
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f M
ar

in
e

Te
ch

no
lo

gy

G
ra

du
at

e
th

es
is

Aksel Knudsen Nordstoga

AutoVoyage: Autonomous path-
planning, path-generation, and path-
following for autonomous ships in
transit

Graduate thesis in MTMART
Supervisor: Roger Skjetne

June 2019

Aksel Knudsen Nordstoga

AutoVoyage: Autonomous path-planning,
path-generation, and path-following for
autonomous ships in transit

Graduate thesis in MTMART
Supervisor: Roger Skjetne
June 2019

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology

NTNU Trondheim

Norwegian University of Science and Technology

Department of Marine Technology

MSC THESIS DESCRIPTION SHEET

Name of the candidate: Nordstoga, Aksel Knudsen

Field of study: Marine control engineering

Thesis title (Norwegian): AutoVoyage: Autonom baneplanlegging, banegenerering, og

banefølging for autonome skip under transit

Thesis title (English): AutoVoyage: Autonomous path-planning, path-generation, and path-

following for autonomous ships in transit

Background
Autonomous ships, especially unmanned autonomous ships, need to plan, navigate, and execute the voyaging

maneuvers from departure to destination without human intervention. In particular, the autonomous ship pilot, a

cognitive machine pilot, needs to sense and interpret (model) the ambient conditions with high certainty, plan a path

and speed, perform navigation, and execute the plan by maneuvering the ship accordingly. If needed, the machine

pilot must also perform obstacle avoidance and anti-collision and thereby replan the path and speed to reach the

destination according to voyage specifications. This involves understanding of:

 the ship dynamics (inertial delays, responses to currents, wind, and propulsion, etc.),

 path feasibility requirements and safety maneuvers (crash stop, turning circle, …) for the ship,

 how to maneuver safely and optimally in waves and currents,

 under voyage path and speed decision making to satisfy local and global objectives, and

 the sensors and monitoring variables for data analysis to ensure situational awareness.

The objective of this thesis is to develop an intelligent guidance concept for an autonomous ship in transit from

initial point 𝑝0 to target 𝑝𝑡 , where a global low-resolution path-planning method, such as A*, is combined with a

dynamic method based on a bio-inspired neural network (BINN), to locally achieve a higher resolution reactive

path-planning sensitive to local ambient conditions. This includes consideration of global and local partitioning of

the operation area, how to integrate the global and local method in a smooth manner, how to online and recursively

generate a feasible path, efficient computational representation of the neural network in code, optimization for

deciding local progression to the next neuron, how to deal with currents, and finally how to do the path-following

control.

The main goal is to develop a complete system for autonomous path planning, feasible and recursive path generation,

and maneuvering control, with testing in simulations and the MC-Lab.

Work description
1. Provide a background and literature review with information and relevant references on:

 Autonomous ship-voyaging system architecture and layers as designed for this problem.

 Relevant partitioning method(s) and path planning methods for global path.

 Use BINN for online and local path-planning for transit operation.

 Method(s) for generation of feasible path segments.

 Basic graph theory to represent a network of neurons with dynamic activity.

 Relevant ship dynamical model(s).

Write a list with abbreviations and definitions of terms, explaining relevant concepts related to the literature

study and project assignment.

2. Work together with other students working on C/S Artic Drillship (CSAD) in MC-Lab on establishing

simulations model(s) and carrying out HIL- and MC-Lab testing. Formulate the problem for this case study,

including description of setup, vessel and its equipment, dynamical models, operation workspace, test

scenarios, specific assumptions, and a problem statement.

3. Study the Voronoi partitioning method for the global path. Perform waypoint reduction on the partitioned

work space to allow for efficient path planning for AutoVoyaging from 𝑝0 to 𝑝𝑡 . Implement and test the

method in a simulation relevant for your application. Present the results for a few relevant cases.

4. Find the optimal global path from 𝑝0 to 𝑝𝑡 using a suitable search algorithm, such as the A* algorithm, given

the waypoints from the Voronoi diagram. Develop, implement, and test the method in a simulation system

relevant for your application. Present the results for a few relevant cases.

NTNU Faculty of Engineering Science and Technology

Norwegian University of Science and Technology Department of Marine Technology

2

5. From the global path-planning, a coarse (low-resolution) grid and path is obtained. With the task to move

from waypoint 𝑝𝑘 to 𝑝𝑘+1, let a local reference frame start at 𝑝𝑘 and point towards 𝑝𝑘+1. Between these two

waypoints, determine the resolution of a finer grid so that the vessel may maneuver efficiently while being

sufficiently reactive to moving obstacles. Develop, implement, and test the BINN method for moving from 𝑝𝑘

to 𝑝𝑘+1 in a simulation system relevant for your application. Present the results.

6. For maneuvering in the local BINN network, develop a recursive path-generation algorithm that ensures a

smooth (𝐶3) curve with continuous path derivatives also in the connection points. Derive also the heading

reference along the path. At a specified circle of acceptance, the next local waypoint should be determined

and a new path segment generated. Present the result by simulation.

7. Integrate the local and global path-planning and path-generation techniques, with bumpless transfer in the

switching points, so that the overall path becomes a 𝐶3 curve from 𝑝0 to 𝑝𝑡 . Implement and test the overall

system in a simulation relevant for your application, and present the results.

8. Test the AutoVoyage system for CSAD in MC-Lab. Present the implementation and results.

Specifications
The scope of work may prove to be larger than initially anticipated. By the approval from the supervisor, described topics

may be deleted or reduced in extent without consequences with regard to grading.

The candidate shall present personal contribution to the resolution of problems within the scope of work. Theories and

conclusions should be based on mathematical derivations and logic reasoning identifying the various steps in the

deduction.

The report shall be organized in a logical structure to give a clear exposition of background, results, assessments, and

conclusions. The text should be brief and to the point, with a clear language. Rigorous mathematical deductions and

illustrating figures are preferred over lengthy textual descriptions. The report shall have font size 11 pts., and it is not

expected to be longer than 80 pages, from introduction to conclusion, unless otherwise agreed upon. It shall be written

in English (preferably US) and contain the following elements: Title page, abstract, acknowledgements, thesis

specification, list of symbols and acronyms, table of contents, introduction with objective, background, and scope and

delimitations, main body with problem formulations, derivations/developments and results, conclusions with

recommendations for further work, references, and optional appendices. All figures, tables, and equations shall be

numerated. The original contribution of the candidate and material taken from other sources shall be clearly identified.

Work from other sources shall be properly acknowledged using quotations and a Harvard citation style (e.g. natbib Latex

package). The work is expected to be conducted in an honest and ethical manner, without any sort of plagiarism and

misconduct. Such practice is taken very seriously by the university and will have consequences. NTNU can use the

results freely in research and teaching by proper referencing, unless otherwise agreed upon.

The thesis shall be submitted with an electronic copy to the main supervisor and department according to NTNU

administrative procedures. The final revised version of this thesis description shall be included after the title page.

Computer code, pictures, videos, dataseries, etc., shall be included electronically with the report.

Start date: January, 2019 Due date: As specified by the administration.

Supervisor: Roger Skjetne

Co-advisor(s): Jon Bjørnø, Einar Ueland, and Henrik Schmidt-Didlaukies

Trondheim, 14.03.2019

Roger Skjetne

Supervisor

Abstract

This thesis presents a complete system for autonomous path-planning, path gener-
ation and maneuvering control for a marine surface vessel.

The path-planner is divided into a global low-resolution path-planner, which plans
a coarse route from point of departure to point of arrival, and a local high-resolution
path-planner, which produces the intermediate waypoints on the global path and
performs obstacle avoidance. For the global path, the operation area is partitioned
using Voronoi diagrams, due to its low computational cost and built-in clearance
to obstacles. A* search is then used to find in terms of waypoints the shortest
route through the partitioning. Excess waypoints are then removed from the path
to reduce heading changes and path length.

A bio-inspired neural network approach for real-time trajectory generation is used
to implement the local path-planner. The approach is based on a dynamic activ-
ity landscape representation of the environment that the vessel operates in. By
associating each cell in a grid decomposition with a neuron in the neural network
architecture, the environment is translated into a dynamic activity landscape where
the target locations become peaks and obstacle locations become valleys. The op-
timal path is then found by following a steepest gradient ascent rule, until the peak
of the activity landscape is reached.

The local and global path-planning is integrated using hybrid path parametrization,
such that the total path from point of departure to point of arrival becomes a smooth
curve, ensuring bumpless transfer where path segments are connected. The control
problem, which is formulated as a maneuvering problem, is to follow this path
with a given speed assignment. This is achieved using a backstepping controller
design.

The experimental platform used in this thesis is C/S Artic Drillship, which is a
1:90 scale model of an Artic drillship designed by Inocean. Testing is carried out
at the Marine Cybernetics Laboratory at NTNU.

The system has been validated both through simulations and experiments, which
yielded good results.

i

Sammendrag

Denne avhandlingen presenterer et komplett system for autonom baneplanlegging,
banegenerering og banefølging for et marint overflateskip.

Baneplanleggeren er delt inn i en global planlegger med lav oppløsning, som
planlegger en grov rute fra startposisjon til målposisjon, og en lokal baneplan-
legger som produserer mellomliggende veipunkter og utfører kollisjonsunngåelse.
For den globale banen er operasjonsområdet partisjonert ved hjelp av Voronoi-
diagrammer, på grunn av metodens effektivitet og innebygde klaring til hindringer.
Den optimale banen gjennom partisjoneringen blir så funnet ved hjelp av søkealgo-
ritmen A*, og raffineres slik at den bare inneholder nødvendige veipunkter.

En tilnærming basert på biologisk inspirerte nevrale nettverk for sanntids-baneplanlegging
brukes til å implementere den lokale baneplanleggeren. Metoden er basert på en
dynamisk aktivitet landskapsrepresentasjon av miljøet som fartøyet opererer i. Ved
å knytte hver celle i en partisjonering med et nevron i det nevrale nettverket, blir
miljøet oversatt til et dynamisk aktivitetslandskap der målposisjoner blir topper og
hindringer blir daler. Den optimale banen gjennom partisjoneringen blir funnet ved
å følge den dynamiske aktiviteten til toppen av aktivitetslandskapet er nådd.

Den lokale og globale baneplanleggingen integreres ved hjelp av en metode for
hybrid baneparametrisering, slik at den totale banen fra start til slutt blir en glatt
kurve. Dette sikrer gode overganger mellom banesegmentene som utgjør den totale
banen. Kontrollproblemet, som er formulert som et manøvreringsproblem, er å
følge denne banen med en gitt hastighet. Dette oppnås ved hjelp av en kontroller
designet med backstepping.

Den eksperimentelle plattformen brukt i denne oppgaven er modellskipet C/S Artic
Drillship, som er en 1:90 skala modell av et arktisk drillskip designet av Inocean.
Tester er utført på Marine Cybernetics Laboratory, NTNU.

Systemet har blitt validert både gjennom simuleringer og eksperimenter, som viste
gode resultater.

i

Acknowledgments

I have received much help from other people during my thesis work, and I would
like to acknowledge them for their contributions.

First, I want to thank my supervisor, Professor Roger Skjetne, for help and guid-
ance on all parts of the project, and for providing me with an interesting sub-
ject.

I would also like to thank my co-advisors Jon Bjørnø, Henrik Schmidt-Didlaukies
and Einar Ueland. Special thanks to Jon Bjørnø for a lot of help with issues related
to CSAD and MCLab. Torgeir Wahl has also been a great help when I have faced
technical issues at MCLab.

