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Abstract

A possible approach in cancer therapy is to encapsulate cytotoxic drugs in nanopar-
ticles to increase drug speci�city while reducing the systemic toxicity. Focused
ultrasound in combination with nanoparticles can improve the delivery of drugs to
cancer tumors. Acoustic Cluster Therapy is a novel concept in which focused ultra-
sound in conjunction with microbubbles has been demonstrated to improve delivery
of encapsulated drugs and successfully achieving a therapeutic response.

A rigid pore network model, based on similar models created by members of
PoreLab for two-phase �ow in porous media, was developed to look at the trans-
port of nanoparticles subject to the advection-di�usion equation when driven by a
ultrasound-induced pressure gradient. Sets of equations were derived for �uid �ow
and individual particles at the pore-scale level. Parameter studies were conducted
to established power law relations between system input variables and stochastic
nanoparticle transport at the tissue-scale level.

Additionally, theory for an elastic pore network model was derived, hypothesizing
than an oscillating pressure boundary condition causes expansion and contraction
of the pores, and net �uid transport through the network.

Finally, empirical sets of equations were established to estimate and extrapolate
particle transport for �nite times under various parameters, which is imperative in
furthering a basic understanding of the system to optimize drug delivery and thus
improving cancer therapy.
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Samandrag

Ei mogleg tilnærming i kreftbehandling er å innkapsle cytotoksiske medisinar i
nanopartiklar for å auke spesi�siteten til medisinane samtidig som systemisk tok-
isitet blir redusert. Fokusert ultralyd i kombinasjon med nanopartiklar kan auke
transporten av medisinar til kvreftsvulstar. Acoustic Cluster Therapy er eit nytt
konsept der fokusert ultralyd saman med mikrobobler har demonstrert ei forbetring
i transporten av innkaplsa medisinar og dermed oppnådd ein vellukka terapeutisk
respons.

Ein porenettverksmodell, basert på liknande modellar laga av medlem hjå Pore-
Lab for tofasestraum i porøse medier, blei utvikla for å sjå på transport av
nanopartiklar underlagt adveksjon og di�usjon når dei blir drivne av ein ultralyd-
indusert trykkgradient. Likningssett ble utleia for væskestraum og individuelle
partiklar på poreskalanivå. Parameterstudiar blei utførte for å etablere kraftlovre-
lasjonar mellom variablar inn i systemet og stokastisk nanopartikkeltransport på
vevskala.

I tillegg blei toeri for ein elastisk porenettverksmodell utleia, med hypotesen om at
eit oscillerande grensevilkår forårsaker ekspansjon og samantrekning av porene, og
dermed netto væsketransport gjennom vevet.

Til slutt blei empiriske likningssett etablerte for å kunne estimere og ekstrapolere
partikkel-transport over ei endeleg tid for ulike parameter, som er avgjerande for å
kunne fremje ei grunnleggjande forståing av systemet og optimalisere leveringa av
medisinar og dermed forbetre kreftbehandling.
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Abbreviations

ACT Acoustic Cluster Therapy

CW continuous wave

DF duty factor

ECM extracellular matrix
EPR enhanced permeability and retention e�ect

IFP interstitial �uid pressure

link The term for a pore in the interstitium

MB microbubble
MI mechanical index

NP nanoparticle

PRF pulse repetition frequency
PRP pulse repetition period
PW pulsed wave

US ultrasound
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1 Introduction and background

Cancers can be de�ned as a kind of abnormal tissue where cells grow uncontrollably,
causing an increase in the number of dividing cells, which results in a tumor [1,
p. 758]. It is a term that describes diseases growing in tissues and spreading
widely through the body of the a�ected organism, eventually killing it. Tumors
can originate and grow in any organ, and can be grouped into several categories
depending on origin, such as carcinomas due to epithelial cells and sarcomas from
connective tissue.

Cancers are a part of life, and a�ect 36% of all men and 30% of all women in
Norway before the age of 75 [2]. Cancers are the second-leading cause of death
after cardiovascular diseases, and is the focus of a great deal of research [1, p. 758].
Approximately 9.6 million individuals died from cancer in 2018, which accounted for
around 1 in 6 of all global deaths annually, and an estimated 30% to 50% of these
cancer deaths could have been prevented and cured [3]. 11 000 of these occurred
in Norway, and over 33 000 new cases were diagnosed in 2017, which is an increase
of 2.24% from 2016 [2]. In 2016 it was expected that the number of diagnosed
cancer cases in Norway will be increased by 42% for men and 27% for women in
2030 [4]. By that time, Norway's aging population will have increased dramatically,
while the risk of being diagnosed with cancer will only have decreased marginally
in that time period. In Europe and North America, 10% of those in cancer therapy
are battling a second cancer. The continuation of an unhealthy lifestyle, genetic
predisposition and late e�ects from previous treatments can induce malignancies
at a later point in the patient's life [5, p. 412]. In order to face this increase, large
resources will have to be invested into hospitals and health care.

In regular cancer therapy, radiotherapy and chemotherapy are nonspeci�c to cell
type, cancerous or not. Conventional chemotherapy therefore is systemic, which
can have toxic e�ects on normal tissue. The maximum dose size can be adminis-
tered is limited due to toxicity, and the treatment can have ravaging side e�ects
on the patient. Surgical tumor removal leave scars and permanent reminders of
the treatment, and cases that fail to respond to these treatments have deadly con-
sequences. Due to breakthroughs in nanotechnology, it is possible to incorporate
therapeutic agents, such as viruses and drugs inside nanoparticles (NPs) [6]. These
NPs can have sizes from 1nm to 1000 nm. Facilitated by the enhanced permeability
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1. Introduction and background

and retention e�ect (EPR) e�ect present in tumors, the NPs will passively accumu-
late in the tumor tissue [7], reducing systemic exposure and enabling preferential
drug delivery [6, 7]. In order for the treatment to be successful, su�cient amounts
of drugs need to be accumulated and distributed inside the tumor

Several challenges are faced here, both to elevated interstitial �uid pressure (IFP)
and lack of pressure gradients that can transport the particles across the vessel
and into the tumor [7]. Understanding the delivery of therapeutic agents into
tumors is an important aspect to consider in cancer treatments. Traditional cancer
therapy, such as chemotherapy, and drug delivery is limited by the physiology of the
tumor, as the drug has to be delivered through the blood stream in a non-uniform
manner, from the vascular system to the cell interstitium. One method to improve
the transport is by the use of ultrasound (US), which can transfer momentum
indirectly through the formation and interaction with gas bubbles, and directly
by radiation force. It has been known since the late 1980s that US increases the
permeability of cell membranes by cavitation [8].

A hypothesis is that the application of US might result in net transport of �uid
into the interstitium. Two e�ects will be investigated in this thesis. In the �rst
case, the continuous application of US and radiation force results in a pressure
gradient in a porous medium, which by convection causes streaming of �uid. By
placing NPs in a rigid pore network model, the advective and di�usive e�ects of
the particle transport is modeled. A parameter study was conducted to investigate
how di�erent properties a�ect the stochastic behavior of the NP in the network.
For the second case, a vibrating gas bubble is situated in a capillary, which acts
as an oscillating boundary condition, applying pressure to an elastic pore network.
The pores can contract or expand, depending on the pressure amplitude. A basic
set of theoretical and discretized equations will be presented for this case. The
aim of studying these kinds of networks is to provide further understanding of the
relative driving forces in relation to pore properties. While the pore network does
not model the complexity of the interstitium, this work is essential in furthering
a basic understanding of NP transport in tissue and the e�ect of US, which is
imperative for optimizing drug delivery and thus improving cancer therapy.

1.1 Causes of cancer and modern treatment

In order for healthy cells to function normally, a large number of processes have to
function as intended and be coordinated between a large amount of cells. Tumors
typically arise when an imbalance occurs between the processes of cell division, cell
di�erentiation and cell death [1, p. 758]. These cell processes are usually regulated
by the signaling mechanisms that allow cells to communicate not only with its
neighbors, but also with the local environment. The cells in the tissue are given
signals to proliferate, divide or go into apoptosis if certain conditions are satis�ed.
The pathways responsible for the signaling can become erroneous or altered in

2



1.2. Transport and cancer physiology

cancer cells, causing constant division with no growth factor present, or to either
ignore or block pathways that trigger apoptosis, i.e. programmed cell death. The
cancer cells are hence able to proliferate and survive under conditions that normally
would cause cell death in healthy cells.

The causes of cancers have been studied for over two centuries, and the leading
conclusion is that cancers usually emerge due to environmental agents and lifestyle
factors, which act to trigger DNA mutations [1, p. 766]. Development of cancers
can be contributed to external factors, such as smoking, carcinogenic chemicals or
ionizing and ultraviolet radiation, in addition to internal factors, such as genetics
[1, p 766-771]. All individuals are therefore inherently at risk of developing cancer,
with some population groups being more so than others. The mutations that
deregulate the control mechanisms occur in three groups of genes: proto-oncogenes,
tumor suppressor genes and DNA stability genes [5, p. 273]. Proto-oncogenes are
essential genes for the regulation of cell survival and growth. A mutation can
turn these into oncogenes, which can cause abnormal cell growth or inhibition
of apoptosis. Tumor suppressor genes restrain cell proliferation, and are part of
the same signaling components as proto-oncogenes, but reversely act as negative
growth regulators. The loss or inhibition of these genes cause can therefore lead
to excessive cell proliferation [1, p. 782]. The last group, DNA stability genes, are
responsible for monitoring and maintenance of DNA integrity. Losing these can
lead to defective sensing of DNA lesions and improper repair of damaged DNA
templates [5, p. 273].

Because of all these possible mutations that can disrupt the di�erent signaling
pathways and gene expression, uncontrolled proliferation is one of the de�ning
characteristics of cancers. An additional danger of cancer cells is the ability to
spread to other sites in the body of the organism through processes known as
metastasis and invasion. The former concerns the migration and penetration of
cancer cells into nearby tissue, and the latter involves cancer cells entering bodily
�uids, such as blood, to be transported away and forming metastases that are
physically disconnected and growing independently from the tumor of origin. Such
spreading complicates treatment, and only 10% of cancer deaths are caused by the
primary tumor itself. The most common approach to treatment is surgical removal
of the primary tumor in conjunction with radiation and chemotherapy to remove
cancer cells that remain or have spread [1, p. 787].

1.2 Transport and cancer physiology

For a cancer to be cured, the drugs must be able to traverse the vascular, transvas-
cular and interstitial areas in the tissue in order to a�ect all tumor cells. Only a
single surviving cancer cell can form the basis for tumor regrowth. In the vascular
area, convective transport through the blood stream provides the supply of drugs
to close proximity of the tumor tissue. A combination of di�usive and convective

3



1. Introduction and background

Figure 1.1: Schematic of the important processes for transport in the vascular,
transvascular and interstitial areas of the tissue [9]. Convective vascular transport
provides the supply of drugs to close proximity of the tumor tissue. A combination
of di�usive and convective transport is responsible for the movement of drugs into
the transvascular area, through the vessel wall and basement membrane. Inter-
stitial transport also occurs through the combination of convection and di�usion
[9].
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1.2. Transport and cancer physiology

transport is responsible for the movement of drugs into the transvascular area,
through the vessel wall and basement membrane. In the interstitium, transport
also occurs through the combination of convection and di�usion [9]. A schematic
of the di�erent transport processes in the tumor can be seen in �g. 1.1. To under-
stand how drug delivery can be improved one needs to know how cancer physiology
di�ers from normal, healthy tissue, in addition to how this physiology leads to fur-
ther di�culties in the transport of oxygen, nutrients and drugs into the tissue. On
the other hand, some aspects of tumor physiology can be bene�cial when examining
transport.

The EPR e�ect, which is recognized as a universal trait of solid tumors, is of
particular importance for the ability of NPs to preferentially accumulate at the
tumor site [10]. The e�ect is de�ned as increased cell leakiness and impaired lym-
phatic function, and the basis for this e�ect is vascular permeability and hydraulic
conductivity that, compared to healthy tissue, is signi�cantly higher in tumors [6].
Additionally, the basement membranes which surround the vessels in healthy tissue
may be damaged or missing in some tumors, and the lymphatic vessels may even
be absent in solid tumors [11]. The EPR e�ect may be the most important concept
in modern drug delivery, but its usefulness for delivering NPs homogeneously to
the tumor might e�ectively be reduced due to the complexity and irregularity of
the tumor environment [12].

The interstitial space is a complex environment, and varies according to tissue
type. The cells are situated in the extracellular matrix (ECM), which in turn
de�nes the physical properties of the environment, such as providing support for
the tissue and enabling extracellular signaling. The extracellular matrix (ECM)
largely consists of components such as collagen, proteoglycans and other matrix-
binding molecules [14]. A schematic of the interstitium can be seen in �g. 1.3. In
some kinds of soft tissues, such as cartilage and cornea, collagen accounts for more
than two-thirds of the protein content in the ECM. Collagen is responsible for the
structural and mechanical integrity in the ECM, while proteoglycans are attached
to the collagen network and regulate transport of �uids and solutes, in addition
to resisting compressive forces [13]. The organization of collagen in combination
with protoglyceans contributes strongly to �uid �ow resistance in the interstitial
space, and well-de�ned collagen networks are more resistant to macromolecular
drug penetration in comparison to tumors with less organized networks. Those
kinds of tumor with more organized networks are usually also more sti�er [13].
This can be seen in �g. 1.2 for two carcinomas and sarcomas with di�erent collagen
content and network connectivity.

The interstitial �uid is closely connected with the lymphatic system, which drains
the plasma that has leaked from the capillary back into the vascular system. Hydro-
static and osmotic pressure gradients act as the driving forces behind �uid motion
between blood in the capillary, interstitial space and lymphatic system [14]. The
IFP is a�ected by several factors, such as local deformations, from for example
physical exercise, blood pressure, the metabolism of the surrounding tissue, the
level of hydration and composition of ECM components. The lymphatic system is
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1. Introduction and background

Figure 1.2: Staining of collagen in four di�erent tumors: MCaIV (A), LS174T (B)
U87 (C) and HSTS26T (D). The most important feature to note is the lack of an
interconnected collagen network in the two carcinomas (A) and (B). In contrast
to the carcinoma tissues, the sarcomas (C) and (D) have sections that show well-
organized interconnected collagen lattices surrounding cell clusters, and are more
sti�er than the carcinomas. Collagen is associated with the presence of blood
vessels, and both carcinomas exhibit de�cient collagen assemblies [13].

also severely degraded in tumors, which means that drainage of interstitial �uid in
the ECM is hindered, causing IFP to be heightened.

Resistance to drug transport arises from abnormalities in the tumor environment,
which is coupled with other unusual properties of the tumor, such as abnormal cap-
illary networks, accumulation of solid stress, a dense interstitial space, and elevated
IFP. These properties cause the tumor environment to have barriers to drug deliv-
ery, such as heterogeneous vascularity, non-uniform perfusion, dense ECM compo-
nents that limit di�usion and lowered pressure gradients that obstruct transvascular
transport. The overall heterogeneity and multitude of barriers in tumors are major
challenges when dealing with targeted drug delivery.

6



1.2. Transport and cancer physiology

Figure 1.3: A schematic of the interstitial space showing the main features and
components of the ECM. Collagen �bers are arranged in a matrix network sur-
rounding the interstitial cells. The �bers are connected to each other and the cells
by proteoglycans and other matrix-binding molecules, such as lamins, and �brin
in some cases. Interstitial �uid �lls the space between ECM components, and will
undergo a resistance to �ow that depends on the tissue matrix properties [14].

