattering model for all incidence angles, when
analyzed as a function of θR

C = mR33 = mR44 =
2cos(θR−θB)

1+ cos2 (θR−θB)
, (14)

except for an apparent shift of mR33 and mR44 of approximately θB ≈ 7◦ at 532 nm and θB ≈ 15◦

at 1500 nm as indicated by the vertical lines in Fig. 7. A similar functional form (without the
shift) was used by White [29] and further proposed by Germer et al. [2] for modeling of the
Spectralon. The shift θB, appears to be dispersive (i.e. a funtion of wavelength), although we
find that a similar analysis of the Mueller matrix data reported by Germer et al. also gives a
shift θB ≈ 7◦ at 632.8 nm. The shift θB is suggested related to a pseudo Brewster angle as a
result of particle scattering [30]. It is also useful to observe that the total retardance R in Fig. 6
has a functional form well described by R≈ arccos(C), particularly at 532 nm.

The mR34 and mR43 elements, which are normally zero in the Rayleigh scattering model, are
proposed to have a related form

S = mR34 =−mR43 =
sin(θR−θB)

1+ cos2 (θR−θB)
, (15)

with a similar shift of θB ≈ 7◦ at 532 nm and θB ≈ 15◦ at 1500 nm. The origin of such a
functional form could be the averaging of the Mie scattering from anisotropic shaped particles.
On the other hand, one could also imagine that light scattered by particles will travel through a
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form-birefringent medium causing such a retardance. The retardance appears as the dominant
effect, and its effect scales approximately with pD ≈ α ≈ β ≈ γ in the final Mueller matrix.
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Fig. 7. Figures (a) at 532 nm and (c) at 1500 nm show the mR33 and mR44 elements from
the retardance matrix MR plotted against the Rayleigh scattering angle θR. The simulated
curve is given by Rayleigh scattering theory (see Eq. (14)). Figs. (b) at 532 nm and (d) at
1500 nm show the mR34 and mR43 elements from the retardance matrix MR plotted against
θR. The simulated curve shows ±S (see Eq. (15)). The left Figs. (a) and (b) are data at
532 nm, with incident angles θi = 30◦,45◦,60◦,75◦. The simulated data at 532 nm (full
and dotted lines) use θB ≈ 7◦. Figs. (c) and (d) are data at 1500 nm, with incidence angles
θi = 30◦ and 75◦, and simulated data with θB ≈ 15◦. The vertical lines indicate the location
of θB.

Having determined the basic functional forms for the lower right elements of the mR re-
tardance sub-matrix, we may similarly try to parametrize the remaining elements of mR,
see the experimental data in Fig. 8. Indeed, the function −0.02 + 0.17R ≈ −p0/3 + R/6,
where R = arccos(C), gives a reasonable fit to the available data sets at 532 nm, for the
mR23 element (note that mRi j refers to the retardance matrix MR). Similarly, the function
0.02− 0.23N ≈ p0/3−N/4 fits the mR24 dataset, while mR22 ≈ 1. Adapting the symmetries
mR23 ≈ mR32 and mR24 ≈ −mR42 , we obtain a reasonable model for the entire retardance sub-
matrix. The experimental decomposed retardance sub-matrix at 532 nm and incidence angles
θi = 30◦, 45◦, 60◦ and 75◦ is shown together with the simulations in Fig. 8. This model for the
retardance sub-matrix appears reasonable, and a similar model also appears suitable at 1500 nm.

There are other interesting features in the diattenuation and the polarizance vectors, partic-
ularly in the m12 and m21 elements, of the original measured Mueller matrix, which appear to
scale as p2

D ≈ α2. Upon searching for the Rayleigh type functional form for the m12 and m21

#188283 - $15.00 USD Received 11 Apr 2013; revised 11 Jul 2013; accepted 11 Jul 2013; published 26 Jul 2013
(C) 2013 OSA 29 July 2013 | Vol. 21,  No. 15 | DOI:10.1364/OE.21.018509 | OPTICS EXPRESS  18520



0

.4

.8 mR22

θi = 45◦ θi = 60◦ θi = 75◦ Model

-1

0

1

mR32

−100 0 100

θR (deg)

-1

0

1
mR42

-1

0

1

mR23

-1

0

1
mR33

−100 0 100

θR (deg)

-1

0

1

mR43

-1

0

1
mR24

-1

0

1

mR34

−100 0 100

θR (deg)

-1

0

1
mR44

Fig. 8. The experimental retardance sub-matrix mR (symbols) and the simulated mR (full
lines), both plotted against the Rayleigh scattering angle θR. The experimental data are at
532 nm, with incident angles θi = 30◦, 45◦, 60◦ and 75◦. The simulated data use θB ≈
7◦, and the basis functions N, C and S in addition to p0. The notation mRi j refers to the
retardance matrix MR.