Also, thanks to Edvard Flaatten, Sondre Haug and especially Håvard Løvås, whom
I have cooperated with on lab-related work.

ii

Contents

Summary i

Sammendrag i

Acknowledgments ii

Table of Contents v

List of Tables vii

List of Figures x

Nomenclature xi

1 Introduction 3
1.1 Motivation . 3
1.2 Objectives of the thesis . 4
1.3 Scope and delimitations . 4
1.4 Contributions and thesis outline 5

2 Background 7
2.1 Autonomous system architecture and layers 7

2.1.1 System layers . 7
2.1.2 System architecture . 8

2.2 Partitioning methods and path-planning methods for global path . 11
2.3 The Bio-Inspired Neural Network approach to path-planning . . . 12
2.4 Generation of feasible path segments 14
2.5 Graph theory . 15

iii

3 Problem formulation 17
3.1 Dynamic models . 17

3.1.1 Simulation model . 17
3.1.2 Control design model . 20

3.2 Problem statement . 21
3.2.1 Path-planning . 21
3.2.2 Path generation . 21
3.2.3 Control objective . 21

4 Experimental setup 23
4.1 The marine cybernetics laboratory 23
4.2 C/S Artic Drillship . 24

5 Global path-planning 27
5.1 Path-planning algorithm . 27

5.1.1 Partitioning the operation area using Voronoi diagrams . . 28
5.1.2 Finding the shortest path using A* search 30
5.1.3 Clearence constraints . 31
5.1.4 Waypoint reduction . 33

6 Local path-planning 35
6.1 Creating the dynamic activity landscape 35
6.2 Choosing the next waypoint . 37

6.2.1 Integration with the global path-planner 38
6.2.2 Determining the resolution of the grid partitioning 39

6.3 Tuning the neural network parameters 40

7 Path generation 43
7.1 Generating a Cr curve through a set of waypoints 43
7.2 Stepwise C3 path generation . 44

8 Guidance, navigation and control 47
8.1 Observer design . 48
8.2 Backstepping maneuvering control design 49

8.2.1 Step 1 . 49
8.2.2 Step 2 . 51

8.3 Guidance law . 52
8.4 Tracking control design . 53

9 Results 55
9.1 Global path-planning . 56

iv

9.1.1 Scenario 1 . 56
9.1.2 Scenario 2 . 57

9.2 Path-planning using BINN . 58
9.3 Movement in BINN with C3 path generation 59
9.4 Testing of the complete system 61
9.5 Experimental results . 63
9.6 Discussion . 65

10 Conclusions and suggestions for further work 67
10.1 Conclusion . 67
10.2 Recommendations for further work 68

Bibliography 68

Appendix 73

v

vi

List of Tables

4.1 CSAD dimensions . 25

6.1 Neural network parameters . 41

vii

viii

List of Figures

2.1 Control structure. Courtesy: Sørensen (2018). 8
2.2 Autonomous system architecture. Courtesy: AAWA (2016). . . . 9
2.3 Comparison of SA sensor types. Courtesy: AAWA (2016). 10
2.4 Voronoi diagram. Courtesy: Šeda (2007). 12
2.5 Example of a graph and its adjacency matrix 15

3.1 6 DOF velocities in the body-fixed reference frame. Courtesy:
Fossen (2011). 18

4.1 The basin at MCLab . 23
4.2 Qualisys Track Manager . 24
4.3 C/S Artic Drillship . 24

5.1 Global path-planner . 28
5.2 Example of a Voronoi partitioning 29
5.3 Example of how waypoint reduction can improve the path 33

6.1 Dynamic activity landscape representation of the environment . . 37
6.2 Choosing the next waypoint . 38
6.3 Local reference frame between pk and pk+1 39
6.4 Example showing the effect of a too coarse partitioning 40
6.5 Saturation of the activity landscape. 41

7.1 Path generated using hybrid path parametrization 46

8.1 Interaction between guidance, control and navigation systems. Adapted
from: Fossen (2005). 48

ix

9.1 Scenario 1, global path-planning 56
9.2 Scenario 2, global path-planning 57
9.3 Scenario 1, BINN path-planning 58
9.4 Scenario 2, BINN path-planning 59
9.5 Scenario 1, obstacle course . 59
9.6 Scenario 2, head-on situation . 60
9.7 Scenario 1, AutoVoyage . 61
9.8 Scenario 2, AutoVoyage . 62
9.9 Zoomed in view, scenario 2 . 63
9.10 Scenario 1 and 2, MCLab experiments 64

x

Nomenclature

Acronyms

AAWA - Advanced Autonomous Waterbone Applications
AUV - Autonomous Underwater Vehicle
BINN - Bio-inspired Neural Network
CA - Collision Avoidance
CS - Cybership
cRIO - NI CompactRIO
DNV - Det Norske Veritas
CSAD - C/S Artic Drillship
DOF - Degrees of Freedom
DP - Dynamic Positioning
GNSS - Global Navigation Satellite System
GPS - Global Positioning system
IMU - Inertial Measurement Unit
MCLab - Marine Cybernetics Lab
NED - North-East-Down
NI - National Instruments
NTNU - Norwegian University of Science and Technology
MSc - Master of Science
P2P - Peer-to-peer
PhD - Doctor of Philosophy
PID - Proportional-integral-derivative
PC - Propulsion Control
PRM - Probabilistic Road Map
QTM - Qualisys Track Manager
RP - Route Planning
RRT - Rapidly-exploring Random Trees
SA - Situational Awareness
SSD - Ship State Definition
VD - Voronoi Diagram
VRU - Vertical Reference Unit

xi

Symbols

xi - Dynamics of ith neuron
αi - Virtual control i
A - Passive decay rate
b - Bias term
B - Upper bound neural activity
β - Sideslip angle
C - Coriolis and centripetal term
D - Upper bound neural activity / Linear damping matrix
I - Identity matrix
G - Graph data structure
V - Vertex
E - Edge
f(a) - Function of a
i - Path segment
Ii - Input to ith neuron
η - Generalized position vector in {n}
ν - Generalized velocity vector in {b}
Ki - Gain matrix
κ - Gain
M - Mass/inertia matrix
wij - Connection weight
dij - Euclidean distance
p(s) - Parametrization of path
pk - Global waypoint
ρi - Tuning function i
qi - Position in state space
λ - Weighting parameter / Tuning parameter
r - Yaw rate
s - Path parameter
ψ - Yaw angle
τ - Force
vs - Speed assignment
R - Radius circle of acceptance
R, J, T - Transformation matrices
T - Bias time constant

xii

V - Lyapunov function
Xw, Yw - Size of local operation area

1

2

Chapter 1
Introduction

1.1 Motivation

In recent years research on autonomous vehicles has received a lot of attention,
and the level of autonomy in ships is steadily increasing.

The potential benefits from autonomous ships are many. By increasing autonomy,
one can reduce accidents caused by human errors, which is a major cause of acci-
dents at sea. Reduced crewing results in lower operation costs for ship owners, and
it also allows for ship design to focus on more efficient use of space. Less human
intervention is also a benefit in itself, as there is less danger for human life.

In order for an autonomous ship to be able to operate safely and reliable, it has to
be able to sense and interpret its surroundings, and use that information to plan a
path and speed and execute the plan accordingly. The system must also be able
to perform obstacle avoidance and anti-collision when encountering unexpected
obstacles (e.g. other ships), that is, re-plan the path whilst keeping the final desti-
nation in mind.

This motivates the development of an intelligent guidance system that is able to
execute a ship voyage from A to B. Such a system needs an efficient partitioning of
the operation area, a path planner that is able to plan a safe and efficient route, and
it has to be able to generate and follow paths that are feasible for the vessel. The
system also has to be computationally efficient, to respect the hardware limitations
on-board.

3

1.2 Objectives of the thesis

The superior objective of this thesis is to develop a complete system for autonomous
path-planning, path generation and maneuvering control. This is to be achieved
by

1. Performing a literature review on path-planning, path generation, and other
relevant topics

2. Develop a global path-planner, which plans a coarse route from point of
departure to point of arrival

3. Use a bio-inspired neural network (BINN) approach to develop a high-resolution
local path-planner

4. Develop a recursive path generation algorithm and integrate the local and
global path-planning techniques

5. Validate the complete system

1.3 Scope and delimitations

The thesis aims at developing a system that is feasible not only for simulations but
also for real-world applications. However, some simplifications and assumptions
are made:

• This thesis considers a low speed, fully actuated DP vessel

• It is assumed that the only environmental load present is current

• It is assumed that information about obstacles are made available by maps
and on-board sensors

• In real-world applications, there are regulations that dictate how one should
perform obstacle avoidance maneuvers (COLREGs). The algorithms devel-
oped here are not made to be COLREG compliant.

4

1.4 Contributions and thesis outline

The contribution of this thesis is the development of a computationally efficient
complete system for autonomous path-planning, path generation and maneuvering
control. Established methods for global path-planning are integrated with a bio-
inspired neural network approach to local path-planning to achieve safe and effi-
cient paths, which are made feasible using hybrid path parametrization. The sys-
tem has been validated both through simulations and experimental results.

The outline of the thesis is as follows:

Chapter 2 presents relevant background information on autonomous system ar-
chitecture, partitioning and path-planning methods, the BINN approach to path-
planning, path generation and graph theory

Chapter 3 presents the dynamic models used for simulation and controller de-
sign, and the problem statement

Chapter 4 presents the experimental setup at the marine cybernetics lab that is
used to validate the system

Chapter 5 explains for the global path-planner, how the operation area is parti-
tioned and how the optimal path through the resulting partitioning is found

Chapter 6 explains how the BINN approach is used to create a local path-planner
sensitive to ambient conditions

Chapter 7 explains how feasible paths are generated using hybrid path parametriza-
tion

Chapter 8 presents the observer, guidance and controller designs

Chapter 9 presents the simulation and experimental results, and a discussion of
these results

Chapter 10 gives the final conclusions and suggestions for further work

5

6

Chapter 2
Background

2.1 Autonomous system architecture and layers

2.1.1 System layers

In Sørensen (2018), it is suggested to divide the control structure for a marine
control system into three layers: the mission layer, the guidance and optimization
layer, and the control execution layer.

The control execution layer is divided into a high-level plant control and a low-
level actuator control. The plant control receives commands from the guidance
and optimization layer, which again receives setpoints from the mission layer. This
hierarchy is shown in Fig. 2.1. The mission layer plans and re-plans the mission
according to the mission objectives. In a conventional system, the mission layer
receives it commands from a human pilot. An autonomous system however, should
be able to carry out this planning by itself, using information about the objective
and the environment as the operation goes on (Sørensen, 2018). For a ship to
operate autonomously, the mission and guidance and optimization layers must be
automated, which will add new requirements to the system architecture on-board
vessels.

7

Figure 2.1: Control structure. Courtesy: Sørensen (2018).

2.1.2 System architecture

Advanced Autonomous Waterborne Applications (AAWA) was a finnish funded
project that in 2015 sought to, among other things, map the technical specifica-
tions needed to realize the "next generation of advanced ship solutions" (AAWA,
2016). It was a collaboration between universities and large players in the mar-
itime cluster, like DNV GL and Rolls-Royce. They looked at already existing
system architecture for other autonomous vehicles, like self-driving cars, to inves-
tigate how they could be applied to autonomous marine navigation. The proposed
system architecture is shown in Fig. 2.2.

Since a fully autonomous vessel should be capable of operating without any crew-
ing, it has to have in place a system that can control the vessel’s position and
attitude based on the decision-making modules. The proposed system architec-
ture therefore contains a module for dynamic positioning. In Sørensen (2018),
a dynamic positioning (DP) vessel is defined as a vessel "that maintains its po-
sition and heading (fixed location or pre-determined track) exclusively by means
of active thrusters". In other words the actuators (thrusters) are used to control
the ship movement in in the degrees of freedom one wants to control. To per-

8

Figure 2.2: Autonomous system architecture. Courtesy: AAWA (2016).

form the positioning the DP system is dependant on information from various sen-
sors and a global positioning reference like the Global Navigation Satellite System
(GNSS).

According to Sørensen (2018), a minimum configuration for a DP system is using
a position reference system together with one gyro compass, one vertical reference
unit (VRU) and one wind sensor. The gyro compass measures the heading of the
vessel, the VRU measures the vessel heave, roll and pitch motions and the wind
sensor measures the velocity and direction of the wind. However, because of a
decrease in cost the trend today is towards the use of Inertial Measurement Units
(IMUs) integrated with a satellite navigation system (Sørensen, 2018). According
to Fossen (2011), the measurements available from a typical IMU are three-axes
rate gyros, accelerometers and magnetometers. In theory these could be integrated
to give attitude and position, but in practice the measurements will drift due to
sensure bias, misalignments and temperature variations (Fossen, 2011). The drift
is removed by integration with GNSS as a state observer.

When the DP module has produced a desired thrust in surge, sway and yaw, the
Propulsion Control (PC) module calculates the corresponding force and direction
of the thrusters, which the low-level thruster controllers uses to controll the pro-
peller speed, pitch, torque and power (Sørensen, 2018).

The Route Planning (RP) module is a software module that uses available elec-
tronic navigational charts to a plan the route from start position to goal position.
The route consists of waypoints, headings and speed for the ship (AAWA, 2016).
It does not plan the route in real-time, as maneuvers to avoid non-static obstacles
are carried out by the collision avoidance (CA) module.

