
Cluster Analysis of
Multiparametric Magnetic
Resonance Images of Rectal
Cancer

June 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Bendik Skarre Abrahamsen

2019
Bendik Skarre Abraham

sen

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f N
at

ur
al

 S
ci

en
ce

s
De

pa
rt

m
en

t o
f P

hy
si

cs

Cluster Analysis of Multiparametric
Magnetic Resonance Images of Rectal
Cancer

Bendik Skarre Abrahamsen

Applied Physics and Mathematics
Submission date: June 2019
Supervisor: Kathrine Røe Redalen

Norwegian University of Science and Technology
Department of Physics

Abstract:
Purpose: Cluster analysis performed on images obtained with functional mag-
netic resonance imaging (MRI) has been proposed as a method of partitioning
heterogenous tumour volumes into more homogenous subvolumes that exhibit
similar physical characteristics. The aim of this study is to examine the valid-
ity of clustering solutions based on multiparametric MRI (mpMRI) of patients
with rectal cancer and to examine whether any of the obtained subvolumes are
related to the progression free survival (PFS).
Materials and methods: Cluster analysis using k-means and Gaussian mix-
ture models (GMM) was performed on a dataset containing T2 weighed (T2w)
MRI, diffusion weighted images (DWI) with 6 different diffusion b-values from
0 s mm−2-1000 s mm−2, apparent diffusion coefficient (ADC) parameter maps
and intravoxel incoherent motion (IVIM) parameter maps of a patient cohort
consisting of 54 patients with rectal cancer. Principal component analysis was
performed to reduce the dimensionality of the dataset prior to clustering. The
optimal number of clusters for the k-means algorithm was found using the
Calinski-Harabasz (CH) index, Davies-Bouldin (DB) index, DB* index, DB**
index and the Silhouette coefficient. In the GMM clustering solution the opti-
mal number of components was found using the Bayesian information criterion
(BIC).

For the survival analysis the patient cohort was partitioned into groups CRT
or No CRT depending on whether or not they were to receive preoperative
chemoradiotherapy (CRT) resulting in groups, from now on referred to as CRT
and No CRT, containing 24 and 30 patients, respectively. Logrank tests using
the median cluster (k-means)/component (GMM) volume within a treatment
group as a cutoff and univariate Cox regression using the cluster volume as a
risk factor was used to associate the obtained clusters (k-means)/components
(GMM) to PFS. The Bonferroni corrections for multiple comparisons was used
to correct the significance threshold according to the number of clusters tested
for association with PFS. This corrections was made for the k-means and GMM
clustered dataset separately.
Results: The optimal number of clusters in the k-means cluster analysis
and components in the GMM cluster analysis was found the be two and nine
respectively. The GMM clustering solution was found to be stable towards
repeats using different randomly sampled subsets of the full dataset.

One of the clusters in the k-means partitioned dataset was found to be
associated with PFS (logrank: p-value < 0.02, univariate Cox: p-value < 0.006)
for the No CRT group. In the GMM partitioned dataset two components were
found to be associated with the PFS by using the logrank test (p-value = 0.001
and p-value = 0.001) in the No CRT group. These components were found not
to be significantly associated to the PFS at the Bonferroni corrected significance
level in the Cox regression. However, a component not significantly associated
with the PFS in the logrank test was found to be significantly associated with
PFS in the univariate Cox regression (p-value < 0.002). A greater relative risk
was shown to be associated with an increase in volume of this component as

1

compared to a similar volume increase in the unpartitioned tumour volume.
No clusters from the k-means partitioned dataset or components in the GMM

partitioned dataset were found to be associated with PFS in the CRT group.
Conclusion: Cluster analysis based on multiparametric MRI (mpMRI) and
derived parameter maps of patients with rectal cancer was shown to successfully
partition the tumour volumes into subvolumes associated with PFS for patients
that did not receive CRT.

2

Sammendrag:
Form̊al: Klyngeanalyse utført p̊a funksjonelle magnetresonans (MR) bilder
har blitt foresl̊att som en metode for å dele heterogene tumorvolum inn i mer
homogene subvolum. Målet med denne studien er å undersøke validiteten av
klynger oppn̊add ved klyngeanalyse av multiparametriske MR-bilder av pasien-
ter med rektalkreft. Det ønskes ogs̊a å undersøke hvorvidt noen av de resul-
terende subvolumene kan relateres til progresjonsfri overlevelse (PFS)
Materialer og metoder: Klyngeanalyse ved bruk av k-means og Gaussian
Mixture Models (GMM) ble utført p̊a et datasett best̊aende av T2-vektede MR-
bilder, diffusjonsvektede MR-bilder med seks forskjellige diffusjons b-verdier fra
0 s mm−2-1000 s mm−2, den s̊akalte apparente diffusjonskoeffisient (ADC) pa-
rameterkart og intravoxel inkoherent bevegelse (IVIM) parameterkart for 54
pasienter gitt diagnosen rektalkreft. Prinsipalkomponentanalyse ble utført for
å redusere antallet dimensjoner i datasettet før klyngeanalyse ble gjennomført.
Det optimale antallet klynger ble funnet ved bruk av Calinski-Harabasz (CH)
indeksen, Davies-Bouldin (DB) indeksen, DB* indeksen, DB** indeksen og Sil-
huett koeffisienten. For GMM ble det optimale antallet komponenter funnet
ved Bayes informasjonskriterium (BIC).

I overlevelsesanalysen ble pasientgruppen delt i to etter hvorvidt hver pasient
mottok preoperativ kjemoradioterapi (CRT) eller ikke. De resulterende grup-
pene vil fra n̊a av bli omtalt som CRT- og ikke CRT gruppen. CRT grup-
pen bestod av 24 pasienter, mens ikke CRT gruppen bestod av 30 pasienter.
Det ble utført logrank tester der pasienter innen hver gruppe ble inndelt etter
median klyngevolum (k-means)/komponentvolum (GMM). Univariat Cox re-
gresjon ble utført ved bruk av klyngevolum (k-means)/komponentvolum (GMM)
som risikofaktor. For begge metoder var klinisk endepunkt definert ved PFS.
Bonferronikorreskjon ble utført for å korrigere signifikansniv̊aet for gjentatt test-
ing. Korreksjonen ble utført for datasettet inndelt ved k-means klyngeanalyse
og datasettet inndelt ved GMM klyngeanalyse hver for seg.
Result: Det optimale antallet klynger for k-means klyngeanalyse og kompo-
nenter for GMM klyngeanalyse var to og ni. Komponentene funnet ved GMM
klyngeanalyse ble funnet å være stabile ved gjentatt inndeling av forskjellige
datasett laget ved å trekke tilfeldige voxeler ut fra det fulle datasettet.

En av klyngene som ble funnet i datasettet inndelt ved bruk av k-means klyn-
geanalyse var relatert til PFS (logrank: p-verdi < 0.02, univariat Cox: p-verdi <
0.006) i ikke CRT pasientgruppen. I datasettet inndelt ved GMM klyngeanalyse
ble det funnet to komponenter som var signifikant relatert til PFS ved bruk av
logrank test (p-verdi = 0.001 og p-verdi = 0.001) i ikke CRT gruppen. Disse
komponentene ble derimot funnet å ikke være signifikant relatert til PFS ved
det Bonferronikorrigerte signifikansniv̊aet n̊ar de ble undersøkt med univariat
Cox regresjon. Én komponent som ikke var signifikant relatert til PFS ved lo-
grank test var signifikant relatert til PFS ved univariat Cox regresjon (p-verdi
< 0.002). En større relativ risiko var knyttet til økende volum av denne kom-
ponenten sammenlignet med en tilsvarende økning i det totale tumorvolumet.

Ingen klynger (k-means) eller komponenter (GMM) var signifikant relatert

3

til PFS i CRT pasientgruppen.
Konklusjon: Klyngeanalyse ble benyttet p̊a multiparametriske MR-bilder av
pasienter med rektalkreft og parameterkart utledet ved bruk av disse. Dette
gav tumorvolum inndelt i subvolum der noen av disse var relatert til PFS for
pasienter som ikke mottok preoperativ CRT.

4

Contents

1 Introduction 7

2 Theory 9
2.1 Cancer . 9
2.2 Magnetic Resonance Imaging . 9

2.2.1 Diffusion Weighted Imaging 13
2.2.2 Intravoxel Incoherent Motion 16

2.3 Machine Learning . 18
2.3.1 Introduction . 18
2.3.2 Model selection - The bias variance tradeoff 18
2.3.3 Principal Component Analysis 20
2.3.4 Cluster analysis . 23
2.3.5 k-means Clustering . 24
2.3.6 Finite Mixture Densities - Gaussian Mixture Models . . . 25

2.4 Cluster validity . 34
2.4.1 Visually uncovering structures in data 34
2.4.2 Cluster Validaty Indices (CVI) 35
2.4.3 Cluster validity in mixture models 37

2.5 Survival Analysis . 38
2.6 Proportional Hazard Models and Cox Regression 40

3 Materials and Methods 42
3.1 OxyTarget study . 42
3.2 Images & Patients . 42
3.3 Pre-Processing . 42
3.4 Feature Extraction and Feature Generation 43
3.5 Visualizing the dataset . 45
3.6 Clustering . 45
3.7 Survival Analysis . 48
3.8 Software & Code . 49

4 Results 50
4.1 Verification of alignment & Resulting dataset 50
4.2 Visualization and pre-processing of the dataset 50
4.3 k-means clustering . 51
4.4 Survival Analysis using k-means partitioned volumes 52
4.5 Gaussian mixture model clustering 55
4.6 Survival analysis on the Gaussian Mixture Model Components . 56

5 Discussion 64
5.1 Validity of the Clustering Solutions 64
5.2 Survival analysis . 66
5.3 Suggestions for further research 68

5

6 Conclusion 70

A Appendix 81
A.1 A guide to the appendix . 81
A.2 Packages and environments . 83
A.3 Matlab Code . 86

A.3.1 Conversion of DICOM images to patient structs with in-
terpolation and cropping 86

A.3.2 DWI as heatmaps on T2w images 113
A.3.3 Compare images to check alignment 116
A.3.4 Building the dataset . 119
A.3.5 Code for mapping components back onto tumour masks . 122

A.4 Python code . 126
A.4.1 Custom plots . 126
A.4.2 Implementation of the DB* and DB** indices 131
A.4.3 z-scoring and PCA . 136
A.4.4 k-means Cluster Analysis 144
A.4.5 Gaussian Mixture Models Cluster Analysis 149
A.4.6 k-means survival analysis 152
A.4.7 Gaussian Mixture Model survival analysis 173

A.5 Test of DB, DB* and DB** cluster validity indices 186
A.6 Finding the optimal k for the k-means algorithm 197
A.7 Kaplan-Meier estimates with logrank test for the total tumour

volume . 201
A.8 One component vs. rest histograms for the GMM clustering so-

lution . 202
A.9 Survival Curves Of the Gaussian Mixture Model (GMM) compo-

nents . 212
A.10 Simulation study - Finding the optiman number of components

in a GMM clustering solution using BIC on non-Gaussian clusters 222
A.11 Correlation heatmaps . 230
A.12 Dice-Sørensen Coefficient . 232

6

1 Introduction

Rectum and rectosigmoid cancer together was the seventh most frequent type
of cancer in Norway in 2016 for and it constituted 4.6% and 3.7% of all new
cancer incidences for males and females respectively. This adds up to a total of
1325 new cases diagnosed in 2017 [1].

The Norwegian guidelines for diagnosis and treatment of rectal cancer have
since 2003 recommended obligatory preoperative magnetic resonance examina-
tion. The current national staging guidelines for colorectal cancer states that
patients that are diagnosed with rectal cancer should have an magnetic res-
onance (MR) examination of the rectum performed to stage the cancer and
determine the spread [2]. MR images have bee shown to shown to provide
excellent anatomical information about the rectum and mesorectal fascia [3].

In addition to providing accurate anatomical images MRI also has the pos-
sibility acquiring functional images. Functional images, like dynamic contrast-
enhanced (DCE) MRI and diffusion weighted imaging (DWI), can depict impor-
tant biologic features like vascularity and cellularity and have become important
in the search for new biomarkers [4]. Image contrast in DWI is generated by
the displacement of water molecules during the acquisition time [5]. This dis-
placement can be due to diffusion, active transport, flow or perfusion [6]. These
properties are known to be affected by multiple factors like cell density, vascu-
larity, viscosity of intracellular fluid and cell membrane integrity [7].

Various studies have shown that using DWI in conjunction with standard
morphological MRI can aid in assessing the response to radiotherapy. The
routine use of DWI for tumour response assessment after chemoradiotherapy
is now recommended in the guidelines set fourth by the European Society of
Gastrointestinal and Abdominal Radiology(ESGAR) [8].

The apparent diffusion coefficient is a simple mono-exponential model aimed
at quantifying the properties expressed by the DWI [9]. In cancer diagnostics
the ADC is often interpreted as the cellularity of the tissue [10]. The observed
ADC values are known to be sensitive to capillary perfusion [9, 11]. The more
complex intravoxel incoherent motion model (IVIM) model was proposed in
order to create separate diffusion- and perfusion parameter maps from DWI
[11].

Tumour volumes are known be exhibit genetic and microenvironmental het-
erogeneity between tumours in addition to within a single tumour [12, 13]. Mul-
tiple studies have suggested that tumour heterogeneity can become a promising
biomarker to differentiate between tumour types, grades, predict treatment out-
come or monitor treatment effect [14].

Cluster analysis is a wide range of algorithms or methods whose goal is to
discover natural groupings in a set of data [15]. Cluster analysis on multipara-
metric magnetic resonance images (mpMRI) has been proposed for separating
the heterogenous tumour volume into smaller more homogenous subvolumes
that exhibit similar physical characteristics. Validation of cluster analysis as
an applicable methodology in separation the tumour volume into meaningful
subvolumes has come in the form of histological examinations [16] and by the

7

discovery of clusters within the tumour volume associated with local tumour
control [17] and local relapse [18, 19].

The aim for this study was to investigate clustering of pretreatment tu-
mour volumes for patients with rectal cancer using T2 weighted images, raw
DWI, ADC parameter maps and IVIM parameter maps as input features. The
performance and validity of the clustering solutions obtained by two common
clustering algorithm, the k-means and Gaussian mixture model, was assessed.
It was also tested whether any of the volumes of the obtained clusters were
better biomarkers for PFS than the total tumour volume.

8

2 Theory

2.1 Cancer

Cancer can be defined as an abnormal growth of cells caused by multiple changes
in the gene expression leading to an imbalance of cell proliferation and cell death
and ultimately evolving into a population of cells that is able to invade tissues
and metastasize to distant sites. Clinically cancer manifests itself as a large
group of diseases that vary considerably across parameters like cellular differ-
entiation, metastatic potential, diagnostic detectability, response to treatment
and prognosis [20]. However, from a cell biological point of view, it has been
proposed that a small number of molecular, biochemical and cellular traits are
shared among all types of human cancer [21]. Observations suggest that human
cancers progress through a process driven by stepwise, somatic-cell mutations
from a single progenitor cell. Different varieties of mutant cells are produced
as the tumour proliferates. Occasionally a mutant cell acquires a selective ad-
vantage with respect to the original tumour cells and surrounding normal cells.
Selective pressure through the competition of space and resources causes this
mutant to be the precursor of a new predominant cell population [22]. This
is summarized by Greaves et al [23], as process parallel to Darwanian natural
selection, in which cancer clones are asexually reproducing , unicellular quasi-
species. Strong evidence suggests tumours may exhibit a branched evolution
where several distinct subclonal populations may exist within a single tumour
[24, 25, 26]. The observed intratumour heterogeneity can be seen as strong evi-
dence of the mutator phenotype hypothesis [26], which predicts that that cancer
development is a random process driven by an elevated spontaneous mutation
rate compared to normal human cells [27].

The genetic heterogentity of the tumour tissue combined with spatial differ-
ences in environmental stressors leads to development of intratumor phenotyp-
ical differences [25].

2.2 Magnetic Resonance Imaging

The section on MRI is adapted from a project thesis written by the author of
this thesis with minor changes [28].

A complete description of MRI is outside the scope of this report and the
interested reader is referred the abundance of available books and reports on
the subject. A short description covering some of the relevant concepts will
nonetheless be given. MRI is a non-invasive imaging technique that has been
under continuous development and improvement since its discovery and is today
used for a wide and steadily growing range of diagnostic applications.

MRI is based on the characteristic magnetic dipole moments, ~mp, shown
by nuclei with an uneven number of number of nucleons. The most commonly
used in medical imaging in the hydrogen nucleus (1H). Upon interaction with

an external magnetic flux density, ~B0, the magnetic dipole moment of a proton
will start to precess about ~B0 with a characteristic frequency, ω0 proportional

9

to external magnetic flux density

ω0 = −γB0. (1)

In equation (1) γ is the gyromagnetic ratio which for a simple proton is γ =
e/2m. The precession frequency ω0 is called the Larmour frequency and the
equation (1) is called the Larmour equation. The magnetic moment vector of
the protons will tend to align with the external magnetic field but will due to
the thermal energy associated with the absolute temperature be prevented from
complete alignment.

The distribution of spins in an external magnetic field will be almost spher-
ical, but slightly skewed towards the external magnetic field [29]. Even though
the individual protons are precessing about the external magnetic field, no pre-
cession of the macroscopic magnetization vector will be seen. The magnetization
vector must be tipped away from the external field direction for the precession to
be observed. This is accomplished through the application of a radiofrequency
magnetic field for a short time period (called an ’RF pulse’). Application of an
RF pulse will act as a torque on the magnetization vector rotating the net mag-
netization vector about the direction of which the RF pulse is applied. An RF
pulse of magnetic flux density ~B1 that is applied for a time interval t will have
the effect of creating a flip angle α between ~M0 and ~B0 given by the relation

α = γB1t. (2)

When the magnetization vector ~M0 has been flipped away from alignment
with the external magnetic field it will begin to precess. This is due to the
torque exerted by the external magnetic field on ~M0. ~M0 will gradually realign
with ~B0. The precession of ~M0 around ~B0 will be detectable as an induced
voltage in a receiver coil due to the fluctuating magnetic it represents.

Signal decay will primarily be due to two relaxation processes. These are
the ’spin-lattice’ relaxation and the ’spin-spin’ relaxation. The ’spin-lattice’
relaxation is relaxation of the signal due to interaction of the spins with their
surroundings. This will tend to regrow the magnetization along ~B0 once it
is flipped into the transverse plane. The rate at which the regrowth occurs
is defined by a time constant T1. ’Spin-spin’ relaxation is the dephasing of
clusters of spins constituting the magnetization vector ~M0. Clusters of similarly
behaving spins are called spin isochromats. If we presume, as often done in
MR, that the external field ~B0 is initially aligned along the z-axis, when ~M0 is
flipped into the xy-plane the dephasing will cause the component of ~M0 in the
xy-plane to diminish. The ’spin-spin’ relaxation is quantified through the time
constant T2.

In MRI the different T1 and T2 values of different tissues are utilized to
create contrast. Parameters that are used to get different image weightings,
that is whether to weight differences in the T1 of tissues or T2 of tissues, are
the echo time (TE) and the repetition time (TR). TE is the time between the
application of the initial pulse and the maxima of the following echo, and TR
is the time between application of excitation pulses. One of the most common

10

MRI sequences is the Spin Echo (SE) sequence. This sequence consists of 90°
excitation pulse repeated every TR. This is followed by a 180° pulse that will
have the effect of rephasing the spin isochromats to form an echo at the TE.
This can be thought of as hands on a clock. Assume you have three hands
centered at 6 o’clock each hand representing an isochromat. One hand will
move counterclockwise and one clockwise at a given speed and the last hand
will be stationary at 6 o’clock. Applying the 180° pulse will have the effect
of moving the stationary hand to 12 o’clock. While the two hands previously
diverging from 6 o’clock will now converge towards 12 o’clock. The maxima of
the echo will appear after the isochromats have had the same amount of time
to dephase as they’ve had to rephase leading to the 180° pulse placed at TE/2.
Excellent animations illustrating this sequence can be found online [30].

Bloch proposed a set of equations famously known as the Bloch equations
that are used to calculate the magnetization ~M0 in MRI and nuclear magnetic
resonance(NMR) [31]. Solving these for the SE sequence leads to a solution for
the transverse magnetization

M⊥(TR, TE) = M0(1− e−TR/T1)e−TE/T2. (3)

Equation (3) clearly shows the influence of time constants T1 and T2 and
the operational parameters TE and TR on the transverse magnetization. The
transverse magnetization is related proportionally to the signal induced in the
receiver coil. For TE << T2 the equation (3) can be approximated as (4) while
for TR >> T1 the equation can be approximated as (5). Thus for T1 weighting
of an image a short TE compared to T2 is chosen, while for T2 weighting of an
image a long TR compared to T1 is chosen. Plots the equations (4) and (5) for
various values of the relaxation constants T1 and T2 respectively are shown in
figure 2 and 1.

M⊥(TR) = C(1− e−TR/T1) (4)

M⊥(TE) = Ce−TE/T2 (5)

To form an image in using MRI spatial localization of the signal is needed.
Magnetic gradients are used to spatially encode each contribution to the signal.
A magnetic gradient Gz(~r), here assumed applied along the z-direction, will
when applied alter the Larmour frequency at which the affected protons precess
according to

ω = γ[B0 + zGz(~r)]. (6)

Efficient excitation of spins will only occur due to RF pulses with frequency
matching the Larmour frequency of the affected spins. Thus, only spins that
according to (6) has a frequency matching that of the RF pulse will be subject
to significant excitation. This is the basis for frequency encoding in MRI. One
gradient applied in one direction is used for selecting a slice to excite. This causes
only signal from this slice to be received. Another gradient is applied in the

11

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Figure 1: Normalized plot of the transverse magnetization as a function of TR
for different values of the relaxation constant T1.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Figure 2: Normalized plot of the transverse magnetization as a function of TE
for different values of the relaxation constant T2.

so called ’frequency-encoding’ direction which makes each the signal spatially
distinguishable within one direction of the excited slice through their frequency
by use of the Fourier transform. A third gradient is applied in the so called

12

’phase encoding’ direction causing is spatially distinct locations of the same
precession frequency to be distinguishable, and thus encoding the final of the
three spatial degrees of freedom.

As mentioned previously, the rotating magnetic field will induce a current a
receiver coil placed outside the patients. The strength of the current induced,
and thus the signal intensity, is proportional to the transverse magnetic field.
The signal is mapped to a spatial frequency domain called k -space where each
axis correspond to the spatial frequency along that direction. As denoted earlier
we have a frequency encoding direction and a phase encoding direction. How
the frequency encoding direction relates to the k -space is straight forward as
spins along the gradient have different frequency according to their position. In
the phase encoding direction we encode a phase to the spins at various spatial
locations, but a change in phase over distance is just another spatial frequency.
Thus the phase encoding direction is often more appropriately called the indirect
frequency direction. To create an image from the k -space a 2D-Fourier transform
is performed.

2.2.1 Diffusion Weighted Imaging

Diffusion of intra- and extracellular water in tissues will be restricted. This
means that if enough time is allowed to pass the mean diffusion distance is less
than than what is expected in free diffusion [9]. MRI can be used to measure
diffusion of water molecules in body by using a modified T2-weighted spin-echo
sequence as proposed by Stejskal and Tanner [32], which uses pair of symmetri-
cally balanced gradients around the 180° pulse. A linearly varying magnetic field
along the z-direction added to the static magnetic field B0 yields an effective
magnetic field in the z-direction given by equation (7).

Bz(z, t) = B0 + zG(z, t) (7)

whereGz = ∂Bz

∂z = G. The variation in angular velocity due to the additional
magnetic field imposed by the magnetic field gradient is shown as the second
term of equation (6) written as ωg in equation (8).

ωG(z, t) = γzG(z, t) (8)

Allowing this gradient to be affect the spins for an amount of time t will
cause a phase shift φG(z, t) compared having the gradient off. The resulting
phase shift can be calculated as

φG(z, t) = −
∫ t

0

dt′ωG(z, t′) = −γ
∫ t

0

dt′z(t′)G(z, t′). (9)

The total phase shift φ(z, t) can be found adding the phase shift due to the
static magnetic field, φ0 to φG

φ(z, t) = φ0(z, t) + φG(z, t) = γB0t+ γ

∫ t

0

G(z, t′) · z(t′)dt′ (10)

13

For an individual proton moving, the additional phase due to spin displace-
ment in the direction of the gradient will be proportional to the displacement
along the direction of the gradient [5]. At a certain TE in the modified Spin-
Echo sequence, the total phase shift for a particular spin will thus be equal
to

φ(TE) = γ

∫ t1+δ

t1

G(z, t′) · z(t′)dt′ − γ
∫ t1+∆+δ

t1+∆

G(z, t′) · z(t′)dt′ (11)

where δ is the time each motion probing gradient is applied for and ∆ is the
time between each of the gradients. If no motion along the gradient occur the
two terms cancel and no net phase shift is observed. In the case of diffusion each
spin will acquire a random displacement causing the phase shift of the individual
spins to differ. It can be shown [9] that these random phase shifts accumulated
by the individual spins lead to an signal echo attenuation expressed as

S(b,TE)SE = S0 exp (−TE

T2
) exp (−b ·ADC) (12)

where ADC is the apparent diffusion coefficient and the so called b-value is
the diffusion-sensitizing factor that can be calculated as

b = γ2G2δ2(∆− δ

3
) (13)

Now, assuming identical TE for two signal intensity measurements of differ-
ent diffusion b-value we can calculate the ADC as,

ADC = − 1

b1 − b0
ln
S(b1)

S(b0)
. (14)

The ADC of equation (14) becomes the diffusion coefficient D in voxels
where diffusion is the only type of motion [11]. Figure 3 shows a case where
good correspondence between the the measured values and the suggested model
is observed. A bigger discrepancy is seen in figure 4. As shown in (14), only
signal intensities in corresponding voxels imaged with two different b-values are
needed to form the ADC-map. However, more b-values gives more robust and
accurate estimates, especially where likely ADC values are not known a priori
[33].

Generally a range of b-values are used in DWI to study the relative water
diffusion of different tissues [34]. At a b-value of 0 s mm−2 free water will ap-
pear bright due to the fact that this essentially is just a normal T2w sequence.
Increasing the b-value to between 50 s mm−2 and 100 s mm−2 will cause signal
from blood is vessels to appear dark due to the large relative motion of blood.
Many tumours form highly cellular tissue where water movement is heavily re-
stricted. Therefore, even at high diffusion b-values from 500 to 1000 s mm−2

these tissues will remain bright.

14

0 200 400 600 800 1000 1200 1400
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

data
fitted curve

Figure 3: Fit of the logarithm of signal intensity versus b-value for a region of
interest in a patient with rectal cancer according to the ADC model shown in
equation (14). A good correspondence between model and result is observed.

0 200 400 600 800 1000 1200 1400
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

data
fitted curve

Figure 4: Fit of the logarithm of signal intensity versus b-value for a region
of interest in a patient with rectal cancer according to the ADC model shown
in equation (14). Sub-optimal correspondence between model and result might
warrant use of a more complex model.

15

2.2.2 Intravoxel Incoherent Motion

As mentioned in the previous section, the ADC becomes the diffusion coefficient,
D, in voxels where diffusion is the only type of motion. It has been known for
some time that the observed ADC values are sensitive to capillary perfusion [9,
11]. In well perfused tissues (e.g. 0-100 s mm−2) the signal attenuation observed
in a DWI sequence is due not only to diffusion, but also due to microcirculation
within the capillary network as this process also will lead to phase dispersion in
a DW-MRI. A method to correct for this motion was by suggested by Le Bihan
termed Intravoxel Incoherent Motion(IVIM) [9]. The microcirculatory perfusion
can be thought of as a type of ”pseudo-diffusion” as it, in the same way as the
diffusion, has no inherent orientation. The rate of motion due to perfusion is
greater than that of diffusion. This leads to more a greater displacement of the
protons during the DW-MRI sequence resulting in a steeper signal attenuation.
The effect will thus mainly be visible for lower b-values, and will be only account
for a small correction at higher b-values.

The IVIM model fits the relative signal intensity to a biexponential expres-
sion of the form

S(Bn)

S(B0)
= f · e−b·(D∗+Dblood) + (1− f) · e−b·D (15)

where f represents the perfusion fraction, D is the water diffusion coefficient in
tissue, D∗ is the pseudo-diffusion coefficient representing microcapillary perfu-
sion [33] and Dblood is the water diffusion coefficient in blood [35]. Using the
improved model on the same regions of interest as shown in figure 3 and 4 yields
better fits. The new improved fit of the IVIM model is shown in figures 5 and
6 together with the ADC fit for comparison.

16

0 200 400 600 800 1000 1200 1400
-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Data
IVIM-fit
ADC-fit

Figure 5: Fit of the logarithm of signal intensity versus b-value for a region of
interest in a patient with rectal cancer. The improved fit given by the IVIM
model suggested in equation (15) is shown as a solid line whereas the ADC fit
is shown as a dashed line. The figure represents the same ROI as figure 3

0 200 400 600 800 1000 1200 1400
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Data
IVIM-fit
ADC-fit

Figure 6: Fit of the logarithm of signal intensity versus b-value for a region of
interest in a patient with rectal cancer. The improved fit given by the IVIm
model suggested in equation (15) is shown as a solid line whereas the ADC fit
is shown as a dashed line. The figure represents the same ROI as figure 4

17

2.3 Machine Learning

2.3.1 Introduction

Machine learning is steadily finding more and more applications as methods
and hardware are developed and improved. Machine learning can be defined as
any algorithm improves at performing some task, T , as measured by some per-
formance metric, P , by learning from experience, E [36]. Thus, anything from
the rather simple least squares linear regression to the much more complex deep
learning methods can be called machine learning. Most machine learning models
fall into one of two categories: supervised learning and unsupervised learning.
In supervised learning the data is labelled before the model is trained [37]. That
is, for each observation of the predictor measurement(s) xi, i = 1, . . . , n there is
an associated response measurement yi. The goal of supervised learning is to
deduce a functional relationship that relates the predictor measurements to the
response [38, 37]. The performance of a supervised machine learning algorithm
is measured as its generalizations ability, that is, its capability to make correct
predictions on previously unseen data [39].

In unsupervised learning we lack the response variable. The goal of an un-
supervised machine learning algorithm is to discover interesting aspects of the
measurements [40]. One way of doing so is to try to generate labels that or-
ganize the data in meaningful way [37]. The accuracy for supervised machine
learning algorithms can be assessed having it make predictions on previously
unseen data, but where labels are still known. Accuracy can thus be quantified
using various performance measures comparing the predicted response from the
algorithm to the ground truth. No such ground truth labeling is known when
using unsupervised learning, and thus we have no such direct measure of suc-
cess [41]. This leads the exercise of applying unsupervised machine learning
techniques to be more subjective in character [40].

Variables can be classified as either qualitative (also called categorical) and
quantitative variables. Quantitative variables take numerical values whereas
qualitative variables take on one of K different classes, or categories. It is useful
to distinguish classes of supervised models based on the type of their response
variable. Regression models map the input space to numerical values, yi ∈ R.
Classification models, on the other hand, map the input space to one of K
pre-defined classes, yi ∈ G [42].

2.3.2 Model selection - The bias variance tradeoff

An important task in machine learning is figuring out which model to use given
a certain dataset. Suppose we have a functional relationship between predictor
values X1,X2, . . . ,Xp and the response variable, Y , given by

Y = f(X) + ε (16)

where f is some fixed unknown function representing the systematic infor-
mation that X yields about Y and ε is a random error term that is independent

18

of X and has a mean of zero. With out machine learning algorithm we seek find
and estimate for f , denoted f̂ , that yields accurate predictions on Y . Denoting
the the predictions on Y by Ŷ , and since the error term averages to zero, we
can predict Y using

Ŷ = f̂(X). (17)

In this equation f̂ represents our machine learning algorithm. In a regression
setting the most common measure of the goodness of fit is the mean squared
error (MSE), given by

MSE =
1

n

n∑
i=1

(yi − f̂(xi))
2, (18)

where f̂(xi) is the prediction our model f̂ gives for the ith prediction. It can

be shown that the expected test MSE, E
(
y0 − f̂(xo)

)2

can be decomposed into

three terms: the variance of f̂(x0), the squared bias of f̂(x0) and the variance
of the error term ε, as shown in equation (19).

E
(
y0 − f̂(xo)

)2

= Var(f̂(x0) + [Bias(f̂(x0))]2 + Var(ε) (19)

From (19) shows that in order to minimize the mean squared error on the
test data we seek a model that simultaneously has low bias and variance. Bias,
in this context, is the accuracy of the model across different possible training
sets. The variance component refers to the sensitivity of the learning algorithm
to small changes in the training data [43]. Even thought the discussion so far
has been around the regression setting, the concept of bias-variance trade-off
transfers classification with minor adjustments due to the fact that the response
no longer is quantitative.

It can be shown that classifier that is associated with the lowest test error
rate, on average, is a classifier that assigns each observation to the class that
is most likely given its predictor values. This is simply assigning each test
observation to class j ∈ G such that

arg max
j∈G

Pr(Y = j|X = x0). (20)

When working with real data however, we do not know the conditional
distribution of Y given X, and so we cannot compute the Bayes classifier.
Many machine learning methods try to estimate the conditional distribution of
Y given X through various assumptions. As is summarized No Free Lunch
Theorem we cannot expect one classification algorithm to outperform another
without making prior assumptions on the data. That is there is no ”best”
algorithm on for all problems and contexts [44].

19

2.3.3 Principal Component Analysis

Principal Component Analysis (PCA) is an unsupervised dimensionality reduc-
tion algorithm in which principal component of the data is calculated and used
to understand the data [40]. A variety of dimensionality reduction techniques
have been proposed, but PCA remains one of the most widely used [45, 46]. The
idea behind PCA is to reduce the number of dimensions of the dataset, while
preserving as much ’variability’ (i.e statistical information) as possible [45].

Assume we have a dataset with n observation on p numerical variables. This
dataset define p n-dimensional vectors X1,X2 . . .Xp. This can equivalently be
represented as the n× p matrix X whose column vectors Xj , j ∈ {1, . . . p} are
the measurements on the jth variable. In PCA we seek the linear combination of
the columns in the data matrixX that has the largest variance. Mathematically,
this can be written as

arg max
a

(var(Xa)) = arg max
a

(aTΣa) (21)

where Xa is matrix notation for the linear combination of columns of X,∑p
j=1 ajXj , and a is a coefficient vector with coefficients a1, a2, . . . ap com-

monly called loadings. Σ is the sample covariance matrix of the dataset. For
this problem to have a well defined solution an additional restriction must be
imposed. The most common restriction involves working with unit norm vectors
a such that aTa = 1. Using the method of Lagrange multipliers, denoting the
multiplier by λ, the problem is equivalent to finding

arg max
a

(aTΣa− λ(aTa− 1)) (22)

Differentiating with respect to a and equating to the null vector yields the
simple form of the solution

Σa = λa. (23)

Thus, since λ is a multiplicative constant, and a is a unit-norm vector, the
vector a that maximizes the variance of the linear combination Xa are the
eigenvectors of the sample covariance matrix. Since the eigenvalues are the
variances of the linear combinations defined by the corresponding eigenvector,

var(Xa) = aTΣa = λ, (24)

we see that specifically the largest eigenvalue, denoted λ1, and corresponding
eigenvector, denoted a1, maximize the variance of the linear combination Xa.

Using the method of Lagrange multipliers to successively maximize the vari-
ance of the linear combination Xai with the added restriction of orthogonality
of different coefficient vectors one can find that the full set of eigenvectors of Σ
are solutions. These solutions can also be shown to maximize ’uncorrelatedness’
since the covariance between two resulting linear combinations Xai and Xak is
given by aTi Σak = λka

T
i ak = 0 if i 6= k since ai and ak are orthogonal with unit

20

norm. The resulting linear combinations Xai, i ∈ {1, 2, . . . p} are called princi-
pal components (PC) of the dataset. The elements of these linear combinations
are called PC scores and the elements of the eigenvectors ai, i ∈ {1, 2, ..., p} are
called PC loadings.

Since our solutions were the eigenvectors of the sample covariance matrix
Σ, an alternative approach can be employed by the use of the Singular Value
Decomposition (SVD). This alternative approach is employed in many computer
algorithms performing PCA [47, 48]. SVD states that an n ×m matrix A can
be factored as

A = UDV T (25)

where U is an n × n orthogonal matrix, V is an m ×m orthogonal matrix
and D is an n×m diagonal matrix with non-negative entries (A n×m diagonal
matrix has min(n,m) along the diagonal, and all other entries are zero) [49].
Multiplying the matrix A with its transpose from either side we obtain

AAT = UDV TV DTUT = UDDTUT

ATA = V DTUTUDV T = V DTDV T .
(26)

The right-hand side of these relations describe the eigenvalue decomposition
of the left hand sides. We notice that the columns of V are the eigenvectors
of ATA, the columns of U are the eigenvectors of AAT and that the non-zero
elements of D are the square roots of the non-zero eigenvalues of ATA and
AAT .

If the PCs are redefined in terms of the centered variables X∗
j = Xj − X̄j ,

where X̄j is the expectation value of the variable Xj then the sample covariance
matrix gets the simple form

(n− 1)Σ = X∗TX∗. (27)

The centering does not change the solution as the covariance matrix of the
centered solution will remain the same.

The principal components of set of data with p-variables provides the best
sequence of linear approximations to that data, out of all ranks q ≤ p [41].
Computing the singular value decomposition of the data matrix X we see that
by the results obtained in equation (26) the right side of (27) becomes

(n− 1)Σ = V D2V T , (28)

and thus the column vectors of V are the eigenvectors of Σ. Calculations
of the PCA has now been reduced to computing the SVD of the centered data
matrix X∗. Rearranging the entries di, i ∈ {1, 2, . . .min(m, p)} such that d1 ≥
d2 ≥ · · · ≥ dmin(m,p) inD and rearranging the columns ofU correspondingly the
solution remains valid. Equation (23) relates the eigenvalues and eigenvectors
of the covariance matrix to the variance of the linear combination var(Xa)

21

Figure 7: The principal components drawn as vector on samples drawn from a
multivariate normal distribution. The first principal component is the longest
of the vectors as it points in the direction of greatest variance in our data. The
figure inspired by the book [50] .

we seek to maximize. The eigenvalues, λi were found to be the square of the
diagonal elements of the matrix D. Since the elements of the diagonal matrix D
now are rearranged into columns of descending value from left to right, and the
columns of V is rearranged accordingly, the first eigenvalue will corresponds to
the eigenvector maximizing the variance. This eigenvecotor is the first column
of the matrix D. The preceeding eigenvectors correspond to the vectors that
maximize the variance of the linear combination var(Xai) under the condition
that coefficient vector ai is orthogonal to all coefficient vectors corresponding
to larger λi.

Finding the g principal components that captures the most variance in our
data matrix now amounts to selecting the first g columns of the matrix D. This
can be shown to be the best g-dimensional approximation of the original data
matrix in terms of least squared differences [45]. The principal components of
a synthetic dataset where samples are drawn from a multivariate normal dis-
tribution are shown in figure 7. The quality of a PCA solution can be given
as the proportion of total variance explained by selected principal component.
Using relation between the variance of a principal component and eigenvalues
of the covariance matrix from equation (23) the variance explained by the prin-
cipal component j is λj/

∑p
j=1 λj , and the variance explained by the the first g

principal components is thus
∑g
i=1 λj/

∑p
j=1 λj

22

Figure 8: Scatter plot of samples drawn from two multivariate normal distribu-
tions with different mean and covariance matrices.

2.3.4 Cluster analysis

Cluster analysis is summarized by Jain [15] as the formal study of methods and
algorithms for grouping, or clustering, of objects according to measured or per-
ceived characteristics of similarity. The lack of predetermined labels distinguish
clustering from classification. The goal of clustering is not to find and accurate
probabilistic description of the data, rather to find hidden data structures or
patterns in the data [51].

Clustering is useful if we can find a small number of groups of objects yielding
a concise description of the similarities and differences observed in our data
set [46]. Numerous methods have been proposed for this task. Since there is
no direct measure of success of a clustering algorithm, the performance of a
clustering method should perhaps be judged based on its usefulness in the given
scenario [46].

Numerous different clustering algorithm have been proposed separating the
data based on different measures of similarity. No single one of these algorithms
that will perform better than all others across all datasets, and even the same
algorithm with different selection of parameters may cause completely different
clustering results [51]. Example of two datasets that may require different clus-
tering strategies are shown in figures 8 and 9. In the figure 8 the data samples
are drawn from two multivariate normal distributions with different mean and
covariance matrix. In the figure 9 positions along the circular arch of a circle is
drawn from a uniform distribution. The radii are then drawn from a set con-
taining two radii with equal probability of drawing either one. Some Gaussian
noise is superimposed to the radii.