elements, it was observed that

m12 + p0/2
4p2

D
≈− sin2 (θR−θB)

1+ cos2 (θR−θB)
=−N. (16)

The offset angle θB is found to be similar, although not identical, to the corresponding angle
for the retardance matrix. Although both N, S and C appear as reasonable functional forms to
describe the full data sets, there are certain problems with the periodicity of these functions
as a function of θR. We therefore believe that a further improved model must properly include
other nonlinear effects in both θR and θB as a result of refraction, and thus as a function of
incidence and the Rayleigh scattering angle. Finally, it is noted that the diattenuation sub-matrix
was found to be close to the identity matrix, and any variations therein was neglected in the
development of the parametric model.

4.4. Final parametric model for the Mueller matrix at 532 and 1500 nm

We now return to the original Mueller matrix, and seek a parametric model using the functional
forms based on α , β and γ , in addition to N, C and S as determined in the above decom-
position analysis. We propose that a simplified parametric model for the Mueller matrix for
the Spectralon, can now be obtained using polar product decomposition. First, let p ≈ d ≈[ 1

2 p0−4α2N,0,0
]T

, m∆ ≈ diag(α ,β ,γ), mD ≈ diag(1,1,1) and mR ≈

 0 0 0
0 C S
0 −S C

 , giv-

ing the M∆, MR and MD matrices in Eq. (2). A direct application of the forward decomposition,
i.e. using Eq. (1), will lead to additional terms of the order α|d|, |d|2 and smaller, and further
p is no longer identical to d as initially assumed. This is an artefact due to the simplifications
in the parametrisation of the decomposed matrices. We therefore argue that the observed sym-
metry of the experimental Mueller matrix must remain, and that the Mueller matrix should also
remain physically realizable in the forward scattering direction. As a result, these additional
terms can be neglected. The latter approximation gives identical results to simply letting p = 0
in M∆, prior to the matrix multiplication, and a back-substitution of p = d into the final Mueller
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matrix. The latter approach will result in the following simplified Mueller matrix with a certain
physical basis

M≈M11


1 1

2 p0−4α2N 0 0
1
2 p0−4α2N α 0 0

0 0 βC βS
0 0 −γS γC

 , (17)

where C, S and N are defined as in Eqs. (14), (15) and (16), respectively. We similarly propose
a complete parametric model using the above basis functions, that will better fit also the off
diagonal elements of the Spectralon Mueller matrices. From trial an error, we parametrize p≈
d ≈

[ 1
2 p0−4α2N, 1

2 p0−2α2N, 1
3 p0
]T

. We use m∆ ≈ diag(α ,β ,γ) and mD ≈ diag(1,1,1) as
above, while the retardance sub-matrix is refined to

mR ≈

 1 − 1
3 p0 +

R
6

1
3 p0− 1

2 N sin χ

− 1
3 p0 +

R
6 C S

− 1
3 p0 +

1
2 N sin χ −S C

 , (18)

where R = arccos(C). Furthermore, the oscillation of the m24 and the −m42 elements have
been introduced in the model as a function of χ . Hence, the matrix product of Eq. (1), with
p = 0, followed with a back-substitution of p = d in the resulting Mueller matrix, result in the
following Mueller matrix

M = M11


1 1

2 p0−4α2N 1
2 p0−2α2N 1

3 p0
1
2 p0−4α2N α α

( 1
3 p0− 1

6 R
)

α
( 1

3 p0− 1
2 N sin χ

)
1
2 p0−2α2N β

( 1
3 p0− 1

6 R
)

βC − 1
4 p0 +βS

1
3 p0 γ

(
− 1

3 p0 +
1
2 N sin χ

) 1
4 p0− γS γC

 .

(19)

We get two sets of parameters, one for each wavelength. For 532 nm, the parameters for the
depolarization factors are given in Table 1, with θB ≈ 7◦. For 1500 nm, the parameters for the
depolarization factors are given in Table 2, and θB ≈ 15◦. Note that the m14 and m41 elements
are negligible at 1500 nm, and that a small constant ±p0/4 has been added to the m34 and
m43 elements, for a minor adjustment to the experimental data. We have used χ = 30◦ for the
modelling of both wavelengths in Figs. 2 and 4. Similarly, one could propose a small, although
more uncertain, oscillation in the m34 and m43 elements.