1.2.1 Vascular networks

Due to both genetic and epigenetic changes the tumor can produce a mix of proan-
giogenic factors which allow cells to grow beyond the approximately 200 µm dif-
fusion distance of oxygen and other required nutrients in the tissue [14]. This
production happens uncontrollably and can be considered important in angiogenic
tumors and metastases, and causes the blood vessels to be highly irregular in com-
parison to normal tissue vasculature[6]. In normal tissues, blood vessels branch in
an orderly fashion into smaller and shorter units, which can be said to be homoge-
neously distributed. Tumor vessels, on the other hand, are distributed in a rather
heterogeneous fashion. Tumors are known to have tortuous vessel architectures
with shunts, vascular loops, wide ranges of intravascular distances and large avas-
cular areas [15]. This di�erence in vessel distribution is visualized in �g. 1.4.

Additionally, tumor vessel walls are found to be unusually leaky in comparison to
normal tissue, which can be attributed to defective endothelial monolayers, inter-
cellular openings, transcellular holes and fenestrations [16]. Due to these faults,
the vessel walls can be hyperpermeable and leaky in some regions, while not ex-
hibiting this property in other regions, causing heterogeneous transport over the
transvascular area. While the leakiness and permeability forms a part of the EPR

7



1. Introduction and background

Figure 1.4: (a) Normal subcutaneous arteries and veins. The vessels become shorter
as the degree of branching increases. (b) Subcutaneous capillaries distributed
homogeneously. (c) Heterogeneous distribution of vessels in an adenocarcinoma
(LS174T). The degree of branching and vessel sizes are highly irregular, resulting
in an inhomogeneous vessel distribution and avascular spaces in the tissue [15].

e�ect, these heterogeneities in the tumor environment also severely impair ability
to uniformly deliver these drugs throughout the tumor [6].

1.2.2 Uncontrolled cell proliferation

The rapid proliferation and cell-growth in a highly restricted volume, and therefore
tissue expansion, leads to accumulation of solid stress by contact of ECM compo-
nents and by cell-to-cell. In tumors this is the result of high collagen production.
This proliferation can cause compression and collapse of the lymphatic system and
blood vessels, limiting transport and potential drug delivery through the vascu-
lar system [17]. The �ow of blood is hindered, since resistance to �ow increases.
Perfusion therefore tends to decrease as the tumor is growing [6].

Higher tumor densities, caused by cells and collagen, also hinder di�usion into the
tumor as a result increased tortuosity, which is a measure of di�usive hindrance
due to the increased path length both �uid and particles need to travel in the tissue
[18]. Tortuosity is here de�ned as

λ =

√
Daq

Deff
=

L

L0
, (1.1)

where Daq is the di�usion constant for a solute molecule in a free isotropic solution
and L0 the path length in a free solution and Deff and L the equivalent measures in
the tissue. The relation in eq. (1.1) shows that if the cells are more tightly packed
and the tortuosity increases, Deff decreases, and transport into the interstitium is
further hindered in the tumor tissue. This is visually summarized in �g. 1.5. Higher

8



1.2. Transport and cancer physiology

Figure 1.5: Schematic of the tortuous path length of molecules di�using into the
tumor interstitium. The gray spheres represent cells in the ECM, L0 the linear
path length in a free solution and L the e�ective path length. As tumor density
increases, the ratio between path lengths, and thus the tortuosity, increases [19].

cell densities therefore make it more challenging to deliver therapeutic drugs into
the tumor tissue.

1.2.3 Elevation of IFP

The combined e�ects of a nonfunctional lymphatic system due to compression in
addition to high permeability of blood vessels leads to accumulation of �uids and
macromolecules from the plasma in the interstitial space. As drainage is reduced,
IFP becomes similar to the microvascular pressure (MVP) [20]. At the interstitial
boundary, the IFP is equal to the MVP, and rises sharply to a maximum at 200µm
to 1000 µm from the endothelial wall. In normal tissues the IFP is usually at or
slightly above atmospheric pressure at 5mmHg, whereas the upper range for tumors
will be 10mmHg to 30mmHg [21], approximately 1.33 kPa to 4.0 kPa. An example
of this can be seen in �g. 1.6. IFP gradients are approximately nonexistent far
away from the endothelial wall. The driving convective force component of mass
transport is therefore negligible, and di�usion becomes the dominating mechanism
for drug carrying drugs. As each blood vessel in the leaky vasculature must supply
a relatively large tumor volume, drug penetration distance is shortened and drugs
poorly distributed.

A �at IFP pro�le inside the tumor in addition to the steep pressure gradient which
results from the equilibrium between IFP and MVP at the tumor boundary, means
that the driving forces for extravasation of both �uid and molecules are e�ectively
reduced. Additionally, a convective �ux will be generated that pushes �uids and
solutes down the gradient towards the tumor periphery and out of the interstitium,
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1. Introduction and background

Figure 1.6: An example of IFP measurements from breast cancer in mice. The
solid line represents the theoretical pressure pro�le, while the dots are data points.
Notice how the pressure sharply increases close to the tumor surface and �attens
out in a plateau after approximately 1mm [21, 9].

further hindering transport and �ow into the tumor [21].

1.3 Ultrasound

US is a term usually applied to waves where the frequency exceeds the range of
human hearing capabilities, i.e. above 20 kHz [22]. US is mechanical waves of an
acoustic nature, which unlike electromagnetic waves, that can travel in vacuum,
requires a medium for propagation. The scattering of these wave have provided the
basis for US imaging, and the energy absorption in tissue and transfer of momentum
from the propagating wave can in combination with microbubbles (MBs) result in
bene�cial e�ects for drug delivery such as enhanced membrane transport, changes
in capillary permeability, radiation force and streaming, in addition to mechanical
or thermal changes in the delivery vehicles themselves [23].

1.3.1 Principles

When a pressure source, such as a sinusoidally driven piston, is put on the boundary
of a material, the waves will propagate through the material as compression waves
[22]. Since medium displacement is parallel to the wave instead of transverse, as
is the case for a guitar string, the US acts as longitudinal compression waves [24].
Wave propagation in a medium causes local motion of particles, where both pressure
and density will vary locally. Areas with high acoustic pressures will compress,
while areas where pressures are low will experience rarefaction [24]. These changes
occur as the wave cycles through each period. In terms of particle displacement,
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1.3. Ultrasound

the one-dimensional wave equation is given as

∂2Ψ

∂t2
= c2

∂2Ψ

∂x2
, (1.2)

where Ψ(x, t) is the displacement, c the propagation speed and x the axis which
the wave travels along [25]. The wave equation can also be described by particle
velocity u(x, t) or pressure p(x, t). A solution to eq. (1.2) for a wave propagating
along the x axis as

Ψ(x, t) = Ψ0 cos(ωt− kx). (1.3)

The solution has a sinusoidal nature, and Ψ0 denotes the displacement amplitude,
ω the angular frequency and k the wave number.

Scattering of waves due to local di�erences in tissue compressibility and density is
the basis for US imaging [23]. Scattering occurs due to local inhomogeneities in
tissue properties as the wave propagates through the tissue. As the wave encounters
these inhomogeneieties, components of the wave will be re�ected to paths that
di�er from the original wave-propagation direction. This e�ect occurs due to small
di�erences in the acoustic impedance of the medium, which is de�ned as [25]

Z = ρc, (1.4)

where ρ is the medium density. When a wave passes from one medium to an-
other with a di�erent acoustic impedance, a certain amplitude of the transmitted
wave will be lost trough re�ection at the material interfaces. These kinds of re�ec-
tions can occur multiple times, and more energy is lost for each re�ection due to
absorption, since the path length of the wave increases.

In addition to scattering, some acoustic energy is irreversibly lost as heat to the
tissue through absorption. Absorption is the dominating factor in energy loss, and
is given as a loss factor e−αx, where α is an absorption coe�cient which depends on
and is proportional to US frequency and intensity [22]. This e�ect, in addition to
re�ection, means that the US wave amplitude decreases as it propagates through
tissue. Waves therefore have higher penetration depths for lower frequency ranges.
The absorbed heat can be exploited bene�cially in order to increase drug di�usion,
ease absorption of drugs and enhance perfusion in the a�ected area [24].

The relation between frequency f and acoustic wavelength λ is given by

λ =
c

f
, (1.5)

11



1. Introduction and background

where c is the acoustic propagation speed of the wave [25]. In soft tissues the
propagation speed is approximately c ≈ 1540m s=1. The time of one cycle, the
period, is the inverse of frequency, T = 1/f . According to eq. (1.5), the wavelength
shortens as frequency is increased, and it is possible to image smaller objects for
higher frequency ranges. Since penetration depth increases for lower frequencies,
there is an inverse relationship between penetration depth and image resolution
[25].

US waves can either be delivered as a continuous wave (CW), or as pulses for a
short span of time, called pulsed wave (PW) ultrasound. The transducer is excited
for a certain time period, and then shut o�. If the transducer is excited for N
cycles, the pulse duration will be τ = NT . The duty factor (DF) is de�ned as the
time frequency of the pulse repetition period (PRP). The pulse repetition frequency
(PRF) is the rate of pulse excitations, and given as the inverse of the PRP. The
DF can then be expressed as [25]

DF =
τ

PRP
= τPRF. (1.6)

In imaging, the PRF must be chosen in such a way that the scattering of the
previous pulse from the desired imaging depth can be returned to the transducer
before the next pulse is sent. The PRF is therefore limited by the desired depth of
imaging.

1.3.2 The e�ect of ultrasound on microbubbles

US exposure can cause acoustic cavitation in tissue. In this context, cavitation can
be de�ned as a process where gas bubbles which are already present in a liquid
enlarge to MBs or start oscillating, forming bubbles due to pressure variations, or
any other kind of bubble interaction resulting from acoustic pressure oscillations
[24]. The phenomenon is usually divided into two di�erent types: inertial and sta-
ble. Inertial cavitation is the rapid and uncontrolled growth of bubbles, eventually
leading to collapse due to the backlash of inertia in surrounding tissue or �uid,
while the second type refers to the oscillation of cavitation bubbles over many cy-
cles without collapse. Additionally, bubble collapse can cause formation of tiny jet
streams in the �uid which can have velocities of up to 100m s=1, and symmetri-
cal collapse of the bubble will focus the energy into a tiny volume compared to
the original, causing an enormous local increase in pressure and temperature [26].
Acoustic cavitation can thus cause local heat accumulation, increased velocities
of the surrounding �uid and shear forces on the tissue, which in turn can cause
biological e�ects [23].

In order for a bubble to be formed in the �rst place, gas bubbles, also called
cavitation nuclei, must be present in the tissue [7, 26]. During US exposure, the
bubble oscillations will follow the variations in the pressure �eld. The probability

12



1.3. Ultrasound

Figure 1.7: Schematics of waveforms for CW and PW US. (a) The transducer is ex-
cited continuously with a sinusoidal electric signal of constant frequency and ampli-
tude, producing an US wave that exhibits the same frequency. (b) The transducer
is excited for a pulse duration of τ , producing a pulse with a broader frequency
bandwidth than the former case. A new pulse is created after a time PRP [25].

for bubble formation by inertial cavitation depends on the mechanical index (MI),
which by itself is inversely proportional to the square root of US frequency [27],
and de�ned as

MI =
pr,3√
f
, (1.7)

where pr,3 is the peak rarefaction pressure measured in MPa and f the frequency in
MHz [25]. MI was developed as a simple relationship between the start of cavitation
and acoustic pressure. For lower rarefaction pressures, and therefore lower MIs, gas
oscillations are stable and result in micro-streaming and shear stresses on the tissue
[28]. As MI increases, the bubble oscillations become unstable and �nally lead to
collapse.
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1. Introduction and background

1.3.3 Radiation force

US interactions can also be used to apply radiation force to the tissue [28]. When
US passes through a material, the accompanying pressure gradient of the wave
exerts a force on a volume of tissue or liquid which acts in the same direction as
the wave propagation [22]. This force can result in several bene�cial e�ects, such
as the generation of acoustic streaming, improving convection in the ECM and
additionally enhancing drug penetration and distribution by [28] by displacing the
therapeutic agents away from the wave source [29]. Radiation force occurs in the
direction of wave propagation and is proportional to the wave intensity, inversely
proportional to the phase velocity, and also depends on the attenuation if the
medium is absorbing [25].

The acoustic radiation force can have two di�erent components working on the
MBs, where primary radiation force is produced from the incident pressure �eld
originating from the transducer. Secondary radiation force is produced by a �eld
scattered from resonating MBs in the primary �eld [29]. The primary radiation
force is linked with displacing the MBs causing accumulation on the endothelial
wall, while the secondary type can cause bubble aggregation or dispersion, depend-
ing on the parameters of the applied US.

1.3.4 Thermal bioe�ects in tissue

Focused US allows local tissue heating at a given depth with minimal temperature
increases in the surrounding tissue. These thermal e�ects can at low intensities lead
to heightened perfusion and changes in the drug carriers themselves. This can in
turn facilitate the release of drugs from heat-dependent carriers, such as those based
on liposomes or lipids, in a region of interest [23]. Additionally, the increases in heat
can lead to a heightened EPR e�ect, which results in better drug extravasation and
tissue di�usion [30]. The tissue becomes hyperthermic in temperature ranges of
40 ◦C to 45 ◦C, which acts as a powerful sensitizer for chemotherapy. Hyperthermia
alters a host of biological e�ects which a�ect drug transport. Factors such as blood
�ow, perfusion, vascular permeability, drug accumulation and immune response is
heightened by hyperthermia, while other factors such as IFP, hypoxia and DNA
damage repair is lowered. Thus, the combination of heat-dependent carriers and
hyperthermic e�ects can cause advantageous synergies [31].

1.3.5 Acoustic Cluster Therapy

US contrast MBs such as SonovueTM from Bracco Imaging S.p. A, Italy, or
OptisonTM by GE Healthcare AS, Norway, have been used in conjunction with
various drugs in experiments and clinical trials [32]. Such drug delivery approaches
have shown promise, but are hampered due to the fact that these MBs are small
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and free �owing the biomechanical work and e�ects are rather limited. Addi-
tionally, since MBs are cleared from the vascular system after a few minutes,
high US intensities must be provide in on order to produce acceptable levels of
biomechanical work and e�ects. Inertial e�ects can then occur with some safety
issues.

Acoustic Cluster Therapy (ACT) is a novel concept in which negatively a charged
MB is mixed with an oil microdroplet of opposite charge, forming clusters of MBs
and microdroplets due to electrostatic attraction[33]. The size of these are in the
range of 2µm to 8µm [34]. Drugs can be co-injected with the clusters or loaded
into the microdroplets for targeted therapy. After injection, the procedure consists
of local US activation followed by delivery enhancement [32]. The clusters can be
activated by regular low MI medical US, with frequencies from 1MHz to 10MHz
and MI < 0.4, which causes the MBs to act as cavitation nuclei. The application
of US causes vibration of the MBs, transferring energy to the oil microdroplets,
resulting in vaporization. This causes the formation of ACT bubbles with diameters
of 20µm to 30 µm, which transiently lodge into the local vasculature and hinders
blood �ow for up to a few minutes [33]. This has the e�ect of preventing local wash-
out of the drug. The activated bubble will be in direct contact with a segment of
the capillary wall, as the average diameter of capillaries in for example the lung
are approximately 7µm [34].

After activation, US with lower frequencies, such as 0.3MHz to 1MHz, induce
controlled volume oscillations of these bubbles [33]. Bioe�ects are generated and
local permeability is enhanced in the tissue, causing improved drug distribution
and extravasation in the tumor ECM [32]. By enhancing the EPR e�ect, drug
accumulation is also enhanced, and the ACT concept has been shown to improve
the uptake of both hydrophilic macromolecules and small hydrophobic molecules
into the tumor. Additionally, drug distribution may be enhanced due to disruption
in the ECM between tumor cells and due to induced shear forces and streaming [35]
This e�ect increases drug speci�city while reducing harm done to healthy tissue,
increasing e�cacy of the treatment. The process of ACT US activation and delivery
enhancement is visualized in �g. 1.8.