The procedure of evaluating the results of a clustering algorithm is known

23

Figure 9: Scatter plot of radially separated clusters. For each point a radius is
randomly drawn from a population of two radii at equal probabilities. Gaussian
noise is added the the radius value. The placement along the circle arch is drawn
from a uniform random distribution.

as cluster validity [52]. When performing clustering validity it is sometimes
indicated that there are no justifiable cluster is the dataset. This is of course
also an acceptable answer [46]. In the following subsection we will discuss two
common clustering algorithms, as well as some criteria used to assess the validity
clustering solution given a particular set of parameters.

2.3.5 k-means Clustering

The following section is loosely based on the article Data clustering: 50 years
beyond K-means by Jain et al. [15].

The k-means clustering algorithm was proposed more than 50 years ago, but
is still to this day one of the most widely used clustering algorithms. Its contin-
ued success can be attributed to its ease of implementation, simplicity, efficiency
and empirical success across a wide range of scientific fields [15]. The algorithm,
as the names implies, clusters the data samples into k non-overlapping clus-
ters. Suppose we have a dataset, X, consisting of n d-dimensional observations
xi, i ∈ {1 . . . n}. We let these points be clustered into a set of k clusters C,
denoting each cluster by cj , j ∈ {1, . . . , j}. The classic k-means algorithm seeks
to minimize the loss function J(C) defined as the sum of the squared distance
between each data sample, xi, and the cluster center to to which it is parti-
tioned. Denoting the cluster center of the jth cluster as µj this amounts to

24

minimizing

J(C) =

k∑
j=1

∑
xi∈cn

||xi − µj ||2 (29)

The algorithm does so by performing the following sequence of steps:

1. Initialize a k-partition randomly or based on some prior knowledge.

2. Generate a new partition by assigning each sample to its closest cluster
center.

3. Compute new cluster centers.

4. Repeat steps 2 and 3 until cluster membership stabilizes.

If convergence is found, the k-means algorithm is not guaranteed to have
converged to the global minimum of J(C) as cluster membership may also sta-
bilize at a local minimum of J(C). At this point it is worth noting that since
J(C) always decreases with an increasing number of clusters, and is by defini-
tion equal to zero when k = n, it only makes sense to minimize J(C) for a fixed
number of clusters k. The user must thus supply the algorithm with a suitable
k, which is the most critical parameter of the algorithm.

Using the classical k-means algorithm on the synthetic data from figure 8
we can see the effect of selecting k erroneously. Selecting the correct k yields
the clustering result shown in figure 10a, where only few samples are assigned
to the wrong cluster. Selecting k = 3 in yields the clustering shown in figure
10b. A large number of the samples in the cluster that is least spherical are now
erroneously assigned.

The loss function defined in equation (29) uses the Euclidean distance be-
tween points and their cluster centers. As a consequence, the resulting algorithm
will find spherically shaped clusters in the data [15]. A more generalized de-
scription of the k-means algorithm that allows for different distance measures
to be used in the loss function is presented by Kashima et al. [53].

2.3.6 Finite Mixture Densities - Gaussian Mixture Models

The following section is based primarily on the book Cluster Analysis by Everitt
et al. [46].

The k-mean algorithm considered thus far makes no explicit assumptions on
the patterns of the data samples. This does not mean that no such assumptions
have been made, but it differentiates them from the family of method discussed
in this section. In finite mixture density models a formal statistical model is
postulated for the populations from which the samples are drawn. Each sample
is assumed drawn form a cluster/sub-population. Each of these clusters are
assumed to have different multivariate probability density functions, resulting
in what is called finite mixture densities for the population as a whole [46]. The

25

Cluster 2
Cluster 1
True
False

(a) k is set to 2

Cluster 2
Cluster 1
Cluster 3
False
True

(b) k is set to 3

Figure 10: k-means clustering on a synthetic dataset consisting of samples drawn
from two multivariate normal distributions with different means and covariance
matrices. The colors represent which cluster each sample is assigned to by the
k-means algorithm. The marker style represent whether the given assignment
is correct.

26

clustering problem is now estimating the parameters of the probability density
functions from which that samples are assumed to have been drawn.

Suppose x is a p-dimensional random variable drawn from a dataset X con-
sisting of the set of clusters C = {c1, c2, . . . ck}. Each cluster is allowed to have
its own probability density function (PDF), gj , j ∈ {1, . . . , k}, parameterized
by θj . Let the probability that a sample is drawn from cluster cj , be denoted
by pj . By the law of total probability, the PDF of the random variable x is
given by

f(x;p,θ) =
∑
j∈C

pjgj(x;θj) (30)

where pT = (p1, p2, . . . , pk) and θT = (θ1,θ2, . . . ,θk).
Finite mixture are suitable models for cluster analysis if we can assume

that the dataset is sampled from a set of clusters with different probability
distributions. The probability distributions of the cluster may come from the
same family and differ only in the parameter values, or be altogether different
PDFs.

Denoting the estimated parameters by p̂j and θ̂ we can by Bayes theorem
estimate the posterior probability that a sample belongs to the cluster cj as

Pr(cj |xi) =
p̂jgj(xi; θ̂j)

f(xi; p̂, θ̂)
. (31)

A sample will be assigned to the cluster in C that maximizes the posterior
probability function.

Now suppose that the samples x1,x2, . . .xn are samples drawn from the
PDF in equation (30) with a given set of mixture densities with set parame-
ters. We’ll denote this specific model by M. Equation (30) then represents the
probability of that one sample xi is drawn from the model of probabilistic clus-
ters M, Pr(xi|M). The samples are assumed to be generated independently
and thus the probability that a given set of samples X = {x1,x2, . . .xn} is
generated by M is

Pr(X|M) =

n∏
1=1

Pr(xi|M) =

n∏
1=1

k∑
j=1

pjgj(xi;θj). (32)

It should now be clear that the task of finite mixture densities on the dataset
X, is to find a set of clusters C, parameterized by θ and with mixture proportions
p, that maximizes the probability Pr(X|M) [54].

The probability function obtained in equation (32) is the likelihood func-
tion of M [55]. For machine learning purposes the likelihood function is often
converted to the log-likelihood function, l, by taking the natural logarithm

l(p,θ) =

n∑
i=1

ln

k∑
j=1

pjgj(xi;θj) =

n∑
i=1

ln f(xi;p,θ) (33)

27

In cases where the likelihood and log-likelihood functions are too compli-
cated to employ the normal methods of minimization an iterative approach is
used. Perhaps the most common iterative approach is know as the expectation-
maximization (EM) algorithm [46, 56]. The EM algorithm starts by making
an initial partition of the dataset as well as making guesses on the additional
parameters. Then it iterates trough the following two steps until the cluster-
ing converges, or the change in the log-likelihood/likelihood function sufficiently
small [54, 57]:

1. Expectation step: each sample is assigned to the cluster for which the
posterior probability, given in equation (31), is the largest.

2. Maximization step: the probability estimates from above is used to re-
estimate the parameters of each cluster such that the expected likelihood
is maximized.

If we restrict the PDF of each cluster to a multivariate normal distribu-
tion where the jth cluster has a mean vector µj and a convariance matrix Σj

maximum likelihood yields the following parameter estimates

p̂j =
1

n

n∑
i=1

Pr(cj |xi) (34)

µ̂j =
1

np̂j

n∑
i=1

xi Pr(cj |xi) (35)

Σ̂j =
1

n
(xi − µj)(xi − µj)T Pr(cj |xi) (36)

Each of these parameters are assigned for each maximization step. These
values are again used to reestimate the posterior probability Pr(cj |xi) before
the next iteration in the algorithm.

The expectation maximization algorithm is simple and easy to implement.
It should be noted that it doesn’t in general converge to a global maximum,
and may instead converge to a local maximum [54]. This may be partly offset
by running multiple duplicates with different initial parameters and comparing
their log-likelihood/likelihood values.

In the following the clusters will be assumed to have multivariate Gaus-
sian/normal densities, and the resulting models will be referred to, as they are
in many common software packages, as Gaussian Mixture Models (GMM) [58,
59]. Fitting a GMM to the data in figure 8 we obtain the clustering shown in
figure 13. Comparing the clustering results to that of the k-means algorithm
presented in 10a we see that the GMM performs better in areas where the clus-
ters intersect/overlap. Compared to the k-means algorithm the GMM are more
flexible. It can be shown the GMM where each cluster is assumed to have an
equal diagonal/spherical covariance matrix σI turn into a probabilistic k-means
algorithm [41].

28

This highlights some key differences between the clusters found by the k-
mean algorithm and the GMM. The k-means algorithm will works best with
spherical clusters of equal extent. That is, it implicitly assumes that each cluster
in the data has the same diagonal covariance matrix and that only the position
of the cluster center differs. A comparison of the clustering performance of the
k-means algorithm on two clusters drawn from multivariate normal distributions
with different covariance matrices σ1I and σ2I where σ1 6= σ2 is shown in figure
11. The differences between the algorithms are even more visible when the
covariance matrices of the clusters no longer can be assumed to be spherical.
An example of this is shown in figure 12. Another notable deficit of the k-means
algorithm compared to the GMM is when the density of each cluster is different
[60]. This is shown in figure 14 where the covariance matrices of the clusters are
equal and spherical, but the probability of the samples being drawn from each
of the clusters is different.

Up until this point the notation clusters have been used to denote each of the
multivariate normal distributions resulting from the GMM clustering solution.
In cases where cluster samples cannot be assumed to have purely a multivari-
ate normal PDF, multiple multivariate normal distributions may be needed to
represent a cluster adequately [61]. To refer to the multivariate normal distri-
butions as clusters can thus be a bit misleading and lead to an overestimation
for the number of clusters in the data. Thus, from here on, each multivariate
normal distribution resulting from GMM clustering solution will be referred to
as a component rather than a cluster.

29

Cluster 2
Cluster 1
False
True

(a) k-means clustering

Cluster 2
Cluster 1
False
True

(b) GMM clustering

Figure 11: Clustering with k-means and GMM of samples drawn from two mul-
tivariate normal distributions with spherical covariance matrices. The density
of samples is made equal within each cluster.

30

Cluster 2
Cluster 1
False
True

(a) k-means clustering

Cluster 1
Cluster 2
True
False

(b) GMM clustering

Figure 12: Clustering with k-means and GMM of samples drawn from two
elongated multivariate normal distributions.

31

Cluster 1
Cluster 2
True
False

Figure 13: Gaussian mixture model fitted to a dataset drawn from two multi-
variate normal distributions.

32

Cluster 1
Cluster 2
True
False

(a) k-means clustering

Cluster 1
Cluster 2
True
False

(b) GMM clustering

Figure 14: Clustering with k-means and GMM of samples drawn from two
multivariate normal distributions with equal spherical covariance matrices. The
probability of drawing a sample from the orange cluster is greater than that of
the blue leading to different sample density within each cluster.

33

2.4 Cluster validity

2.4.1 Visually uncovering structures in data

The procedure of evaluating the results obtained by a clustering algorithm is
know as cluster validity [52]. Both k-means and GMM take as input the number
of clusters in the data. This means that they will return a partitioned dataset
into the selected number of clusters whether or not there are any reasons to
believe there are any clusters present in the data. A strong apriori hypothesis
should thus be held that clusters exists in the data for clustering to be effective.
Graphical displays of the data can be useful in suggesting that data contain
substantial clustering [46]. In the case of multidimensional data effective visu-
alization becomes difficult [52]. A tool for visualizing multidimensional data is
the so called scatter plot matrix. This is a matrix p by p grid of scatter plots
where in row i column j the scatter plot of the i-th variable is plotted against
the j-th. Since a variable plotted against itself give little additional insight the
histogram of each variable is often plotted along the diagonal.

When the number of samples in the dataset becomes large, the structures in
the data may be difficult to uncover using the simple scatter plot. This is due
to the fact that many samples now are likely to overlap making it hard to get
a sense of density. This can be solved by the used of kernel density estimates
(KDE) [62, 63]. The KDE is a non-parametric density estimate. Assuming we
have some data samples X1, X2, . . . Xn drawn from an unknown PDF, f , the
univariate KDE is defined as

f̂(x, h) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
(37)

where h is a real positive number called the bandwidth and K is the so
called kernel function. A number of different function can be taken to be kernel
functions as long as they satisfy some basic requirements [64, p. 26]. However,
the most common kernel the normal distribution

K(x) =
1√
2π
e−

1
2x

2

. (38)

The kernel estimator can understood as the sum of ’bumps’ placed at the
observations, where the kernel function determines the shapes of the bumps and
the bandwidth determined their width [46]. The univariate kernel densities can
be generalized to a d-dimensional multivariate kernel density estimator given by

f̂(x,H) = n−1
n∑
i=1

|H−1/2|K(H−1/2(x−Xi)) (39)

where H is the d×d bandwidth matrix or smoothing matrix, and Xi are the
d-dimensional observations [64]. There are a number of ways selecting a suitable
bandwidth, known as bandwidth selectors, for the kernel functions. However,

34

these are outside the scope of this report. A review of the most popular meth-
ods are given in the book Nonparametric Kernel Density Estimation and Its
Computational Aspects by Artur Gramacki [64].

2.4.2 Cluster Validaty Indices (CVI)

Many clustering algorithms are by themselves not able to determine the number
of cluster naturally occurring in the data, and therefore the number of clusters
must be supplied to the algorithm by the user. However, information about
the number of clusters in the data is rarely know a priori. The usual strategy
is running the clustering algorithm several times with a different number of
proposed clusters and evaluating the clustering solutions obtained [65]. The
process of evaluating the results of a clustering algorithm is known by the term
cluster validity [52]. Several mathematical criteria, known as Cluster Validity
Indices, have been proposed as measures of goodness of clustering solutions [66,
67, 68, 69, 70, 71, 72].

Two of the main categories of CVI are internal and external clustering val-
idation [73]. The difference between the two is wether it relies on information
not contained in the dataset or not. External criteria rely on a priori knowledge
about the clustering structure of the dataset [52]. Internal clustering criteria
seek to find the optimal clustering solution without any additional informa-
tion, or any preconceived knowledge about the structures of the clusters in the
dataset. Thus, in situations where no external information is available, internal
validation measures are the only options for cluster validation measures [73].

There are two widely accepted criteria for partitioning a dataset used in
most CVIs [52]: compactness - a measure of closeness of elements within the
same cluster and separability - a measure of how different each cluster are from
one another [71]. The best clustering solution for a given dataset will provide
clusters where elements within each cluster are as similar as possible, while
keeping them as different as possible from elements of a different cluster.

The most common CVIs for crisp/hard clustering, that is clustering where
partial cluster membership aren’t allowed, are the Calinski and Harabasz index
(CH) [66], Davies and Bouldin index (DB) [68] and the Silhouette Coefficient
(Sil) [70] [74]. The more recently proposed Gap Statistic (GS) [69] has also seen
quite frequent use.

A large number of publications have been made on the comparison of CVIs
on different synthetic and real datasets [72, 71, 73, 75]. A recent, extensive
study conducted by Arbelaitz et al compared the performance of 30 CVIs in 720
synthetic and 20 real datasets using the three clustering algorithms k-means,
average-linkage and ward-linkage. In this study it was found that the CVIs
could be subdivided into three groups according to performance on the datasets.
Amoung other indices, DB, CH and Sil were found in the best performing group.
In addition, a variation on the DB index, the DB*, was found to perform well.
DB* was proposed by Kim and Ramakrishna in 2005 [71] together with adap-
tions of a few other commonly seen CVIs. In their work they found that DB*
outperformed the traditional DB index. They also proposed a further revision,

35

DB**, which was shown to outperform both the DB and DB* index. The clus-
tering indices were tested on 11 datasets of which seven were synthetic and four
real.

Liu et al. [73] compared the performance of 11 CVIs across 5 different
aspects: monotonicity, noise, density, subclusters and skewed distributions, and
found that the index S Dbw [76] was the only index that performed well across
all aspects [73]. However, in the extensive testing performed by Arbeilaitz et al,
it was outperformed by Sil, DB, DB* and CH. It is also quite computationally
expensive [71] and thus will no longer be considered in this thesis.

Underneath follows the mathematical definition of some of the better per-
forming aforementioned CVIs. The up arrow (↑) signifies that the criterion
is to be maximized and down arrow (↓) signifies that it is to be minimized.
The following notation will be used. Consider an F-dimensional dataset X =
{x1, x2 . . . xN}. A cluster solution of X will partitions X into K disjoint clus-
ters: C = {c1, c2 . . . cK}, where each assigned to exactly one cluster. The
centroid of a cluster is its mean vector c̄k = 1/|ck|

∑
xi∈ck xi and likewise the

centroid of the whole dataset is X̄ = 1/N
∑
xi∈X xi. The euclidean distance

between sample xi and xj is denoted by d(xi, xj).

Calinski-Harabarsz (CH↑) [66] The Calinski-Harabasz index evaluates the
cluster validity using average distances of points within a cluster to its centroid
as a measure of compactness, and separation between the cluster centroid to
the centroid of the dataset as a measure of separability.

CH(C) =
N −K
K − 1

∑
ck∈C|ck|d(c̄k,X̄)∑

ck∈C
∑
xi∈ck d(xi, c̄k)

(40)

Davies-Bouldin family of indices (DB, DB*, DB** ↓) [68, 71] The
Davies-Bouldin is calculated by for each cluster ci finding the maximum value of
the ratio between the sum of average intracluster distances of ci and cj and the
distance between the clusters d(ci, cj) for all j 6= i. The DB index is then found
by taking the average of the maximum values of this ratio for each i. That is

DB(C) =
1

K

∑
ck∈C

(
max

cl∈C\ck

S(ck) + S(cl)

d(c̄k, c̄l)

)
(41)

where S(ck) is the average intracluster distance S(ck) = 1/|ck|
∑
xi∈ck d(xi, c̄k).

The DB* index modifies the expression by using the minimum distance between
a the cluster center c̄k and any other cluster center in the ratio

DB*(C) =
1

K

∑
ck∈C

(
maxcl∈C\ck{S(ck) + S(cl)}

mincl∈C\ck d(c̄k, c̄i)

)
. (42)

The DB** index adds an additional additive term called the maxDiffi(K) to
the ratio. To calculate the DB** for a clustering solution with K clusters, the
clustering solution with K + 1 clusters must also be found. Denote the average

36

intracluster distance for cluster ck in a clustering solution with K clusters as
Sck(K). The maxDiffk(K) is then defined as

maxDiffk(K) = max
Kmax,...,K

max
cl∈CK\ck

{Sck(K) + Scl(K)}−

max
cl∈CK+1\ck

{Sck(K + 1) + Scl(K + 1)}
(43)

where CK is the clustering solution with K clusters. The index then defined
as

DB**(CK) =
1

K

∑
ck∈CK

(
maxcl∈CK\ck{Sck (K) + Scl(K)} + maxDiffk(K)

mincl∈CK\ck d(c̄k, c̄i)

)
(44)

Silhouette coefficient (Sil ↑) [70] The silhouette coefficient uses a cohesion
measure based on the average distance between all points in a cluster. As
a measure of separability it uses the smallest distance from a sample in one
cluster to any sample of any other cluster. Mathematically this is

Sil(C) =
1

N

∑
ck∈C

∑
xi∈ck

b(xi, ck)− a(xi, ck)

max{a(xi, ck), b(xi, ck)} (45)

where

a(xi, ck) =
1

|ck|
∑
xj∈ck

d(xi, xj) (46)

b(xi, ck) = min
cl∈C\ck

 1

|cl|
∑
xj∈cl

d(xi, xj)

 . (47)

It should be noted that Sil is quite computationally expensive having quadratic
time complexity in the number of samples as compared to the DB index that is
linear in the number of samples [77].

2.4.3 Cluster validity in mixture models

In mixture models clustering using information theoretic methods has become
increasingly popular [46] and has become a standard methodology [61]. The two
most popular information criteria are the Akaike information criterea [78] (AIC)
and the Bayesian information criterion [79] (BIC) [46]. Multiple studies have
found that BIC works well in practice [80, 81], and that usually outperforms
the AIC in assessing component membership in both real and synthetic datasets
[82, 83].

The BIC is defined as

BIC = 2l(p̂, θ̂)− d lnn (48)

where l is the maximized value of the log-likelihood function of the mixture
model and d is the number of free parameters in the mixture model.

37

2.5 Survival Analysis

Classical survival analysis focuses on the time elapsed until a single event has
occurred for a given patient [84]. Some examples of events, or endpoints, of
interest within medical research may be death, occurrence of some disease or
relapse of a malignancy. The reason why survival analysis requires special sta-
tistical models is that survival data usually include individuals where events
have yet to occur [85]. Survival data thus constitute a mixture of complete
and incomplete observations. The incomplete observations, where the event of
interest has yet to occur, is termed censored survival times [85]. A patient is
also considered to be censored if it drops out of the study before the end of the
study period [86].

Two time dependent functions are of particular interest when analysis sur-
vival data, namely, the survival function, S(t) and the hazard function h(t) [86].
The survival function gives the expected proportion of patients for which the
event of interest has yet to occur at time t [84]. Formally, this can be written
as

S(t) = P (T > t), (49)

where T is the random variable denoting the survival time. The survival function
can also be interpreted as the probability of surviving until at least time t [86].
The hazard function, h(t), is the conditional probability of dying at time t given
that the patient has survived up until that time.

The graph of the empirical survival function can be useful in visualizing
survival data. Consider a random sample of survival times t1, t2, . . . , tn. If no
censored observations are present for the n observations, the empirical survival
function

Ŝ(t) =
n′(t′ ≥ t)

n
t ≥ 0 (50)

where n′(t′ ≥ t) denotes the number of patients that has survived until at least
time t. Some modifications are needed when working with censored survival
data. This is due to the fact that the number of survival times equal to or
exceeding t is generally not known exactly. The required modification is known
as the Kaplan-Meier (KM) estimate and is also called the product-limit (PL)
estimate.

The KM estimate gives a non-parametric estimate of the survival curve of
survival data containing censored survival times [87]. Suppose we have a random
sample of n, survival times t′i, i ∈ {1, 2 . . . n} and that there are k, (k ≤ n)
distinct times at which events occur t1 < t2 < · · · < tk. Denote the number of
deaths that occur at time tj by dj and the number of patients at risk at time tj ,
that is the number of patients that has survived and are uncensored just prior
to tj , by nj . The KM estimate of S(t) is then defined as

Ŝ(t) =
∏
j:tj<t

nj − dj
nj

. (51)

38

By convention, censoring times that are recorded to be equal to the time for
which an event occurs are considered to happen infinitesimally later. If latest
observed time is that of a censored sample, the KM estimate is only defined up
until the time of this observation.

Three assumptions are made in the KM estimate: censoring is assumed to
be unrelated to the prognosis, the survival probabilities are assumed to be equal
for patients recruited throughout the study’s inclusion period and that events
occur at the recorded times [88]. The third assumption is fulfilled to a lesser
and greater degree in different types of events and data. When considering
conception data, fulfilment of this assumption is no problem. However, if the
considered event is recurrence of some malignancy, the event will only be known
to have occurred sometime between the time it is found and the time of the last
inspection [89].

Even though the estimated survival curves are a great tool for visually com-
paring the surviving proportions of patient groups at any specific time, they do
not provide a comparison of their the total survival experience [88]. For this
purpose, formal methods of hypotheses testing is needed [89]. The most com-
mon hypothesis test for comparing the survival of patient groups is the logrank
test [88].

The logrank test is a statistical hypothesis test that compares the null hy-
pothesis that the risk of death in two patient groups are the same to the alter-
native hypothesis that it is different. Under the null hypothesis the number of
deaths at a given time is expected to be distributed according to the number of
patients at risk within each group at that time.

Suppose we have two patient groups A and B. Denote the total number
of deaths at time tj by dj . The total number of deaths is distributed between
daeths in patient group A, djA and deaths in patient group B, djB such that
the total nunber of deaths dj = djA + djB . In a similar manner we denote the
number of patients at risk at time tj from group A, B and in total by n′jA, n′jB
and n′j respectively. Under the null hypothesis of equal risk of death between
the two patient groups djA and djB follow a hypergeometric distribution [90].
From the properties of the hypergeometric distribution we thus have that the
expectation value and variance of djA are given by

E(djA) = n′jA
dj
n′j

var(djA) =
dj(n

′
j − dj)n′jAn′jB
n′j

2(n′j − 1)

(52)

39

By summation over all times of death, tj , we obtain

OA =
∑
tj

djA

EA =
∑
tj

E(djA)

VA =
∑

var(djA)

(53)

where OA is the observed number of deaths in group A and EA and VA are
the expected number of deaths and variance in the number of deaths of group
A under the null hypothesis. The logrank statistic for equivalence of death rate
between two patient groups is

(OA − EA)2

VA
(54)

which can be shown to be approximately follow a χ2 distribution with one
degree of freedom [85]. The logrank test is based on the same assumptions
as the KM estimate. In addition, the logrank is based on the assumption of
proportional hazards, which is that the relative risk between the patient groups
remains constant over time [91]. If this assumption fails, the power of the
logrank test to detect differences of survival between groups may be severely
reduced [92].

The most common way of checking the assumptions of proportional hazards
is to fit a Cox model with one term representing the group partitioning and
another term representing the interaction of the partitioned group and time
[91]. In a recent study by Royston et al. [92] that reviewed 50 randomised
controlled trials from four leading medical journals with time-to-event outcomes
where logrank and Cox proportional hazard models were used, the proportional
hazard assumptions were checked and reported in only 28% of the studies.

2.6 Proportional Hazard Models and Cox Regression

In proportional hazard (PH) models the hazard function for the lifetime, T ,
given a p× 1 vector of fixed covariates, x, is

h(t|x) = h0(t)r(x). (55)

Here only the form r(x) = exp (βTx) with β a p× 1 vector of regression coeffi-
cients will be considered. The models are called PH models due to the fact that
individuals will have hazard functions that are constant multiples of another
[87].

Consider a random sample (ti, δi), i ∈ {1, . . . , n} with k distinct lifetimes
t(1) < ... < t(k), and n−k censoring times. δi is referred to as censoring indicator
or status indicator and is zero if the subject is censored and one otherwise. Let
Ri = R(t(i)) denote the set of patients who are alive and uncensored just prior

40

to time t(i). This if referred to as the risk set. The probability of subject
i enduring an event at time t given that an event occurs at time t and that
i ∈ R(t) is

h(t|xi)∑
l∈R(t) h(t|xl)

=
exp (βTxi)∑

l∈R(t) exp (βTxl)
. (56)

Based on this intuition Cox [93] proposed the following likelihood estimate
for the regression coefficients

L(β) =

k∏
i=1

exp (βTx(i))∑
l∈R(t) exp (βTxl)

. (57)

Solving for the regression coefficients can be performed using the maximum
likelihood (ML) equation U(β) = 0 where U(β) = ∂

∂β logL(β). The calculation
of p-values and confidence intervals for the regression coefficients are outside the
scope if this thesis. A summary of test statistics that can be used is given by
Aalen et al [84].

The hazard ratio, HR, between patients indexed 1 and 2 can now be esti-
mated as

ĤR =
ĥ(t|x1)

ĥ(t|x2)
(58)

where ĥ is the estimated hazard and xi, i ∈ {1, 2} are the covariate vectors for
the considered patients. Since we restricted ourselves to only discussing relative
risk functions of the form exp (βTx), the estimated HR becomes

ĤR = exp(βT (x1 − x2)). (59)

The interpretation of HR in terms of β is as follows: for a difference of
one unit of element j in x1 as compared to x2 when all other elements in the
covariate vectors are kept equal, the expected hazard of patient 1 is expβj times
that of patient 2.

41

3 Materials and Methods

3.1 OxyTarget study

The patient cohort used in this thesis were participating in a wider study titled
”The OxyTarget study – Functional MRI of Hypoxia-Mediated Rectal Cancer
Aggressiveness”. Patient inclusion was in the period from October 2013 and
December 2017. All patients treated for rectal cancer at Akershus University
Hospital were invited to participate. The study seeks to identify novel imaging
biomarkers of hypoxia-induced rectal cancer aggressiveness in order to predict
patients with poor response to CRT [94]. A total of 192 patients were enrolled
in the study.

3.2 Images & Patients

Of the 192 patients enrolled, this thesis used data from a cohort of 61 patients
having matched T2w images, DWI and ROIs where resulting images did not
show significant artifacts. All patients had DWI performed for b-values 0, 25,
50, 100, 500 and 1000 s mm−2. Two patients where the T2w images and DWI
were not made along the same axis were removed. In addition five patients were
removed due to alignment issues between the T2w images and the DWI. This
is explained in more detail in section 4.1.

The resulting patient cohort had a total of 54 patients. The patient cohort
was partitioned according to whether a given patient were to receive preoper-
ative CRT. This was done to keep the treatment within a treatment group as
homogeneous as possible and to decrease the effect of treatment differences be-
tween patients in the survival analysis. From now on these patient groups will
be referred to as CRT and No CRT and treatment groups will be used to refer
to them both. The partitioning resulted in a CRT group of 24 patients and a No
CRT group of 30 patients. The patient demographic for each treatment group
is summarized in table 1.

MRI was performed on a Philips Achieva 1.5 T system (Philips Health-
care, Best, The Netherlands) using NOVA Dual HP gradients and a five chan-
nel cardiac coil with parallel imaging capabilities. In order to reduce bowel
movements patients received glucagon (1 mg ml−1, 1 ml intramuscularly) and
Buscopan®(20 mg ml−1, 1 ml intravenously) before and during examination.
MRI was performed according to clinical procedure. High-resolution T2w im-
ages perpendicular to the tumour axis was used for tumour delineation. The
in-plane spatial resolution of the T2w images was 512 by 512 pixels and 128 by
128 pixels for the DWI.

3.3 Pre-Processing

A summary of the workflow adapted for this thesis is shown in figure 15 together
with references to where code performing a specific function can be found in
the appendix. The MRI images were converted from dicom format to a more

42

Treatment

CRT Number of patients 24
Male 18
Female 6
Number censored 15
Median age [years] 63
Age range [years] (41 - 78)
Median follow-up [Days] 568
Follow-up range [Days] (63 - 1715)

No CRT Number of patients 30
Male 17
Female 13
Number censored 20
Median age [years] 70
Age range [years] (47 - 84)
Median follow-up [Days] 674
Follow-up range [Days] (93 - 1794)

Table 1: Patient demographic for each of the treatment groups used in this
thesis.

convenient format in terms of ease of access in Matlab® using code described
in A.3.1. The delineated tumour volumes were stored as logical masks in NIFTY
files. The built in Matlab® function for reading NIFTY images, niftiread,
is known to contain a bug. A fix suggested by GitHub® user Chris Rorden
[95] was adapted for use in this thesis.

The spatial resolution and FOV of DWIs and T2w images were unequal. A
linear interpolation was performed to achieve DWIs with spatial resolution and
spatial position of voxels equal to that of the T2w images. The same operation
was performed parameter maps derived from the DWIs. Images were delineated
by an expert radiologist. The radiologist’s masks was used to extract the tumour
voxels used as input for the clustering algorithms.

3.4 Feature Extraction and Feature Generation

The dataset was built extracting the voxel intensity of each voxel in the delin-
eated tumour volumes for each image sequence and parameter map. The data
used as input for the model was constructed such that each voxel was repre-
sented by its intensity value. It was found in an earlier conducted study that
automatic delineation performance using linear discriminant analysis on the de-
scribed data was better when using the raw DWI images than when using the
derived ADC and IVIM images [28]. It was postulated that this might have
been due to noise introduced when fitting the DWI images to the ADC and
IVIM models. In this study it was thus decided to keep all DWI images in the

43

Sortin
g

Interpolation

Feature Extra
ction

Cluster A
nalysis

Cluster V
alidation

Medical Im
ages

Clusters
Input OutputProcessing

Figure 15: The workflow used in this thesis for the conversion of raw medical
images to the obtained clusters. The references in parenthesis are the loca-
tions of the corresponding code in the appedix. Raw medical images were first
sorted and interpolated to have the same spatial resolution and position of corre-
sponding voxels (A.3.1). Voxel intensities were extracted using the radiologist’s
mask (A.3.4). Feature by feature z-scoring was performed followed by PCA
on the z-scored dataset to reduce the dimensionality (A.4.3). Cluster analy-
sis was then performed with cluster validation to find the optimal number of
clusters/components(Clustering: k-means A.4.4, GMM A.4.5). The best per-
forming model was extracted from the cluster validation procedure. This model
was used to partition the tumour volume in the obtained clusters used in the
survival analysis (k-means: A.4.6, GMM A.4.7).

44

dataset.
An additional dataset was built where polynomial features were included to

attempt to catch some of the evolution of voxel intensity of the tissues with
increasing b-value in the DWI images. The polynomial features were built up
to the third order using b-values of 25, 50, 100 and 500 s mm−2 keeping only the
interaction terms. However, this dataset did not yield clusters that were more
easily distinguishable and it was thus dropped from further analysis.

The scale of the feature vectors, that is the voxel intensities of each image
sequence and parameter map, was found to vary by several orders of magnitude.
The k-means algorithm and PCA are both dependent on the scale at which the
different feature vectors are measured [96, 40]. The feature vectors were thus
rescaled to a mean of zero and standard deviation of one. PCA was performed to
reduce the number of features while retaining the maximum amount of variance
and the code can be found in section A.4.3 of the appendix. The reduced feature
space makes visualization of the dataset easier and more meaningful.

3.5 Visualizing the dataset

Before performing the clustering analysis the dataset was visualized. This was
done by the use of histograms, scatterplots and KDE plots of the principal com-
ponents and the raw data. Visualization was performed to probe for any obvious
clusters in the data. Code was written to create a custom plot matrix/grid plot
with scatter plots of principal component i and j for i < j and kde plots below
the diagonal using principal components i and j for i > j. Along the diago-
nal, the histograms of each principal component was plotted. The function for
creating the plot, kde_scatter_histplot, can be found in the appendix A.4.1.

3.6 Clustering

Clustering was performed on the reduced feature space by the use of k-means
and GMM clustering algorithms. Several CVIs were considered for finding the
optimal k. For k-means it was decided to use CH, the DB family of indices and
Sil. In section 2.4.2 it was argued that Sil and the DB family of indices was
the best performing of these according to literature. The DB and CH has the
additional advantage that its time complexity is linear in the number of samples
in the dataset, while the Sil is quadratic. With the CH and DB family of indices
it is thus possible to use more samples in the clustering evaluation than what is
feasible for the silhouette coefficient.

The clustering was performed in the scikit-Learn package (v0.20.3) [97] in
python. The CVIs DB* and DB** is not in the base implementation of Mat-
lab® or the scikit-learn package. A list of python packages and versions used in
this thesis can be found in section A.2 fo the appendix. An attempt was made
to find maintained packages containing either of the indices in either of the pro-
gramming languages using the Matlab® File Exchange [98] and the Python
Package Index (PyPI) [99], but no implementations were found. An implemen-
tation was thus coded by modifying the DB index of the scikit-learn package

45

as discussed in section 2.4.2. The new implementation of the DB* and DB**
indices can be found in the appendix A.4.2 together with a quick performance
comparison of the DB, DB* and DB** on datasets with varying numbers of
bivariate isotropic Gaussian clusters A.5. The performance comparison showed
that DB* on average outperformed DB, as shown by Kim and Ramakrishna [71]
and Arbelaitz et al. [65], and that DB** on average outperformed DB and DB*
as shown by Kim and Ramakrishna [71].

For each k tested the k-means clustering was run 30 times with different
initial centroid locations. This is done because k-means, if it converges, is only
guaranteed to converge to a local minimum. A way to overcome this is to run
k-means multiple times for each k with different initial partitions and choose the
clustering solution with the smallest objective function (29) [15]. The maximal
number of iterations was set to 600. For each chosen clustering solution it was
checked that convergence was obtained.

Initial centroids were chosen using the k-means++ algorithm [100]. In this
algorithm the cluster initial centroids are chosen at random from the data, but
are weighted according to the square of the distance from the closest centroid
already chosen. In the original article [100], the k-means++ algorithm was
shown to consistently outperform the classic k-means algorithm in synthetic
and real datasets.

The GMM clustering was performed setting no restriction on the shape of
the covariance matrix. k-means was used to set the initial mixture proportions,
covariance matrices and mean vectors. The GMM clustering was run with 3·105

randomly sampled voxels from the dataset and for a number of components
nc ∈ {1, . . . , 70}. For each nc the GMM was initialized three times. The best
initialization was selected. This process was repeated five times using different
datasets. To select the optimal number of components the BIC was calculated.

The 5 repeats using differently sampled datasets were also used to assess
the reproducibility and validity of the GMM clustering solutions. Each repeat
will assign a random identifier or label to each GMM component. To assess
which components were most equal between two clustering solutions the Jensen-
Shannon (JS) distance was used. The JS divergence, proposed by J. Lin [101],
can be considered a symmetric and smoother form of the Kullback-Liebler (KL)
divergence [102, 103]. KL, and thus JS, measures the distance between proba-
bility distributions [104, 105] and it has been used extensively within the field
of bioinformatics [102]. KL divergence, also called the relative entropy [105],
between two probability distributions P and Q is defined as

DKL(P ||Q) =

N∑
i=1

Pi log
Pi
Qi

(60)

it is non-negative, non-symmetric, that is DKL(P ||Q) 6= DKL(Q||P) and is
zero if and only if P = Q. The JS distance between probability distributions

46

P and Q is defined as the square root of the JS divergence

DJS(P ||Q) =

√
DKL(P ||M) +DKL(Q||M)

2
(61)

where M = 1
2 (P +Q). The JS distance is non-negative symmetric, always

well defined and bounded, is null only when the probability distribution coincide
and it satisfies the triangle inequality [106]. It is thus a true metric [106, 107]
between probability distributions [106].

The best solution of the five repeats was extracted using the minimum BIC
score as a criterion and used as a reference distribution. The JS distance between
each component in the reference distribution and each component of the repeat
clustering solutions was calculated. Each component label of the repeat cluster
solution was mapped to the closest component in the reference distribution in
terms of the JS distance.

To measure the agreement between the reference clustering solution and
repeat clustering solutions Cohen’s κ, Jaccard similarity score and balanced
accuracy score was used. These are defined as:

Cohen’s Kappa, κ, [108] measures agreement between two raters in classi-
fying N samples into C distinct and exclusive classes. It is defined as

κ =
p0 − pe
1− pe

(62)

where p0 is the relative interrater agreement and pe is the expected agreement
if both raters were to assign labels randomly. κ = 1 in case the case of perfect
interrater agreement, zero if agreement is no better than what would be expected
by chance, and negative if interater agreement is worse than what is expected
by chance.

Jaccard Index, J , [109] of sets A and B is defined as the intersection of
the two sets divided by the union of the two sets. That is

J (A,B) =
|A ∩B|
|A ∪B| . (63)

Sets A and B are the labels assigned by the two raters respectively. J is one for
perfect agreement between raters and is zero for perfect disagreement between
raters.

Balance Accuracy Score (BAS) [110] is defined as the average accuracy
obtained across all labels. It reduces to the conventional accuracy if the raters
have equal performance across all labels.

Code written for performing the k-means clustering and GMM clustering can
be found in section A.4.4 and A.4.5 of the appendix respectively. Code used to
inspect the correspondence between components obtained by GMM clustering
with differently sampled datasets can be found in section A.4.7 of the appendix.

47

Repeated for each cluster/component

No

Yes

No

Yes

Yes

No

Patient
cohort

Preoperative CRT

No CRT

CRT

patient cluster
volume > median

cluster/component
volume

No CRT Low

No CRT High

patient cluster
volume > median

cluster/component
volume

CRT Low

CRT High

Figure 16: The patient cohort was partitioned according to treatment. Kaplan-
Meier estimates with logrank tests was used to assess survival differences within
each treatment group. Patient within each treatment group was assigned to low
or high cluster/component volumes using the median cluster volume within the
group as a threshold. This resulted in partitions CRT High and Low

3.7 Survival Analysis

To assess whether a particular cluster could help predict patient outcome the
patients were divided into whether they had above or below the median vol-
ume of a given cluster. This will be referred to as low or high cluster volume
in the k-means partitioned volumes and low and high component volumes in
GMM partitioned volumes. The partitions of the patient cohort for each clus-
ter/component will be referred to as CRT High, CRT Low, No CRT High and
No CRT Low. A diagram of the partitioning scheme is shown in figure 16. The
survival analysis was performed using the Kaplan-Meier estimator with logrank
test to compare the survival of patients with low and high cluster and compo-
nent volumes for each component/cluster and treatment group. Progression free
survival (PFS) was used as the primary endpoint of the study. Time-to-event
was thus considered time to any progression of disease (e.g. local relapse, metas-
tasis) or death to occur. The survival analysis was performed in the lifelines
survival package in python [111].

Univariate Cox regression was also performed. This was done using the
cluster and component volumes for both treatment groups as covariates. In

48

both logrank tests and Cox regression a significance of α < 0.05 was chosen.
The significance level was corrected for multiple testing using the Bonferroni
adjustment according to the number of partitioned clusters. The Bonferroni
adjustments corrects the significance threshold by dividing by the number of
separate tests performed [112]. In assessing calculated confidence intervals the
notion of compatibility was used as suggested by Amrheim et al [113]. It is
suggested to rename confidence intervals to compatibility intervals to highlight
the fact that all values within the interval limits are reasonably compatible with
the data.