9

The CA module has two responsibilities, assessing the risk of a situation, and if
needed, make the ship deviate from the planned course to navigate safely past
obstacles. From the DP module, the CA module can get the area in which the ship
is actually able to maneuver to, setting boundaries on how the vessel can act to
avoid collision (AAWA, 2016). The CA module receives its local real-time map
from the Situational Awareness (SA) module.

The performance of the autonomous navigation system depends heavily on how
accurate the system is able to represent the vessel surroundings. It is evident that
the equipment used to map the surroundings must be very reliable, because decid-
ing where to go next based on a faulty representation of the environment puts both
human life and equipment at risk. The system should also be robust enough to han-
dle demanding weather conditions and be able to function at night and daytime.
In order to achieve this, the SA module should fuse the signals of different sensor
types, as there are strengths and weaknesses associated with each type. These are
summarized in Fig. 2.3.

Visual HD

cameras
IR cameras Ship radar

Short-range

radar
LIDAR Sound

Spatial Accuracy ++ + - - - ++ - -

Field of view + - ++ - + ++

Distance

measurement - - ++ ++ ++ - -

Object

identification
++ + - - - - + +

24H, all weather

operation
- - + ++ ++ + (?) - (?)

Computational

load of analysis - - - ++ ++ - - +

Marine

robustness
++ ++ ++ +(?) (?) (?)

Price ++ - +- ++ - - +

Figure 2.3: Comparison of SA sensor types. Courtesy: AAWA (2016).

It is suggested in (AAWA, 2016) that a feasible solution for marine SA is a combi-
nation of radar technology and visual sensors, including infrared cameras. Visual
spectrum cameras provide high spatial resolution for use in object detection. They
can however, not be used in the dark and will struggle under demanding weather
conditions. Long-Wave Infrared (LWIR) cameras detect IR radiation, and can
therefore be used to detect objects in total darkness. The performance of LWIR is
however also degraded by weather conditions. The camera sensors are therefore
combined with radar technology, which copes better in bad weather and can pro-
vide accurate information about distance to objects. Lidars are also mentioned as a

10

valuable addition to SA, but the technology is seen as to expensive to be included
in the proposed system architecture.

2.2 Partitioning methods and path-planning methods for
global path

Global path-planning is the problem of finding a collision-free path from point of
departure to the desired destination, in a static environment where the obstacles
are known prior to departure. In robotics, this has been a focus of research for
decades. Šeda (2007) presents a comparison of two of the basic types of motion
planning, the cell decomposition method and the roadmap method.

Cell decomposition is the process of dividing the obstacle-free space into a set of
connected regions called cells. In its most basic form, cell decomposition divides
the operation area into square cells. Finding the path from start to goal is then
a matter of finding cells that share borders and searching for a path. Cellular
decomposition does however suffer from the drawbacks of limited granularity and
combinatorial explosion (Šeda, 2007). If the size of the cells in the decomposition
is small, then the number of possible paths increases very fast with the size of the
operation area, making it time consuming to find the optimal solution. In large
environments, it can therefore be difficult to create a cell decomposition with the
required resolution for path-planning.

Roadmap methods do not suffer from these drawbacks (Šeda, 2007). If we denote
the part of the operation area that is not inside any obstacles Cfree, the roadmap
method captures the connectivity of this free space by forming a network of one-
dimensional curves (Latombe, 1991). Edges are added between pairs of vertices
in Cfree that can be connected by a straight line which does not intersect any
obstacles, which results in a roadmap of collision-free paths that can be used in
path-planning. Shortest-path algorithms, like Dijkstra’s algorithm or A* (A-Star)
search can then be used to retrieve the shortest path through the roadmap.

Several methods exist to construct the initial roadmap, one being Voronoi dia-
grams. In Voronoi diagrams, the contour points of the obstacles in the environ-
ment are used to produce paths that are of maximum distance to the obstacles. The
vertices of the roadmap are the points where three of these paths intersect. Fig. 2.4
shows a simple Voronoi diagram.

11

Figure 2.4: Voronoi diagram. Courtesy: Šeda (2007).

A more formal introduction to Voronoi diagrams is given in Chapter 5.1.1.

Other roadmap methods include the Probabilistic Road Map (PRM) and the Rapidly-
exploring Random Trees (RRT) method. To produce a PRM, random nodes are
generated in the operation area. They are then tested to see if they belong to Cfree,
and if they do, a local planner is applied to connect it to neighbouring nodes. This
process is continued until the roadmap has the required resolution. RRTs are also
produced by generating random nodes in the operation area, and then connecting
the new node to the closest existing node, making it biased towards exploration
of parts of the operation area with a lower density of nodes. Hvamb (2015) in-
vestigated the use of all three mentioned roadmap methods for path-planning for
marine vehicles, where all three methods yielded similar results in terms of path
length.

2.3 The Bio-Inspired Neural Network approach to path-
planning

The use of a bio-inspired neural network approach for dynamic collision-free tra-
jectory generation was first proposed in Yang and Meng (1998). The neural net-
work architecture is a discrete topologically organized map, where the state space
can be the Cartesian workspace, letting the location of the ith neuron at the grid
represent a position in the workspace. The activity of each neuron is characterized

12

by the shunting equation Eq. 6.1. This translates environment information about
the operation area into a dynamic activity landscape, where the peak of the land-
scape represents the target destination. The activity of the target(s) is propagated
through the landscape through lateral connections between neurons. When in a
position pn−1, corresponding to the position of a neuron, the next position pn is in
(Yang and Meng, 2001) chosen as

pn ⇐ xpn = max{xj , j = 1, 2, ..., k} (2.1)

where x is the neuron activity level and k is the number of neighbouring neurons.
This is repeated until the target neuron is reached.

In Scibilia et al. (2012), a similar approach is used for transit operation and com-
plete area coverage for an AUV. A rectangular operation area is divided into circles
with a radius adjusted according to the AUV speed, which are distributed optimally
on the workspace to achieve minimum repeated coverage. The circles are then
chosen as neurons for the neural network architecture. Paths are computed using
Dubins theory to ensure that the kinematic constraints of the AUV are taken into
account. To attenuate heading changes, the next position when AUV is in position
pq with heading angle θq is chosen as

pn ⇐xj :pj∈neigr0 (pq)

{(
1− diff(θq, θj)

π

)
λxj + (1− λ)xj

}
(2.2)

where 0 ≤ λ ≤ 1 is a weighting parameter used to tune the weighting mecha-
nism. For transit operation, the turning radius from which the operation area is
partitioned, is adjusted at each step of the algorithm according to the distance to
the closest obstacle or target, to allow for faster transit speeds and smoother trajec-
tories (Scibilia et al., 2012).

Ni et al. (2017) proposed a dynamic BINN approach, where the AUV is considered
the core of a three-dimensional BINN, where the size of the BINN is set based on
the sensor range. The BINN is then set to move together with the AUV. This is
done to reduce the computation in large environments. Since the final target can
be farther away from the AUV than the sensor detection range, Ni et al. (2017)
also propose a virtual target concept. The virtual target is located at the edge of the
BINN, as close to the real target as possible, without any obstacles on the straight
path from the AUV to the virtual target.

In Huang et al. (2016), a BINN algorithm is used for real-time path planning of
a group of hunter AUVs, which objective is to surround and trap a moving target
(evader).

13

2.4 Generation of feasible path segments

The path-planning module produces a route given as a series of waypoints. The
next problem is then to generate a feasible path, that is, a path that respects the
vessel’s dynamic constraints. It is therefore desirable to generate a smooth path, to
avoid jumps in the control loop and achieve bumpless transfer between waypoints.
Lekkas (2014) distinguishes between two categories of connecting waypoints to
generate a path:

• Combining straight lines and arc segments

• Using splines

Dubins (1957) showed that the shortest path from an initial position and heading
to a terminal position and heading is given by joining circular arcs with straight
line segments. This method is often used in path generation due to its simplic-
ity. However, the drawback of this method is a jump in the desired yaw rate rd
when transitioning from a straight line (rd = 0) to a circular arc (rd = constant)
(Fossen, 2011). In Fraichard and Scheuer (2004), it is suggested to solve this
problem by using clothoids as transition curves between the straight lines and arc
segments. Lekkas et al. (2013) show that also Fermat’s spirals can be used as
transition curves, while being less computational intensive than clothoids. In Can-
deloro et al. (2017), Fermat’s spirals are used to connect straight line segments in
a Voronoi partitioning.

The second category involves constructing a curve through a set of waypoints,
using interpolation methods. Many methods exist to solve this problem. Cu-
bic Hermite spline interpolation can be used to parametrize the curve, but gives
discontinuous curvature at the waypoint locations (Lekkas, 2014). Cubic spline
interpolation gives continuous curvature, but the generated path will have more
oscillations than the cubic Hermite spline for unsmooth data (Fossen, 2011). In
Fossen (2011), it is shown how the path generation can be solved as a nonlinear
constrained optimization problem, where the object function based on time and
energy consumption is minimized under the constraints of speed and acceleration
limits of the vessel. The drawback of this method is that it is harder to solve nu-
merically than the previously mentioned methods (Fossen, 2011).

14

2.5 Graph theory

In order for a path-planner to be able to find a path through the partitioning, it is
necessary to define for every vertex, which vertices are reachable. This requires
a flexible way of describing the vertices of the partitioning and the relationship
between them. A suitable data structure to represent the neural network model and
the roadmap partitioning are graphs.

Formally, a graph G is an ordered pair

G = (V,E), (2.3)

where V is a set of vertices (or nodes), and E is a set of edges. The edges connect
the vertices and represent the relationship between them.

The order N of a graphG is the number of vertices V , and its size is the number of
edges E. Two vertices, Vi and Vj , are said to be connected, if there exists a path of
edges between them. If only one edge is needed to get from one vertex to another,
then the two vertices are said to be adjacent. The neighbourhood of a vertex is the
set of adjacent vertices.

The properties of a graph can be edited to suit the application. Fig. 2.5 shows
an undirected and unweighted graph, meaning that edges have no specific orienta-
tion and that the "cost" of every edge is equal. If desired however, we can define
weights for the edges. This is useful when one wants to calculate the costs of
traversing the graph using different paths.

1

2 3

4

5

1 0 1

0 1 0

1 0 0

0 0 0

0 1 1

0

1

0

1

1

1

0

1

1

0

Figure 2.5: Example of a graph and its adjacency matrix

A graph can be represented using an adjacency matrix. Fig. 2.5 shows an example
of an adjacency matrix set to represent the undirected graph to the left. Element

15

(i, j) in the adjacency matrix is set to 1 if vertex Vi and Vj are adjacent, and 0 if
they are not. It follows that for undirected graphs, the adjacency matrix will be
symmetric.

16

Chapter 3
Problem formulation

This chapter starts with presenting a 6 degree of freedom (DOF) dynamic model
used to simulate a marine craft, before showing a simplified 3 DOF DP model that
is used for controller design. The problem statement of the thesis is then given by
dividing the main objectives into three (interrelated) problems: the path-planning
problem, the path generation problem and finally the control problem, which is
formulated as a maneuvering problem.

3.1 Dynamic models

3.1.1 Simulation model

Using the notation of SNAME (1950), a marine craft operating in 6 DOFs can be
described by six motion variables. The first mode is (x, y, z), which is referred to
as surge, sway and heave and describe the vessel position in a three-dimensional
space. The second mode is (φ, θ, ψ), referred to as roll, pitch and yaw which
describe the vessel orientation.

To express the kinematics of a marine craft we introduce two reference frames, the
North-East-Down (NED) frame and the body-fixed reference frame.

• The NED frame, denoted {n}, is usually defined as the tangent plane on the
earth surface moving with the craft, with its x axis pointing towards true
north, its y axis pointing east and its z-axis pointing downwards (Fossen,

17

2011). By assuming that the vessel operates at approximately constant lon-
gitude and latitude, {n} can be approximated as an inertial frame, where
Newton’s laws apply.

• The body-fixed reference frame, denoted {b}, is a moving reference frame
fixed to the craft. This is the reference frame in which the linear and angular
velocities of the craft is expressed in. It has its x-axis pointing from aft to
fore, its y-axis directed starboards and its z-axis directed downwards.