While the mechanisms that result in enhanced drug accumulation are not fully
understood, the ACT concept has shown promise as a technique for the delivery
of di�erent agents [35]. In one experiment, a group of mice were implanted with
human prostate adenocarcinoma and treated with a combination of ACT with
a chemotherapeutic drugs as Abraxane, and paclitaxel which has been bound to
albumin and given intravenously. The survival rate after 120 days was 100% vs.
0% for the group that was treated only with Abraxane. ACT therefore was shown
to induce a strong increase in the therapeutic e�cacy of Abraxane [32]. Further
investigation must be done in order to gain more understanding of the mechanisms
behind this promising technique.
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1. Introduction and background

Figure 1.8: Visualization of ACT. A: Clusters are formed from MBs with negative
charge and microdroplets of positive charge. The microdroplets can be loaded with
drugs and therapeutic agents. B: The clusters �ow freely in the blood stream after
injection. C: Low MI medical US causes evaporation of the oil microdroplet, induc-
ing the formation of bubbles from 20µm to 30 µm in size. These lodge transiently
into the vasculature and hinder blood �ow, preventing local wash out of the drug.
D: By applying a lower frequency US with low MI, controlled bubble volume os-
cillations are induced, generating bioe�ects which improve extravasation and drug
distribution in the the local tissue [33].
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2 Theory

This chapter focuses on both the tissue-scale and pore-scale physics of NP transport
in the ECM. The interstitium is modeled as a two-dimensional pore network model
[36] where the cells are situated in a regular network. Sets of equations describing
the �uid �ow rate in both rigid and elastic pore networks will then be derived from
the fundamental equations of �uid mechanics and elastic theory in biomechanics.
These will be presented along with the equations governing the advective-di�usive
transport of particles in the pores between cells. Finally, some attention is given
to dimensional analysis of variables describing the transport problem and useful
dimensionless numbers in �uid mechanics.

2.1 Pore networks

The interstitial space as shown in �g. 1.1 is investigated in a two-dimensional
fashion. As the interstitial tissue is known to be irregular, in addition to cells
being inside a complex ECM network, the interstitial model has to be greatly
simpli�ed. It is therefore assumed that the tumor has high collagen content and
a well-organized interconnected collagen lattice, the cells in the ECM have �xed
positions and are nondeformable. Each cell can then be approximated as a sphere
surrounded by an incompressible interstitial �uid where the NPs are transported,
as in �g. 1.5.

By representing the space between two cells as a link, and the intersection of three
links as a node, the interstitial space can then be modeled as a regular hexagonal
pore network in two dimensions, in a similar fashion as performed in [37], where
links are connected together with nodes. All the links are rigid, have equal radii,
and represent all the volume in the pore network. Liquid will �ow through the links
when a uniform pressure is applied over the pore network, and the �ow in a single
link depends on the pressure di�erence between the two nodes it is connected to
[36]. The nodes are thus used to quantify the pressures in the network interior. A
schematic illustration of a pore network can be seen in �g. 2.1
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Figure 2.1: Schematic illustration of the tumor interstitium geometry as a hexago-
nal pore network. The gray spheres represent cells in the ECM which are engulfed
by interstitial �uid. The empty white space between two cells represent the links,
i.e. pores, of the network. The links are connected at nodes, where three links
meet at an intersection. The nodes hold no volume, and the links thus represent
the volume of both the pores and the throats.

2.1.1 Hagen�Poiseuille �ow

In a similar fashion to the method described in [38], each link in the pore network,
as seen in �g. 2.2a, is modeled by its average radius for simplicity. Each link is
thus considered as a straight tube with a circular cross section a = πR2 and length
L, subjected to a pressure di�erence ∆p = p2 − p1. A schematic can be seen in
�g. 2.2b. This kind of laminar �ow is known as Hagen�Poiseuille �ow, and can be
derived by the use of the Navier�Stokes momentum equations in three-dimensional
cylindrical coordinates (r, θ, z).

The equations of motion for an incompressible viscous �uid [39, eq. 15.7] can be
expressed as:

∂u

∂t
+ u ·∇u = −1

ρ
∇p+

µ

ρ
∇2u, (2.1)
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2.1. Pore networks

where u = (ur, uθ, uz) is the velocity �eld in cylindrical coordinates, ρ �uid density,
µ absolute or dynamic viscosity and p �uid pressure.

(a) A single pore in the network.

p1 p2

q

L

R r

(b) The pore approximated as a cylindrical tube.

Figure 2.2: Schematic of a single pore situated between two spheres in the network
(�g. 2.2a). The pore is approximated as a cylindrical tube of radius R subjected
to a pressure di�erence of ∆p = p2 − p1 which draws the �ow rate q over the span
of its length L. The cross-section of the tube has an area a = πR2. (�g. 2.2b).

One can assume that the system has the following properties:

1. The �ow is laminar along the z axis and fully developed.
ur = uθ = 0, ∂zuz = 0,

2. The �ow is stationary.
∂tu = 0,

3. The �ow is axisymmetric since the tube is cylindrical.
∂θu = 0,

4. The continuity equation for an incompressible �uid is satis�ed.
∇ · u = 0,

Since the tube has axial symmetry, all terms related to θ can be neglected. The
de�ned model is in two dimensions, and the angular component θ can be set to
zero. The spatial coordinates can now be expressed as (r, θ, z)→ (r, z).

Since the velocity is assumed to be constant along the tube axis, it only varies
due to radial position in the cross section. Therefore, one can safely assume that
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uz = uz(r), with r = 0 in the tube center. eq. (2.1) can now be written as

∇2u =
1

µ
∇p, (2.2)

The partial derivative operators ∇ and ∇2 in cylindrical coordinates and axial
symmetry for a scalar function f = f(r, z) are given as

∇f =
∂f

∂r
êr +

∂f

∂z
êz, ∇2f =

∂2f

∂r2
+

1

r

∂f

∂r
+
∂2f

∂z2
. (2.3)

By solving eq. (2.2) separately for each component in (r, z), two equations are
yielded as

∂rp = 0, (2.4a)

1

µ

∂p

∂z
=

1

r

∂

∂r

(
r
∂uz
∂r

)
. (2.4b)

The expression eq. (2.4a) implies that p = p(z), i.e. independent of r and the
pressure varies only along the axis z. By solving eq. (2.4b) with respect to the
velocity component uz and integrating twice over r, the expression for axial velocity
becomes

uz =
1

4µ

∂p

∂z
r2 + c1 ln(r) + c2, (2.5)

where c1 and c2 are integration constants. In order to determine these, two bound-
ary conditions have to be established. The �uid velocity uz has to be �nite and
well-de�ned at r = 0, and the no-slip condition at the tube wall for the viscous �uid
implies that uz(R) = 0. Mathematically, these boundary conditions are equivalent
to

lim
r→0

ln(r) = −∞, (2.6a)

1

4µ

∂p

∂z
R2 + c2 = 0. (2.6b)

In order for eq. (2.5) to be �nite for r = 0, which is not the case in eq. (2.6a),
the �rst integration constant has to be discarded. The second one is given from
eq. (2.6b), and the integration constants are thus
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c1 = 0, (2.7a)

c2 = − 1

4µ

∂p

∂z
R2. (2.7b)

Finally, by substituting the integration constants in eqs. (2.7a) to (2.7b) into
eq. (2.5), an expression for the parabolic velocity pro�le is yielded:

uz(r) =
−1

4µ

∂p

∂z
(R2 − r2). (2.8)

The equation is prepended with a negative sign since it is assumed that the pressure
drops across the length of the tube, i.e. ∂zp < 0. For a given axial direction, a
negative pressure gradient is therefore equivalent to positive �ow velocity. The �ow
rate in the tube can be found by integrating the velocity pro�le in eq. (2.8) across
the cross section of the tube in polar coordinates. This can be expressed as

q =

∫ R

0

uz(r)dA

=
−1

4µ

∂p

∂z

∫ R

0

(
R2 − r2

)
2πrdr

=
−πR4

8µ

∂p

∂z

(2.9)

The pressure gradient can be approximated and rewritten in terms of system prop-
erties related to the tube itself as

∂p

∂z
≈ ∆p

L
. (2.10)

Inserting eq. (2.10) into eq. (2.9) yields the �nal expression for Hagen�Poiseuille
�ow

q =
−πR4

8µL
∆p = −g∆p, (2.11)

where g is the link mobility of the tube, which only depends on the tube geometry
and �uid viscosity. A negative pressure di�erence over the tube length, i.e. ∆p < 0,
mean that the �ow is positive along the direction of the pressure drop.
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2.1.2 Elastic links

Consider the network in section 2.1. That kind of network had �xed tube radii,
constant for all pressures. Now, consider that the radius at a given time is depen-
dent on the current pressure in the tube. This can be investigated for a thin-walled
cylinder of radius r and wall thickness t� r, where the azimuthal strain εθ of the
cylinder is related to its radial change [40, eq. (4.45)]

εθ =
r − r0

r0
, (2.12)

where r0 is the radius at some reference pressure p0. The azimuthal strain is given
as [40, eq. (4.44)]

εθ =
1− νcyl
E

σθ, (2.13)

where νcyl is Poisson's ratio, de�ned as the ratio of transverse contraction strain
and longitudinal strain, E Young's modulus of the tube wall and σθ the hoop stress.
The two latter quantities have units [E] = [σθ] = Pa. For a thin-walled cylinder,
the hoop stress σθ is given as [40, eq.(2.168)]

σθ =

(
p− p0

)
r

δ
(2.14)

where p is the pressure inside the cylinder and δ the wall thickness. By inserting
eqs. (2.13) to (2.14) into eq. (2.12), the local tube radius is related to the local
pressure as

r = r0 + rr0 (1− νcyl)
Eδ

(
p− p0

)
, (2.15)

By assuming small radial deformations and thin walls, the thickness t of the wall
and length L of the cylinder are constant. Thus there is no radial or axial strain
of the cylinder, which can act as transverse strains to the azimuthal, longitudinal
strain under scrutiny, such that νcyl ≈ 0. The expression in eq. (2.15) can then be
approximated as

r ≈ r0 +
(r0)2

Eδ

(
p− p0

)
. (2.16)
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A high pressure will expand the tube radially, and a lower pressure contracts it.
Due to volume conservation, the change in �ow rates in and out of the tube is
related to the change in tube volume as

∂V

∂t
+ ∆q = 0, (2.17)

where V is the link volume and ∆q the �ow rate di�erence in the link. A positive
volume rate change is equivalent to a negative �ow rate di�erence, i.e. the tube
expands and less �ows out than in. The tube is a cylinder, and by application of
the chain rule, the volume term in eq. (2.17) can be expressed as

dV

dt
= πL

dr2

dt

= 2πrL
dr

dt
,

(2.18)

where the radial time derivative is found from eq. (2.16) as

dr

dt
=

(r0)2

Eδ

dp

dt
. (2.19)

The change in rube radius thus depends on how the pressure p varies over time.
By inserting eq. (2.19) into eq. (2.18), the volume conservation equation now be-
comes

∆q = −2πrL
(r0)2

Eδ

dp

dt
. (2.20)

This equation can be understood by the time evolution of the pressure. If ∂tp < 0
in the link, then ∆q > 0, which is equivalent to radial expansion and reduced �ow
through the link over time.

2.2 Particle motion

Transport of mass within the interstitium is facilitated by both di�usion and ad-
vection [14]. The expression for concentration of particles C in the interstitial �uid
satis�es a convection-di�usion equation [41, eq. (9.33)] of the form
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∂C

∂t
+ u ·∇C = D∇2C +Q(t, x, y,u, C), (2.21)

where Q is a source term which depends on time, location, velocity and concentra-
tion. The di�usion coe�cient D is valid for a particle in free solution [14]

D =
kBT

6πµdp
, (2.22)

where kB is the Boltzmann constant, T absolute temperature and dp particle diam-
eter. By considering the equation in one dimension along an axis x with no source
term, eq. (2.21) is rewritten as

∂C

∂t
+ u

∂C

∂x
= D

∂2C

∂x2
. (2.23)

By insertion it can be shown by insertion that a possible solution to eq. (2.23)
is

C(x, t) =
C ′0√
4πDt

exp

{
−(x− ut− x0)2

4Dt

}
, (2.24)

which is a Gaussian function with a mean at the variable position

µx = ut+ x0, (2.25)

which must not be misinterpreted with the viscosity µ0. The variance is

σ2
x = 2Dt. (2.26)

C ′0 is a measure of the initial particle concentration and u the �ow velocity of the
interstitial �uid surrounding the particle. The �ow velocity depends on changes in
the IFP or other pressure gradients presents in the interstitium.

2.2.1 Treatment time

As seen in the expressions for mean and variance in eqs. (2.25) to (2.26) for the
advection-di�usion equation in eq. (2.24), the mean increases linearly with time,
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and the standard deviation with the square root of time. This means that the
contribution from the di�usion will be larger than the advection before a certain
time limit. Since a point of interest is transport by advection, the time tadv at which
di�usion no longer dominates can be found by solving the inequality of eqs. (2.25)
to (2.26) with x0 = 0 as

µx > σx

=⇒ tadv >
2D

u2
.

(2.27)

The time criterion in eq. (2.27) will depend on multiple parameters, and will thus
change as some parameters is changed. In animal trials, the exposure time of US
have been of upwards to �ve minutes [32, 35]. One crucial question to ask is if
the time used in this experimental setting is su�ciently long enough to ensure a
facilitated increase in particle transport from US exposure.

2.3 Dimensional analysis

The advantages of using dimensionless variables are apparent, since there is no
need to keep track of the units when performing mathematical calculations, in
addition to the convenience of expressing variables in orders of magnitude that can
be more easily related to. The author refers to appendix B for a comprehensive
approach. For the Hagen�Poiseuille �ow, eq. (2.11), the variables can be written in
dimensionless form by using the characteristic length L0, density ρ0 and dynamic
viscosity µ0, such as

L = L′L0, (2.28a)

R = r′L0, (2.28b)

µ = µ′µ0, (2.28c)

∆p = ∆p′∆p0 = ∆p′
µ2

0

ρ0L2
0

, (2.28d)

q = q′q0 = q′
L0µ0

ρ0
, (2.28e)

t = t′t0 = t′
L2

0ρ0

µ0
, (2.28f)

(2.28g)

where the variables with an apostrophe, such as L′, indicate the dimensionless vari-
able and subscript 0 the equivalent dimensional factor. Now it is possible to trans-
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form each variable from a dimensional form to a dimensionless form, and vice versa.
For example, by inserting the dimensionless variables in eqs. (2.28a) to (2.28e) into
eq. (2.11), the dimensionless Hagen�Poiseuille �ow is written as

q′ =
−πr′4

8µ′L′
∆p′ = −g′∆p′. (2.29)

The dimensionless quantities or variables can then be converted back into dimen-
sional form after the required calculations have been performed.

2.4 Dimensionless numbers

Ratios of quantities with dimensions, but whose units cancel out to yield a di-
mensionless number, such as the Reynolds and Péclet numbers, are common in for
example �uid mechanics. Some dimensionless groups can therefore be thought of as
ratios between di�erent e�ects or forces in the system, and by using characteristic
variables, the ratios can be calculated in rough orders of magnitude to for example
determine the dominating e�ect in the system [42, p. 355].