The code used in the survival analysis of the k-means partitioned dataset
can be found in section A.4.6 of the appendix. The corresponding code for the
GMM partitioned dataset can be found in section A.4.7 of the appendix.

3.8 Software & Code

A more in depth description with regards to the software and packages used in
this thesis is given in section A.2 in the appendix. Here, a short description
of what each package was used for is given in addition to which version of the
package was used. All code used in this thesis can be found in the appendix.

49

Figure 17: DWI images with b-value of 0 s mm−2 superimposed as heatmaps on
T2w images. Images are aligned correctly.

Figure 18: DWI images with b-value of 0 s mm−2 superimposed as heatmaps on
T2w images. Images are misaligned.

4 Results

4.1 Verification of alignment & Resulting dataset

In interpolating the DWI and the derived parameter maps to attain voxelwise
alignment with the T2w images and masks some discrepancies were observed.
This caused a subsequent more thorough inspection of the images. Code was
written to superimpose the DWI images as heatmaps on the T2w images. The
location of the bladder was used as a reference where available due to being
bright with clearly defined edges and easily recognizable in the images. An
example of correct alignment of DWI and T2w images is presented in figure
17. An examples of an incorrectly aligned image is presented in figure 18. A
different alignment issue is presented in figure 19, where the T2w image and
DWI do not cover the same FOV.

Alignment issues were observed for a total of five patients. These patients
were removed from the study. The resulting dataset contained a total of 54
patients, amoung whom 24 were in the CRT group and 30 in the No CRT
group.

4.2 Visualization and pre-processing of the dataset

Prior to clustering analysis the dataset was visulized using various tools. A
histogram of the features, that is the voxel intensities of each image sequence, is
shown in figure 25. The histogram is made using all the samples avalible in the
dataset. From the histogram it is apparent that there are no trivially separable
clusters due to a single feature alone. PCA was performed on the dataset and it

50

Figure 19: DWI images with b-value of 0 s mm−2 superimposed as heatmaps on
T2w images. Images are misaligned and do not cover the same FOV.

was observed that a large fraction of the total variance could be explained with
relatively few principal components. A pareto chart of the explained variance
with each added component can be found in section A.4.3 of the appendix. It
was chosen to keep the first 4 principal components that together explained
94.30% of the total variance. The original features were z-scored before the
PCA was performed.

The principal components were visualized using the custom plots explained
in section 3.5. The resulting plot is found in figure 26. The figure is made using
5000 samples, and the optimal bandwidths are found through a cross-validation
scheme. No easily distinguishable clusters are visible by using the KDE plots.
An a priori estimate with regards to the number of clusters in the data is thus
hard to assess.

From the visual inspection of the dataset it is evident that even though no
obvious clustering can be observed, the dataset does not seem to be sampled
from a single multivariate normal distribution. Clustering may thus still be a
viable aid to help find partition the dataset into tissues with similar character-
istics.

4.3 k-means clustering

k-means clustering was performed on the two datasets with k ∈ {1, . . . 21} and
by using all avaliable samples. Convergence was obtained for all k. To find the
optimal k, CH, DB, DB*, DB** and SIl were computed. All but one of the
computed CVIs indicated and optimal k of two. The exception was DB that
indicated the optimal k to be four. Plots of the CVI scores against k can be
found in section A.6 of the appendix. It should be noted that none of the tested
indices are comparing the clustering solution to the null hypothesis that there
are no clustering present at all. As discussed previously and tested in section
A.5 of the appendix, DB*, DB** and Sil on average performs better than DB,
and thus k = 2 is considered the most valid result and will be considered in the
following analysis.

Partitioning the dataset into 2 clusters by use of k-means resulted in one
cluster containing 63.4% of the voxels in the dataset and the other cluster con-
taining 36.6% of the voxels. The two groups are depicted as cluster by cluster
histogram in figure 27. From the histogram it is evident that the separation

51

Volume Cluster 1 [mm3] Volume Cluster 2 [mm3]
mean 9958.94 16487.34
std 9391.46 13373.21
median 7305.05 13373.11
range (46.20-36357.98) (2425.58-47977.88)

Table 2: Descriptive statistics of cluster volume per patient using the k-means
algorithm with k = 2.

between the clusters is best explained by the DWI of b-values 0, 25, 50 and
100 s mm−2 out of the original features. Each cluster seems to contain primarily
high or low values due to either of the mentioned features. The tendency is also
visible in DWI for b-value 500 s mm−2 and D where mean value of each cluster
for each feature are clearly different. However, the overlap between the fea-
ture histograms for the clusters are considerably larger in this case. Descriptive
statistics on the distribution of the cluster volume per patient in given in table
2.

4.4 Survival Analysis using k-means partitioned volumes

The patient cohort was partitioned according to the scheme described in the
materials and methods section. That is for each treatment, CRT or No CRT,
the patients were partitioned according to the median volume of each component
into groups CRT High, CRT Low, No CRT High and No CRT Low. With k = 2
the Bonferroni corrected significance level was αBF < 0.0025.

No significant difference between low and high cluster volumes were found in
the CRT group. The KM estimates for the clusters 1 and 2 are shown in figures
20 and 21 respectively. The p-values reported in the figures are not corrected
for multiple testing. The PH assumptions was checked to hold for the logrank
tests.

In the No CRT group a significant difference in PFS was found between low
and high cluster volumes for cluster 1 (p = 0.018). No significant difference was
found for cluster 2 (p = 0.093). PH assumptions were found to hold for cluster
1, but not for cluster 2. KM estimates for clusters 1 and 2 are shown in figure
22 and 23 respectively.

The KM estimate and logrank test was also performed for the total tumour
volume partitioned according to the median and divided into treatment groups
in the same manner as cluster volumes. No significant association to PFS was
found for the CRT (p > 0.7) or the No CRT (p > 0.1) treatment groups. The
KM estimate for the total volume in CRT and No CRT groups respectively can
be found in figures 36a and 36b in section A.7 of the appendix.

The results from univarite Cox regression are summarized in table 3. Volume
of cluster component 1 was found to be significantly associated with PFS (p <
0.006). The results show that each increase of 1 cm3 in cluster volume 1 between
patients in the No CRT group is compatible with an increase in the expected

52

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

p = 0.879

CRT: cluster 1
Vol Clust 1 >= median
Vol Clust 1 < median

Figure 20: Kaplan-Meier (KM) estimate for the patient group treated with CRT
partitioned according to median volume of cluster 1. Censored patients are
indicated with crosses on the respective survival curves. The KM estimate fails
to show any association between low or high volume of cluster 1 and progression
free survival. The logrank test for difference in hazard between the two patient
groups resulted in a p-value of 0.879.

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

p = 0.760

CRT: cluster 2
Vol Clust 2 >= median
Vol Clust 2 < median

Figure 21: Kaplan-Meier (KM) estimate for the patient group treated with CRT
partitioned according to median volume of cluster 2. Censored patients are
indicated with crosses on the respective survival curves. The KM estimate fails
to show any association between low or high volume of cluster 2 and progression
free survival. The logrank test for difference in hazard between the two patient
groups resulted in a p-value of 0.760.

53

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

p = 0.018

No CRT: cluster 1
Vol Clust 1 >= median
Vol Clust 1 < median

Figure 22: Kaplan-Meier (KM) estimate for the patient groups not treated with
CRT partitioned according to median volume of cluster 1. Censored patients
are indicated with crosses on the respective survival curves. The KM estimate
shows that the group with lower volume of cluster 1 was associated with a
greater chance of progression free survival. The logrank test for difference in
hazard between the two patient groups resulted in a p-value of 0.018.

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

No CRT: cluster 2
Vol Clust 2 >= median
Vol Clust 2 < median

Figure 23: Kaplan-Meier (KM) estimate for the patient groups not treated with
CRT partitioned according to median volume of cluster 1. Censored patients
are indicated with crosses on the respective survival curves. The KM estimate
with logrank test failed to show a significant difference in PFS between patients
with low and high volume of cluster 2 yielding a p-value of 0.093.

54

β eβ p 95% CI (β)
Treatment Risk Factor

CRT VolClust1 [cm3] 0.00375 1 0.922 (-0.0709 - 0.0784)
VolClust2 [cm3] -0.047 0.954 0.213 (-0.121 - 0.0269)
TotVol [cm3] -0.0208 0.979 0.364 (-0.0656 - 0.0241)

No CRT VolClust1 [cm3] 0.105 1.11 0.00573 (0.0304 - 0.179)
VolClust2 [cm3] 0.028 1.03 0.127 (-0.00791 - 0.0638)
TotVol [cm3] 0.0317 1.03 0.0166 (0.00575 - 0.0576)

Table 3: Results from univariate Cox regression using the cluster component
volumes resulting from a k-means clustering analysis with k = 2 as risk factors.
The regression was performed for each treatment group independently. The
Volume of cluster 1 and the total tumour volume in the No CRT group showed
a significant association to PFS. VolClust and totVol are used as abbrevations
for volume of a cluster component and the total tumour volume respectively.

hazard of between 3.1% and 20%. The total tumour volume in the No CRT
group also showed a significant association with PFS (p < 0.02). A relative
increase in tumor volume of 1 cm3 between patient was compatible with an
increase in the expected hazard of between 0.58% and 5.9%. No other cluster
volumes in either treatment group showed a significant association to PFS. PH
assumptions was checked to hold for each risk factor.

4.5 Gaussian mixture model clustering

Preliminary GMM clustering results on 2 ·104 samples from the dataset showed
convergence of the BIC to a global minimum before exceeding the range of tested
components. However, this convergence disappeared upon including additional
samples. Performing the clustering as described in section 3.6, a local minimum
in the BIC was observed for nine components. To avoid overfitting the data,
and to keep the results fairly interpretable, nine components was thus selected.
The BIC score and gradient BIC score are shown in figure 24. By examining the
the gradient of the BIC, that is the change in the BIC from one nc to the next,
rather small changes are seen when adding additional components exceeding the
ninth indicating that not much additional information is gained.

The voxels partitioned with the GMM into nine components was mapped
back onto the axes of the original, z-scored features. The result is presented as
a histogram in 28. Histograms of each component against all other components
grouped together can be found in section A.8 of the appendix. Here it easier
to distinguish the traits of each component. Descriptive statistics depicting
the variation of the cluster component volumes per patient can be found in
table 4. It is evident that the range of component volumes and total volume
spans multiple orders of magnitude. From the table one can also see that all
component constitute a considerable fraction of the tumour volume in at least

55

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69
k

-7.5e+04
-5.0e+04
-2.5e+04
0.0e+00

Gr
ad

ie
nt

 B
IC

 sc
or

e Gradient BIC(k) on GMM clusters

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69
k

4.0e+06

4.1e+06

BI
C

Sc
or

e
BIC(k) on GMM clusters

Figure 24: BIC score and gradient BIC score calculated for number of compo-
nents nc ∈ {1, 2 . . . 70}. The GMM is fitted using 300000 random samples. On
these samples the GMM is initialized 3 times and the best model is selected.
This process is repeated 5 times for each nc with different randomly sampled
datasets each time. The line is the mean of the 5 repeats fits for each nc for
different random samples and the errorbars are the standard deviation.

one patient. This reaffirms the suspicion that none of the components consist of
purely outliers in the data. Patients without tumour volume due the components
3, 6 and 7 are found in the CRT group, and patients without tumour volume
due to components 6 and 7 in the NO CRT group.

The GMM solutions was found to be consistent across repeats. In the follow-
ing the best performing model out of the five repeats was chosen as a reference
model. The four remaining repeat models are named Model 1 through 4. A
summary of calculated performance indices comparing the clustering solutions
is shown in table 5. All repeat models seem to give roughly the same clustering
solutions. This is indicated by the high mean and low standard deviation in
the index values across the models. The obtained correspondence between the
clustering solutions point to the validity of the given clustering solution and
settings. Especially considering the fact that each model is fit using a different
set of input data, and due to the inherit randomness in the initialization of the
GMM components between repeats.

4.6 Survival analysis on the Gaussian Mixture Model Com-
ponents

Kaplan-Meier estimates and logranks tests were performed on the component
volumes partitioned according to the median component volume for each treat-
ment group. The results are found in table 6. No significant difference in PFS
was seen due to any of the components in the CRT group. In the No CRT

56

mean [mm3] std [mm3] median [mm3] range [mm3]
treatment Volume per patient

CRT Component 1 3.06 · 103 7.66 · 103 491 (46.3 - 2.8 · 104)
Component 2 1.91 · 103 2.87 · 103 1.08 · 103 (28.7 - 1.44 · 104)
Component 3 861 1.37 · 103 227 (0 - 5.57 · 103)
Component 4 6.28 · 103 8.75 · 103 3.96 · 103 (459 - 4.41 · 104)
Component 5 6.57 · 103 8.12 · 103 4.78 · 103 (44.4 - 4.04 · 104)
Component 6 2.85 · 103 2.74 · 103 2.03 · 103 (0 - 1.16 · 104)
Component 7 809 894 677 (0 - 3.87 · 103)
Component 8 3.3 · 103 5.76 · 103 1.71 · 103 (54.7 - 2.82 · 104)
Component 9 815 1.1 · 103 369 (62 - 3.81 · 103)
All Components 2.64 · 104 1.89 · 104 2.01 · 104 (5.38 · 103 - 8.43 · 104)

No CRT Component 1 1.03 · 103 1.62 · 103 396 (1.24 - 7.76 · 103)
Component 2 1.36 · 103 1.17 · 103 955 (35.2 - 4.95 · 103)
Component 3 979 2.71 · 103 212 (0 - 1.47 · 104)
Component 4 4.73 · 103 6.33 · 103 2.81 · 103 (379 - 3.11 · 104)
Component 5 5.15 · 103 7.5 · 103 3.09 · 103 (151 - 3.95 · 104)
Component 6 2.18 · 103 1.64 · 103 1.6 · 103 (19.8 - 5.27 · 103)
Component 7 847 2.34 · 103 253 (0 - 1.25 · 104)
Component 8 3.07 · 103 5.14 · 103 1.28 · 103 (1.85 - 2.4 · 104)
Component 9 585 759 235 (2.47 - 2.73 · 103)
All Components 1.99 · 104 1.81 · 104 1.49 · 104 (1.73 · 103 - 9.25 · 104)

Table 4: Descriptive statistics on how the volume of each gaussian mixture
model component and the total tumour volume fluctuates from patient to pa-
tient within each treatment group. It is evident that the volume for a given
components can differ by several orders of magnitude between patients. Std is
used as an abbreviation for standard deviation.

Model 1 Model 2 Model 3 Model 4 µ σ

κ 0.964 0.949 0.95 0.934 0.949 0.00857
J 0.97 0.957 0.958 0.945 0.958 0.00713
BAS 0.959 0.937 0.946 0.935 0.944 0.0113

Table 5: Measures of repeatability and validity of the GMM clustering solutions.
The GMM clustering is repeated 5 times with different randomly samples from
the dataset. The best model in terms of BIC was selected as a reference model
and components labels of repeat models were mapped to the closest component
in terms of JS distance to the reference model components. Cohen’s κ, Jaccard
similairty index, J , and the balanced accuracy score (BAS) are used to measure
the agreement in label assignment between the reference model and repeat mod-
els (Model 1, Model 2, Model 3 and Model 4). The average, µ, and standard
deviation, σ, across the models are computed. The performance measures show
that for the given settings roughly the same clustering components are chosen
in each repeat.

57

p
Treatment Volume per patient

CRT Component 1 0.215
Component 2 0.211
Component 3 0.314
Component 4 0.760
Component 5 0.431
Component 6 0.988
Component 7 0.731
Component 8 0.203
Component 9 0.714

No CRT Component 1 0.034
Component 2 0.510
Component 3 0.116
Component 4 0.322
Component 5 0.159
Component 6 0.001*
Component 7 0.002*
Component 8 0.828
Component 9 0.136

Table 6: Result from Kaplan-Meier analysis with logrank test on the patients
within each treatment group partitioned into low and high volume of each Gaus-
sian mixture model component according to the median value. * denotes sta-
tistically significant associations at the Bonferroni corrected significance level of
αBF = 0.0056. A significant difference in PFS is seen for components 6 and 7
for the No CRT group.

group a significant difference in PFS was found for components 6 (p = 0.001)
and 7 (p = 0.002) at the Bonferroni corrected significance level of αBF = 0.0056.
The Kaplan-Meier estimates for each component are shown in section A.9 of the
appendix.

The results of univariate Cox regression performed on the gaussian mixture
components are presented in table 7. The volume of component 1 in the treat-
ment group not receiving CRT is significantly related to PFS (p = 0.00133)
at significance level αBF. The results for this component are compatible with
an expected relative increase of hazard of between 17% and 103% with each
increase of 1 cm3 in the patient’s tumour volume due to this component. PH
assumption was tested and found to hold for all tested risk factors.

58

β eβ p 95% CI (β)
Treatment Risk Factor

CRT VolumeComp1 [cm3] 0.0264 1.03 0.525 (-0.055 - 0.108)
VolumeComp2 [cm3] -0.148 0.862 0.509 (-0.589 - 0.292)
VolumeComp3 [cm3] 0.426 1.53 0.0437 (0.012 - 0.84)
VolumeComp4 [cm3] -0.201 0.818 0.19 (-0.503 - 0.0997)
VolumeComp5 [cm3] -0.0358 0.965 0.464 (-0.131 - 0.0599)
VolumeComp6 [cm3] -0.0783 0.925 0.583 (-0.358 - 0.201)
VolumeComp7 [cm3] -0.389 0.678 0.472 (-1.45 - 0.67)
VolumeComp8 [cm3] -0.0749 0.928 0.554 (-0.323 - 0.173)
VolumeComp9 [cm3] -0.137 0.872 0.728 (-0.91 - 0.636)

No CRT VolumeComp1 [cm3] 0.441 1.55 0.00133* (0.172 - 0.71)
VolumeComp2 [cm3] 0.405 1.5 0.103 (-0.0823 - 0.893)
VolumeComp3 [cm3] -0.124 0.883 0.637 (-0.64 - 0.391)
VolumeComp4 [cm3] 0.0712 1.07 0.0259 (0.00857 - 0.134)
VolumeComp5 [cm3] 0.0695 1.07 0.016 (0.0129 - 0.126)
VolumeComp6 [cm3] 0.417 1.52 0.0244 (0.0539 - 0.781)
VolumeComp7 [cm3] 0.174 1.19 0.0273 (0.0195 - 0.329)
VolumeComp8 [cm3] -0.0748 0.928 0.416 (-0.255 - 0.105)
VolumeComp9 [cm3] 0.0785 1.08 0.829 (-0.634 - 0.791)

Table 7: Univariate Cox regression analysis for the components volumes of the
Gaussian mixture model clustering. The Bonferroni corrected significance level
due to multiple testing within each patient group is 0.0056. At this significance
level we can see that only the volume of cluster component 1 for the patient
group that did not recieve CRT is significantly related to PFS. Significant p-
values are indicated with a *.

59

Fr
eq

ue
nc

y

T2

Fr
eq

ue
nc

y

DWI0

Fr
eq

ue
nc

y

DWI25

Fr
eq

ue
nc

y

DWI50

Fr
eq

ue
nc

y

DWI100
Fr

eq
ue

nc
y

DWI500

Fr
eq

ue
nc

y

DWI1000

Fr
eq

ue
nc

y

ADC

Fr
eq

ue
nc

y

D

2 1 0 1 2 3

Fr
eq

ue
nc

y

Dstar

2 1 0 1 2 3

Fr
eq

ue
nc

y

f

Histograms of voxel intensities for each image sequence

Figure 25: Histogram of the z-scored features. The upper limits on the x axis is
to the 99.95th percentile to reduce the effect of outliers in visualizing the data.

60

PC
1

PC
2

PC
3

PC1

PC
4

PC2 PC3 PC4

Figure 26: Custom plot matrix with scatter plots of principal components pairs
above the diagonal, histograms of principal components on the diagonal and
KDE plots of principal component pairs under the diagonal. The plotted data
consists of the 4 first principal components of the dataset.

61

-2.0 0.0 2.0

Fr
eq

ue
nc

y
T2

-2.0 0.0 2.0

DWI - b = 0 s/mm2

-2.0 0.0 2.0

DWI - b = 25 s/mm2

-2.0 0.0 2.0

Fr
eq

ue
nc

y

DWI - b = 50 s/mm2

-2.0 0.0 2.0

DWI - b = 100 s/mm2

-2.0 0.0 2.0

DWI - b = 500 s/mm2

-2.0 0.0 2.0

Fr
eq

ue
nc

y

DWI - b = 1000 s/mm2

-2.0 0.0 2.0

ADC

-2.0 0.0 2.0
z-scored voxel intensity

D

-2.0 0.0 2.0
z-scored voxel intensity

Fr
eq

ue
nc

y

D*

-2.0 0.0 2.0
z-scored voxel intensity

f

cluster
1
2

Figure 27: Histogram of the z-scored features in the dataset divided by clus-
ter. The histogram is made by with 100000 randomly drawn samples from the
dataset. Samples exceeding the 99.5th percentile in any feature were removed
from the dataset before plotting to reduce the effect of outliers in selecting the
number and positioning of bin edges, and the limits along the voxel intensity
axis.

62

0.0 5.0 10.0

Fr
eq

ue
nc

y

T2

0.0 5.0 10.0

DWI - b = 0 s/mm2

0.0 5.0 10.0

DWI - b = 25 s/mm2

0.0 5.0 10.0

Fr
eq

ue
nc

y

DWI - b = 50 s/mm2

0.0 5.0 10.0

DWI - b = 100 s/mm2

-2.5 0.0 2.5 5.0 7.5

DWI - b = 500 s/mm2

-2.5 0.0 2.5 5.0 7.5

Fr
eq

ue
nc

y

DWI - b = 1000 s/mm2

0.0 5.0 10.0

ADC

-2.0 0.0 2.0 4.0
z-scored voxel intensity

D

-2.0 0.0 2.0 4.0
z-scored voxel intensity

Fr
eq

ue
nc

y

D*

-2.0 0.0 2.0 4.0
z-scored voxel intensity

f

cluster
1
2
3
4
5
6
7
8
9

Figure 28: Histogram showing how the each component of the Gaussian mix-
ture model with 9 components maps back onto the original features shows as
a histogram in 25. Values on the frequency axis are omitted since the relative
frequency between components are of the greatest importance.

63

5 Discussion

5.1 Validity of the Clustering Solutions

Noise is an inherent property of medical imaging modalities. As was found in the
KDE and scatter plots for the principal components of the dataset (figure 26),
it was hard to make a visual assessment with regards to a reasonable number
of cluster. Using CVIs CH, DB, DB* and DB** for the k-means clustering and
BIC for the GMM clustering the same problem was encountered. The CVIs
used for the k-means clustering showed a minimum for k = 2. However, as
mentioned earlier, k = 2 was also the lowest tested k. It is important to keep in
mind that the CVIs used in the k-means analysis do not compare a clustering
solutions to the null hypothesis that there are no distinguishable clusters in the
data.

A study conducted by Andersen et al. [17] used k-means cluster analysis
to partition dynamic contrast enhanced (DCE) MRI images with the goal of
grouping tumour regions with similar vascularization characteristics. The iden-
tified region was related to primary tumour control. Another study by Grøndahl
[18] used k-means cluster analysis to partition tumour voxels based on Toft pa-
rameters, Brix parameters and the relative signal increase. Both studies used a
validity index proposed by Kim et al. [67]. In a comparison study conducted
by Kim et al. [71] this index was shown to be outperformed by the proposed
DB* and DB** indices. The index was left out in extensive testing of CVIs
performed Arbelaitz et al. [65] due to requiring a normalization process prior
to the application.

In the GMM clustering solution a similar issue was encountered. When cal-
culating the BIC for cluster solutions with different number of components, nc,
no convergence to a global minimum was observed for nc ∈ {1, 2, . . . , 70}. This
number of components way exceeds the number of tissue types it is reasonable
to think one can discern using the given dataset. Here it must be mentioned
that a tissue type or even a cluster in the data is not necessarily the same as
a component in a GMM clustering solution. As pointed out by Baudry et al.
[61] a single cluster can be poorly fitted by Gaussian distributions. Especially
in cases where clusters are non-Gaussian of nature two or more Gaussian com-
ponents might be needed to satisfyingly represent a cluster. An illustration of
this point is shown by a small simulation study in section A.10 of the appendix.
It is argued that since the the BIC is asymptotically consistent, that is it will
find the true model if it is among the candidate model as the number of sam-
ples tends to infinity [114, 115]. There is no reason to believe that the dataset
consists of samples drawn from pure multivariate Gaussian distributions, and
thus the BIC is not expected to find the true number of components in this
analysis. However, as mentioned by Xu et al. [51] and Everitt [46], the goal
of clustering is not to provide an accurate characterization of the underlying
probability distribution, and it should be judged based mostly on its usefulness,
rather than whether its ”True” or ”False”.

Multiple solutions has been proposed to relate GMM components belonging

64

to the same cluster. Li [116] proposed using the mean vectors of the GMM
clustering solution weighted according to the mixing proportion in a k-means
algorithm to collect component into clusters. However, this solution requires
that the number of clusters is known a priori. Baudry et al. [61] proposed an
alternative solution in combining the components hierarchically according to an
entropy criterion. None of these solutions were tested in this study, but they
might be interesting proposals for further analysis.

Based on the observation that the BIC did not converge to a minimum might
also warrant using mixture models with different components than the multi-
variate Gaussian components considered in this thesis. Another way of finding
a suitable number of components may also be using different CVIs than the
BIC. Some CVIs that may be considered, and that are implemented Mixmod,
a popular software package for unsupervised classification, are the integrated
completed likelihood, normalized entropy criterion, cross validation and double
cross validation [117].

Two recent studies examining tumour heterogeneity using GMM models
have proposed using visual inspection of the data [118] or using the knee of the
log-likelihood function [16] as criteria for selecting the number of components.
Visual inspection as a criteria for selecting the number of components is feasible
when the number of features is low. A dataset, like the one used in this study,
containing a larger number of features may not have its structure accurately
represented by two- or three-dimensional marginal views [46]. The latter selec-
tion criteria used by Jalnefjord et al. [16] relates to the selection criteria used in
this study as the BIC is simply the log-likelihood with a penalty term dependent
on the number of components used to fit the model.

The repeated GMM clustering solutions using different samples from the
dataset as input was, as shown in table 5, found to have excellent correspondence
in the predicted labels. This serves to validate the selected clustering a solution
in terms of detecting patterns in the dataset. Moreover, if the clustering would
not perform similarly on subset of samples drawn from the same dataset, it
would be no reason to think the clustering solution would be applicable to
similar datasets acquired by other institutions. This may be considered the
next logical step with regards to assessing the validity of the given clustering
solution.

The stability of a particular clustering solution is also dependent on the
delineated tumour volume as it determines which voxels are included in the
dataset. Tumour delineation is known to be associated with significant inter-
and intraobserver variation [119, 120]. P. Franco et al. [121] had 13 physicians
delineate the gross tumour volume of two patients with locally advanced rectal
cancer on CT images and compared the delineated volumes to those delineated
by an expert observer. The sample mean of the Sørensen-Dice coefficient be-
tween the physicians and the expert were found to be 0.80 and 0.65 for the two
patients respectively. The Sørensen-Dice coefficient is defined in section A.12
appendix. The stability of the clustering solutions towards inter- and intraob-
server variability in tumour delineation requires further research.

No noise filtering of the MRI images or parameter maps was performed in

65

this study. In the histograms, like the ones found in figures 25 and 27, an
upper limit along the first axes of all features were set to the 99.95 percentile
to remove the effects of outliers. However, this was not applied to the data
prior to clustering. In a similar clustering study conducted by Torheim et al.
[19] feature values that were considered unphysiologically high were removed
prior to cluster analysis. Other proposed solutions have been to apply mean
filters [18, 17] and median filters [16] with varying kernel sizes and shapes to
the images.

Which features, in this case image sequences and parameter maps, that are
included in the clustering analysis influence the obtained clustering solutions.
Using different features as input parameters than the ones used in this study
might yield different, but equally valid clusters. Based on the sequences included
in this study it is expected that the cluster separation will be due to different
diffusion, perfusion and T2 values of the tissue. Parameter maps derived from
DCE MRI has been used in similar clsuter analysis studies where clusters where
found whose cluster volume fractions related to local tumour control [17]. Which
features are most meaningful to obtain the desired contrast between tissue types
within the tumour volume of the given tumour, and thereby the given clustering
solution, requires further analysis.

In the k-means clustering analysis the separation between the two clusters is
best explained by the DWIs for low b-values (from b=0 s mm−2 to b=100 s mm−2)
as shown in the histogram 27. A difference in the feature mean between the two
clusters is also visible in DWI with higher b-values (500 s mm−2 and 1000 s mm−2),
ADC, D and to some degree D*. Almost no separation between the clusters is
seen due to f. Jalnefjord et al. [16] used IVIM features in a GMM cluster-
ing analysis of fourteen mice with human neuroendocrine tumors. The optimal
number of components in the study was found to be two, where one component
had low diffusion and high perfusion and the other high diffusion and low per-
fusion. Due to utilizing different input features, a different clustering algorithm
and a different tumour, the results do in no way contradict the results obtained
in this study. Which sequences are most relevant to include in a the cluster
analysis depends on the end goal of the user [15] and on the dataset from which
the features are derived.

5.2 Survival analysis

No studies was found by the author using similar clustering algorithms, MRI
sequences and parameter maps to partition tumour volumes for patients with
colorectal cancer. Searches were performed in the PubMed and google scholar
databases. The study can nevertheless be compared to results obtained by
histogram analysis and volumetry. Most studies on histogram analysis and
volumetry found by the author explored the CRT response, and only a few
patient cohorts included patients that did not receive preoperative CRT.

In the k-means clustering analysis a significant association was found with
logrank test and univariate cox regression between the the volume of compo-
nent 1 and PFS in the No CRT group. This component was characterized with

66

by both above average ADC, D and D* values. Necrotic tissues are known to
have high ADC values, but normally also exhibit low perfusion values [122].
The given clustering solution does then not appear to partition necrotic tissue
efficiently as the perfusion fraction histograms of the two clusters are almost
entirely overlapping. In the univariate Cox analysis both the volume of compo-
nent one and the total volume were significantly related to the PFS in the No
CRT group. There was however not sufficient statistical evidence to state that
either of these were a better prognostic factor than the other.

No significant associations were found from the CRT group in the k-means
clustering analysis. In a review study by Xie et al. [122] on the use of the ADC
in predicting the CRT response in locally advanced rectal cancer it was found
that conclusions on ADC varied. It was argued that ADC measurements can
be high in both good and bad responders, and it was argued that ADC post
treatment or the difference in ADC between pre- and post treatment was more
promising as measures of CRT response. Since the k-means yielded clusters that
were fairly well separated along the ADC axis it is expected that the results will
be compatible with the conclusions of the study by Xie et al. [122].

In the GMM partitioning more components are considered than the number
of clusters considered for the k-means case. This causes interpretability of each
individual component to become more difficult. A significant difference in PFS
was found by the logrank test between patients with low and high volume of
component 6 and 7 for the No CRT group. Univariate Cox regression on the
same components no longer yield significant results at the Bonferroni corrected
significance level. The Cox regression is expected to better explain the general
trend as it is not dependent on setting a particular volume threshold to partition
the patients. A better threshold than the median cluster volume can perhaps be
found through reciever operating characteristic (ROC) curve analysis. The exact
opposite occurs for the volume of component 1 in the No CRT group, where
no significant difference in PFS was found in the logrank test, but a significant
association was found using univariate Cox. Its confidence interval does not
overlap with the corresponding confidence interval of the total volume presented
in table 3. Thus the volume of component 1 might be a better prognostic factor
for PFS than the total volume for patients not recieving CRT.

It is here noted that the study contains fairly few patients within each treat-
ment group. This is especially prominent within the CRT group containing
only 24 patients. From the range of the follow-up times described in table 1 we
can see that some patients have been followed only for a short amount of time.
These two factors limit the statistical power of the study.

An additional factor that may contribute to increased probability of making
type II errors is the choice of multiple comparison correction. The Bonferroni
correction controls the Familywise error rate, that is the probability of having
at least one false positive [123, 124]. However, in many cases it has been argued
that the correction is to conservative [125, 124]. This is especially true when test
are positively correlated [126]. The correlation between the component volumes
considered was in some cases quite strong (Pearson correlation coefficient >
0.7, visualized in figures 64a and 64b in the appendix). Due to the combined

67

effect of fairly low statistical power due to the number of patients, the short
follow-up times and the Bonferroni correction performed on correlated volume
components a considerable risk of type II errors may be associated with this
study.

The low statistical power of the CRT group and the conservative nature of
the Bonferroni correction especially prominent for positively correlated causes
the CRT group to be vulnerable to type II errors. Thus, even though not
statistically significant at the Bonferroni corrected significance level, it is noted
that the volume of component 3 in the CRT group is associated with a fairly
large relative risk. It would be of interest to see if this trend continues if the
volume of component 3 is tested for association with PFS in a patient cohort of
greater statistical power.

In a study conducted by Bakke et al. [10] a significant association was found
between the tumour volume and the CRT response as measured by the five
year PFS. The difference in PFS was tested using the logrank test where the
best volume cut-off between patient groups was found using ROC analysis. The
fairly low statistical power of patient cohort might be one of the reasons that
a significant association was not found between the total tumour volume in the
CRT patient group and PFS in this study. Even though the study by Bakke et
al. [10] contained a similar number of patients, 27 as compared to the 24 in the
CRT patient group of this study, the median patient follow-up time was more
than three times as long. The cut-off value found by Bakke et al. [10] is also
expected to perform better than the fairly arbitrary cut-off of the median total
volume used in this study.

The assumptions of the logrank test and the KM estimate are stated in
section 2.5 of the theory. Of particular interest in survival analysis studies
on cancer is the assumption that the event occurs at the specified time [89].
The time to events in this study is defined as the time until a local relapse or
metastasis has been found or the patient dies. The exact time at which a local
relapse or metastasis occurs for a patient is not known only that it has occurred
sometime between two examinations. Deviations from the assumptions are most
important if they are satisfied differently by the different groups being compared
[88]. In this study a difference in the way that the assumptions are satisfied
between the two patient groups would occur if one group has a larger fraction
events occurring being death than the other patient group. The patient group
having a larger fraction of patients where local relapse or metastasis occurring
as the first event will have a survival probability that is biased upwards as
compared to a patient group having a larger fraction of patient where death is
the first occurring event. The extent to which this is the case in the current
study has not be been analysed.

5.3 Suggestions for further research

For clustering analysis to be useful in the clinic the stability of the clustering
solution must be analysed. Both in the sense that the same clusters are found
in a dataset acquired by other institutions using slightly different hardware and

68

sequence parameters and in the sense that the clusters must be stable to inter-
and intraobserver variability in the tumour delineation. These areas require
further research.

The CRT group contained a rather small number of patients with a median
follow-up time of less than two years. Thus it was argued that there might be
a considerable risk of type II errors. A study with a patient cohort receiving
CRT with greater statistical power is recommended for further analysis. Of
the components uncovered in the CRT analysis, component 3 seems especially
promising. In a follow-up study only promising components need to be tested
and thus less corrections due to multiple comparrisons will be needed.

Mapping the cluster labels back onto the images and examining it in the
context of the anatomy revealed in the T2w images might give better insight
into the nature of the components. In addition this will show whether voxels
belonging to one cluster or component are gathered in one subvolume or a small
number of subvolumes within the cluster, or whether voxels are spread out as
a large number of small islets in the tumour volume. Matlab code was written
to map each component or cluster back onto the tumour mask using different
colors. The slices were unpacked as an image montage. However, the code was
not used in this study. Code and examples of produced images are given in
section A.3.5 of the appendix.

69

6 Conclusion

The results of the analysis shown that cluster analysis based on mpMRI and
derived parameter maps using k-means and GMM clustering algorithms were
able to find tumour subvolumes significantly related to the PFS in patients not
receiving CRT. In particular the volume increase due to one component in the
GMM clustering solution was found to be associated wit a greater relative risk
than a similar increase in volume of the total tumour volume.

No significant associations were found between any cluster (k-means) or
component (GMM) and the PFS in the CRT group. It was however noted that
this group may have limited statistical power due to a relatively low number of
patients and short follow-up times.

70

References

[1] Cancer Registry of Norway. Cancer in Norway 2017 - Cancer incidence,
mortality, survival and prevalence in Norway. Oslo, 2018.

[2] Helsedirektoratet. Pakkeforløp for tykk- og endetarmskreft IS-2519. eng.
2016.

[3] E. Furey and K. S. Jhaveri. “Magnetic resonance imaging in rectal can-
cer”. In: Magn Reson Imaging Clin N Am 22.2 (May 2014), pp. 165–
190.

[4] Sonia P Li and Anwar R Padhani. “Tumor response assessments with dif-
fusion and perfusion MRI”. In: Journal of Magnetic Resonance Imaging
35.4 (2012), pp. 745–763.

[5] Roland Bammer. “Basic principles of diffusion-weighted imaging”. In:
European Journal of Radiology 45.3 (2003), pp. 169–184. issn: 0720-
048X. doi: https : / / doi . org / 10 . 1016 / S0720 - 048X(02) 00303 -

0. url: http://www.sciencedirect.com/science/article/pii/

S0720048X02003030.

[6] Anwar R Padhani et al. “Diffusion-weighted magnetic resonance imaging
as a cancer biomarker: consensus and recommendations”. In: Neoplasia
11.2 (2009), pp. 102–125.

[7] NM Desouza et al. “Diffusion-weighted magnetic resonance imaging: a
potential non-invasive marker of tumour aggressiveness in localized prostate
cancer”. In: Clinical radiology 63.7 (2008), pp. 774–782.

[8] R. G. H. Beets-Tan et al. “Magnetic resonance imaging for clinical man-
agement of rectal cancer: Updated recommendations from the 2016 Eu-
ropean Society of Gastrointestinal and Abdominal Radiology (ESGAR)
consensus meeting”. In: Eur Radiol 28.4 (Apr. 2018), pp. 1465–1475.

[9] D. Le Bihan et al. “MR imaging of intravoxel incoherent motions: appli-
cation to diffusion and perfusion in neurologic disorders”. In: Radiology
161.2 (Nov. 1986), pp. 401–407.

[10] Kine Mari Bakke et al. “Diffusion-weighted magnetic resonance imaging
of rectal cancer: tumour volume and perfusion fraction predict chemora-
diotherapy response and survival”. In: Acta Oncologica 56.6 (2017), pp. 813–
818.

[11] D. Le Bihan et al. “Separation of diffusion and perfusion in intravoxel in-
coherent motion MR imaging”. In: Radiology 168.2 (Aug. 1988), pp. 497–
505.

[12] Melissa R Junttila and Frederic J de Sauvage. “Influence of tumour
micro-environment heterogeneity on therapeutic response”. In: Nature
501.7467 (2013), p. 346.

[13] Fabiana Bettoni et al. “Intratumoral Genetic Heterogeneity in Rectal
Cancer: Are Single Biopsies representative of the entirety of the tumor?”
In: Annals of surgery 265.1 (2017), e4–e6.

71

https://doi.org/https://doi.org/10.1016/S0720-048X(02)00303-0
https://doi.org/https://doi.org/10.1016/S0720-048X(02)00303-0
http://www.sciencedirect.com/science/article/pii/S0720048X02003030
http://www.sciencedirect.com/science/article/pii/S0720048X02003030

[14] Lejla Alic, Wiro J Niessen, and Jifke F Veenland. “Quantification of
heterogeneity as a biomarker in tumor imaging: a systematic review”.
In: PloS one 9.10 (2014), e110300.

[15] Anil K. Jain. “Data clustering: 50 years beyond K-means”. In: Pattern
Recognition Letters 31.8 (2010). Award winning papers from the 19th
International Conference on Pattern Recognition (ICPR), pp. 651–666.
issn: 0167-8655. doi: https://doi.org/10.1016/j.patrec.2009.09.
011. url: http://www.sciencedirect.com/science/article/pii/
S0167865509002323.

[16] Oscar Jalnefjord et al. “Data-driven identification of tumor subregions
based on intravoxel incoherent motion reveals association with prolifer-
ative activity”. In: Magnetic resonance in medicine (2019).

[17] Erlend KF Andersen et al. “Pharmacokinetic analysis and k-means clus-
tering of DCEMR images for radiotherapy outcome prediction of ad-
vanced cervical cancers”. In: Acta Oncologica 50.6 (2011), pp. 859–865.

[18] Aurora Rosvoll Grøndahl. Analysis of Dynamic Contrast Enhanced MRI
of Cervical Cancers. 2015.

[19] Turid Torheim et al. “Cluster analysis of dynamic contrast enhanced
MRI reveals tumor subregions related to locoregional relapse for cervical
cancer patients”. In: Acta oncologica 55.11 (2016), pp. 1294–1298.