The Mueller matrix resulting from the parametric model in Eq. (19), is plotted in Fig. 2
together with the experimental data. It is observed, that there is a reasonable correspondence to
the range of obtained experimental data. There is a distinct improvement in the correspondence
between the model and the experimental results compared to previous work [1], although more
parameters have been introduced in the new model. The modelled Mueller matrix for 1500 nm
is shown in Fig. 4 together with the data at 532 nm. Only weak differences are observed between
the two wavelengths, e.g. m14 and m41 have a much smaller offset at 1500 nm, and m44 is larger
at 1500 nm. A self consistency-check was performed by recalculating the polarization index
pD using Eq. (8) for both wavelengths. This recalculated polarization index was found to be
in excellent agreement with both the experimental data and the Gaussian model in Eq. (11),
except for the already mentioned deviation for scattering near parallel to the surface.

The parametric model indicate that Mie and Rayleigh scattering appears as an important
process for the Spectralon reflectance standard. It is interesting that the complex form of the re-
tardance matrix can be derived from the basis functions N, C and S. However, as with Rayleigh
particles, little direct information about the particles themselves are projected in the current
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model, except for possibly the shift angle θB, which may be regarded as a pseudo-Brewster an-
gle, and thus be related to either the average material properties or the optical properties of the
scatterers [30]. The apparent dispersion of θB supports the latter hypothesis. It is striking that
the m12 and the m21 elements are apparently scaling with ∼ p2

D, possibly indicating a multiple
scattering process. There are experimental uncertainties with respect to the constant offsets in
the measured Mueller matrix (particularly m13 and m14), but we have not been able to relate
these to any evident experimental artefacts. As in [1], the m14 and m41 elements have been
modelled by constants.

Finally, to reduce the number of free parameters, the result in Eq. (19) can be put into a
reduced form

M = M11


1 −4p2

DN −2p2
DN 0

−4p2
DN pD −pD

1
6 R −pD

1
2 N sin χ

−2p2
DN −pD

1
6 R pDC pDS

0 pD
1
2 N sin χ −pDS pDC

 , (20)

where pD ≈ pC ≈ α ≈ β ≈ γ and p0 has been neglected. It is now clearly observed that the
lower right 3× 3 matrix is basically the retardance sub-matrix multiplied with the average
depolarisation factor. To complete the discussion, we can now write the matrix as the sum of an
ideal diffuser scaling with the average degree of depolarization, and a correction matrix scaling
with the average degree of polarization

M = M11

(1− pD)diag(1,0,0,0)+ pD


1 −4pDN −2pDN 0

−4pDN 1 − 1
6 R − 1

2 N sin χ

−2pDN − 1
6 R C S

0 1
2 N sin χ −S C


 ,

(21)
i.e. in a similar form to the one previously reported [1], but with basis functions with an im-
proved physical insight.

It appears interesting to study other well determined diffuse samples to investigate whether
the above product decomposition method and in particular, the parametric model found for the
Spectralon, may be applied to other strongly scattering systems, such as rough surfaces and
powder samples. The exact dependency of incidence angle is expected to be revealed with a
combination of more data and improved models. As a result, it is envisaged that more informa-
tion about the scatterers may be extracted from the normalized Mueller matrix.

Preliminary studies of the current dataset, comparing the product decomposition and the
current formulation of the differential decomposition [12, 16], give highly similar results for
α,β ,γ and the linear retardance in the range 0≤ θR ≤ 90◦, while it is interesting to observe that
the current formulation of the differential decomposition method must be revised for θR > 90◦.
Indeed, this is as expected since the current form of the differential decomposition is only valid
for forward scattering. A revised version of the differential decomposition method [12,16] could
be a more appropriate tool for analysis of the scattering Mueller matrix for the Spectralon.

Finally, it has been proposed to further refine/validate the parametric model for the off-
diagonal elements using a few higher order terms in the actual Mie solution. This approach
would definitively result in a model based on stronger physical ground, but is out of the scope
of the current work.

5. Conclusion

A new parametric model for the Mueller matrix of a Spectralon white reflectance standard
diffuser has been determined through the use of polar (product) decomposition techniques. New
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Mueller matrix data at the wavelengths 532 nm and 1500 nm are presented and analyzed. It was
found particularly useful to study the Spectralon in terms of the standard ”particle” or Rayleigh
scattering angle, which made the depolarization index and the Mueller matrix elements close to
independent of the incidence angle. The basic building blocks in the new model is a Gaussian
parametric model for the depolarization index, multiplied with Rayleigh like functional forms
deduced from the decomposed matrices. A pseudo Brewster angle appeared dispersive and
characteristic of the material. The use of decomposition techniques appears promising in order
to reveal the basic functional building blocks of a given scattering Mueller matrix, and it is
envisaged that the methodology presented here can be used to study other strongly diffuse
samples. Finally, a well characterized Mueller matrix of the Spectralon makes it also useful as
a calibration standard for polarization sensitive systems.
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