2.4.1 Reynolds number

For a �ow determined by eq. (2.1), the dimensionless Reynolds number Re repre-
sents the relative ratios of inertial and viscous forces in �uid �ow [41, p. 19]. By
representing the mathematical operators in these terms with characteristic vari-
ables, one gets

Inertial : u · ∇u ∼ u0
u

L0
, (2.30a)

Viscous :
µ

ρ
∇2u ∼ µ0

ρ0

u

L2
0

, (2.30b)

where L0, ρ0 and µ0 are the characteristic variables of the system as shown in a
previous section, and u0 some characteristic velocity. By using the terms de�ned
in eqs. (2.30a) to (2.30b), the quantity can be written as

Re =
inertial force

viscous force
=
L0ρ0umax

µ0
, (2.31)
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which will be a dimensionless number. For the sake of the simulations, the char-
acteristic velocity used in eq. (2.31) is the maximum �uid velocity in the pore
network, de�ned as

umax = max
ij

(
qij
aij

)
, (2.32)

where aij = πr2
ij is the tube cross section of link ij. An important assumption in

the derivation of eq. (2.29) is that the �ow is laminar along the tube z axis and
fully developed. The Reynolds number is therefore a useful quantity to investigate,
since the �ow starts to become turbulent once a certain critical Reynolds number,
such as Re ≈ 2.34× 103 for pipe �ow, has been reached [41, p. 155]. The �ow
will then not be laminar anymore and the assumption invalid. The maximum �uid
velocity in the network is there chosen in order to determine if the inertial forces
can be of signi�cance, and thus if the assumption of laminar �ow is upheld.

2.4.2 Péclet number

The movement of the particles depends on both an advective and di�usive term.
The Péclet number is de�ned as the dimensionless ratio between advective and dif-
fusive contributions to the transport [14]. Similar to the derivation of the Reynolds
number, the mathematical operator of each relevant term in eq. (2.23) can be rep-
resented with characteristic variables as

Advective : u
∂C

∂x
∼ u0

C

L0
, (2.33a)

Diffusive : D
∂2C

∂x2
∼ D C

L2
0

. (2.33b)

By using eqs. (2.33a) to (2.33b), the Péclet number is written as

Pe =
advective transport rate

diffusive transport rate
=
L0umin

D
, (2.34)

which will also be a dimensionless number. The characteristic velocity is now
de�ned as

umin = min
ij

(
qij
aij

)
, (2.35)
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2. Theory

where qij is the average �ow rate through the cross section aij of link ij. The
Péclet number is useful to investigate in order to determine whether the simulated
�ow rates in the network are of a su�cient magnitude to improve transport in
comparison with di�usion only. For the cases where Pe < 1, the di�usive contribu-
tion is larger than the advective, and vice versa when Pe > 1. The minimum �uid
velocity in the pore network is therefore chosen to determine how signi�cant the
largest contribution from di�usion is in comparison to the �uid �ow rate.
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3 Methods

In this chapter, the sets of equations for both types of pore networks as presented
in chapter 2 will be discretized with regards to the nodes. The pore network is
based on the rectangular network seen in [36] with extensions into a hexagonal
pore network by [37]. The basic building blocks and rules of the pore network is
given to relate the nodes and links. To account for the di�erent properties of the
pore networks, systems of linear equations describing the discrete pressures will
be displayed. Stochastic modeling of NP transport is also presented by analyzing
the behavior of individual particles on the pore-scale. In the end, the procedures
of the aforementioned parameter study, which aims to establish relations between
system properties on the pore-scale to particle transport on the tissue-scale, is laid
out.

3.1 The pore network model

By representing the links in �g. 2.1 with cylindrical tubes as described in �g. 2.2b,
the porous medium can be represented as a hexagonal lattice network of N nodes
connected by M links, where each node is given an index i ∈ [0, N − 1]. The
nodes are simply described as points, and all volume contributions to the network
are therefore contained in the links, which are identi�ed by the connected node
indices.

The size of an open hexagonal network is de�ned by the number of rows and
columns in the interior, nx and ny. Additionally, the boundaries at the top and
bottom each have nx/2 nodes, yielding a total of N = nx(ny+1) nodes for an open
network. In the interior, a row contains nx repeating units, each with exactly one
node. A single repeating unit has the geometric properties

dx =L cos 30◦, (3.1a)

dy =L+ dY = L(1 + sin 30◦), (3.1b)
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θ

L
dy

dx

dY

Figure 3.1: Schematic of a single unit with exactly one node contained within the
dashed lines in a row in the pore network model. dY = L sin 30◦ signi�es the
opposite side of the angle θ, dy = L+ dY = L(1 + sin 30◦) the total height of the
unit, dx = L cos 30◦ the width and double the length from the node at the center
of the unit to either vertical dashed line. Consecutive repeating units in the same
row are �ipped vertically in comparison to the previous unit. Since the node in this
unit is situated in the upper half of the unit, the next and previous units will have
their nodes in the lower half, etc, owing to the hexagonal pattern of the network.

as width and height, respectively, as seen in �g. 3.1. For consecutive repeating
units in the same row, the next unit is �ipped vertically in comparison to the
previous unit, owing to the hexagonal pattern of the network. Additionally, each
node has three unique neighbors except at the top and bottom boundaries, where
the number of neighbors is one. These properties will be used when calculating the
positions of all nodes and links.
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3.1. The pore network model

Figure 3.2: Schematic illustration of a pore network model with nx = 6, ny = 4, and
N = 30 nodes. Nodes are represented as points, and links as the lines connecting
two points. Links with unconnected ends wrap around horizontally, such node 14
connected to node 9. For the internal rows, the �rst spans over nodes 3 to 8 and
the last from node 21 to 26. Note that the link lengths and diameters are not up
to scale.

For these kinds of networks, the very �rst row of nodes i ∈ [0, nx/2− 1] is usually
called an inlet row where the same �xed pressure is applied. The very last row of
nodes i ∈ [N − nx/2, N − 1] is called an outlet row, usually with node pressures
�xed at zero [43]. In dynamic pore network models it is therefore common and
numerically straightforward to implement constant pressures as Dirichlet boundary
conditions [44]. Periodic boundary conditions are applied horizontally [36], and the
network therefore wraps as a torus in the x-direction as seen in �g. 3.2.
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3.2 Rigid network

The �ow of each link in a pore network, such as the one illustrated in �g. 3.2, has to
be determined in order to calculate the total �ow in the network. The �ow in one
link can be calculated by omitting the apostrophes in the dimensionless Hagen�
Poiseuille �ow, eq. (2.29), for simplicity, the equation can be expressed as

qij = −gij(pi − pj). (3.2)

Here the index i indicates the current node and j 6= i a neighboring node. The
�ow qij therefore indicates the �uid �ow from node j to i, and gij the mobility of
the link ij which connects these two nodes. If the pressure is larger in node j than
in node i, the pressure di�erence is negative and the �ow positive.

Since the �uid is incompressible, mass conservation implies that net �ow into a
node i from all its neighbors j has to be zero, i.e. the net �ow in cannot be larger
than net �ow out, and vice versa. Hence, the equation that needs to be solved is
the conservation of �uid �ux passing through each node [43], which for a single
node i is expressed by Kirchho�'s equation as

∑
j

qij = 0. (3.3)

By switching the order of indices such that ij → ji, some properties of the network
�ow can be investigated. The link mobilities will be symmetric, as they are a scalar
property of the link which connects two nodes, and independent of �ow direction.
The following statement is equivalent to

gij = gji. (3.4)

By switching indices in eq. (3.2) and using the property in eq. (3.4), this results in
the following property for the �ow as

qij = −qji, (3.5)

which means that the �ow in a given link changes sign when viewed from the
opposite direction.

The �ow in eq. (3.2) for a given link can be calculated once the relevant pressures
are known. Since the node pressures at inlet and outlet rows are known and serve
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3.2. Rigid network

as Dirichlet boundary conditions, the pressure of all nodes in the network can be
determined. To solve the equations with respect to the pressures, the dimensionless
�ow expression in eq. (3.2) can be inserted into eq. (3.3), yielding

∑
j

gij(pi − pj) = pi
∑
j

gij −
∑
j

gijpj = 0, (3.6)

which means that for a given node i, the product of its pressure and the sum
of mobilities for neighbouring links, and the sum of products of pressures at the
neighbouring nodes and corresponding mobilities, has to be equal in order for
the condition for mass conservation to be preserved. By solving with respect to
pressure, eq. (3.6) can be expressed as a matrix equation

Ax = b, (3.7)

where the matrix is of size N ×N . The column vector x = [p0, ..., pN−1]T of size
N × 1 contains the node pressures and bi = 0 except at the inlet rows, where the
pressure is given as a �nite boundary condition. The matrix components for the
inlet and outlet nodes are given as Aij = δij and bi = P , where P is the boundary
pressure at the inlet row and set to zero at the outlet row. Each matrix element
for the network interior is given as

Aij = δij
∑
k

gik − (1− δij)gij . (3.8)

Once eq. (3.7) is solved, by using methods such as LU decomposition, the �ow rate
can �nally be calculated for each link by inserting the computed node pressures into
eq. (2.29). The bulk-averaged �ow velocity in some link ij can then be computed
as

uij =
qij
aij

, (3.9)

where qij is the calculated �ow rate in the link and aij its cross section. The pres-
sures of all nodes and �ow rates of all links in the network can thus be determined
when the boundary conditions are known.

3.2.1 Particle transport

For convenience it can be more advantageous to consider the particle distribution
as a number of individual particles rather than a concentration C in eq. (2.24). The
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concentration can then be approximated as the distribution of particle positions
rather than dividing the pore network, and therefore the individual links, into
a number of cells where the particle concentration must be computed for each
individual cell. By assuming that the particle velocity within a link is equal to
that the streamline of the link, the particle positions will then evolve over time by
advection, in addition to a random walk where the particle can randomly move a
small distance.

The properties of the Gaussian in eq. (2.24) can be analyzed in order to investigate
the behavior of an individual particle undergoing di�usion modeled as a random
walk by evolving the system over one time step as t → t + ∆t. The mean change
in position x over that time step can be expressed [45, p. 201] as

〈∆x〉x
∆t

= u, (3.10)

which means that the mean change of the position in the next ∆t depends on the
velocity u of the �uid surrounding the particle. The mean change in variance of x
in the next timestep is given [45, p. 201] as

〈(∆x)2〉x
∆t

= 2D, (3.11)

and the macroscopic di�usion coe�cient is then coupled with the microscopic ran-
dom jumps of the particle. The change in position resulting from advection or
di�usion respectively can thus be described as

∆xadv = 〈∆x〉x = u∆t, (3.12a)

∆xdi� =
√
〈(∆x)2〉x =

√
2D∆t. (3.12b)

The total change ∆x in position for the timestep ∆t for a single particle can
therefore be written as the sum of eqs. (3.12a) to (3.12b) as

∆x = xadv + s∆xdiff (3.13)

The �rst term in eq. (3.13) can be thought of as the mean change in particle
position, and the second as the standard deviation of that change, where s is drawn
from the normal distribution N(0, 1), which a has a mean of zero and standard
deviation of 1. A new s is drawn from the distribution for each time the particles
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3.3. Elastic network

moves a single step in order to approximate the particle di�usion as a random
walk. The particle can jump a di�usive step in either direction along axis, with
lower probability for longer jumps. The �ow velocity is the bulk-averaged �ow
velocity as de�ned in eq. (3.9).

To update the particle position at each iteration, the time step can be chosen
similarly to the method described in [37], in such a way that the contributions
from the advective and di�usive terms in eq. (3.13) is guaranteed to be less than
or equal to a maximum spatial step, i.e. ∆xadv = ∆xdiff = ∆xmax. The minimum
time step that satis�es this constraint is found by rewriting each term in eqs. (3.12a)
to (3.12b) with respect to time, as

∆t =
1

τ
min
ij

(∆tadv,∆tdiff) =
1

τ
min
ij

(
∆xmax

uij
,

(∆xmax)2

2D

)
, (3.14)

where τ is a scaling factor. The number s for the random walk is in eq. (3.14) set
to s2 = 1. Note that the minimum time step depends on the maximum local �uid
velocity in a link.

When a particle reaches the end of the current link and comes upon a node, a new
link has to be chosen in order for the particle to propagate further into the pore
network. For the advection step, links with �ow rates away from the current node
are eligible for selection, and this process depends on the �ow rates for the selection
of next possible links, which are drawn from a weighted probability distribution
proportional to their �ow rates. For the di�usion step, the particle can go to any
link connected to the node except the current one.

3.3 Elastic network

The theory in section 2.1.2 describes how time evolution of pressure is related to
radial expansion and contraction of the link, and hence the �ow rate di�erence.
As described in section 2.1, the nodes of the pore network are used describe the
pressure, not the link. To discretize the equations for the elastic network, the link
pressures must then be expressed in terms of the node pressures. For this problem,
the arithmetic mean is chosen to approximate the link pressure as

pij ≈
1

2
(pi + pj) , (3.15)

and the pressure inside link ij is thus the mean of the pressures of its corresponding
nodes i and j. Inserting eq. (3.15) into eq. (2.20) now yields
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∆qij = −πrijL
(r0
ij)

2

Eδ

(
dpi
dt

+
dpj
dt

)
= −hij

(
dpi
dt

+
dpj
dt

)
, (3.16)

where ∆qij is the �ow rate di�erence of link ij and hij a factor related to the
geometry and radial elasticity of the link. The discretized �ow rate di�erence can
also be written as

∆qij = iqij − jqij , (3.17)

where the �rst subindex denotes whether whether the �ow rate at the link end
closest to the link i or furthest away, j, of the given link ij. The node pressures
for some node labeled with index k are discretized in time as

dpk
dt
≈
p

(n+1)
k − p(n)

k

∆t
, (3.18)

where (n) is the current timestep where the values of all quantities are known and
(n + 1) the next timestep which has to be solved for. The �nal discrete equation
for the �ow rate di�erence is found by inserting eq. (3.18) into eq. (3.16).

∆q
(n+1)
ij = −h(n)

ij

(
p

(n+1)
i − p(n)

i

∆t
+
p

(n+1)
j − p(n)

j

∆t

)
. (3.19)

The change in �ow rate due to volume change in a link has now been examined.
For Hagen-Poiseuille �ow, the �ow rate in a tube occurs due to the pressure drop
over it. In the case of elastic tubes, only the �ow rate at the tube ends are known.
Similar to the link pressure in eq. (3.15), the link �ow is approximated as the
arithmetic mean of the �ow rates in the back and front.

q
(n+1)
ij =

1

2

(
jq

(n+1)
ij + iq

(n+1)
ij

)
, (3.20)

The expression for Hagen-Poiseuille �ow in eq. (2.11) can thus be written as

1

2

(
jq

(n+1)
ij + iq

(n+1)
ij

)
= −g(n)

ij

(
p

(n+1)
i − p(n+1)

j

)
(3.21)

Since the �ow rate di�erence is de�ned as ∆qij = iqij − jqij , eq. (3.21), with either
a front or back �ow rate as
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jq
(n+1)
ij =− g(n)

ij

(
p

(n+1)
i − p(n+1)

j

)
−

∆q
(n+1)
ij

2
, (3.22a)

iq
(n+1)
ij =− g(n)

ij

(
p

(n+1)
i − p(n+1)

j

)
+

∆q
(n+1)
ij

2
, (3.22b)

where ∆qij is the same as in eq. (3.19). The physical meaning of these �ow rates
is similar to that of the discrete Washburn equation in eq. (3.2), with an extra

term proportional to ∓∆q
(n+1)
ij added. By switching indices as ij → ji, the elastic

geometric factor will be symmetric, since it only depends on the tube properties
for the tube of the given link, which is equivalent to

hij = hji. (3.23)

By index switching of the �ow rate di�erence in eq. (3.19), one can easily see
that

∆q
(n+1)
ji = ∆q

(n+1)
ji . (3.24)

As in the previous section, the �uid is incompressible and mass conservation implies
that net �ow into a node i from all its neighbors j has to be zero and net �ow in
must be equal to net �ow out.

