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Summary
Newborns are vulnerable to altered cerebral blood flow that in worst case terminates in
brain injury and death or life-lasting disabilities. An ultrasound system named NeoDoppler
has recently been invented to offer continuous surveillance of the cerebral blood flow in
neonates. However, the hemodynamics of normal neonates is not yet fully understood.

In this project, a lumped multi-compartment model was developed in MATLAB to sim-
ulate cerebral blood flow in neonates during a 90° head-up tilt. Regulation of heart rate,
peripheral resistance and cerebral resistance was implemented. Different combinations of
the three regulatory mechanisms were simulated to assess their individual and combined
effects. NeoDoppler recordings from two newborns participating in tilt experiments were
used to adjust and validate the model.

The model was able to reproduce several of the features observed in the experimental
recordings. The different combinations of active regulatory mechanisms yielded a variety
of responses, in line with the diversity of responses reported in earlier studies. Simulations
using all three regulatory mechanisms provided the best fit to the two NeoDoppler record-
ings. It seems that the model may be a promising point of departure for later studies, but
further development and validation against experimental data are required.
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Sammendrag
Nyfødte barn er sårbare for å få forstyrret blodstrømmen i hjernen. I verste fall kan for-
styrrelsen føre til hjerneskader og ende med død eller livsvarige funksjonsnedsettelser.
Et ultralyd-system kalt NeoDoppler har nylig blitt utviklet for å overvåke den cerebrale
blodstrømmen kontinuerlig over tid. Samtidig er det slik at mye ved normale nyfødtes
hemodynamikk er lite forstått.

I dette prosjektet ble det utviklet en konsentrert (eng. lumped) modell i MATLAB for
å simulere den cerebrale blodstrømmen hos nyfødte ved 90° vipping med hodet oppover.
Det ble implementert reguleringsmekanismer for hjertefrekvens og perifer og cerebral kar-
motstand. Ulike kombinasjoner av de tre reguleringsmekanismene ble brukt for å under-
søke hvilken effekt de hadde alene og sammen med hverandre. NeoDoppler-opptak av to
nyfødte som gjennomgikk en eksperimentell vippe-test ble brukt for å tilpasse og validere
modellen.

Modellen var i stand til å gjenskape mange av trekkene som ble observert i den eksper-
imentelle vippe-testen. De ulike kombinasjonene av reguleringsmekanismer gav resultater
som gjenspeilte noe av variasjonen i vippe-responsen funnet i tidligere studier. Over-
ensstemmelsen med dataene fra de to nyfødte var best med alle reguleringsmekanismene
aktivert. Det ser ut til at modellen kan være et lovende utgangspunkt for senere studier,
men den bør utvikles videre og valideres med ytterligere eksperimentelle data.
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Chapter 1
Introduction

There is no such thing as an infant. [...]
whenever one finds an infant one finds
maternal care, and without maternal
care there would be no infant.

Winnicott [3, p. 586]

1.1 Motivation

Being born is one of the most dramatic events in a human’s life, and enormous adaptations
are made in almost every organ as one is separated from the mother and rendered an
individual [4]. But being born is also a dangerous project. Today, in Norway, 1.4 of 1000
neonates dies within the first four weeks of life, compared to 11.0 in 1967 [5]. Worldwide,
3% of living newborns dies within their first four weeks of life [6], of which 36% dies
during the first day, and 73% during the first week [7]. In absolute numbers, about two less-
than-a-day old neonates dies every minute. Another million develop neurodevelopmental
disorders due to hypoxic brain injuries [8]. Mortality increases for lower gestational age,
being over 50% at gestational age 23 weeks in Norway, and dropping to below 5% at
gestational age 28–31 weeks [9].

Prematurity, severe infections and asphyxia each contribute to about a fourth of neo-
natal mortality [10]. A common mechanism to death and disability in these conditions
is brain injury due to cerebral hypo- or hyperperfusion or hypoxia [11–14]. Detection
of altered cerebral blood flow may therefore provide a route of diagnosing underlying
pathology at an early stage so that suitable medical interventions can be supplied.

NeoDoppler is an ultrasound device for continuous surveillance of cerebral blood flow
developed at the Department of Circulation and Medical Imaging, NTNU [15, 16]. A
small ultrasound transducer is fixed to the anterior fontanelle of the infant and the blood
flow velocity at various depths is recorded. Several parameters, such as short- and long-
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Chapter 1. Introduction

term variations in perfusion and pulsatility, can be calculated and continuously assessed
and used as an aid in deciding proper medical treatment.

Currently, the knowledge concerning neonatal cerebral autoregulation is scarce [17].
Autoregulation is a set of physiological mechanisms that seek to keep cerebral blood flow
constant at a satisfying level across varying blood pressures [18]. It is likely that the
autoregulatory mechanisms may be underdeveloped in some preterm infant, leaving them
vulnerable to altered cerebral blood flow.

Hence, it is of significant interest to investigate normal and abnormal cerebral blood
flow patterns in the infant, both in steady-state and as the autoregulation is challenged
during stress. Tilting is a simple way of inducing mild hemodynamic stress. The introduc-
tion of a difference in height between heart and brain is accompanied with a hydrostatic
pressure that has to be compensated. Head-up tilting has been found to elicit a range of
responses in the infant, including in blood pressure [eg. 19–22], heart rate [eg. 20–23],
and cerebral blood flow velocity [eg. 24]. Computer simulation has shown to be a fruitful
approach to study the cardiovascular system due to its complexity and since many of the
variables are challenging to inquire experimentally [25, 26].

In this project, a lumped model is developed to explore the dynamics of a 90° tilt
in the neonate. Autoregulation and a simple baroreceptor reflex is implemented to study
how resistance and compliance respond to the postural change. The effects of the tilt on
cerebral circulation and blood pressure are of special interest. Experimental data from
NeoDoppler recordings of term neonates are used to develop and validate the model.

1.2 Aim and Scope
This project is part of a larger research project on NeoDoppler at the Department of Circu-
lation and Medical Imaging, NTNU, in which NeoDoppler recordings of tilt experiments
have been collected. The focus of this project is on model development, and the experi-
mental data will not be subjected to comprehensive analysis.

The aim of this project is to develop a lumped model that can reproduce key features
of the blood circulation of a neonate, with emphasis on the cerebral circulation, and how
regulatory and autoregulatory mechanisms respond to a 90° tilt. The model will be val-
idated by experimental measurements, including NeoDoppler recordings. In addition will
existing studies on neonates undergoing tilt test be reviewed.

1.3 Contributions
This project was supervised by professor Hans Torp at the Department of Circulation and
Medical Imaging, NTNU, and associate professor Rita de Sousa Dias at the Department
of Physics, NTNU. Important contributions have been provided from others at the De-
partment of Circulation and Medical Imaging and St. Olav’s University Hospital: Siv
Steinsmo Ødegård have conducted tilt experiments as a part of an ongoing study. She
has kindly provided NeoDoppler recordings and blood pressure measurements. Martin
Leth-Olsen provided Doppler measurements for a premature infant from several anatom-
ical locations. Siri Ann Nyrnes has provided knowledge and expertise regarding neonatal

2



1.4 Outline of the Report

physiology.
Master student Thanh Q. Nguyen has worked on a project on modelling neonatal cir-

culation during closure of the ductus arteriosus [27]. Both this and his project have used
a model by Garcia-Canadilla et al. [28] as basis and the same software for simulation, but
different adaptions and modifications have been made.

Two recent master theses have addressed related topics. Tran [29] devised a lumped
model to simulate cerebral bloodflow in neonates with open ductus arteriosus. A lin-
ear model was compared to a non-linear model, and validated with Doppler recordings
of neonates and an experiment involving arm position in adults. Wisløff [30] used a
lumped model to investigate whether pressure-dependent or pressure-independent resist-
ance provided most accurate blood flow patterns, and compared recordings of peripheral
blood flow in healthy and diabetic volunteers.

Some overlap exists among the mentioned master projects and this project, in terms of
equipment used for experimental recording and simulation software, but the projects have
dealt with separate subjects, utilised different data sets, and developed unique models.

1.4 Outline of the Report
This thesis is divided into five chapters followed by references and an appendix. The
remaining part of the introductory chapter will provide a review of relevant literature and
necessary theory. First is an overview of anatomy related to the project and unique features
of the neonate. Thereafter follows a brief description of the cardiovascular system, includ-
ing some cardiac physiology and blood pressure regulation. The section finishes with an
account of the tilt test and how newborns have been found to respond to tilt in earlier
studies. The next section introduces basic principles for ultrasound and the NeoDoppler
technology utilised to acquire the experimental data used in this project. The last section
derives how an electrical circuit can be used to model blood circulation.

Next is Chapter 2 on methods, which first describes the acquisition of experimental
data, then the development of a model for steady-state circulation, and lastly how the
steady-state model was elaborated to simulate a tilt experiment. Results are presented in
Chapter 3, organised in three sections corresponding to the method chapter, and discussed
in Chapter 4 alongside limitations of the model and suggested improvements.

Finally, Chapter 5 offers concluding remarks. The appendix houses source code for
the regulation of resistance and the generation of input signal to the model, and some
additional results.

3



Chapter 1. Introduction

Keep your heart with all diligence,
for out of it is the wellspring of life.

Proverbs 4:23 [31]

1.5 The Neonate
The first half of this section provides an overview of selected topics of neonatal anatomy
and physiology that are important for this project. The latter part of this section offers a
review of circulatory (auto-)regulation and the tilt test. Selected studies are presented that
shed some light on the neonate’s response to tilt.

1.5.1 Anatomy and Physiology
Anatomy

Oxygenated blood is ejected from the left ventricle (ventriculus sinister) through the aor-
tic valve (valva aortae), into the ascending aorta (aorta ascendens) [32]. A small amount
enters the coronary arteries (aa. coronariae), providing blood to the heart itself. Most
of the blood follows aorta ascendens which bends and becomes the aortic arch (arcus
aortae). Three arteries leave the aortic arch; first the brachiocephalic trunk (truncus bra-
chiocephalicus), then the left common carotid artery (a. carotis communis sinistra), and
finally the left subclavian artery (a. subclavia sinistra. The aortic arch itself bends down-
wards, becoming the descending aorta (aorta descendens), providing blood to the lower
part of the body, which is of less interest in this project. The brachiocephalic trunk divides
into the right subclavian artery (a. subclavia dextra) and the right common carotid artery
(a. carotis communis dextra). The subclavian arteries supply blood to the upper extremit-
ies, as seen in Figure 1.1a, where the left-right-asymmetry can also be spotted. Figure 1.1b
shows how the right common carotid artery ascends towards the head and splits into an
external (a. carotis externa) and an internal part (a. carotis interna). The point of division
is the bifurcation (bifurcatio caroditis), which houses the carotid body (glomus caroticum)
which consists of neural cells detecting pH and hypoxia. The carotid artery widens around
the bifurcation (sinus caroticus), and the vessel wall contains pressure sensors (barorecept-
ors). The left common carotid artery follows the same course.

The brain receives most of its blood from the internal carotid arteries, although some
blood is also provided through the vertebral arteries (aa. vertebrales) that arise from the
subclavian arteries as illustrated in Figure 1.1b. The two vertebral arteries join at the pons
and create the basilar artery (a. basilaris) as seen in Figure 1.1c, which supplies blood
to the cerebellum and pons, and also the posterior portions of the brain as the posterior
cerebral arteries (a. cerebri posterior). The internal carotid arteries enter the skull through
canalis caroticus and later become the medial cerebral arteries (a. cerebri media). Fig-
ure 1.1c also shows how an anastomosis named the Circle of Willis (circulus arteriosus
cerebri) connects the carotid and vertebrobasilar blood flow. The anterior cerebral artery
arises from this circle and provide blood to the anterior parts of the brain, as demonstrated
in Figure 1.1d. Both the anterior and the medial cerebral artery receive their blood from
the internal carotid artery.
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1.5 The Neonate

(a) The arterial system of a 9 month old
foetus.

(b) Overview of the arteries of the neck.

(c) Caudal view of cerebral arteries. (d) Lateral view of cerebral arteries.

Figure 1.1: The brain receives its blood from the internal carotid arteries and the basilar artery. The
arteries’ path can be tracked down to their origin from the aorta. All the images are released to the
public domain, (a) after Römmler, Leopold and Leisewitz [33], (b) after Carter, Gray and Book [34],
and (c, d) after Sobotta [35, 36].
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The Circle of Willis is subject to considerable anatomical variation in the popula-
tion, with some variants shown in Figure 1.2. Absent or hypoplastic parts of the circle
may render the individual vulnerable to disease. It has been found that complete circles
are more frequent in preterm than in term infants, leaving the compelling possibility that
stressed or endangered foetuses utilise the circle, through mechanisms still unknown, as a
strategy to reduce the risk of cerebral damage [37].

Figure 1.2: Several variations of the Circle of Willis (circulus arteriosus cerebri) are found in the
population. Types 1, 3 and 6 are most frequent [38]. The Circle of Willis is also displayed in
Figure 1.1c representing type 1 (one communicating artery is hidden behind the optic nerve). The
single incoming vessel at the bottom of Type 1 is the basilar artery that divides into the left and
right posterior cerebral artery. Communicating arteris connect these to the left and right internal
carotid artery that becomes the middle cerebral artery. A branch emerges from the left and right
internal carotid artery that sling forward and is named the anterior cerebral artery. The right and left
anterior cerebral artery is joined in Type 1 by a communicating artery. Figure by Lazorthes et al.
[38], reprinted with permission from Springer Nature.

The brain is enclosed in three membranes (meninges); the outer dura mater, then the
arachnoidea mater, and finally the inner pia mater [32]. The cerebral arteries are confined
to the subarachnoid space, i.e. external to the pia mater.

Unique anatomical features of the neonate

The foetus receives oxygenated blood from the placenta whereas after birth gaseous ex-
change will happen in the lungs [39, Ch. 16]. Two main differences are found between the
circulation in adults and foetuses,

• the left and right ventricles of the foetus pump in parallel, not in series,

6



1.5 The Neonate

• the foetus has three shunts leading blood from the pulmonary circulation to the
placental circulation.

The three shunts are shown in Figure 1.3. These are reviewed as they often remain open
for some time after birth.

Figure 1.3: The foetus receives oxygenated blood from the placenta, and uses three shunts to dis-
tribute the blood efficiently. The image is made by OpenStax College [40] and is licensed under CC
BY 3.0.

The first shunt, ductus venosus, carries oxygenated blood from the placenta directly
into the vena cava inferior, bypassing the liver. Kiserud, Rasmussen and Skulstad [41]
found that only 20–30% of the blood is shunted whereas the rest is directed to the fetal
liver. Ductus venosus loses its function as the umbilical chord is clamped [39, Ch. 16]. It
is usually closed within three months of birth.

The second shunt is the foramen ovale, connecting the right and left atria of the
heart [39, Ch. 16]. As the pulmonal resistance is high prior to birth, most of the blood is
shunted from the right atrium to the left atrium. At birth, when umbilical inflow ceases
and pulmonary resistance drops, the pressure in the right ventricle drops and the pressure
in the left atrium rises, so that blood is no longer shunted. A flap prevents blood flow from
the left atrium to the right atrium. The foramen ovale disappears slowly, and remains in
about 10% of the adult population.

The final shunt is the ductus arteriosus, a channel bridging the pulmonary artery to the
aorta [39, Ch. 16]. The direction of flow through the ductus arteriosus is determined by
the pressure difference. In utero, the pulmonary resistance is high, shunting blood from
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the pulmonary artery into the aorta (right-to-left shunting). After birth, the flow direction
is usually reversed as the systemic resistance exceeds the pulmonary resistance. In term
neonates, ductus arteriosus usually closes spontaneously about 27 hours after birth in boys
and 45 hours after birth in girls [42]. Cesarean delivery seems to delay the closure in both
sexes.

A patent ductus arteriosus may be problematic, especially in preterm infants [43, Ch.
10]. Apnoea and bradychardia can occur as well as hypoxia, increased pulse pressure,
audible systolic murmur, prominent precordial impulse, and, in severe cases, heart failure.

Vasculature

Blood vessels are divided into arteries, arterioles, capillaries, venules and veins depending
on their size and structure [44, Ch. 19]. Some structural differences and physiological
properties are highlighted in Figure 1.4. All vessels have three layered walls; the intima,
the media, and the adventitia; except the capillaries that only have the intima layer. The
arteries can be divided into elastic and muscular arteries. The latter have walls with sev-
eral layers of smooth muscles, making them resistant to increasing pressures so that their
diameter does not change significantly. Elastic arteries, such as the aorta, have less smooth
muscles and are more compliant.

The arterioles contribute most to systemic resistance, and the pressure drop is greatest
here. The vessel walls contain smooth muscles permitting vasodilatation and -constriction.
Although the capillaries have higher individual resistance, the number of capillaries in
parallel lowers their contribution (see section 1.7.2 and Figure 1.4b) as the total cross-
sectional area increases. The capillaries lack smooth muscle cells, and are often leaky so
that nutrition, oxygen and other substances can extravasate into the tissue.

The venules and veins are thin walled, elastic vessels that can act as blood reservoirs.
The venous blood pressure is very low, as shown in Figure 1.4b, and the flow is mainly
driven by gravity or the contraction of surrounding muscles. Back-flow is prevented by
valves. Often the veins are located close to pulsating arteries so that some motion is
transferred.

The Heart

The heart (cor) acts as the pump of the circulatory system. The cardiac cycle is commonly
divided into four phases, as demonstrated in Figure 1.5; isovolumic contraction, ejection,
isovolumic relaxation, and filling phase (divided into several stages in the figure). The
cycle starts in systole as all the valves are closed, the ventricles are filled with blood and
start contracting (isovolumic contraction) [47, p. 190]. When the ventricular pressure ex-
ceeds the aortic and pulmonary pressure, the aortic and pulmonary valves (the semilunar
valves) opens and blood is ejected into the aorta and pulmonary artery (ejection phase).
The ejection becomes gradually slower, and towards the end of the ejection phase a small
retrograde flow is observed, and the ventricular pressures have dropped below the pressure
in the corresponding arteries. Due to inertia, the semilunar valves are not closed immedi-
ately as the pressure gradient changes [44, Ch. 22]. The diastole begins as all valves again
are closed, but the ventricles no longer filled with blood [47, p. 190]. The ventricles relax
and the ventricular pressure continues to fall (isovolumic relaxation). A small increase in
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1.5 The Neonate

(a) Image by Kelvinsong [45], licensed under CC BY-SA 3.0.

(b) Image by Rice University [46], licensed under CC BY 4.0.