The linear and angular velocities in the {b} frame are related to the six motion
variables through

η̇ = JΘ(η)ν (3.1)

where η = [x, y, z, φ, θ, ψ]T and ν = [u, v, w, p, q, r]T are the body-fixed veloci-
ties as illustrated in Fig. 3.1.

Figure 3.1: 6 DOF velocities in the body-fixed reference frame. Courtesy: Fossen (2011).

The transformation matrix JΘ(η) is expressed as

JΘ(η) =

[
Rnb (Θnb) 03x3

03x3 TΘ(Θnb)

]
(3.2)

where the linear velocity transformation matrix Rnb (Θnb) is given by

Rnb (Θnb) = Rx,φRy,θRz,ψ =

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

(3.3)

18

and the angular velocity transformation TΘ(Θnb) is given by

TΘ(Θnb) =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 (3.4)

where s = sin(·), c = cos(·) and t = tan(·).

The kinetic model is given by (Fossen, 2005)

Mν̇r +CRB(ν)ν +CA(νr)νr +D(νr)νr + µ+Gη = τwaves + τwind + symolτ
(3.5)

where M is the system inertia matrix, CRB(ν)ν and CA(νr) are the coriolis and
centripetal matrices, ν̇r is the relative velocity between the craft and the water,
D(νr) is the damping matrix, µ is the term that captures the fluid memory effects,
G is the linearized restoring forces and moments matrix, τwaves, τcurrent and τwind
is the environmental forces and τ is the propulsion forces. The model is derived
using nonlinear unified theory for maneuvering and seakeeping. For a complete
derivation of the dynamic model, the reader is referred to Fossen (2005).

19

3.1.2 Control design model

For control design a simplified representation of the vessel dynamics is sufficient.
We consider a fully actuated low speed DP vessel. By assuming that the ship is
longitudinally and laterally metacentrically stable for small amplitudes of φ =
θ = φ̇ = θ̇ ≈ 0, and that the vessel floats with z ≈ 0 in mean, we can neglect
the dynamics associated with heave, roll and pitch. For low speed applications,
a linearization about ν = 0 then gives the 3 DOF control design model (Skjetne,
2019)

η̇ = R(ψ)ν (3.6)

Mν̇ +Dν = τ +R(ψ)T b (3.7)

where η = (p, ψ) ∈ R2×S1 is the ship pose, ν = (u, v, r) ∈ R3 is the body-fixed
linear and angular velocity vector,

R(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 , R(ψ)TR(ψ) = R(ψ)R(ψ)T = I (3.8)

is the matrix that gives the rotation about the z axis,

M =

m11 0 0
0 m22 m23

0 m32 m33

 =

m−Xu̇ 0 0
0 m− Yv̇ mxg − Yṙ
0 mxg − Yṙ Iz −Nṙ

 = MT > 0

(3.9)

is the system inertia matrix,

D =

d11 0 0
0 d22 d23

0 d32 d33

 =

−Xu 0 0
0 −Yv −Yr
0 −Nv −Nr

 > 0 (3.10)

is the linear damping matrix and b is a slowly varying bias term capturing unmod-
eled dynamics.

20

3.2 Problem statement

3.2.1 Path-planning

The path-planning function is to determine a set of waypoints from point of de-
parture, p0, to the final destination pt, so that the resulting path is efficient and
includes sufficient clearance to obstacles.

The path-planning problem is divided into two parts, one global and one local.
The global path-planner takes as input obstacle information from a pre-existing
map, to produce a coarse route from p0 to pt, given as a series of waypoints.
In the local path-planner, it assumed that information about previously unknown
obstacles, static and dynamic, are made available by on-board sensors. The local
path-planner uses this information to produce the intermediate waypoints between
the global waypoints. These waypoints are produced online in a stepwise manner,
to allow for reactive obstacle avoidance using the newest available environment
information.

3.2.2 Path generation

The path-planning module provides the path generation with waypoints. The path
generation problem, is then to generate a path through these waypoints.

In order to ensure bumpless transfer between waypoints, we require that the path
be C3. The objective is then to construct a sufficiently differentiable curve through
all the waypoints from p0 to pt, so that the resulting path is a smooth curve with
continuous path derivatives in the connection points. Letting s ∈ R be a continu-
ous path variable, this desired path can be expressed as

pd(s) = col(xd(s), yd(s)) (3.11)

3.2.3 Control objective

The control objective is formulated as a maneuvering problem, which is comprised
of two tasks as defined Skjetne (2005):

1. The geometric task: For any continuous function s(t), force the output η to
converge to the desired path ηd(s),

lim
t→∞
|η(t)− ηd(s(t))| = 0 (3.12)

21

2. The dynamic task: We also want to satisfy a dynamic behaviour along the
path, in the form of a speed assignment: Force the path speed ṡ to a desired
speed vs(s, t),

lim
t→∞
|ṡ(t)− vs(s(t), t)| = 0 (3.13)

From Skjetne (2005) we have that a speed assignment is given by

vs(t, s) =
ud(t)

|psd(s)|
(3.14)

From the path generation module we have the desired point on the path, pd : R→
R2, parametrized by the continuous path variable s ∈ R. Additionally, we propose
a desired heading tangent to the desired path (Skjetne, 2005)

ψd(s) = ∠psd(s) = atan

(
ysd(s)

xsd(s)

)
(3.15)

The desired output pose now makes out a curve in the output space, that is, ηd :
R 7→ R2 × S1 where

ηd(s) :=

[
pd(s)
ψd(s)

]
, s ∈ R (3.16)

The maneuvering control objective is then to design control τ such that

η(t)→ ηd(s(t)),

ṡ(t)→ vs(t, s),

}
as t→∞ (3.17)

22

Chapter 4
Experimental setup

4.1 The marine cybernetics laboratory

Model scale experiments are carried out at the Marine cybernetics laboratory
(MCLab) at the Norwegian University of Science and Technology (NTNU). MCLab
is a small wave basin with dimensions L x B x D = 40 m x 6,5 m x 1,5 m. The
advanced instrumentation package makes it suitable for testing of motion control
systems for model-scale vessels, and it can also be used for more specialized hy-
drodynamic tests as it is equipped with an advanced towing carriage with precise
movements. It is shown in Fig. 4.1.

Figure 4.1: The basin at MCLab

Position measurements of the model-scale vessels are obtained using the installed

23

Qualisys motion capture system. Vessels are fitted with three or four reflector
spheres, so that accurate position and orientation measurements can be obtained
using the three Oqus infrared cameras mounted on the towing carriage (seen at
the far end of the basin in Fig. 4.1). The measurements are transmitted over a
P2P network to a computer running Qualisys Track Manager (QTM) software, as
shown in Fig. 4.2.

Figure 4.2: Qualisys Track Manager

4.2 C/S Artic Drillship

The target vessel used in this thesis is the C/S Artic Drillship (CSAD), shown in
Fig. 4.3. It is a 1:90 scale model of the Inocean Cat I Drillship. It was initially de-
veloped in Bjørnø (2016) for use in research on thruster-assisted position mooring,
and is now a platform for testing of motion control systems at MCLab.

Figure 4.3: C/S Artic Drillship

24

The vessel is equipped with 6 azimuth thrusters (3 fore and 3 aft). The model runs
real-time control systems programmed in Matlab/Simulink using NI VeriStand and
a National Instrument CompactRIO (cRIO) embedded controller. Experimental re-
sults are made available in real-time using Labview on a host computer at MCLab.
The hull is constructed by carbon fiber and a casted frame stiffens the hull (Bjørnø,
2016). The model dimensions are given in Table 4.1.

Table 4.1: CSAD dimensions

L 2.578m
B 0.440m
D 0.211m
T 0.133m
m 127.92kg

Simulations are carried out in Matlab/SimulinkR2018b, using the fixed thrust allo-
cation developed in Lyngstadaas (2018). The system parameters needed to use the
dynamic models presented in Chapter 2 are the ones identified in Bjørnø (2016).

25

26

Chapter 5
Global path-planning

The objective of the global path-planner is to use information about the environ-
ment that is known prior to departure, to plan a coarse route from the point of
departure to the final destination, that is efficient and includes sufficient clearance
to obstacles. This chapter describes how the operation area is partitioned and how
the optimal path through the resulting partitioning is found.

5.1 Path-planning algorithm

Using Voronoi diagrams to partition operation areas is a well proven method that
has been applied both to marine and aerial operations (Candeloro et al., 2017).
Therefore many implementations exist in the literature, and the procedure used
in this thesis is inspired by the ones presented in Lekkas (2014), Candeloro et al.
(2017) and Ørjan Grefstad (2018). First, Voronoi diagrams are used to partition the
operation area and produce an obstacle-free roadmap. Then, paths that cross map
borders or obstacles are removed, and the point of departure and point of arrival
is connected to the roadmap. A* search is then used to search the roadmap for
the shortest path. Collinear and almost collinear waypoints are then removed to
shorten the path and reduce heading changes. The resulting path is then checked
to see if it respects clearance constraints. If it does not, the A* search is repeated
to find an alternative path. Finally, waypoints that can be omitted from the path
without violating the clearance constraints are removed. The process is illustrated
in Fig. 5.1.

27

Search the roadmap for
shortest path using A*

search

Insert map borders and
add point of

departure/arrival
Create roadmap using

Voronoi diagram

Remove colinear and
almost colinear waypoints

Check if path respects
clearance constraints Remove excess waypoints

Yes

No

Figure 5.1: Global path-planner

Each step of the algorithm is explained in the following subchapters.

5.1.1 Partitioning the operation area using Voronoi diagrams

For large operation areas, grid partitioning with a high enough resolution to include
small obstacles would be very computationally demanding. Therefore, the area is
partitioned using Voronoi diagrams. Its computational cost is low, and the gener-
ated paths are of maximum distance to the obstacles in the environment.

5.1.1.1 Theory

The Voronoi partitioning method divides a two-dimensional space X into a set of
regions Rk, using a set of generator points P = {p1, ..., pk} and a metric function
d(·). The result is a partitioning in which every point x contained inside a Voronoi
region Rk is closer to the generator point p associated with that Voronoi region
than any other generator point.

For x ⊂ R2 the metric function can be chosen as the Euclidean distance:

d(x, p) =
√

(xx − pix)2 + (xy − piy)2 (5.1)

28

The Voronoi regions are then defined as (Lekkas, 2014):

Rk = {x ∈ X|d(x, Pk) ≤ d(x, Pj)∀j 6= k} (5.2)

5.1.1.2 Implementation

For use in path planning, the vertices of the obstacles in the environment and the
coordinates of the map borders are used as generator points for the Voronoi dia-
gram. The result is a roadmap of possible paths that the vessel can travel along to
navigate the environment. The point of departure and point of arrival is then con-
nected to the roadmap. Fig. 5.2 shows an example, where three simple obstacles
are approximated as polygons.

0 200 400 600 800 1000

x

0

100

200

300

400

500

600

700

800

900

1000

y

Generator points

Voronoi edges

Figure 5.2: Example of a Voronoi partitioning

As can be seen from Fig. 5.2, the roadmap needs to be processed so that paths
passing through obstacles or map borders are removed.

29

5.1.2 Finding the shortest path using A* search

5.1.2.1 Theory

A* search is an informed search strategy used to find the order in which the nodes
of a graph should be traversed to produce the path has the smallest total cost from
start to goal node. It evaluates nodes by using a cost function

f(n) = g(n) + h(n) (5.3)

where g(n) is the path cost from start node to node n, and h(n) is the estimated
cost of the cheapest path from node n to the goal node.

In order for A* to be guaranteed to return an optimal path, the heuristic used has
to be admissible, meaning that it must never over-estimate the cost of getting from
node n to the goal node. By using distance travelled as cost, the Euclidean dis-
tance

h(n) =
√

(nx − goalx)2 + (ny − goaly)2 (5.4)

can be used as the heuristic in path planning, since the shortest path between two
points is the straight-line distance.