∑
j

iq
(n+1)
ij = 0. (3.25)

This condition has to be valid for all timesteps (n+1). By insertion the expression
for the �ow rate going into node i eq. (3.22b) into eq. (3.25), the following expression
is yielded

p
(n+1)
i

∑
j

(
g

(n)
ij +

h
(n)
ij

2∆t

)
−
∑
j

(
g

(n)
ij −

h
(n)
ij

2∆t

)
p

(n+1)
j = p

(n)
i

∑
j

h
(n)
ij

2∆t
+
∑
j

h
(n)
ij

2∆t
p

(n)
j

(3.26)

By summing over all neighbors j and for a given node i with the �ow rates of
the corresponding links ij, and collecting all pressure terms for the next timestep

p
(n+1)
i on the left hand side and all known pressures p

(n+1)
i on the right hand side,

the system of equations can be written as a matrix equation
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Ax = b, (3.27)

where x = [p
(n+1)
0 , ..., p

(n+1)
N−1 ]T is a column vector of size N × 1 containing the

node pressures. The matrix is of size N × N . At the boundaries, where the
initial pressures are known, the matrix components for some node can be given as

Aij = δij and bi = P , equivalent to p
(n+1)
i = Pn+1, where Pn+1 is �nite at the inlet

row and zero at the outlet. All other elements in A are given as

Aij = δij
∑
ij

(
g

(n)
ij +

h
(n)
ij

2∆t

)
− (1− δij)

(
g

(n)
ij −

h
(n)
ij

2∆t

)
, (3.28)

and bi an element of the vector on the right hand side of eq. (3.27) which contains
the pressures for the current time, given as

bi = p
(n)
i

∑
j

h
(n)
ij

2∆t
+
∑
j

h
(n)
ij

2∆t
p

(n)
j . (3.29)

The matrix equation eq. (3.27) can then be solved by using the system properties
at timestep (n) to obtain the node pressures for the next timestep (n+ 1).

The oscillating boundary condition for the inlet row nodes is set to resemble the
vibrating MB in the capillary as

Pn =

{
Ap sin(2πfptn), tn ≤ tp
0, tn > tp

(3.30)

where Ap is its amplitude, fp the oscillation frequency, tn the current time at
timestep (n) and tp a cuto� time at which the boundary condition is zero.

3.4 Parameter studies

To analyze how the transport of NPs in the rigid pore network depend on di�erent
input parameters, a parameter study has to be conducted. In this context, a
parameter study is multiple simulation runs where all system parameters are �xed
except one. That single parameter is then varied to see how the transport of
particles change in regard to that variation. A variety of parameters can be chosen.
The parameter study in this thesis speci�cally looks at at interstitial �uid viscosity
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3.5. Base case parameters

µ0, link diameter dl, US-induced pressure gradient ∆Pu/Ly, di�usion coe�cient D
and maximum exposure time tmax.

The transport is modeled stochastically by analyzing the vertical position distri-
bution of independent particles over time in the network. The particles can thus
not collide with each other. In order to simulate the movement through the pore
network, the starting positions of the particles is chosen to be vertically a certain
distance into the network at t = 0. The initial starting position and distribution
can thus be thought of as a Delta function,

C(x0, 0) = C ′0δ(x0), (3.31)

where x0 denotes the vertical starting position. At the start of every run, the matrix
equation for the rigid network eq. (3.7) is solved to obtain the node pressures.
The �ow rate is then calculated from eq. (2.29) and the simulation time step from
eq. (3.14). The particles are then transported until the time tmax has been reached.
Since the particles are subject to the advection-di�usion equation in eq. (2.24),
the starting position is subtracted, and the mean transport, hereby referred to as
particle penetration depth (PPD), is calculated. The standard deviation σx of the
particles, eq. (2.26), can be calculated from the spread of positions. This procedure
is performed for every variation of the current parameter being studied.

3.5 Base case parameters

The following section lists the base case parameters used in the parameter studies.
Unless other values are explicitly presented, these parameters will be the default
for all the simulations. An overview of parameter names, symbols, values, units
and references is summarized in table 3.1.

The number of particles are set to 10000, while the number of columns and rows
in the particle are 22 and 40, corresponding to a width of 40 µm and depth of
300 µm. The cell diameter is roughly dc = 10 µm. As cells in the pore network are
approximated to be a regular hexagon, which can be divided into six equilateral
triangles, the length of each triangle side and therefore links is half of that, L0 =
5 µm [46]. Assuming that the pores sizes of the network are comparable to that of a
collagen gel, the pore sizes have been found to be 500 nm and 100 nm for 2mgml=1

to 20mgml=1 of collagen, which is comparable to collagen content in the tumor
ECM [19]. Based on the range of these numbers, the link diameter dl is chosen
to be 200 nm for a tumor with relatively high collagen content. The temperature
T is set to 310K, which is equal to the normal body temperature at 37 ◦C. The
maximum exposure time of US has been set to tmax = 300 s to re�ect the treatment
times in animal trials, which have been up to �ve minutes [32, 35]. The particles
are considered monodisperse with a diameter corresponding to a relatively large
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NP, in this case Dextran 2,000,000 with a radius of 27.2 nm [47], which is rounded
to a diameter of 50 nm for convenience. The interstitial �uid has a similar viscosity
to that of blood plasma, 1.2× 10=3 Pa s [14], in addition to the same density of
water, 1000 kgm=3. To get a reasonable magnitude of the US-induced pressure
gradient ∆Pu/Ly, a value was chosen for f = 3MHz [46].

Table 3.1: Table of the base case parameters used in the simulations, where each
column respectively lists, for a given parameter, its name, symbol, value, unit and
the source from which the value has been retrieved.

Parameter Symbol Value Unit References

Number of particles np 10000 - -
Network columns nx 22 - -
Network rows ny 40 - -
Cell diameter dc 10 µm [46]
Link length L0 5 µm [46]
Link diameter dl 200 nm [19]
Particle diameter dp 50 nm [47]
Body temperature T 310 K -
Interstitial �uid viscosity µ0 1.2× 10=3 Pa s [14]
Interstitial �uid density ρ0 1000 kgm=3 -
US-induced pressure gradient ∆Pu/Ly 2.5× 105 Pam=1 [46]
Maximum exposure time tmax 300 s [32, 35]

The transport from the base case simulations using the exact parameters in table 3.1
yields µx = 43.3µm and σx = 43.3µm. To give the reader an idea of how the parti-
cles spread through a network larger in scale than the one in �g. 3.2, a schematic and
results of an example simulation run can be in �g. 3.3. The �gure shows the parti-
cle distribution for the parameters tmax = 150 s and nx = 16, ny = 20 for np = 200
particles. This example simulation yields µx = 21.5µm and σx = 30.1µm.
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(a) At t = 0 s. (b) After t = 300 s.

Figure 3.3: Schematic of the base case pore network with nx = 16, ny = 20 for
np = 200 particles. The particles have starting positions vertically in the center
of the network at t = 0 (�g. 3.3a). After the base case simulation has been run,
the mean and standard deviation is calculated from the �nal particle positions at
t = 150 s, which yields µx = 21.4µm, σx = 30.1µm (�g. 3.3b). Each point signi�es
an individual particle. Note that while x and y are the network coordinates, the
subscript x of µx and σx signify the one-dimensional nature of the particle transport
into the network, i.e. the y direction.
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4 Simulation validations

Since numerical simulations are used to obtain results for given problems, the
validity of the model has to be assessed to ensure its quality. The goal of any
numerical simulation is to emulate the behavior of the real world as closely as
possible through the use of numbers. A numerical simulation can never match the
behavior of the real world, and one can only be sure that the results are good
approximations [48].

To perform a validation is to compare the current model to a pattern or reference
model. Validations can be done by comparison to analytical solutions, if known.
One can then be sure that the code yields a solution approximately close to the
exact value. Another technique is to validate by the use of other numerical simu-
lations. If some simulation has been validated and shown to be numerically sound,
it can be used as a reference to validate another simulation [48].

4.1 Advection-di�usion

A validation can be performed to ensure that the sum of individual particle move-
ments in the numerical simulations resemble the analytical particle concentration
distribution at the pore-scale level. Transport of the particles in the pore net-
work is modeled as a random walk, where each particle moves by contributions for
both advection and di�usion for each timestep, where the former and latter are
respectively taken as mean and variance in eqs. (3.10) to (3.11). The sizes of these
contributions are modeled after the solution for the advection-di�usion equation in
eq. (2.24).

The analytical and numerical approaches can both be solved for given cases and
compared to ensure the validity of the simulations at the pore-scale level. The
behavior for a single link is thus analyzed. All particles had starting positions
x0 = 0.5L0, in a rigid network with link length L = 3L0, which can be thought of
as a Dirac delta function C(x, 0) = C ′0δ(x0). By using the base case parameters
in table 3.1, setting xmax = 0.1L0, C

′
0 = 1 and choosing a time step with τ = 100
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as in eq. (3.14), the particles were transported each timestep with accordance to
eq. (3.13) and a probability density function was plotted against particle position
x at a given time.

Table 4.1: Table of comparisons for analytical particle position µx and its variance
σx for the times t = {1.651, 18.166, 51.197}ms, where δµ and δσ are the the relative
errors in percent for the numerically equivalent quantities. For all time steps, the
relations |δµ| < 1% and |δσ| < 1% are shown, which seems to indicate that the
numerical simulations are valid when compared to the analytical expression.

t[ms] µx[µm] δµ σx[µm] δσ

1.651 2.500 0.158% 0.158 0.304%
18.166 2.505 0.252% 0.524 0.735%
51.197 2.513 0.195% 0.880 =0.369%

Examples of this are shown graphically in �g. 4.1 for the times
t = {1.651, 18.166, 51.197} ms. The particle probability density function, given in
µm=1 are plotted as functions of particle positions in µm as histograms in which
the integral is 1. Then µ and σ are estimated by �tting a normal distribution
x ∼ N(µ, σ2) to the histogram, which is plotted and compared against eq. (2.24).
These quantities are then compared to the analytically equivalent quantities µx
and σx by calculating the relative errors in percentage, as summarized in table 4.1.
For larger times, both means and standard deviations increase as expected. The
relative errors are less than 1% for all cases, which leads to the conclusion that
the transport of particles in the presented solutions are numerically sound when
compared to the analytical solutions.
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4.1. Advection-diffusion

(a) 1.651ms. (b) 18.166ms.

(c) 51.197ms.

Figure 4.1: Comparisons of numerical and analytical solutions for particle posi-
tions after timesteps t = {1.651, 18.166, 51.197} ms. The particle probability den-
sity function in µm are plotted against particle positions in µm. The base case
parameters in table 3.1 for a rigid network with link length of L = 3L0 are used,
and start position is set to x0 = 0.5L0 and C ′0 = 1. Iteration steps are set with
∆xmax = 0.1L0 and the time step chosen as in eq. (3.14) with τ = 100. As time
goes on, both the mean µx and standard deviation σx of the particles increase as
predicted.
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4.2 Advective link selection

For each timestep the particles propagate a certain distance trough the link they are
currently residing in, and has to go trough a new link when a node is reached. To
ensure that the selection process works as intended for the advection step, in which
the next link is drawn from a weighted probability distribution, the properties can
be analyzed for given numbers of particles in the network. By only transporting the
particles by advection, the choosing of the next link from a selection of links can
be compared to a Bernoulli process. This process consists of a series of repeated
trials where each trial can result in two possible outcomes, and must possess the
following properties [49].

1. The number of repeated trials is n.

2. Each trial must result in one of two outcomes.

3. The probabilities for the outcomes are p and q = 1−p, and remains constant
for all trials.

4. All repeated trials are independent.

p 1− p

n

x

0

1

2

3

4

01234

Figure 4.2: Diagram of probability outcomes in the binomial distribution where
n, the number of trials, can be interpreted as the nth row and x, the number of
exact outcomes with probability p, as the kth column. After a given outcome, the
probability of going to the left is p, and 1− p to the right.

The probability of getting exactly x outcomes of a trial with probability p in n
trials is known as the binomial distribution [49, p. 144], is given as

b(x;n, p) =

(
n

x

)x
qn−x =

(
n

x

)
px(1− p)n−x, (4.1)
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4.2. Advective link selection

where x ∈ [0, n]. A diagram of a given number n and x for the binomial distribution
can be seen in �g. 4.2.

Figure 4.3: A schematic illustration of particle positions in the pore network. At
the start, all particles are situated at the start of the link denoted by nodes 3 and
11. The particles have then been transported and distributed to �ve vertical links
at the top boundary. If all non-vertical links have equal �ow rates, shis case is
similar to the binomial distribution for n = 4, since a �nal position in a vertical
link is labeled as outcomes x = 0 to the far left and x = 4 to the far right.

If all the links in the network have equal diameters, it can be assumed that all
vertical links have double the �ow rate of the non-vertical links. The reasoning
is that since the �ow rate have to be conserved, and each row is connected by
half the amount of links in the row itself. When a particle being transported
through a vertical link reaches a node, the next link is being chosen from a weighted
probability distribution which depends on the �ow rate in the next possible links. If
the �ow rate of the next links are equal, due to the hereby mentioned assumed equal
�ow rate in the non-vertical links, the probabilities for the two possible outcomes
must also be equal.

Hence, for the special case where the probabilities for the two outcomes are equiv-
alent, i.e. p = q = 0.5, eq. (4.1) can be reformulated as
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Table 4.2: Table of mean square errors (MSE) in eq. (4.2) for n = 4 and compared
to particle numbers np = {200, 1000, 2000, 4000, 8000, 16000}. The MSE are of
magnitudes 1× 10=4 to 1× 10=6.

np MSE

200 9.9× 10=4

1000 5.0× 10=4

2000 3.1× 10=6

4000 1.2× 10=5

8000 6.9× 10=6

16000 6.5× 10=6

f(x, n) ≡ b(x;n, 0.5) =

(
n

x

)
0.5n, (4.2)

which can be compared to the particle distribution in a pore network with a single
link diameter. Each �nal position in a vertical link is analogue to a discrete out-
come x. An example comparison can be seen in �g. 4.3, where a given number of
particles in a base-case network initially have been placed in the same link. The
system has then been evolved over time until the particles are distributed over
�ve di�erent links, which in this case corresponds to a binomial distribution where
n = 4 and p = 0.5. This case has been tested for a di�erent amount of particles,
np ∈ {200, 1000, 2000, 4000, 8000, 16000}, as expressed in eq. (4.2).

A graphical overview of these calculations can be seen in �g. 4.4 and an overview
of mean square errors in table 4.2. The mean square error MSE seems to decrease
for larger particle numbers. This means that the base case parameter for np in
table 3.1, which is set to 10000, can be used throughout the simulations with
su�cient and valid numerical behavior. However, since the di�usion constant for
these validations has been set as D ≈ 0 in order to investigate the outcome of the
link selections as the particles move through the network, the particle distribution
will in essence be a moving Dirac delta function. When di�usion is non-negligible,
the particle distribution is a Gaussian as described in eq. (2.23), and a higher
number of particles will show a better �t to the analytical solution.
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4.2. Advective link selection

(a) np = 200. (b) np = 1000.

(c) np = 2000. (d) np = 4000.

(e) np = 8000. (f) np = 16000.

Figure 4.4: Numerical binomial distributions calculated for
np ∈ {200, 1000, 2000, 4000, 8000, 16000} particles compared to the analytical ex-
pression for p = 0.5 with n = 4. The numerical binomial distributions are plotted
as histograms in which the value of the bins sum to 1. The red points represent
the exact binomial distribution values in eq. (4.2).

49



4. Simulation validations

50



5 Results

This chapter contains the results from simulating the base case as described in
section 3.5, where one parameter at a time has been varied while the others pa-
rameters in table 3.1 were kept �xed. The particle starting positions at t = 0 were
set a certain vertical distance into the network, similarly as in �g. 3.3a. Once a
given time tmax had been reached, the initial particle positions were subtracted
from the �nal positions.