Figure 1.4: Blood vessels are categorised into arteries, arterioles, capillaries, venules, and veins.
The different vessels have specific properties.

aortic pressure is seen as the aortic valve closes, creating a small peak termed the dicrotic
notch or incisura as shown in Figure 1.5 [44, Ch. 22]. It is also argued that pressure wave
reflections may be involved in the creationof the dicrotic notch [48]. The atria were filled
with blood during ejection, as the valve plane was lowered, creating a suction effect [47, p.
190]. When the ventricular pressures become lower than the atrial, the mitral and tricuspid
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valves opens and the ventricles are filled with blood (filling phase). The filling is mostly
passive, with the ventricles filled 80% in the first quarter of diastole, followed by a slower
filling (diastasis). Normally, the atria contract to fill the ventricles maximally, a subphase
referred to as atrial systole.

Figure 1.5: A Wiggers diagram showing the important events during a cardiac cycle. Details in the
text. Image by xavax, adh30 and DanielChangMD [49], licensed under CC BY-SA 3.0.

In the clinic, the heart phases are identified and assessed using auscultation with a
stethoscope or electrocardiogram (ECG). Figure 1.5 show how the ECG and heart sounds
relate to the cardiac cycle, but details regarding these are beyond the scope of this texts [see
eg. 44, Ch. 21–22]. Doppler US can be used to qualitatively and quantitatively evaluate
flow patterns during the the different phases.

Cardiac output (CO) describes how much blood that is ejected from either the left or
the right ventricle per minute. In the neonate, left and right cardiac output may not be
equal, and as the pulmonary circulation is not considered in this project, CO will refer to
the output from the left ventricle (LVO). Similarly, stroke volume (SV) will denote the
volume of blood ejected from the left ventricle per cardiac cycle. The relation between
CO and SV is

CO = HR · SV, (1.1)

where HR is heart rate in beats per minute (bpm). Hudson et al. [50] measured CO in
20 healthy, 2–7 days old neonates (gestational age 37–41 weeks, weight 2380–4020 g),
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and found a normal range 154–308 mL kg−1 min−1 with mean 231 mL kg−1 min−1, in
concordance with both earlier [eg. 51] and later estimates [eg. 52]. To assess SV, Walther,
Siassi and Wu [53] used Doppler US on 112 healthy neonates (gestational age 27–42
weeks, weight 780–5350 g) and found SV to be 1.77 mL kg−1 (SD 0.28 mL kg−1). Heart
rate in the neonate is typically 110–145 bpm (median 127 bpm) [54], compared to 60–80
in adults [47, p. 190].

Historically one has thought that the regulation of CO in the neonate was dominated
by heart rate, whereas SV was kept fixed. Newer studies have nuanced this position [55].
For example, Gullberg, Winberg and Selldén [56] found that neonates were able to change
CO by at least 15% due to change in SV. As heart rate increases, less time is available for
filling, and end-diatolic volume decreases [44, Ch. 23]. On the other hand, increased heart
rate also increases contractility and thereby reducing the end-systolic volume. As SV is
the difference between end-diastolic and end-systolic volume, the total effect on SV is not
readily predictable. Kenny et al. [57] studied cardiac functioning in human foetuses, and
found that SV declined with heart rate (HR) as SV [mL] = 7.11−0.02 ·HR [bpm]. If one
assumes this relationship holds true across birth, an estimate for the newborn is

SV [mL] =
−0.02 · HR [bpm] + 7.11

−0.02 · 120 + 7.11
· 1.77 · bw [kg], (1.2)

where bw is birth weight, yielding a CO of 220 mL kg−1 min−1 at heart rate 130 bpm,
well within the reported normal range [50–52]. In Eq. (1.2), SV has been set to equal the
typical value 1.77 mL kg−1 at heart rate 120 bpm [53].

The duration of a cardiac cycle tc is the inverse of heart rate and can be divided into
a systolic, ts, and diastolic, td, period, as described above. tc decreases as heart rate in-
creases, mainly due to a decrease in td [47, p. 190]. Technically, the systolic duration is
composed of a left ventricle ejection time and a short pre-ejection period (PEP) repres-
enting a delay from ventricular depolarisation until the ventricular ejection begins [58].
Lindner et al. [59] found left ventricular ejection time (LVET) to be approximately

LVET [ms] = 286− 0.80 · HR [bpm]

for neonates 24–30 hours after birth. In terms of flow rates, the PEP can be ignored as the
aortic valve is still closed, and the duration of systole can be expressed as a fraction of the
duration of the total cardiac cycle,

ts
tc

[%] =
48 · HR− 0.133 · HR2

100
. (1.3)

Although the LVET depends on age, the variation in ts/tc the first month is negligible
for a given heart rate [58]. ts/tc for different ages is shown in Figure 1.6. Others have
studied older children finding similar results [60], whereas some find the average systole-
to-diastole ratio to surpass 1.0 after a few months of age [61].
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Figure 1.6: Length of systole (ts when PEP is ignored) relative to the total cardiac cycle tc at
different ages. Hassan and Turner [58] (—) studied newborns, whereas Golde David and Burstin
Luis [60] (- - -) studied children up to 13 years of age and with lower mean heart rate (thus plotted
with a shorter range).
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1.5 The Neonate

1.5.2 Blood Pressure Regulation and Autoregulation
The blood pressure varies throughout the day as one moves or changes position. The tis-
sues, however, need reliable supply of nutrition and oxygen, and the possibility to remove
waste and toxic products. Neural tissue is especially vulnerable to failing perfusion as it
is highly oxygen-dependent, in charge of 20% of the body’s total oxygen consumption,
despite constituting only 2% of the body weight (in adults) [62, Ch. 23]. Hypotension can
cause global cerebral ischemia. The body has evolved a range of mechanisms to coun-
teract deviations in blood pressure and ensure perfusion within a satisfactory range. Both
hypo- and hyperperfusion can be detrimental to the neonate through a range of mechan-
isms [18]. Figure 1.7 shows how different mechanisms interact to stabilise blood pressure
after a postural change, such as standing up from a sitting position.

↓ CO, ↓ venous
return, ↓ cerebral BP

Taking up-
right position

Cerebral Au-
toregulation

Neurohumoral
response

Maintained
CBF

Neurovascular re-
sponse: Barore-

ceptor reflex

↑ venous return
by skeletal muscle

pump in lower body

Release of no-
radrenaline

↑ HR

Vasoconstriction
in lower part
of the body

↑ BP,
normalised

CO and
venous return

Release of adrenaline
and dopamine
β-hydroxylase

Baro- and stretch
receptors in the atria

Release of ADHActivation of RAAS

↑ blood volume

Immediate response (seconds)

Delayed response (minutes–days)

Figure 1.7: Schematic representation of mechanisms evoked by changing from supine to upright
position. Abbreviations: HR, heart rate; CO, cardiac output; CBF, cerebral blood flow; RAAS,
renin–angiotensin–aldosterone system; ADH, Antidiuretic hormone (vasopressin). Inspired by Per-
lmuter et al. [63].

In the neonate, the brain receives about 17% of CO, and accounts for about 17% of the
body weight [18]. Cerebral autoregulation in humans becomes increasingly more func-
tional from week 23 to 33 of gestation, but pressure reactivity and autoregulation in re-
sponse to systolic blood pressure and MAP is not observed prior to week 26–28. Preterm
neonates are thus extremely vulnerable to disturbed cerebral blood flow.

The aim of cerebral autoregulation is to maintain a satisfactory blood flow despite
varying blood pressure, as illustrated in Figure 1.8. Within a blood pressure range, the
vessel radius changes and compensate for the pressure change so that the flow is kept
constant. If the pressure gets too high or too low, the autoregulatory mechanisms can
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no longer keep track, and the vessel radius passively follows increases or decreases with
the pressure. Lower and upper limit to autoregulation is individual for each neonate, and
can shift during progressing pathology or treatment [18]. An exact range has been hard
to establish in infants, but some studies suggest a lower limit of autoregulation of about
30 mmHg [17]. In adults, the lower limit is about 50–60 mmHg and the upper limit about
150–160 mmHg [64]. Mean arterial blood pressure (MAP) below the gestational age in
weeks is often defined as hypotension at the first day of life [18]. There is also a critical
closure pressure below which cerebral perfusion ceases. It is thought to be about 22–
33 mmHg in neonates.

Cerebral pulsations have been known for a long time, and Fog [65] reported changes in
cerebral vessel diameter as response to blood pressure drop in 1934, although the idea had
been proposed as early as 1900. He used an experimental setup devised ten years earlier,
where a window was made in the skull of a cat so that the vessels in the pia mater could
be observed [66].

Figure 1.8: Cerebral autoregulation enables the brain to maintain stable blood flow within a limited
blood pressure range by adjusting the vessel radius. Outside this range the vessel radius is passively
controlled by blood pressure, and the perfusion varies correspondingly. The flow-pressure relation
is not as linear as depicted, and flow rate is related to vessel radius squared. Figure by Rhee et al.
[18], reprinted with permission from Springer Nature.

At least three different, and not mutually exclusive, theories exist for which mechan-
isms constitute autoregulation [64],

1. the myogenic mechanism, where changes in pressure and flow alter the membrane
potential in smooth muscle cells around the vessel so that they contract or dilate;

2. the metabolic mechanism, where venous CO2, and likely other substances as well,
from the metabolism diffuses to arterioles that respond with either dilatation or con-
striction; and

3. the neurogenic and endothelial cell-related factor mechanism, where activated brain
areas communicate their increased demand for nutrition and oxygen to the nearby
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vessels through neural signalling and biochemical signals along different cell types
and the endothelium in the brain. This is often termed neurovascular coupling.

In this project, the cerebral autoregulation is not described at the level of individual mech-
anisms, but only as a total effect.

1.5.3 The Tilt Test
When a child is tilted with the head upwards, as illustrated in Figure 1.9, a height difference
occurs between the heart and the brain. This introduces a pressure due to gravity,

Pg(h)[mmHg] = ρhgk−1c = 0.77 mmHg cm−1 · h, (1.4)

where ρ = 1.05 kg L−1 is the density of foetal whole blood [28], h the difference in
height between the heart and the brain, g ≈ 9.81 m s−2 is specific gravity, and kc ≈
133.3 Pa mmHg−1 is a converting factor [67]. Similarly, a pressure gradient is created
along the entire body of the infant, and blood may tend to pool up on the venous side
in the lower body, reducing venous return and thus CO. The effect of venous pooling
is well known in the adult [see eg. 68–70]. For the infant, however, the importance of
venous pooling seems not to be known in detail. Murat et al. [71] found that children
younger than 8 years did not experience a change in systolic blood pressure in response
to extradural anaesthesia. One explanation may be that younger children have a smaller
relative blood volume in the lower body compared to adults, and also that younger children
have a lower level of systemic resistance at rest [71, 72]. The lack of peripheral blood
volume redistribution is suggested to explain the stability of left ventricular end-diastolic
volume (LVEDV) and SV during tilt [73].

(a) An infant in supine position with the heart
and the head in the same height.

h

(b) The upright position introduces a hydro-
static pressure.

Figure 1.9: When an infant is tilted 90° from the supine position, the height difference h between
the heart and the brain creates a pressure gradient due to gravity. This leads to a drop in blood flow
to the brain in the absence of regulatory mechanisms. Adapted from a painting by Szabolcs [74],
licensed under CC BY-SA 3.0.

An intriguing study by Seymour and Arndt [75] explored how blood pooling and head-
to-heart hydrostatic pressure both contributed to cardiovascular response to tilt in snakes.
By tilting the whole snake or only segments of it, they found that the vertical distance
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Figure 1.10: Response to a 90° tilt before and after acquiring the ability of maintaining upright
position in 14 male infants. Abbreviations: MAP, mean arterial blood pressure; CI, cardiac index
(CO divided by body weight); TPR, total peripheral resistance; LVEDV, left ventricle end-diastolic
volume; SV, stroke volume; HR, heart rate. Adapted from Magrini et al. [73], reprinted with permis-
sion from Oxford University Press.

between head and heart influenced head blood pressure 2–4 times more than blood pooling.
In humans, a negative pressure can be applied to the lower body to investigate the effects of
shift in blood volume towards the lower body [76]. It has been found that the physiological
response differs between head-up tilt (HUT) and lower body negative pressure (LBNP),
with cerebral blood flow velocity less reduced during LBNP vs HUT from 3 minutes and
onward [77].

Magrini et al. [73] examined the response to a 90° tilt in 14 male infants before (at
6 months) and after (at about 18 months) they had learnt to maintain erect position. The
main results are shown in Figure 1.10. At the first tilt test, none of the assessed parameters
(SV, cardiac output, total peripheral resistance (TPR), MAP, heart rate and LVEDV) were
significantly altered. After acquiring erect position, LVEDV fell significantly, as did SV,
and despite a small increased heart rate, a decrease in CO was observed. Increased TPR
compensated for lowered CO so that MAP was kept stable. It is also noted that the urin-
ary excretion decreases in the same period of life, indicating maturation of mechanisms
regulating blood volume.

Regulatory mechanisms have to be evoked to prevent loss of blood flow to the brain,
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as in the case of standing up. Most tilt experiments focus on the change in heart rate and
blood pressure as these are easily measured. Figure 1.11 summarises the tilt response in
blood pressure and heart rate in newborns and children in different studies. References for
the figure, special condition (if present) of the group studied, and basal values are found
in Table A.1.

The tilt response shows large diversity between individuals, but also in the same indi-
vidual over time. Figure 1.12 demonstrates the variety in a small group of pre-term and
term neonates [78]. The variability was higher in the preterm infants, and they showed
in average a smaller initial response to 45° head-up tilt than term infants. In both groups,
some infants responded with an increase in blood pressure or heart rate, whereas others
responded with a decrease. Hänninen, Peltonen and Hirvonen [19] followed premature
infants for several days after birth and measured the blood pressure before and after a 30°
HUT. The measured response of four different infants is shown in Figure 1.13 as they aged.
Again, a remarkable diversity is revealed. During the first week of life, all four newborns
have displayed both increase and decrease in blood pressure in response to tilt.

The response in heart rate is similarly varied. Five characteristic responses (profiles)
have been described [23, 79],

P1 Sustained bradycardia (decreased heart rate),

P2 Sustained tachycardia (increased heart rate),

P3 Initial bradycardia with subsequent increase,

P4 Initial tachycardia with subsequent decrease, and

P5 No change in heart rate.

Edner et al. [79] found that 88% of healthy infants responded as P2 or P4 compared to
55% in infants with an apparent life threatening event, and hypothesised that this may
be a manifestation of underlying autonomic dysfunction in the latter group. The study
group was small consisting of only 12 infants. Galland et al. [80] studied 60 infants with
only 15% characterised as P1, P2 or P5, and these were typically younger infants. They
also found sleep state (active vs quiet sleep) to be associated with the strength of the
tilt response. Figure 1.14 demonstrates how sleep state affects tilt response in another
study. Mazursky et al. [81] reported a gradual increase in heart rate in premature infants
as response to tilting. Heart rate increased with postnatal age with regression coefficient
0.45(12) bpm/week. Table A.1 and Figure 1.11 summarise responses reported in the lit-
erature. Maternal smoking status seems not to affect the heart rate response to tilt [80,
82].

SV and CO are reported to decrease in response to tilt in adults [84–87]. Some studies
find a peak in heart rate immediately after the tilt, causing a temporary peaking in CO [84],
but the peak is not observed in all studies [86]. Invasive measurements were performed in
a dog [88]. SV was found to decrease with a corresponding increase in heart rate, leading
to a not significant change in CO. Li et al. [89] studied children (mean age 11 years)
experiencing vasovagal syncope and found a decrease in CO and increase in periperal
resistance after a 60° HUT. Nevertheless, Shekhawat, Sasidharan and Lewis [90] did not
find any significant changes in neither SV nor CO during 30° and 60° tilts in infants born
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Figure 1.11: Several studies have investigated how infants of different age respond to tilts at different
angles given by the different colours, as indicated. The plot shows the relative change in the systolic
(SBP), the mean arterial (MAP) and the diastolic (DBP) blood pressure, as well as the heart rate
(HR), as the child is tilted. References and details are found in Table A.1.
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Figure 1.12: Pre-term infants were tilted 45° with the head up. The control group consisted of term
infants and the measurements were conducted 12 weeks after birth. Adapted from Viskari-Lähdeoja
et al. [78], and reprinted with permission from Elsevier.

at gestational age 24–36 weeks. Nor did Magrini et al. [73] find any change in SV, left
ventricle end-diastolic volume, total peripheral resistance or CO per body weight (cardiac
index) after a 90° tilt. Change in SV, CO and systemic resistance has been observed in left-
lateral position compared to supine, and decreased SV observed in prone position [91].

The influence of tilt on cerebral blood flow (CBF) has also been investigated. Anthony,
Evans and Levene [24] identified four typical responses to a 20° tilt with head up or down.
The experimental setup resembled NeoDoppler, using a button-sized ultrasound transducer
fixated to the temporal bone of 60 neonates of gestational age 24–41 weeks and less than
7 days old. The responses observed were categorised as

R1 Equivocal/cycling, where CBF cycled both before and after the tilt, concealing
the response (if any),

1 2 3 4 5 6 7 8-12 18-22 28-32
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Figure 1.13: Premature infants were exposed to a 30° head-up tilt on several consecutive days after
birth, and the change in blood pressure (BP) recorded. The plot shows four individual infants. Data
from Hänninen, Peltonen and Hirvonen [19].
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Figure 1.14: Beat-to-beat change in systolic blood pressure (closed circles, •) and heart rate (open
circles, ◦) in response to a 15° tilt (dotted line) in 2–4 weeks old infants. The left panels show the
response during quiet sleep, while the right panels show the response during active sleep. Adapted
from Yiallourou et al. [83], and reprinted with permission of the Oxford University Press.

R2 No response, where CBF seemed undisturbed by the tilt,

R3 Uniphasic, where a sudden shift in CBF was observed within 5 s of the tilt, but
with no second change within 20 s of the first,

R4 Biphasic, as R3 but with a second change occurring within 20 s of the first
change.

It was observed that the proportion of infants responding as R4 increased with gestational
age. Most of the infants in the study were preterm and in intensive care. R3 and R4
responses were observed in epochs independently of mean arterial blood pressure and
arterial carbon dioxide tension. It was suggested that R2 responses were observed due to
the tilting being too slow, as not all mattresses had the same tilt mechanism. Only systolic
velocity was analysed. Pichler et al. [92] found a change in cerebral blood volume in the
range −123 to 67 µL/100g brain (median −25) in term neonates, compared to −169 to
126 µL/100g brain (median −31) in preterms. The tilt was 20°, and the mean age of the
infants was 13 days.
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But you don’t dissect a bird to find the
origins of its song.