5.1.2.2 Implementation

A* maintains two lists, the Open list which contains nodes that need to be exam-
ined, and the Closed list which contains nodes that have been examined. At each
step of the algorithm, the algorithm takes from the Open list the node with the
smallest f value, which is equivalent to choosing the path that is most promis-
ing based on the heuristic h. The node is then added to the Closed list and its
successors is generated. The process is repeated until the goal node is found or
every node has been searched without finding a solution. The algorithm is shown

30

in Algorithm 1 (Caltech, 2019):

Algorithm 1: Pseudo-code for A* search
Input : Start node, goal node and graph adjacency matrix
Output: Optimal path from start to goal node
Initialize Open and Closed list as empty
Add start node to Open list
while Open list is not empty do

Take node n from Open list with lowest f(n)
Add n to Closed list
if n is the goal node then

return solution
else

Generate successors of n
for each successor n’ of n do

Calculate g(n’), h(n’) and f(n’)
if n’ is on the Open list and the existing entry is as good or better then

Discard n’
Continue

end
if n’ is on the Closed list and the existing entry is as good or better
then

Discard n’
Continue

end
Remove n’ from Open and Closed list
Add n’ to Open list

end
end

end

The A* algorithm can then find the shortest path from start to goal node in the
Voronoi partitioning, using the coordinates of the vertices in the partitioning and
the associated adjacency matrix. The path is then refined by removing collinear
and almost collinear waypoints. The resulting path is given as a series of waypoints
[p0, ..., pt].

5.1.3 Clearence constraints

The path is then checked to see if has enough clearance to obstacles, adopting the
approach used in Ørjan Grefstad (2018). The path and the obstacles are drawn on

31

two separate binary images. The path is drawn as a line with a thickness equal to
the width of the vessel plus the required safety margin. A test can then be done for
each path segment, to see if there is any overlap between the two images. If the
path segment is found to violate the clearance constraints, it is removed from the
roadmap so that the A* algorithm does not consider it a possibility when searching
for a new path.

Algorithm 2: Pseudo-code for testing if path respects clearance constraints
Input : wayPointList, safetyMargin, obstacleContours
Output: isLegal, 1 if path respects clearance constraints
isLegal = 1
Set pathSegments to lines connecting waypoints in wayPointList
Set pathWidth equal to width of vessel plus safetyMargin
Create binaryImageObstacles from obstacleContours
for each pathSegment p of pathSegments do

Create binaryImagePath of pathSegment p with pathWidth
if any overlap between binaryImagePath && binaryImageObstacles then

isLegal = 0
return

end
end

32

5.1.4 Waypoint reduction

The path can be further improved by omitting waypoints that can be removed with-
out violating clearance constraints. Fig. 5.3 illustrates this: there is no point travel-
ling via the points B and C, if the path directly from A to D respects the clearance
constraints.

A B

C

D

Figure 5.3: Example of how waypoint reduction can improve the path

Removing these will reduce the heading changes and shorten the path length,
which in turn will reduce the fuel consumption (Candeloro et al., 2017). This
is done as in Lekkas (2014) by iterating through the waypoints comprising the
path, and testing if the path remains legal after removing the different waypoints,
as shown in Algorithm 3.

Algorithm 3: Pseudo-code waypoint reduction
Input : path in terms of waypoints
Output: path with excess waypoints removed
i = 1
for each waypoint of path do

Q1 = path(i)
P = path(i+1)
Q2 = path(i+2)
isLegal = isPathLegal(Q1, Q2) % Using Algorithm 2
if isLegal == 1 then

remove P from path
else

i = i + 1
end

end

33

34

Chapter 6
Local path-planning

The local path-planner aims to move the vessel along the path given by the global
path planner, whilst handling reactive obstacle avoidance. The output of the local
path-planner is all the intermediate waypoints [q0, ..., qt] between each two con-
secutive waypoints pk and pk+1 from the global path-planner. This chapter shows
how the BINN approach is used for local path-planning.

6.1 Creating the dynamic activity landscape

The operation area is partitioned into a rectangular grid. Let the position of the
center of each cell be denoted qi, then each cell at the grid is associated with
a neuron and its activity level xi. The dynamics of the ith neuron, where the
excitatory and inhibitory inputs [I]+ and [I]− arise from target and obstacle lateral
connections, is expressed as a shunting differential equation

dxi
dt

= −Axi + (B − xi)

(
[Ii]

+ +

k∑
j=1

wij [xj]
+

)
− (D + xi)[Ii]

− (6.1)

where k is the number of neighboring neurons (neurons with lateral connections
to the ith neuron) of the ith neuron, A represents the passive decay rate, B is
the upper bound on neural activity, D is the lower bound on neural activity and

[Ii]
+ +

k∑
j=1

wij [xj]
+ and [Ii]

− is the excitatory and inhibitory inputs respectively.

35

The external input Ii to the ith neuron is defined as

Ii =

E, if there is a target
−E, if there is an obstacle
0, otherwise

(6.2)

where E � B is a very large positive constant. The functions [a]+ and [a]− are
defined as max{a, 0} and max{−a, 0} respectively. The connection weight wij
from the ith to the jth neuron is defined as

wij = f(dij) (6.3)

where dij is the Euclidean distance between two positions qi and qj in the state
space. The connection weight function f(a) is a monotonically decreasing func-
tion defined as

f(a) =

{
µ/a if 0 < a < r0

0, if a ≥ r0

(6.4)

where µ and r0 are positive constants.

The neural network characterized by 6.1 guarantees that the neural activity from
the target is able to propagate through the whole state space, while negative activity
from obstacle stays local only (Yang and Meng, 2001). This has the effect of
targets attracting globally, while the obstacles only have effect in a small range to
avoid collision. The optimal path to the target neuron is then found by climbing
the activity landscape, following a steepest gradient ascent rule.

Fig. 6.1 shows an example where the environment information has been translated
into an activity landscape. As can be seen, the target location becomes a peak and
the obstacles become valleys in the generated landscape.

36

-4 -3 -2 -1 0 1 2 3 4

x

0

2

4

6

8

10

12

14

16

18

20

y

Target

(a) Target location and obstacle (b) Resulting dynamic activity landscape

Figure 6.1: Dynamic activity landscape representation of the environment

6.2 Choosing the next waypoint

Let p(t) = (x(t), y(t)) be the current position of the vessel position and qn =
(xn, yn) be the position of the current waypoint. When the vessel is found to be
inside a circle of acceptance with radius R defined by

[xn − x(t)]2 + [yn − y(t)]2 ≤ R2, (6.5)

of the current waypoint qn, the waypoint is considered reached and the next way-
point needs to be chosen.

The next waypoint qn+1 is chosen among the neighboring nodes, as in (Scibilia
et al., 2012):

qn+1 ⇐ max

{(
1− diff(θn, θj)

π

)
λxj + (1− λ)xj

}
(6.6)

where j is the number of neighbouring neurons, θn is the current vessel heading,
θj is the heading angle of the line from qn to qj used as an indication of the cor-
responding change of direction. The weighting is introduced to attenuate heading
changes and λ is used to tune the weighting mechanism.

37

Using the graph data structure presented in Chapter 2.5, the neighboring nodes j
of qn are defined as shown in Fig. 6.2, so that the vessel may move diagonally.

Figure 6.2: Choosing the next waypoint

6.2.1 Integration with the global path-planner

We already now describe how the local path-planner is integrated with the global-
path planner, as it is relevant for how the operation area is partitioned. Between
each two consecutive waypoints pk and pk+1 provided by the global path-planner,
a local reference frame is defined, with its y axis pointing from pk to pk+1. A
rectangular operation area with length Yw and width Xw is then defined between
the waypoints as illustrated in Fig. 6.3. The transformation from coordinates in
the local reference frame to {n} coordinates are given by

[
x
y

]
= pk +R(ψ)>

[
xlocal
ylocal

]
(6.7)

where R(ψ) is the two-dimensional rotation matrix

R(ψ) =

[
cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

]
(6.8)

and ψ is defined as shown in Fig. 6.3.

38

y (East)

�

� �����

(North)

� �����

��

��+1

�

��

��

Figure 6.3: Local reference frame between pk and pk+1

6.2.2 Determining the resolution of the grid partitioning

Since the obstacles only have local effect in the BINN network, the size of each
cell, or neuron, in the grid decomposition is directly related to the clearance the
path will have to obstacles. Large grid sizes can produce paths with smaller cur-
vature that are easy to track and gives good safety margins with respect to static
obstacles. To large however, one can get inefficient routes and possibly miss entire
solutions to the path planning problem. Fig. 6.4 shows a scenario where the two
circular obstacles are seen to intersect with a neuron position on the path from the
vessel position to the target. In this case, the BINN algorithm would have to find
an alternative route around the obstacles, which is inefficient, assuming that the
route actually was safe. On the other end, having the grid size set to small would
produce paths with little clearance to obstacles.

Again, since the obstacles only have a local effect in the dynamic activity land-
scape, one would need a very coarse partitioning to stay clear of dynamic obsta-
cles. It is therefore proposed to partition the operation area only with respect to
clearance of static obstacles, so that the resulting paths are efficient. To stay clear
of dynamic obstacles, it is suggested to instead increase the size of the represen-
tation of dynamic obstacles in the BINN, so that they are registered as occupying

39

TargetInitial
position

Figure 6.4: Example showing the effect of a too coarse partitioning

more cells at the grid than they actually do. This will allow the vessel to respond
earlier to dynamic obstacles.

Another important consideration is to take into account that the local frame be-
tween pk and pk+1, in which the operation area is defined, is already oriented
directly towards pk+1. It is therefore reasonable to assume that, for most of the
time, the vessel will want to be moving relatively aligned with the ylocal axis of the
local frame. For this reason, the operation area is divided into rectangular cells.
This is also illustrated in Fig. 6.3. Partitioning such that the cells are longer in
the direction towards the next global waypoint, will make it easier for the path
generation module to produce paths that are feasible for the vessel.

Simulations showed that partitioning the grid into cells of size L x B = 4 m x 1 m
gave good results.

6.3 Tuning the neural network parameters

The neural network model was found to be robust and worked well for many vari-
ations of the parameters, as stated in Yang and Meng (1998), where a thorough
discussion on the parameter sensitivity of the model is given. The most important
parameter in the model is the passive decay rate A. To low values for this param-
eter can make the neural activity saturate, so that the next waypoint can not be
determined. This is illustrated in Fig. 6.5.

The chosen neural neural network parameters are shown together with the heading
weight λ in Table 6.1.

40

Figure 6.5: Saturation of the activity landscape.

Table 6.1: Neural network parameters

A B D E µ λ

50 1 -1 70 1 0,1

41

42

Chapter 7
Path generation

The objective of the path generation module is to construct the curve pd(s) =
col(xd(s), yd(s)) through the waypoints [q0, ..., qt] given by the path-planning
module. This can be achieved using splines and interpolation techniques. The
methods used and presented here are adopted from Skjetne (2005) and Skjetne
(2019).

7.1 Generating a Cr curve through a set of waypoints

A desired path pd(s) can be divided into n subpaths pd,i(s), i = 1, ..., n between
the waypoints, each of which is expressed as a polynomial in s of a certain order.
The Cr requirement means that at every connection point between two subpaths
we must have

lim
s↗ i−1

xd,i−1(s) = lim
s↘ i−1

xd,i−1(s) lim
s↗ i−1

yd,i−1(s) = lim
s↘ i−1

yd,i−1(s)

lim
s↗ i−1

xsd,i−1(s) = lim
s↘ i−1

xsd,i−1(s) lim
s↗ i−1

ysd,i−1(s) = lim
s↘ i−1

ysd,i−1(s)

...

lim
s↗ i−1

xs
r

d,i−1(s) = lim
s↘ i−1

xs
r

d,i−1(s) lim
s↗ i−1

ys
r

d,i−1(s) = lim
s↘ i−1

ys
r

d,i−1(s)

43

for i ∈ I \ {1}. We consider polynomials of order k:

xd,i(s) = ak,is
k + ...+ a1,is+ a0,i

yd,i(s) = bk,is
k + ...+ b1,is+ b0,i

(7.1)

where the coefficients {aj,i, bj,i} must be determined. Since there are (k + 1) · 2
unknowns for each subpath, there are a total of (k + 1) · 2n of coefficients that
need to be determined. This can be solved as a set of linear equations for the full
path or by calculating the coefficients for each subpath independently. Continuity
is then ensured at the connection points by assigning numerical values which are
common for the neighboring subpaths.

7.2 Stepwise C3 path generation

The path-planning module can only decide one waypoint ahead in time, which is
decided first when the current waypoint is reached. We therefore require an online
path generation strategy. The method is adopted from Skjetne (2019).