[20] Raymond W Ruddon. Cancer Biology. eng. 4th ed. Oxford University
Press, 2007. isbn: 0195175441.

[21] D. Hanahan and R. A. Weinberg. “Hallmarks of cancer: the next gener-
ation”. In: Cell 144.5 (Mar. 2011), pp. 646–674.

[22] P. C. Nowell. “The clonal evolution of tumor cell populations”. In: Sci-
ence 194.4260 (Oct. 1976), pp. 23–28.

[23] Mel Greaves and Carlo C. Maley. “Clonal evolution in cancer”. In: Nature
481.7381 (2012). issn: 0028-0836.

[24] Charles Swanton. “Intratumor heterogeneity: evolution through space
and time”. eng. In: Cancer research 72.19 (2012). issn: 1538-7445.

[25] Andriy Marusyk and Kornelia Polyak. “Tumor heterogeneity: Causes
and consequences”. eng. In: BBA - Reviews on Cancer 1805.1 (2010),
pp. 105–117. issn: 0304-419X.

[26] M. W. Schmitt, M. J. Prindle, and L. A. Loeb. “Implications of genetic
heterogeneity in cancer”. In: Ann. N. Y. Acad. Sci. 1267 (Sept. 2012),
pp. 110–116.

[27] L. A. Loeb, C. F. Springgate, and N. Battula. “Errors in DNA replication
as a basis of malignant changes”. In: Cancer Res. 34.9 (Sept. 1974),
pp. 2311–2321.

72

https://doi.org/https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/https://doi.org/10.1016/j.patrec.2009.09.011
http://www.sciencedirect.com/science/article/pii/S0167865509002323
http://www.sciencedirect.com/science/article/pii/S0167865509002323

[28] Bendik Skarre Abrahamsen. Segmentation of tumour volume in rectal
cancer trough linear discriminant analysis. Project thesis conducted at
Norwegian University of Science and Technology submitted fall 2018.
2018.

[29] Lars G. Hanson. “Is quantum mechanics necessary for understanding
magnetic resonance?” eng. In: Concepts in Magnetic Resonance Part A
32.5 (2008), pp. 329–340. issn: 1546-6086.

[30] Spin Echo. http://mriquestions.com/spin- echo1.html. Online;
accessed 26.11.2018. 2018.

[31] F. Bloch. “Nuclear Induction”. eng. In: Physical Review 70.7-8 (1946),
pp. 460–474. issn: 0031-899X.

[32] E. O. Stejskal and J. E. Tanner. “Spin Diffusion Measurements: Spin
Echoes in the Presence of a Time-Dependent Field Gradient”. In: The
Journal of Chemical Physics 42.1 (1965), pp. 288–292. doi: 10.1063/
1.1695690. eprint: https://doi.org/10.1063/1.1695690. url:
https://doi.org/10.1063/1.1695690.

[33] D. M. Koh, D. J. Collins, and M. R. Orton. “Intravoxel incoherent motion
in body diffusion-weighted MRI: reality and challenges”. In: AJR Am J
Roentgenol 196.6 (June 2011), pp. 1351–1361.

[34] Nicholas C. Gourtsoyiannis, ed. Clinical MRI of the Abdomen. 1st ed.
Springer-Verlag Berlin Heidelberg, 2011. isbn: e-book: 978-3-540-85689-
4, Hardcover: 978-3-540-85688-7, Softcover: 978-3-662-51882-3.

[35] D. Le Bihan. “What can we see with IVIM MRI?” In: Neuroimage (Dec.
2017).

[36] Tom M Mitchell. Machine learning. eng. New York, 1997.

[37] M. Kohli et al. “Implementing Machine Learning in Radiology Practice
and Research”. In: AJR Am J Roentgenol 208.4 (Apr. 2017), pp. 754–
760.

[38] S. Wang and R. M. Summers. “Machine learning and radiology”. In: Med
Image Anal 16.5 (July 2012), pp. 933–951.

[39] Masashi Sugiyama. “Chapter 1 - Statistical Machine Learning”. In: In-
troduction to Statistical Machine Learning. Ed. by Masashi Sugiyama.
Boston: Morgan Kaufmann, 2016, pp. 3–8. isbn: 978-0-12-802121-7. doi:
https://doi.org/10.1016/B978-0-12-802121-7.00012-1. url:
http://www.sciencedirect.com/science/article/pii/B9780128021217000121.

[40] Gareth James. An Introduction to Statistical Learning : with Applications
in R. eng. New York, NY, 2013.

[41] Trevor Hastie, Jerome Friedman, and Robert Tibshirani. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction. eng.
Springer Series in Statistics, New York, NY, 2001. isbn: 9780387216065.

73

http://mriquestions.com/spin-echo1.html
https://doi.org/10.1063/1.1695690
https://doi.org/10.1063/1.1695690
https://doi.org/10.1063/1.1695690
https://doi.org/10.1063/1.1695690
https://doi.org/https://doi.org/10.1016/B978-0-12-802121-7.00012-1
http://www.sciencedirect.com/science/article/pii/B9780128021217000121

[42] Data Mining and Knowledge Discovery Handbook. eng. 2nd ed. Springer
series in solid-state sciences Magnetic bubble technology. Boston, MA,
2010. isbn: 1-282-98082-3.

[43] “Bias-Variance Trade-offs”. In: Encyclopedia of Machine Learning. Ed.
by Claude Sammut and Geoffrey I. Webb. Boston, MA: Springer US,
2010, pp. 110–110. isbn: 978-0-387-30164-8. doi: 10.1007/978-0-387-
30164-8_76. url: https://doi.org/10.1007/978-0-387-30164-
8_76.

[44] Richard O Duda. Pattern classification. eng. 2nd ed. New York: Wiley,
2001. isbn: 0471056693.

[45] I. T. Jolliffe and J. Cadima. “Principal component analysis: a review and
recent developments”. In: Philos Trans A Math Phys Eng Sci 374.2065
(Apr. 2016), p. 20150202.

[46] Brian S Everitt. Cluster Analysis. eng. 5th edition. Vol. v.886. Wiley
Series in Probability and Statistics. Chicester, 2010. isbn: 1-280-76795-
2.

[47] Matlab®. Matlab’s implementation of Principal Component Analysis.
url: https://se.mathworks.com/help/stats/pca.html (visited on
04/17/2019).

[48] Scikit-Learn. Scikit-Learn’s implementation of Principal Component Anal-
ysis. url: https://scikit-learn.org/stable/modules/generated/
sklearn.decomposition.PCA.html (visited on 04/17/2019).

[49] James E. Gentle. Matrix Algebra: Theory, Computations and Applica-
tions in Statistics. eng. Springer Texts in Statistics. Cham: Springer In-
ternational Publishing, 2017. isbn: 978-3-319-64866-8.

[50] Jacob T. Vanderplas. Python data science handbook : essential tools for
working with data. eng. First edition. Beijing, China, 2017. isbn: 1-4919-
1205-7.

[51] Rui Xu and Donald C. Wunsch. Clustering. IEEE Series on Computa-
tional Intelligence. Wiley-IEEE Press, 2009. isbn: 9780470276808. url:
http : / / search . ebscohost . com / login . aspx ? direct = true & db =

e230xww&AN=254099&site=ehost-live.

[52] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. “Cluster
Validity Methods: Part I”. In: SIGMOD Rec. 31.2 (June 2002), pp. 40–
45. issn: 0163-5808. doi: 10.1145/565117.565124. url: http://doi.
acm.org/10.1145/565117.565124.

[53] H. Kashima et al. “K-means clustering of proportional data using L1 dis-
tance”. In: 2008 19th International Conference on Pattern Recognition.
Dec. 2008, pp. 1–4. doi: 10.1109/ICPR.2008.4760982.

[54] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and
Techniques. eng. 3rd ed. The Morgan Kaufmann Series in Data Manage-
ment Systems. Elsevier Science, 2011. isbn: 0123814790.

74

https://doi.org/10.1007/978-0-387-30164-8_76
https://doi.org/10.1007/978-0-387-30164-8_76
https://doi.org/10.1007/978-0-387-30164-8_76
https://doi.org/10.1007/978-0-387-30164-8_76
https://se.mathworks.com/help/stats/pca.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
http://search.ebscohost.com/login.aspx?direct=true&db=e230xww&AN=254099&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=e230xww&AN=254099&site=ehost-live
https://doi.org/10.1145/565117.565124
http://doi.acm.org/10.1145/565117.565124
http://doi.acm.org/10.1145/565117.565124
https://doi.org/10.1109/ICPR.2008.4760982

[55] Hossein Pishro-Nik. Introduction to probability, statistics, and random
processes. Kappa Research LLC, 2014. isbn: 978-0-9906372-0-2.

[56] Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum
likelihood from incomplete data via the EM algorithm”. In: Journal of the
Royal Statistical Society: Series B (Methodological) 39.1 (1977), pp. 1–
22.

[57] Sabhia Firdaus and Md Ashraf Uddin. “A survey on clustering algorithms
and complexity analysis”. In: International Journal of Computer Science
Issues (IJCSI) 12.2 (2015), p. 62.

[58] Matlab®. Matlab’s implementation of fitting a Gaussian mixture model
to data. url: https://se.mathworks.com/help/stats/fitgmdist.
html (visited on 04/21/2019).

[59] Scikit-Learn. Scikit-Learn’s implementation of the Gaussian mixture model
class. url: https://scikit-learn.org/stable/modules/generated/
sklearn.mixture.GaussianMixture.html (visited on 04/21/2019).

[60] Preeti Arora, Deepali, and Shipra Varshney. “Analysis of K-Means and
K-Medoids Algorithm For Big Data”. In: Procedia Computer Science 78
(2016). 1st International Conference on Information Security & Privacy
2015, pp. 507–512. issn: 1877-0509. doi: https://doi.org/10.1016/j.
procs.2016.02.095. url: http://www.sciencedirect.com/science/
article/pii/S1877050916000971.

[61] Jean-Patrick Baudry et al. “Combining Mixture Components for Cluster-
ing”. In: Journal of Computational and Graphical Statistics 19.2 (2010),
pp. 332–353. doi: 10.1198/jcgs.2010.08111. eprint: https://doi.
org/10.1198/jcgs.2010.08111. url: https://doi.org/10.1198/
jcgs.2010.08111.

[62] Emanuel Parzen. “On Estimation of a Probability Density Function and
Mode”. eng. In: Ann. Math. Statist. 33.3 (1962), pp. 1065–1076. issn:
0003-4851.

[63] Murray Rosenblatt. “Remarks on Some Nonparametric Estimates of a
Density Function”. eng. In: The Annals of Mathematical Statistics 27.3
(1956), pp. 832–837. issn: 00034851.

[64] Artur Gramacki. Nonparametric Kernel Density Estimation and Its Com-
putational Aspects. Springer International Publishing, 2018. isbn: 3-319-
71688-3.

[65] Olatz Arbelaitz et al. “An extensive comparative study of cluster va-
lidity indices”. In: Pattern Recognition 46.1 (2013), pp. 243–256. issn:
0031-3203. doi: https://doi.org/10.1016/j.patcog.2012.07.

021. url: http://www.sciencedirect.com/science/article/pii/
S003132031200338X.

[66] Tadeusz Caliński and Jerzy Harabasz. “A dendrite method for clus-
ter analysis”. In: Communications in Statistics-theory and Methods 3.1
(1974), pp. 1–27.

75

https://se.mathworks.com/help/stats/fitgmdist.html
https://se.mathworks.com/help/stats/fitgmdist.html
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
https://doi.org/https://doi.org/10.1016/j.procs.2016.02.095
https://doi.org/https://doi.org/10.1016/j.procs.2016.02.095
http://www.sciencedirect.com/science/article/pii/S1877050916000971
http://www.sciencedirect.com/science/article/pii/S1877050916000971
https://doi.org/10.1198/jcgs.2010.08111
https://doi.org/10.1198/jcgs.2010.08111
https://doi.org/10.1198/jcgs.2010.08111
https://doi.org/10.1198/jcgs.2010.08111
https://doi.org/10.1198/jcgs.2010.08111
https://doi.org/https://doi.org/10.1016/j.patcog.2012.07.021
https://doi.org/https://doi.org/10.1016/j.patcog.2012.07.021
http://www.sciencedirect.com/science/article/pii/S003132031200338X
http://www.sciencedirect.com/science/article/pii/S003132031200338X

[67] Do-Jong Kim, Yong-Woon Park, and Dong-Jo Park. “A novel validity
index for determination of the optimal number of clusters”. In: IEICE
Transactions on Information and Systems 84.2 (2001), pp. 281–285.

[68] David L Davies and Donald W Bouldin. “A cluster separation measure”.
In: IEEE transactions on pattern analysis and machine intelligence 2
(1979), pp. 224–227.

[69] Robert Tibshirani, Guenther Walther, and Trevor Hastie. “Estimating
the number of clusters in a data set via the gap statistic”. In: Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 63.2
(2001), pp. 411–423.

[70] Peter J Rousseeuw. “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis”. In: Journal of computational and applied
mathematics 20 (1987), pp. 53–65.

[71] Minho Kim and R.S. Ramakrishna. “New indices for cluster validity as-
sessment”. In: Pattern Recognition Letters 26.15 (2005), pp. 2353–2363.
issn: 0167-8655. doi: https://doi.org/10.1016/j.patrec.2005.04.
007. url: http://www.sciencedirect.com/science/article/pii/
S016786550500125X.

[72] Caio Flexa et al. “Mutual equidistant-scattering criterion: A new index
for crisp clustering”. In: Expert Systems with Applications 128 (2019),
pp. 225–245. issn: 0957-4174. doi: https://doi.org/10.1016/j.

eswa.2019.03.027. url: http://www.sciencedirect.com/science/
article/pii/S0957417419301897.

[73] Yanchi Liu et al. “Understanding of internal clustering validation mea-
sures”. In: 2010 IEEE International Conference on Data Mining. IEEE.
2010, pp. 911–916.

[74] C. Flexa et al. “A Novel Equidistant-Scattering-Based Cluster Index”.
In: 2018 7th Brazilian Conference on Intelligent Systems (BRACIS). Oct.
2018, pp. 540–545. doi: 10.1109/BRACIS.2018.00099.

[75] Ujjwal Maulik and Sanghamitra Bandyopadhyay. “Performance eval-
uation of some clustering algorithms and validity indices”. In: IEEE
Transactions on pattern analysis and machine intelligence 24.12 (2002),
pp. 1650–1654.

[76] M. Halkidi and M. Vazirgiannis. “Clustering validity assessment: find-
ing the optimal partitioning of a data set”. In: Proceedings 2001 IEEE
International Conference on Data Mining. Nov. 2001, pp. 187–194. doi:
10.1109/ICDM.2001.989517.

[77] Slobodan Petrovic. “A comparison between the silhouette index and the
davies-bouldin index in labelling ids clusters”. In: Proceedings of the 11th
Nordic Workshop of Secure IT Systems. sn. 2006, pp. 53–64.

[78] Hirotogu Akaike. “Information theory and an extension of the maximum
likelihood principle”. In: Selected papers of hirotugu akaike. Springer,
1998, pp. 199–213.

76

https://doi.org/https://doi.org/10.1016/j.patrec.2005.04.007
https://doi.org/https://doi.org/10.1016/j.patrec.2005.04.007
http://www.sciencedirect.com/science/article/pii/S016786550500125X
http://www.sciencedirect.com/science/article/pii/S016786550500125X
https://doi.org/https://doi.org/10.1016/j.eswa.2019.03.027
https://doi.org/https://doi.org/10.1016/j.eswa.2019.03.027
http://www.sciencedirect.com/science/article/pii/S0957417419301897
http://www.sciencedirect.com/science/article/pii/S0957417419301897
https://doi.org/10.1109/BRACIS.2018.00099
https://doi.org/10.1109/ICDM.2001.989517

[79] Gideon Schwarz et al. “Estimating the dimension of a model”. In: The
annals of statistics 6.2 (1978), pp. 461–464.

[80] C. Biernacki, G. Celeux, and G. Govaert. “Assessing a mixture model for
clustering with the integrated completed likelihood”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 22.7 (July 2000),
pp. 719–725. issn: 0162-8828. doi: 10.1109/34.865189.

[81] and P. S. Gopalakrishnan. “Clustering via the Bayesian information cri-
terion with applications in speech recognition”. In: Proceedings of the
1998 IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP ’98 (Cat. No.98CH36181). Vol. 2. May 1998, 645–
648 vol.2. doi: 10.1109/ICASSP.1998.675347.

[82] Jonathan G Campbell et al. “Linear flaw detection in woven textiles using
model-based clustering”. In: Pattern Recognition Letters 18.14 (1997),
pp. 1539–1548.

[83] Abhijit Dasgupta and Adrian E Raftery. “Detecting features in spatial
point processes with clutter via model-based clustering”. In: Journal of
the American statistical Association 93.441 (1998), pp. 294–302.

[84] Odd Aalen, Ornulf Borgan, and Hakon Gjessing. Survival and event his-
tory analysis: a process point of view. Springer Science & Business Media,
2008.

[85] P Armitage. Statistical methods in medical research. eng. 4th ed. Oxford:
Blackwell, 2002. isbn: 0632052570.

[86] Viv Bewick, Liz Cheek, and Jonathan Ball. “Statistics review 12: Survival
analysis”. In: Critical Care 8.5 (Sept. 2004), p. 389. issn: 1364-8535. doi:
10.1186/cc2955. url: https://doi.org/10.1186/cc2955.

[87] Jerald F Lawless. Statistical models and methods for lifetime data. eng.
2nd ed. Wiley series in probability and statistics. Hoboken, N.J: Wiley-
Interscience, 2003. isbn: 0471372153.

[88] J Martin Bland and Douglas G Altman. “The logrank test”. In: BMJ
328.7447 (2004), p. 1073. issn: 0959-8138. doi: 10. 1136/bmj .328.

7447.1073. eprint: https://www.bmj.com/content/328/7447/1073.
full.pdf. url: https://www.bmj.com/content/328/7447/1073.

[89] J Martin Bland and Douglas G Altman. “Survival probabilities (the
Kaplan-Meier method)”. In: BMJ 317.7172 (1998), pp. 1572–1580. issn:
0959-8138. doi: 10.1136/bmj.317.7172.1572. eprint: https://www.
bmj.com/content/317/7172/1572.full.pdf. url: https://www.bmj.
com/content/317/7172/1572.

[90] Sang-Gue Park et al. “Logrank test for bivariate survival data”. In: Com-
munications in Statistics - Simulation and Computation 29.2 (2000),
pp. 533–540. doi: 10.1080/03610910008813626. eprint: https://doi.
org/10.1080/03610910008813626. url: https://doi.org/10.1080/
03610910008813626.

77

https://doi.org/10.1109/34.865189
https://doi.org/10.1109/ICASSP.1998.675347
https://doi.org/10.1186/cc2955
https://doi.org/10.1186/cc2955
https://doi.org/10.1136/bmj.328.7447.1073
https://doi.org/10.1136/bmj.328.7447.1073
https://www.bmj.com/content/328/7447/1073.full.pdf
https://www.bmj.com/content/328/7447/1073.full.pdf
https://www.bmj.com/content/328/7447/1073
https://doi.org/10.1136/bmj.317.7172.1572
https://www.bmj.com/content/317/7172/1572.full.pdf
https://www.bmj.com/content/317/7172/1572.full.pdf
https://www.bmj.com/content/317/7172/1572
https://www.bmj.com/content/317/7172/1572
https://doi.org/10.1080/03610910008813626
https://doi.org/10.1080/03610910008813626
https://doi.org/10.1080/03610910008813626
https://doi.org/10.1080/03610910008813626
https://doi.org/10.1080/03610910008813626

[91] Stephen W Lagakos. “Time-to-event analyses for long-term treatments—the
APPROVe trial”. In: New England Journal of Medicine 355.2 (2006),
pp. 113–117.

[92] P. Royston et al. “Combined test versus logrank/Cox test in 50 ran-
domised trials”. In: Trials 20.1 (Mar. 2019), p. 172.

[93] David R Cox. “Regression models and life-tables”. In: Journal of the
Royal Statistical Society: Series B (Methodological) 34.2 (1972), pp. 187–
202.

[94] The OxyTarget Study - Functional MRI of Hypoxia-Mediated Rectal Can-
cer Aggressiveness. 2018. url: http://www.acredit.no/the-oxytarget-
study/ (visited on 11/16/2018).

[95] Read nifti files with matlab #210. https://github.com/rordenlab/
dcm2niix/issues/210. Online; accessed 16.11.2018. 2018.

[96] E. Demidenko. “The next-generation K-means algorithm”. In: Stat Anal
Data Min 11.4 (Aug. 2018), pp. 153–166.

[97] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Jour-
nal of Machine Learning Research 12 (2011), pp. 2825–2830.

[98] The MathWorks, Inc. Matlab File Exchange. 2019. url: https://se.
mathworks.com/matlabcentral/fileexchange/ (visited on 05/02/2019).

[99] Python Software Foundation. Python Package Index (PyPI). 2019. url:
https://pypi.org/ (visited on 05/02/2019).

[100] David Arthur and Sergei Vassilvitskii. “k-means++: The advantages of
careful seeding”. In: Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms. Society for Industrial and Applied
Mathematics. 2007, pp. 1027–1035.

[101] Jianhua Lin. “Divergence measures based on the Shannon entropy”. In:
IEEE Transactions on Information theory 37.1 (1991), pp. 145–151.

[102] N. Ramakrishnan and R. Bose. “Analysis of healthy and tumour DNA
methylation distributions in kidney-renal-clear-cell-carcinoma using Kull-
back–Leibler and Jensen–Shannon distance measures”. In: IET Systems
Biology 11.3 (2017), pp. 99–104. issn: 1751-8849. doi: 10.1049/iet-
syb.2016.0052.

[103] Solomon Kullback and Richard A Leibler. “On information and suffi-
ciency”. In: The annals of mathematical statistics 22.1 (1951), pp. 79–
86.

[104] Michele Tumminello, Fabrizio Lillo, and Rosario N Mantegna. “Kullback-
Leibler distance as a measure of the information filtered from multivariate
data”. In: Physical Review E 76.3 (2007), p. 031123.

[105] Thomas M Cover and Joy A Thomas. Elements of information theory.
John Wiley & Sons, 2012.

78

http://www.acredit.no/the-oxytarget-study/
http://www.acredit.no/the-oxytarget-study/
https://github.com/rordenlab/dcm2niix/issues/210
https://github.com/rordenlab/dcm2niix/issues/210
https://se.mathworks.com/matlabcentral/fileexchange/
https://se.mathworks.com/matlabcentral/fileexchange/
https://pypi.org/
https://doi.org/10.1049/iet-syb.2016.0052
https://doi.org/10.1049/iet-syb.2016.0052

[106] AP Majtey, PW Lamberti, and DP Prato. “Jensen-Shannon divergence
as a measure of distinguishability between mixed quantum states”. In:
Physical Review A 72.5 (2005), p. 052310.

[107] Michel Marie Deza and Elena Deza. “Encyclopedia of distances”. In:
Encyclopedia of distances. Springer, 2009, pp. 1–583.

[108] Jacob Cohen. “A coefficient of agreement for nominal scales”. In: Edu-
cational and psychological measurement 20.1 (1960), pp. 37–46.

[109] Paul Jaccard. “Étude comparative de la distribution florale dans une
portion des Alpes et des Jura”. In: Bull Soc Vaudoise Sci Nat 37 (1901),
pp. 547–579.

[110] Kay Henning Brodersen et al. “The balanced accuracy and its posterior
distribution”. In: 2010 20th International Conference on Pattern Recog-
nition. IEEE. 2010, pp. 3121–3124.

[111] Cameron Davidson-Pilon et al. CamDavidsonPilon/lifelines: v0.21.1. Apr.
2019. doi: 10.5281/zenodo.2652543. url: https://doi.org/10.

5281/zenodo.2652543.

[112] William S Noble. “How does multiple testing correction work?” In: Na-
ture biotechnology 27.12 (2009), p. 1135.

[113] Valentin Amrhein, Sander Greenland, and Blake McShane. Scientists rise
up against statistical significance. 2019.

[114] S. I. Vrieze. “Model selection and psychological theory: a discussion of
the differences between the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC)”. In: Psychol Methods 17.2 (June
2012), pp. 228–243.

[115] Yuhong Yang. “Can the strengths of AIC and BIC be shared? A conflict
between model indentification and regression estimation”. In: Biometrika
92.4 (2005), pp. 937–950.

[116] Jia Li. “Clustering based on a multilayer mixture model”. In: Journal of
Computational and Graphical Statistics 14.3 (2005), pp. 547–568.

[117] mixmod Statistical Documentation. 2016. url: http://www.mixmod.
org/IMG/pdf/statdoc_2016.pdf (visited on 05/27/2019).

[118] Mathew R Divine et al. “A population-based Gaussian mixture model in-
corporating 18F-FDG PET and diffusion-weighted MRI quantifies tumor
tissue classes”. In: Journal of Nuclear Medicine 57.3 (2016), pp. 473–479.

[119] B. Segedin and P. Petric. “Uncertainties in target volume delineation in
radiotherapy - are they relevant and what can we do about them?” In:
Radiol Oncol 50.3 (Sept. 2016), pp. 254–262.

[120] C. F. Njeh. “Tumor delineation: The weakest link in the search for ac-
curacy in radiotherapy”. In: J Med Phys 33.4 (Oct. 2008), pp. 136–140.

79

https://doi.org/10.5281/zenodo.2652543
https://doi.org/10.5281/zenodo.2652543
https://doi.org/10.5281/zenodo.2652543
http://www.mixmod.org/IMG/pdf/statdoc_2016.pdf
http://www.mixmod.org/IMG/pdf/statdoc_2016.pdf

[121] P. Franco et al. “Variability of clinical target volume delineation for
rectal cancer patients planned for neoadjuvant radiotherapy with the aid
of the platform Anatom-e”. In: Clin Transl Radiat Oncol 11 (June 2018),
pp. 33–39.

[122] Haiting Xie et al. “Effectiveness of the apparent diffusion coefficient for
predicting the response to chemoradiation therapy in locally advanced
rectal cancer: a systematic review and meta-analysis”. In: Medicine 94.6
(2015).

[123] Andrew Gelman, Jennifer Hill, and Masanao Yajima. “Why we (usually)
don’t have to worry about multiple comparisons”. In: Journal of Research
on Educational Effectiveness 5.2 (2012), pp. 189–211.

[124] Hervé Abdi. “Bonferroni and Šidák corrections for multiple compar-
isons”. In: Encyclopedia of measurement and statistics 3 (2007), pp. 103–
107.

[125] Eurof Walters. “The P-value and the problem of multiple testing”. In: Re-
productive BioMedicine Online 32.4 (2016), pp. 348–349. issn: 1472-6483.
doi: https://doi.org/10.1016/j.rbmo.2016.02.008. url: http://
www.sciencedirect.com/science/article/pii/S1472648316000675.

[126] Daria Salyakina et al. “Evaluation of Nyholt’s procedure for multiple
testing correction”. In: Human heredity 60.1 (2005), pp. 19–25.

80

https://doi.org/https://doi.org/10.1016/j.rbmo.2016.02.008
http://www.sciencedirect.com/science/article/pii/S1472648316000675
http://www.sciencedirect.com/science/article/pii/S1472648316000675

A Appendix

A.1 A guide to the appendix

Due to the rather extensive analysis and testing perform as part of this master’s
thesis the appendix has become quite large. The appendix consists of most of
the code that was used in this study, references and information about packages
and software that was used and figures that with value to the analysis, but
that were to plentiful to fit in thesis itself. Figures of particular importance
are referenced in the text, in addition, most sections in the appendix containing
additional figures are also referenced in the text where they are used.

The code presented in the appendix represent to full process from reading in,
interpolating and storing the dicom images to the survival analysis performed
on the subvolumes obtained in the clustering solutions.

Due to the extensive nature of the appendix, a short description about each
of the sections will be given here even though some might be a bit self explana-
tory.

A.2 Packages and environments: This is a guide to the packages and
software used in this study including what the were primarily used for and
which versions of the pacakges were used.

A.3 Matlab Code: This section contains a number of Matlab® functions
and scripts used in this thesis. Subsection A.3.1 contains code used for the
conversion of dicom images to 3D image stacks in addition to the interpola-
tion of the DWI and derived parameter maps to the resolution of the T2w
images and cropping of the images. The author is grateful for lending the
functions InterpolateImage and getVoxelCoordinates written by Fraziska
Knuth. Subsection A.3.2 contains matlab code used to superimpose interpo-
lated DWI as heatmaps on T2w images. Examples of these images can be
found in figures 17, 19 and 18. In subsection A.3.3 code for another tool for
checking alignment of images is shown. This tool makes an image montage of
selected sequences where edges of corresponding images are exactly aligned. The
code for building the dataset used in the clustering analysis is shown in section
A.3.4. By building the dataset it is meant extracting the image intensities for
each image sequence and parameter map and unpacking them as a matrix whose
dimensionality is equal to the number of features time the number of voxels. In
section A.3.5 code is shown for mapping the labels obtained through either clus-
tering solution back onto the tumour volumes and unpacking the slices as an
image montage. An example image is also given.

A.4 Python Code This section contains the custom python functions writ-
ten for use in this thesis. This includes code for the custom plot containing
scatter plots above the diagonal, histograms on the diagonal and KDE plots
below the diagonal presented in subsection A.4.1. An example of such a plot
is presented in 26. Subsection A.4.2 contains the implementation of the CVIs

81

DB* and DB**. Section A.4.3 contains the code used in z-scoring and perform-
ing PCA on the raw dataset. The code used to obtain the k-means and GMM
clustering solutions is found in sections A.4.4 and A.4.5 respectively. Code for
visually representing the clusters and the survival analysis based on the k-means
partitioned volumes is found in section A.4.6. Finding the optimal number of
components of the GMM clustering solutions is done with the code shown in sec-
tion A.4.7. This section also contains the code for performing survival analysis
on the dataset partitioned with the GMM clustering algorithm.

A.5 Test of DB, DB* and DB** cluster validity indices is a test com-
paring the implemented cluster validity indices DB* and DB** against DB.

A.6 Finding the optimal k for the k-means algorithm contains plots
of CVIs used to find the optimal k for the k-means algorithm. Calculations
were performed both for a dataset including interaction features and without
interaction features. This is described in the text. Plots for CH, Sil, DB, DB*
and DB** are shown.

A.7 KM estimates with logrank test for the total tumour volume
presents the results of survival analysis with Kaplan-Meier estimate with logrank
test for the total volume partitioned according to the median volume. The
analysis is performed for both treatment groups.

A.8 One component vs. rest histograms for the GMM clustering
solution presents histograms where one component of the GMM clustering
solution is plotted against the rest of the components along the original z-scored
feature axes.

A.9 Survival Curves Of the Gaussian Mixture Model (GMM) compo-
nents presents the KM estimates and logrank test results for all components
obtained through the GMM clustering partitioned according to the median clus-
ter volume.

A.11 Correlation heatmaps presents the correlation matrices for the vol-
umes of the GMM components and the total volume as heatmaps.

A.12 Dice-Sørensen Coefficient gives the definition of the Dice-Sørensen
coefficient.

82

A.2 Packages and environments

Multiples packages and environments have been used in the development of the
code for this thesis. For the initial processing and loading of the dicom images
Matlab® was utilized. Matlab® was also used to extract the ROIs delin-
eated by the radiologists and to extract information from the dicom headers.
Matlab® version R2018b (9.5.0.1033004) was used throughout this thesis.

Initially the clustering was performed in Matlab® using tools from the
Statistics and Machine Learning Toolbox. However, it was later made a change
to python and all code used to produce the clustering results presented in this
thesis was developed using python as programming language.

Python is a free and open-source programming language, and many of the
tools that make the programming language easy to use across a wide range of
applications are developed by contributors worldwide. A list of the packages
and package versions used in this thesis will be given here along with what each
individual package was primarily used for. The python version used in this
thesis was Python 3.6.5.

Numpy [1] (version 1.14.3) pythons workhorse for scientific computations.
In this thesis Numpy to calculations and for storing numbers in an efficient
manner. Pandas and Scikit-Learn use Numpy extensively under the hood.

Matplotlib [2] (version 3.0.3) 2D plotting library for python. Used for
many of the plots presented in the thesis.

Scikit-Learn [3] (version 0.20.3) , often abbreviated sklearn, is a popular
module for machine learning and data analysis in python. It is built on top of
Numpy, Scipy and Matplotlib. In this thesis the Scikit-Learn implementation of
k-means clustering and GMM was used. In addition the indices DB* and DB**
was coded using the Scikit-Learn implementation the DB index as a template.
Built in datasets of Scikit-Learn was used to test the implementation of these
new indices.

Pandas [4] (version 0.24.2) contains the pandas datas tructure. This is
a high performance data strucute that behaves like a spreadsheet. The data
structure is built on top of Numpy and contains a vast library of efficient native
methods.

Seaborn [5] (version 1.1.0) library for making statistical graphics in python.
Seaborn is build on top of Matplotlib and is closely integrated with Pandas data
structures. Seaborn is used for a large number of plots in this thesis due to the
convenience of its interaction Pandas datas tructures. Seaborn has a extensive
gallery of beutiful example plots and a simple API.

83

Ipython notebook environment [6] (version 6.4.0) Now know as the
Jupyter Notebook is an interactive computational environment where code, rich
text, plot and more can be combined. Most of the python code written for this
thesis was developed inside the Jupyter Notebook environment. The environ-
ment interacts very well with the pandas data structures making printed tables
”pretty”.

Scipy [7] (version 1.1.0) is a package containing a vast number of functions
and methods useful for mathematics, statistics, science and engineering. In this
thesis specifically the scipy.stats module was used to calculate the Jensen-
Shannon distance between Gaussian mixture components.

Lifelines [8] (version 0.21.1) is a survival analysis package built on top of
Pandas. This package was used for all the survival analysis in the thesis, and
for making the Kaplan-Meier estimate plots.

StatsModels [9] (version 0.9.0) is a module of classes and functions for
the estimation of many different statistical models. In this thesis it was used for
multiple comparison corrections as the module contains a wide array of method.
Though not strictly necessary due to the simplicity of the Bonferroni correction
it was opted for the model still remains a useful tool.

Joblib [10] (version 0.13.2) is a set of tool for creating lightweight piplines
in python. In this thesis it was used due to its simple API for running loops in
parallel.

References

[1] S. Chris Colbert Stéfan van der Walt and Gaël Varoquaux. “The NumPy
Array: A Structure for Efficient Numerical Computation”. In: Computing
in Science & Engineering 13 (2011). doi: 10.1109/MCSE.2011.37.

[2] John D. Hunter. “Matplotlib: A 2D Graphics Environment”. In: Com-
puting in Science & Engineering 9 (2007). doi: 10.1109/MCSE.2007.55.

[3] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Jour-
nal of Machine Learning Research 12 (2011), pp. 2825–2830.

[4] Wes McKinney. “Data Structures for Statistical Computing in Python”.
In: Proceedings of the 9th Python in Science Conference (2010).

[5] Michael Waskom et al. seaborn: statistical data visualization. url: https:
//seaborn.pydata.org/ (visited on 05/24/2019).

[6] F. Perez and B. E. Granger. “IPython: A System for Interactive Scien-
tific Computing”. In: Computing in Science Engineering 9.3 (May 2007),
pp. 21–29. issn: 1521-9615. doi: 10.1109/MCSE.2007.53.

84

https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2007.55
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://doi.org/10.1109/MCSE.2007.53

[7] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source
scientific tools for Python. 2001–. url: http://www.scipy.org/.

[8] Cameron Davidson-Pilon et al. CamDavidsonPilon/lifelines: v0.21.1. Apr.
2019. doi: 10.5281/zenodo.2652543. url: https://doi.org/10.

5281/zenodo.2652543.

[9] Josef Perktold et al. StatsModels: Statistics in Python. 2018. url: https:
//www.statsmodels.org/stable/index.html (visited on 05/07/2019).

[10] Joblib developers. Joblib: running Python functions as pipeline jobs. 2018.
url: https : / / joblib . readthedocs . io / en / latest/ (visited on
05/07/2019).

85

http://www.scipy.org/
https://doi.org/10.5281/zenodo.2652543
https://doi.org/10.5281/zenodo.2652543
https://doi.org/10.5281/zenodo.2652543
https://www.statsmodels.org/stable/index.html
https://www.statsmodels.org/stable/index.html
https://joblib.readthedocs.io/en/latest/

A.3 Matlab Code

A.3.1 Conversion of DICOM images to patient structs with inter-
polation and cropping

1 % Code to convert patient data to patient structs. In these

structs the↪→

2 % images can be accesed in field names according to methods(T2,

DWI, IVIM,↪→

3 % Binary). The IVIM and Binary have substructures according to

submethods↪→

4 % and the radiologist that have made the delineation.

5

6 %% Select which parts of the code you want to run. This also

includes options for debugging↪→

7

8 test = 0;

9 convert = 0;

10 interpolate = 0;

11 flipZdirOfMask = 0; % Now redundant as it is done

automatically in the generateStructFields code.↪→

12 crop = 1;

13 writeBvalues = 1;

14 infoOnly = 1;

15 rmvSlicesOutsideDWIFOV = 1; % should maybe be included in the

crop function for ease of coding↪→

16

17 forceAllPatients = 1; % option to override the data

18 % from the patients in list

19 % of completed patients

20 forceMaxPatients = 1; maxPatNum = 3;

21 % Option to force a maximum

number↪→

22 % converted in a single run

23 convertSpecific = 1; specificPatient = 'Oxytarget_40

PRE';↪→

24

25 updatePatsDone = 1;

26 updatePatsExclude = 1;

27 sing = 0;

28

29 % The matlab build in niftifunctions have a known bug. We

circumvent this↪→

30 % by adding corrected files higher up in the path

31 addpath C:\Users\bendi\OneDrive\Documents\Skole\Prosjektoppgave\ c

Kode\CorrectNiftilCode↪→

86

32

33 %% Define where the raw data is located

34 inputPath = 'C:\Users\bendi\OneDrive\Documents\Skole\Prosjektopp c

gave\Kode\Data_all_pats';↪→

35

36 if isempty(inputPath)

37 inputPath = ...

38 uigetdir('','Choose the folder where the dicom files are

located');↪→

39 end

40 %% Define where to put the different kinds of output data

41 % in which directory to create all the folders with intermediary

and final↪→

42 % data

43

44 basePath = 'C:\Users\bendi\OneDrive\Documents\Skole\Prosjektoppg c

ave\Kode';↪→

45

46 if isempty(basePath)

47 basePath = ...

48 uigetdir('','Choose the folder where the data should be

buildt');↪→

49 end

50

51 if ~test

52 outputPathPatients = fullfile(basePath,'PatientStructs');

53 else

54 outputPathPatients = fullfile(basePath,

'PatientStructsTest');↪→

55 end

56

57 outputPathRaw = fullfile(outputPathPatients, 'raw');

58 outputPathInterpolated = fullfile(outputPathPatients,

'interPolated');↪→

59

60 outputPathInterpolatedAndCropped =

fullfile(outputPathPatients,...↪→

61 'interPolatedAndCropped');

62 outputPathInterpolatedAndCroppedOnly =

fullfile(outputPathPatients,...↪→

63 'interPolatedAndCroppedOnly');

64

65 outputPathInterpolatedAndCroppedOnlyInDWIFOV =...

66 fullfile(outputPathPatients,

'interPolatedAndCroppedOnlyInDWIFOV');↪→

67

87

68 outputPathInfoOnly = ...

69 fullfile(outputPathPatients, 'InfoOnly');

70

71

72 filepath = fullfile(outputPathPatients,...

73 'patDone.mat'); % Files storing the completed patients

74 patsExcludePath = fullfile(outputPathPatients,...

75 'patExclude.mat'); % Files to exclude due to misalignment

76

77

78

79 %% Finding patient names and number of patients

80 patNames = ls(inputPath); patNames = patNames(3:end ,:);

81

82 % We make a list of patients that are already done so that we

don't need to↪→

83 % do these all over again

84 patNames = cellstr(patNames);

85

86 if ~forceAllPatients

87

88 [~,~,~] = mkdir(outputPathPatients);

89

90

91 % checking if the file already exists

92 if isfile(filepath)

93 % if so we load it

94 load(filepath);

95 flag = ismember(lower(patNames),lower(patDone));

96 patNames(flag) = [];

97 if isempty(patNames)

98 % Nothing to convert

99 disp('All patients are converted');

100 return

101 end

102

103 else

104 % File does not exist and we need to create it.

105 patDone = {};

106 save(filepath, 'patDone')

107 end

108

109 end

110

111 % Exclude patients that are misaligned

112

88

113 if isfile(patsExcludePath)

114 % if so we load it

115 load(patsExcludePath);

116 flag = ismember(lower(patNames),lower(patExclude));

117 patNames(flag) = [];

118 if isempty(patNames)

119 % Nothing to convert

120 disp('No valid patients to convert');

121 return

122 end

123

124 else

125 % File does not exist and we need to create it.