Brodskij [93, p. 356]

1.6 Ultrasound and NeoDoppler

Despite its short history, the importance of ultrasound (US) in obstetrics and perinato-
logy cannot be overstated [94]. The first US images of a foetus is reportedly by Donald,
Macvicar and Brown [95], shown in Figure 1.15, published in the Lancet in 1958 [94]. A
few years later, Doppler US recorded foetal heart movements [96]. Since then, consider-
able advances have been made and US quickly became an invaluable part of the neonatal
intensive care units [97]. Here, only a brief overview of the principles and technology of
Doppler US is given. The section is based on the works of Angelsen [98] and Webb and
Flower [99, Ch. 6] if other sources are not cited.

Figure 1.15: One of the first published foetal US images, showing the breeches of twins. Image
by Donald, Macvicar and Brown [95], reprinted with permission from Elsevier.

1.6.1 Ultrasound

An ultrasound pulse starts as an electrical (voltage) sine wave with centre frequency f0
produced by a signal generator. The signal is amplified and applied to one or more trans-
ducer elements consisting of a piezoelectrical crystal, a backing material and a matching
layer. The crystal changes thickness in response to the applied voltage, creating a longit-
udinal pressure wave when the transducer is brought in contact with the tissue.

An acoustic wave propagating through a medium will move with a wave speed c0. The
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medium’s acoustic impedance (or characteristic mechanical impedance) is defined as

Z = 1/(κc) = ρc =

√
ρ

κ
(1.5)

whereρ is mass density and κ compressibility. If the acoustic impedance changes at an
interface from Z to Z1, a proportion of the wave’s energy will be reflected, r2, and a
proportion transmitted, 1− r2, through the interface,

r =
pr
pi

=
Z1 cos θi − Z cos θt
Z cos θt + Z1 cos θi

, (1.6a) t =
pt
pi

=
2Z1 cos θi

Z cos θt + Z1 cos θi
, (1.6b)

where θi and θt are the angle between a normal to the interface, and the direction of
incoming and transmitted wave fronts, respectively. pi, pt and pr are incoming, transmitted
and reflected pressure. The echo reflected can be detected by receiver elements containing
piezoelectrical crystals, amplified, converted to a digital signal, processed, filtered, and
being used to create a map of the medium.

The signal will be altered at several stages of the process. Mechanical properties of
the probe determines how the voltage signal is transformed to a pressure wave and vica
versa, and the tissue further modifies the wave through frequency dependent absorption
and scattering.

Doppler ultrasound

The Doppler effect was first described by Christian Doppler [100] in 1842 to account for
the colour of binary stars. At that time, attempts had already been made to map the ocean
floor using echo-sounding [101]. After the second world war, the research into diagnostic
US flourished, and the Doppler effect was soon exploited to give information about flow
velocity.

Continuous-Waved Doppler

Assume a stationary source and an observer moving with velocity v(t). The source is
emitting continuous waves with frequency f0 along the unit vector et in a medium with
wave velocity c0. The wave length is λ0 = c0/f0. The wave front needs the time λ0/c0 =
1/f0 to travel this distance, and in that time, the observer has moved approximately a
distance d away from the wave front. If 1/f0 is small compared to |dvdt |, the velocity v(t)
is close to constant,

d =

∫ 1/f0

0

v(t) · et dt ≈ v · et/f0 (1.7)

Hence, a delay ∆t = d/c0 = v·et/(c0f0) is introduced. The observed frequency becomes
f ′ = 1/(1/f0 + ∆t), and the shift is

fs = f ′ − f0 = f0

( c0
c0 + v · et

− 1
)

= f0
v · et

c0 − v · et
≈ f0

v · et
c0

, (1.8)

where the approximation holds when |v| � c0. In US, the signal has to be echoed to a
receiver. The analysis is similar to the one above, with the observer now acting as a source
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1.6 Ultrasound and NeoDoppler

and the receiver as the observer. A second shift fs appears, yielding the general Doppler
shift [102]

fD =
f0
c0

(et + er) · v, (1.9)

where et and er are normal vectors to the transducer and the receiver surfaces, respectively.
The transducer and the receiver will create an overlapping area, and only scatterers moving
in this region are measured.

To successfully calculate the velocity v from Eq. (1.9), the angles between et, er and
v have to be known. Uncertainty in the angles will contribute to a large uncertainty in
v when the angles are close to 90°, and the Doppler shift disappears if the emitter and
receiver are parallel and the scatterer is moving normal to the wave propagation.

Usually, the probe contains both sender and receiver elements so that et and er are
close to parallel with an angle θ to v. Hence Eq. (1.9) can be simplified to

fD =
2f0v cos θ

c0
,

or equivalently

v =
fDc0

2f0 cos θ
. (1.10)

Pulse-Waved Doppler

Pulse-waved Doppler (PW Doppler) can be used when depth resolution is desired in addi-
tion to information regarding velocity and movement. In PW Doppler, a train of short wave
pulses (typically a few cycles long) with center frequency f0 emitted with pulse repetition
frequency (PRF) is used. The same probe elements are often used as both transducer and
receiver. Figure 1.16 contains a calculated example.

The wave pulse travels at speed c0, hits the scatterer in distance d after a time ∆t/2 =
d/c0, the wave is scattered back and returns at the receiver a time ∆t after the pulse
was sent. This is the echo return time. The process repeats with PRF, with the distance
increasing or decreasing for each repetition. Assuming that |v| � c0 and v is constant
in the period 1/PRF, the scatterer moves a distance v · et/PRF in between the pulse wave
emissions. Assume for simplicity constant velocity v. The echo return time thus becomes
a function of scatterer velocity, pulse wave direction, and PRF, according to

∆ti =
2d0
c0

+ 2i
v · et

PRF · c0
, (1.11)

where i denotes the number of the pulse in a series and d0 the initial distance to the scat-
terer. The factor 2 is needed as the wave travels both ways. Hence a phase shift φ is
introduced to the received signal sr,

sr(t) = g(t) sin(2πf0(t+ ∆ti)) = g(t) sin(2πf0t+ φi),

φi = 2πf0∆ti =
4πf0
c0

(
d0 + i

v · et
PRF

)
= 2πf ′i/PRF,

fD = 2
f0
c0

(
d0 + v · et

)
,
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where g(t) accounts for the pulsing of the wave, and φ becomes a signal sampled at a fre-
quency PRF, as illustrated in Figure 1.16a. If θ is the angle between the wave propagation
direction and the scatterer’s velocity, and the initial phase shift is corrected, an expression
similar to Eq. (1.10) appears,

v =
fDc0

2f0 cos θ
. (1.12)

fD can then be found from the Fourier spectrum of sin(φi) as shown in Figure 1.16b.
Eq. (1.12) is similar to Eq. (1.10) as the time delay of the signal depends on the movement
of the scatterer in relation to the probe in both cases, and thus results in the same shift in
frequency.
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(a) The blue dots shows sine of the phase shift sampled with PRF, and red curve is sin(2πf ′t).
Details in the text.
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(b) Positive half of the Fourier spectrum of Figure 1.16a, with a clear peak at f = 781 Hz. This can
be used to calculate the scatterer’s speed from Eq. (1.12), yielding v = 20 cm s−1.

Figure 1.16: Demonstration of important events in PW Doppler. Here, a scatterer with initial dis-
tance d0 = 1 mm moves away from the probe with speed 20 cm s−1, in a medium with wave
propagation speed c0 = 1540 m s−1. PRF and f0 are set to 10 kHz and 3 MHz, respectively.

Some observations can be made. According to the Nyquist–Shannon sampling the-
orem, the sampling frequency of a signal has to be at least twice the highest frequency of
interest in the signal. If a lower sampling frequency is used, aliasing occurs. In terms of
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1.6 Ultrasound and NeoDoppler

PW Doppler, this implies that PRF sets a limit to the maximal velocity measurable, vNyquist.
Since PRF is the sampling frequency, the highest frequency available in the sampled signal
is PRF/2 which can be substituted into Eq. (1.12), that is,

vNyquist =
c0 · PRF

4f0
= 38.5[cm s−1]

PRF [kHz]
f0[MHz]

,

in tissue with c0 = 1540 m s−1. Figure 1.4b shows typical blood flow velocities averaged
over a cardiac cycle in different vessels. Systolic peak velocity into the ascending aorta can
exceed 120 cm s−1 in healthy adults [103], and 80 cm s−1 in healthy neonates, although
values up to 180 cm s−1 have been reported in children [104, 105]. In the presence of
pathology, turbulent jets can arise with velocities above 500 cm s−1 [106]. Despite the
high peak systolic flow velocity in the aorta, mean flow velocity calculated as aggregated
flow divided by cross-section is in the range 20–35 cm s−1 [44, 46]. Typical blood flow
velocities in the anterior and middle cerebral arteries are shown in Figure 1.17.
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Figure 1.17: Peak systolic (PSV), mean (MV) and end-diastolic (EDV) blood flow velocity in the
anterior (ACA) and middle (MCA) cerebral artery the first month after birth for neonates with gest-
ational age > 32 weeks. Pulsatility index (PI) is defined Eq. 1.13. Median values acquired from a
study by Pezzati et al. [107].

To prevent range ambiguity, a new pulse can only be sent after receiving the echo from
the previous pulse. PRF is thus limited by the depth of the object of interest, and cannot
exceed echo return time inverse, defined as

PRF ≤ c0
2dmax

=
770[kHz mm]
dmax[mm]

,

in tissue with c0 = 1540 m s−1. The axial (depth) resolution l, on the other hand, is
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derived from the pulse duration τ ,
l =

c0τ

2
.

As the scatterer moves beyond the observable depth, the observation time of the scatterer
is limited. This broadens the frequency spectrum in Figure 1.16b, and an uncertainty in
measured velocity arises in form of spectrum broadening, creating the rims in Figure 1.18.

B mode images have to be acquired during the procedure to visualise where in the
tissue the velocities are measured. This adds another compromise to be made between
frame rate and resolution.

In practise, the process is more complicated. Technical limitations and specific re-
quirements in terms of frame rate and resolution make it necessary to customise equip-
ment, setup and signal processing to fit the intended use. Examples of Doppler spectra in
a healthy child are shown in Figure 1.18.
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1.6 Ultrasound and NeoDoppler

(a) Left ventricular outflow tract.

(b) Ascending aorta.

(c) Descending aorta.

Figure 1.18: Typical Doppler spectra obtained from a healthy child. Adapted from Hofbeck, Deeg
and Rupprecht [105] and reused with permission from Springer Nature.

1.6.2 NeoDoppler

Fenton, Evans and Levene [108] engineered ‘a small, lightweight probe and cable that are
attached to the infant’s skin to record cerebral blood flow velocity from the middle cerebral
artery over a period of hours’ in the late 1980’s. This concept has recently been revitalised
as NeoDoppler by the Ultrasound Research Group at NTNU in a project led by professor
Hans Torp [16]. Using a coin sized probe fixed over the anterior fontanelle as demonstrated
in Figure 1.20, Doppler US offers the opportunity of continuous surveillance of cerebral
blood flow velocities. The working principles of Doppler US is described above.
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Hardware

The NeoDoppler equipment consist of a single-element probe, a scanner (Manus EIM-A,
Aurotech Ultrasound AS, Tydal, Norway), and an interface with display, as schematically
depicted in Figure 1.19. The probe is circular with a diameter of 1 cm, and has a depth
range of 3–35 mm [15]. The emitted pulse waves have a central frequency of 7.8 MHz.

Figure 1.19: Main components of the NeoDoppler set-up. Figure by Hergum [109], reprinted with
permission.

The probe is fixed on the anterior fontanelle as demonstrated in Figure 1.20. It is not
necessary to identify the vessel of observation as the flow in both the anterior and middle
cerebral arteries, as well as right and left great vessels, are highly correlated [15]. In this
project, it is assumed that the anterior cerebral artery is recorded.

Software

The accompanying software EarlyBird has been made for NeoDoppler. The program pro-
cesses raw data from the probe and scanner, and presents it as a Doppler spectrum. In
addition, the depth of interest can be adjusted so that different vessels can be chosen. Gain
is also adjustable, as well as parameters used for filtering. In this project, all these settings
were optimised by the test technician.

The software also allows for velocity tracing and heart beat extraction. An example of
trace extraction and heart beat detection is shown in Figure 1.21. Heart beats are identified
by detecting the sharp increase in systolic velocity.

Finally, the software calculates several averages parameters from the recordings, such
as HR, resistivity index, pulsatility index (PI), and mean velocity. PI is a frequently used
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1.6 Ultrasound and NeoDoppler

(a) Photo kindly provided by Frida J. Krüger
and printed with permission.

(b) From an animation by NTNU TTO [110],
used with permission.

Figure 1.20: The NeoDoppler probe is attached over the anterior fontanelle in a specially designed
cap (a) to survey the blood flow velocity in the anterior cerebral artery (b).

Figure 1.21: A Doppler spectrum was acquired using the NeoDoppler equipment, and processed
by the EarlyBird software. A velocity trace is shown in red, with dots indicating the beginning of a
heart cycle. One beat is skipped by the algorithm.

measure of pulsatility, defined as

PI =
qsystole − qdiastole

q̄
=
vsystole − vdiastole

v̄
, (1.13)

where qsystole and qdiastole are the flow rates in systole and diastole, respectively, and q̄
the average flow rate. Similar definitions apply for flow velocity v. In this project, the
parameters are calculated outside the EarlyBird software, using only the velocity trace.
Customised interfaces have been made for special application, for example if the probe is
used for other measurements than the cerebral blood flow.
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1.7 Modelling of Blood Circulation
The NeoDoppler equipment described in Section 1.6.2 makes the continuous surveillance
of cerebral blood flow feasible. To fully exploit the information carried in the signal, vari-
ations in blood flow and features of the wave profile could be correlated to physiological
mechanisms such as the autoregulatory capacity. This section provides an overview of
how blood circulation can be described mathematically and modelled. It finishes by intro-
ducing a model of foetal circulation, which is developed to fit the neonate in section 2.2,
and briefly presenting simulation software used.

1.7.1 Basic Hemodynamics
Blood is a fluid consisting of protein-rich plasma, red and white blood cells, and plate-
lets [44, Ch. 18]. It is distributed through the body in vessels driven by a pressure gradient
created by the heart, as described in Sections 1.5.1 and 1.5.1. In general, the behaviour of
an incompressible fluid with constant density ρ and viscosity µ in the gravitational field g
is governed by the Naiver-Stokes equation for momentum,

ρ
dV

dt
= ρg −∇p+ µ∇2V, (1.14)

and the continuity equation,
∇ ·V = 0, (1.15)

where V(r0, t) = [Vx(x, y, z, t), Vy(x, y, z, t), Vz(x, y, z, t)] is a velocity field [111, Ch.
4]. When looking at tubes, as in the case with blood vessels, cylindrical coordinates are
useful [112, Ch. 2]. Introducing the familiar coordinates

x = r cos θ,

y = r sin θ,

z = z,

yields

∇ψ(r, θ, z) =
∂ψ

∂r
er +

1

r

∂ψ

∂θ
eθ +

∂ψ

∂z
ez, (1.16)

∇ ·ψ =
1

r

∂

∂r
(rψr) +

1

r

∂ψθ
∂θ

+
∂ψz
∂z

, (1.17)

∇2ψ(r, θ, z) =
∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂θ2
+
∂2ψ

∂z2
, (1.18)

with ψ = ψrer + ψθeθ + ψzez , where e is a unit vector [113].
When a fluid moves along a surface, fluid in contact with the surface will have the

same velocity as the surface itself [111, Ch. 2]. This is commonly referred to as the no-slip
condition. As blood is comparted within vessels, and the vessels are stationary and (for the
moment treated as) rigid, there will be an outermost cylindrical layer of blood that does not
move (V = 0 for |r| = a, where a is the radius of a tube coaxial to ez). A new cylindrical
layer lies immediately central to stationary layer, moving slowly with the stationary layer
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as lubricant [112, Ch. 2]. This repeats towards the central axis, where the fastest moving
fluid is found. The cylindrical layers shear each other, instead of slipping or sliding. The
cylindrical symmetry implies that there is no angular variations (i.e. ∂V∂θ = ∂p

∂θ = 0).
If the flow is laminar (that is, all fluid elements flow along the main flow direction,

Vθ = 0) and the flow is allowed to fully develop, a flow velocity profile emerges inside
the tube. In other words, the cross-sectional velocity distribution will be equal along these
parts of the tube (i.e. ∂V∂z = 0). One can assume that the flow in many parts of the vascular
tree is close to fully developed [112, p. 52]. Under these assumptions, the velocity field V
is only varying along er. From Eq. (1.15) it can now be found that the radial component
of V is zero (Vr = 0). Looking at only this component of Eq. (1.14),

ρ
dVr
dt

= ρgr −
∂p

∂r
+ µ

∂2Vr
∂r2

+ µ
1

r

∂Vr
∂r

,

∂p

∂r
= ρgr ≈ 0,

as the vessels are too narrow for gravity to have a significant effect. Hence, the pressure p
is only a function of z and t.

By assuming a steady flow (dVdt = ∂p
∂t = 0), Eq. (1.14) (along ez) can be further

simplified,
dp

dz
= ρgz + µ

d2Vz
dr2

+ µ
1

r

dVz
dr

. (1.19)

As the left and right side of Eq. (1.19) is differentiated with respect to separate variables,
both sides have to equal a constant, c. The contribution from gz depends on the position
of z relative to the gravitational field and is considered zero for the moment. Starting
with the left hand side, dp

dz = c is solved by p(z) = (c + ρgz)z + p(0). Looking at a
segment of the vessel of length l, starting in z = 0, the pressure gradient along the vessel
is c = (p(l)− p(0))/l. The right hand side becomes

c

µ
=

d2Vz
dr2

+
1

r

dVz
dr

,

which has the solution Vz(r) = c
4µr

2 + A ln r + B, where A and B are constants arising
from the integration. A = 0 as Vz(0) 6= ∞, and utilising the no-slip condition, Vz(a) =
cA2

4µ +B = 0, yields B = − c
4µa

2. Thus,

Vz(r) =
∆p

4lµ
(a2 − r2), (1.20)

where ∆p = p(0) − p(l). Such flow is commonly referred to as Poiseuille Flow [112,
p. 60]. Radially, the flow velocity takes the shape of a parabola. By integrating over the
cross-section, the total volumetric flow rate q is found,

q = 2π

∫ a

0

rVz(r) dr =
∆pπ

8lµ
a4 =

Vz(0)

2
πa2. (1.21)

The latter relation demonstrates that the average velocity is half of the maximum velocity.
This relation is important when estimating flow rates from Doppler velocity measure-
ments.
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In the case of human circulation, the flow is pulsatile and the tube is not rigid. Zamir
[112] provides a comprehensive discussion of the mechanics of such pulsatile flow in
elastic tubes. Eqs. (1.14) and (1.15) can no longer be simplified to the same extent as
neither dV

dt nor the radial components equal zero. The most important consequence of this
is the creation of wave motions. The pressure waves will tend to become more pulsat-
ile as they move more distally from the aorta, although the mean arterial pressure will
decrease [44, Ch. 22]. Typical blood flow velocities in different vessels are shown in
Figure 1.4b. One may also note that the blood flow velocity, typically below 1 m s−1,
is far lower than the wave propagation velocity, which can be estimated to be about
10 m s−1 [112, Ch. 5.2].