A �t to a normal distribution was then done in order to approximate the PPD µx
and standard deviation σx. These are the variables calculated at the tissue-scale.
At the pore-scale, the �ow rate q was calculated as the sum of the �ow rates at
the inlet links, i.e. from the side at which the pressure is applied as a Dirichlet
boundary condition. The Reynolds and Péclet numbers were also calculated at the
pore-scale, in accordance to eq. (2.31) and eq. (2.34) respectively. Linear regressions
were then performed to establish scaling relations between a given input parameter
and transport at the tissue-scale, in addition to estimations of particle velocity
and e�ective di�usion coe�cients. Empirical sets of equations incorporating these
scaling relations and estimations will be presented.

5.1 Parameter analysis

The results for PPDs as functions of µ0, dl, ∆Py/Ly, tmax and D respectively are
shown in �g. 5.1a, �g. 5.6a, �g. 5.11a, �g. 5.21b and �g. 5.16a. For each case,
the base case parameters in table 3.1 have been used, where one parameter has
been varied and the other kept �xed, and the PPD has been calculated. The point
is the mean transport as in eq. (2.25), and the error bars represent the standard
deviation σx of the PPDs which occurs due to particle di�usion in eq. (2.26). The
Reynolds number in eq. (2.31) and Péclet number in eq. (2.34) were also calculated
and plotted for each case, in addition to the �ow rate q.

Additionally, to determine how the di�erent results scale when the current param-
eter is varied, straight lines were �tted trough linear regression to log-log plots of
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5. Results

the data. For the PPD µx and standard deviation σx the slope β, which is the
exponent of the power law relationship in eq. (A.1), can then be calculated to de-
termine the scaling relation. The sample coe�cient of determination R2, eq. (A.4),
indicates the total variation of the values in the log-log plot that can be accounted
for by the linear �t. The closer R2 is to 1, the better the �t. See appendix A for
an explanation of the comparisons between log-log plots and power laws.

5.1.1 Variation of viscosity

In the �rst case all parameters were �xed except µ0, which varied from 0.72 kPa s
to 1.68 kPa s in the simulations. The PPD, and the standard deviation as well,
reached a maximum of µx = 71.4µm and σx = 54.0µm at µ0 = 0.72 kPa s and
a minimum of µx = 30.42µm and σx = 35.0µm at µ0 = 1.68 kPa s, as seen in
�gs. 5.1a and 5.2a.

From the expression for Hagen�Poiseuille �ow, eq. (2.11), �ow rate is inversely
related to viscosity as

q ∼ 1

µ0
, (5.1)

This is validated in �gs. 5.3a to 5.3b, with an exponent β = =1.0 from the linear
regression in eq. (A.2) . In the PPD however, see �g. 5.1b, the slope is β = −0.999
at the tissue-scale, which corresponds well with the �ow rate in eq. (5.1) at pore-
scale. The standard deviations for PPD also seem to be decreasing over the inverse
in �g. 5.2a, since at the pore-scale

D ∼ 1

µ0
, (5.2)

and the standard deviation is related to the di�usion coe�cient as

σx ∼
√
D. (5.3)

The standard deviation should thus be inversely proportional to the inverse root of
the viscosity µ0. The log-log plot of this relationship is seen in �g. 5.2b with β =
−0.476 at the tissue-scale, which corresponds well with eqs. (5.2) to (5.3).

As both D and q decreases with the same inverse exponent, the Peclet number, as
de�ned in eq. (2.34), the ratio between these two terms will be kept constant for
all µ0 as seen in �g. 5.5 with Pe ≈ 0.087. Since this is lower than 1, the di�usive
transport is the dominant factor in this case. The Reynolds number has in this case
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magnitudes of Re ≈ 0.5 to 2.5 as seen in �g. 5.4a, and is related to the viscosity
as

Re ∼ 1

µ2
0

, (5.4)

which is veri�ed in �g. 5.4b with β = −2.0. Due to the Reynolds number being low,
the viscous forces dominate the inertial ones, which means that the assumption and
requirement of laminar �ow is satis�ed.

(a) PPD plotted against the variation of µ0.

(b) Log-log plot of PPD plotted against the variation of µ0.

Figure 5.1: PPD plots from the parameter study of µ0, with a maximum of µx =
71.4µm at µ0 = 0.72 kPa s and minimum of µx = 30.42µm at µ0 = 1.68 kPa s
(�g. 5.1a). Linear regression of the power law relationship gives an exponent of
β = −0.999 with R2 = 0.999 (�g. 5.1b).
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(a) Standard deviation σx plotted against the variation of µ0.

(b) Log-log plot of standard deviation σx plotted against the variation of µ0.

Figure 5.2: Standard deviation σx plots from the parameter study of µ0, with a
maximum of σx = 54.0µm at µ0 = 0.72 kPa s and minimum of σx = 35.0µm at
µ0 = 1.68 kPa s (�g. 5.2a). Linear regression of the power law relationship gives an
exponent of β = −0.476 with R2 = 0.998 (�g. 5.2b).
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q

(a) Flow rate q plotted against the variation of µ0.

q

(b) Log-log plot of the �ow rate q plotted against the variation of µ0.

Figure 5.3: Flow rates q plotted against the variation of µ0. The �ow rate has
magnitudes of 1× 10=19 (�g. 5.3a). Linear regression of the power law relationship
gives an exponent of β = 1.000 with R2 = 1 (�g. 5.3b).
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(a) The Reynolds number plotted against the variation of µ0.

(b) Log-log plot of the Reynolds number plotted against the variation of µ0.

Figure 5.4: The Reynolds number plotted against the variation of µ0. The Reynolds
number has magnitudes of 1 (�g. 5.4a). Linear regression of the power law rela-
tionship gives an exponent of β = −2.000 with R2 = 1 (�g. 5.4b).
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Figure 5.5: The Péclet number plotted against the variation of µ0, with a constant
value of Pe ≈ 0.087.

5.1.2 Variation of link diameter

In the second case all parameters were �xed except for the link diameter dl, which
varied from 120 nm to 280 nm in the simulations. As seen in �g. 5.6a, the penetra-
tion depth reaches a maximum of µx = 79.1µm at dl = 280 nm and a minimum of
µx = 18.1µm at dl = 120 nm.

From the expression for Hagen�Poiseuille �ow, eq. (2.11), �ow rate is related to
link diameter as

q ∼ d4
l , (5.5)

which means that the �ow velocity, eq. (3.9), will vary as

u =
q

a
∼ d2

l , (5.6)

since the cross section depends on the link diameter as a ∼ d2
l . The penetration

depth over a given time will thus increase by this relation. The �ow rate eq. (5.5)
seems to be validated in �gs. 5.8a to 5.8b, which is increasing and follows the linear
relation in eq. (A.2) with β = 4.0. In the PPD, the slope is β = 1.717, as seen in
�gs. 5.6a to 5.6b, which is slightly lower at the tissue-scale than the pore-scale in
eq. (5.6).

The standard deviations for PPD should to be constant, since D is independent
of dl. The standard deviation and its log-log curve is shown in �gs. 5.7a to 5.7b,
where the variation of the data points seem to originate from random �uctuations
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in the data. The slope in the log-log plot is β = −0.004 with R2 = 0.023, which
means that there is no increasing noise in this trend. This means that none of the
variation of the values in the log-log plot is accounted for by the linear �t.

Since q increases andD is kept constant, the Péclet number, as de�ned in eq. (2.34),
the ratio between these two terms will be proportional to

Pe ∼ d2
l (5.7)

for dl as seen in �gs. 5.10a to 5.10b where Pe has values with magnitude 1× 10=2

to 1× 10=1 and increases with β = 2.0. The advective transport will therefore
become more dominant for increasing dl in this case. The Reynolds number is
related to the link diameter as

Re ∼ d2
l , (5.8)

which in this case has magnitudes of 1× 10=1 to 1 and a slope β = 2.0, as seen
in �gs. 5.9a to 5.9b. Due to the Reynolds number being low, the viscous forces
dominate the inertial ones, which means that the assumption and requirement of
laminar �ow is satis�ed.
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(a) PPD plotted against the variation of dl.

(b) Log-log plot of PPD plotted against the variation of dl.

Figure 5.6: PPD plots from the parameter study of dl, with a maximum of µx =
79.1µm at dl = 280 nm and minimum of µx = 18.1µm at dl = 120 nm (�g. 5.6a).
Linear regression of the power law relationship gives an exponent of β = 1.717 with
R2 = 0.999 (�g. 5.6b).
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(a) Standard deviation σx plotted against the variation of dl.

(b) Log-log plot of standard deviation σx plotted against the variation of dl.

Figure 5.7: Standard deviation σx plots from the parameter study of dl. The
data seems to �uctuate randomly (�g. 5.7a). Linear regression of the power law
relationship gives an exponent of β = −0.004 with R2 = 0.023, which means that
there is no trend for the noise and almost none of the variation is accounted for by
the linear �t (�g. 5.7b).
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q

(a) The �ow rate q plotted against the variation of dl.

q

(b) Log-log plot of the �ow rate q plotted against the variation of dl.

Figure 5.8: Flow rates q plotted against the variation of dl. The �ow rate has
magnitudes of 1× 10=19 (�g. 5.8a). Linear regression of the power law relationship
gives an exponent of β = 4.000 with R2 = 1 (�g. 5.8b).
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(a) The Reynolds number plotted against the variation of dl.

(b) Log-log plot of the Reynolds number plotted against the variation of dl.

Figure 5.9: The Reynolds number plotted against the variation of dl. The Reynolds
number has magnitudes of 1 (�g. 5.9a). Linear regression of the power law rela-
tionship gives an exponent of β = 2.000 with R2 = 1 (�g. 5.9b).
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(a) The Péclet number plotted against the variation of dl.

(b) Log-log plot of the Péclet number plotted against the variation of dl.

Figure 5.10: The Péclet number plotted against the variation of µ0. The Péclet
number has magnitudes of 1× 10=2 to 1× 10=1 (�g. 5.10a). Linear regression of
the power law relationship gives an exponent of β = 2.000 with R2 = 1 (�g. 5.10b).

5.1.3 Variation of pressure gradient

In the third case all parameters were �xed for the simulations except the ultrasound-
induced pressure gradient ∆Py/Ly, which was varied from 125 kPam=1 to 375 kPam=1.
The penetration depth reached a maximum of µx = 62.4µm at ∆Pu/Ly =
375 kPam=1 and a minimum of µx = 24.5µm at ∆Pu/Ly = 125 kPam=1, which is
seen in �g. 5.11a,

From the expression for Hagen�Poiseuille �ow, eq. (2.11), �ow rate is related lin-
early to the pressure gradient as
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q ∼ ∆Py/Ly, (5.9)

which means that the �ow rate, and therefore penetration depth over a given time,
will increase by this relation. This is validated in �gs. 5.13a to 5.13b, which is
increasing and follows the linear relation in eq. (A.2) with β = 1.0. In the PPD
expressed as a power law, however, the slope at the tissue-scale is slightly lower in
comparison to the pore-scale, with β = 0.865, as seen in �gs. 5.11a to 5.11b.

The standard deviations for the PPDs seem to occur from noise, since D is in-
dependent of ∆Py/Ly. The standard deviation and its log-log curve is shown in
�gs. 5.12a to 5.12b. Even though β = −0.002 is negative, this slope is really low
with the line having an inadequate �t with R2 = 0.012, which means that almost
none of the variation in the log-log plot is accounted for by the linear �t. The
variation of the data points thus seems to originate from random �uctuations in
the data.

Since q increases andD is kept constant, the Péclet number, as de�ned in eq. (2.34),
the ratio between these two terms will be proportional to

Pe ∼ ∆Py/Ly, (5.10)

for ∆Py/Ly as seen in �gs. 5.15a to 5.15b where Pe has values with order of
magnitude 1× 10=2 to 1× 10=1 and slope in the power law of β = 1.0. The
advective transport will therefore be dominant for increasing ∆Py/Ly in this case.
The Reynolds number is related to the pressure gradient as

Re ∼ ∆Py/Ly, (5.11)

which is in this case has values of 1× 10=1 to 1. Due to the Reynolds number being
low, the viscous forces dominate the inertial, which means that the assumption and
requirement of laminar �ow is satis�ed.
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(a) PPD plotted against the variation of ∆Pu/Ly.

(b) Log-log plot of PPD plotted against the variation of ∆Pu/Ly.

Figure 5.11: PPD plots from the parameter study of ∆Pu/Ly, with a maximum
of µx = 62.4µm at ∆Pu/Ly = 37 kPam=1 and minimum of µx = 24.5µm at
∆Pu/Ly = 125 kPam=1 (�g. 5.11a). Linear regression of the power law relationship
gives an exponent of β = 0.865 with R2 = 0.999 (�g. 5.11b).

65



5. Results

(a) Standard deviation σx plotted against the variation of ∆Pu/Ly.

(b) Log-log plot of standard deviation σx plotted against the variation of ∆Pu/Ly.

Figure 5.12: Standard deviation σx plots for ∆Pu/Ly.
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q

(a) The �ow rate q plotted against the variation of ∆Pu/Ly.

q

(b) Log-log plot of the �ow rate q plotted against the variation of ∆Pu/Ly.

Figure 5.13: Flow rates q plotted against the variation of ∆Pu/Ly. The �ow
rate has magnitudes of 1× 10=19 (�g. 5.13a). Linear regression of the power law
relationship gives an exponent of β = 1.000 with R2 = 1 (�g. 5.13b).
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(a) The Reynolds number plotted against the variation of ∆Pu/Ly.

(b) Log-log plot of the Reynolds number plotted against the variation of ∆Pu/Ly.

Figure 5.14: The Reynolds number plotted against the variation of ∆Pu/Ly. The
Reynolds number has magnitudes of 1 (�g. 5.14a). Linear regression of the power
law relationship gives an exponent of β = 1.000 with R2 = 1 (�g. 5.9b).
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(a) The Péclet number plotted against the variation of ∆Pu/Ly.

(b) Log-log plot of the Péclet number plotted against the variation of ∆Pu/Ly.

Figure 5.15: The Péclet number plotted against the variation of ∆Pu/Ly. The
Péclet number has magnitudes of 1× 10=2 to 1× 10=1(�g. 5.15a). Linear regres-
sion of the power law relationship gives an exponent of β = 1.000 with R2 = 1
(�g. 5.15b).

5.1.4 Variation of the di�usion coe�cient

In the fourth case all parameters except the di�usion coe�cient D, which varied
from 2.27µm2 s=1 to 9.08µm2 s=1, were �xed for the simulations. The �ow rate is
kept constant, as veri�ed in �g. 5.18.

This trend is not seen in �g. 5.16a, where the linear regression gives an exponent
of β = 0.095 with R2 = 1. The slight linearity at the tissue-scale arises due to a
increasing number of particles, approximately 17 out of 10000 at most, leaving the
pore network at the inlet rows, due to the relatively large di�usion coe�cients and
time scales of the calculations. These particles are disquali�ed from the simulations,
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causing a bias of positions in the network, since the particles are not supposed to
leave the network.

The standard deviations for PPD increase due to the relation eq. (5.3) as the root,
as seen in �gs. 5.17a to 5.17b, where β = 0.488 with R2 = 0.998, which corresponds
to a standard deviation that approximately increases with the root of the di�usion
coe�cient.

Since q is kept constant andD increases, the Péclet number, as de�ned in eq. (2.34),
the ratio between these two terms will be proportional to

Pe ∼ 1

D
, (5.12)

as seen in �gs. 5.20a to 5.20b where Pe has values with order of magnitude 1× 10=1

and slope in the power law of β = =1.0. The advective transport will therefore
be less dominant for increasing D in this case. The Reynolds number, as seen in
�g. 5.19 with a value of Re ≈ 0.91, is independent of the di�usion coe�cient, and
therefore constant in this case. The Reynolds number is low, and the viscous forces
dominate the inertial ones, and the assumption and requirement of laminar �ow is
satis�ed.
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(a) PPD plotted against the variation of D.

(b) Log-log plot of PPD plotted against the variation of D.
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(a) Standard deviation σx plotted against the variation of D.