Each subpath is parametrized individually, corresponding to a hybrid parametriza-
tion. Letting i = bsc+ 1 ∈ I identify the active subpath and θ = s− bsc ∈ [0, 1)
map the point along the path segment, a continuous parametrization is achieved by
using the mapping

s 7→ pd(s) := p̄(i(s), θ(s)) (7.2)

For q0,i given as a general departure waypoint, and qt,i as a destination waypoint,
and by letting the subpath i connect q0,i and qt,i, the equations to calculate the
coefficients {aj,i, bj,i} become

C0 : Continuity at the waypoints p0,i gives for segment i:

xd,i(0) = x0,i xd,i(1) = xt,i (7.3)

yd,i(0) = y0,i yd,i(1) = yt,i

C1 : The slope at the first waypoint is set to point against the second waypoint

xθd,1(0) =
(xt,1 − x0,1)

|pt,1 − p0,1|
yθd,1(1) =

(xt,1 − x0,1)

|pt,1 − p0,1|
(7.4)

44

The slopes at the intermediate waypoints are chosen as:

xθd,i(0) = λT0x,i xθd,i(1) = λ
(xt,i − x0,i)

|pt,i − p0,i|
(7.5)

yθd,i(0) = λT0y,i yθd,i(1) = λ
(yt,i − y0,i)

|pt,i − p0,i|

where T0,i ∈ R2 is the unit tangent vector at p0,i and λ > 0 is a design constant
used to tune the curvature of the path.

Cj : Setting derivatives of order j ≥ 2 to zero gives for i ∈ I:

xθ
j

d,i(0) = 0 yθ
j

d,i(0) = 0 (7.6)

xθ
j

d,i(1) = 0 yθ
j

d,i(1) = 0 (7.7)

Since the differentiability requirement of the path is C3, the above equations up to
j = 3 gives 16n equations to solve for (k + 1) · 2n unknowns, meaning that the
polynomial in θ must be of order k = 7.

Given that the waypoints are provided we can now produce the desired path seg-
ments

p̄d(i, θ) =

[
xd,i(θ)
yd,i(θ)

]
(7.8)

and the path derivatives

p̄d
θj (i, θ) =

[
xθ

j

d,i(θ)

yθ
j

d,i(θ)

]
, j ≥ 1 (7.9)

Since the desired heading is set using the path tangent vector we generate the path
derivatives for each path segment i up to j = 3, and the heading curve ψ̄d and
derivatives:

ψ̄d(i, θ) = atan

(
ȳθd(i, θ)

x̄θd(i, θ)

)
(7.10)

45

ψ̄θd(i, θ) =
x̄θd(i, θ)ȳ

θ2

d (i, θ)− x̄θ2d (i, θ)ȳθd(i, θ)

x̄θd(i, θ)
2 + ȳθd(i, θ)

2
(7.11)

ψ̄θ
2

d =
x̄θdȳ

θ3

d − x̄θ
3

d ȳ
θ
d

x̄θd
2 + ȳθd

2
− 2

(
x̄θdȳ

θ2

d − x̄θ
2

d ȳ
θ
d

)(
x̄θdx̄

θ2

d + ȳθdȳ
θ2

d

)[
x̄θd

2 + ȳθd
2
]2 (7.12)

and the speed profile vs,i(t, θ) and its derivatives

vs,i(t, θ) =
ud(t)

|p̄θd(i, θ)|
(7.13)

vts,i(t, θ) =
u̇d(t)

|p̄θd(i, θ)|
(7.14)

vθs,i(t, θ) = −
p̄θd(i, θ)

>p̄θ
2

d (i, θ)

|p̄θd(i, θ)|3
ud(t) (7.15)

where ud is the desired speed along the path.

Fig. 7.1 shows an example of a path generated using the hybrid path parametriza-
tion, with 8 different waypoints, with the tuning parameter λ = 0, 5.

0 5 10 15 20 25 30 35 40

y-position

0

5

10

15

20

x
-p

o
s
it
io

n

Figure 7.1: Path generated using hybrid path parametrization

46

Chapter 8
Guidance, navigation and
control

Chapter 3, 4 and 5 has presented the path planning and path generation functions.
This chapter presents the

• Guidance law, which will use information from the path generation module
to provide the control system with a desired position, velocity and accelera-
tion

• Control law, which determines the necessary control forces and moments
needed to satisfy the control objective (Fossen, 2011)

• Observer design, which is used to estimate positions, velocities and unmod-
elled dynamics

The signal flow of the overall system is shown in Figure 8.1, where it is de-
picted as a Guidance, navigation and control (GNC) system, as defined in Fossen
(2011).

47

Guidance

law
Control

law

Control
Allocation

Ship

Environmental forces

Estimated
positions and

velocitiesGuidance System Control System Navigation System

Sensors

Path

generation

Figure 8.1: Interaction between guidance, control and navigation systems. Adapted from:
Fossen (2005).

8.1 Observer design

The purpose of an observer, or a state estimator, is to Sørensen (2018):

• Filter measurement noise: signals can be contaminated by sensor noise or
external disturbances, which need to be removed.

• Reconstruct unmeasured states: Due to cost reasons or lack of appropriate
sensors, not all the states of a system can be measured. Observers are used
to estimate these states so that they can be used in a feedback control loop.

• Dead reckoning: If the sensor signals fall out due to some kind of error, the
observer should be able to replace the measured signal, at least for some
period of time.

There are several observer designs to choose from. The implemented observer is
a modified version of nonlinear passive observer design presented in Fossen and
Strand (1999). It has few parameters to tune (compared to e.g. the Kalman filter)
and it guarantees global convergence of estimation errors to zero.

The 3 DOF observer equations are

˙̂η = R(y3)ν̂ +K2ỹ (8.1)

˙̂
b = −T−1b̂+K3ỹ (8.2)

48

M ˙̂ν = −Dν̂ +R(y3)>b̂+ τ +R(y3)>K4ỹ (8.3)

ŷ = η̂ (8.4)

where the wave filtering equations have been removed as there are no waves present
in simulations or experiments at the MCLab. η̂, ν̂, b̂ are the state estimates,
ỹ = y − ŷ is the measurement estimation error and T ∈ R3x3 is a diagonal matrix
of bias time constants. K2 ∈ R3x3, K3 ∈ R3x3 and K4 ∈ R3x3 are the observer
gain matrices. The bias term b̂ is assumed to account for slowly varying loads like
currents, and other unmodelled dynamics.

8.2 Backstepping maneuvering control design

This section presents a backstepping maneuvering control design, which is used
to satisfy the maneuvering control objective in Chapter 3.2.3, given the low speed
control design model presented in Chapter 3.1.2. The control design is adopted
from Skjetne (2019).

We choose the LgV backstepping design and define

z1 :=
[
R(ψ)>[η − ηd(s)]

]
, z2 = ν − α1, ω = ṡ− vs(t) (8.5)

8.2.1 Step 1

The design follows these steps:

ż1 = Ṙ>[η−ηd]+R(ψ)>[η̇−ηsdṡ] = −rSz1+z2+α1−R(ψ)>ηsd(ω+vs) (8.6)

where S is the skew-symmetric matrix

S =

0 −1 0
1 0 0
0 0 0

 (8.7)

The first control Lyapunov function (CLF) is chosen as

V1 =
1

2
z>1 z1 (8.8)

which time differentiated gives

V̇1 = −rz>1 Sz1 + z>1 z2 + z>1
[
α1 −R(ψ)>ηsd(ω + vs)

]
(8.9)

49

The first virtual control is

α1 = −K1z1 +R(ψ)>ηsdvs + α10, K1 = K>1 > 0 (8.10)

and the first tuning function

ρ1 = −z>1 R(ψ)>ηsd (8.11)

Using Young’s inequality we get

V̇1 ≤ −z>1 K1z1 + ρ1ω + κ1z
>
1 z1 +

1

4κ1
z>2 z2 + z>1 α10 (8.12)

where κ1 > 0. Choosing
α10 = −κ1z1 (8.13)

gives

V̇1 ≤ −z>1 K1z1 + ρ1ω +
1

4κ1
z>2 z2 (8.14)

α1(t, s, η) = −(K1 + κ1I)R(ψ)>[η − ηd(s)] +R(ψ)>ηsd(s)vs(t, s) (8.15)

We now choose the maneuvering update law, in order for it to only act in the output
space of η. First, we have:

ρ1 = −z>1 R(ψ)>ηsd = V s
1 (η, s) (8.16)

V̇1 ≤ −z>1 K1z1 + ρ1ω +
1

4κ1
z>2 z2 (8.17)

= −z>1 K1z1 − ωηsd(s)>R(ψ)z1 +
1

4κ1
z>2 z2 (8.18)

We choose the unit-tangent gradient update law:

ω = µ
ηsd(s)

>

|ηsd(s)|
R(ψ)z1, µ ≥ 0 (8.19)

⇒ ṡ = vs(t, s) + µ
ηsd(s)

>

|ηsd(s)|
R(ψ)z1 (8.20)

50

which gives ρ1ω ≤ 0. Concluding Step 1, let K̃1 = K1 + κ1I which gives

α1(t, s, η) = K̃1R(ψ)>[η − ηd(s)] +R(ψ)>ηsd(s)vs(t, s) (8.21)

ż1 = −
(
K̃1 + rS

)
z1 + z2 −R(ψ)>ηsd(s)ω (8.22)

ṡ = vs(t, s) + ω (8.23)

V̇1 ≤ −z>1 K1z1 +
1

4κ1
z>2 z2 (8.24)

Since the update law is already chosen, α̇1 must be cancelled directly in the next
step:

α̇1 = σ1(t, s, η, ν) + αs1(t, s, η)ṡ (8.25)

= rK̃1Sz1 − K̃1ν − rSR(ψ)>ηsd(s)vs(t, s) +R(ψ)>ηsd(s)v
t
s(t, s) (8.26)

+

[
K̃1R(ψ)>ηsd(s) +R(ψ)>ηs

2

d (s)vs(t, s) +R(ψ)>ηsd(s)v
s
s(t, s)

]
ṡ (8.27)

so we have

σ1(t, s, η, ν) = rK̃1Sz1 − K̃1ν − rSR(ψ)>ηsd(s)vs(t, s) +R(ψ)>ηsd(s)v
t
s(t, s)
(8.28)

αs1(t, s, η) = K̃1R(ψ)>ηsd(s) +R(ψ)>ηs
2

d (s)vs(t, s) +R(ψ)>ηsd(s)v
s
s(t, s)

(8.29)

8.2.2 Step 2

Mż2 = Mν̇ −Mα̇1 = −Dν + τ +R(ψ)>b−M [σ1 + αs1ṡ] (8.30)

The second CLF:
V2 = V1 +

1

2
z>2 Mz2 (8.31)

V̇2 = V̇1 + z2Mż2 (8.32)

≤ −z1K1z1 +
1

4κ1
z>2 z2 + z>2

[
−D(z2 + α1) + τ +R(ψ)>b−M(σ1 + αs1ṡ)

]
(8.33)

τ = −K2z2 +Dα1 −R(ψ)>b+M(σ1 + αs1ṡ), K2 = K>2 > 0 (8.34)

51

V̇2 ≤ −z>1 K1z1 − z>2
(
K2 −

1

4κ1
I

)
z2 (8.35)

The final control law and closed-loop system becomes

ṡ = vs + ω (8.36)

τ = −K2z2 +Dα1 −R(ψ)>b+M(σ1 + αs1ṡ) (8.37)

ż1 = −
(

(K1 + κ1I) + rS

)
z1 + z2 −R(ψ)>ηsd(s)ω (8.38)

Mż2 = −(D +K2)z2 (8.39)

where K1 = K>1 > 0, K2 = K>2 > 0 and κ1 > 0 are gain matrices to be tuned
and ω is the unit-tangent gradient update law in Eq. 8.19.

8.3 Guidance law

Given measurements of η and the gain µ ≥ 0 the guidance law will implement the
path-parameter dynamics

ṡ = vs(t, s) + µ
(ηsd)

>

|ηsd|
(η − ηd) (8.40)

which is used together with the signals from the path generation module to pro-
vide the controller with the desired states. These are found as follows (Skjetne,
2019):

i = bsc+ 1, θ = s− bsc (8.41)

vs = vs,i(t, θ), vts = vts,i(t, θ), vss = vθs,i(t, θ) (8.42)

ψd = ψ̄d(i, θ), ψsd = ψ̄θd(i, θ), ψs
2

d = ψ̄θ
2

d (i, θ) (8.43)

pd = p̄d(i, θ), psd = p̄θd(i, θ), ps
2

d = p̄θ
2

d (i, θ) (8.44)

ηd =

[
pd
ψd

]
, ηsd =

[
psd
ψsd

]
, ηs

2

d =

[
ps

2

d

ψs
2

d

]
(8.45)

52

8.4 Tracking control design

The backstepping controller presented in the previous section can be difficult to
tune. This was the case during experiments at MCLab. Tuning parameters that had
worked well in simulations did not produce good results. A proportional–integral–derivative
(PID) tracking controller, which allows for a more intuitive tuning process, was
therefore implemented for use at MCLab. The design is adopted from Linde-
gaard and Fossen (2003), based on the same control design model from Chapter
3.1.2.