To account for gravity, the term ρ(g · ez)l can be added to ∆p.

1.7.2 Electrical Analogy
The complexity of the blood flows in the body is overwhelming, with static and dynamic
components and regulatory mechanisms intertwined and orchestrated. Section 1.7.1 de-
veloped important relations between flow and pressure under the assumptions of

• an incompressible fluid with constant density ρ and viscosity µ,

• no-slip condition,

• gravity plays a negligible role,

• a steady, fully-developed flow, in a

• rigid tube.

Despite these simplifications, the relations have been found to be useful for studying blood
flow [112]. Here, the theory will be applied to show the analogies to electrical components,
including the effects of inertia and wall elasticity through inductance and compliance,
respectively.

When introducing an electrical analogy, the vasculature can be represented by discrete
compartments with electrical components accounting for properties like resistance, inertia
and compliance. In sum, this offers a way of breaking down a complex system into lumped
part, hence the term lumped model.

Resistance

Electrical resistance, Re, is the ratio of voltage, Ve to current, Ie, that is Re = Ve/Ie. This
is a direct analogy to Eq. (1.21) that established a relationship between flow rate q and the
pressure drop ∆p along a vessel of length l,

∆p = Rq, (1.22)

R =
8µl

πa4
, (1.23)

where µ is blood viscosity, ρ is blood density, and a the vessel radius. The resistance of
a vessel is thus proportional to blood viscosity and vessel length, and reciprocal to vessel

32



1.7 Modelling of Blood Circulation

radius to the fourth power. In other words, a small change in radius will have a tremendous
effect on vessel resistance.

Several important observations can be made. In a circuit with only resistors driven by
a current source (an inflow), the voltage (or pressure) is determined by the total resistance.
Figure 1.22 shows a simple circuit. The flow q will be distributed among the parallel
resistors Rpar,

qpar,j =
1/Rpar,j∑n
i=1 1/Rpar,i

q =
Rpar,tot
Rpar,j

q, (1.24)

Rpar,tot =
1∑n

i=1 1/Rpar,i
. (1.25)

The voltage, however, is equal across all the parallel resistors, and the voltage p will be

p = (Rser +Rpar,tot)q. (1.26)

Similarly, the distribution of blood flow follows the same pattern as qpar,j . Increasing the
resistance of a compartment relative to the others, will decrease the flow rate entering that
compartment. The systemic blood pressure can be estimated from Eq. (1.26), as

MAP = TPR · CO, (1.27)

where MAP is mean arterial pressure, TPR is the total peripheral resistance, and CO the
cardiac output. Systemic arteries have a large diameter compared to peripheral arterioles
and capillaries, and their contribution to the total resistance is thus negligible.

q(t) Rser

. . .Rpar,1 Rpar,2 Rpar,3 Rpar,np(t)

Figure 1.22: A simple circuit with resistors in parallel and series.

One can also notice that if all n parallel resistors have equal resistance, R′, Eq. (1.25)
simplifies to Rpar,tot = R′/n. In other words, a high number of parallel resistors will
in sum contribute with only a small resistance, even if the resistance of each individual
resistor is high. This explains why capillaries do not dominate the systemic resistance,
despite their small radii. It is estimated that the greater arteries contribute with 19% to
TPR, the arterioles with 47%, the capillaries with 27%, and the venous system with about
7%, in adults [47, p. 189].
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It should also be noted that in vivo resistance is non-linear in relation to pressure [44,
Ch. 19]. Figure 1.23 demonstrates such non-linear relationships. High pressure causes the
vessel walls to distend, increasing the radius and decreasing the resistance. If the driving
pressure falls towards zero, the resistance increases and approaches infinity. Sympathetic
stimulation further modifies the non-linear pressure-resistance/flow relationship. The vis-
cosity of blood depends on vessel radius and decreases rapidly in small vessels, an effect
called the Fahraeus-Lindqvist phenomenon [44, Ch. 18]. In adults, the blood viscosity
falls from about 3 mPa s in vessels with radius above 1 mm to about 2.8 mPa s at 0.5 mm
and about 2.6 mPa s at 0.25 mm. This phenomenon is neglected in this project.
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Figure 1.23: The relationship between pressure and resistance and flow is non-linear in vivo. The
black line shows a constant resistance as used in this project. Sympathetic stimulation increases the
resistance for a given pressure, and also increases the critical closing pressure (CrCP). The vessel
collapses when driving pressure falls below CrCP and there will be no flow. Inspired by Boron and
Boulpaep [44, Ch. 19] and Tran [29].

Inertia

Inertia, L, describes the reluctance of a mass of fluid to acceleration or deceleration in
time [112, Ch. 8.5]. A bolus with length l of fluid with density ρ in a tube of radius a has
a mass

m = πa2lρ.

The bulk of fluid moves with velocity u in response to a pressure difference ∆Pl through
the tube. By relating velocity to volumetric flow rate through Eq. (1.21), Newton’s law of
motion takes the form

πa2lρ
d

dt

( q

πa2

)
= ∆Plπa

2,

which can be rewritten as

∆Pl =
( ρl

πa2

)dq

dt
≡ Ldq

dt
,

where

L =
ρl

πa2
(1.28)
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is the inertia. Eq. (1.28) is analogous to the electrical inductance which opposes the change
in current in response to a voltage change. L is proportional to the vessel segment’s length,
as the bolus of fluid increases in volume. To move a constant volume of fluid, the pressure
has to increase if the tube becomes narrower because an increased mean velocity must
compensate a smaller cross-section. This explains why L increases for decreasing a.

Compliance

The elasticity of blood vessels introduces compliance, i.e. the possibility of change in the
total volume of fluid contained in a vessel when pressure changes [112, Ch. 8.6]. The
compliance of a vessel thus describes its ability to alter its volume in response to a change
in transmural pressure ∆p (i.e. pressure over the vessel wall),

C =
∆V

∆p

or equivalently

∆p =
1

C
∆V. (1.29)

As long as the pressure outside the vessel, po, is kept constant, a change in blood pres-
sure, for example along a vessel, is paralleled by a similar change in transmural pressure.
Laplace’s law states that [114]

∆p =
h

a
τ =

h

a

E

1− σ2

a− a0
a0

, (1.30)

where τ is the circumferential (hoop) stress, a and a0 are radii with and without an applied
transmural pressure, respectively, and h is vessel thickness, E is the Young’s modulus, and
σ the Poisson ratio. The applicability of Laplace’s law to biological systems is debated as
it assumes that h/a � ∆p/po [115]. In adults, ∆p/po ≈ 0.13 [115], whereas vessel
thickness is assumed to be 15% of a in this project [28].

A change in cylindrical volume is by definition ∆V = πl(a2 − a20) = πl(a− a0)(a+
a0), or a − a0 = ∆V/πl(a + a0) which can be substituted into Eq. (1.30). The resulting
expression can be rewritten in the form of Eq. (1.29),

∆p =
h

a

E

1− σ2

∆V

a0πl(a+ a0)
=

1

C
∆V,

C =
πaa0(a+ a0)(1− σ2)l

Eh
. (1.31)

Eq. (1.31) can be applied as it is or further simplified by assuming that the change in
radius is small (a ≈ a0). Ryu, Hu and Shadden [114] found that this approximation yields
less realistic pressure magnitudes and wave forms, and produce a wave propagation speed
inconsistent with the theory in a 1D model. Nevertheless, the approximation is often used,
also in this project. The estimated compliance is then

C =
2πa3(1− σ2)l

Eh
=

3πa3l

2Eh
, (1.32)
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where σ is assumed to be 1/2 [28, 116].
Compliance finds its analogue in the capacitor, where charge can be stored and current

moves into or out of the capacitor as

I =
dV

dt
(1.33)

where V is voltage across the capacitor [117, Ch. 4]. As the current flows into the ca-
pacitor, the voltage across it declines so that less current enters it. This is similar to a
vessel that is steadily stretched until the vessel wall stress equals the force applied by the
pressure. If the pressure changes, a new equilibrium has to be reached. Figure 1.24 shows
a simple RLC circuit. A high-frequent sinusoidal input current q will direct most of the
current towards the capacitor and only a constant term will contribute to current through
R. In other words, the circuit in Figure 1.24 acts as a low-pass filter if L is small enough
to be neglected [117, Ch. 8.6]. If one assumes that the conductor is connected to ground,
the circuit acts as a resonant circuit with resonant frequency [117, Ch. 8.12]

f0 =
1

2π

√
1

LC
− R2

L2
. (1.34)

q(t)

C

R

Lp(t)

Figure 1.24: A simple RLC circuit.

Zamir [112] offers a thorough review of the complex behaviour arising from R, L and
C in combination with physiological pressure wave forms.

Units

The literature houses a range of units for resistance, inductance and compliance. As blood
pressures are given in mmHg, flow velocity in cm s−1 and flow rate in mL s−1, the unit
convention used in this paper will be

[R] = mmHg s mL−1,

[L] = mmHg s2 mL−1,

[C] = mL mmHg−1.
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1.7 Modelling of Blood Circulation

The relationship 1 mmHg ≈ 133.3 Pa can be used to arrive at SI units [67]. This conver-
sion is also made when using Eqs. (1.22), (1.28) and (1.32) to estimate resistance, inertia
and compliance.

1.7.3 Lumped Models
The cardiovascular system can be modelled at various levels of detail. Common divisions
are between single- and multicompartment models, and 0D, 1D, 2D and 3D models [25].
3D models are most exhaustive, and can give detailed information about flow and pressure
patterns in all positions in a vessel. It is most commonly used for complex situations such
as bifurcations, heart valves or the inside of a ventricle. Flow and pressure along a vessel
and their axial distribution can be assessed in 2D models. 1D models only describe flow
and pressure through the length of the blood vessel and also wave reflections, whereas
0D models treats the vessel as one single entity with no spatial distribution so that only
incoming or outgoing pressure and flow can be surveyed. Models of different dimensions
can be combined [eg. 118]. Whereas a single-compartments model portrays the vascular
system of interest as a single block, multi-compartment models divides it into several
segments.

This project utilises a multi-compartment lumped model, i.e. a 0D model, where the
physical properties of a vessel are collected in a single electrical element; vessel resistance
is represented by a resistor, vessel compliance is represented by a capacitor, and blood
inertia is represented by an inductor. The lumped model approach has a long history and
has provided important insights into the functioning of the cardiovascular system.

The Windkessel Model

It is said that Reverend Stephan Hales in 1733 was the first to put forward a model taking
into account artery elasticity to describe pressure variations [25], when investigating a
mare. He writes [quoted in 119]

by which curious artifice of nature, the blood is carried on in the finer capillar-
ies, with an almost even tenor of velocity, in the same manner as the spouting
water of some fire-engines, is contrived to flow with a more even velocity,
notwithstanding the alternate systoles and diastoles of the rising and falling
embolus or force; and this by the means of a large inverted globe, wherein the
compressed air alternately dilating or contracting, in conformity to the work-
ings to and fro of the embolus, and thereby impelling the water more equably
than the embolus alone would do, pushes it out in a more nearly equal spout.

The model got the name Windkessel (German for “air chamber”) after the inverted globe
containing air used in fire-engine pumps at that time.

Otto Frank offered a mathematical formulation of the theory in 1899 [119]. The capa-
citor in Figure 1.25a – or the analogous elastic arteries – is filled during systole and acts
as a reservoir during diastole [120]. Eq. (1.33) can be solved in terms of pressure instead
of current, and predict a diastolic blood pressure

DBP(t) = SBPende
−t/RpCp ,
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as decaying from end-systolic blood pressure (SBPend) with a time constant RC. Frank
was able to use measure theRC constant experimentally, and estimated C from pule wave
velocity in the aorta. Thus, he was able to calculate cardiac output from Eq. (1.27).

q(t)

Cp Rpp(t)

(a) 2-element Windkessel model.

Rcq(t)

Cp Rpp(t)

(b) 3-element Windkessel model.

Figure 1.25: Electrical representation of a 2- and 3-element Windkessel model with central and
peripheral resistances Rc and Rp, respectively, and peripheral compliance Cp. Either an inflow q(t)
or a driving pressure p(t) can be used as input.

Later, simultaneous flow and pressure measurements became available, showing that
the 2-element Windkessel model had significant shortcomings in terms of impedance [120].
In the 2-element Windkessel model, the phase shift between pressure and flow quickly ap-
proached a plateau of −90° for increasing frequencies, whereas the measured phase shift
only had a temporary decrease in phase, as illustrated in Figure 1.26. This was com-
pensated by adding a characteristic resistance Rc to the model as shown in Figure 1.25b
to match the impedance observed in the proximal aorta.

Figure 1.26 demonstrates that the addition of a third element improved the fit to meas-
ured values but leaves some high-frequency features unaccounted for [120]. Despite this
the modelled wave forms are close to the ones measured. Some of the mismatch may be
attributed to the measuring methods used. Several interpretations of Rc in Figure 1.25b
exist, as some interprets it as the resistance of conduit arteries whereas others treat it as an
impedance (and not a resistor in strict terms).

The addition of Rc caused a larger error in impedance at low frequency, as shown
in Figure 1.26 [120]. The effect of inertia can be modelled as an inductor as described
above, and adding an inductor as a fourth element has been tried to compensate for the
error introduced with Rc. However, inertance is difficult to estimate and some argue that
the 3-element Windkessel model is preferable.

Modelling of Tilt

Lumped models have been used to investigate cardiovascular consequences of postural
changes and tilt. Mader, Olufsen and Mahdi [121] used a simple mechanical model to
simulate sitting-to-standing transition in a young and an elderly person. Four parameters
were used to predict cerebral blood flow from the arterial blood pressure, and to compare
to Doppler blood flow velocity recorded from the middle cerebral artery. The model was
able to recreate several features of the recorded data, and showed a nonlinear relation
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1.7 Modelling of Blood Circulation

Figure 1.26: 2-, 3- and 4-element Windkessel (WK) models behave different in terms of impedance
and phase. Figure by Westerhof, Lankhaar and Westerhof [120], licensed under CC BY-NC 3.0.

between arterial blood pressure and cerebral blood flow. The model did not faithfully
predict the observed pulse widening in cerebral blood flow velocity immediately after
changing position, which was especially pronounced in the young subject.

Electrical models have also been used. Olufsen, Nadim and Lipsitz [122] used a three-
element Windkessel model to assess cerebral resistance during a sitting-to-standing trans-
ition. The cerebral resistance was found to initially increase, but decline after approxim-
ately 10 seconds. Also this model used arterial blood pressure as input. A widening of the
cerebral blood flow velocity pulses was observed after standing up, and it was found to
disappear if the initial increase in cerebral resistance was dampened. The model was later
developed into a multi-compartment model, including a heart compartment, that did not
require pressure as input [123]. Resistance and compliance were governed by pressure de-
pendent differential equations to mimic regulatory mechanisms. Cerebral resistance was
calculated separately. The approach is also used in this project, and is further described
in section 2.3. The cerebral resistance was found to initially decreas efor 10 seconds, fol-
lowed by an increase for 5 seconds, and a new steep decrease. It was suggested that the
first increase results from autonomic regulation whereas the following decrease is caused
by cerebral autoregulation.

The response to graded tilt was modelled by Lim et al. [124]. A steady but nonlin-
ear decrease in cardiac output was found for increasing tilt angles, to about 40% decrease
at 90° tilt. Heart rate showed the opposite pattern, increasing to about 30% at 90° tilt.
MAP had a maximal increase at 45° of about 4.2 mmHg. High tilt angles contributed
to high transmural pressures in the lower body, reducing the compliance and limiting the
blood pooling. Cardiopulmonary baroreceptor reflexes contributed at low tilt angles by
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increasing systemic resistance. Local responses in the lower body contributed to a higher
resistance, redistributing blood away from the lower body, but did not alter global hemo-
dynamics. Despite vaso- and venoconstriction, the splanchnic circulation was seen to fill
during upright position.

Modelling of Perinatal Circulation

The unique features of foetal circulation and its transition at birth were reviewed in Sec-
tion 1.5.1. Specific attention is granted to a model by Garcia-Canadilla et al. [28], de-
scribed below in Section 1.7.3. Foetal circulation was also modelled by Pennati, Bellotti
and Fumero [125], who found good correspondance to Doppler measurements. In the
following is a selection of studies investigating perinatal circulation.

Sá Couto et al. [126] published a hydraulic model to investigate cardiovascular patho-
physiology in the neonate. Some errors in software implementation were later detected
and the model had to be improved [127]. The corrected model was later used to assess the
cardiovascular transition during birth and the first few hours of life, and its main results
are given in Figure 1.27 [128]. Systemic blood pressure increased while pulmonary blood
pressure decreased as the ductus arteriosus closed. Blood flow in the pulmonary artery
increased rapidly the first minutes after birth. Only a slight increase in systemic resistance
was observed.

The consequence of pulmonary atresia before and after birth was explored by Sanchez-
Posada, Torres and Triana [129]. Maldevelopment of the pulmonary valve makes the
infant dependent on flow through the ductus arteriosus to connect pulmonary and systemic
circulation. Lack of blood pressure measurements and data relating to pulmonary atresia
made the validation of the model difficult.

Sudden PDA closure was studied by Soleymani et al. [130] using a multi-compartment
lumped model. Left ventricular output was increased immediately following DA closure,
with an accompanying increase in systemic blood pressure. A regulatory mechanism was
implemented to compensate for the increased blood pressure, lowering heart rate and sys-
temic vascular resistance.

Jennekens et al. [131] developed a simple multi-compartment model to investigate the
baroreflex in a preterm infant. Baroreflex regulation was borrowed from a model by Ursino
[132] and rescaled for infants. An increase in heart rate was observed experimentally, as
well as a decrease in heart rate variability, after atropine administration. This was recreated
in the model by blocking parasympathetic activity.