(b) Log-log plot of standard deviation σx plotted against the variation of D.

Figure 5.17: Standard deviation σx plots from the parameter study of D, with a
maximum of σx = 47.1µm at D = 9.08µm2 s=1 and minimum of σx = 23.9µm at
µ0 = 2.27µm2 s=1 (�g. 5.2a). Linear regression of the power law relationship gives
an exponent of β = −0.476 with R2 = 0.998 (�g. 5.2b). Linear regression of the
power law relationship gives an exponent β = −0.476 with R2 = 0.998 (�g. 5.17b).
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q

Figure 5.18: The �ow rate q plotted against the variation of D, with a constant
value of q ≈ 9.1× 10=20m3 s=1.

Figure 5.19: The Reynolds number plotted against the variation of D, with a
constant value of Re ≈ 0.91.
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(a) The Péclet number plotted against the variation of D.

(b) Log-log plot of the Péclet number plotted against the variation of D.

Figure 5.20: The Péclet number plotted against the variation of D. The Péclet
number has magnitudes of 1× 10=1 (�g. 5.20a). Linear regression of the power law
relationship gives an exponent of β = 2.000 with R2 = 1 (�g. 5.20a).

5.1.5 Variation of maximum simulation time

In the �nal case all parameters except the maximum simulation time tmax, which
varied from 30 s to 450 s, were �xed for the simulations. The penetration depth
reached a maximum of µx = 64.4µm at tmax = 450 s and a minimum of µx =
4.10µm at tmax = 30 s As the �ow rate is kept constant for each time, longer
simulation times means that the particles will penetrate further as a linear relation.
This seems to be validated in �g. 5.21a and �g. 5.21b, which approximately follows
the same linear relation with β = 1.011. The standard deviation for PPD is
increasing with β = 0.495 as seen in �gs. 5.22a to 5.22b, even though the di�usion
coe�cient in eq. (5.19) is independent of time, since the variance in the advection-
di�usion equation, eq. (3.13), is related to the maximum time as
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σx ∼
√
tmax. (5.13)

As bothD and q themselves are independent of tmax, the Peclet number will be kept
constant for all tmax as seen in �g. 5.25 with Pe ≈ 0.087. The advective transport
will therefore be dominant for all tmax in this case. The Reynolds number is also
independent of tmax and has magnitudes of Re ≈ 0.91. The viscous forces dominate
the inertial ones, which means that the assumption and requirement of laminar �ow
is satis�ed.

(a) PPD plotted against the variation of tmax.

(b) Log-log plot of particle penetration plotted against the variation of tmax.

Figure 5.21: PPD plots from the parameter study of tmax, with a maximum of
µx = 64.4µm at tmax = 450 s and minimum of µx = 4.10µm at tmax = 30 s
(�g. 5.21a). Linear regression of the power law relationship gives an exponent
β = 1.011 with R2 = 1.000 (�g. 5.21b).
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(a) Standard deviation σx plotted against the variation of tmax.

(b) Log-log plot of standard deviation σx plotted against the variation of tmax.

Figure 5.22: Standard deviation σx plots from the parameter study of tmax, with
a maximum of σx = 51.5µm at tmax = 450 s and minimum of σx = 13.6µm at
tmax = 30 s (�g. 5.22a). Linear regression of the power law relationship gives an
exponent β = 0.495 with R2 = 1.000 (�g. 5.22b).
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q

Figure 5.23: The �ow rate q plotted against the variation of tmax, with a constant
value of q = 9.1× 10=20m3 s=1.

Figure 5.24: The Reynolds number plotted against the variation of tmax, with a
constant value of Re ≈ 0.91.
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Figure 5.25: The Péclet number plotted against the variation of tmax, with a con-
stant value of Pe ≈ 0.087.

5.2 Interpretation of results

By variation of the parameters µ0, dl, ∆Py/Ly, D and tmax the exponents β for
PPD µx, standard deviation σx, the �ow rate q, and the Reynolds and Péclet
numbers were established in sections 5.1.1 to 5.1.5

Table 5.1: Summary of di�erent exponents from eq. (A.2) where the subscripts
indicate the β for PPD, standard deviation σx, �ow rate q and the Reynolds and
Péclet numbers. These have individually been determined for the parameters µ0,
dl, ∆Py/Ly, D and tmax by using the base case parameters in table 3.1. The cases
where β = 0 have been omitted.

Parameter βµx βσx βq βRe βPe

µ0 -0.999 -0.476 -1.0 -2.0 -
dl 1.717 - 4.0 2.0 2.0
∆Py/Ly 0.865 - 1.0 1.0 1.0
D - 0.488 - - -1.0
tmax 1.011 0.495 - - -

The results seem to suggest that scaling relations between variables on the pore-
scale are in accordance to the analytical solutions, i.e. �ow rate q and Reynolds
and Péclet numbers. Additionally, the results show that the scaling relations car-
ried over variables at the tissue-scale, PPD and standard deviation, are similar or
slightly lower than the expected values at the pore-scale.
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5.2. Interpretation of results

5.2.1 Power law transport extrapolation

The exponents in table 5.1 that have been established through the parameter anal-
ysis for the base case parameters shows how the PPD µ0 and standard deviation σx
are dependent on and scale by a single of those parameters while the rest are kept
static. Those exponents contains information on how particle transport in the pore
network level scale, i.e. the statistical distribution of particles, when parameters on
the link level change. Now suppose that one wants to vary two, or even several, of
the parameters simultaneously, or extrapolate the transport for values which have
not been accounted for in previous simulations. The exponents can then be used
as powers on their respective parameters to get new power law expressions which
estimate the transport as

µx = Cµx(µ0)β
0
µx (dl)

β1
µx

(
∆Py
Ly

)β2
µx

(D)β
3
µx (tmax)β

4
µx , (5.14a)

σx = Cσx(µ0)β
0
σx (dl)

β1
σx

(
∆Py
Ly

)β2
σx

(D)β
3
σx (tmax)β

4
σx , (5.14b)

where Cµx and Cσx are proportionality constants of units mkg2 s3. The super-
scripts of βiµx , β

i
σx indicate the row i in table 5.1, starting from 0, i.e. the param-

eters µ0, dl, ∆Py/Ly, D and tmax respectively. By solving eqs. (5.14a) to (5.14b)
with respect to Cµx and Cσx and taking the mean, these constants are determined
as

Cµx =
1

M

M∑
i=1

µx,i

(µ0)
β0
µx
i (dl,i)

β1
µx
i

(
∆Py
Ly

)β2
µx

i
(D)

β3
µx
i (tmax)

β4
µx
i

, (5.15a)

Cσx =
1

M

M∑
i=1

σx,i

(µ0,i)
β0
σx
i (dl,i)

β1
σx
i

(
∆Py
Ly

)β2
σx

i
(D)

β3
σx
i (tmax)

β4
σx
i

, (5.15b)

where i is one ofM data points resulting from a given parameter analysis, where the
numerators and one factor at a time in the denominators in eqs. (5.15a) to (5.15b)
will vary, while the other factors are �xed, depending on which parameter was var-
ied. One Cµx can thus be calculated from the variation of either µ0, dl, etc.

Once the proportionality constants have been determined, the time at which the
particles are transported a distance µx = Lµx can be extrapolated from eq. (5.14a),
and equivalently for the standard deviation σx = Lσx , by solving with respect to
time in eqs. (5.14a) to (5.14b) as
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tµx =

 Lµx

Cµx(µ0)β
0
µx (dl)

β1
µx

(
∆Py
Ly

)β2
µx

(D)β
3
µx


1/β4

µx

, (5.16a)

tσx =

 Lσx

Cσx(µ0)β
0
σx (dl)

β1
σx

(
∆Py
Ly

)β2
σx

(D)β
3
σx


1/β4

σx

. (5.16b)

To show how these estimations hold up, calculations of exponents and proportional-
ity constants were performed for simulations done at the times tmax = {50, 100, 150}
seconds, in addition to the previously examined results for tmax = 300 s in sec-
tion 5.1, and are summarized in tables 5.2 to 5.3. These were performed for
the times in the same manner as described in section 3.5 and the correspond-
ing exponents calculated from log-log plots as similarly seen in section 5.1 for
tmax = 300 s.

Table 5.2: Table of βµx and the proportionality constant Cµx for times tmax = 50 s
to 150 s in addition to those calculated for tmax = 300 s in section 5.1. Superscripts
0, 1, 2, 3, 4 corresponds to the power law eq. (A.2) slope estimation of PPD µx
for parameters µ0, dl, ∆Py/Ly, D and tmax respectively. Due to some variations
in the exponents for di�erent times, the di�erence in Cµx are almost an order in
magnitude in the extreme.

tmax [s] β0
µx β1

µx β2
µx β3

µx β4
µx Cµx [mkg2 s3]

50 -1.030 2.012 0.985 0 1.002 1.880× 10=2

100 -1.001 1.900 0.966 0 1.026 4.632× 10=3

150 -1.004 1.881 0.989 0 0.998 2.830× 10=3

300 -0.999 1.717 0.865 0 1.011 1.112× 10=3

The exponents for µx have some variation in βiµx at di�erent times. This results
in a di�erence of almost an order of magnitude for Cµx at most, as the constant is

Table 5.3: Table of βµx and the proportionality constant Cσx for times tmax = 50 s
to 150 s in addition to those calculated for tmax = 300 s in section 5.1. Superscripts
0, 1, 2, 3, 4 corresponds to to the power law eq. (A.2) slope estimation of σx for pa-
rameters µ0, dl, ∆Py/Ly, D and tmax respectively. The exponents are signi�cantly
close for 1 or 2 decimals, resulting in similar Cσx for all three times.

tmax [s] β0
σx β1

σx β2
σx β3

σx β4
σx Cσx [mkg2 s3]

50 -0.502 0 0 0.486 0.490 2.303× 10=2

100 -0.506 0 0 0.490 0.492 2.472× 10=2

150 -0.505 0 0 0.488 0.496 2.326× 10=2

300 -0.476 0 0 0.488 0.495 2.758× 10=2
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5.2. Interpretation of results

calculated using these exponents, and thus is sensitive for small di�erences in the
exponents. The exponents for σx, on the other hand, have small variations for βiσx
at either the second or third decimals, causing Cσx to only have a variation in the
�rst decimal.

Estimations of the particle transport are seen in �g. 5.26. The exponents and
constants for di�erent times in tables 5.2 to 5.3 were calculated and eqs. (5.14a)
to (5.14b) used to extrapolate µx and σx for up to t = 300 s. Due to random
�uctuations in the stochastic approach, the di�erences in tables 5.2 to 5.2 will result
in variations in the �nal particle positions. The PPDs will thus slowly diverge for
in�nite times, and yield vastly di�erent results. In a clinical and numerical setting,
luckily, the time scales which are accounted for will not cause major di�erences in
�nal particle positions in these simulations.

Figure 5.26: Estimation of particle transport, µx and µx ± σx, plotted from to
t = 0 s to 300 s, where exponents in addition to Cµx and Cσx are summarized in
tables 5.2 to 5.3 for the times tmax = {50, 100, 150, 300} seconds.

5.2.2 Estimation of network level parameters

The plot in �g. 5.22b shows the log-log plot of the standard deviation in eq. (2.26).
This information can be used to get an estimate of the di�usion coe�cient on the
tissue-scale. The log-log of eq. (2.26) will be

log σx =
1

2
log 2D̂ +

1

2
log t, (5.17)
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where D̂ will be estimated from the intercept a = logα in eq. (A.2) as

D̂ = 102a−log 2. (5.18)

With the values in the base case parameters table 3.1, the di�usion coe�cient for
a particle in free solution eq. (2.22) is D = 7.569µm2 s=1. Due to the network
tortuosity as de�ned in eq. (1.1), the di�usion constant is e�ectively reduced on
the pore network level, and can thus be expressed as

Deff = D

(
l0
l

)2

, (5.19)

where, for a given row unit as described in �g. 3.1, l0 = dy = 1.5L is the unit height
and l = 2L the total tube path length in the row unit. The theoretical tortuosity
is λ = l/l0 = 1.33 and the e�ective di�usion coe�cient in eq. (5.19) thus has a
value of Deff = 4.279µm2 s=1. The numerical tortuosity eq. (1.1) is calculated by
comparing eq. (5.18) to eq. (2.22) as

λ̂ =

√
D̂

D
. (5.20)

The same operation can be performed to calculate the estimated mean vertical bulk
velocity of the particles in the network from �g. 5.21a. The log-log of eq. (2.25)
is

logµx = log û+ log t, (5.21)

which can be solved from the intercept a = logα in eq. (A.2) as

û = 10a. (5.22)

The maximum and minimum �uid velocities in the links of the network respectively
are umax = 0.263µms=1 and umin = 0.131µms=1. The maximum velocities occur
in the vertical links, and the minimum in the non-vertical. Thus, one has to look
at the vertical components of the velocity in the latter links, weighed by the ratio
of n1 = 0.339 vertical and n2 = 1− n1 non-vertical links in the network as

ūy = n1umax + n2umin sin 30◦, (5.23)
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5.2. Interpretation of results

which yields ūy = 0.132µms=1. When compared to the velocity in eq. (5.22), the
relative error of the simulated particle velocities can be expressed as

δû =
û− ūy
ūy

. (5.24)

An alternative method to calculate the mean PPD can thus be to estimate the
vertical components of the pore network �uid velocities by using eq. (5.23) and
multiply with tmax, instead of simulating the movement of np particles through the
network, which bears a much higher computational cost.

Figure 5.27: Estimation of particle transport µ̂x and µ̂x ± σ̂x, plotted for t = 0 s
to 300 s. µ̂x and σ̂x are calculated from eqs. (5.25a) to (5.25b) where û and D̂ are
summarized in table 5.4 and exponents in tables 5.2 to 5.3 for the times tmax =
{50, 100, 150, 300} seconds.

A summary of the calculations of eq. (5.22), eq. (5.18), eq. (5.24) and eq. (5.20)
is seen in table 5.4 for the times tmax = {50, 100, 150, 300} seconds. The calcu-
lated di�usion coe�cients are smaller, and thus corresponding tortuosities larger,
than for the theoretical e�ective di�usion coe�cient in eq. (5.19). The tortuos-
ity in �g. 1.5 is calculated as the ratio of path lengths, and the numerical one in
eq. (5.20) from the root of di�usion coe�cient ratios. While based on the same
formula, the latter is calculated from the movement of particles for low Péclet num-
bers, approximately Pe ≈ 0.087. The advective contribution is small, which might
cause some particles to not take the most e�cient path through, thus increasing
tortuosity.

Note that û and D̂ still depend on the other input parameters from the parameter
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studies. The di�erence is that û can be estimated from the pore network itself
without transporting particles, or performing a parameter study for tmax in which
the numerical tortuosity also can be calculated.

Once the �uid velocity and di�usion coe�cient have been calculated in this manner,
the mean and standard deviation can respectively be approximated as

µ̂x = ûtβ
4
µx , (5.25a)

σ̂x =
√

2D̂tβ
4
σx , (5.25b)

where the exponents for tmax are included and listed in tables 5.2 to 5.3 for the
di�erent times tmax.

Estimations of the particle transport using eqs. (5.25a) to (5.25b) are seen in
�g. 5.27 for up to t = 300 s calculated for tmax = {50, 100, 150, 300} seconds, sum-
marized in table 5.4. The estimations for the three �rst times, unlike in �g. 5.26,
seem to converge to the same values, while the estimation for tmax = 300 s is
diverging away from those, yielding vastly di�erent results for simulation times
approaching in�nity.