126 patExclude = {};

127 save(patsExcludePath, 'patExclude')

128 end

129

130

131

132

133 patNames = char(patNames);

134

135 % Find the number of patients to iterate over

136 numPats = size(patNames,1);

137 tic

138

139 %% Select which radiologist you want to use as. This changes how

images are↪→

140 % cropped. Cropping based on the extent of a box covering the

entire tumour↪→

141 % volume in the x, y and z direction.

142

143 % The avaliable radiologists. Needed for the crop.

144 radiologists = {'an', 'shh'};

145 %%

146 % some of masks seems to be arranged opposite according to

zposition than↪→

147 % the others. We need to flip them. They're flipped if

flipZdirOfMask is 1↪→

148

149 flipPats = {'oxytarget_32 pre', 'oxytarget_40 pre'};

150

151 %% test

152 % allows us to run the code for just one patient to test that

everything↪→

153 % works. When not testing set test to 0.

89

154

155 if test == 1

156 numPats = 1;

157 patNames = patNames(1,:);

158 end

159

160 %% Option to convert just a specific patient. Will overwrite the

data if patient is already converted.↪→

161 if convertSpecific

162 patNames = cellstr(patNames);

163 specPatFlag =

ismember(lower(patNames),lower(specificPatient));↪→

164

165 if isempty(find(specPatFlag,1))

166 disp('Patient not found in directory or is misaligned');

167 return

168 else

169 patNames = patNames(specPatFlag);

170 end

171 numPats = numel(patNames);

172 patNames = char(patNames);

173 end

174

175 %% If the number of patients exeeds the maximum number allowed

reduce number of patients to the maximum.↪→

176 if forceMaxPatients

177 if (numPats > maxPatNum) && ~convertSpecific

178 numPats = maxPatNum;

179 patNames = patNames(1:maxPatNum,:);

180 end

181 end

182

183

184 %% iteration through all patients for converting to structs

185 if convert ==1

186 disp('Converting')

187 flagDWIT2Aligned = ones(numPats,1);

188 for i = 1: numPats

189 fprintf('Converting patient number %d out of %d.\n', i,

numPats);↪→

190 fprintf('Patient name: %s\n', patNames(i,:));

191 generateAndSaveStructFields(fullfile(inputPath,patNames(i,:) c

), outputPathRaw,

patNames(i,:));

↪→

↪→

192 timerval = toc;

193

90

194 % we need to see wether the DWI images and T2 images are

aligned↪→

195 load(fullfile(outputPathRaw, patNames(i,:)),'T2','DWI');

196 if ~(T2.header{1}.ImageOrientationPatient ==

DWI.header{1}.ImageOrientationPatient)↪→

197 % add to flag

198 flagDWIT2Aligned(i) = 0;

199 disp([patNames(i,:) ' is not aligned.'])

200 patExclude{end+1} = patNames(i,:);

201 end

202

203 fprintf('Time spent converting: %.1f\n \n', timerval);

204 end

205 patNames = cellstr(patNames);

206 patNames = patNames(logical(flagDWIT2Aligned));

207 numPats = numel(patNames);

208 patNames = char(patNames);

209 end

210

211 %% Interpolation

212 % iteration through all patients for interpolation of DWI images

to the T2 image size↪→

213 if interpolate == 1

214 tic

215 % showing patient list for debugging

216 disp('Interpolating the patients:')

217 disp(patNames)

218

219 for i = 1:numPats

220 clear T2 ivim DWI bin patientName

221 fprintf('Interpolating patient number %d out of %d. \n', i,

numPats);↪→

222 load(fullfile(outputPathRaw,char(patNames(i,:))));

223

224 % Interpolating the DWI images

225 intImg = InterpolateImage(T2, DWI);

226 DWI.imgInt = intImg;

227

228 % Interpolating the ivim images

229 ivim = copyDWIInfoToIvim(DWI, ivim); % the ivim images are

lacking crucial elements in their dicom header. These

are added from the DWI images since

↪→

↪→

230 % ther are derived from them.

231 fields = fieldnames(ivim);

232 for j = 1:length(fields)

91

233 eval(['intImg = InterpolateImage(T2, ivim.' fields{j}

');'])↪→

234 eval(['ivim.' fields{j},'.imgInt = intImg;'])

235 end

236 [~,~,~] = mkdir(outputPathInterpolated);

237 save(fullfile(outputPathInterpolated,patNames(i,:)),'T2','iv c

im','DWI','bin','patientName');↪→

238 fprintf('Time spent interpolating: %.1f \n\n', toc);

239 end

240

241 end

242

243 %% FlipZDir

244 % Now redundant as it is integrated elsewhere

245

246 if flipZdirOfMask == 1

247 disp('Flipping zdir of masks on required patients')

248 for i=1:numPats

249 if ismember(cellstr(patNames(i,:)), flipPats)

250 disp(['Flipping patient ', patNames(i,:)])

251 % converting the interpolated structs

252 load(fullfile(outputPathInterpolated,char(patNames(i c

,:))),'bin');↪→

253 bin.an.mask = bin.an.mask(:,:,end:-1:1);

254 save(fullfile(outputPathInterpolated,char(patNames(i c

,:))),'bin','-append');↪→

255 end

256 end

257 end

258

259 %% cropping all the images so that they only contain the slices

with cancer cells and also cropping the slices as described

below

↪→

↪→

260 if crop == 1

261 disp('Cropping')

262 % we want to crop the images so that we have a better balanced

dataset.↪→

263 % This should be done by taking the finding the maximum size of

a rectangle↪→

264 % covering the tumor in the x-y plane for all the images. Also

the images↪→

265 % without any tumour should be removed for the cropped images.

We would↪→

266 % like to save this information to separate structs to be able

to use this↪→

267 % data to efficiently build the dataset

92

268

269 [~,~,~] = mkdir(outputPathInterpolatedAndCropped);

270 [~,~,~] = mkdir(outputPathInterpolatedAndCroppedOnly);

271

272 for i = 1:numPats

273 fprintf('Cropping images for patient %s\n', patNames(i,:))

274 margin = 5; % percent of box dimension on each side

275 load(fullfile(outputPathInterpolated,char(patNames(i,:))));

276 [i1, i2, i3] = ind2sub(size(bin.an.mask),

find(bin.an.mask)); % returns the indexes of the

non-zero elements along each direction

↪→

↪→

277 boxDim = [max(i1) - min(i1), max(i2) - min(i2)];

278 addedMargins = round((margin/100).*boxDim);

279 dimStart = NaN(1,3); % storing the box starts in the first

and second dimension↪→

280 dimEnd = NaN(1,3); % storing where the box ends in the first

and second dimension↪→

281 if min(i1)-addedMargins(1) >= 1

282 dimStart(1) = min(i1)-addedMargins(1);

283 else

284 dimStart(1) = 1;

285 end

286

287 if min(i2)-addedMargins(2) >=1

288 dimStart(2) = min(i2)-addedMargins(2);

289 else

290 dimStart(2) = 1;

291 end

292

293 if max(i1) + addedMargins(1) <= size(bin.an.mask,1)

294 dimEnd(1) = max(i1) + addedMargins(1);

295 else

296 dimEnd(1) = size(bin.an.mask);

297 end

298

299 if max(i2) + addedMargins(2) <= size(bin.an.mask,2)

300 dimEnd(2) = max(i2) + addedMargins(2);

301 else

302 dimEnd(2) = size(bin.an.mask,2);

303 end

304 dimEnd(3) = max(i3);

305 dimStart(3) = min(i3);

306

307 T2.imgCrop = T2.img(dimStart(1):dimEnd(1),dimStart(2):dimEnd c

(2),dimStart(3):dimEnd(3));↪→

93

308 DWI.imgCrop = DWI.imgInt(dimStart(1):dimEnd(1),dimStart(2):d c

imEnd(2),:,dimStart(3):dimEnd(3));↪→

309 bin.an.maskCrop = bin.an.mask(dimStart(1):dimEnd(1),dimStart c

(2):dimEnd(2),dimStart(3):dimEnd(3));↪→

310 bin.shh.maskCrop = bin.shh.mask(dimStart(1):dimEnd(1),dimSta c

rt(2):dimEnd(2),dimStart(3):dimEnd(3));↪→

311

312 ivim.ADC.imgCrop = ivim.ADC.imgInt(dimStart(1):dimEnd(1)...

313 ,dimStart(2):dimEnd(2),dimStart(3):dimEnd(3));

314 ivim.D.imgCrop = ivim.D.imgInt(dimStart(1):dimEnd(1)...

315 ,dimStart(2):dimEnd(2),dimStart(3):dimEnd(3));

316 ivim.Dstar.imgCrop =

ivim.Dstar.imgInt(dimStart(1):dimEnd(1)...↪→

317 ,dimStart(2):dimEnd(2),dimStart(3):dimEnd(3));

318 ivim.f.imgCrop = ivim.f.imgInt(dimStart(1):dimEnd(1),...

319 dimStart(2):dimEnd(2),dimStart(3):dimEnd(3));

320

321 bin.radiologistUsed = 'an';

322 cropIndexStart = dimStart;

323 cropIndexEnd = dimEnd;

324 [~,~,~] =

mkdir(fullfile(outputPathInterpolatedAndCropped,'an'));↪→

325 radiologist = 'an';

326 save(fullfile(outputPathInterpolatedAndCropped,'an',patNames c

(i,:)),...↪→

327 'T2','ivim','DWI','bin','patientName', 'radiologist',...

328 'cropIndexStart', 'cropIndexEnd');

329

330 % We set the fields we need in the creation of the crop for

the↪→

331 % radiologist shh to temporary variables so we can remove

them from the↪→

332 % structs for easier saving.

333

334 DWIimgIntTemp = DWI.imgInt;

335 DWIimgTemp = DWI.img;

336 T2imgTemp = T2.img;

337 DWI = rmfield(DWI,'imgInt');

338 DWI = rmfield(DWI, 'img');

339 T2 = rmfield(T2, 'img');

340 maskTempAn = bin.an.mask;

341 bin.an = rmfield(bin.an, 'mask');

342 maskTempShh = bin.shh.mask;

343 bin.shh = rmfield(bin.shh, 'mask');

344

345 ivimADCimgIntTemp = ivim.ADC.imgInt;

94

346 ivimDimgIntTemp = ivim.D.imgInt;

347 ivimDstarimgIntTemp = ivim.Dstar.imgInt;

348 ivimfimgIntTemp = ivim.f.imgInt;

349

350 ivim.ADC = rmfield(ivim.ADC, 'imgInt');

351 ivim.D = rmfield(ivim.D, 'imgInt');

352 ivim.Dstar = rmfield(ivim.Dstar, 'imgInt');

353 ivim.f = rmfield(ivim.f, 'imgInt');

354

355 ivimADCimgTemp = ivim.ADC.img;

356 ivimDimgTemp = ivim.D.img;

357 ivimDstarimgTemp = ivim.Dstar.img;

358 ivimfimgTemp = ivim.f.img;

359

360 ivim.ADC = rmfield(ivim.ADC, 'img');

361 ivim.D = rmfield(ivim.D, 'img');

362 ivim.Dstar = rmfield(ivim.Dstar, 'img');

363 ivim.f = rmfield(ivim.f, 'img');

364

365

366 [~,~,~] = mkdir(outputPathInterpolatedAndCroppedOnly,'an');

367 save(fullfile(outputPathInterpolatedAndCroppedOnly,'an',patN c

ames(i,:)),...↪→

368 'T2','ivim','DWI','bin','patientName','radiologist',...

369 'cropIndexStart','cropIndexEnd');

370 clear radiologist;

371 % We add the struct fields back so the code can access them.

Here we could have rewritten the code to↪→

372 % use the temporary variables

373

374 bin.shh.mask = maskTempShh;

375 bin.an.mask = maskTempAn;

376 DWI.imgInt = DWIimgIntTemp;

377 DWI.img = DWIimgTemp;

378 T2.img = T2imgTemp;

379

380 ivim.ADC.imgInt = ivimADCimgIntTemp;

381 ivim.D.imgInt = ivimDimgIntTemp;

382 ivim.Dstar.imgInt = ivimDstarimgIntTemp;

383 ivim.f.imgInt = ivimfimgIntTemp;

384

385 ivim.ADC.img = ivimADCimgTemp;

386 ivim.D.img = ivimDimgTemp;

387 ivim.Dstar.img = ivimDstarimgTemp;

388 ivim.f.img = ivimfimgTemp;

389

95

390 [i1, i2, i3] = ind2sub(size(bin.shh.mask),

find(bin.shh.mask)); % returns the indexes of the

non-zero elements along each direction

↪→

↪→

391 boxDim = [max(i1) - min(i1), max(i2) - min(i2)];

392 addedMargins = round((margin/100).*boxDim);

393 dimStart = NaN(1,3); % storing the box starts in the first

and second dimension↪→

394 dimEnd = NaN(1,3); % storing where the box ends in the first

and second dimension↪→

395 if min(i1)-addedMargins(1) >= 1

396 dimStart(1) = min(i1)-addedMargins(1);

397 else

398 dimStart(1) = 1;

399 end

400

401 if min(i2)-addedMargins(2) >=1

402 dimStart(2) = min(i2)-addedMargins(2);

403 else

404 dimStart(2) = 1;

405 end

406

407 if max(i1) + addedMargins(1) <= size(bin.shh.mask,1)

408 dimEnd(1) = max(i1) + addedMargins(1);

409 else

410 dimEnd(1) = size(bin.shh.mask);

411 end

412

413 if max(i2) + addedMargins(2) <= size(bin.shh.mask,2)

414 dimEnd(2) = max(i2) + addedMargins(2);

415 else

416 dimEnd(2) = size(bin.shh.mask,2);

417 end

418 dimEnd(3) = max(i3);

419 dimStart(3) = min(i3);

420

421 % saving the indexes at which we crop

422 % want to crop T2, DWI, binary and IVIm images

423 cropIndexStart = dimStart;

424 cropIndexEnd = dimEnd;

425 T2.imgCrop = T2.img(dimStart(1):dimEnd(1),dimStart(2):dimEnd c

(2),dimStart(3):dimEnd(3));↪→

426 DWI.imgCrop = DWI.imgInt(dimStart(1):dimEnd(1),dimStart(2):d c

imEnd(2),:,dimStart(3):dimEnd(3));↪→

427 bin.an.maskCrop = bin.an.mask(dimStart(1):dimEnd(1),dimStart c

(2):dimEnd(2),dimStart(3):dimEnd(3));↪→

96

428 bin.shh.maskCrop = bin.shh.mask(dimStart(1):dimEnd(1),dimSta c

rt(2):dimEnd(2),dimStart(3):dimEnd(3));↪→

429

430 ivim.ADC.imgCrop = ivim.ADC.imgInt(dimStart(1):dimEnd(1)...

431 ,dimStart(2):dimEnd(2),dimStart(3):dimEnd(3));

432 ivim.D.imgCrop = ivim.D.imgInt(dimStart(1):dimEnd(1)...

433 ,dimStart(2):dimEnd(2),dimStart(3):dimEnd(3));

434 ivim.Dstar.imgCrop =

ivim.Dstar.imgInt(dimStart(1):dimEnd(1)...↪→

435 ,dimStart(2):dimEnd(2),dimStart(3):dimEnd(3));

436 ivim.f.imgCrop = ivim.f.imgInt(dimStart(1):dimEnd(1),...

437 dimStart(2):dimEnd(2),dimStart(3):dimEnd(3));

438

439 bin.radiologistUsed = 'shh';

440 [~,~,~] =

mkdir(fullfile(outputPathInterpolatedAndCropped,'shh'));↪→

441 radiologist = 'shh';

442 save(fullfile(outputPathInterpolatedAndCropped,'shh',patName c

s(i,:)),...↪→

443 'T2','ivim','DWI','bin','patientName','radiologist',...

444 'cropIndexStart','cropIndexEnd');

445

446 DWI = rmfield(DWI,'imgInt');

447 DWI = rmfield(DWI, 'img');

448

449 T2 = rmfield(T2, 'img');

450

451 bin.an = rmfield(bin.an, 'mask');

452 bin.shh = rmfield(bin.shh, 'mask');

453

454 ivim.ADC = rmfield(ivim.ADC, 'imgInt');

455 ivim.D = rmfield(ivim.D, 'imgInt');

456 ivim.Dstar = rmfield(ivim.Dstar, 'imgInt');

457 ivim.f = rmfield(ivim.f, 'imgInt');

458

459 ivim.ADC = rmfield(ivim.ADC, 'img');

460 ivim.D = rmfield(ivim.D, 'img');

461 ivim.Dstar = rmfield(ivim.Dstar, 'img');

462 ivim.f = rmfield(ivim.f, 'img');

463

464 [~,~,~] = mkdir(outputPathInterpolatedAndCroppedOnly,'shh');

465 save(fullfile(outputPathInterpolatedAndCroppedOnly,'shh',pat c

Names(i,:)),...↪→

466 'T2','ivim','DWI','bin','patientName','radiologist',...

467 'cropIndexStart','cropIndexEnd');

468 clear radiologist

97

469

470 end

471

472 end

473 %% WriteBValues

474 if writeBvalues == 1

475 disp('Writing bvalues to the patients')

476 % write code here to extract the b values from the DWI images

and reoprt↪→

477 % them as a sorted list in the patient struct field DWI.bValues

478 for i=1:numPats

479 load(fullfile(outputPathRaw,char(patNames(i,:))));

480 DWI = writeBvaluesToStruct(DWI);

481 save(fullfile(outputPathRaw,patNames(i,:)),'T2','ivim','DWI','bi c

n','patientName');↪→

482

483 end

484 for i=1:numPats

485 load(fullfile(outputPathInterpolated,char(patNames(i,:))));

486 DWI = writeBvaluesToStruct(DWI);

487 save(fullfile(outputPathInterpolated,patNames(i,:)),'T2','ivim', c

'DWI','bin','patientName');↪→

488 end

489

490 % we do this for both of the radiologists

491 for j=1:length(radiologists)

492

493 for i=1:numPats

494 load(fullfile(outputPathInterpolatedAndCropped,radiologists{j},c c

har(patNames(i,:))));↪→

495 DWI = writeBvaluesToStruct(DWI);

496 save(fullfile(outputPathInterpolatedAndCropped,radiologists{j},p c

atNames(i,:)),'T2','ivim','DWI','bin','patientName');↪→

497 end

498

499 for i=1:numPats

500 load(fullfile(outputPathInterpolatedAndCroppedOnly,radiologists{ c

j},char(patNames(i,:))));↪→

501 DWI = writeBvaluesToStruct(DWI);

502 save(fullfile(outputPathInterpolatedAndCroppedOnly,radiologists{ c

j},patNames(i,:)),'T2','ivim','DWI','bin','patientName');↪→

503 end

504

505 end

506

507 end

98

508 %% Write infoOnly files

509 if infoOnly == 1

510 disp('Creating info only structs')

511 % write a file only cotaining the info. This is for loading

the file↪→

512 % quickly without having to load the image or the full

header info. We↪→

513 % save one copy with the header and one without to make

loading even↪→

514 % faster. For the moment only info for T2 and DWI is saved

as the other↪→

515 % info is not used in the analysis

516

517 [~,~,~] = mkdir(fullfile(outputPathInfoOnly,'header','an'));

518 [~,~,~] = mkdir(fullfile(outputPathInfoOnly,'header','shh'));

519 [~,~,~] =

mkdir(fullfile(outputPathInfoOnly,'noHeader','an'));↪→

520 [~,~,~] =

mkdir(fullfile(outputPathInfoOnly,'noHeader','shh'));↪→

521

522 for i=1:numPats

523 % making infostruct for both radiologists for easy access to

all info.↪→

524 % first for 'an'

525 load(fullfile(outputPathInterpolatedAndCroppedOnly,'an',char c

(patNames(i,:))));↪→

526 fprintf('Making infostruct for patient %s\n', patNames(i,:))

527

528 T2 = rmfield(T2,'imgCrop');

529 DWI = rmfield(DWI,'imgCrop');

530 bin.an = rmfield(bin.an, 'maskCrop');

531 bin.shh = rmfield(bin.shh, 'maskCrop');

532 save(fullfile(outputPathInfoOnly,'header','an',patNames(i,:) c

),'T2','DWI','patientName','radiologist','cropIndexStart c

','cropIndexEnd');

↪→

↪→

533

534 T2 = rmfield(T2,'header');

535 DWI = rmfield(DWI,'header');

536

537 save(fullfile(outputPathInfoOnly,'noHeader','an',patNames(i, c

:)),'T2','DWI','patientName','radiologist','cropIndexSta c

rt','cropIndexEnd');

↪→

↪→

538

539 % repeat for 'shh'

540 load(fullfile(outputPathInterpolatedAndCroppedOnly,'shh',cha c

r(patNames(i,:))));↪→

99

541 T2 = rmfield(T2,'imgCrop');

542 DWI = rmfield(DWI,'imgCrop');

543 bin.an = rmfield(bin.an, 'maskCrop');

544 bin.shh = rmfield(bin.shh, 'maskCrop');

545 save(fullfile(outputPathInfoOnly,'header','shh',patNames(i,: c

)),'T2','DWI','patientName','radiologist','cropIndexStar c

t','cropIndexEnd');

↪→

↪→

546

547 T2 = rmfield(T2,'header');

548 DWI = rmfield(DWI,'header');

549

550 save(fullfile(outputPathInfoOnly,'noHeader','shh',patNames(i c

,:)),'T2','DWI','patientName','radiologist','cropIndexSt c

art','cropIndexEnd');

↪→

↪→

551 end

552 end

553

554 %% Remove slices outside the DWI fov

555 % for some slices the mask is outside the FOV of the DWI images

and thus we↪→

556 % suspect this can be confusing for the model. Thus we remove

these slices.↪→

557 if rmvSlicesOutsideDWIFOV == 1

558 disp('Removing slices outside DWI FOV')

559 for j=1:length(radiologists)

560 [~,~,~] = mkdir(fullfile(outputPathInterpolatedAndCroppedOnl c

yInDWIFOV),radiologists{j});↪→

561 for i=1:numPats

562 load(fullfile(outputPathInterpolatedAndCroppedOnly,radio c

logists{j},char(patNames(i,:))));↪→

563 flag = true(1,size(DWI.imgCrop,4));

564 for zPos = 1:size(DWI.imgCrop,4)

565 imSel=DWI.imgCrop(:,:,1,zPos);

566 if sum(isnan(imSel(:))) == numel(imSel)

567 flag(zPos)=0;

568 end

569 end

570

571 % we need to update the crop index start and maybe also

the crop↪→

572 % index end to account for the slices that are removed.

573

574 sliceIndexes = sort(find(flag)); % The sort should be

redundant↪→

575 cropIndexStart(3) = cropIndexStart(3) + sliceIndexes(1)

- 1;↪→

100

576 cropIndexEnd(3) = cropIndexStart(3) +

numel(sliceIndexes)-1;↪→

577

578 DWI.imgCrop = DWI.imgCrop(:,:,:,flag);

579 T2.imgCrop = T2.imgCrop(:,:,flag);

580 bin.an.maskCrop = bin.an.maskCrop(:,:,flag);

581 bin.shh.maskCrop = bin.shh.maskCrop(:,:,flag);

582

583 ivim.ADC.imgCrop = ivim.ADC.imgCrop(:,:,flag);

584 ivim.D.imgCrop = ivim.D.imgCrop(:,:,flag);

585 ivim.Dstar.imgCrop = ivim.Dstar.imgCrop(:,:,flag);

586 ivim.f.imgCrop = ivim.f.imgCrop(:,:,flag);

587

588

589 radiologist = radiologists{j};

590 save(fullfile(outputPathInterpolatedAndCroppedOnlyInDWIF c

OV,radiologists{j},char(patNames(i,:))),...↪→

591 'T2','bin','DWI','ivim','patientName','radiologist', c

'cropIndexStart','cropIndexEnd');↪→

592 end

593 end

594 end

595

596

597 %%

598 % When code is finished sing Hallelujah and add patients to the

list of↪→

599 % patients done

600 if updatePatsDone

601 load(filepath);

602 patDone = unique([cellstr(lower(patNames)); lower(patDone)]);

603 save(filepath, 'patDone');

604 end

605

606 if updatePatsExclude

607 temp = load(patsExcludePath);

608 patExclude = unique([lower(patExclude), lower(temp.patExclude)]);

609 save(patsExcludePath, 'patExclude');

610 end

611

612 if sing

613 load handel.mat

614 sound(y(1500:18000),Fs)

615 end

616 %%

617

101

618 function ivimStruct = copyDWIInfoToIvim(DWIstruct, ivimStruct)

619 [PatientsPosition, pixelSize, SliceThickness, ...

620 SpacingBetweenSlices, dimSlice, PatientsOrientation] =

extractHeaderInfo(DWIstruct.header);↪→

621 fields = fieldnames(ivimStruct);

622 for i = 1:length(fields)

623 eval(['ivimStruct.',fields{i},'.PatientsPosition =

PatientsPosition;'])↪→

624 eval(['ivimStruct.',fields{i},'.pixelSize = pixelSize;'])

625 eval(['ivimStruct.',fields{i},'.SliceThickness =

SliceThickness;'])↪→

626 eval(['ivimStruct.',fields{i},'.SpacingBetweenSlices =

SpacingBetweenSlices;'])↪→

627 eval(['ivimStruct.',fields{i},'.dimSlice = dimSlice;'])

628 eval(['ivimStruct.',fields{i},'.PatientsOrientation =

PatientsOrientation;'])↪→

629 end

630 end

631

632 function DWIstruct = writeBvaluesToStruct(DWIstruct)

633 allBvals = NaN(1,length(DWIstruct.header));

634 for j=1:length(DWIstruct.header)

635 allBvals(j) = DWIstruct.header{j}.DiffusionBValue;

636 bValues = unique(allBvals);

637 DWIstruct.bValues = bValues;

638 end

639 end

102

1 function generateAndSaveStructFields(inputPath, outputPath,

patientName)↪→

2

3

4 % Script that takes in 2D dicom data and converts it to 3D mat

data. The↪→

5 % function mimics the folder structure already present in the

input data.↪→

6 % The slices are sorted according to increasing z-pos in the 3D

matrices.↪→

7 % The data for the different patients are assumend to be in a

folder on the↪→

8 % form "oxytarget_# pre". We here also want to be able to use

the code↪→

9 % written by Franziska Knuth for interpolating the images.

10

11 %% Find the folder structure of the import folder

12

13 % We create a folder to where we want to put the converted

patient data↪→

14 [~,~,~] = mkdir(outputPath);

15 dirs = getDirectoryNames(inputPath);

16 %% Make folders and convert DICOM to mat

17

18 for i=1:length(dirs)

19 switch dirs(i)

20 case 'T2'

21 disp('Converting T2 images')

22 T2InputPath = [inputPath, '\', 'T2'];

23 infoTable = buildAndSortInfoTable('T2',T2InputPath);

24 T2 = makeStruct(infoTable.infoStruct, T2InputPath,

infoTable.fileNames);↪→

25 % I want to put as much of this into a function that

can be↪→

26 % generalized to work on IWIM and DWI data also

27

28 case {'ivim' , 'IVIM'}

29 disp('Converting IVIM images');

30 ivimInputPath = [inputPath, '\', char(dirs(i))];

31 subdirs = getDirectoryNames(ivimInputPath);

32 for j=1:length(subdirs)

33 inPath = fullfile(ivimInputPath,

char(subdirs(j)));↪→

34 infoTable = buildAndSortInfoTable('IVIM',inPath);

103

35 eval(['ivim.' char(subdirs(j)),

'=makeStructIvim(infoTable.infoStruct,

inPath, infoTable.fileNames);'])

↪→

↪→

36

37

38 % create info table like for T2 consider moving

into↪→

39 % separate function.

40

41 % create function: explore subdirs

42 end

43 clear header imArray numFiles ivimInputPath

ivimOutpurPath↪→

44 clear fileNames z_pos

45 case 'DWI'

46 disp('Converting DWI images')

47 DWIInputPath = fullfile(inputPath, char(dirs(i)));

48 infoTable = buildAndSortInfoTable('DWI',

DWIInputPath);↪→

49 DWI = makeStruct(infoTable.infoStruct, DWIInputPath,

infoTable.fileNames);↪→

50

51

52 case 'binary'

53 disp('Converting nifti images');

54 binaryInputPath = [inputPath, '\', char(dirs(i))];

55 subdirs = getDirectoryNames(binaryInputPath);

56 for j=1:length(subdirs)

57 inPath = fullfile(binaryInputPath,

char(subdirs(j)));↪→

58 fileName = ls([inPath,'\','*.nii']);

59 info = niftiinfo(fullfile(inPath,fileName));

60 maskArray = rot90(fliplr(niftiread(fullfile(inPa c

th,fileName)))); % The masks did not seem to

be making sense at all. After looking at

some images and masks it seems as

↪→

↪→

↪→

61 % if they were mirrored and flipped 90 degrees.

62 maskArray = maskArray./max(maskArray(:)); %

Normalize mask array to contain only ones

and zeros

↪→

↪→

63 maskArray = double(maskArray); % convert mask

array to same datatype as the imArray needed

for mdl to run properly

↪→

↪→

64

65 % check if the zaxis need to be inverted

104

66 [~, ~, z1] =

transformPointsForward(info.Transform,1,1,1);↪→

67 [~, ~, z2] =

transformPointsForward(info.Transform,

1,1,100);

↪→

↪→

68 needsInversion = (z2-z1) < 0;

69 if needsInversion

70 maskArray = maskArray(:,:,end:-1:1);

71 end

72

73

74

75 eval(['bin.',char(subdirs(j,:)),' =

makeStructBin(maskArray,info);'])↪→

76 end

77 % otherwise

78 % disp('Aint nothing to do here')

79 end

80

81 end

82

83

84

85

86 save(fullfile(outputPath,patientName),'T2','ivim','DWI','bin','p c

atientName');↪→

87 end

88

89 function directoryNames = getDirectoryNames(inputPath)

90 dirs = struct2table(dir(inputPath));

91 dirs.name = categorical(dirs.name);

92 dirs(dirs.name == '..' | dirs.name == '.', :) = []; % remove

dot and double dots from dir output as they are not

folder names.

↪→

↪→

93 directoryNames = dirs.name;

94 end

95

96 function infoTable = buildAndSortInfoTable(method,

MethodInputPath)↪→

97 fileNames = ls([MethodInputPath,'\','*.dcm']); % Extract file

names. Output a string array↪→

98 infoTable = table(fileNames,'VariableNames', {'fileNames'});

99 numFiles = height(infoTable);

100 z_pos = NaN(numFiles,1); % we record some common variables we

want to sort by for all methods↪→

101 header = cell(numFiles,1); % for storing the dcm headers

105

102

103 %% switch on method to also include and sort by b values in DWI

104

105 switch method

106 case 'DWI'

107 bValues = NaN(numFiles,1);

108 for j=1:numFiles

109 header{j} = dicominfo([MethodInputPath,'\',infoT c

able.fileNames(j,:)]);↪→

110 z_pos(j) = header{j}.ImagePositionPatient(3);

111 bValues(j) = header{j}.DiffusionBValue;

112 end

113 infoTable = addvars(infoTable, z_pos, bValues, header,

'NewVariableNames',{'z_pos','bValues','infoStruct'} c

);

↪→

↪→

114 infoTable = sortrows(infoTable,

{'z_pos','bValues'},{'ascend','ascend'});↪→

115 case 'IVIM'

116 % IVIM files do for some reason not include

ImagePositionPatient↪→

117 % in the struct.

118 disp(['NB: the IVIM images are not sorted according to

z-position yet as this', ...↪→

119 'is missing in the dicomheader'])

120 for j=1:numFiles

121 header{j} = dicominfo([MethodInputPath,'\',infoTable c

.fileNames(j,:)]);↪→

122

123 end

124 infoTable = addvars(infoTable, header,

'NewVariableNames' ,'infoStruct');↪→

125

126 otherwise

127 for j=1:numFiles

128 header{j} = dicominfo([MethodInputPath,'\',infoT c

able.fileNames(j,:)]);↪→

129 z_pos(j) = header{j}.ImagePositionPatient(3);

130

131 end

132 infoTable = addvars(infoTable, z_pos, header,

'NewVariableNames',{'z_pos','infoStruct'});↪→

133 infoTable = sortrows(infoTable, {'z_pos'},{'ascend'});

134 end

135 end

136

106

137 function methodStruct = makeStruct(dcmHeaders, methodInputPath,

fileNames)↪→

138 imArray = dicom2mat(methodInputPath, fileNames);

139 imArray = rescaleMR(dcmHeaders, imArray);

140 image = imArray3Dto4D(dcmHeaders, imArray);

141 [PatientsPosition, pixelSize, SliceThickness, ...

142 SpacingBetweenSlices, dimSlice, PatientsOrientation] =

extractHeaderInfo(dcmHeaders);↪→

143 methodStruct = struct('header', {dcmHeaders}, 'img', image,

...↪→

144 'PatientsPosition',PatientsPosition,'pixelSize',pixelSiz c

e, ...↪→

↪→

145 'SliceThickness',SliceThickness, 'SpacingBetweenSlices',

SpacingBetweenSlices, ...↪→

146 'dimSlice', dimSlice, 'PatientsOrientation',

PatientsOrientation);↪→

147 end

148

149 function methodStruct = makeStructIvim(dcmHeaders,

methodInputPath, fileNames)↪→

150 % A special case of the function is made due to the fact

that the ivim↪→

151 % images lack the header information needed by the

image3Dto4D function↪→

152 imArray = dicom2mat(methodInputPath, fileNames);

153 imArray = rescaleMR(dcmHeaders, imArray);

154 szIm = size(imArray);

155 image = reshape(imArray, szIm(1), szIm(2), 1, szIm(3));

156 methodStruct = struct('header', {dcmHeaders}, 'img', image);

157 end

158

159 function binStruct = makeStructBin(maskArray,info)

160 binStruct = struct('info', info,'mask', maskArray);

161 end

162

163 function rescaledImArray = rescaleMR(dcmHeaders, imArray)

164 % Rescales the image using the rescale intercept and rescale

slope found in↪→

165 % the dicom header for each slice.

166 rescaledImArray=NaN(size(imArray));

167 for i=1:numel(dcmHeaders)

168 intercept = dcmHeaders{i}.RescaleIntercept;

169 slope = dcmHeaders{i}.RescaleSlope;

170 for xind=1:size(imArray,1)

171 for yind=1:size(imArray,2)

107

172 rescaledImArray(xind,yind,i)=imArray(xind,yind,i)*sl c

ope +

intercept;

↪→

↪→

173 end

174 end

175 end

176 end

108

1 function imArray = dicom2mat(inputPath, fileNames)

2 % dicom2mat converts the dicom files to mat files. Input and

output paths↪→

3 % are char vectors and the filenames are in a char array with a

fileName in↪→

4 % each row

5

6 numFiles = size(fileNames,1);

7 tempIm = dicomread([inputPath,'\' ,fileNames(1,:)]);

8 imArray = NaN(size(tempIm,1), size(tempIm,2), numFiles);

9 imArray(:,:,1) = tempIm;

10 if numFiles > 1

11 for i=2:numFiles

12 imArray(:,:,i) = dicomread([inputPath,'\'

,fileNames(i,:)]);↪→

13 end

14 end

15

16 end

109

1 function [PatientsPosition, pixelSize, SliceThickness, ...

2 SpacingBetweenSlices, dimSlice, PatientsOrientation] =

extractHeaderInfo(dcmHeaders)↪→

3 % extractHeaderInfo extracts the information needed for

interpolation of↪→

4 % the images and saves it to variable corresponding to the

struct fields↪→

5 % needed. Saving the variables from the workspace and loading

them with the↪→

6 % s = load(filename) syntax yields a struct with the correct

fields. The↪→

7 % input is a cell array of headers that are sorted according to

a choosen↪→

8 % criterions

9

10 pixelSize = dcmHeaders{1}.PixelSpacing(1);

11 SliceThickness = dcmHeaders{1}.SliceThickness;

12 SpacingBetweenSlices = dcmHeaders{1}.SpacingBetweenSlices;

13 dimSlice = dcmHeaders{1}.Width;

14 PatientsOrientation = dcmHeaders{1}.ImageOrientationPatient;

15

16 % We make a list of all the unique values of ImagePositionPatient

17 PatientsPosition = dcmHeaders{1}.ImagePositionPatient';

18

19 for i=2:length(dcmHeaders)

20 temp = sum(PatientsPosition(end, :) ==

dcmHeaders{i}.ImagePositionPatient');↪→

21 if sum(temp(:)) < 3

22 PatientsPosition = cat(1,PatientsPosition,

dcmHeaders{i}.ImagePositionPatient');↪→

23 end

24 end

25 end

110

1 function intImg = InterpolateImage(aimImg, startImg)

2 % Interpolates image in startImg to the coordinates of aimImg

3 % aimImg and startImg need to be structures as produced by

4 % LoadSortAndSave.m. (see documentation in getVoxelCoordinates)

5 %

6 %

7 % Version from 27.08.2018,

8 % by Franziska Knuth

9

10

11 %% Comment in, to run the script separated

12 % % Load data

13 % aimImg = load('C:\ALL_DATA\MatlabFormat\24_PRE_T2.mat');

14 % startImg = load('C:\ALL_DATA\MatlabFormat\24_PRE_DWI.mat');

15

16 %% get Image coordinates, Scanner coordinates

17

18 [Xq,Yq,Zq] = getVoxelCoordinates(aimImg);

19 posQ = [Xq(:), Yq(:), Zq(:)];

20

21 [X, Y, Z] = getVoxelCoordinates(startImg);

22 pos = [X(:), Y(:), Z(:)];

23

24

25 % Preapare empty image to save result

26 szImg = size(aimImg.img);

27 szDim3 = size(startImg.img,3);

28 intImg = zeros(szImg(1), szImg(2), szDim3 , szImg(4));

29

30 % loop over all images in 3d dimension (can be 1 or different

b-values, timepoints,...)↪→

31 for idx = 1:szDim3

32 % get Volume as vector

33 V = squeeze(startImg.img(:,:,idx,:));

34

35 % interpolate the startImage

36 % use linear interpolation between sample points

37 % set outsideValues to NaN

38 F = scatteredInterpolant(pos,V(:), 'linear','none');

39

40 % get values of the image for the coordinates of aimImg

41 Vq = F(posQ);

42

43 % rearange from vector to matrix

44 intImg(:,:,idx,:) = reshape(Vq, szImg);

45 end

111

1 function [x,y,z] = getVoxelCoordinates(d)

2 %%

3 % d contains (example)

4 % PatientsPosition: [26×3 double] specifies the x, y,

and z↪→

5 % coordinates of the

upper left↪→

6 % hand corner of each

image slice↪→

7 % pixelSize: 0.3516 dimension in mm in

xy plane↪→

8 % SliceThickness: 2.5000 dimension of voxel

in z↪→

9 % direction

10 % SpacingBetweenSlices: 2.7500

11 % dimSlice: 512 xy-plane = 512*512

pixel↪→

12 % PatientsOrientation: [1x6] direction cosines

13 % first 3: row value

for x,y,z↪→

14 % last 3: collumn

values for↪→

15 % x,y,z

16 % See dicom documenation for details about the calcualation

17 %%

18

19 x = zeros(d.dimSlice, d.dimSlice, size(d.PatientsPosition,1));

20 y = x;

21 z = x;

22

23 X = d.PatientsOrientation(1:3)'; % row values

24 Y = d.PatientsOrientation(4:6)'; % collumn values

25 dimPix = d.pixelSize; % in mm

26

27 % idx = double(1:d.dimSlice);

28 idx = double(0:d.dimSlice-1);

29 [cMat,rMat] = meshgrid(idx,idx);

30

31 for k_idx = 1:size(d.PatientsPosition,1)

32 S = d.PatientsPosition(k_idx,:);

33 x(:,:,k_idx) = (X(1)*rMat+Y(1)*cMat)*dimPix + S(1);

34 y(:,:,k_idx) = (X(2)*rMat+Y(2)*cMat)*dimPix + S(2);

35 z(:,:,k_idx) = (X(3)*rMat+Y(3)*cMat)*dimPix + S(3);

36 end

112

A.3.2 DWI as heatmaps on T2w images

1 function overlayDWIOnT2AsHeatmap(varargin)

2 %overlayDWIOnT2AsHeatmap select a patient where you want the DWI

image↪→

3 % overlaid as a heatmap on the T2w image.

4

5 if isempty(varargin)

6 [file, path] =

uigetfile(fullfile('PatientStructs\Interpolated','*.mat'));↪→

7 else

8 path = 'PatientStructs\Interpolated';

9 file = varargin{1};

10 end

11

12 load(fullfile(path,file));

13 [~,~,~] = mkdir('DWIHeatmapOverT2');

14

15

16 % we put each succesive image into

17 numSlices = size(T2.img, 4);

18 sz = size(T2.img);

19 images = cell(1, numSlices);

20 imagesMat = NaN(sz(1), numSlices*sz(2),3);

21 im = [];

22

23 % splitting the channels

24 R = [];

25 G = [];

26 B = [];

27 fprintf('Slice: ')

28 for i = 1:numSlices

29 fprintf('%d ', i)

30 images{i} = overlayHeatmapOnImage(squeeze(T2.img(:,:,1,i)),...