Lampe et al. [133] employed a hierarchical cerebrovascular model to explore autore-
gulation in the preterm. The cerebral vasculature was divided into 19 compartments rep-
resenting vessels of different size and coupled through equations under the assumption of
Hagen-Poisseuille flow. Autoregulation was implemented with inspiration from Ursino
[132], but the results were not experimentally validated.
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1.7 Modelling of Blood Circulation

Figure 1.27: The hemodynamic transition at birth and the first hours of life was simulated using
an hydraulic model. Abbreviations: RV, right ventricle; DA (R-L), ductus arteriosus (right to left
flow); LV, left ventricle; PL, placenta; FO, foramen ovale; PA, pulmonary arterial; DA (L-R), duc-
tus arteriosus (left to right flow); SA, systemic arterial; RA, right atrium; LA, left atrium; PVR,
pulmonary vascular resistance; TSR, total systemic resistance; DAR, ductus arteriosus resistance;
PTH, mean intrathoracic pressure. Figure by Sá-Couto et al. [128], reprinted with permission from
Springer Nature.
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A Model for Foetal Circulation

Garcia-Canadilla et al. [28] devised a lumped model to investigate blood redistribution in
foetuses with intrauterine growth restriction. The model is shown in Figure 1.28 and con-
sists of 22 compartments, where 14 represent (central) arterial segments and eight (peri-
pheral) vascular beds. The central compartments consisted of a resistor, an inductor and
a capacitor as shown in Figure 1.24. Peripheral compartments were equal to the three-
element Windkessel model shown in Figure 1.25b. The coronary artery was implemented
as a simple resistor. Venous pressure was set to zero so that all the peripheral compart-
ments were connected to ground.

For the central components, resistance was calculated from Eq. (1.22), inductance from
Eq. (1.28) and compliance from Eq. (1.32). Values for vessel length, radius and Young’s
modulus, blood viscosity and density were estimated from literature as a function of gest-
ational age. Wall thickness was assumed to be 15% of vessel radius.

Figure 1.28: A 22 lumped multi-compartments model for foetal circulation. Panel (a) shows the
anatomical analogues of each compartment shown in panel (b). Central compartments (red) are
made of blocks similar to Figure 1.24, whereas the peripheral compartments (dotted blue) are equal
to Figure 1.25b. The coronary artery was implemented as a simple resistor. Figure by Garcia-
Canadilla et al. [28], licensed under CC BY 4.0.

As the peripheral compartments represents more complex structures, resistance and
compliance cannot be calculated as for the central compartments. Resistances were found
by first determining the total resistance necessary to reach a MAP of 40 mmHg, corres-
ponding to a 33.2 week old foetus, and adjusting Rp for each compartment so that the
amount of blood flow relative to combined cardiac output matched values from the literat-
ure. Characteristic resistances, the Rc, were chosen to match the characteristic impedance
of the downstream compartment at high frequencies to avoid reflections. Compliance, Cp,
was found using an optimisation algorithm minimising the difference between measured
and simulated PI in the aorta and cerebral arteries.

The model used blood flow through the pulmonary and aortic valve as inputs, estim-
ated from Doppler measurements. Inflows and simulated wave profiles for several com-
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partments, including a pressure wave, are shown in Figure 1.29.

Figure 1.29: The model for foetal circulation used aortic and pulmonary inflows as input (panels
(a)-(b)). Simulation outputs are shown in panels (c)-(f). Doppler spectra from the corresponding
anatomical locations are shown above. Panel (g) shows a simulated pressure wave in the aorta.
Figure by Garcia-Canadilla et al. [28], licensed under CC BY 4.0.

A similar model had earlier been used to explore resistance and compliance in relation
to Doppler findings in foetuses with intrauterine growth restriction [26].

1.7.4 Simulink and Simscape
Simulink by MathWorks is a programming environment aimed at multidomain modelling
and simulation [134]. Simscape is an add-on to Simulink specially designed for the sim-
ulation of physical systems [135]. Pre-made blocks, such as electrical components, can
be graphically connected into a complex system. The behaviour of standard blocks are
already defined, but custom MATLAB functions can also be integrated into the system. A
variable resistor can get its time-dependent resistance as a column vector from the MAT-
LAB workspace, or as the output of a custom function. The latter can be used to design a
resistance that changes with voltage (or the analogous pressure) upstream or downstream.
Voltage and current can be read at both poles of all components, and exported to the MAT-
LAB workspace for further processing and analysis.

A Simscape simulation has six steps [136]. First, the constructed model is validated.
This include checking that all components are connected in a meaningful way. Secondly,
Simscape constructs a physical network that is used in step three to construct a set of
equation to describe the network. The equations contain dynamic and algebraic variables.
The first are integral to the time development of the system as the time derivatives of
these variables appear in the equations. The latter have no time derivatives but typically
arise from conservation laws. Fourth, the initial conditions are computed at simulation
time t = 0. The initial conditions are prioritised, and if the software is unable to find a
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solution for all the high-priority conditions, a warning is issued but the simulation carries
on with approximate solutions. Next, “transient initialisation” state and “transient solve”
state alternate between calculating temporary sets of initial conditions and how the system
of equations develop under these conditions. New initial conditions have to be calculated
in the event of a discontinuity or zero crossing. A Solver Configuration block has to be
connected to the circuit. Here, parameters related to the solving of differential equations
are managed.
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2.1 Experimental Measurements

A tilt test was performed on newborns at St. Olav’s University Hospital in Trondheim,
Norway at two consecutive days by trained health care workers. The time course of the
test is summarised in Figure 2.1. A NeoDoppler transducer was attached to the infant’s
head, as illustrated in Figure 1.20a, and the child was observed for 40 seconds before it
was lifted by the tester and kept in an upright position into the chest of the tester. After
200 new seconds, the child was laid down and recorded for another 60 seconds. Blood
pressure was measured immediately before the experiment and 80 seconds into the tilt
(t = 120 s). Intellivue MP40 Patient Monitor (Phillips) connected to a non-invasive blood
pressure measuring module with cuffs of adequate size was used to measure blood pres-
sure. Distance between the head and the heart was measured from the left nipple (papilla
mammaria) to the top of the head as illustrated in Figure 1.9b.

0 40 120 240 300
t

Tilted

BP BP

Figure 2.1: Each tilt test consisted of a 300 seconds long NeoDoppler recording. The neonate was
tilted after 40 seconds and kept in upright position for 200 seconds. Blood pressure was measured
at the beginning of the experiment and after 120 seconds.

Two participants with high-quality recordings were selected for further analysis, and
will be referred to as “Joakim” and “Ida.” Their birth data are given in Table 3.1.

In addition, Doppler velocity recordings of “Sebastian” were acquired from several
locations, including the aortic valve, ascending aorta, and the abdominal aorta. Sebastian
was prematurely born at about 28 weeks of gestation, and had an open ductus arteriosus at
the time of the recordings. The state of the ductus was not known for Joakim and Ida.

45



Chapter 2. Methods

Velocity traces were exported from EarlyBird. Figure 1.21 demonstrates the relation
between the Doppler spectrum and the velocity trace. EarlyBird also provided time stamps
for the beginning of each heart cycle, which were later used to separate each heart beat for
beat-to-beat analysis. HR was calculated as

HR(ti,mean) =
1

ti,end − ti,beg.
,

where ti,beg. and ti,end are the times of the beginning and end of heart beat number i, and
ti,mean = (ti,beg. + ti,end)/2. PI was found by subtracting the minimum velocity from the
maximum velocity within each beat and dividing by the mean velocity of that beat. A
moving average over 20 beats was then calculated to avoid distracting beat-to-beat vari-
ations.
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2.2 Model 1: Steady State Blood Flow in a Neonate

2.2.1 Outline of the Model
The model made by Garcia-Canadilla et al. [28] for foetal circulation, described in sec-
tion 1.7.3, was adapted to model neonatal circulation. The ductus arteriosus (DA) usually
contracts 15 hours after birth [137], and often closes 10–30 hours thereafter [42]. The
DA is assumed closed in this projet, thus the pulmonary circulation is isolated from the
systemic so that the pulmonary compartments, including the (closed) DA, can be removed
without affecting the systemic circulation. This simplified model is shown in Figure 2.3
and was implemented in SIMULINK version 9.1 (R2018a) by MathWorks using the Sim-
scape library (version 4.4).

2.2.2 Inputs
Three different inflows were tested; a sine-shaped inflow qs, a sine-shaped inflow qb with
backflow, and a inflow qm based on Doppler measurements. The three wave shapes are
shown in Figure 2.2. The first inflow was predefined as a sine-shaped wave in the systole
and zero flow in the diastole, that is

qs =

{
qs sin

(
π
ts
t
)
, 0 ≤ t ≤ ts,

0, ts < t < tc,
(2.1)

where ts and tc are the duration of systole and the total cardiac cycle, respectively. qs
represents peak systolic flow rate, and was scaled to yield targeted stroke volume.

The second inflow was equal to qs but with the addition of a small sine-shaped back-
flow at the beginning of diastole as shown in Figure 2.2. The backflow is often observed
using Doppler ultrasound as described in section 1.5.1, and was assumed to have a duration
ats, scaled to provide a smooth (i.e. differentiable) transition from positive flow,

qb =


qb,1 sin

(
π
ts
t
)
, 0 ≤ t ≤ ts,

qb,2 sin
(
π
ats
t
)
, ts < t ≤ ts + ats,

0, ts + ats < t < tc,

(2.2)

where ts and tc are the duration of systole and one cardiac cycle as before, and qb,1 and
qb,2 = −aqb,1/ cos(π/a) are peak flows. Here, fractional backflow duration a = 1/6
was used, yielding qb,2 = −0.17qb,1. This is the same fractional duration and approxim-
ately the same amplitude as used by Politi et al. [48], who thought these were probably
overestimates. In the lack of data for neonates, their values were used unaltered.

The final inflow qm was found by extracting a single heart beat from Doppler measure-
ments of the blood flow velocity through the aortic valve of the pre-term infant Sebastian
introduced in the previous section. The measurements were performed by Martin Leth-
Olsen using a Vivid E9 ultrasound system (GE Vingmed Ultrasound), and the wave profile
extracted using the software Cardiac Work (made by H. Torp). Drift correction was ap-
plied by subtracting a linearisation of the difference between the end and the beginning of
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the signal. In addition, the diastolic part of the signal was set to zero, and the heart beat
was stretched to a duration tc = 1/HR. The signal was rescaled as one entity, so that the
relative length of systole and diastole was kept unaltered. The first two inflow signals, qs
and qb, were not directly based on measurements, hence the relative systolic duration was
calculated from Eq. (1.3).

All inflows were scaled so that the stroke volume

SV =

∫ tc

0

q dt

matched reference values (See Table 3.2). For qs and qb this yield

qs =
SV · π

2ts
, (2.3)

qb,1 =
SV · π

2(1− a2)ts
. (2.4)

The single beats shown in Figure 2.2 were repeated to form an input signal of the length
of the simulation, tsim = 60 s.

0 t
s
(HR) t

c
 = 1/HR

Time
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Figure 2.2: Three different inputs were used; a sine-shaped wave (qs) defined in Eq. (2.1), a wave
with backflow (qb) defined in Eq. (2.2), and a wave found from Doppler velocity measurement of the
aortic valve (qm). All the inflows have been scaled to yield an adequate stroke volume. The duration
of systole relative to the total cardiac cycle, ts/tc, for qs and qb was calculated from Eq. (1.3), and
the backflow in qb spans 1/6 of ts. For qm, the relative length of systole was kept as measured.
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Figure 2.3: A lumped model with 15 compartmens, adapted from a model of foetal circulation [28].
Central compartments consist of a resistor R, inductor L and capacitor C, whereas the peripheral
compartments have two resistors and a capacitor.
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2.2.3 Parameter Estimation

Resistance, inductance and compliance in central compartments were calculated for a
foetus at 41 weeks of gestation using the estimates by Garcia-Canadilla et al. [28]. The
equations are derived in section 1.7.1. The central compartments were working as reson-
ance circuits, producing oscillations as predicted by Eq. (1.34). To remove the oscillations,
allLs were decreased by a factor 1000. This solution was also applied by Garcia-Canadilla
et al. [28] (Patricia Garcia-Cañadilla, personal communication, April 4, 2019). Other para-
meters were scaled to reach targeted pressure, flow distribution and cerebral PI from the tilt
experiment. qb was used as input when the parameters were estimated, and the parameters
are listed in Table 2.1 next to the values provided by Garcia-Canadilla et al. [28].

2.2.4 Analysis

Flow rates were read through R in central compartments and over Rc in peripheral com-
partments. Pressures were extracted from the same components, and measured as the
proximal end relative to ground.

All statistics were calculated from the second half of the simulation time to ensure
that only steady-state results were included. Figure 2.4 demonstrates that the simulation
reached steady-state after about 4 s. Maximum and minimum pressures in the ascending
aorta were regarded as systolic and diastolic pressure, respectively. Cardiac output (CO)
was calculated as

CO = SV · HR, (2.5)

where SV is stroke volume and HR is heart rate, and blood flow distribution was found by
dividing mean flow rate in a compartment by CO.
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Figure 2.4: The first few seconds of the simulation are used to reach steady-state pressure and flow.
Averaged arterial pressure per heart beat reaches the steady-state pressure after approximately 4
seconds. qb is used as inflow, but the trend is similar for the other inflows.
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2.2.5 Simscape Settings
Simscape offers several settings related to the simulation. These are set in the Config-
uration Parameters menu. The automatic solver selection was used instead of specifying
a particular method to solve the differential equations. Variable-step was chosen instead
of fixed-step. Absolute and relative tolerance were 1× 10−3 and 1× 10−6, respectively.
“Auto scale absolute tolerance” was checked. “Log simulation data” was set to all, and the
no limit was set to the number of data points.

Standard settings were used for the Solver Configuration Block. That includes a con-
sistency tolerance of 1× 10−9, applying filtering at 1-D/3-D connections when needed,
delay memory budget of 1024 kB, and a filtering time constant of 0.001. Other options
were not applied.
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Table 2.1: Component values for each compartments in the circuit shown in Figure 2.3. The original values from Garcia-Canadilla et al. [28] have been
adapted to fit measured data from Joakim as described in the text. R in mmHg s mL−1, L in mmHg s2 mL−1, and C in mL mmHg−1.

Compartment Adapted to Joakim Garcia-Canadilla et al. [28]

R L C R L C

Ascending Aorta 1.76× 10−2 2.50× 10−5 5.47× 10−2 5.48× 10−3 3.42× 10−3 3.09× 10−2

Brachiocephalic Trunk 2.47× 10−2 1.91× 10−5 1.30× 10−2 1.42× 10−2 3.46× 10−3 4.74× 10−3

R. subclavian artery 1.36× 10−1 1.01× 10−4 1.02× 10−3 1.07× 10−1 1.13× 10−2 2.47× 10−3

R. Common Carotid artery 3.30× 10−1 1.42× 10−4 2.41× 10−3 1.93× 10−1 2.68× 10−2 9.84× 10−3

R. Internal Carotid Artery 2.23 4.67× 10−4 2.46× 10−3 5.24× 10−1 4.40× 10−2 3.99× 10−3

L. Common Carotid Artery 3.30× 10−1 1.41× 10−4 2.41× 10−3 2.26× 10−1 3.13× 10−2 1.15× 10−2

L. Internal Carotid Artery 2.23 4.67× 10−4 2.46× 10−3 5.24× 10−1 4.40× 10−2 3.99× 10−3

L. subclavian artery 1.11× 10−1 5.64× 10−4 5.74× 10−4 1.07× 10−1 1.13× 10−2 2.47× 10−3

Aortic Isthmus 2.35× 10−2 1.55× 10−5 4.39× 10−3 7.17× 10−3 1.96× 10−3 3.37× 10−3

Descending Aorta 2.42× 10−2 2.75× 10−4 7.50× 10−2 6.77× 10−2 2.43× 10−2 6.03× 10−2

Rp Rc Cp Rp Rc Cp

Coronary artery 5.26× 101 – – 6.88× 101 – –
Right upper body 3.55× 101 2.31× 101 1.92× 10−2 4.64× 101 – 1.21× 10−2

Right brain 3.24× 101 4.32× 101 3.44× 10−3 3.39× 101 – 1.04× 10−2

Left brain 3.24× 101 4.32× 101 3.44× 10−3 3.39× 101 – 1.04× 10−2

Left upper body 3.55× 101 2.31× 101 1.92× 10−2 4.64× 101 – 1.21× 10−2

Peripheral 2.15 3.78 5.25× 10−2 3.75 – 6.02× 10−2
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2.3 Model 2: Tilt Test

2.3 Model 2: Tilt Test
This model builds upon the steady-state model presented in Section 2.2 by adding regulat-
ory mechanisms and a time course similar to the experimental tilt tests. A time dependent
voltage is added at different locations to simulate the gravitational pressure generated by
the tilt. The resulting circuit is shown in Figure 2.6.

2.3.1 Outline of the Model
Three independent regulatory mechanisms were added to Model 1 based on works by Oluf-
sen, Tran and Ottesen [123] and Danielsen and Ottesen [138]; one for the brain compart-
ments, one for the other peripheral compartments, and one for HR. Two voltage sources
were added, one above and one below the internal carotid artery on each side, each ac-
counting for half the pressure added by gravity during tilt, Pg/2. A fifth voltage source
was added distal to the descending aorta, adding a full pressure Pg . A voltmeter was ad-
ded above the lower of the two sources and connected to a low-pass filter with cut-off
frequency 0.5 Hz, at the position of sinus caroticus.