Letting ηe = η − ηd, and νe = ν − νd the tracking control law is

ξ̇ = ηe (8.46)

τ = −M(KiR(ψ)>ξ +KpR(ψ)>ηe +Kdνe) +Dνd (8.47)

where Ki > 0, Kp > 0 and Kd > 0 are gain matrices to be tuned. Note that
in this controller, the bias is compensated for through the integral state ξ, instead
of using the bias estimate from the observer, as was the case in the maneuvering
control design. In this case, we choose ω = 0, so that the path parameter dynamics
become

ṡ = vs(t, s) (8.48)

53

54

Chapter 9
Results

This chapter starts with presenting results for the global and local path-planners
on maps with some simple topographical obstructions. Movement in the BINN
is then simulated with CSAD, using the hybrid path parametrization. Finally, re-
sults for the whole system (AutoVoyage) are presented through simulations and
experimental results from MCLab.

The neural network parameters used in simulations are the one presented in Table
6.1, and the size of the grid decomposition is set as explained in Chapter 6. The
tuning parameter λ used in the path generation is set to λ = 0, 5. µ in the unit-
tangent gradient update law is set to µ = 0, 2. The gains of the backstepping
controller is set to K1 = diag([0.050.050.035]), K2 = diag([99.699.624.9]) and
κ1 = 0. The radius of acceptance is chosen as R = 0.3 m.

55

9.1 Global path-planning

9.1.1 Scenario 1

Fig. 9.1 shows the global path-planning algorithm solving a path-planning prob-
lem from p0 = (0, 12) to pt = (30, 30). As can be seen in Fig. 9.1)d), it would be
possible to omit more waypoints, and still have a path that does not intersect any
obstacles. However, the algorithm chooses not to do so, because the resulting path
would be to close to obstacles.

0 5 10 15 20 25 30 35

East [m]

5

10

15

20

25

30

35

40

N
o
rt

h
 [
m

]

(a) Operation area

0 5 10 15 20 25 30

East [m]

0

5

10

15

20

25

30

N
o
rt

h
 [
m

]

Generator points

Voronoi edges

(b) Voronoi partitioning

0 5 10 15 20 25 30 35

East [m]

0

5

10

15

20

25

30

35

40

N
o
rt

h
 [
m

]

Path found by A*

Target location

Start position

(c) Path found by A* algorithm

0 5 10 15 20 25 30 35

East [m]

0

5

10

15

20

25

30

35

40

N
o
rt

h
 [
m

]

Improved path

Start position

Target location

(d) Refined path

Figure 9.1: Scenario 1, global path-planning

56

9.1.2 Scenario 2

Fig. 9.2 shows the global path-planning algorithm finding the path from p0 =
(0, 0) to pt = (50, 50). Fig. 9.2)c) shows how the initial path found by the A*
search is taken directly from the edges of the Voronoi diagram. The final path with
all uncesessary waypoints removed is seen to be safe and efficient.

0 5 10 15 20 25 30 35 40 45 50

East [m]

0

5

10

15

20

25

30

35

40

45

50

N
o
rt

h
 [
m

]

(a) Operation area

0 5 10 15 20 25 30 35 40 45 50

East [m]

0

5

10

15

20

25

30

35

40

45

50

N
o
rt

h
 [
m

]

Improved path

Target location

Start position

(b) Voronoi partitioning

0 10 20 30 40 50

East [m]

0

5

10

15

20

25

30

35

40

45

50

N
o
rt

h
 [
m

]

Path found by A*

Target location

Start location

(c) Path found by A* algorithm

0 5 10 15 20 25 30 35 40 45 50

East [m]

0

5

10

15

20

25

30

35

40

45

50

N
o
rt

h
 [
m

]

Improved path

Target location

Start position

(d) Refined path

Figure 9.2: Scenario 2, global path-planning

57

9.2 Path-planning using BINN

This section shows how the BINN algorithm solved two path-planning scenarios.
The scenarios are not necesarilly realistic for a ship, but they are used to illustrate
the path-finding capabilities of the BINN algorithm. Fig. 9.3 shows the algorithm
finding the path to a target inside a U-shaped obstacle. Since the activity is not
able to propagate through the obstacles, the algorithm immediately knows to start
a turn. The path is seen to keep good distance to obstacles. The activity level
appears to be very close to zero at neurons not occupied by a target or obstacles.
This is due to the large passive decay rate. Still, the algorithm is able to separate
the values and find the optimal path.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

East [m]

-5

0

5

10

15

20

25

N
o
rt

h
 [
m

]

Target

Waypoints

Initial position

(a) Operation area (b) Activity landscape

Figure 9.3: Scenario 1, BINN path-planning

Fig. 9.4 shows a scenario type where the BINN algorithm is particularly efficient.
As can be seen, there are 39 waypoints between the initial and target position.
While the BINN algorithm is able to find the optimal path simply by following
the maximum activity at each step, a shortest-path graph search algorithm could
end up having to search a much larger portion of the state space to find the same
path.

58

-10 -8 -6 -4 -2 0 2 4 6 8 10

East [m]

0

5

10

15

20

25

30

35

40

N
o
rt

h
 [
m

]

Target

Waypoints

Initial position

(a) Operation area (b) Activity landscape

Figure 9.4: Scenario 2, BINN path-planning

9.3 Movement in BINN with C3 path generation

The rest of the simulations are carried out using the simulation model of CSAD
presented in Chapter 3.1.1 and the maneuvering control design in Chapter 8.2.
Fig. 9.5)a) shows the path travelled by the vessel through an obstacle course. It
is seen to keep good distance to obstacles. Fig. 9.5)b) shows that the desired
heading curve, which is tangent to the path, is smooth, but with some undesirable
fast wiggles.

-4 -3 -2 -1 0 1 2 3 4

East [m]

0

5

10

15

20

25

30

N
o
rt

h
 [
m

]

Path

Target

Initial

position

(a) North-east plot of travelled path

0 50 100 150 200 250 300 350

Time [s]

-20

-10

0

10

20

30

40

D
e
s
ir
e
d
 h

e
a
d
in

g
 [
d
e
g
]

(b) Desired heading, tangent to the path

Figure 9.5: Scenario 1, obstacle course

59

In the next simulation a dynamic obstacle is introduced. The obstacle is a rectangle
of similar size to CSAD, L x B = 2,5 m x 0,4 m, but it is represented in the BINN
network as twice it size. CSAD has initial position η0 = [0, 0, 0]> and the obstacle
has initial position η0 = [20, 0, π]>. The vessels are then set to move straight
forward so that they are on collision course, with ud = 0, 1m/s for both vessels.

-5 -4 -3 -2 -1 0 1 2 3 4 5

East [m]

-5

0

5

10

15

20

N
o
rt

h
 [
m

]

CSAD

Moving

obstacle

(a) North-east plot of desired path

0 50 100 150 200 250

Time [s]

0

2

4

6

8

10

12

14

16

18

20

D
is

ta
n
c
e
 b

e
tw

e
e
n
 C

S
A

D
 a

n
d
 o

b
s
ta

c
le

 [
m

]

(b) Distance between CSAD and obstacle

Figure 9.6: Scenario 2, head-on situation

Fig. 9.6)a) shows that CSAD was able to safely perform obstacle avoidance, and
then continue on its path. The black two-sided arrow show where the vessels were
after approximately 120 seconds. Fig. 9.6)b) shows the distance between the two
vessels as a function of time. It is smallest after approximately 104 seconds, which
is when they are side-by-side.

60

9.4 Testing of the complete system

This section presents results for two scenarios, using the complete AutoVoyage
system. In both scenarios, a constant current of vc = [0.01 m/s, 0.01 m/s, 0]>

is present. CSAD was commanded to move along the path with a surge speed
ud = 0, 1 m/s. Fig. 9.7)a) shows the path through the partitioning, which is seen
to go through the center of the neurons in the BINN. Fig. 9.7)b) and c) show that
both the geometric and the dynamic part of the maneuvering control objective is
satisfied well, but the vessel struggles to maintain the desired heading. Fig. 9.7)d)
shows that the commanded thrust in sway and yaw during turns are larger than
feasible. These are however saturated by the thrust allocation and the vessel is still
able to follow the path well.

0 5 10 15 20 25 30 35

East [m]

-5

0

5

10

15

20

25

30

N
o
rt

h
 [
m

]

Global

waypoints

(a) Operation area

0 50 100 150 200 250 300 350 400 450 500

0

10

20

0 50 100 150 200 250 300 350 400 450 500

0

10

20

0 50 100 150 200 250 300 350 400 450 500

0

50

100

(b) Positions

0 50 100 150 200 250 300 350 400 450 500

0

0.05

0.1

0 50 100 150 200 250 300 350 400 450 500

-0.01

0

0.01

0.02

0.03

0 50 100 150 200 250 300 350 400 450 500

-0.05

0

0.05

(c) Body-fixed velocities

0 50 100 150 200 250 300 350 400 450 500

0

5

10

0 50 100 150 200 250 300 350 400 450 500

-10

0

10

0 50 100 150 200 250 300 350 400 450 500

-5

0

5

10

(d) Control forces

Figure 9.7: Scenario 1, AutoVoyage

61

In scenario 2, two previously unknown "local obstacles" are introduced to be dealt
with by the local path-planner. Fig. 9.8)a) shows that these are navigated past
safely. Fig. 9.8)b) and c) shows that the geometric and dynamic tasks are satisfied
similarly as for scenario 1.

-10 0 10 20 30 40 50 60

East [m]

-10

0

10

20

30

40

50

60

N
o
rt

h
 [
m

]

Global waypoints

Local obstacles

(a) Operation area

0 100 200 300 400 500 600 700 800

0

50

0 100 200 300 400 500 600 700 800

0

50

0 100 200 300 400 500 600 700 800

0

50

100

(b) Positions

0 100 200 300 400 500 600 700 800

0

0.05

0.1

0 100 200 300 400 500 600 700 800

-0.01

0

0.01

0.02

0.03

0 100 200 300 400 500 600 700 800

-0.05

0

0.05

(c) Body-fixed velocities

0 100 200 300 400 500 600 700 800

0

5

10

0 100 200 300 400 500 600 700 800

-10

0

10

0 100 200 300 400 500 600 700 800

-5

0

5

10

(d) Control forces

Figure 9.8: Scenario 2, AutoVoyage

Fig. 9.9 shows a zoomed in view of scenario 2. It illustrates how the distance
between neurons are directly related to the size of the grid partitioning.

62

4 6 8 10 12 14 16

East [m]

0

2

4

6

8

10

12

N
o
rt

h
 [
m

]

Global waypoints

Local obstacles

(a) First local obstacle

35 40 45 50

East [m]

35

40

45

50

55

N
o
rt

h
 [
m

]

Global waypoints

Local obstacles

(b) Second local obstacle

Figure 9.9: Zoomed in view, scenario 2

9.5 Experimental results

As shown in the attached log files, the position measurements from QTM would
vanish whenever the ship moved past approximately 4, 5m in positive north di-
rection from the origin in the MCLab basin. This left very little space left for
maneuvering. Still, two simple tests were carried out to show that the online path-
planning and path generation works well. As previously mentioned, a PID tracking
controller was used for experiments at MCLab, for simplicity in tuning. Due to the
limited space available for maneuvering a tighter partitioning of the BINN, 1, 4 m
x 0, 5 m, was used. In both scenarios, the objective is to get from the current posi-
tion of the vessel (which is made to be close to the origin) to pt = (7, 0), with the
speed assignment ud = 0, 05 m/s. Fig. 9.10 shows the result from the experiments.
Results show decent performance of the tracking controller, though it is seen to fall
behind at the beginning, especially for scenario 1. The worst performance is seen
in tracking of the desired heading. The controller is also seen to struggle with sat-
isfying the speed assignment, though this could also be due to poor estimates from
the observer.