31 DWI.imgInt(:,:,1,i));

32

33 % imagesMat(1:sz(1),(i-1)*sz(2)+1:(i)*sz(2),:) = images{i};

34 % we do it the other way around

35

36 % fusing the channels

37

38 R = cat(2, R, images{i}(:,:,1));

39 G = cat(2, G, images{i}(:,:,2));

40 B = cat(2, B, images{i}(:,:,3));

41

42 end

113

43

44 fprintf('\n')

45

46 im = cat(3, R, G, B);

47

48 saveName = strsplit(file,'.mat'); %returns a cell array with

wanted string as first field↪→

49 saveName = saveName{1};

50

51 imwrite(im, fullfile('DWIHeatmapOverT2',[saveName '.tiff']))

52

53 end

114

1 function heatmapMat = overlayHeatmapOnImage(image, OverlayImage)

2

3

4 alpha = (~isnan(OverlayImage))*0.4;

5 % alpha(isnan(alpha)) = 0;

6 ax1 = axes('Position', [0 0 1 1]); %('Position',[1 1 512

512],'Units', 'pixels');↪→

7 imshow(image, 'Colormap', gray, 'Parent', ax1);

8 caxis auto

9 hold on

10 ax2 = axes('Position', [0 0 1 1]); %('Position',[1 1 512

512],'Units', 'pixels');↪→

11 OverlayImage = imshow(OverlayImage, 'Colormap', jet, 'Parent',

ax2);↪→

12 % Set the color limits to be relative to the data values

13 caxis auto

14 % Set the AlphaData to be the transparency matrix created earlier

15 set(OverlayImage, 'AlphaData', alpha);

16

17 f=getframe;

18

19 heatmapMat = f.cdata;

20

21 end

115

A.3.3 Compare images to check alignment

1 function compareImagesToCheckAlignment(varargin)

2 % CompateImagesToCheckAlignmet will print interpolated images of

selected↪→

3 % patients and methods for inspections. More specifically it will

4 % concatenate the interpolated image arrays so that the images

are stacked↪→

5 % directly on top of eachother. The varargin can either be empty

in which↪→

6 % case the code will ask you to select a patient an which

methods to↪→

7 % display. In case of one argument specified the code will

assume that this↪→

8 % is the patient name. In case of 2 inputs specified the code

will assume↪→

9 % the first inout is the patient name and the second is a cell

array of the↪→

10 % methods to be used.

11

12 savefolder = fullfile('ImagesForAlignmentComparison');

13 [~,~,~] = mkdir(savefolder);

14

15 if isempty(varargin)

16 [file, path] =

uigetfile(fullfile('PatientStructs\Interpolated','*.mat'));↪→

17 else

18 path = 'PatientStructs\Interpolated';

19 file = varargin{1};

20 end

21

22 load(fullfile(path,file));

23

24

25 methodsToCompare = {};

26

27 if length(varargin) < 2

28 avaliableMethods = {'T2', 'DWI 0','DWI 500','DWI

1000','ADC','D','Dstar','f'};↪→

29 [indx, tf] = listdlg('PromptString','Select methods', ...

30 'ListString', avaliableMethods);

31 end

32

33

34 if length(varargin) < 2

35 imCells = cell(1,length(indx));

116

36 for i=1:length(indx)

37 method{i} = avaliableMethods{indx(i)};

38 switch method{i}

39 case 'T2'

40 imCells{i} = squeeze(T2.img);

41 case 'DWI 0'

42 imCells{i} = squeeze(DWI.imgInt(:,:,find(DWI.bValues

== 0), :));↪→

43 case 'DWI 500'

44 imCells{i} = squeeze(DWI.imgInt(:,:,find(DWI.bValues

== 500), :));↪→

45 case 'DWI 1000'

46 imCells{i} = squeeze(DWI.imgInt(:,:,find(DWI.bValues

== 1000), :));↪→

47 case 'ADC'

48 imCells{i} = squeeze(ivim.ADC.imgInt);

49 case 'D'

50 imCells{i} = squeeze(ivim.D.imgInt);

51 case 'Dstart'

52 imCells{i} = squeeze(ivim.Dstar.imgInt);

53 case 'f'

54 imCells{i} = squeeze(ivim.f.imgInt);

55 end

56 end

57 else

58 imCells = cell(1,length(varargin{2}));

59 for i=1:length(varargin{2})

60 method{i} = varargin{2}{i};

61 switch method{i}

62 case 'T2'

63 imCells{i} = squeeze(T2.img);

64 case 'DWI 0'

65 imCells{i} = squeeze(DWI.imgInt(:,:,find(DWI.bValues

== 0), :));↪→

66 case 'DWI 500'

67 imCells{i} = squeeze(DWI.imgInt(:,:,find(DWI.bValues

== 500), :));↪→

68 case 'DWI 1000'

69 imCells{i} = squeeze(DWI.imgInt(:,:,find(DWI.bValues

== 1000), :));↪→

70 case 'ADC'

71 imCells{i} = squeeze(ivim.ADC.imgInt);

72 case 'D'

73 imCells{i} = squeeze(ivim.D.imgInt);

74 case 'Dstart'

75 imCells{i} = squeeze(ivim.Dstar.imgInt);

117

76 case 'f'

77 imCells{i} = squeeze(ivim.f.imgInt);

78 end

79 end

80

81 end

82

83 n = length(imCells);

84 figure('Visible','off');

85

86 for i=1:length(imCells)

87 subplot(n,1,i)

88 imds{i} = montage((imCells{i}-min(imCells{i}(:)))./(max((imC c

ells{i}(:))-min(imCells{i}(:)))),'Size',[1

size(imCells{i},3)]);

↪→

↪→

89 end

90

91 % alternative solution

92 im = imds{1}.CData;

93 for i=1:(length(imds)-1)

94 im = cat(1, im,imds{i+1}.CData);

95 end

96

97 % making the suggested name

98 saveName = strsplit(file,'.mat'); %returns a cell array with

wanted string as first field↪→

99 saveName = saveName{1};

100 methodString = [saveName,':'];

101 tempString = [saveName,':']; % copy for comparrison later

102 for i=1:length(method)

103 saveName = [saveName, '_', method{i}];

104 if isequal(methodString, tempString)

105 methodString =[tempString ' ' method{i}];

106 else

107 methodString = [methodString,', ' ,method{i}];

108 end

109 end

110 saveName = [saveName , '.tiff'];

111

112 figure;

113 imshow(im);

114 title(methodString,'Interpreter','none');

115 print(fullfile(savefolder,saveName),'-dtiff', '-r1600')

116 end

118

A.3.4 Building the dataset

1 function [featureArray, FileNames, grpsPasInd] =

rebuildFeatureArrays(test, varargin)↪→

2

3 % rebuildFeatureArrays takes 3D image stacks saved as mat

file↪→

4 % and extracts the image intesities of the delineated tumour

volumes↪→

5 % for each image sequence as vectors. The vectors for each

image↪→

6 % sequence is concatenated into an array.

7 % Input:

8 % test - is a logical flag indicating whether to build the

9 % dataset will all patients or a subset of patient. If 1

10 % the number of patients must be passed as the varargin.

11 % Output:

12 % featureArray - an array containing the image intesities

13 % of each image sequence extracted from the tumour volume.

14 % FileNames - the file names of the files, in this case

15 % patients included in the dataset.

16 % grpsPasInd - an array containing the start and stop index

17 % of each patient.

18

19 dataPath = 'data\InterpolatedAndCroppedInDWIFOVOnly\an';

20 FileNames = cellstr(ls(fullfile(dataPath,'*.mat')));

21

22 if nargin > 2 || (nargin == 2 && ~isnumeric(varargin{1}))

23 error('To many input arguments, or the wrong kind of

input arguments')↪→

24 end

25

26

27

28 if ~isempty(varargin)

29 if varargin{1} < numel(FileNames)

30 numPats = varargin{1};

31 else

32 numPats = numel(FileNames);

33 fprintf("The number of wanted patients exceeds the

number of\n")↪→

34 fprintf("avaliable patients. NumPats will be set to

its maximum\n")↪→

35 fprintf("allowed value\n")

36 end

37 end

119

38

39 if test

40 FileNames = FileNames(1:numPats);

41 end

42

43 % exclude patients due to alignment issues of DWI and T2w

images↪→

44 excludePatients = {'Oxytarget_133 PRE.mat', 'Oxytarget_148

PRE.mat',...↪→

45 'Oxytarget_171 PRE.mat', 'Oxytarget_191

PRE.mat','Oxytarget_146 PRE.mat'};↪→

46

47 [~, idx] = ismember(excludePatients, FileNames);

48 if ~(sum(idx(:))==0) % if so there is no files to exclude

49 FileNames(idx) = [];

50 end

51

52 numPats = numel(FileNames);

53 imSize = nan(numPats,3);

54

55

56 masks = cell(numPats,1);

57 T2 = cell(numPats,1);

58 DWI = cell(numPats,6);

59 ADC = cell(numPats,1);

60 D = cell(numPats,1);

61 Dstar = cell(numPats,1);

62 f = cell(numPats,1);

63 grpsPasInd = nan(numPats,1);

64 patData = cell(numPats,1);

65

66 tic

67 parfor i=1:numPats

68 disp(i)

69 patData{i} = load(fullfile(dataPath, FileNames{i}));

70 masks{i} = logical(patData{i}.bin.an.maskCrop);

71 T2{i} = patData{i}.T2.imgCrop(masks{i});

72 grpsPasInd(i) = sum(masks{i}(:));

73 for j=1:6

74 DWI{i,j} = patData{i}.DWI.imgCrop(:,:,j,:);

75 DWI{i,j} = DWI{i,j}(masks{i});

76 end

77 ADC{i} = patData{i}.ivim.ADC.imgCrop(masks{i});

78 D{i} = patData{i}.ivim.D.imgCrop(masks{i});

79 Dstar{i} = patData{i}.ivim.Dstar.imgCrop(masks{i});

80 f{i} = patData{i}.ivim.f.imgCrop(masks{i});

120

81 imSize(i,:) = size(patData{i}.T2.imgCrop);

82 patData{i} = []; % Reducing memory used without

interfering↪→

83 %with independent of loops.

84 end

85 toc

86

87 % converting each imaging modality into a feature

88 featureArray = cell2mat([T2, DWI, ADC, D, Dstar,f]);

89 size(featureArray)

90 grpsPasInd = cumsum(grpsPasInd); % To get the final index of

all patient data↪→

91 grpsPasInd = [([0; grpsPasInd(1:end-1)]+1) grpsPasInd]; %

to get the start↪→

92 % index of given patient data now a 2*numpats vector

93 clear T2 DWI ADC D Dstar f patData % For more memory saving

94 end

121

A.3.5 Code for mapping components back onto tumour masks

This code maps the cluster or component labels back onto the binarized tumour
volumes and unpack the tumour slices as an image montage. An example image
using 3 groups is shown in figure 29. The code is given below in the matlab
function grpsMontage.

1 function grpsMontage(binImage, grpsVec, imSize, varargin)

2 %grpsMontage prints a montage of tumour volumes with groups in

different↪→

3 %colors

4 % Can use bin image as input both as an image stack and as a

vector.↪→

5 % grpsVec is a vector containing the cancer groups. Saves image

as an eps↪→

6 % file and preview as a low res png to folder structure located

in group↪→

7 % images

8

9 %% pathNames for saving

10 epsPath = fullfile('cancerGroupImages', 'eps');

11 previewPath = fullfile('cancerGroupImages', 'png');

12

13 %% Colormaps from colorbrewer can be extended if more colours

are needed↪→

14

15 cmap = [255,255,255;

16 102,194,165;

17 252,141,98;

18 141,160,203;

19 231,138,195;

20 166,216,84;

21 255,217,47;

22 229,196,148;

23 179,179,179]./255;

24

25 %% Creating the images

26 grpsImage = zeros(imSize);

27 grpsImage(binImage) = grpsVec;

28

29 % montages causes some strange interpolation lines in the

qualitative image↪→

30 % data. using the numsubplots function to get indexes to create

a more or↪→

31 % less quadratical arrya using the slices

32

33 [n,~] = numSubplots(imSize(3));

122

34 imCells = cell(n(1),n(2));

35 sliceIndx = 0:imSize(1)*imSize(2):prod(imSize);

36

37 % Fill the imCells with a nanMatrix of appropriate size

38 for i=1:numel(imCells)

39 imCells{i} = nan(imSize(1), imSize(2));

40 end

41

42

43 for i=1:imSize(3)

44 imCells{i} = reshape(grpsImage(sliceIndx(i)+1:sliceIndx(i+1)) c

,imSize(1),imSize(2));↪→

45 end

46

47 image = cell2mat(imCells);

48 figure('Visible','off');

49 % figure()

50 imshow(image);

51 colormap(cmap(1:numel(unique(grpsVec))+1,:));

52 caxis auto

53 uniqueLabelsVec = unique(grpsVec);

54 numGrps = max(uniqueLabelsVec);

55 % have to add one because we have unique(grpsVec) subregions in

the↪→

56 % tumour and thus +1 when we include area that is not tumour

57

58

59 colorbar('Ticks',

numGrps/(2*(numGrps+1)):numGrps/(numGrps+1):numGrps

,'TickLabels',[0; unique(grpsVec)])

↪→

↪→

60

61 if ~isempty(varargin) && mod(length(varargin),2) == 0

62 for i = 1:2:length(varargin)

63 switch varargin{i}

64 case 'FileName'

65 fileName = varargin{i+1};

66 case 'Subfolder'

67 if ~ischar(varargin{i+1})

68 error('Subolder name must be a char')

69 else

70 subfolder = varargin{i+1};

71 epsPath = fullfile(epsPath, subfolder);

72 previewPath = fullfile(previewPath, subfolder);

73 end

74 end

75 end

123

76 else

77 fileName = inputdlg('Enter file name');

78 if isempty(fileName)

79 error('Enter a valid file name')

80 end

81 end

82

83 [~,~,~] = mkdir(epsPath);

84 [~,~,~] = mkdir(previewPath);

85

86

87

88 %% Saving the figure

89 % making low res png for preview and eps for report

90 set(gcf, 'color', 'W')

91 print(fullfile(epsPath, [fileName '.eps']),'-depsc')

92 print(fullfile(previewPath, [fileName '.png']),'-dpng','-r100')

93

94 end

124

0

1

2

3

Figure 29: Example image showing the components mapped back onto the
tumour slices as different colored pixels.

125

A.4 Python code

A general comment: The notion of without interactions refers to the fact
that there were originally two datasets built. One where polynomial interac-
tion features up to the third order were built using DWI with select b-values
as described in Materials & Methods section 3.3. The intention was to explore
whether this would give greater cluster separability and thus validity. However,
the resulting dataset did not seem to have more easily distinguishable clusters
and it was thus dropped from further analysis. However, this is the reason that
some of the code in the appendix still will refers to ”dataset without interac-
tions”.

A.4.1 Custom plots

1 import numpy as np

2 import seaborn as sns

3 import matplotlib.pyplot as plt

4 import pandas as pd

5 import os

6 from itertools import combinations

7 from scipy.io import loadmat

8

9 from sklearn.preprocessing import PolynomialFeatures,

StandardScaler↪→

10 from sklearn.decomposition import PCA

11 from sklearn.model_selection import GridSearchCV

12 from sklearn.neighbors import KernelDensity

13

14 def kde_scatter_histplot(dataFrame,**kwargs):

15 # plots the kde plots, scatter plots and histograms of the

first 5 components of a pandas dataFrame.↪→

16 # Labeling assumes that the first five columns are principal

components↪→

17

18 # default values

19 bw = 0.2

20 s = 5

21 n_components = 5

22 save = False

23

24 for key, value in kwargs.items():

25 if key == 'size':

26 s = value

27 elif key == 'bw':

28 # Bandwidth is either a number or a dataFrame

29 if type(value) == pd.core.frame.DataFrame:

126

30 # normal functionality

31 if not(value.shape[0] == n_components and

value.shape[1] == n_components):↪→

32 raise ValueError(f"DataFrame of incompatible

length. Expected shape was

({n_components},{n_components})")

↪→

↪→

33 else:

34 bw = value

35 elif key == 'n_components':

36 n_components = value

37 elif key == 'savepath':

38 savepath = value

39 save = True

40 # checks if folder where you want to save the figure

exists↪→

41 if not(os.path.exists(os.path.dirname(savepath))):

42 # The specified folder does not exist

43 raise ValueError(f"The specified folder path

{os.path.dirname(savepath)} does not exist.")↪→

44 else:

45 return(print('unrecognized key'))

46

47

48 # The following code expects that the bw is in the form of a

pandas dataframe with indexes and colums being named↪→

49 # PC1,...,PC{n_components} according to the principal

component number. Thus if bw is a number, we convert it

to a

↪→

↪→

50 # dataFrame that is bw in all positions.

51 if not(type(bw)==pd.core.frame.DataFrame):

52 PClist = [f"PC{i+1}" for i in range(n_components)]

53 bw = np.ones((n_components,n_components))*bw

54 bw = pd.DataFrame(bw, columns=PClist, index = PClist)

55

56 fig, grid = plt.subplots(n_components, n_components,

figsize=(8, 8))↪→

57

58 for i, row in enumerate(grid):

59 for j, ax in enumerate(row):

60 if i > j:

61 sns.kdeplot(dataFrame.iloc[:,j],

dataFrame.iloc[:,i], ax=ax, shade=True,

bw=bw.loc[f'PC{j+1}',f'PC{i+1}'],vertical =

True)

↪→

↪→

↪→

62 elif i == j:

63 sns.distplot(dataFrame.iloc[:,j],kde=False,ax=ax)

127

64 else:

65 sns.scatterplot(dataFrame.iloc[:,j],

dataFrame.iloc[:,i], ax=ax, s=s)↪→

66 ax.set_xticks([])

67 ax.set_yticks([])

68 ax.set_ylabel('')

69 ax.set_xlabel('')

70 if j == 0:

71 ax.set_ylabel(f'PC{i+1}') # python is zero

indexed↪→

72 if i == n_components-1:

73 ax.set_xlabel(f'PC{j+1}') # python is zero

indexed↪→

74 if save:

75 plt.savefig(savepath)

76 plt.show()

77

78

79 def find_bandwidths_for_kde_matrix(dataFrame, bandwidths,

numComponents):↪→

80 # we want to find the best bandwidths for the KDE matrix by

cross validation.↪→

81 # This is quite computationally expensive so results should

be saved when ran.↪→

82 # Anything more than ~20000 samples is infeasible to run.

83 # The best bandwidth will be found for PC component £i£

plotted against↪→

84 # PC component £j£ for £i < j£ in this way only due to the

fact that duplicates↪→

85 # (PC1, PC2 and PC2, PC2) are uninteresting as well as PCs

with themselves.↪→

86 # Inputs:

87 # dataFrame - pandas datafram with the Principal Components

of the a dataSet↪→

88 # bandwiths - list of bandwidths. The code will find the

best bandwidth in this list.↪→

89 # numComponents - number of components. Pairs of

PC_1,...,PC_numComponents↪→

90

91 # First figure out if the best bandwidths is already found

for the given combination↪→

92 # of components and data samples.

93

94 # Create a file name that also serves as an ID for the

experiment↪→

128

95 fileName = f"BestBandwidthsN{dataFrame.shape[0]}Grid{numComp c

onents}by{numComponents}"↪→

96 if os.path.exists(fileName):

97 print("Experiment already run. Loading previous

results.")↪→

98 return pd.read_pickle(fileName)

99 else:

100 # Run the experiment if not already tested

101 PClist = [f"PC{i+1}" for i in range(numComponents)]

102 bestBandwidths = pd.DataFrame(np.zeros((numComponents,nu c

mComponents)),columns=PClist,

index=PClist)

↪→

↪→

103

104 for i in range(numComponents):

105 for j in range(numComponents):

106 if i<j:

107 print(f"PC{i+1} PC{j+1}")

108 grid = GridSearchCV(KernelDensity(kernel='ga c

ussian'),↪→

109 {'bandwidth': bandwidths},

110 cv=10,n_jobs = -2, verbose = 1)

111 grid.fit(dataFrame.iloc[:,[i,j]])

112 bestBandwidths.loc[f"PC{i+1}",f"PC{j+1}"] =

grid.best_params_['bandwidth']↪→

113 bestBandwidths.loc[f"PC{j+1}",f"PC{i+1}"] =

grid.best_params_['bandwidth']↪→

114 bestBandwidths.to_pickle(fileName) # storing the results

115 return(bestBandwidths)

116

117 def kde_n_components(dataFrame, savepath,**kwargs):

118 # Standard values

119 bw = 0.25

120

121 if not os.path.exists(savepath):

122 print('Please sepcify a valid savepath')

123 return

124 for key, value in kwargs.items():

125 if key == 'n_components':

126 n_components = value

127 dataFrame = dataFrame.iloc[:,0:n_components]

128 elif key == 'bw':

129 # Bandwidth is either a number or a dataFrame

130 if type(value) == pd.core.frame.DataFrame:

131 # normal functionality

132 if not(value.shape[0] == n_components and

value.shape[1] == n_components):↪→

129

133 raise ValueError(f"DataFrame of incompatible

length. Expected shape was

({n_components},{n_components})")

↪→

↪→

134 else:

135 bw = value

136 else:

137 return(print('unrecognized key'))

138

139 comb = combinations(dataFrame.columns,2)

140

141 # The following code expects that the bw is in the form of a

pandas dataframe with indexes and colums being named↪→

142 # PC1,...,PC{n_components} according to the principal

component number. Thus if bw is a number, we convert it

to a

↪→

↪→

143 # dataFrame that is bw in all positions.

144 if not(type(bw)==pd.core.frame.DataFrame):

145 PClist = [f"PC{i+1}" for i in range(n_components)]

146 bw = np.ones((n_components,n_components))*bw

147 bw = pd.DataFrame(bw, columns=PClist, index = PClist)

148

149 for pair in comb:

150 plt.figure()

151 print(f'Bandwidth {pair[0]} {pair[1]}:

{bw.loc[pair[0],pair[1]]}')↪→

152 sns.kdeplot(dataFrame.loc[:,pair[0]],dataFrame.loc[:,pai c

r[1]], shade = True,

bw=bw.loc[pair[0],pair[1]])

↪→

↪→

153 plt.xticks([])

154 plt.yticks([])

155 plt.xlabel(pair[0])

156 plt.ylabel(pair[1])

157 plt.savefig(savepath + '/' + pair[0] + '_' + pair[1] +

'_'+ 'kde_plot.pdf')↪→

158 plt.close()

159

160

161 if __name__ == "__main__":

162 # For testing

163 pass

130

A.4.2 Implementation of the DB* and DB** indices

1 """"Cluster validity indices """

2

3 import numpy as np

4 from sklearn.metrics.pairwise import pairwise_distances

5 from sklearn.preprocessing import LabelEncoder

6 from sklearn.utils import safe_indexing, check_X_y

7 from sklearn.metrics.cluster.unsupervised import

check_number_of_labels↪→

8

9 # Author: Bendik Skarre Abrahamsen

<bendik.s.abrahamsen@gmail.com>↪→

10

11 def davies_bouldin_star_score(X, labels):

12 """Computes the Davies-Bouldin star score.

13 The score was proposed as an improvement to the original

Davies-Bouldin↪→

14 score [1] by Kim and Ramakrishna [2] by using the minimum of

the↪→

15 between centroid distances instead of just the between

centroid↪→

16 distances. Read more in the :ref:`User Guide

<davies-bouldin_index>`.↪→

17

18 Parameters

19 ----------

20 X : array-like, shape (``n_samples``, ``n_features``)

21 List of ``n_features``-dimensional data points. Each row

corresponds↪→

22 to a single data point.

23 labels : array-like, shape (``n_samples``,)

24 Predicted labels for each sample.

25 Returns

26 -------

27 score: float

28 The resulting Davies-Bouldin score.

29 References

30 ----------

31 .. [1] Davies, David L.; Bouldin, Donald W. (1979).

32 `"A Cluster Separation Measure"

33 <https://ieeexplore.ieee.org/document/4766909>`__.

34 IEEE Transactions on Pattern Analysis and Machine

Intelligence.↪→

35 PAMI-1 (2): 224-227

36

131

37 ..[2] Minho Kim, R.S. Ramakrishna,

38 New indices for cluster validity assessment,

39 Pattern Recognition Letters,

40 Volume 26, Issue 15,

41 2005,

42 Pages 2353-2363,

43 ISSN 0167-8655,

44 https://doi.org/10.1016/j.patrec.2005.04.007.

45 (http://www.sciencedirect.com/science/article/pii/S016786 c

550500125X)↪→

46 """

47

48 X, labels = check_X_y(X, labels)

49 le = LabelEncoder()

50 labels = le.fit_transform(labels)

51 n_samples, _ = X.shape

52 n_labels = len(le.classes_)

53 check_number_of_labels(n_labels, n_samples)

54

55 intra_dists = np.zeros(n_labels)

56 centroids = np.zeros((n_labels, len(X[0])), dtype=np.float)

57 for k in range(n_labels):

58 cluster_k = safe_indexing(X, labels == k)

59 centroid = cluster_k.mean(axis=0)

60 centroids[k] = centroid

61 intra_dists[k] = np.average(pairwise_distances(

62 cluster_k, [centroid]))

63

64 centroid_distances = pairwise_distances(centroids)

65

66 if np.allclose(intra_dists, 0) or

np.allclose(centroid_distances, 0):↪→

67 return 0.0

68

69 # intra_distsmatrix

70 intra_dists_m = intra_dists[:, None] + intra_dists

71 # We don't want elements along the diagonal

72 di = np.diag_indices(intra_dists_m.shape[0])

73 intra_dists_m[di] = np.nan

74 np.fill_diagonal(centroid_distances, np.inf)

75 score = np.nanmax(intra_dists_m, axis=1) /

np.min(centroid_distances, axis=0)↪→

76

77 return np.mean(score)

78

79 def davies_bouldin_star_star_score(X, labels):

132

80 """Computes the Davies-Bouldin star score.

81 The score was proposed as an improvement to the original

Davies-Bouldin↪→

82 score [1] by Kim and Ramakrishna [2] by using the minimum of

the↪→

83 between centroid distances instead of just the between

centroid↪→

84 distances. In addition it uses the maxdiff between see Kim

et al [2]↪→

85 for details.

86 Read more in the :ref:`User Guide <davies-bouldin_index>`.

87

88 Parameters

89 ----------

90 X : array-like, shape (``n_samples``, ``n_features``)

91 List of ``n_features``-dimensional data points. Each row

corresponds↪→

92 to a single data point.

93 labels : array-like, shape (``n_cmax``,``n_samples``)

94 Predicted labels for each sample for each proposed k.

95 Returns

96 -------

97 score: list of floats

98 The resulting Davies-Bouldin scores up to but not

including↪→

99 n_cmax. Where n_cmax is the larger number of clusters

that↪→

100 the clustering algorithm is run for.

101 References

102 ----------

103 .. [1] Davies, David L.; Bouldin, Donald W. (1979).

104 `"A Cluster Separation Measure"

105 <https://ieeexplore.ieee.org/document/4766909>`__.

106 IEEE Transactions on Pattern Analysis and Machine

Intelligence.↪→

107 PAMI-1 (2): 224-227

108

109 ..[2] Minho Kim, R.S. Ramakrishna,

110 New indices for cluster validity assessment,

111 Pattern Recognition Letters,

112 Volume 26, Issue 15,

113 2005,

114 Pages 2353-2363,

115 ISSN 0167-8655,

116 https://doi.org/10.1016/j.patrec.2005.04.007.

133

117 (http://www.sciencedirect.com/science/article/pii/S016786 c

550500125X)↪→

118 """

119 score = []

120 e1 = []

121 e2 = []

122 for labels in labels:

123

124 X, labels = check_X_y(X, labels)

125 le = LabelEncoder()

126 labels = le.fit_transform(labels)

127 n_samples, _ = X.shape

128 n_labels = len(le.classes_)

129 check_number_of_labels(n_labels, n_samples)

130

131 intra_dists = np.zeros(n_labels)

132 centroids = np.zeros((n_labels, len(X[0])),

dtype=np.float)↪→

133 for k in range(n_labels):

134 cluster_k = safe_indexing(X, labels == k)

135 centroid = cluster_k.mean(axis=0)

136 centroids[k] = centroid

137 intra_dists[k] = np.average(pairwise_distances(

138 cluster_k, [centroid]))

139

140 centroid_distances = pairwise_distances(centroids)

141

142 if np.allclose(intra_dists, 0) or

np.allclose(centroid_distances, 0):↪→

143 return 0.0

144

145 # intra_distsmatrix

146 intra_dists_m = intra_dists[:, None] + intra_dists

147 # We don't want elements along the diagonal

148 di = np.diag_indices(intra_dists_m.shape[0])

149 intra_dists_m[di] = np.nan

150 np.fill_diagonal(centroid_distances, np.inf)

151 e1.append(np.nanmax(intra_dists_m, axis=1))

152 e2.append(np.min(centroid_distances, axis=0))

153

154 diff_nc = [e1[i]-e1[i+1][:-1] for i in range(len(e1)-1)]

155

156 return [np.mean((e1[i]+np.max(diff_nc[i]))/e2[i]) for i in

range(len(diff_nc))]↪→

157

158

134

159 if __name__ == "__main__":

160 # For testing only

161 pass

135

A.4.3 z-scoring and PCA

136

1 Rebuilding the dataset without interactions

In this section the dataset will be loaded from a matlab file and buildt into pandas dataframe.
Each feature will first be z-scored and it will then be perfromed PCA on the resulting dataset. This
will produce a dataset of principal components. This dataset will be saved and imported in the
notebooks that perform the k-means and Gaussian mixture model clustering.

In [17]: from scipy.io import loadmat
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import os
from IPython.display import display, HTML
from scipy.stats import shapiro, kstest, normaltest

from sklearn.preprocessing import PolynomialFeatures, StandardScaler
from sklearn.decomposition import PCA
%matplotlib inline

for profiling
import timeit

three significant digist is more than enough
pd.options.display.float_format = '{:.2e}'.format

In [18]: # Loading the latest version of the FeatureArray
featureArray = loadmat('./../Data/FeatureArray/featureArraysFinalv2.mat')

In [19]: for elem in featureArray.keys():
print(elem)

__header__
__version__
__globals__
FileNames
featureArray
grpsPasInd

In [20]: columns = ['T2','DWI0','DWI25','DWI50','DWI100','DWI500','DWI1000','ADC',
'D','Dstar','f']

featureDF = pd.DataFrame(featureArray['featureArray'], columns=columns)

In [21]: featureDF.describe()

Out[21]: T2 DWI0 DWI25 DWI50 DWI100 DWI500 DWI1000 ADC \
count 3.92e+06 3.92e+06 3.92e+06 3.92e+06 3.92e+06 3.92e+06 3.92e+06 3.92e+06
mean 6.32e+02 7.42e+02 6.71e+02 6.42e+02 5.95e+02 3.69e+02 2.55e+02 1.34e+04

1

137

std 2.02e+02 3.01e+02 2.76e+02 2.60e+02 2.39e+02 1.39e+02 9.84e+01 4.43e+03
min 0.00e+00 6.11e+01 7.21e+01 7.42e+01 6.44e+01 5.75e+01 4.47e+01 1.25e+02
25% 5.03e+02 5.43e+02 4.90e+02 4.71e+02 4.38e+02 2.76e+02 1.85e+02 1.04e+04
50% 6.07e+02 7.03e+02 6.34e+02 6.09e+02 5.66e+02 3.50e+02 2.35e+02 1.29e+04
75% 7.28e+02 8.92e+02 8.04e+02 7.68e+02 7.14e+02 4.42e+02 3.07e+02 1.61e+04
max 2.61e+03 4.15e+03 3.77e+03 3.38e+03 3.05e+03 1.71e+03 1.20e+03 6.53e+04

D Dstar f
count 3.92e+06 3.92e+06 3.92e+06
mean 1.17e+04 1.13e+04 1.06e+04
std 4.56e+03 4.22e+03 4.87e+03
min -3.11e-12 0.00e+00 0.00e+00
25% 8.69e+03 8.42e+03 7.21e+03
50% 1.14e+04 1.10e+04 1.04e+04
75% 1.45e+04 1.40e+04 1.37e+04
max 3.26e+04 3.23e+04 3.25e+04

In [6]: normaltest(featureDF.DWI0)

Out[6]: NormaltestResult(statistic=778427.9879091659, pvalue=0.0)

1.1 Performing dimensionality reduction and principal component analysis

We’ll perform dimensionality reduction by PCA. However, since the PCA finds the linear combi-
nation of features that explains the greates amount of variance in the dataset, it is not independent
of the scale of the data. We thus will, as is customary, rescale the data using a z-transform. That is
for each sample xij we subtract the feature mean µj and divide by the feature standard deviation.
We thus obtain features with means of zero and standard deviations (and variances of 1).

zij =
xij − µj

σ

In [7]: # initializing a scaler object
scaler = StandardScaler()
Storing column names
columnNames = featureDF.columns
featureDF_z = pd.DataFrame(scaler.fit_transform(featureDF),

columns=columnNames)
pd.options.display.float_format = '{:.2f}'.format
featureDF_z.describe()

Out[7]: T2 DWI0 DWI25 DWI50 DWI100 DWI500 \
count 3920118.00 3920118.00 3920118.00 3920118.00 3920118.00 3920118.00
mean 0.00 -0.00 0.00 -0.00 0.00 -0.00
std 1.00 1.00 1.00 1.00 1.00 1.00
min -3.13 -2.26 -2.17 -2.18 -2.22 -2.24
25% -0.64 -0.66 -0.65 -0.66 -0.66 -0.67
50% -0.13 -0.13 -0.13 -0.12 -0.12 -0.14
75% 0.47 0.50 0.48 0.49 0.50 0.53

2

138

max 9.77 11.34 11.22 10.53 10.29 9.63

DWI1000 ADC D Dstar f
count 3920118.00 3920118.00 3920118.00 3920118.00 3920118.00
mean -0.00 0.00 -0.00 -0.00 -0.00
std 1.00 1.00 1.00 1.00 1.00
min -2.13 -3.00 -2.55 -2.67 -2.18
25% -0.71 -0.68 -0.65 -0.67 -0.70
50% -0.20 -0.12 -0.06 -0.07 -0.05
75% 0.54 0.60 0.62 0.65 0.64
max 9.65 11.71 4.60 4.98 4.49

In [8]: featureDF_z.to_feather('./Data/featureDFRawZScaled')

In [9]: xlimH = np.percentile(featureDF_z.values,99.95,axis=0)
xlimL = np.min(featureDF_z.values, axis=0) #-np.percentile(-featureDF_z.values,99,axis=0)
print(xlimH, xlimL)

[6.18029372 5.74551609 5.45867529 5.46083993 5.46679237 5.50761735
5.447619 10.12628008 3.790955 3.93436736 3.62762841] [-3.1291956 -2.26257816 -2.16876839 -2.18112355 -2.22280404 -2.24170097

-2.13257335 -2.99970649 -2.55475731 -2.67142681 -2.18248399]

In [25]: axList = featureDF_z.plot.hist(subplots=True,figsize=(12,26),
layout=(-1,2),bins=500, color = 'C0', density=True,

)
axList = np.array(axList).reshape(-1)
for c,ax in enumerate(axList):

if c < featureDF.shape[1]:
ax.set_xlim((xlimL[c], xlimH[c]))
ax.set_yticks([])
ax.legend(fontsize=20)
ax.set_ylabel(ax.get_ylabel(), fontsize=20)
try:

ax.tick_params(axis='both', which='major', labelsize=20)
except:

pass
plt.tight_layout(rect=[0, 0, 1, 0.98])
plt.suptitle('Histograms of voxel intensities for each image sequence', va='bottom',size = 26)
plt.savefig('./figures/histograms/DFZHistogramNoInteractions.pdf')

3

139

4

140

We’ll now perform the PCA

In [12]: # initializing a PCA object
pca_scaler = PCA()
creating the new column names
PC = [f'PC{i+1}' for i in range(featureDF_z.shape[1])]
featuresPCA = pd.DataFrame(pca_scaler.fit_transform(featureDF_z), columns= PC)

In [13]: plt.figure(figsize=(8,6))
expl = pca_scaler.explained_variance_ratio_
sumExpl = np.cumsum(expl)
creating a list of components that together explain up to but not including 99% of the variance
x,y = zip(*[(c+1, expl) for (c, expl) in enumerate(sumExpl) if expl < 0.99])

line = plt.plot(x,y, '-o', color = "tab:orange", label = "Cumulative explained\n variance of PC $\leq i$")
hline = plt.axhline(0.95, color='k', linestyle = '--', linewidth=0.5, label = '95% line')
hline = plt.axhline(0.9, color='k', linestyle = '-', linewidth=0.5, label = '90% line')
barC = plt.bar(x, expl[:len(x)], width = 0.4, label = "variance explained by\n PC number i")
plt.legend(loc=7)
plt.title("Explained variance of pricipal components (PC)")
plt.xlabel("Principal Component number")
plt.ylabel("Ratio of explained variance")
plt.yticks(np.arange(0,1.1,0.1))
plt.ylim(0, 1)
plt.savefig('./figures/Pareto-NoInteractions.pdf')

5

141

Over 90% of the variance of the dataset is explained by the first four principal components
and over 95% of the variance is explained by the first five principal components. The three first
principal components explain almost 90% of the variance.

In [22]: print(f"The first three component explain {sumExpl[2]*100:.2f}% of the variance.")

The first three component explain 87.35% of the variance.

A table showing the comulative explained variance of the first 8 components is shown below.

In [30]: pd.options.display.float_format = '{:.2%}'.format
pd.DataFrame([sumExpl[0:8]],

columns=featuresPCA.iloc[0:1,0:8].columns).rename(
{0:'Cumulative variance explained'}, axis=0)

Out[30]: PC1 PC2 PC3 PC4 PC5 PC6 \
Cumulative variance explained 53.03% 77.43% 87.35% 94.30% 96.20% 97.87%

PC7 PC8
Cumulative variance explained 98.94% 99.45%

6

142

1.2 Saving the dataset

We now save the dataset in a python friendly format so that we can access it more easily when
visualizing the data, running the k-means algorithm and Gaussian mixture.

In [14]: featuresPCA.to_feather('./Data/featuresPCAnoInteractions')

7

143

A.4.4 k-means Cluster Analysis

144

1 k-means clustering

In []: import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
from sklearn.metrics import calinski_harabaz_score, davies_bouldin_score
from cluster_validity_indices import davies_bouldin_star_score, davies_bouldin_star_star_score
from sklearn.metrics import silhouette_score

from sklearn.preprocessing import MinMaxScaler

import matplotlib.pyplot as plt
import seaborn as sns
import os

%matplotlib notebook

We want to use the k-means clsutering algorithm to cluster our data while also writing about
the choice of selected parameters and options in the given implementation of the algorithm. We’ll
use the scikit-learn implementation of the k-means algorithm. We’ll time the algorithm to see how
fast it can cluster the full datasets, and we’ll find the optimal k based on the DB, DB*, DB** and
Silhouette coefficients.

First the dataset needs to be loaded

In []: dataset = pd.read_feather('./Data/featuresPCAnoInteractions')
when testing the code a testset of 100000 samples will be used.
figSavePath = './figures/k-meansClusteringFiguresNoInteractions'
labelsSaveName = 'kmeansLabelsNoInteractions'
resultsSavePath = './Results/kmeans/'
test = 0
if test:

dataset = dataset.sample(10000)
figSavePath = figSavePath + 'Test'
labelsSaveName = labelsSaveName + 'Test'

try:
os.mkdir(figSavePath)

except:
print('Folder already exist')

1.1 Timing the k-means algorithm and checking for convergence

We want to see how fast the k-means algorithm is on the dataset for different k.

In []: kMeansTime = []
for k in np.arange(2,3):

kmeans = KMeans(n_clusters=k,max_iter=600,
n_init=30,n_jobs=-1)

time = %timeit -o -n1 -r1 kmeans.fit(dataset.iloc[:,0:4])

In []: time.average

It takes roughly 150 seconds to perform k-means on the entire dataset. This is by using the
standard parameters of the k-means implementation in sklearn. These are: using k-means++ to

1

145

assign the initial clsuter centers in a smart manner. This is done by selecting samples that are fairly
far apart from eachother. For details about the k-means++ algorithm see Arthur and Vassilvitskii
[1]. The k-means is run 10 times with different centroid seeds where the best ouput and selected
clustering solution is the one that minimizes the within-cluster sum of squares distances. Max
iterations is set to 300. The number of iterations should be checked after each completed run of
the algorithm to see that convergence has occured before the maximum number of iteration has
been reached. This can be accessed in the kmeansObject.n_iter_ field.