The pressure added during tilt was implemented as a split function,

Pg(t) =



0, t < t↑,

Pg(h)[sin(π(t− t↑)/ttilt − π/2) + 1]/2, t↑ < t < t↑ + ttilt,

Pg(h), t↑ + ttilt < t < t↓,

Pg(h)[sin(π(t− t↓)/ttilt − π/2) + 1]/2, t↓ < t < t↓ + ttilt,

0, t > t↓ + ttilt,

(2.6)

where the child is tilted upwards at time t = t↑ and down again at t = t↓, with a tilt
duration ttilt both ways. Pg(t) is illustrated by Figure 2.5. Pg(h) was defined in Eq. (1.4).
The tilt duration was assumed to be ttilt = 1 s.
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Figure 2.5: As the child is tilted at time t↑, the pressure difference between heart and brain increases
as a sine function until upright position is reached after time ttilt. The opposite happens when the
child is laid down at time t↓. Eq. (2.6) describes the course of these events.
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Figure 2.6: The circuit used in Model 1 (Figure 2.3) was modified by adding five voltage sources
and two voltage sensors. Also, the resistance and capacitance in each compartment were now time
dependent and regulated as described in the text.
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2.3 Model 2: Tilt Test

Peripheral Regulation

Peripheral and cerebral resistance are regulated by different mechanisms as described in
Section 1.5.2. Therefore, they will be treated separately in the model. Less is known about
compliance, and the compliance in all peripheral compartments was regulated in parallel
with the peripheral resistance but with smaller changes. Hence, peripheral resistance Rp,
except for the brain compartments, and peripheral compliance Cp, including the brain
compartments, were governed by the differential equation

τ
dx(t)

dt
= −x(t) + (xmax − xmin)

pk0
p(t)k + pk0

+ xmin, (2.7)

where x is the controlled parameter, p the pressure in the carotid bifurcation, k defines
steepness and τ the time needed to obtain full effect. Resistance, compliance and inertia
were kept constant in central compartments. xmax and xmin are the limits of the parameter,
and p0 represents the set point pressure at which the parameter has value (xmax + xmin)/2.
If xmax and xmin are expressed in terms of a set point value xset, i.e. xmax = xsetxf and
xmin = xset/f , the parameter x will approach the value x′set = xset(f + 1/f)/2 at p = p0.
p0 was set to 45 mmHg. Figure 2.7 demonstrates how k and τ both determine to what
extent the parameter x is changed. A high k and low τ will give a large and immediate
response to a small change in pressure. As τ is increased, a longer time is needed to reach
the same value of x. If k is increased, on the other hand, less deviation from p(t)/p0 = 1 is
needed for a large change in x to occur. In the simulation, p(t) is affected by the alternation
of x, and the behaviour of Eq. (2.7) becomes more complex.
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Figure 2.7: The two parameters k and τ define the steepness of the differential equation govern-
ing the peripheral response to pressure drop as function of time, and deviation from the reference
pressure.
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Cerebral Regulation

An optimisation algorithm was used to assess brain resistance. As this resistance is con-
trolled by both baroreflex and autoregulation, a simple expression such as Eq. (2.7) is not
available [123]. The time course of the experiment was divided into n equal segments,
and the resistance was estimated for each time segment independently as a time dependent
scaling factor SR(t) so that the resistance in each compartment wasR(t) = SR(t)R0. The
difference between the modelled output and the measured data was found by calculating
the measured mean flow velocity v̄m(ti, ti+1) and simulated mean flow rate q̄s(ti, ti+1) in
the time segment spanning from ti to ti+1 and dividing by the average before the tilt,

ε =
v̄m(ti, ti+1)

v̄m(0, t↑)
− q̄s(ti, ti+1)

q̄s(0, t↑)
. (2.8)

Figure 2.8 demonstrates how the flow velocity data deviates from the pre-tilt mean using
n = 10 different time segments. If the resistance in the model was too high in the segment,
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Figure 2.8: A NeoDoppler recording of Joakim is divided into 10 time segments as numbered at
the top of the figure. The average velocity before the tilt (q̄m(0, t↑)) is shown as a dashed line. For
each time segment, the average velocity (v̄m(ti, ti+1)) was calculated and plotted as a line spanning
the segment and highlighted by arrows. Finally, the ratio between each segment average and the
pre-tilt average (v̄m(ti, ti+1)/v̄m(0, t↑)) was found. The ratio for each segment is printed as the
lower number in each segment.

the relative drop in flow rate would be higher than in the measured data, ε would become
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2.3 Model 2: Tilt Test

negative, and SR(ti, ti+1) should be reduced to compensate for this. SR(ti, ti+1) was
therefore found by iteration,

Sj+1
R (ti, ti+1) = SjR(ti, ti+1) · (1 + ε), j ≥ 1, (2.9)

S1
R(ti, ti+1) = 1. (2.10)

Piecewise cubic hermite interpolating polynomials (implemented in MATLAB as PCHIP)
were used to smooth the transition from one time segment to the next. The process is
illustrated in Figure 2.9 for the signal and segmentation in Figure 2.8. An interpolated
line through (SjR − 1) · 100% for j ∈ {1, 4, 7, 10} is shown in the figures to the left, and
the resulting flow rates in the figures on the right. Note how the interpolation provides a
continuous, smooth curve connecting the value for each discrete time segment.
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(b) First iteration — resulting flow rate.

0 50 100 150 200 250 300

Time [s]

-10

0

10

20

30

40

50

60

70

80

 R
p(t

)/
R

p,
0
 [%

]

(c) Fourth iteration.
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(d) Fourth iteration — resulting flow rate.
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(e) Seventh iteration.
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(f) Seventh iteration — resulting flow rate.
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(g) Tenth iteration.
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(h) Tenth iteration — resulting flow rate.

Figure 2.9: Cerebral resistance is estimated by iterations as described in the text. The figures to the
right shows the resulting flow rate (blue) when cerebral resistance was scaled by the resistance to the
left. Red dots shows the middle of each time segment, and the blue line is acquired by interpolation.
Recorded NeoDoppler in orange.
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2.3 Model 2: Tilt Test

Heart Rate Regulation

Danielsen and Ottesen [138] describe a model for baroreflex control incorporating both
sympathetic, ns, and parasympathetic, np, activity. The baroreceptors are described in
Section 1.5.2. In this model, sympathetic activity is induced mainly when the pressure
registered in the baroreceptors, p(t), is low compared to a reference level, p0. Similarly, the
parasympathetic activity increases when the pressure rises above p0. This can be described
by

ns(p(t)) =
1

1 +
(p(t)
p0

)η , np(p(t)) =
1

1 +
(p(t)
p0

)−η , (2.11)

where p(t) is the level registered by the baroreceptors, p0 is the reference value of the
baroreceptor, and η describes how quickly the activity rises as response to increased or
decreased pressure. HR is dependent of both ns and np,

τHR
dHR(t)

dt
= −HR(t) + αHRns(p(t))− βHRnp(p(t)) + γHR, (2.12)

where αHR and βHR weights the influence of ns and np, respectively. γHR equals heart rate

in steady-state
(

dHR(t)
dt = 0

)
, when αHRns(p(t)) = βHRnp(p(t)). τHR is a time constant

affecting how quickly the maximum response is reached. The reference level was set to
p0 = 45 mmHg.

2.3.2 Tilt with Only Partial Regulation
To explore how failing regulatory mechanisms affect cerebral blood flow, each of the three
mechanisms was disabled alone and in combination as shown in Table 2.2. In the absence
of regulation, the corresponding variable (peripheral resistance and compliance, cerebral
resistance, or heart rate) was kept fixed throughout the simulation.

Table 2.2: Eight cases were simulated with different combinations of regulatory mechanisms
present. Cerebral compliance is included in the peripheral regulation, whereas cerebral resistance
was regulated by itself.

Case # 1 2 3 4 5 6 7 8

Cerebral regulation + + − − + + − −
Peripheral regulation + − + − + − + −
HR regulation + + + + − − − −

2.3.3 Inputs
The sine-shaped wave with backflow qb, as defined in Eqs. (2.2) and (2.4), was used as
aortic inflow. Eq. (1.3) defined the relative systolic length. Stroke volume was assumed to
change with HR according to Eq. (1.2). Figure 2.10 shows input flow for increasing heart
rate.
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Heart Rate as Input

Since heart rate varied wildly, a simulation was carried out with heart rate as input. Instead
of using a set heart rate or subjugate heart rate to the baroreflex, heart rate was abstrac-
ted from the NeoDoppler recordings and used to make sine-shaped waves with backflow.
Eq. (1.3) still defined the relative length of systole.

2.3.4 Parameter Estimation

As this model builds on Model 1, the parameters listed in Table 2.1 were used as set point
values x′set. To allow the model to reach steady-state, an offset toffset = 90 s was added to
the beginning of the simulation time and subsequently removed before analysis.

2.3.5 Analysis

Flow rate and pressure were read as in Model 1. When comparing to experimental tilt
recordings, were heart beats with duration less than 300 ms (corresponding to above 200
beats per minute) excluded. Effective flow cross-section was calculated by interpolating
the simulated cerebral flow rate at the time points of the NeoDoppler recording, then point-
wise dividing the former by the latter, and multiplied by 2. It follows from Eq. (1.21) that
the result is the cross-section of a vessel with flow rate q, which is simulated, and peak
flow velocity Vz(0) which is measured with Doppler ultrasound. Average and standard
deviation were found by considering all the resulting points.
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Figure 2.10: Input flow at increasing heart rate for Joakim. Peak flow rate is approximately constant.
The diastolic part of the waves is cropped.
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2.4 Ethics and Approvals

Moving average over 10 heart beats was used to smooth beat-to-beat variation for plots
showing the time course of the simulations.

2.3.6 Simscape Settings
Simscape settings were kept as for Model 1. Variable capacitors can be governed by to
different equations in Simscape, and the equation

I = C
dV

dt
+ V

dC

dt

was chosen.

2.4 Ethics and Approvals
This project involved analysis of data from underage patients. The measurements and tilt
testing were performed by trained personnel as a part of the project ‘Neo-Doppler – A new
sensor for continuous monitoring of cerebral circulation in neonates,’ approved by REK
Midt (ref. nr. 2017/314). Informed consent was given by the parents.
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Results

3.1 Experimental Measurements
Seven tilt experiments with NeoDoppler recording were chosen for further analysis. Fig-
ure 3.1 shows the course of each experiment in terms of flow velocity, HR and PI, and
mean values before (–), during (↑) and after (↓) the tilt are shown in Figure 3.2, in addition
to measured BP.

All the children experienced a drop in mean flow velocity within 20 seconds of the
tilt. Approximately pre-tilt levels of mean flow velocity were achieved within 20 seconds
from the tilt in four of the experiments, and in all but Joakim (Exp. 7) within 30 seconds.
Joakim reached pre-tilt levels only a few seconds before the end of the recording, that is
about 50 seconds after being laid down.

Anthony, Evans and Levene [24] categorised the tilt responses in cerebral blood flow
velocity into four groups as described in Section 1.5.3. In this system, the response of
Joakim is likely to be described as uniphasic, whereas Ida showed a biphasic response
both days. Also experiment 4 reveals a biphasic response. Exp. 1–3 show a delayed fall
in flow velocity.

Exp. 1 was performed early in the study period, and lacked BP measurements. Birth
data is given in Table 3.1 for convenience. The recording was also terminated when the
child was laid down. MAP decreased from pre-tilt to tilt in three of the experiments,
showed a large increase in one experiment, and only minor increase in two experiments.

Table 3.1: Two NeoDoppler recordings were chosen for further analysis, and the neonates involved
were named “Ida” and “Joakim.” Abbreviations: GA, gestational age; HH, head-heart.

Name GA at birth Birth weight Age at tilt test HH distance Sex

Ida week 39+3 4145 g 10 h at first exp. 18 cm Female
Joakim week 40+6 3330 g 33 h 21 cm Male
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Figure 3.1: Seven tilt experiments are shown, with the tilt occurring at t = 0. The dashed lines
show when the child is laid down again. Flow velocity (blue), HR (red) and PI (green) have been
normalised to 1 at the time of the tilt. Experiment 7 was performed with Joakim, whereas Ida
participated in experiment 5 and 6 which were conducted on two successive days. Values averaged
over 20 beats.
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Figure 3.2: Mean values before (–), during (↑) and after (↓) the tilt. The course of each experiment
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were excluded from the calculation. Error bars represents standard deviation. Experiment 7 was
performed with Joakim, whereas Ida participated in experiment 5 and 6, which were conducted on
two successive days. BP was measured at the beginning of the experiment and after 120 seconds.
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Figure 3.3: NeoDoppler recordings of Ida and Joakim during a tilt experiment. They were tilted after approximately 40 seconds (t = 40 s), and laid
down again after approximately 200 seconds (t = 240 s). Note that the time axes have been stretched to exhibit the wave profiles.
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3.2 Model 1: Steady State Blood Flow in a Neonate
The model described in section 2.2 was used to simulate blood flow in an infant using
Joakim as template. Three different inflows were used, as shown in Figure 2.2, resulting
in three distinct simulated wave shapes as illustrated in Figure 3.4. qs and qb produced
very similar wave profiles for both pressure and flow, whereas the experimentally derived
inflow qm generated wider and less pulsatile waves. All inflows resulted in non-zero flow
during diastole in the ascending aorta.

Figure 3.4 also demonstrates a change in phase from the ascending aorta to the brain
compartment. In the ascending aorta, there was a 72 ms time lag between peak pressure
and peak flow rate compared to 15 ms in the brain compartments for qb.

In Figure 3.5 the simulated flow using qb is compared to Doppler and NeoDoppler
recordings from Sebastian and Joakim. The change in wave shape between compartments
varies. Peak flow rate shrinks from the ascending aorta to the aortic isthmus, whereas the
wave shape is preserved. The descending aorta is connected directly to the aortic isthmus,
but both wave shape and peak flow rate change significantly.

Table 3.2 shows some important outcomes of the simulations compared to targeted ref-
erence values. Heart rate, stroke volume, cardiac output and the amount of blood distrib-
uted to the brain, were similar for all inflows. Although all inflows had MAP 48 mmHg,
PIs ranged from 0.46 to 0.68, with qb yielding the highest PI and qm the lowest. Pulse pres-
sures were 23 mmHg, 24 mmHg and 17 mmHg for qs, qb and qm, respectively. 10.3% of
the cardiac output was directed to the brain.
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Figure 3.4: Three different inflows were tested, a sine-shaped wave (qs), a wave with backflow (qb),
and a wave based on US measurements (qm). The simulated flow (—) and pressure curves (- - -) are
shown for two heart beats halfway through the simulation.
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Table 3.2: Targeted and achieved variable values for the steady-state model comparing three different inflows Targeted values are either from the
literature or acquired experimentally. Abbreviations: R., right; L., left.

Simulated Target

qs qb qm Ref.

Heart Rate 120.00 120.00 120.00 120.00 Meas.
Stroke Volume [mL s−1] 5.89 5.89 5.89 5.89(93) [53]
Cardiac Output [mL min−1] 707.28 707.28 707.29 769(256) [50]
Systolic BP [mmHg] 60.48 61.23 55.75 61 Meas.
Mean BP [mmHg] 48.12 48.12 48.12 45 Calc.
Diastolic BP [mmHg] 37.17 36.99 38.48 37 Meas.
Blood Flow Rate R./L. Brain [mL s−1] 0.61 / 0.61 0.61 / 0.61 0.61 / 0.61 0.64 [139]
Pulsatility Index (PI) R./L. Brain 0.66 / 0.66 0.68 / 0.68 0.46 / 0.46 0.78 Meas.
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(b) Aortic Isthmus (blue) and Ab-
dominal Arch (orange).
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(c) Descending Aorta (blue) and
Abdominal Aorta (orange).
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(d) Right brain.

Figure 3.5: Simulated flow (qb, blue) are compared to measured flow velocity (orange) acquired at different locations in Sebastian, except for the right
brain where a NeoDoppler recording of Joakim is used.69



Chapter 3. Results

3.3 Model 2: Tilt test
Model 2 was described in section 2.3. Here, the results will be presented in three sections,
beginning with simulated tilts with regulation. Thereafter, tilts were simulated with some
regulatory mechanisms deactivated. Finally, simulations are shown where heart rate were
used as input to the model. Many of the results are mainly conveyed through figures, and
is discussed in the next chapter.

3.3.1 Tilt with Regulation

Both Joakim and Ida were used as templates for a tilt simulation, and the resulting flow
rates can be seen in Figures 3.7a and 3.7c for Joakim and Ida, respectively. The mean
effective flow cross-section is shown in Figure 3.6.

Figures 3.10 and 3.12 summarise mean values for BP, HR, flow rate and PI before (–),
during (↑) and after (↓) the tilt, for Joakim and Ida, respectively. The full course of the
variables can be found in Figures 3.9 and 3.11.

Total peripheral resistance can be calculated from Eq. (1.27), and is plotted in Fig-
ure 3.8c. The cerebral resistance is listed in Table 3.3, as is TPR, and plotted in Fig-
ure 3.8a. The mean deviations from Rp,0 were 140% (SD 500%) for Joakim and −13%
(31%) for Ida. As R ∝ 1/a4 where a is vessel radius, the relative change in radius is
a/a0 = 4

√
R0/R. The estimated change in the radius of cerebral arterioles is plotted

in Figure 3.8b and listed in Table 3.3. Mean relative radius change was −5% (17%) for
Joakim and 6% (11%) for Ida.

1 2 3 4 5 6 7 8

Case #

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

M
ea

n 
ef

fe
ct

iv
e 

flo
w

 c
ro

ss
-s

ec
tio

n 
[c

m
2 ]

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
S

ta
nd

ar
d 

de
vi

at
io

n 
(-

 -
 -

) 
[c

m
2 ]

Joakim Ida Joakim (HR)

Figure 3.6: Effective flow cross-section (—) and standard deviation (- - -) for Joakim (blue), Ida
(red) and Joakim with heart rate as input (green). The minimal standard deviation is indicated for
each colour with a bullet (•). The eight cases are as defined in Table 2.2.
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3.3 Model 2: Tilt test

Table 3.3: Some values were not experimentally available, but could be extracted from the simula-
tion before (–), during (↑) and after (↓) the tilt. Standard deviation is given in parenthesis.

Joakim Ida

– ↑ ↓ – ↑ ↓

TPR [mmHg s mL−1] 3.81 2.66 3.85 3.27 2.42 3.34
(0.10) (0.28) (0.07) (0.03) (0.07) (0.22)

Change in cerebral arteriolar a 2% 0% −19% 4% 6% 1%
(12%) (11%) (21%) (6%) (12%) (6%)

Cerebral BP [mmHg] 44 33 45 46 36 46
(1) (3) (0) (0) (1) (1)
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(b) Joakim with HR as input.
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Figure 3.7: Simulated blood flow (blue) in the cerebral compartment and NeoDoppler recordings
(orange).
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Figure 3.8: Simulated change in resistances during a tilt experiment.
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3.3.2 Tilt with Partial Regulation

To explore the effect of each of the three regulatory mechanisms, simulations were carried
out with one, two or all three deactivated. This yields seven cases in addition to the case
presented in Section 3.3.1 with all regulatory mechanisms active. The configuration of the
eight cases are described in Section 2.3.2 and presented in Table 2.2.

Figure 3.9 shows the time course of the eight simulations and the experimental Neo-
Doppler recording for Joakim. The time has been shifted so that the tilt occurs at time
t = 0 s, and a dotted line marks t = 20 s to simplify categorisation into R1–R4 response
patterns defined by Anthony, Evans and Levene [24] and described in Section 1.5.3. Mean
values for blood pressures, flow rate, PI and heart rate before, during and after the tilt, are
shown in Figure 3.10 for Joakim. Similarly is the time course of the simulation of Ida
found in Figure 3.11, and a summary in Figure 3.12. Detailed plots of the time course of
heart rate, PI, cerebral blood flow, and pressure in the aorta and in the brain for the eight
cases can be found in Figures A.1 and A.2 for Joakim and Ida, respectively.