63

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

East [m]

-1

0

1

2

3

4

5

6

N
o
rt

h
 [
m

]

Desired trajectory

(a) Scenario 1: Operation area and desired trajectory

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

East [m]

-1

0

1

2

3

4

5

6

7

N
o
rt

h
 [
m

]

Desired trajectory

(b) Scenario 2: Operation area and desired trajectory

0 20 40 60 80 100 120 140

0

2

4

0 20 40 60 80 100 120 140

-0.2

-0.1

0

0 20 40 60 80 100 120 140

-10

-5

0

(c) Scenario 1: Positions

0 20 40 60 80 100 120 140

0

2

4

6

0 20 40 60 80 100 120 140

0

0.5

1

0 20 40 60 80 100 120 140

-30

-20

-10

0

10

(d) Scenario 2: Positions

0 20 40 60 80 100 120 140

0

0.05

0.1

0 20 40 60 80 100 120 140

0

0.01

0.02

0 20 40 60 80 100 120 140

0

0.05

(e) Scenario 1: Estimated velocities

0 20 40 60 80 100 120 140

0

0.1

0.2

0 20 40 60 80 100 120 140

0

0.02

0.04

0 20 40 60 80 100 120 140

-0.06

-0.04

-0.02

0

0.02

0.04

(f) Scenario 2: Estimated velocities

Figure 9.10: Scenario 1 and 2, MCLab experiments

64

9.6 Discussion

In summary, simulations showed that the vessel was able to autonomously com-
plete a voyage in many different scenarios. Both the global and the local path-
planner produces paths that are safe and efficient in their operation areas, and
integration of the two worked well. The vessel is able to accurately follow the
parametrized path all the way from point of departure to point of arrival.

It was however seen that the vessel was not always able to achieve the desired
heading. This could be due to sub-optimal tuning, or it could mean that some of
the turns are to sharp for the vessel. The paths could be made easier to follow by
increasing the size of the cells in the grid partitioning, though the resulting paths
would be less efficient in terms of path length. As long as the path is constrained
to move through the centers of each cell, there will be a weighting between the
resolution of the BINN, which must be high enough for obstacle avoidance, and
the feasibility of the path.

Increasing the size of the representation of the dynamic obstacles in the BINN, is
an easy solution to a complicated problem. In one sense, it is very robust. It forces
the vessel to respond early to the presence of a dynamic obstacle, as the BINN
algorithm will never choose to go to a neuron position which is registered as oc-
cupied by an obstacle. In that sense, the system is guaranteed to perform obstacle
avoidance. The weakness lies in the assumption that accurate information about
the size of dynamic obstacles can be obtained. Furthermore, if the frequency of
dynamic obstacle encounters are high the total path can become inefficient.

It should be mentioned that simulations with a stronger current were attempted,
which were not succesful. The controller was not able to successfully compensate
for the stronger current, which is believed to be because of poor bias estimation
from the observer when the vessel changes heading.

Experimental results from MCLab were obtained from much simpler scenarios,
but they show that the online path-planning and path generation strategy works
well. It also demonstrates that the system is computationally efficient enough to
respect the hardware limitations on-board.

65

66

Chapter 10
Conclusions and suggestions for
further work

10.1 Conclusion

This thesis has presented an approach to autonomous path-planning, path genera-
tion and maneuvering control, for the purpose of autonomous transit operation for
a marine surface vessel. The system has been validated through simulations and
lab experiments.

The global path-planner worked well, which is to be expected as it is largely based
on established methods. Partitioning using Voronoi diagrams gave the A* search
enough possible paths to find an efficient route through the partitioning. Waypoint
reduction made sure that the path was as efficient as possible, given the clearance
constraints.

Integration with the BINN approach for local path-planning using hybrid path
parametrization also yielded good results. The paths are in general satisfactory,
staying clear of obstacles and avoiding sharp turns. It was also shown that the
vessel was able to perform dynamic obstacle avoidance in a head-on collision sit-
uation.

The system is shown to be robust, and can easily be adapted. Adjusting the clear-
ance of the path with respect to obstacles is simply a matter of changing the size
of the partitioning of the grid that the BINN is organized on. This flexibility opens
up for many possible areas of use.

67

10.2 Recommendations for further work

As of now, the system is only concerned with maneuvering in a safe manner. A
natural next step for the guidance concept is to make the system comply with
the Convention on the International Regulations for Preventing Collisions at Sea
(COLREGs). These regulations dictate how one should perform collision avoid-
ance maneuvers at sea. For example, in the head-on situation simulated in Chap-
ter 9.3, COLREGs state that both ships shall alter course to starboard. The fact
that CSAD performed a starboard maneuver was coincidental, as turning port-side
would have yielded a path with similar length.

As the vessel was not always able to keep the desired heading, it is suggested to
loosen the constraint of forcing the path to go through the center of the cells in
the grid decomposition. This is employed in (Scibilia et al., 2012), and gives more
flexibility in path generation.

Another very interesting idea is to change strategy with respect to currents. In this
work, it was always attempted to counteract the effect of currents in the controller
through the bias estimation. It is necessary to have this function in the motion con-
trol system. In some cases however, it is possible to use the energy in the current by
letting the current influence the path. By incorporating this in the decision-making
on which waypoint to choose next, the energy consumption of the system could
be reduced. The control system still has to be able to compensate for the effect
of currents, which will require either a better bias estimate or to instead include
integral action in the controller.

For further testing of the system at MCLab, it is recommended to implement the
system on a vessel smaller than CSAD, such that the space available for maneu-
vering is larger compared to the size of the ship. This would allow for testing of
more advanced scenarios.

68

Bibliography

AAWA, 2016. Remote and Autonomous Ships: The next steps.
https://www.rolls-royce.com/~/media/Files/R/
Rolls-Royce/documents/customers/marine/ship-intel/
aawa-whitepaper-210616.pdf [Accessed: 15.10.2018].

Bjørnø, J., 2016. Thruster-Assisted Position Mooring of C/S Inocean Cat I Drill-
ship. Master thesis, NTNU.

Caltech, 2019. Summary of the A* Algorithm. http://robotics.
caltech.edu/wiki/images/e/e0/Astar.pdf [Accessed:
12.05.2019].

Candeloro, M., Lekkas, A. M., Sørensen, A., 2017. A Voronoi-Diagram-Based
Dynamic Path-Planning System for Underactuated Marine Vessels. Control En-
gineering Practice.

Dubins, L., 1957. On curves of minimal length with a constraint on average curva-
ture and with prescribed initial and terminal positions and tangents. American
Journal of Mathematics, 497–516.

Fossen, T. I., 2005. A nonlinear unified state-space model for ship maneuvering
and control in a seaway. Journal of Bifurcation and Chaos.

Fossen, T. I., 2011. Handbook of Marine Craft Hydrodynamics and Motion Con-
trol. John Wiley Sons, Ltd.

Fossen, T. I., Strand, J. P., 1999. Passive nonlinear observer design for ships using
Lyapunov methods: full-scale experiments with a supply vessel. Automatica 35,
p 3-16.

69

https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/ship-intel/aawa-whitepaper-210616.pdf
https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/ship-intel/aawa-whitepaper-210616.pdf
https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/ship-intel/aawa-whitepaper-210616.pdf
http://robotics.caltech.edu/wiki/images/e/e0/Astar.pdf
http://robotics.caltech.edu/wiki/images/e/e0/Astar.pdf

Fraichard, T., Scheuer, A., 2004. From Reeds and Shepp’s to continuous-curvature
paths. IEEE Transactions on Robotics.

Huang, Z., Zhu, D., Sun, B., 2016. A multi-auv cooperative hunting method in 3-d
underwater environment with obstacle. Engineering Applications of Artificial
Intelligence.

Hvamb, K., 2015. Motion planning algorithms for marine vehicles. Master thesis,
NTNU.

Latombe, J.-C., 1991. Robot Motion Planning. Kluwer Academic Publishers
Group.

Lekkas, A. M., 2014. Guidance and path-planning systems for autonomous vehi-
cles. PhD thesis, NTNU.

Lekkas, A. M., Dahl, A. R., Breivik, M., Fossen, T. I., 2013. Continuous-Curvature
Path Generation Using Fermat’s Spiral. Modeling, Identification and Control,
Vol. 34, No. 4, 2013, pp. 183–198, ISSN 1890–1328.

Lindegaard, K.-P., Fossen, T. I., 2003. Fuel-efficient rudder and propeller control
allocation for marine craft: Experiments with a model ship. IEEE Transactions
on Control Systems Technology.

Lyngstadaas, O. N., 2018. Ship Motion Control Concepts Considering Actuator
Constraints. Master thesis, NTNU.

Ni, J., Wu, L., Shi, P., Yang, S., 2017. A Dynamic Bioinspired Neural Network
Based Real-Time Path Planning Method for Autonomous Underwater Vehi-
cles. Computational Intelligence and Neuroscience Volume 2017, Article ID
9269742.

Scibilia, F., Jørgensen, U., Skjetne, R., 2012. AUV Guidance System for Subsur-
face Ice Intelligence. Proceedings of the ASME 2012 31st International Confer-
ence on Ocean, Offshore and Arctic Engineering.

Skjetne, R., 2005. The Maneuvering Problem. PhD thesis, NTNU.

Skjetne, R., 2019. Notes on: Maneuvering control design of a low-speed fully-
actuated vessel with stepwise path generation. Unpublished work, NTNU.

SNAME, 1950. Nomenclature for Treating the Motion of a Submerged Body
Through a Fluid. Technical and Research Bulletin No. 1–5.

70

Sørensen, A., 2018. Marine Cybernetics, Towards Autonomous Marine Operations
and Systems. Department of Marine Technology, NTNU.

Yang, S. X., Meng, M., 1998. A neural network approach to real-time trajectory
generation. IEEE Proc. Int. Conf. Robot. Automat, 1725–1730.

Yang, S. X., Meng, M., 2001. Neural network approaches to dynamic collision-
free trajectory generation. IEEE Transactions ON SYSTEMS, MAN, AND
CYBERNETICS-PART B: CYBERNETICS, VOL. 31.

Ørjan Grefstad, 2018. Development of an obstacle detection and avoidance system
for ROV. Master thesis, NTNU.

Šeda, M., 2007. Roadmap Methods vs Cell Decomposition in Robot Motion Plan-
ning. Proceedings of the 6th WSEAS International Conference on Signal Pro-
cessing, Robotics and Automation.

71

72

Appendix

A - Attached files in the delivery file

• Digital version of the thesis

• Digital version of the master poster

• Log files from MCLab

• Veristand project

• Matlab and Simulink code

73

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f M
ar

in
e

Te
ch

no
lo

gy

G
ra

du
at

e
th

es
is

Aksel Knudsen Nordstoga

AutoVoyage: Autonomous path-
planning, path-generation, and path-
following for autonomous ships in
transit

Graduate thesis in MTMART
Supervisor: Roger Skjetne

June 2019

	Summary
	Sammendrag
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Motivation
	Objectives of the thesis
	Scope and delimitations
	Contributions and thesis outline

	Background
	Autonomous system architecture and layers
	System layers
	System architecture

	Partitioning methods and path-planning methods for global path
	The Bio-Inspired Neural Network approach to path-planning
	Generation of feasible path segments
	Graph theory

	Problem formulation
	Dynamic models
	Simulation model
	Control design model

	Problem statement
	Path-planning
	Path generation
	Control objective

	Experimental setup
	The marine cybernetics laboratory
	C/S Artic Drillship

	Global path-planning
	Path-planning algorithm
	Partitioning the operation area using Voronoi diagrams
	Finding the shortest path using A* search
	Clearence constraints
	Waypoint reduction

	Local path-planning
	Creating the dynamic activity landscape
	Choosing the next waypoint
	Integration with the global path-planner
	Determining the resolution of the grid partitioning

	Tuning the neural network parameters

	Path generation
	Generating a Cr curve through a set of waypoints
	Stepwise C3 path generation

	Guidance, navigation and control
	Observer design
	Backstepping maneuvering control design
	Step 1
	Step 2

	Guidance law
	Tracking control design

	Results
	Global path-planning
	Scenario 1
	Scenario 2

	Path-planning using BINN
	Movement in BINN with C3 path generation
	Testing of the complete system
	Experimental results
	Discussion

	Conclusions and suggestions for further work
	Conclusion
	Recommendations for further work

	Bibliography
	Appendix