In []: kmeansConvergenceTest = KMeans(n_clusters=5, max_iter=300,
n_init=1, init='random').fit(dataset)

In []: kmeansConvergenceTest.n_iter_

How long it takes to run the k-means algorithm is dependent on how fast it reaches conver-
gence and stops. The k-means algorithm runs the maximal number of iteration in the worst case
and is normally much quicker than this.

1.2 Running the k-means algorithm for different k

We want to test the k-means algorithm for k ranging from 2 to approxiamtely 20 and check ther
performance by using different criterea. We’ll save the resulting labels from the clustering with
different k’s. For k’s where the clustering does not converge in the maximal number of iterations
the reuslts will be flagged. Four pricipal components have been shown to contain more than 90%
of the total variance of the dataset. Only these four principal components will be used in the
analysis.

In []: kList = np.arange(2,22)
convergence = [] #will append logical values if KMeans.n_iter_ != KMeans.
columns = [f'k={k}' for k in kList]
labelsDF = pd.DataFrame()
principalComponents = 4

datasetRed = dataset.iloc[:,0:principalComponents]

for c,k in enumerate(kList):
print(c,k)
kmeans = KMeans(n_clusters=k,max_iter=600,

n_init=30,n_jobs=-1).fit(datasetRed)
labelsDF.loc[:,columns[c]] = kmeans.labels_
if kmeans.n_iter_ != kmeans.max_iter:

convergence.append(True)
labelsDF.reset_index().to_feather(os.path.join(resultsSavePath,

labelsSaveName))
np.save(os.path.join(resultsSavePath,

labelsSaveName + 'convergence'),np.array(convergence))

We check that the algorithm reaches convergence for all the k. Technically we only check the
chosen solution, which is the best solution in terms of intracluster distance squared. This should
be the solution that is most likely to converge if any.

In []: convergence

Now that we have DataFrame with the labels for the different k we can use these to calculate
some cluster validity indices.

2

146

1.2.1 Calinski-Harabasz

In []: CHScore = []
for k in columns:

print(k)
CHScore.append(calinski_harabaz_score(datasetRed, labelsDF.loc[:,k]))

In []: plt.figure(figsize=(8,4))
sns.lineplot(x=kList, y=CHScore)
plt.xticks(kList)
plt.title(r'Calinski-Harabsz score (\uparrow)')
plt.xlabel('k')
plt.yticks([])
plt.tight_layout()
plt.savefig(os.path.join(figSavePath,'CHScore.pdf'))

In []: print('The optimal k evaluated with the Calinski-Harabasz'+
'criteria is {kList[np.argmax(CHScore)]}.')

1.2.2 Davies-Bouldin Familily of Indices

In []: DB = []
DBs = []
DBss = []
np.seterr(divide='ignore')
in sklearns DB implementation the code deliberately divides by zero
and this causes numpy to throw an error. We want to ignore this.
for k in columns:

print(k)
DB.append(davies_bouldin_score(datasetRed, labelsDF.loc[:,k]))
DBs.append(davies_bouldin_star_score(datasetRed,labelsDF.loc[:,k]))

In []: DBss = davies_bouldin_star_star_score(datasetRed, labelsDF.values.T)

In []: def scale(elemList):
return((elemList - min(elemList))/(max(elemList)-min(elemList)))

plt.figure()
sns.lineplot(x=kList[:-1], y=scale(DBss), label = 'DB**')
sns.lineplot(x=kList, y=scale(DBs), label = 'DB*')
sns.lineplot(x=kList, y=scale(DB), label='DB')
plt.legend()
plt.yticks([])
plt.xticks(kList)
plt.xlim([1, 22])
plt.ylim([-0.01, 1.01])
plt.title('Davies-Bouldin CVIs (\downarrow)')
plt.ylabel('Score')
plt.tight_layout()
plt.savefig(os.path.join(figSavePath,'DBfamilyScores.pdf'))

In []: print(f'The selected k are:\nDB: {kList[np.argmin(DB)]}' +
f'\nDB*: {kList[np.argmin(DBs)]}\n'+

f'DB**: {kList[np.argmin(DBss)]}')

3

147

1.2.3 Silhouette coefficient

The silhuette coefficient goes as n2 in the number of samples. Thus we cannot run it on the entire
dataset as it would be very slow. We will thus subsample the dataset a few times and look at the
optimal k for each subsample. This will hopefully yield quite similar results in each fold.

In []: labelsDF.index = datasetRed.index

In []: silScore = []
datasetWLabels = pd.concat([datasetRed,labelsDF], axis=1)
sampleSize = 5000
repetitions = 20
for column in columns:

print(column)
temp = []
for i in range(0,repetitions):

dfSample = datasetWLabels.sample(sampleSize)
temp.append(silhouette_score(dfSample.iloc[:,0:principalComponents],

dfSample.loc[:,column]))
silScore.append(temp)

Visualizing the silhouette scores for each k as a lineplot. The errorbars are the standard devia-
tion for the bootstraps of a single k. As we can see, the standard deviation is quite small compared
to the difference between different k values. As mentioned earlier, this implies that we don’t need
to include more samples in our bootstraps.

In []: plt.figure(figsize=(8,6))
repetitions = 20
kLabels = np.array([[k]*repetitions for k in kList]).reshape(-1)
sns.lineplot(x=kLabels, y=np.array(silScore).reshape(-1),

err_style="bars", ci="sd")
plt.xticks(kList)
plt.title(r'Silhouette score (\uparrow)')
plt.xlabel('k')
plt.ylabel('Score')
plt.tight_layout()
plt.savefig(os.path.join(figSavePath,'SilhouetteScores.pdf'))

1.3 Concluding remarks for k-means clustering validity

As can be seen in the plots above, clustering validity indices indicate that either 2 or 5 are the
optimal indices.

[1] - “k-means++: The advantages of careful seeding” Arthur, David, and Sergei Vassilvitskii,
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Society for
Industrial and Applied Mathematics (2007)

4

148

A.4.5 Gaussian Mixture Models Cluster Analysis

149

1 Gaussian mixture models

We attempt to use gaussian mixture models to find a suitable number of components that is able
to describe the dataet.

In [11]: %matplotlib notebook
import numpy as np
import seaborn as sns
import pandas as pd
import os
from sklearn.mixture import GaussianMixture
from joblib import Parallel, delayed
import matplotlib.pyplot as plt
from scipy.io import loadmat
from lifelines.statistics import logrank_test
from lifelines import KaplanMeierFitter
from sklearn.cluster import KMeans

from cluster_validity_indices import (davies_bouldin_star_score,
davies_bouldin_star_star_score)
from sklearn.metrics import silhouette_score, davies_bouldin_score
from statsmodels.stats.multitest import multipletests

1.1 Loading the dataset

In [3]: dataset = pd.read_feather('./Data/featuresPCAnoInteractions')
figSavePath = './GMMClusteringFigures'
labelsSaveName = './Results/GMM/GMMLablesNoInteractions'

try:
os.mkdir(figSavePath)

except:
print('Folder already exists')

Folder already exists

1.2 Performing the GMM clustering

In [4]: PCs = 4
kList = np.arange(1,51)
reps = 5
N = 300000 # number of samples
n_init = 3

In [5]: datasetRed = dataset.iloc[:,0:4]

In [6]: def fitGaussianMixture(X, k):
return(GaussianMixture(n_components=k,

max_iter=300, n_init=n_init).fit(X))

In [6]: mixMods = Parallel(n_jobs=-2,
verbose=10)(delayed(fitGaussianMixture

)(datasetRed.sample(N,random_state=r),
k) for k in kList for r in range(reps))

1

150

[Parallel(n_jobs=-2)]: Using backend LokyBackend with 3 concurrent workers.
[Parallel(n_jobs=-2)]: Done 2 tasks | elapsed: 6.6s
[Parallel(n_jobs=-2)]: Done 7 tasks | elapsed: 20.9s
[Parallel(n_jobs=-2)]: Done 12 tasks | elapsed: 57.7s
[Parallel(n_jobs=-2)]: Done 19 tasks | elapsed: 2.8min
[Parallel(n_jobs=-2)]: Done 26 tasks | elapsed: 5.5min
[Parallel(n_jobs=-2)]: Done 35 tasks | elapsed: 8.5min
[Parallel(n_jobs=-2)]: Done 44 tasks | elapsed: 12.8min
[Parallel(n_jobs=-2)]: Done 55 tasks | elapsed: 19.6min
[Parallel(n_jobs=-2)]: Done 66 tasks | elapsed: 30.4min
[Parallel(n_jobs=-2)]: Done 79 tasks | elapsed: 42.3min
[Parallel(n_jobs=-2)]: Done 92 tasks | elapsed: 57.2min
[Parallel(n_jobs=-2)]: Done 107 tasks | elapsed: 79.2min
[Parallel(n_jobs=-2)]: Done 122 tasks | elapsed: 103.7min
[Parallel(n_jobs=-2)]: Done 139 tasks | elapsed: 137.2min
[Parallel(n_jobs=-2)]: Done 156 tasks | elapsed: 172.8min
[Parallel(n_jobs=-2)]: Done 175 tasks | elapsed: 224.4min
[Parallel(n_jobs=-2)]: Done 194 tasks | elapsed: 280.8min
[Parallel(n_jobs=-2)]: Done 215 tasks | elapsed: 347.6min
[Parallel(n_jobs=-2)]: Done 236 tasks | elapsed: 420.8min
[Parallel(n_jobs=-2)]: Done 250 out of 250 | elapsed: 469.5min finished

Saving the gaussian mixture models.

In [13]: np.save(f'./Results/GMM/mixModels{N}samples{reps}reps'+
f'{n_init}inits{np.min(kList)}kmin{np.max(kList)}kMaxNoInteractions',

mixMods)

In [12]: mods = np.load('./Results/GMM/mixModels300000samples5reps'+
'3inits1kmin50kMaxNoInteractions.npy')

Since no convergence is clearly visible (see separate code for this figure), we’ll have to try a
few more k.

In []: kList2 = np.arange(51, 71)
mixMods2 = Parallel(n_jobs=-2,

verbose=10)(delayed(fitGaussianMixture
)(datasetRed.sample(N,random_state=r),
k) for k in kList2 for r in range(reps))

In [15]: np.save(f'./Results/GMM/mixModels{N}samples{reps}reps{n_init}'+
f'inits{np.min(kList2)}kmin{np.max(kList2)}kMaxNoInteractions',

mixMods2)

2

151

A.4.6 k-means survival analysis

152

1 Interpreting the k - means results

It seems like the most likely number of clsuters using k-means on the full dataset without inter-
action features included is two clusters. In this notebook we’ll try to explore the characteristics
of the clusters. Specifically we’ll map the clusters back on to histograms to look at the feature
characteristic of a single group.

In [82]: %matplotlib inline
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.io import loadmat
from os import makedirs
from os import path

from jupyterthemes import jtplot
jtplot.reset()

from lifelines import KaplanMeierFitter
from lifelines.statistics import logrank_test
from scipy.io import loadmat
from matplotlib.patches import Rectangle
from statsmodels.stats.multitest import multipletests

In [83]: survivalCurvesFigurePath = './figures/survivalCurves/NoInteractions'

1.0.1 Loading the dataset and labels from k-means

In [84]: dataset = pd.read_feather('./Data/featuresPCAnoInteractions')
labels = pd.read_feather('./Results/kmeans/kmeansLabelsNoInteractions')
labels.set_index('index'); #semicolon supresses output

Checking that the loading was performed correclty and that the dataset and labels are the
correct shapes.

In [85]: pd.options.display.float_format = '{:.2f}'.format

In []: dataset.describe()

In []: labels.describe()

In [88]: print(dataset.shape)
print(labels.shape)

(3920118, 11)
(3920118, 21)

In [89]: datasetRaw = pd.read_feather('./Data/featureDFRawZScaled')

In []: datasetRaw.describe()

1

153

1.0.2 Cluster assignment

A bar chart depicting the number of voxels assigned to each cluster.

In [91]: pd.options.display.float_format = '{:.4f}'.format
valCount=(labels['k=2']+1).value_counts().divide(labels.shape[0])
print(valCount)
valCount.plot(kind = 'bar')
plt.xlabel('Cluster')
plt.ylabel('Relative frequency')
plt.xticks(rotation = 0)
plt.title('Cluster assignment histogram')
plt.show()

2 0.6340
1 0.3660
Name: k=2, dtype: float64

1.0.3 Plotting histograms for each image sequence and cluster

In [8]: datasetRawLong = datasetRaw.copy().sample(100000)
datasetRawLong['cluster'] = labels.loc[:,'k=2']

2

154

The axis limits are set using the minimum or maximum of the minimums or maximums and
the 99.5 percentile of the feature values for each feature to reduce noise. Voxels exceeding these
limits on either feature is dropped from the dataset when plotting the histogram to make auto-
matic calculation of the number of bins and bin edges perform as expected.

In [9]: percentiles = np.percentile(abs(datasetRawLong.iloc[:,:-1].values), 99.5, axis=0)
mins = np.min(datasetRawLong.iloc[:,:-1].values, axis=0)
maxes = np.max(datasetRawLong.iloc[:,:-1].values, axis=0)
xLimH = [maxes[c] if maxes[c] < percentiles[c] else percentiles[c] for c,
col in enumerate(datasetRawLong.iloc[:,:-1].columns)]
xLimL = [mins[c] if mins[c] > -percentiles[c] else -percentiles[c] for c,

col in enumerate(datasetRawLong.iloc[:,:-1].columns)];

In [10]: s1=datasetRawLong.shape
for c,col in enumerate(datasetRawLong.columns[:-1]):

datasetRawLong = datasetRawLong[datasetRawLong.loc[:,col] < xLimH[c]]
datasetRawLong = datasetRawLong[datasetRawLong.loc[:,col] > xLimL[c]]

s2=datasetRawLong.shape

In [11]: datasetRawLong = pd.melt(datasetRawLong, id_vars=['cluster'],
var_name='ImageSeq', value_name='pixelIntensity')

datasetRawLong['cluster'] = datasetRawLong['cluster']+1

In [12]: g = sns.FacetGrid(datasetRawLong, col='ImageSeq', hue='cluster', col_wrap=3,
sharex=False, sharey=False, legend_out = True)

g = g.map(sns.distplot, 'pixelIntensity', kde = False)

axes = g.axes.flatten()

Creating titles for the plot
bVals = [0, 25, 50, 100, 500, 1000]
DWItitles = [r'DWI - $b = %d \, s/mm^2$' % (bVal) for bVal in bVals]
titles = ['T2'] + DWItitles + ['ADC', 'D', 'D*', 'f']
g.add_legend(fontsize = 14)
plt.setp(g._legend.get_title(), fontsize=14)
for c,title in enumerate(titles):

axes[c].set_title(title, fontsize = 16)
axes[c].set_yticks([])
axes[c].set_xticklabels(axes[c].get_xticks(),fontsize=12)
axes[c].set_xlim([xLimL[c], xLimH[c]])
if c in range(0,len(titles), 3):

axes[c].set_ylabel('Frequency', fontsize=14)
setting x-label for the bottom plots
for ax in axes[-3:]:

ax.set_xlabel('z-scored voxel intensity', fontsize = 12)
plt.savefig('./figures/histograms/'+

'featureHistogramWithClustersNoInteractions.pdf')
plt.show()

3

155

In [13]: rawDataDF=pd.read_feather('./Data/featureDFRaw')
rawDataDF['cluster'] = labels.loc[:,'k=2']+1
rawDataDF = rawDataDF.copy().sample(200000)
rawDataDFLong = pd.melt(rawDataDF, id_vars=['cluster'],

var_name='ImageSeq', value_name='pixelIntensity')
rawDataDFLongSampled = rawDataDFLong

4

156

In [14]: g = sns.FacetGrid(rawDataDFLongSampled, col='ImageSeq',
hue='cluster', col_wrap=3,
sharex=False, sharey=False, legend_out = True)

g = g.map(sns.distplot, 'pixelIntensity', kde = False)

axes = g.axes.flatten()

Creating titles for the plot
bVals = [0, 25, 50, 100, 500, 1000]
DWItitles = [r'DWI - $b = %d \, s/mm^2$' % (bVal) for bVal in bVals]
titles = ['T2'] + DWItitles + ['ADC', 'D', 'D*', 'f']
g.add_legend(fontsize = 14)
plt.setp(g._legend.get_title(), fontsize=14)
for c,title in enumerate(titles):

axes[c].set_title(title, fontsize = 16)
axes[c].set_yticks([])
axes[c].set_xticklabels(axes[c].get_xticks(),fontsize=12)
if c in range(0,len(titles), 3):

axes[c].set_ylabel('Frequency', fontsize=14)
setting x-label for the bottom plots
for ax in axes[-3:]:

ax.set_xlabel('z-scored pixel intensity', fontsize = 12)
plt.savefig('./figures/histograms/'+

'featureHistogramWithClustersNoInteractionsRawFeatures.pdf')
plt.show()

5

157

1.0.4 Survival analysis

We are loading the index postitions of each patient. There will be ranked according to volume.
Since the DWI are interpolated accroding to the DWI images, we’ll need to extract the volume

6

158

In [92]: FileNames = loadmat('./../Data/FeatureArray/featureArraysFinalv2.mat',
variable_names = 'FileNames')

try:
FileNames=FileNames['FileNames']

except:
pass

FileNames = FileNames.flatten()
for c,FileName in enumerate(FileNames):

FileNames[c]=FileName[0][:-4]

In [93]: pasInd=loadmat('./../Data/FeatureArray/featureArraysFinalv2.mat',
variable_names = 'grpsPasInd')

pasInd=pasInd['grpsPasInd']-1 #ptyhon is zero indexed while matlab is not

In [94]: dicomInfoTable=pd.read_csv('./../Data/dicomInfo/dicomInfoTable.csv')
dicomInfoTable.set_index('Row', inplace=True)

In [95]: dicomInfoTable.index = [patName.lower() for patName in dicomInfoTable.index]

In [96]: dicomInfoTable.index.names = ['PatientName']

In [97]: voxelDF = pd.DataFrame(np.concatenate((FileNames.reshape(-1,1),
pasInd),axis=1))

voxelDF.set_index(0,inplace=True)
voxelDF.index = [patName.lower() for patName in voxelDF.index]
voxelDF.index.names = ['PatientName']
voxelDF.columns = ['voxIndStart', 'voxIndEnd']
voxelDF['totNumVox'] = voxelDF.voxIndEnd - voxelDF.voxIndStart +1

In [98]: valCounts = [pd.value_counts(labels.loc[:,'k=2'].iloc[start:end]) for start,
end in zip(voxelDF.loc[:,'voxIndStart'].values,

voxelDF.loc[:,'voxIndEnd'].values)]

In [99]: numpats =len(valCounts)
grp1 = np.zeros((numpats,1))
grp2 = np.zeros((numpats,1))
for c, elem in enumerate(valCounts):

try:
grp1[c] = elem.loc[0]

except:
pass

try:
grp2[c] = elem.loc[1]

except:
pass

In [100]: voxelDF['numVoxClust1'] = grp1.reshape(-1,1).astype(int)
voxelDF['numVoxClust2'] = grp2.reshape(-1,1).astype(int)

Converting the number of voxels to volumes by multiplying with pixeldimensions and slice
thickness

In [101]: dicomInfoTable['voxelVolume'] = (dicomInfoTable['PixelSpacing_1']*
dicomInfoTable['PixelSpacing_2']*
dicomInfoTable['SliceThickness'])

7

159

In [102]: voxelDF = voxelDF.merge(dicomInfoTable['voxelVolume'],
how='inner', left_index=True, right_index=True)

In [103]: voxelDF['VolClust1'] = voxelDF.voxelVolume * voxelDF.numVoxClust1
voxelDF['VolClust2'] = voxelDF.voxelVolume * voxelDF.numVoxClust2
voxelDF['totVolume'] = voxelDF.voxelVolume * voxelDF.totNumVox

1.0.5 Survival Analysis

Loading the patient information

In [104]: patInfoCRT = pd.read_csv('./../Data/PatientSurvivalInfo/CRT.csv',
encoding='latin-1')

patInfoNoCRT = pd.read_csv('./../Data/PatientSurvivalInfo/NoCRT.csv',
encoding='latin-1')

Converting fileNames to patient names

In [105]: patInfoCRT['PatientName'] = np.array([fileName[:-4].lower()
for fileName in patInfoCRT.fileNames])

patInfoNoCRT['PatientName'] = np.array([fileName[:-4].lower()
for fileName in patInfoNoCRT.fileNames])

patInfoCRT.set_index('PatientName',inplace=True)
patInfoNoCRT.set_index('PatientName',inplace=True)
survInfoCRT = patInfoCRT.loc[:,['timeFirstEventOrRCens', 'status']]
survInfoNoCRT = patInfoNoCRT.loc[:,['timeFirstEventOrRCens', 'status']]
survInfoCRT = survInfoCRT.merge(voxelDF.loc[:,'VolClust1':'VolClust2'],

left_index=True, right_index=True)
survInfoNoCRT = survInfoNoCRT.merge(voxelDF.loc[:,'VolClust1':'VolClust2'],

left_index=True, right_index=True)
print(survInfoCRT.shape)
print(survInfoNoCRT.shape)
survInfoCRT.reset_index().to_feather('./Data/survInfoCRT')
survInfoNoCRT.reset_index().to_feather('./Data/survInfoNoCRT')

(24, 4)
(30, 4)

Making a table of descriptive statistics of the volume of each cluster

In [106]: survInfoCRTdescriptive = survInfoCRT.describe(percentiles=[]).loc[:,'VolClust1':'VolClust2']
mn,mx = 'min', 'max'
rng = [(f'({survInfoCRTdescriptive.loc[:,column].loc[mn]:.2f}-

{survInfoCRTdescriptive.loc[:,column].loc[mx]:.2f})')
for column in survInfoCRTdescriptive.columns]

rng
#survInfoCRTdescriptive.append(pd.DataFrame())
survInfoCRTdescriptive=(

survInfoCRTdescriptive.append(pd.DataFrame({'range':rng},
index=survInfoCRTdescriptive.columns).T))

survInfoCRTdescriptive.rename({'50%':'median'}, axis=0, inplace=True)
survInfoCRTdescriptive.drop('count', axis=0, inplace=True)
pd.options.display.float_format = '{:.3g}'.format

8

160

survInfoCRTdescriptive.rename({'VolClust1':'Volume Cluster 1',
'VolClust2':'Volume Cluster 2'},

axis=1, inplace=True)
survInfoCRTdescriptive.to_csv('./Results/kmeans/kmeans'+

'ClustersDescriptive.csv')
survInfoCRTdescriptive

File "<ipython-input-106-49d9cc600460>", line 3
rng = [(f'({survInfoCRTdescriptive.loc[:,column].loc[mn]:.2f}-

ˆ
SyntaxError: EOL while scanning string literal

1.1 Creating Kaplan-Meier estimates and performing log-rank tests

In [107]: clust1MoreMedCRT = (survInfoCRT['VolClust1'] >=
np.median(survInfoCRT['VolClust1']))

clust2MoreMedCRT = (survInfoCRT['VolClust2'] >=
np.median(survInfoCRT['VolClust2']))

clust1MoreMedNoCRT = (survInfoNoCRT['VolClust1'] >=
np.median(survInfoNoCRT['VolClust1']))

clust2MoreMedNoCRT = (survInfoNoCRT['VolClust2'] >=
np.median(survInfoNoCRT['VolClust2']))

TCRT = survInfoCRT['timeFirstEventOrRCens']
TNoCRT = survInfoNoCRT['timeFirstEventOrRCens']
ECRT = survInfoCRT['status']
ENoCRT = survInfoNoCRT['status']

fitting Kaplan-Meier curves
res = logrank_test(TCRT[clust1MoreMedCRT], TCRT[~clust1MoreMedCRT],

ECRT[clust1MoreMedCRT], ECRT[~clust1MoreMedCRT])
print(f'Difference in survival at a p-value of {res.p_value}')

plt.figure()
ax = plt.subplot(111)
kmf = KaplanMeierFitter()
kmf.fit(TCRT[clust1MoreMedCRT], ECRT[clust1MoreMedCRT],

label='Vol Clust 1 >= median')
kmf.plot(ax=ax, ci_show=False, show_censors = True)
kmf.fit(TCRT[~clust1MoreMedCRT], ECRT[~clust1MoreMedCRT],

label='Vol Clust 1 < median')
kmf.plot(ax=ax, ci_show=False, show_censors = True)
plt.title('CRT: cluster 1')
plt.xlabel('Days')
plt.ylabel('Survival Probability')
plt.text(200,0.1,r'$p={:.3f}$'.format(res.p_value))
plt.ylim([0, 1.05])
plt.savefig(path.join(survivalCurvesFigurePath,

'CRT-Cluster1.pdf'))
plt.show()

9

161

Difference in survival at a p-value of 0.8793394784672972

In [108]: # fitting Kaplan-Meier curves
res = logrank_test(TCRT[clust2MoreMedCRT], TCRT[~clust2MoreMedCRT],

ECRT[clust2MoreMedCRT], ECRT[~clust2MoreMedCRT])
print(f'Difference in survival at a p-value of {res.p_value}')
plt.figure()
ax = plt.subplot(111)
kmf = KaplanMeierFitter()
kmf.fit(TCRT[clust2MoreMedCRT], ECRT[clust2MoreMedCRT],

label='Vol Clust 2 >= median')
kmf.plot(ax=ax, ci_show=False, show_censors = True)
kmf.fit(TCRT[~clust2MoreMedCRT], ECRT[~clust2MoreMedCRT],

label='Vol Clust 2 < median')
kmf.plot(ax=ax, ci_show=False, show_censors = True)
plt.title('CRT: cluster 2')
plt.xlabel('Days')
plt.ylabel('Survival Probability')
plt.text(200,0.1,r'$p={:.3f}$'.format(res.p_value))
plt.ylim([0, 1.05])
plt.savefig(path.join(survivalCurvesFigurePath,

10

162

'CRT-Cluster2.pdf'))
plt.show()

Difference in survival at a p-value of 0.7598733335686022

In [109]: # fitting Kaplan-Meier curves
res = logrank_test(TNoCRT[clust1MoreMedNoCRT], TNoCRT[~clust1MoreMedNoCRT],

ENoCRT[clust1MoreMedNoCRT], ENoCRT[~clust1MoreMedNoCRT])
print(f'Difference in survival at a p-value of {res.p_value}')

plt.figure()
ax = plt.subplot(111)
kmf = KaplanMeierFitter()
kmf.fit(TNoCRT[clust1MoreMedNoCRT], ENoCRT[clust1MoreMedNoCRT],

label='Vol Clust 1 >= median')
kmf.plot(ax=ax, ci_show=False, show_censors = True)
kmf.fit(TNoCRT[~clust1MoreMedNoCRT], ENoCRT[~clust1MoreMedNoCRT],

label='Vol Clust 1 < median')
kmf.plot(ax=ax, ci_show=False, show_censors = True)
plt.title('No CRT: cluster 1')
plt.xlabel('Days')
plt.ylabel('Survival Probability')

11

163

plt.text(200,0.1,r'$p={:.3f}$'.format(res.p_value))
plt.ylim([0, 1.05])
plt.savefig(path.join(survivalCurvesFigurePath, 'NoCRT-Cluster1.pdf'))
plt.show()

Difference in survival at a p-value of 0.01839104261474097

In [110]: # fitting Kaplan-Meier curves
res = logrank_test(TNoCRT[clust2MoreMedNoCRT], TNoCRT[~clust2MoreMedNoCRT],

ENoCRT[clust2MoreMedNoCRT], ENoCRT[~clust2MoreMedNoCRT])
print(f'Difference in survival at a p-value of {res.p_value}')

plt.figure()
ax = plt.subplot(111)
kmf = KaplanMeierFitter()
kmf.fit(TNoCRT[clust2MoreMedNoCRT], ENoCRT[clust2MoreMedNoCRT],

label='Vol Clust 2 >= median')
kmf.plot(ax=ax, ci_show=False, show_censors = True)
kmf.fit(TNoCRT[~clust2MoreMedNoCRT], ENoCRT[~clust2MoreMedNoCRT],

label='Vol Clust 2 < median')
kmf.plot(ax=ax, ci_show=False, show_censors = True)
plt.title('No CRT: cluster 2')

12

164

plt.xlabel('Days')
plt.ylabel('Survival Probability')
plt.ylim([0, 1.05])
plt.text(200,0.1,r'$p={:.3f}$'.format(res.p_value))
plt.savefig(path.join(survivalCurvesFigurePath, 'NoCRT-Cluster2.pdf'))
plt.show()

Difference in survival at a p-value of 0.09312688592673207

Chekking proportional hazard assumptions

In [111]: from lifelines import CoxPHFitter
cph = CoxPHFitter()
cphDF = pd.DataFrame({'Time': TCRT, 'Event': ECRT, 'Group1': clust1MoreMedCRT})
cph.fit(cphDF, 'Time', 'Event')
cph.check_assumptions(cphDF,p_value_threshold=0.05, advice=True)
cphDF = pd.DataFrame({'Time': TCRT, 'Event': ECRT, 'Group2': clust2MoreMedCRT})
cph.fit(cphDF, 'Time', 'Event')
cph.check_assumptions(cphDF,p_value_threshold=0.05, advice=True)

Proportional hazard assumption looks okay.
Proportional hazard assumption looks okay.

13

165

In [112]: from lifelines import CoxPHFitter
cph = CoxPHFitter()
cphDF = pd.DataFrame({'Time': TNoCRT, 'Event': ENoCRT, 'Group1': clust1MoreMedNoCRT})
cph.fit(cphDF, 'Time', 'Event')
cph.check_assumptions(cphDF,p_value_threshold=0.05, advice=True)
cphDF = pd.DataFrame({'Time': TNoCRT, 'Event': ENoCRT, 'Group2': clust2MoreMedNoCRT})
cph.fit(cphDF, 'Time', 'Event')
cph.check_assumptions(cphDF,p_value_threshold=0.05, advice=True)

Proportional hazard assumption looks okay.
The ``p_value_threshold`` is set at 0.05. Even under the null hypothesis of no violations, some
covariates will be below the threshold by chance. This is compounded when there are many covariates.
Similarly, when there are lots of observations, even minor deviances from the proportional hazard
assumption will be flagged.

With that in mind, it's best to use a combination of statistical tests and visual tests to determine
the most serious violations. Produce visual plots using ``check_assumptions(..., show_plots=True)``
and looking for non-constant lines. See link [A] below for a full example.

<lifelines.StatisticalResult>
test_name = proportional_hazard_test

null_distribution = chi squared
degrees_of_freedom = 1

test_statistic p -log2(p)

Group2 km 4.33 0.04 4.74
rank 3.63 0.06 4.14

1. Variable 'Group2' failed the non-proportional test: p-value is 0.0375.

Advice: with so few unique values (only 2), you can include `strata=['Group2', ...]` in the call
in `.fit`. See documentation in link [E] below.

[A] https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html
[B] https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html#Bin-variable-and-stratify-on-it
[C] https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html#Introduce-time-varying-covariates
[D] https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html#Modify-the-functional-form
[E] https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html#Stratification

Checking the difference in PFS due to the total volume

In [113]: survInfoCRT = survInfoCRT.merge(voxelDF.loc[:,'totVolume'],
left_index=True, right_index=True)

survInfoNoCRT = survInfoNoCRT.merge(voxelDF.loc[:,'totVolume'],
left_index=True, right_index=True)

totVolMoreMedCRT = (survInfoCRT['totVolume'] >=
np.median(survInfoCRT['totVolume']))

totVolMoreMedNoCRT = (survInfoNoCRT['totVolume'] >=
np.median(survInfoNoCRT['totVolume']))

14

166

In [114]: # fitting Kaplan-Meier curves
res = logrank_test(TCRT[totVolMoreMedCRT], TCRT[~totVolMoreMedCRT],

ECRT[totVolMoreMedCRT], ECRT[~totVolMoreMedCRT])
print(f'Difference in survival at a p-value of {res.p_value}')

plt.figure(figsize=(5,3))
ax = plt.subplot(111)
kmf = KaplanMeierFitter()
kmf.fit(TCRT[totVolMoreMedCRT], ECRT[totVolMoreMedCRT], label='Total Vol >= median')
kmf.plot(ax=ax, ci_show=False, show_censors = True)
kmf.fit(TCRT[~totVolMoreMedCRT], ECRT[~totVolMoreMedCRT], label='Total Vol < median')
kmf.plot(ax=ax, ci_show=False, show_censors = True)
plt.title('CRT: Total Volume')
plt.xlabel('Days')
plt.ylabel('Survival Probability')
plt.text(50,0.1,r'$p={:.3f}$'.format(res.p_value))
plt.ylim([0, 1.05])
plt.tight_layout()
plt.savefig(path.join(survivalCurvesFigurePath, 'CRT-TotalVolume.pdf'))
plt.show()

Difference in survival at a p-value of 0.7620702361816797

In [115]: # fitting Kaplan-Meier curves
res = logrank_test(TNoCRT[totVolMoreMedNoCRT], TNoCRT[~totVolMoreMedNoCRT],

ENoCRT[totVolMoreMedNoCRT],
ENoCRT[~totVolMoreMedNoCRT])

print(f'Difference in survival at a p-value of {res.p_value}')

plt.figure(figsize=(5,3))
ax = plt.subplot(111)
kmf = KaplanMeierFitter()

15

167

kmf.fit(TNoCRT[totVolMoreMedNoCRT], ENoCRT[totVolMoreMedNoCRT],
label='Total Vol >= median')

kmf.plot(ax=ax, ci_show=False, show_censors = True)
kmf.fit(TNoCRT[~totVolMoreMedNoCRT], ENoCRT[~totVolMoreMedNoCRT],

label='Total Vol < median')
kmf.plot(ax=ax, ci_show=False, show_censors = True)
plt.title('NoCRT: Total Volume')
plt.xlabel('Days')
plt.ylabel('Survival Probability')
plt.text(1400,0.05,r'$p={:.3f}$'.format(res.p_value))
plt.ylim([0, 1.05])
plt.tight_layout()
plt.savefig(path.join(survivalCurvesFigurePath,

'NoCRT-TotalVolume.pdf'))
plt.show()

Difference in survival at a p-value of 0.10944661460250339

1.2 Univariate Cox model using the cluster volumes

In [116]: from lifelines import CoxPHFitter
from IPython.core.display import display, HTML

1.2.1 No CRT

In []: DFNOCRT1 = pd.DataFrame({'Duration': TNoCRT, 'Event':ENoCRT,
'VolClust1':survInfoNoCRT.VolClust1/1000})

cph1NoCRT = CoxPHFitter()
cph1NoCRT.fit(DFNOCRT1, duration_col='Duration',

event_col='Event', show_progress=True,step_size=0.01)
cph1NoCRT.print_summary(decimals=8)

16

168

cph1NoCRT.check_assumptions(DFNOCRT1)
cph1NoCRT.score_ # This is the c-index = the area under the ROC curve

In [118]: pd.options.display.float_format = '{:.8f}'.format
cph1NoCRT.summary

Out[118]: coef exp(coef) se(coef) z p -log2(p) \
VolClust1 0.10477057 1.11045580 0.03791947 2.76297559 0.00572771 7.44782709

lower 0.95 upper 0.95
VolClust1 0.03044977 0.17909136

In []: DFNOCRT2 = pd.DataFrame({'Duration': TNoCRT, 'Event':ENoCRT,
'VolClust2':survInfoNoCRT.VolClust2/1000})

cph2NoCRT = CoxPHFitter()
cph2NoCRT.fit(DFNOCRT2, duration_col='Duration',

event_col='Event', show_progress=True)
cph2NoCRT.print_summary(decimals=8)
cph2NoCRT.score_

In [120]: pd.options.display.float_format = '{:.8f}'.format
cph2NoCRT.summary.append(

cph1NoCRT.summary).sort_index().to_csv(
'./Results/kmeans/UniCoxNoCRT.csv')

cphUniNoCRT = cph2NoCRT.summary.append(cph1NoCRT.summary
).sort_index()

1.3 CRT

In []: DFCRT1 = pd.DataFrame({'Duration': TCRT, 'Event':ECRT,
'VolClust1':survInfoCRT.VolClust1/1000})

cph1CRT = CoxPHFitter()
cph1CRT.fit(DFCRT1, duration_col='Duration', event_col='Event',

show_progress=True,step_size=0.01)
cph1CRT.print_summary(decimals=8)
cph1CRT.score_

In [122]: cph1CRT.summary

Out[122]: coef exp(coef) se(coef) z p -log2(p) \
VolClust1 0.00374741 1.00375444 0.03808745 0.09838966 0.92162289 0.11775155

lower 0.95 upper 0.95
VolClust1 -0.07090262 0.07839744

In []: DFCRT2 = pd.DataFrame({'Duration': TCRT, 'Event':ECRT,
'VolClust2':survInfoCRT.VolClust2/1000})

cph2CRT = CoxPHFitter()
cph2CRT.fit(DFCRT2, duration_col='Duration', event_col='Event',

show_progress=True, step_size=0.01)
cph2CRT.print_summary(decimals=8)
cph2CRT.score_

In [124]: cph2CRT.summary.append(cph1CRT.summary).sort_index(
).to_csv('./Results/kmeans/UniCoxCRT.csv')
cphUniCRT = cph2CRT.summary.append(cph1CRT.summary

).sort_index()

17

169

1.3.1 Univariate cox summary

In [125]: cphCRTsum = cphUniCRT.append(cphUniNoCRT).reset_index()
cphCRTsum.rename({'index':'Risk Factor'}, axis=1, inplace=True)
cphCRTsum['treatment'] = ['CRT', 'CRT', 'No CRT', 'No CRT']

cphCRTsum.set_index(['treatment', 'Risk Factor'], inplace=True)
cphCRTsum

Out[125]: coef exp(coef) se(coef) z \
treatment Risk Factor
CRT VolClust1 0.00374741 1.00375444 0.03808745 0.09838966

VolClust2 -0.04701540 0.95407270 0.03772286 -1.24633718
No CRT VolClust1 0.10477057 1.11045580 0.03791947 2.76297559

VolClust2 0.02795032 1.02834460 0.01829582 1.52768896

p -log2(p) lower 0.95 upper 0.95
treatment Risk Factor
CRT VolClust1 0.92162289 0.11775155 -0.07090262 0.07839744

VolClust2 0.21264063 2.23351078 -0.12095085 0.02692004
No CRT VolClust1 0.00572771 7.44782709 0.03044977 0.17909136

VolClust2 0.12658978 2.98176712 -0.00790883 0.06380947

In [126]: # convert to latex friendly table
cphCRTsumLatex = cphCRTsum.drop(['se(coef)','z', '-log2(p)'], axis=1)
cphCRTsumLatex.rename({'coef':'$\\beta$',

'exp(coef)':'$e^\\beta$'}, inplace=True, axis = 1)

In [127]: from IPython.lib.deepreload import reload
%load_ext autoreload
%autoreload 2
from latex_table_utils import merge_columns_by_name, build_latex_table
help(merge_columns_by_name)
help(build_latex_table)

The autoreload extension is already loaded. To reload it, use:
%reload_ext autoreload

Help on function merge_columns_by_name in module latex_table_utils:

merge_columns_by_name(df, name_merged, col_name_low, col_name_high, sigDig)

Help on function build_latex_table in module latex_table_utils:

build_latex_table(dataIn, col_names, row_names, filename, sigDig)

In [128]: cphCRTsumLatex = merge_columns_by_name(cphCRTsumLatex,
'$95 \\%$ CI' ,'lower 0.95', 'upper 0.95', 3)

In [129]: build_latex_table(cphCRTsumLatex, 1, 1,
'./Results/kmeans/tables/UnivariateCox.txt', 3)

Index(['treatment', 'Risk Factor', 'β', '$eˆ\beta$', 'p', '95% CI'], dtype='object')

18

170

Out[129]: β $eˆ\beta$ p 95% CI
treatment Risk Factor
CRT VolClust1 0.00375 1 0.922 (-0.0709 - 0.0784)

VolClust2 -0.047 0.954 0.213 (-0.121 - 0.0269)
No CRT VolClust1 0.105 1.11 0.00573 (0.0304 - 0.179)

VolClust2 0.028 1.03 0.127 (-0.00791 - 0.0638)

Checking proportional hazard assumptions

In [130]: print(cph1CRT.check_assumptions(DFCRT1))
print(cph2CRT.check_assumptions(DFCRT2))
print(cph1NoCRT.check_assumptions(DFNOCRT1))
print(cph2NoCRT.check_assumptions(DFNOCRT2))

Proportional hazard assumption looks okay.
None
Proportional hazard assumption looks okay.
None
Proportional hazard assumption looks okay.
None
Proportional hazard assumption looks okay.
None

Also including the total volume in the univariate cox analysis

In []: DFTotVolCRT = pd.DataFrame({'Duration': TCRT, 'Event':ECRT,
'totVol':survInfoCRT.totVolume/1000})

cphTotVolCRT = CoxPHFitter()
cphTotVolCRT.fit(DFTotVolCRT, duration_col='Duration',

event_col='Event', show_progress=True, step_size=0.01)
cphTotVolCRT.print_summary(decimals=8)
cphTotVolCRT.score_
cphTotVolCRT.check_assumptions(DFTotVolCRT)