For both Joakim and Ida, the initial fall in flow velocity and rise in PI after the tilt
were reproduced in all eight cases. The smallest change in PI was observed in case 2
where peripheral regulation was absent. The largest change in flow rate and PI were in
case 8 where all regulatory mechanisms were lacking. Table 3.4 summarises how the
different combination of regulatory mechanisms affect simulated blood pressure, heart
rate and PI. Numerical values can be found in Table A.2. Similar response patterns are
seen for case 1 and 3, and case 5 and 7. The difference between the cases in both couples
is cerebral autoregulation. In other words, it seems that the presence of well functioning
cerebral autoregulation cannot be inferred solely from a qualitative analysis of the change
in heart rate, PI and blood pressure after a tilt. The change in PI can distinguish between
concurrent absence of both cerebral and peripheral regulation and the absence of only
peripheral regulation. PI increases more in the first case, independently of the presence of
heart rate regulation.

The relative decrease in cerebral blood flow rate during tilt was about 25–30% in
Joakim for all cases except 4, 6 and 8 (see Figure 3.10), and 20–25% in Ida for all cases
except 4 and 8 (see Figure 3.12), as listed in Table A.2. The exceptions demonstrate larger
drops in flow rate. Ida compensates quickly in terms of flow rate, and clearly shows a
biphasic (R4) response as demonstrated in Figure 3.11. This biphasic response is repro-
duced in all cases except case 8, and to a lower degree in case 4. Joakim seems to exhibit
a uniphasic response (R3), reproduced in all eight cases.

Simulating the cases including cerebral autoregulation took about 3–4 hours, whereas
the other simulations were completed within 30 minutes.

Mean cerebral blood pressure (MCP) was initially 96% of MAP for Joakim in all cases.
During tilt, MCP fell to about 55% of MAP for case 6 and 8, to about 60% of MAP for
case 2 and 4, and to about 65% of MAP for the other cases. Pre-tilt levels were established
shortly after the tilt was ended for all cases. For Ida, pre- and post-tilt levels were as for
Joakim, but all cases yielded MCP at 67-71% of MAP.

The standard deviation of effective flow cross-section is a measure of how well the
simulated results fit with the measured flow velocity, as flow rate is assumed to be propor-
tional to flow velocity from Eq. 1.21 as long as the artery does not change its radius. The
mean effective cross-section and standard deviation are shown in Figure 3.6.
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Table 3.4: Qualitative responses to tilt in the eight cases. Arrows in parenthesis mark a small
change. Flow rate decreased in all cases.

Regulation Response

Case # Cerebral Peripheral HR HR PI SBP MAP DBP

1 + + + ↑ ↑ ↑ ↑ ↑
2 + − + ↑↑ (↑) ↓ (↓) —
3 − + + ↑ ↑ ↑ ↑ ↑
4 − − + ↑↑ ↑ ↓ (↓) —
5 + + − — ↑ ↑ ↑ ↑
6 + − − — ↑ ↓↓ ↓↓ ↓↓
7 − + − — ↑ ↑ ↑ ↑
8 − − − — ↑↑ ↓↓ ↓↓ ↓↓

3.3.3 Heart Rate as Input
As heart rate varied significantly during the test period, simulations were carried out using
heart rate from the NeoDoppler recordings of Joakim as input. Eq. (2.2) was still used to
generate a inflow signal, with systolic duration calculated from Eq. (1.3).

The simulated flow rate is shown in Figure 3.7b for case 1. All cases are displayed in
Figure 3.13, with a summary in Figure 3.14. The time course of heart rate, PI, cerebral
blood flow, and pressure in the aorta and in the brain for the eight cases can be found in
Figure A.3.

The qualitative response patterns were as in Table 3.4 with a few exceptions in addition
to change heart rate being equal for case 1–4 and case 5–8. PI increased, and MAP and
diastolic blood pressure decreased, noticeably in case 2. A significant increase in PI was
observed for case 4, and also a drop in MAP and diastolic blood pressure.

Prior to the tilt was MCP about 96% of MAP for all eight cases. MCP in case 1, 3,
5 and 7 was about 63% of MAP, whereas MCP in case 2, 4, 6 and 8 was about 52% of
MAP. MCP returned to 96% of MAP after the tilt for all cases. TPR was estimated to be
3.87, 2.54, and 3.82 mmHg s mL−1 before, during and after the tilt, respectively. Mean
effective flow cross-section is shown in Figure 3.6.
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Figure 3.9: Time course of flow rate, heart rate (HR), and PI during a tilt simulation of Joakim. The
data row contains a NeoDoppler recording, and shows flow velocity instead of flow rate. The table
shows which regulatory mechanisms that were active (+) or inactive (–) in each case.
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Figure 3.11: Time course of flow rate, heart rate (HR), and PI during a tilt simulation of Ida. The
data row contains a NeoDoppler recording, and shows flow velocity instead of flow rate. The table
shows which regulatory mechanisms that were active (+) or inactive (–) in each case.
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table shows which regulatory mechanisms that were active (+) or inactive (–) in each case.
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Figure 3.13: Time course of flow rate, heart rate (HR), and PI during a tilt simulation of Joakim
using heart rate as input. The data row contains a NeoDoppler recording, and shows flow velocity
instead of flow rate. The table shows which regulatory mechanisms that were active (+) or inactive
(–) in each case.

80



3.3 Model 2: Tilt test

H
R

 [b
pm

]

1

1.5

2

2.5

3

P
I

0.2

0.4

0.6

0.8

F
lo

w
 [m

L/
s]

0.03

0.04

0.05

0.06
20

40

60

80

P
re

ss
ur

e 
[m

m
H

g]

Sys. MAP Dia.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Joakim

Case # 1 2 3 4 5 6 7 8

Cerebral regulation + + − − + + − −
Peripheral regulation + − + − + − + −
HR regulation + + + + − − − −

Figure 3.14: Summary of blood pressure, heart rate (HR), flow rate and PI before (–), during (↑) and
after (↓) the tilt for a simulation of Joakim using heart rate as input. Error bars represent standard
deviation. The data column is based on the NeoDoppler recording, and shows flow velocity [m s−1]
rather than flow rate. The table shows which regulatory mechanisms that were active (+) or inactive
(–) in each case.
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Chapter 4
Discussion

There is always a temptation to think
too deeply about things.

Phillips [140, p. 79]

The steady-state model with results in section 3.2 was able to reproduce targeted values
for systolic and diastolic blood pressure, and distribution of blood flow to the brain as listed
in Table 3.2. Matching heart rate, stroke volume and cardiac output were as expected, as
these variables are determined by the input flow signal. Cardiac output can be calculated
as the product of stroke volume and heart rate, which will give the simulated values. The
average heart rate in neonates is often a bit higher than the pre-tilt level in Joakim, typically
about 140 bpm when unstimulated [141], which may explain the gap between simulated
and targeted cardiac output in Table 3.2.

The pulsatility index (PI) was lower in the steady-state simulation than in the recording.
Whereas MAP strongly depends on pressure wave form, is PI dependent of flow wave
form. Both wave forms are shown in Figure 3.4 for three different input signals.

Flow wave form in central compartments displayed varying agreement with Doppler
recordings, but showed good correspondence with Doppler recordings in the cerebral com-
partment. Figures 3.5a and 3.5b show a minimal change in wave profile between the com-
partments for ascending aorta and aortic isthmus. Both display a non-zero flow in diastole
and are similar to the simulation output of Garcia-Canadilla et al. [28] for the aortic isth-
mus as shown in Figure 1.29. Figure 3.5c demonstrates a misfit between simulated and
measured wave profile in the descending aorta. From Figure 1.18, the physiological flow
wave in the descending aorta of a healthy child seems to be similar to simulated output
in the aortic isthmus. The simulated output for the descending aorta is more similar to
peripheral flow. This suggests that the compliance in the compartment representing the
descending aorta is too high. However, increasing it further more lowers the diastolic flow
in the ascending aorta towards zero, and decreasing it increases the diastolic flow in the
ascending aorta, demonstrating that the compartments are interacting and great care has to
be taken to optimise all compartments simultaneously.
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Chapter 4. Discussion

As recordings in general were only collected from the cerebral arteries, the peripheral
compartments were not prioritised in this project. In future works, ductus arteriosus should
be implemented alongside pulmonary circulation. Model parameters will then have to be
re-estimated, and experimental Doppler measurements from the anatomic locations may
be gathered to guide the adaption. More attention may be offered non-cerebral compart-
ments as one have experimental data for these locations from the same individual. Also,
the non-cerebral Doppler measurements were acquired from Sebastian who was born pre-
term and had an open ductus arteriosus, whereas the simulation was adapted to an infant
born at term an assumed closed ductus arteriosus. Some of the discrepancy may thus be
explained by the model trying to describe another condition than the experimental meas-
urements.

MAP changed up to 34% in response to tilt (see Figure 3.2). This is greater than pre-
dicted by Figure 1.11. As various tilt responses are seen, with both increase and decrease
in blood pressure, the average response of a group tends to be small, and there is likely to
exist sub-groups. Analysis of the experimental data falls outside the scope of this thesis
and will likely be addressed in an upcoming paper by Siv S. Ødegård.

Experimentally, blood pressures were acquired using an oscillometric technique [142].
Although this is a commonly used method for neonates in the clinical setting, due to its
simplicity and low risk, several studies find deviations between oscillometric and invas-
ively measured blood pressure. Lalan and Blowey [143] found MAP to be overestim-
ated by 4.8(98) mmHg using oscillometry versus intra-arterial measurement, in line with
earlier studies [144]. Equipment from different producers also seem to produce biased
measurements, especially for large and small infants [145]. Different manufacturers apply
different algorithms to calculate systolic, mean and diastolic blood pressure [146]. Oth-
ers have found good agreement between oscillometry and intra-arterial measurements in
normotensive infants [147, 148], or a similar overestimation in the presence of hypoten-
sion [149], or even underestimation of MAP [150, 151]. However, healthy infants are
rarely subjected to invasive blood pressure measurements and less is known about its ac-
curacy.

Additionally, blood pressure measurements are complicated by intrinsic and extrinsic
motion artefacts [152]. Intrinsic motion artefacts are caused by the motions of the infant,
who often cry and struggle as the inflated cuff can be uncomfortable. Extrinsic motion
artefacts can arise from the clinician moving the bed or unintentionally compressing the
cuff. Stress and arousal tend to falsely rise the blood pressure, concealing some of the true
effect of tilt on the hemodynamics. In adults, talking has been found to increase the systolic
blood pressure by 17 mmHg and exposure to cold leads to an increase of 11 mmHg [153].
Thus, there is some uncertainty associated with the change in blood pressure observed
after the tilt, as in Figure 3.2.

Simulation results depend on the shape of the flow waves in the input signal as shown
in Figure 3.4. Table 3.2 reveals that the systolic blood pressure was about 10% lower and
the PI about 30% lower for simulations using the measured inflow signal (qm) compared
to simulations using the two sine based signals (qs and qb). The latter is similar to the
relative difference in peak systolic velocity and also PI between the measured and the
sine shaped input signals themselves. The sine shaped signal was mainly chosen because
Doppler recording of the aortic valve outflow was only available for Sebastian who was
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prematurely born and had a large, open ductus, whereas Joakim and Ida were assumed
to have closed ductus and were born at term. The input signal used by Garcia-Canadilla
et al. [28], shown in Figure 1.29, seems more similar to qs than qm, so does the Doppler
spectrum from the left ventricular outflow tract shown in Figure 1.18a, although both have
a steeper rise in the beginning of systole than qs. A backflow was added to model the
physiological backflow that closes the aortic valve at the end of systole, and several earlier
studies have also included this backflow [see eg. 48, 154, 155]. The backflow contributes
to a larger pulsatility of qb compared to qs as the stroke volume is equal for both. This may
explain why qb has the largest PI and pulse pressure of the three inflow signals.

The steepness of the inflow wave used as input is determined by stroke volume in
Eq. (1.2) and systolic duration in Eq. (1.3). Both have been estimated by data from the
literature for infants of adequate age. Figure 2.10 shows that despite increasing steepness,
the peak value of the inflow wave in Joakim is almost constant at about 50 mL s−1, and
about 60 mL s−1 in Ida. This is expected as peak flow rate from Eq. (2.4) is about 14.75 ·
bw [kg] for high heart rates (HR) when the fractional backflow duration a is 1/6. bw is
birth weight. The aortic valve annulus diameter in neonates with closed ductus arteriosus
have been found to be approximately d[mm] = 4.3 + 0.9 · bw [kg] [156]. In Joakim,
this yield a cross-section of 0.42 cm2 and a peak blood velocity of 240 cm s−1, which is
significantly higher than the expected peak blood velocity [104, 105]. It is similarly high
for Ida, at 237 cm s−1. The aortic root in neonates is found to have a diameter d[mm] =
5.64 + 1.18 · bw [kg] [157]. If the inflow is assumed to be applied at the level of the aortic
root, peak velocities are 139 cm s−1 in Joakim and 138 cm s−1 in Ida. Although both
estimates are higher than the reported normal values, small changes in radius will have a
great impact on estimated peak velocity due to the quadratic dependence on vessel radius.
The actual flow velocity profile inside the vessel are not known, Also, direct comparison
may be difficult as the average dimensions are from different study populations than the
ones used to design the inflow waves.

Another explanation for the high peak systolic velocity may be that the relative systolic
duration is too short. Figure 1.6 shows the relationship between heart rate and relative
systolic duration used in this project, and the values are in line with other studies report-
ing ts/tc about 40% at heart 130 bpm [158, 159]. It is possible that the regression line
shown in Figure 1.6 is too steep and that the systolic duration is underestimated at heart
rates below 130 bpm, but the heart rate is seldom below 120 bpm in the simulation so
it seems unlikely that this would have a large effect. An open ductus arteriosus may also
affect systolic duration, and a longer left ventricular ejection time has been reported before
closure [160]. An open ductus arteriosus is known to be the case for Sebastian, but not for
Joakim and Ida, but may account for some of the difference in systolic length between the
measurements of Sebastian and the values reported in the literature.

Finally, the high peak systolic velocity may be caused by the stroke volume being
too high. However, the value of 5.89 mL used in the simulation is within the normal
ranges reported for term neonates [53, 161, 162], although a lower value, about 4 mL
at the weight of Joakim, has been reported when using three-dimensional echocardio-
graphy rather than Doppler and M mode ultrasound [163]. As stroke volume was not
measured for Ida and Joakim, it is difficult to make better estimates than reported normal
values adjusted for age and weight. In addition, a small difference is observed between the
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sexes (1.236(79) mL kg−1 for boys and 1.199(84) mL kg−1 for girls) and between infants
with open and closed ductus (1.242(79) mL kg−1 for open and 1.217(83) mL kg−1 for
closed) [163]. These differences were not considered due to their size.

Effective flow cross-section was estimated as if all cerebral blood was collected in
two single arteries, one for each hemisphere. In practise, only 8% of the cerebral blood
flow is directed to the anterior cerebral artery in adults with a complete circle of Wil-
lis [164]. Correcting the effective flow cross-section this factor, estimated radius of the an-
terior cerebral artery becomes 0.8 mm The radius of the middle cerebral artery in fetuses
at 37–40 weeks of gestation is reported to be in the range 0.43–0.80 mm (mean 0.61 mm,
SD 0.11 mm) [165]. The identity of the vessel insonated by the NeoDoppler probe is not
known, but its dimension is consistent with the major cerebral arteries such as the anterior
cerebral artery.

Cerebral circulation was described using only two compartments in the model, whereas
the anatomy of the brain is complex, as illustrated in Section 1.5.1. The configuration of
the circle of Willis varies in the population, and the circulatory consequences of these vari-
ations, and also pathology, have been subject to investigation by computer modelling [see
eg. 166–168]. Implementing the circle of Willis would offer the possibility to observe if
and how flow patterns and wave profiles differ between the major cerebral arteries and in
different configurations. Figure 1.17, in addition to other studies, demonstrates that dif-
ferences exist between the anterior and middle cerebral arteries in neonates [107, 169].
Yet an accurate implementation requires data regarding the vessels, adding new sources of
error as the number of parameters needed to be estimated in the model increases. Adding
more components may also increase the time needed to run a simulation.

The lack of ductus arteriosus is an important limitation of the model. As mentioned
in Section 1.5.1, the ductus normally closes about 27 hours after birth in boys and 45
hours after birth in girls [42], suggesting that Joakim has a closed ductus at the time of
the tilt experiment, whereas Ida still has an open ductus. A open ductus arteriosus has
been found to increase cerebral PI and cerebral peak systolic flow velocity, but the effect
depends on the size of the ductus [170–172]. These characteristics are compatible with
Ida having an open ductus and Joakim a closed ductus, or that both have an open ductus,
but the one of Ida has a larger diameter. The difference in pulsatility is demonstrated
in Figure 3.3. Hence is the accuracy of the model likely to increase if the pulmonary
circulation is added alongside a compartment representing the ductus arteriosus. On the
other hand was simulated relative change in PI closer to the experimental values for Ida
than for Joakim (see Table A.2), even though the values of the PI agreed better for Joakim
as shown in Figures 3.10 and 3.12.

A more complex representation of the heart may also be a way of improving the model.
The current implementation provided inflow to the aorta solely as a function of heart rate,
although heart rate was regulated by the blood pressure in the carotid artery. Pooling
effects and reduced venous return caused by the tilt were thus ignored. This may be a
reasonable simplification as earlier studies suggest that the stroke volume in neonates is
not significantly altered by a tilt, as shown in Figure 1.10 [73, 90]. Several studies have
employed models of the heart that depend on venous return and venous and atrial pres-
sures [see eg. 70, 132, 173], and although most have focused on adults, some models have
also been developed for foetuses and neonates [see eg. 125, 126, 128]. An advantage of
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the current implementation of the heart is that each cardiac cycle is independent from the
previous ones, which ensures a reliable input signal, and reduces the risk of errors accu-
mulating during the course of the simulation. This is important as the simulation results
depend strongly on the inflow signal, as demonstrated in Figure 3.4 and Table 3.2.