Table 5.4: Summary of the estimated variables û, D̂ and λ̂ in addition to relative
error δû for the velocity for times tmax = {50, 100, 150, 300} seconds.

tmax [s] û [µms=1] D̂ [µm2 s=1] δû [%] λ̂

50 0.131 3.543 -0.76 1.462
100 0.134 3.375 1.52 1.488
150 0.135 3.376 2.27 1.497
300 0.135 3.226 2.27 1.532
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6 Clinical impact

The aim of the thesis was to gain a further understanding of how di�erent transport
parameters a�ect the distribution of NPs in the ECM by developing a numerical
simulation tool, since performing experimental studies comes with costs both in
terms of funds and time. Particle transport depends on the properties of the tumor
tissue, US parameters and particles. This adds a complexity, making it di�cult
to investigate and perform tests of all variables involved in the system. Numerical
modeling can serve as an aid to understand and evaluate this complexity.

The motivation behind using a pore network model was to approximate the �uid
�ow in a tumor with a well de�ned and interconnected collagen network with a
regular structure, thus giving insight in how the di�erent input parameters a�ect
the particle transport. The parameter study established and demonstrated the
scaling relations between variables of the system on pore-scale and how these impact
particle transport into the interstitium at the tissue-scale for �nite times. These
relations allow for the derivation of empirical equation sets for the estimation and
extrapolation of the particle positions.

The results in �g. 5.11a, in addition to the exponents summarized in table 5.2,
show the impact of applying US, where the particle transport is almost fully linear
with in the power law relation of eq. (A.1), with the exponents being lower than,
but approximately close to 1. This means that as the pressure gradient ∆Pu/Ly
becomes larger, the increase of PPD µ0 slows down ever so slightly. For the sake
of estimation purposes though, the slope can be considered to be approximately 1.
The simulations have been performed with �nite pressure gradients. To account
for the absence of US, a zero value can be inserted into eq. (5.14a), which will yield
µx = 0. The standard deviation σx is independent of the pressure gradient even in
this case, since the relevant exponents in table 5.3 are zero for ∆Pu/Ly. The value
00 will appear in eq. (5.14b), but will be set to 1 since limx→0 x

0 = 1.

Most importantly, the model can be used to estimate the required treatment time.
All living cells of the tissue are commonly located within 100µm to 200µm of
perfused blood vessels, the di�usion limit for oxygen [50]. In histological sections,
the viable cells are often actively seen growing around perfused blood vessels up
to about 150 nm. This distance is also quoted to range from 70mm to 200mm
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[51]. Assuming that all tumor cells are oxygenated the between two capillaries, the
shortest intercapillary distance can be chosen as 140 nm. In order for all cells in the
tumor to be a�ected by the treatment, NPs originating from one given capillary
has to be transported throughout this whole intercapillary space. Suppose that
the PPD in this example is chosen to be Lx = µx = 70µm. This distance can be
inserted into eq. (5.16a) to calculate the time at which this transport has occurred,
which is then used in eq. (5.14b) to calculate the standard deviation of the particle
transport at that time.

While the focus of this thesis is on the pore network, a brief discussion on the pres-
sure gradient is called for. The upper range for IFP in tumors is from 10mmHg
to 30mmHg [21]. In order to facilitate transport into the interstitium, the US-
induced pressure gradient has to be larger than the IFP. For the simulations the
base case pressure gradient was chosen to be ∆Pu/Ly = 2.5× 105 Pam=1 =
1.9mmHgmm=1, which will not be su�cient to overcome the higher IFP and
improve particle transport. As seen in table 6.1, increasing the US frequency
greatly increases the pressure gradients for. For example, the pressure gradients
for 10MHz to 20MHz can be of su�cient magnitude to cause a net transport into
the ECM.

Table 6.1: Summary of US-induced pressure gradients in Pam=1 and correspond-
ingly in mmHgmm=1 for given frequencies f . Data is taken from [46], where
preliminary calculations for radiation force on tissue have given estimations on the
pressure gradient.

f [MHz] ∆Pu/Ly [Pam=1] ∆Pu/Ly [mmHgmm=1]

3 2.50× 105 1.9
5 6.95× 105 5.2
7 1.36× 106 10.2
10 2.78× 106 20.8
20 1.11× 107 83.3

These values are based on preliminary calculations for the application of focused
US and therefore radiation force on the tissue, which have to determined by exper-
imental procedures. In an unpublished study, 5MHz and 10MHz focused US was
applied to generate acoustic radiation forces of 5mmHgmm=1 to 15mmHgmm=1

in subcutaneous prostate tumors in mice [52]. The results seem to indicate that
both extravasation and penetration of NPs through the ECM improves, and parti-
cles were found to be up to 200 µm away from the capillary, with acoustic streaming
dominating over di�usive contributions. Experimental activities such as these are
necessary to provide realistic input parameters to the simulations such as those
performed for this thesis.
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6.1. The role of advection and diffusion

6.1 The role of advection and di�usion

Overall, there are complex phenomenon involving di�usive and advective e�ects
that are not fully understood, but can still be incorporated into the pore network to
better model how the ECM composition decreases the e�ective di�usion, in addition
to facilitated di�usion arising from the presence of �uid �ow in the medium and
application of US. These e�ects are not accounted for in the current model.

The di�usion coe�cient as given in eq. (2.22) is an estimation for a particle in free
solution. In real tissues however, the di�usivity of the particles can be reduced
by 18% to 93% due to electrostatic interactions between the solute and ECM
components, in comparison to the free solution [14]. The charged components of the
ECM that hinder di�usion of nanoparticles include collagen �bers and glycosamino-
glycan (GAG) chains [53]. Experimental results also indicate that the concentration
of collagen in the ECM impacts di�usion to a further degree than the structure of
the collagen network itself [54].

Models of porous media have also shown that advection enhances the transport of
macromolecules, such that the di�usion constant is increased in the presence of a
macroscopic one-dimensional �ow �eld in the network, in comparison to di�usion
only. Moreover, when advective and di�usive e�ects contribute to transport, the ef-
fective di�usion decreases more slowly than by di�usion only for higher tortuosites,
since the one-dimensional �ow �eld facilitates the transport process [55].

Experimental results have shown that a US beam of moderate intensity, far below
the intensity necessary to induce acoustic cavitation, can e�ectively be used to
promote liposomes towards and into bacterial alginate hydrogel �lms similar in
structure to that of the ECM. Acoustic streaming and thermal convection �ow from
acoustic heating can also speed up the penetration of liposomes through di�usion
signi�cantly, linear in relation to US intensity [56]. Measured values of the acoustic
di�usion coe�cient have also been found to be 74% and 133% larger than the
di�usion coe�cients of NPs of sizes 20 nm and 100 nm respectively, in addition
acoustic streaming velocities in the order of 0.1 µms=1 arising from the US. [57].
These works seems to suggest that the application of US can enhance and cause
facilitated di�usion of NPs in materials similar to the ECM, which is relevant to
challenges involving US-mediated drug delivery in tissues.

6.2 Alternative models and improvement

In addition to the e�ects outlined in section 6.1, several improvements can be done
to account for the heterogeneity of tumors, thus further improving the current pore
network model.
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Tumors can be be classi�ed into soft and rigid groups depending on their mechanical
behaviors when undergoing compression, and some soft tumors, such as the two
carcinomas in �g. 1.2 may exhibit viscous properties that are more typical for
macromolecular solutions rather than a well-structured solid matrix [13]. Even
though the expression in eq. (2.11) describes the �ow in a single tube, it can
be compared to Darcy's law, which is a continuum approximation of the actual
microscopic �ow phenomenon that occurs in a porous medium, given as

ū =
−K∇p
µ

= −K ′∇p (6.1)

where ū is bulk-averaged �uid velocity,K the speci�c permeability,K ′ the hydraulic
conductivity [14]. Both normal and tumor tissues have properties similar to those of
a porous medium, in which empirical observations have shown that the �uid velocity
on the tissue-scale is proportional to the pressure gradient. The permeability, and
thus the conductivity, depends on di�erent factors of the extracellular matrix, such
as pore size, composition and geometry, and can be measured experimentally by
measuring the steady �ow rate over a tissue slice. This method provides values
for the net interstitial �ow on the tissue-scale, and not the local convective �uid
velocity [11], as in the pore network model presented in this thesis. Additionally,
the Navier�Stokes equations in blood �ow through capillaries have been used to
simulate interstitial and intravascular �ows, where Starling's law is included for
the movement of �uid across capillary membranes and for closing this system of
equations [58].

If the cells were not to have �xed positions, other approaches than the kind of
pore networks discussed in this thesis would have to be considered. However, a
proposition can be to distribute the link diameters randomly over a interval of
possible sizes. The consequence would be a disorder in the �ow rates throughout
the network, which in turn would a�ect the behavior of NP transport, since the
next link for the advective step is chosen from a link selection where the weighted
probability distribution is proportional to �ow rates.

The NPs have also been assumed to be monodisperse, with all particles of equal
size. For some nanocarriers, it is di�cult to control the particle size distribution
during their preparation. The polydisperity index (PDI), is sometimes used to
describe the non-uniformity of the size distribution, and can range from 0.0 for
uniformity of all particle sizes, to 1.0 for a highly polydisperse size distribution
[59]. For future work, an analysis of particle transport for clinically relevant PDI
can be of interest.
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7 Conclusion and outlook

The work has concluded by providing a theoretical model and implementation for
the transport of NPs in a rigid pore network subjected to the advection-di�usion
equation and a US-induced pressure gradient, thus establishing relationships be-
tween parameters on the pore-scale and transport on the tissue-scale. Theory
and discretization for a elastic pore network model has also been derived and pre-
sented.

Application of US does indeed improve the transport of particles. The �ow rate
at the pore-scale increases linearly with the pressure gradient, the e�ect of which
is approximately linear at the tissue-scale for NPs. Empirical sets of equations
have been derived to relate the scaling of transport at the pore-scale and tissue-
scale, which can be used estimate required treatment times and particle transport
for given input parameters. Estimations of �uid velocity at the tissue-scale and
e�ective di�usion coe�cients can also be calculated from the model to approximate
the particle concentrations in the network.

The main goal for future work is to further develop the elastic pore network model
to ensure its validity and check whether the hypothesis of net �ow in the network
holds up with an oscillating boundary condition. Thus, the physical problem in-
volving the mechanical properties of both the capillary wall and gas bubble must
be accounted for. The current rigid pore network model is regular, and it would
be of great interest to consider a heterogeneous model in regards to link diameter
and particle polydispersity. Additionally, if tissue deformation is to accounted for,
other models than the Aker-type networks have to be considered. Hindrance and
facilitation of di�usion respectively due to ECM composition, and the presence
of �uid �ow in the medium and application of US, are also e�ects of signi�cant
interest.
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Appendix

A Power laws and log-log plots

Log-plots can be used to test whether some kind of data follow power laws of the
form

y = αxβ . (A.1)

To gain more information or trends about the data, α and β can be extracted to
establish if the relationship between x and y follows a power law. For these kinds
of expressions the logarithm can be taken for eq. (A.1). This yields

log y = β log x+ logα, (A.2)

which can be plotted in a log-log plot. Base 10 is chosen to more easily interpret
the values on the logarithmic axes. If eq. (A.2) is a straight line, the power term
β will be the slope of the line as a function of log x. The line intercept will be the
constant term logα.

Linear regression can then be used to �t a line for data according to eq. (A.2). The
sample coe�cient of determination [49, p. 435], de�ned as

R2 = r2
xy, (A.3)

is used to establish if there is a good linear association between log x and log y.
The sample correlation coe�cient rxy is given as

rxy =
Sxy√
SxxSyy

. (A.4)
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A perfect linear relationship appears in the data if rxy = ±1. The terms in eq. (A.4)
are de�ned [49, p. 401] as

Sxy =

n∑
i=1

(xi − x̄) (yi − ȳ) , (A.5a)

Sxx =

n∑
i=1

(xi − x̄)
2
, (A.5b)

Syy =

n∑
i=1

(yi − ȳ)
2
, (A.5c)

where n is the number of data points, (xi, yi) a data point and x̄ and ȳ the sample
means for x and y respectively. R2 expresses the proportion of the total variation of
the values yi in the log-log plot which can be accounted for by the linear relationship
with the values of xi.

The slope β and intercept logα are thus calculated through linear regression and
used to construct a line which is compared to the data points in order to determine
how well the power law coe�cients are estimated. The closer R2 is to 1, the better
the variation of log y is accounted for by a linear relationship with log x, and thus
the power law analysis is more accurate.

B Dimensional analysis

In the expression for tube �ow in eq. (2.11), the tube itself is described by its radius
R and length L. Suppose that one wants to use another scale for the system and
use some other tube which has a di�erent radius and length, but in which the �ow
rate appropriately scaled. This means that one needs to have geometric similarity,
which means that the ratios of dimensions for the tube in the original system and
scaled system must be the same. Additionally, one must have dynamic similarity,
and the dimensionless groups in the expression for �ow rate must be the same for
di�erent systems [42, p.97].

Since this is a �ow system, scale factors related to both the physical properties
of the tube and �uid, such as tube length L, �uid viscosity µ and density ρ can
be suitable. Scaling factors can be arbitrarily chosen, but they must contain the
required units m, kg and s, which is a requirement to make the other variables
dimensionless. Since the expression for Hagen�Poiseuille �ow in eq. (2.11) does not
contain ρ as one of its factors, a trick is to temporarily rewrite it as an expression
with density. Kinematic viscosity, ν, can be expressed as a product of the dynamic
viscosity µ and interstitial �uid density ρ as
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ν =
µ

ρ
, (B.6)

with units [ν] = m2 s=1. The expression for the �uid �ow in eq. (2.11) can then be
written as

q =
−πR4

8ρνL
∆p, (B.7)

which can be given as a function in which the �ow rate q depends on the variables
on the right hand side:

q = f(R,L, ν, ρ,∆p). (B.8)

Its now possible to create dimensionless groups in which the dynamic viscosity can
be substituted back. The dimension matrix for this equation can be written as
follows


3 0 −1
1 0 0
1 0 0
2 0 1
−3 1 0
−1 1 −2


 m

kg
s

 =


[q]
[R]
[L]
[ν]
[ρ]

[∆p]

 , (B.9)

where �ow rate q has been added to the matrix in order to get an dimensionless
group which contains it, since it will be advantageous for the sake of the simulations
that all variables are dimensionless.

For simplicity, the dimension matrix eq. (B.9) can be written in augmented form
as



3 0 −1 [q]

1 0 0 [R]

1 0 0 [L]

2 0 −1 [ν]

−3 1 0 [ρ]

−1 1 −2 [∆p]


(B.10)
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The matrix has a rank of 3 with 6 variables, which means that there are 6− 3 = 3
independent dimensionless groups. Gauss-Jordan of eq. (B.10) elimination yields
the reduced row echelon form as



1 0 0 [L]

0 1 0 [ρL3]

0 0 1 [L
2

ν ]

0 0 0 [ qLν ]

0 0 0 [RL ]

0 0 0 [∆pL
ρν2 ]


(B.11)

The three �rst rows constitute the characteristic unit variables. These can be
suitable for usage in the numerical simulations, for example to make a dimensionless
time dimensional. The dimensionless groups in the �nal matrix eq. (B.11), with ρ
substituted back, are

R

L
, (B.12a)

q

Lν
=

qρ

Lµ
, (B.12b)

∆pL

ρν2
=

∆pL2ρ

µ2
. (B.12c)

Since eqs. (B.12a) to (B.12c) are dimensionless, all variables in expression for
Hagen�Poiseuille �ow eq. (2.11) can be expressed in dimensionless form by us-
ing characteristic variables length L0, density ρ0 and dynamic viscosity µ0. This
analysis can also be extended to include the necessary variables of the advection-
di�usion equation for the particles in eq. (2.23), and elastic network in eq. (2.20),
which will introduce additional dimensionless groups.

C Program Source Code

The source code for the numerical program used throughout the process of writing
this thesis is hosted on Bitbucket in a repository.
https://bitbucket.org/stigenstig/npflow/
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