Inertia was scaled down to a negligible value to avoid oscillations. The benefits of
including inertia in the model is disputed, as mentioned in Section 1.7.3. Master student
Nguyen [27] chose another approach. Since resistance, compliance and inertia are propor-
tional to vessel length as seen in Eqs. (1.22), (1.28) and (1.32), the variables will decrease
if the vessel compartments are split into shorter segments. When inertia and compliance
are decreased in the compartments, the resonant frequency increases rapidly according to
Eq. (1.34) until it is no longer sampled. The approach was found to yield more accurate
wave forms. However, serious constraints were put on simulation time that was limited
to under 15 s, and the system became less stable. Other options may include to low-pass
filter the simulated results before further processing, reduce the number of inductors in
the circuit and increase their inductance accordingly, or include the inductors in parallel
instead of series. The choice of reducing inductance was also made for the original model
by Garcia-Canadilla et al. [28] (Patricia Garcia-Cañadilla, personal communication, April
4, 2019). This may have led to less accurate parameter values and wave profiles.

The model contains a large number of parameters to optimise. Although six compart-
ments were removed from the original model by Garcia-Canadilla et al. [28], 15 com-
partments with three components each and a resistor representing the coronary arteries,
remained. The inductors were in practise ignored when the inductance was scaled down
as discussed above. Hence, 36 component values had to be adapted, in addition to paramet-
ers relating to the regulatory mechanisms. It was prioritised to optimise for the variables
where experimental values from Joakim and Ida were available. Thus the brain com-
partments were offered most attention, and parameters were modified to provide good fit
with experimental data. The compartment representing the ascending aorta was modified
to yield fitting systolic and diastolic blood pressure, and MAP. Component values in the
central compartments were originally estimated from measurements of foetuses Garcia-
Canadilla et al. [28]. However, small changes in vessel radius yield large changes in both
R and C from Eqs. (1.22) and (1.32), and therefore may relatively large deviations from
the original values for central compartments reflect modest variation in vessel size.

Pressure measurements are in general not experimentally available for the brain, and
only a handful values have been reported in the literature, suggesting that the blood pres-
sure in the middle cerebral artery is about 75% of MAP [174]. No experimental values
have been found for infants, in spite of a thorough search in the literature and consulting
several local and foreign clinicians and researchers. In the model, mean cerebral blood
pressure was found to be about 95% of MAP in steady-state, dropping to below 70% dur-
ing the tilt for all eight cases. The non-linear relationship between pressure, resistance
and flow becomes important as the cerebral blood pressure decreases as illustrated in Fig-
ure 1.23. Tran [29] and Wisløff [30] found that resistance dependent on local pressure
yielded more accurate results than pressure independent resistances using Simscape mod-
els. However, the inclusion of critical closure pressure may be more relevant in studies of
ill or pre-term neonates where low blood pressures and insufficient cerebral blood flow are
more commonly seen.
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Intracranial, intrathoracic and venous pressures were not implemented in the model.
Intracranial pressure affects, and is affected by, the cerebral blood flow and is of great in-
terest in the clinic [175], and it has been found to vary with head position and is likely
altered by a tilt [176]. As the intracranial pressure alters transmural pressure, it may
change the compliance of the cerebral arteries. The intrathoracic pressure changes as part
of breathing, and is likely to have greatest effect on the pulmonary circulation and also
venous return. Pulmonary circulation and veins in general were not considered in this pro-
ject. It is possible that some of the oscillations seen in the recordings in Figure 3.3 reflect
respiration. Cerebral venous outflow seems to be redistributed at changes in posture [177].
Implementing these effects may improve the model, but also adds uncertainty and requires
additional experimental data.

Total peripheral resistance (TPR), as shown in Figure 3.8c and Table 3.3, was similar to
reported values for the neonate [128, 130]. This is expected as TPR was calculated from
Eq. (1.27), and both cardiac output and MAP were within normal ranges. Figure 1.27
demonstrates how TPR increases slightly as the ductus arteriosus closes, but the effect is
small.

TPR falls during the tilt as indicated in Table 3.3, and MAP is stabilised by an increase
in heart rate. The effect of changing peripheral resistance can be illustrated by keeping
the TPR constant during a tilt experiment. This is done in the simulated cases 2, 4, 6 and
8, and the consequences are illustrated in Table 3.4. The absence of peripheral regulation
makes the systolic blood pressure decrease during the tilt. An increase in heart rate seems
to partly or completely compensate the lack of peripheral regulation, keeping MAP and
diastolic blood pressure almost unchanged. However, if both TPR and heart rate are kept
constant, a significant decrease in MAP, and systolic and diastolic blood pressure is seen.
A drop in TPR in response to tilt has been suggested to be part of a healthy response
in young adults [178], whereas an increase has been reported in children with vasovagal
syncope [89].

The average changes in cerebral arterioles in response to tilt were small, with a peak
at the time of the tilt. This peak may be partly explained by the timing of the simulated
tilt compared to the experimental tilt. The timings used in the simulations were slightly
different for Joakim with and without heart rate as input, as the tilt seems to have happened
a bit earlier than 40 s from the velocity recording and this was accounted for when not using
heart rate as input. The peak may also indicate a rapid response to the fall in cerebral blood
flow before the peripheral regulation starts to increase the systemic blood pressure.

Figure 1.11 shows that a variety of responses have been reported in the literature,
as elaborated in Section 1.5.3. None of the simulated cases yielded decrease in heart
rate during tilt. Eq. (1.27) describes the relation between MAP, TPR and heart rate. If
MAP is raised by heart rate, the peripheral resistance will stay low, and vice versa. The
time constants used to determine how quickly each regulatory mechanism thus also affect
how the other mechanisms respond. Further studies are needed to establish how k and τ
influences the behaviour of the system.

Evaluating which case that fits the experimental data best can be done in several ways.
The standard deviation of effective flow cross-section shown in Figure 3.6 is one measure.
The artery observed by the NeoDoppler device can be assumed to have a constant radius
throughout the experiment as the peripheral resistance is mainly regulated in the arteri-
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oles, not the arteries, and flow rate and flow velocity will then be proportional under the
assumptions described in Section 1.7.1. The lowest standard deviation is found for Ida in
case 1. This is reasonable from Figure 3.7 where the simulation with Joakim have a mis-
match early in the simulation, and also at the back-tilt. The simulation with Joakim and
heart rate as input agrees more, but the decrease in flow rate happens before the decrease
in flow velocity, leaving a mismatch around the time of the tilt. For the two simulations
of Joakim is the lowest standard deviation found for case 5. Case 5 describes a situation
with cerebral and peripheral regulation, but constant heart rate. The increase in heart rate
observed in the data is thus not accounted for, and the simulated increase in PI is higher
than observed experimentally. Case 1 seems to fit better as the difference in standard de-
viation between case 1 and case 5 is negligible, and case 1 provides a better description of
the increase in heart rate, PI, MAP and diastolic pressure than case 5. For Ida increases PI
with 17% in case 1 and 27% in case 5, compared to 16% in the recording.

A general challenge in this project is the mixing of values acquired from individuals
and from populations. Although normal ranges are often reported, one single value has to
be chosen to be used in the model. In this project have gestational age and birth weight
been used to acquire as accurate values as possible from the literature. Joakim and Ida
were clinically assessed before participating in the tilt experiment, and were found to be
healthy. It is thus likely that they are representative for the normal populations found in
the literature.

Further Work

The discussion above has highlighted several limitations and shortcomings of the current
model. The model can be improved by adding compartments for the ductus arteriosus,
pulmonary circulation, the circle of Willis, and the heart, including venous return. Another
avenue of improvement is optimised parameter estimation, both for component values and
parameters for the regulatory mechanisms (k and τ ). Algorithms exist that can be used to
optimise the set of parameters for given outcomes. More complex representations of the
regulatory mechanisms can also be employed, as they are constituted of several subsystems
reacting to chemical and neural signals.

More experimental data is also important to improve the model. Doppler measure-
ments can be acquired from several locations in the same individuals performing the tilt
test. This way, each compartment can be adjusted to achieve wave profiles similar to the
Doppler recording. A continuous pressure recording in parallel with a NeoDoppler re-
cording would provide a valuable way of validating the pressure wave profile and how it
changes during a tilt. Standardised experiments will be important as different tilt responses
have been observed in different conditions, such as active versus quiet sleep.
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Chapter 5
Conclusion

Knowing when to stop, whatever else it
is, is always guess-work.

Phillips [140, p. 41]

In this project, a simple lumped multi-compartment model is developed to investigate
cerebral blood flow during steady- and altered state. The model was based on a published
model for foetal circluation and implented in Simscape and MATLAB. The altered state
was induced by tilting the neonate 90° from supine to upright position, introducing a hy-
drostatic pressure between heart and brain. Simulated results were compared to NeoDop-
pler recordings from experimental tilt tests. Three regulatory mechanisms were imple-
mented in the model so that their relative contribution to cerebral blood flow could be
assessed.

It was identified a range of studies on neonates and the tilt test. A variety of responses
had been described with both increases and decreases in blood pressure and heart rate,
and also individuals that did not show any specific response. Individual neonates also
displayed different responses from day to day the first month after birth.

The simulations were able to reproduce several features of the experimental data, such
as a decrease in flow, an increase in blood pressure, an increase in heart rate and an increase
in PI. Specific responses were observed as different combinations of regulatory mechan-
isms were active. The simulation with all regulatory mechanisms activated showed the
best agreement with the NeoDoppler recordings.

The model seems to be a promising point of departure for further studies, but several
improvements are suggested, and further development of the model is best guided by more
experimental data.
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Table A.1: Summary of baseline values and tilt responses reported for different ages and tilt angles for healthy participants. Results in squared brackets
indicate post-tilt values. Statistical significance indicated when stated in the reference.

Age Tilt HR ∆HR [%] SBP ∆SBP [%] MAP ∆MAP [%] DBP ∆DBP [%] Ref.

2 hours 30° 131.0(33) 0.2 55.0(14) −3.3 38.6 −5.4 30.4(11) −7.6 [22]
24 hours 30° 125.3(28) 4.2 57.9(13) −1.6 41.2 −3.6 32.9(12) −5.5 [22]
24–68 hours 30° 123.4(19) 2.2 – – – – – – [179]
8 days† 30° 141 [140] −0.7 – – 40 [45] 2.5 – – [180]
18(12) days† 30° 162.0(105) 0.0 73.0(110) −0.7 51 5.9 40(79) 12.5 [90]
2.0(3) months 30° 133.8(12) −0.5 – – – – – – [179]
4.0(3) months 30° 129.7(11) −0.2 – – – – – – [179]
1 day 45° 115(3) 6.1 ∗ 59(2) 3.4 42 2.4 33(1) 3.0 [21]
2 days 45° 121(2) −0.8 64(1) 1.6 46 0.0 37(1) 0.0 [21]
3 days 45° 122(3) 5.7 ∗ 67(2) 9.0 ∗ 48 8.3 39(1) 5.1 [21]
4–7 days 45° 122(4) 2.5 68(2) 2.9 49 0.0 40(1) −2.5 [21]
Neonate† 45° 149.2(47) −2.8 63.7(36) −0.6 43.9 −1.6 34.0(42) −2.4 [181]
18(2) days† 45° 155(2) −0.3 – – – – – – [81]
∼10 weeks† 45° 152(4) 1.2 ∗ – – – – – – [81]
3 months†† 45° – 0.8(24) – −1.2(30) – – – 1.1(27) [182]
3 months††† 45° – 1.8(27) – 0.2(25) – – – −0.2(24) [182]
13(2) weeks†† 45° – 0.8(21) – −1.2(30) – – – – [183]
13(2) weeks††† 45° – 1.8(22) – 0.1(25) – – – – [183]
4(1) days 60° 113 7.9(7) 93 1.1(4) 77 1.9 69 2.4(4) [184]
18(12) days† 60° 162.0(105) 1.2 73.0(110) 6.8 51 11.8 40(79) 17.5 [90]
19(3) days 60° 137 4.4(6) 107 2.9(12) 87 4.4 77 5.4(10) [184]
91(5) days 60° 120 4.5(7) 90 3.5(13) 68 5.7 57 7.5(15) [184]
375(8) days 60° 110 8.7(6) 89 7.0(14) 63 10.8 50 14.2(20) [184]
11.0(23) years 80° 72(12) −2.8 100(9) 5.0 68 5.9 52(9) 5.8 [185]

Continued on next page
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Age Tilt HR ∆HR [%] SBP ∆SBP [%] MAP ∆MAP [%] DBP ∆DBP [%] Ref.

1 day 90° 115(3) 4.3 59(2) 1.7 42 2.4 33(1) 3.0 [21]
2 days 90° 121(2) 5.8 64(1) 7.8 ∗ 46 4.3 37(1) 2.7 [21]
3 days 90° 122(3) 4.9 67(2) 6.0 48 4.2 39(1) 5.1 [21]
4–7 days 90° 122(4) 5.0 ∗ 68(2) 10.3 ∗∗ 49 8.2 40(1) 5.0 ∗ [21]
6 months 90° – – – – 74(6) −1.4 – – [73]
18 months 90° 112(7) 13 – – 80(6) −1.3 – – [73]

† Born premature. †† Slow-Wave Sleep. ††† REM Sleep. ∗P < .05. ∗∗P < .01.

Table A.2: Relative change (%) in response to a 90° tilt. Case 1–8 are simulated results, whereas data is acquired experimentally from two neonates
referred to as Joakim and Ida. For Joakim, a simulation was carried out with measured heart rate as input. These results are reported to the right of the
slash (/). Details in sections 3.3.2 and 3.3.3. Abbreviations: C, cerebral; P, peripheral; HR, heart rate; q, flow rate; PI, pulsatility index; SBP, systolic
blood pressure; MAP, mean arterial blood pressure; DBP, diastolic blood pressure.

Case Regulation Response in Joakim [%] Response in Ida [%]

# C P HR HR q PI SBP MAP DBP HR q PI SBP MAP DBP

1 + + + 17/14 −26/−28 25/30 4/3 9/7 15/10 13 −20 17 3 8 14
2 + − + 48/14 −28/−39 6/52 −12/−14 −7/−16 −1/−22 30 −21 7 −6 −2 3
3 − + + 17/14 −27/−30 31/35 4/3 9/7 15/11 13 −21 18 3 8 14
4 − − + 46/14 −41/−54 36/106 −10/−13 −5/−15 0/−20 29 −29 20 −6 −1 3
5 + + − 0/0 −26/−28 37/38 4/4 6/5 8/6 0 −20 27 5 6 9
6 + − − 0/0 −35/−42 63/66 −17/−17 −21/−22 −28/−29 0 −24 32 −12 −16 −21
7 − + − 0/0 −30/−31 50/46 5/4 6/5 8/7 0 −23 30 5 6 9
8 − − − 0/0 −54/−57 118/133 −15/−16 −19/−20 −25/−27 0 −39 64 −11 −14 −18

Data 12 −24 17 19 27 16 3 −19 16 0 4 10
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Figure A.1: Simulation of Joakim (cont. on next page).
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Figure A.3: Simulation of Joakim using heart rate as input (cont. on next page).
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Appendix B
Source Code

B.1 Generation of Input

1 function [y, HR_out, t_start_out, t_out] = fcn(mP, t, HRin,
HR0, mp0, t_start_in, t_in, regBool, bw)

2
3 % This function creates an input signal to the model.
4 % Heart rate is kept constant the first 20 seconds of the

simulation to ensure that the model reaches steady-state
.

5 % A new heart rate is only calculated when the previous
cardiac cycle is finished.

6 %
7 %
8 %
9 % Inputs:

10 % mP - measured pressure
11 % t - current simulation time
12 % HRin - current heart rate
13 % HR0 - baseline heart rate
14 % mp0 - reference pressure
15 % t_start_in - the time of the beginning of the current

cardiac cycle
16 % t_in - the time of the previous calculation
17 % regBool - 0/1 depending on whether the heart rate

should be dynamic or kept constant (boolean constant)
18 % bw - body weight (constant)
19 %
20 %
21 % Outputs:
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22 % y - flow output q(t)
23 % HR_out - new heart rate
24 % t_start_out - the time of the beginning of the current

cardiac cycle
25 % t_out - the time of calculated output
26 %
27
28
29
30
31
32
33 maxHR = 200; % maximal HR
34 minHR = 100; % minimal HR
35 t_out = t;
36
37 if t < 20 || ~regBool
38 HR = HR0;
39 else
40 HR = HRin;
41 end
42
43 t_corr = t - t_start_in;
44
45 if t_corr < 60/HR
46 t_start_out = t_start_in;
47 else
48 t_corr = t_corr - 60/HR;
49 t_start_out = t - t_corr;
50 v = 5;
51 delta = mP/mp0;
52 ns = 1/(1+delta^v);
53 np = 1/(1+delta^-v);
54 tau = 10; alpha = 1.75; beta = -0.25; % tau = 3;
55 dt = t-t_in;
56 oHR = HR/HR0;
57 nHR = oHR + (60/HR)*(alpha*ns-beta*np-oHR)/tau;
58 if t > 20 && regBool
59 HR = HR0 * nHR;
60 end
61 end
62
63 if HR > maxHR
64 HR = maxHR;
65 elseif HR < minHR
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66 HR = minHR;
67 end
68
69 t_c = 60/HR;
70 t_s = (286 - 0.80*HR)/1000;
71 a = 1/6;
72 sv = (-0.02*HR+7.11)* 1.77*(bw/1000)/ (-0.02*120+7.11);
73 sc = sv*pi/(2*(1-a^2)*t_s);
74 if t_corr < t_s
75 y = sc*sin((pi/t_s)*t_corr);
76 elseif t_corr < (t_s + t_s*a)
77 y = -sc*(a/cos(pi/a))*sin((pi/(a*t_s))*t_corr);
78 else
79 y = 0;
80 end
81 HR_out = HR;
82 end

B.2 Regulation of Peripheral Resistance

1 function y = fcn(xmax, xmin, t, dt, x, k, tau, p0, p, r0)
2
3 % This function sets the peripheral resistance for one

compartment.
4 % Resistance is kept constant the first 20 seconds of the

simulation to ensure that the model reaches steady-state
.

5 %
6 %
7 % Inputs:
8 % xmax - maximal resistance
9 % xmin - minimum resistance

10 % t - simulation time
11 % dt - time since the existing resistance was calculated
12 % x - existing resistance
13 % k - steepness/sensitivity constant
14 % tau - time constant
15 % p0 - reference pressure
16 % p - measured pressure
17 % r0 - baseline resistance
18 %
19 %
20 % Outputs:
21 % y - new resistance
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22 %
23
24 if t > 20
25 xctr = (xmax - xmin)* p0^k / (p^k + p0^k) + xmin;
26 dx = (-x + xctr)/tau;
27 y = x + dx*dt;
28 else
29 y = r0;
30 end
31 end
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