In []: DFTotVolNoCRT = pd.DataFrame({'Duration': TNoCRT, 'Event':ENoCRT,
'totVol':survInfoNoCRT.totVolume/1000})

cphTotVolNoCRT = CoxPHFitter()
cphTotVolNoCRT.fit(DFTotVolNoCRT, duration_col='Duration',

event_col='Event', show_progress=True, step_size=0.01)
cphTotVolNoCRT.print_summary(decimals=8)
cphTotVolNoCRT.score_
cphTotVolNoCRT.check_assumptions(DFTotVolNoCRT)

Building a latex table for the thesis

In [133]: totVolSummary = cphTotVolCRT.summary.append(cphTotVolNoCRT.summary)
totVolSummary.reset_index(inplace=True)
totVolSummary['Treatment'] = ['CRT', 'No CRT']
totVolSummary.rename({'index':'Risk Factor'},

inplace=True, axis=1)
totVolSummary.set_index(['Treatment', 'Risk Factor'],

inplace=True)

19

171

convert to latex friendly table
totVolSummary = totVolSummary.drop(['se(coef)',

'z', '-log2(p)'], axis=1)
totVolSummary.rename({'coef':'$\\beta$',

'exp(coef)':'$e^\\beta$'}, inplace=True, axis = 1)
totVolSummary = merge_columns_by_name(totVolSummary,

'$95 \\%$ CI' ,'lower 0.95', 'upper 0.95', 3)

In [134]: uniCoxSummary = cphCRTsumLatex.append(totVolSummary).sort_index()
uniCoxSummary.rename({'$95 \\%$ CI':r'95\% CI (β)',

'p':'p'}, axis = 1, inplace = True)
unit = r'[$\SI{}{\centi\meter\cubed}$]'
uniCoxSummary.reset_index(inplace=True)
uniCoxSummary['Risk Factor'] = [f'{rf} {unit}'

for rf in uniCoxSummary['Risk Factor']]
uniCoxSummary.rename({'treatment':'Treatment'},

axis=1, inplace=True)
uniCoxSummary.set_index(['Treatment',

'Risk Factor'], inplace=True)
build_latex_table(uniCoxSummary, 1, 1,

'./Results/kmeans/tables/UnivariateCoxWTot.txt', 3)

Index(['Treatment', 'Risk Factor', 'β', '$eˆ\beta$', 'p',
'95\% CI (β)'],
dtype='object')

Out[134]: β $eˆ\beta$ p \
Treatment Risk Factor
CRT VolClust1 [$\SI{}{\centi\meter\cubed}$] 0.00375 1 0.922

VolClust2 [$\SI{}{\centi\meter\cubed}$] -0.047 0.954 0.213
totVol [$\SI{}{\centi\meter\cubed}$] -0.0208 0.979 0.364

No CRT VolClust1 [$\SI{}{\centi\meter\cubed}$] 0.105 1.11 0.00573
VolClust2 [$\SI{}{\centi\meter\cubed}$] 0.028 1.03 0.127
totVol [$\SI{}{\centi\meter\cubed}$] 0.0317 1.03 0.0166

95\% CI (β)
Treatment Risk Factor
CRT VolClust1 [$\SI{}{\centi\meter\cubed}$] (-0.0709 - 0.0784)

VolClust2 [$\SI{}{\centi\meter\cubed}$] (-0.121 - 0.0269)
totVol [$\SI{}{\centi\meter\cubed}$] (-0.0656 - 0.0241)

No CRT VolClust1 [$\SI{}{\centi\meter\cubed}$] (0.0304 - 0.179)
VolClust2 [$\SI{}{\centi\meter\cubed}$] (-0.00791 - 0.0638)
totVol [$\SI{}{\centi\meter\cubed}$] (0.00575 - 0.0576)

20

172

A.4.7 Gaussian Mixture Model survival analysis

173

1 Gaussian Mixture Models - Results and Survival Analysis

In []: %matplotlib inline
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from lifelines import KaplanMeierFitter, CoxPHFitter
from lifelines.statistics import logrank_test
import os
from joblib import Parallel, delayed
from IPython.lib.deepreload import reload
%load_ext autoreload
%autoreload 2
from latex_table_utils import merge_columns_by_name, build_latex_table

1.1 Calculating the BIC and the gradient BIC

In []: modsK1to50 = np.load('./Results/GMM/mixModels300000samples5reps'+
'3inits1kmin50kMaxNoInteractions.npy')

modsK51to70 = np.load('./Results/GMM/mixModels300000samples5reps'+
'3inits51kmin70kMaxNoInteractions.npy')

allMods = np.concatenate((modsK1to50,modsK51to70), axis=0)

In []: dataset = pd.read_feather('./Data/featuresPCAnoInteractions')
datasetRed = dataset.iloc[:,0:4]

In []: kList = np.arange(1,71)
reps = 5
seeds = np.tile(np.array([r for r in range(reps)]),len(kList))
N = 300000 # number of samples

In []: def calculateBIC(mdl, X):
return(mdl.bic(X))

In []: BICScore = Parallel(n_jobs=-1,verbose=10)(delayed(
calculateBIC)(mdl, datasetRed.sample(N, random_state=r))

for mdl, r in zip(allMods, seeds))

In []: np.save('./Results/GMM/BICscorek1to70', BICScore)

In []: BICScore = np.load('./Results/GMM/BICscorek1to70.npy')

In []: BICforGrad = np.array(
[np.array(BICScore).reshape(len(kList),

reps)[:,r] for r in range(reps)])
xForGrad = np.array(
[np.repeat(kList,reps).reshape(len(kList),

reps)[:,r] for r in range(reps)])

In []: from matplotlib.ticker import FormatStrFormatter
import matplotlib as mpl

plt.figure(figsize=(8,4))

1

174

ax1 = plt.subplot(212)
ax1.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))
sns.lineplot(x=xForGrad.reshape(-1), y=np.gradient(BICforGrad,

axis=1).reshape(-1), ci='sd', err_style='bars')
plt.xlabel('k')
plt.xlim([0, 71])
plt.axhline(0, ls='--', lw = 0.5, c='k')
plt.axvline(9, ls='--', lw=0.5, c='k')
plt.xticks(kList[0:-1:4])
plt.ylabel('Gradient BIC score')
plt.title('Gradient BIC(k) on GMM clusters')
plt.yticks([])
ax2 = plt.subplot(211, sharex=ax1)
ax2.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))
sns.lineplot(x=np.repeat(kList,reps),

y=BICScore, ci='sd', err_style='bars')
plt.xlabel('k')
plt.ylabel('BIC Score')
plt.xlim([0, 71])
plt.yticks([])
plt.title('BIC(k) on GMM clusters')
plt.xticks(kList[0:-1:4])
plt.tight_layout()
plt.savefig('./figures/GMMBICandGradBICAllK.pdf')

Local minima for 9 components and the change in the BIC for adding additional components
exceeding the

1.2 Analysing the model with the selected number of components (nc = 9)

Firstly we extract all the models made with the wanted number of components. From the plots
above it was found that we had a local minimum for 9 compnonents. After this we can see that
the gradient of the BIC flattes indicating the ther performance increase by adding additional com-
ponents is small. It is worth pointing out that the BIC will converge to the actual model when
N → ∞. However, since it is in no way ceratin that the components are actually gaussian, it may
use many components to approximate a non-gaussian probability distribution function. Thus we
will settle for a "resonable" number of components.

In []: mixMods_k9 = [mdl for mdl in allMods if mdl.n_components == 9]

In []: BICscore_k9 = [mixMod.bic(datasetRed.sample(N,random_state=seed)) for mixMod,
seed in zip(mixMods_k9, np.arange(0,reps))]

In []: bestMod_k9 = mixMods_k9[np.argmin(BICscore_k9)]
testMod_k9 = (mixMods_k9[:np.argmin(BICscore_k9)] +

mixMods_k9[np.argmin(BICscore_k9)+1:])
print(np.argmin(BICscore_k9))

In []: means = [mod.means_ for i,mod in enumerate(mixMods_k9)]
mdls = [f'mdl{i+1}' for i in range(len(means))]
finding the closest components in the data
def closest_node(node, nodes):

nodes = np.asarray(nodes)

2

175

deltas = nodes - node
dist_2 = np.einsum('ij,ij->i', deltas, deltas)
return(np.argmin(dist_2), dist_2[np.argmin(dist_2)])

refMod = means[np.argmin(BICscore_k9)]
refModName = mdls[np.argmin(BICscore_k9)]
del mdls[np.argmin(BICscore_k9)]
del means[np.argmin(BICscore_k9)]
supComps = []
supDists = []
for i,mean in enumerate(means):

tempMean = mean
dists = np.zeros_like(means[0][:,0])
comps = np.zeros_like(means[0][:,0], dtype=int)
for k in range(refMod.shape[0]):

comps[k], dists[k] = closest_node(refMod[k], tempMean)
np.delete(tempMean, comps[k], 0)

supComps.append(comps)
supDists.append(dists)

We have now selected the best perfoming of the models with 9 components in terms of the BIC
score. And we’ll continue the analysis using this model.

Predicting the labels of the dataset usign the selected model and finding the corresponding
components in the repeat GMM solutions using the JS distance.

In []: labels_k9 = bestMod_k9.predict(datasetRed) + 1

In []: labelsAllMods = pd.DataFrame(labels_k9, columns=['refModel'])
labelsAllMods = labelsAllMods.merge(

pd.DataFrame({mdls:mixMod.predict(datasetRed)+1 for mdls,
mixMod in zip(mdls, testMod_k9)}), left_index=True,

right_index=True)

In []: probRef = bestMod_k9.predict_proba(datasetRed)
probTest = mixMods_k9[0].predict_proba(datasetRed)

In []: from scipy.spatial.distance import jensenshannon

jsDist = {}
for mdl,mdlName in zip(testMod_k9,mdls):

print(mdlName)
probTest = mdl.predict_proba(datasetRed)
jsDistTemp = np.zeros((9,9))
for refColNum in range(probRef.shape[1]):

for compNum in range(probTest.shape[1]):
jsDistTemp[refColNum,compNum]=jensenshannon(

probRef[:,refColNum], probTest[:,compNum])
jsDist[mdlName] = jsDistTemp

In []: maps = {}
for mdlName in mdls:

mdlMap = {}
for column in range(jsDist[mdlName].shape[1]):

mdlMap[column+1] = np.argmin((jsDist[mdlName])[:,column])+1
maps[mdlName] = mdlMap

3

176

In []: labelsAllModsCorr = labelsAllMods.copy()
for mdlMap in maps:

print(mdlMap)
labelsAllModsCorr[mdlMap].replace(maps[mdlMap], inplace=True)

1.2.1 Calculating the correspodence in labeling between the corresponding components of the
GMM clusterin solutions

In []: from sklearn.metrics import cohen_kappa_score
kappaScores ={mdlName:cohen_kappa_score(

labelsAllModsCorr.refModel,
labelsAllModsCorr[mdlName]) for mdlName in mdls}

kappaScores

In []: from sklearn.metrics import jaccard_similarity_score
jaccardScores ={mdlName:jaccard_similarity_score(

labelsAllModsCorr.refModel,
labelsAllModsCorr[mdlName]) for mdlName in mdls}

jaccardScores

In []: from sklearn.metrics import confusion_matrix
confMatrices ={mdlName:confusion_matrix(

labelsAllModsCorr.refModel,
labelsAllModsCorr[mdlName]) for mdlName in mdls}

In []: from sklearn.metrics import accuracy_score, balanced_accuracy_score
accScore ={mdlName:accuracy_score(

labelsAllModsCorr.refModel,
labelsAllModsCorr[mdlName]) for mdlName in mdls}

balAccScore ={mdlName:balanced_accuracy_score(
labelsAllModsCorr.refModel,
labelsAllModsCorr[mdlName]) for mdlName in mdls}

print(accScore, balAccScore)

In []: kappa = pd.DataFrame(kappaScores, index=['κ'])
j = pd.DataFrame(jaccardScores, index=['$\mathcal J$'])
ba = pd.DataFrame(balAccScore, index=['BAS'])
agreement = kappa.append(j).append(ba)
agreement.columns = [f'Model {i+1}' for i in range(4)]
agreement['Average'] = agreement.sum(axis=1)/4
agreement['σ'] = agreement.iloc[:,0:3].std(axis=1)
agreement

In []: %load_ext autoreload
%autoreload 2
from latex_table_utils import merge_columns_by_name, build_latex_table
help(build_latex_table)
build_latex_table(agreement, 1, 1,

'./Results/GMM/tables/repeatability.txt', 3)

1.3 Component Distribution Histogram

Making a histogram of the component distribution to see that no component is unreasonably small
or large.

4

177

In []: # Histogram
plt.figure()
plt.title('Histogram')
sns.distplot(labels_k9, kde=False, bins=np.arange(0.5,10,1))
plt.xlabel('Component')
plt.ylabel('Number of voxels')
plt.savefig('./figures/histograms/ComponentsDistGMMk9.pdf')
plt.show()

In []: componentDist = pd.DataFrame(pd.Series(labels_k9).value_counts().sort_index()).T

1.4 Histogram of the groups on the original features

In []: datasetRaw = pd.read_feather('./Data/featureDFRawZScaled')
datasetCluster = datasetRaw.copy()
datasetCluster['cluster'] = labels_k9
datasetCluster = datasetCluster.sample(300000)
datasetCluster = pd.melt(datasetCluster, id_vars=['cluster'],

var_name='ImageSeq', value_name='pixelIntensity')
datasetCluster['cluster'] = datasetCluster['cluster']

In []: g = sns.FacetGrid(datasetCluster, col='ImageSeq',
hue='cluster', col_wrap=3,
sharex=False, sharey=False,
legend_out = True)

g = g.map(sns.distplot, 'pixelIntensity', kde = False)

axes = g.axes.flatten()

Creating titles for the plot
bVals = [0, 25, 50, 100, 500, 1000]
DWItitles = [r'DWI - $b = %d \, s/mm^2$' % (bVal) for bVal in bVals]
titles = ['T2'] + DWItitles + ['ADC', 'D', 'D*', 'f']
g.add_legend(fontsize = 14)
plt.setp(g._legend.get_title(), fontsize=14)
for c,title in enumerate(titles):

axes[c].set_title(title, fontsize = 16)
axes[c].set_xticklabels(axes[c].get_xticks(),fontsize=12)
axes[c].set_yticks([])
if c in range(0,len(titles), 3):

axes[c].set_ylabel('Frequency', fontsize=14)
setting x-label for the bottom plots
for ax in axes[-3:]:

ax.set_xlabel('z-scored voxel intensity', fontsize = 14)
plt.savefig('./figures/histograms/'+

'featureHistogramWithClustersNoInteractionsGMMk9.pdf')
plt.show()

In []: def GMM1vAllHist(datasetCluster, k):
datasetClusterk = datasetCluster.copy()
datasetClusterk['cluster'] = [0 if sample != k else k

for sample in datasetCluster['cluster']]
g = sns.FacetGrid(datasetClusterk, col='ImageSeq',

hue='cluster', col_wrap=3,

5

178

sharex=False, sharey=False, legend_out = True)
g = g.map(sns.distplot, 'pixelIntensity', kde = False)

axes = g.axes.flatten()

Creating titles for the plot
bVals = [0, 25, 50, 100, 500, 1000]
DWItitles = [r'DWI - $b = %d \, s/mm^2$' % (bVal)

for bVal in bVals]
titles = ['T2'] + DWItitles + ['ADC', 'D', 'D*', 'f']
g.add_legend(fontsize = 14)
plt.setp(g._legend.get_title(), fontsize=14)
for c,title in enumerate(titles):

axes[c].set_title(title, fontsize = 16)
axes[c].set_xticklabels(axes[c].get_xticks(),fontsize=12)
axes[c].set_yticks([])
if c in range(0,len(titles), 3):

axes[c].set_ylabel('Frequency', fontsize=14)
setting x-label for the bottom plots
for ax in axes[-3:]:

ax.set_xlabel('z-scored voxel intensity', fontsize = 12)
plt.savefig(f'./figures/histograms/GMM1vAll/k{k}.pdf')
plt.close();

In []: for k in np.arange(1,10):
GMM1vAllHist(datasetCluster, k)

1.5 Survival Analysis

In []: from scipy.io import loadmat
from statsmodels.stats.multitest import multipletests

In the survival analysis we will make Kaplan-Meier curves, perform the log-rank tets on pa-
tient groups according to the if a given patient has below of above the median of a given cluster
component and we’ll perform univariate and multivariate Cox regression.

Importing the patient file names and a list of which voxels are belonging to which patient.

In []: FileNames = loadmat('./../Data/FeatureArray/featureArraysFinalv2.mat',
variable_names = 'FileNames')

try:
FileNames=FileNames['FileNames']

except:
pass

FileNames = FileNames.flatten()
for c,FileName in enumerate(FileNames):

FileNames[c]=FileName[0][:-4]

pasInd=loadmat('./../Data/FeatureArray/featureArraysFinalv2.mat',
variable_names = 'grpsPasInd')

pasInd=pasInd['grpsPasInd']-1 #ptyhon is zero indexed while matlab is not
print(pasInd.shape, FileNames.shape)

dicomInfoTable=pd.read_csv('./../Data/dicomInfo/dicomInfoTable.csv')
dicomInfoTable.set_index('Row', inplace=True)

6

179

dicomInfoTable.index = [patName.lower()
for patName in dicomInfoTable.index]

dicomInfoTable.index.names = ['PatientName']
voxelDF = pd.DataFrame(np.concatenate(

(FileNames.reshape(-1,1),pasInd),axis=1))
voxelDF.set_index(0,inplace=True)
voxelDF.index = [patName.lower() for patName in voxelDF.index]
voxelDF.index.names = ['PatientName']
voxelDF.columns = ['voxIndStart', 'voxIndEnd']
voxelDF['totNumVox'] = voxelDF.voxIndEnd - voxelDF.voxIndStart +1
voxelDF.head()

labels_k9_DF = pd.DataFrame(labels_k9)
valCounts = [pd.value_counts(

labels_k9_DF.iloc[start:end,0]) for start,
end in zip(voxelDF.loc[:,'voxIndStart'].values,
voxelDF.loc[:,'voxIndEnd'].values)]

In []: numpats = len(valCounts)
numk = len(valCounts[0])
grps = np.zeros((numpats,numk))
for c, elem in enumerate(valCounts):

for k in range(numk):
try:

grps[c,k] = elem.loc[k+1]
except:

pass

In []: dicomInfoTable['voxelVolume'] = (dicomInfoTable['PixelSpacing_1']*
dicomInfoTable['PixelSpacing_2']*dicomInfoTable['SliceThickness']

dicomInfoTable.head()
voxelDF = voxelDF.merge(dicomInfoTable['voxelVolume'],

how='inner', left_index=True,
right_index=True)

In []: pd.options.display.float_format = '{:.2f}'.format
for k in range(numk):

voxelDF[f'VolumeComp{k+1}'] = grps[:,k]*voxelDF.voxelVolume
voxelDF['totalVolume'] = voxelDF.loc[:,

'VolumeComp1':'VolumeComp9'].sum(axis=1)

Computing the mean, range and standard deviation of the components and building it into a
table of descriptive statistics

In []: statsDF = voxelDF.loc[:,'VolumeComp1':'totalVolume'].describe()

In []: mx, mn = 'max', 'min'
volRange = [f'({statsDF[column].loc[mn]:.3g},{statsDF[column].loc[mx]:.3g})'

for column in statsDF.columns]

In []: from latex_table_utils import merge_columns_by_name, build_latex_table
help(merge_columns_by_name)
help(build_latex_table)

7

180

In []: descriptiveTable = merge_columns_by_name(statsDF.T, 'range', 'min', 'max', 3)
descriptiveTable.reset_index(inplace=True)
descriptiveTable.rename({'index':'Volume of Component'}, axis=1, inplace=True)
descriptiveTable['Volume of Component'] = [i for i in range(1,10)] + ['All']
descriptiveTable['Treatment'] = ['']

In []: descriptiveTable = pd.DataFrame({'mean':statsDF.loc['mean',:],
'standard deviation':statsDF.loc['std',:]
,'median':statsDF.loc['50%', :],

'range':volRange})

In []: descriptiveTable

1.6 KM estimate and logrank survival analysis

In []: survInfoCRT = pd.read_feather('./Data/survInfoCRT')
survInfoNoCRT = pd.read_feather('./Data/survInfoNoCRT')
survInfoCRT.set_index('PatientName', inplace=True)
survInfoNoCRT.set_index('PatientName', inplace=True)
survInfoCRT = survInfoCRT.iloc[:,0:2]
survInfoNoCRT = survInfoNoCRT.iloc[:,0:2]

survInfoCRT = survInfoCRT.merge(voxelDF.loc[:,'VolumeComp1':'VolumeComp9'],
left_index=True, right_index=True)

survInfoNoCRT = survInfoNoCRT.merge(voxelDF.loc[:,'VolumeComp1':'VolumeComp9'],
left_index=True, right_index=True)

In []: def survDiffClusterMedian(volSeries, T, E):
compMoreMed = (volSeries >= np.median(volSeries))
res = logrank_test(T[compMoreMed], T[~compMoreMed],

E[compMoreMed], E[~compMoreMed])
return res.p_value

In []: TCRT = survInfoCRT.timeFirstEventOrRCens
ECRT = survInfoCRT.status
survDiffClusterMedian(survInfoCRT['VolumeComp3'],TCRT, ECRT)
pvalCRT = []
for k in range(numk):

pvalCRT.append(survDiffClusterMedian(survInfoCRT[f'VolumeComp{k+1}'],
TCRT, ECRT))

pvalCRT

In []: TNoCRT = survInfoNoCRT.timeFirstEventOrRCens
ENoCRT = survInfoNoCRT.status
pvalNoCRT = []
for k in range(numk):

pvalNoCRT.append(survDiffClusterMedian(
survInfoNoCRT[f'VolumeComp{k+1}'],TNoCRT, ENoCRT))

pvalNoCRT

In []: def survInfoToLatexTableFormat(survInfo, treatment):
Extract volume components
tableDF = survInfo.loc[:,[f'VolumeComp{i}' for i in range(1,10)]]
tableDF['All Components'] = tableDF.sum(axis=1)

8

181

tableDF = tableDF.describe().T
tableDF = merge_columns_by_name(tableDF, 'range', 'min', 'max', 3)
tableDF = tableDF.loc[:,['mean', 'std', '50%', 'range']]
tableDF.reset_index(inplace=True)
tableDF['treatment'] = [treatment]*tableDF.shape[0]
tableDF.loc[:,'index'] = [f'Component {i}'

for i in range(1, 10)] + ['All Components']
tableDF.rename({'index':'Volume per patient', '50%':'median'},

axis=1, inplace = True)
tableDF.set_index(['treatment', 'Volume per patient'],

inplace = True)
return tableDF

In []: survCRTtoLatex = survInfoToLatexTableFormat(survInfoCRT, 'CRT')
survNoCRTtoLatex = survInfoToLatexTableFormat(survInfoNoCRT, 'No CRT')
survCRTtoLatex.append(survNoCRTtoLatex)

build_latex_table(survCRTtoLatex.append(survNoCRTtoLatex),
1, 1, './Results/GMM/tables/GMMDescriptive.txt', 3)

1.7 Bonferronicorrected p-values CRT

In []: pd.options.display.float_format = '{:.5g}'.format
pvalCRTBF=multipletests(pvalCRT, alpha=0.05,

method='BonFerroni', is_sorted=False, returnsorted=False)
corrAlpha = pvalCRTBF[3]
pvalCRTBFDF = pd.DataFrame({'pvals':pvalCRTBF[1], 'significant':pvalCRTBF[0]}).T
pvalCRTBFDF.columns = [f'Component {k}' for k in range(1,10)]
pvalCRTBFDF.loc['p',:] = [f'{pval:.4f}' if pval > corrAlpha else f'{pval:.4f}*'

for pval in pvalCRT]
pvalCRTBFDF

1.8 Bonferronicorrected p-values No CRT

In []: pd.options.display.float_format = '{:.5g}'.format
pvalNoCRTBF=multipletests(pvalNoCRT, alpha=0.05, method='ho',

is_sorted=False, returnsorted=False)
corrAlpha = pvalNoCRTBF[3]
pvalNoCRTBFDF = pd.DataFrame({'pvals_uncorr':pvalNoCRT,'pvals':pvalNoCRTBF[1],

'significant':pvalNoCRTBF[0]}).T
pvalNoCRTBFDF.columns = [f'Component {k}' for k in range(1,10)]
pvalNoCRTBFDF.loc['p',:] = [f'{pval:.4f}' if pval > corrAlpha else f'{pval:.4f}*'

for pval in pvalNoCRTBFDF.loc['pvals_uncorr',:].values]
pvalNoCRTBFDF

In []: pvalNoCRTToLatex = pvalNoCRTBFDF.T.reset_index().loc[:,['p', 'index']]
pvalNoCRTToLatex['treatment'] = ['NoCRT']*pvalNoCRTToLatex.shape[0]
pvalNoCRTToLatex.rename({'index': 'component'}, axis=1, inplace = True)
pvalNoCRTToLatex.set_index(['treatment', 'component'],inplace=True)

In []: pvalCRTToLatex = pvalCRTBFDF.T.reset_index().loc[:,['p', 'index']]
pvalCRTToLatex['treatment'] = ['CRT']*pvalCRTToLatex.shape[0]
pvalCRTToLatex.rename({'index': 'component'}, axis=1, inplace = True)
pvalCRTToLatex.set_index(['treatment', 'component'], inplace=True)

9

182

In []: help(build_latex_table)

In []: pvalBFToLatex = pvalCRTToLatex.append(pvalNoCRTToLatex)
build_latex_table(pvalBFToLatex, 1,1, './Results/GMM/tables/pvalsLogRankBfCorrk9.txt', 3)

1.9 Plotting the Kaplan-Meier estimates for CRT and non-CRT

In []: def survCurvePlot(k, T, E, survInfo, treatment, show):
input:
k - component number
T - durations/time
E - Event flag
Treatment - string to differentiate CRT from NoCRT when saving
show - boolean. If False saves the figure without showing it
medFlag = survInfo[f'VolumeComp{k}'] >= np.median(survInfo[f'VolumeComp{k}'])

res = logrank_test(T[medFlag], T[~medFlag], E[medFlag],
E[~medFlag])

plt.figure()
ax = plt.subplot(111)
kmf_mm = KaplanMeierFitter()
kmf_mm.fit(T[medFlag], E[medFlag], label='Vol >= med')
kmf_mm.plot(ax=ax, ci_show=False, show_censors = True)
kmf_lm = KaplanMeierFitter()
kmf_lm.fit(T[~medFlag], E[~medFlag], label='Vol < med')
kmf_lm.plot(ax=ax, ci_show=False, show_censors = True)
plt.title(r'Component {:d}: $p={:.4f}$'.format(k,res.p_value))
plt.xlabel('Days')
plt.ylabel('Survival Probability')
plt.ylim([0, 1.05])

plt.savefig(f'./figures/GMMSurvivalFigures/GMMKMComp{k:d}{treatment}.pdf')
from lifelines.plotting import add_at_risk_counts
add_at_risk_counts(kmf_mm, kmf_lm, ax=ax)
if show:

plt.show()
else:

plt.close()

In []: # testing:
survCurvePlot(3, TNoCRT, ENoCRT, survInfoNoCRT, 'NoCRT', True)

Making the KM estimates for all CRT and non-CRT components.

In []: for k in range(1,10):
survCurvePlot(k, TNoCRT, ENoCRT, survInfoNoCRT, 'NoCRT', False)
survCurvePlot(k, TCRT, ECRT, survInfoCRT, 'CRT', False)

1.10 Univariate Cox Regression

We want to build a pandas dataframe containing all results from an univariate Cox regression
survival model. In particular we want the a p-value, 95% confidence intervals, the coefficient, and
exp(coef) and the c-index.

10

183

In []: volCompNameList = [f'VolumeComp{k:d}' for k in range(1,10)]

In []: def uniCox(T, E, survInfo, varName):
DF = pd.DataFrame({'Duration': T, 'Event':E,

varName:survInfo.loc[:,varName]/1000})
cph = CoxPHFitter()
cph.fit(DF, duration_col='Duration', event_col='Event',

step_size=0.1, show_progress=True)
res = cph.summary
res['c-index'] = cph.score_
print(cph.check_assumptions(DF))
return(res)

1.10.1 CRT

In []: pd.options.display.float_format = '{:.3g}'.format
CRTUniCox = pd.DataFrame()
for comp in volCompNameList:

CRTUniCox=CRTUniCox.append(uniCox(TCRT, ECRT, survInfoCRT, comp))
CRTUniCox

1.10.2 No CRT

In []: pd.options.display.float_format = '{:.3g}'.format
NoCRTUniCox = pd.DataFrame()
for comp in volCompNameList:

try:
NoCRTUniCox=NoCRTUniCox.append(uniCox(TNoCRT, ENoCRT, survInfoNoCRT, comp))

except:
pass

NoCRTUniCox

1.10.3 Summary of univariate Cox Regression

In []: CRTUniCox.reset_index(inplace=True)
CRTUniCox.rename({'index':'parameter'}, axis=1, inplace=True)
CRTUniCox['treatment'] = ['CRT']*CRTUniCox.shape[0]
CRTUniCox.set_index(['treatment', 'parameter'], inplace=True)

In []: NoCRTUniCox.reset_index(inplace=True)
NoCRTUniCox.rename({'index':'parameter'}, axis=1, inplace=True)
NoCRTUniCox['treatment'] = ['NoCRT']*NoCRTUniCox.shape[0]
NoCRTUniCox.set_index(['treatment', 'parameter'], inplace=True)

In []: UniCoxDF = CRTUniCox.append(NoCRTUniCox)

In []: uniCoxLatex = UniCoxDF.drop(['se(coef)','z', '-log2(p)', 'c-index'], axis=1)
uniCoxLatex.rename({'coef':'$\\beta$',

'exp(coef)':'$e^\\beta$', 'p':'p'}, inplace=True, axis = 1)

In []: from latex_table_utils import merge_columns_by_name
uniCoxLatex = merge_columns_by_name(uniCoxLatex,

'$95 \\%$ CI' ,'lower 0.95', 'upper 0.95', 3)

In []: from latex_table_utils import build_latex_table
build_latex_table(uniCoxLatex, 1, 1,

'./Results/GMM/tables/UnicariateCox.txt', 3)

11

184

1.11 Finding the correlation between the different volume components and the total
volume for each treatment group

In []: corr = mCRTDF.drop(['Duration','Event'],axis=1).corr()
plt.figure(figsize=(8,6))
sns.heatmap(corr,

xticklabels=corr.columns.values,
yticklabels=corr.columns.values,

annot=True,
fmt='.2f')

plt.tight_layout()
plt.savefig('./figures/Correlation/CRTCorr.pdf')
plt.show()

In []: corr = mNoCRTDF.drop(['Duration','Event'], axis=1).corr()
plt.figure(figsize=(8,6))
sns.heatmap(corr,

xticklabels=corr.columns.values,
yticklabels=corr.columns.values,

annot=True,
fmt='.2f')

plt.tight_layout()
plt.savefig('./figures/Correlation/NoCRTCorr.pdf')
plt.show()

12

185

A.5 Test of DB, DB* and DB** cluster validity indices

In this section a printout from the jupyter notebook where the performance of
the DB* and DB** implemented in as shown section A.4.2 is tested against DB.

186

Test of my DB* and DB** implementation
The purpose of this notebook is to test my implementation of the improved Davies-Bouldin indices proposed by Kim and
Ramakrishna, 2005 [1]. The DB and DB* indices were found to perform well in the extensive study of Cluster Validation
Indices (CVIs) by Arbelaitz et al (2013) [2].

In [12]: import sys, os
sys.path.append(os.path.abspath(os.path.join('..', 'kMeans','pythonDataExploration')))

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import davies_bouldin_score
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans

from cluster_validity_indices import davies_bouldin_star_score, davies_bouldin_star_star_score
%matplotlib notebook
import seaborn as sns
import pandas as pd

figSavePath = 'New DB indices tests'

try:
 os.mkdir(figSavePath)
except:
 print("Directory already exists")

In [13]: os.path.join(figSavePath,'SaveName')

The datasets

To make the testing simple I'll use some of the sample datasets included in the scikit-learn package namely the make_blobs
datasets [2]. This makes isotropic gaussian clusters in two dimensions. The make_blobs functions, amoung other things,
allows setting the number of samples, number of clusters and the standard deviation for each of the clusters. An example of
the initialization of such a dataset is shown below.

In [14]: n_samples = 400
X, y = make_blobs(n_samples=n_samples, centers= 5,
 cluster_std=[0.7, 0.8, 1.1, 1, 0.5])
labelsMB = [f'c{i+1}' for i in y]

Directory already exists

Out[13]:
'New DB indices tests\\SaveName'

187

In [15]: plt.figure()
sns.scatterplot(X[:,0],X[:,1], hue=labelsMB)
plt.savefig(os.path.join(figSavePath,'MakeBlobsExample.pdf'))

The centers of the clusters are set at random within a bounding box from -10 to 10 in both dimensions. Thus more or less
overlap will occur between the clusters on different initializations of the dataset. Below is a test of the DB index implemented
in sklearn toghether with my implementation of DB*.

188

In [16]: klist = np.arange(2,9,1)
DB = []
DBstar = []
for k in klist:
 kmeans = KMeans(n_clusters=k, random_state=1).fit(X)
 labels = kmeans.labels_
 DBstar.append(davies_bouldin_star_score(X,labels))
 DB.append(davies_bouldin_score(X,labels))
plt.figure()
plt.axvline(x=5,c='k',linewidth = 0.5, label='Correct k', linestyle = '--')
plt.plot(klist,DB, label="DB")
plt.plot(klist, DBstar, label="DBstar")
plt.legend()
plt.xlabel('k')
plt.ylabel('score')
plt.title('DB and DB* score for K-means with various k')
plt.xlim([2, 8])
plt.savefig(os.path.join(figSavePath,'MakeBlobsExampleDBandDBstar.pdf'))
plt.show()

C:\Users\bendi\Anaconda3\lib\site-packages\sklearn\metrics\cluster\unsupervised.py:342: RuntimeWarning: divide by zero encountered in true
_divide
 score = (intra_dists[:, None] + intra_dists) / centroid_distances

C:\Users\bendi\Anaconda3\lib\site-packages\sklearn\metrics\cluster\unsupervised.py:342: RuntimeWarning: divide by zero encountered in true
_divide
 score = (intra_dists[:, None] + intra_dists) / centroid_distances

C:\Users\bendi\Anaconda3\lib\site-packages\sklearn\metrics\cluster\unsupervised.py:342: RuntimeWarning: divide by zero encountered in true
_divide
 score = (intra_dists[:, None] + intra_dists) / centroid_distances

C:\Users\bendi\Anaconda3\lib\site-packages\sklearn\metrics\cluster\unsupervised.py:342: RuntimeWarning: divide by zero encountered in true
_divide
 score = (intra_dists[:, None] + intra_dists) / centroid_distances

C:\Users\bendi\Anaconda3\lib\site-packages\sklearn\metrics\cluster\unsupervised.py:342: RuntimeWarning: divide by zero encountered in true
_divide
 score = (intra_dists[:, None] + intra_dists) / centroid_distances

C:\Users\bendi\Anaconda3\lib\site-packages\sklearn\metrics\cluster\unsupervised.py:342: RuntimeWarning: divide by zero encountered in true
_divide
 score = (intra_dists[:, None] + intra_dists) / centroid_distances

C:\Users\bendi\Anaconda3\lib\site-packages\sklearn\metrics\cluster\unsupervised.py:342: RuntimeWarning: divide by zero encountered in true
_divide
 score = (intra_dists[:, None] + intra_dists) / centroid_distances

189

An extensive test of DB, DB* and DB**

Here an extensive test will be run using the make_blobs datasets. If there is any reason I should use DB or DB** instead of
DB in my analysis they at least need to on average outperform DB on datasets that are well behaved. The primary focus
however, is to see whether my implementation of DB and DB are correct. If so, they should both outperform DB on
average [2,3]. For these test 200 datasets will be made with 2,3,...,7 clusters with the make_blobs function making a
total of 1200 datasets. The number of samples in each dataset will be an integer from a uniform probability
distribution between 200 and 700 and the standard deviation of each cluster will be chosen as a random number
between 1.2 and 0.5 also with a uniform probability distribution. As pointed out earlier, the cluster may in some
cases be perfectly separated, and in other cases overlap completely or close to completely. This does not really
matter as we should still, if the implementation of DB* and DB are correct, see that they outperform DB on average
across all the datasets. As performance measures the meas percentage error will be used.

190

In [143]: cList = np.arange(2,8,1)
kList = np.arange(2,14,1)
absDiffDBstarstar = []
absDiffDBstar = []
absDiffDB = []
MPEDBstarstar = []
MPEDBstar = []
MPEDB = []
n_reps = 200 # number of datasets for each c in cList

np.seterr(all='ignore')

for nc in cList:
 # to see progress
 print(f'Step {np.argwhere(cList==nc)[0,0]+1} of {len(cList)}')
 print(f'Performing analalysis on {n_reps} datasets of {nc} clusters')
 for i in range(0,n_reps):
 X, y = make_blobs(n_samples=np.random.randint(200,701), centers= nc,
 cluster_std=np.random.random(nc)*(1.2-0.5)+0.5)
 labels = []
 DBstar = []
 DB = []
 for k in kList:
 kmeans = KMeans(n_clusters=k).fit(X)
 labels.append(kmeans.labels_)
 DBstar.append(davies_bouldin_star_score(X,kmeans.labels_))
 DB.append(davies_bouldin_score(X, kmeans.labels_))
 DBstarstar = davies_bouldin_star_star_score(X, labels)

 absDiffDBstarstar.append(abs(nc - kList[np.argmin(DBstarstar)]))
 absDiffDBstar.append(abs(nc - kList[np.argmin(DBstar)]))
 absDiffDB.append(abs(nc-kList[np.argmin(DB)]))
 MPEDBstarstar.append(abs(nc - kList[np.argmin(DBstarstar)])*100/nc)
 MPEDBstar.append(abs(nc - kList[np.argmin(DBstar)])*100/nc)
 MPEDB.append(abs(nc-kList[np.argmin(DB)])*100/nc)

Results
From the cell below we see that DB is outperformed by both DB* and DB as reported in the original article [1]. DB is the
best performing of them.

2
3

C:\Users\bendi\Anaconda3\lib\site-packages\sklearn\metrics\cluster\unsupervised.py:342: RuntimeWarning: invalid value encountered in true_
divide
 score = (intra_dists[:, None] + intra_dists) / centroid_distances

4
5

C:\Users\bendi\Anaconda3\lib\site-packages\sklearn\metrics\cluster\unsupervised.py:342: RuntimeWarning: invalid value encountered in true_
divide
 score = (intra_dists[:, None] + intra_dists) / centroid_distances
C:\Users\bendi\Anaconda3\lib\site-packages\sklearn\metrics\cluster\unsupervised.py:342: RuntimeWarning: invalid value encountered in true_
divide
 score = (intra_dists[:, None] + intra_dists) / centroid_distances

6
7

191

In [144]: print(f'Mean absolute difference DB: {np.mean(absDiffDB):.3f}')
print(f'Mean absolute difference DB*: {np.mean(absDiffDBstar):.3f}')
print(f'Mean absolute difference DB**: {np.mean(absDiffDBstarstar):.3f}')
print(f'Mean percentage error (MPE) DB: {np.mean(MPEDB):.3f}')
print(f'Mean percentage error (MPE) DB*: {np.mean(MPEDBstar):.3f}')
print(f'Mean percentage error (MPE) DB**: {np.mean(MPEDBstarstar):.3f}')
print(f'percentage error standard deviation DB: {np.std(MPEDB):.3f}')
print(f'percentage error standard deviation DB*: {np.std(MPEDBstar):.3f}')
print(f'percentage error standard deviation DB**: {np.std(MPEDBstarstar):.3f}')

Below is a plot showing percentage error on each dataset for each method. The methods can be seen all in the same plot,
and as three different subplots. The datasets are grouped according to the number of clusters they have. The most
noticeable trait is the fluctuationsof the DB index for datasets with two clusters. Both DB and DB** seem to be more stable.
This is might explain some of the reason why the standard deviation of the percentage error of DB is conciderably higher
than those of DB and DB**.

Mean absolute difference DB: 1.120
Mean absolute difference DB*: 1.160
Mean absolute difference DB**: 1.051
Mean percentage error (MPE) DB: 22.343
Mean percentage error (MPE) DB*: 21.779
Mean percentage error (MPE) DB**: 19.481
percentage error standard deviation DB: 36.495
percentage error standard deviation DB*: 22.325
percentage error standard deviation DB**: 22.439

192

In [213]: plt.figure(figsize=(8,6))

plt.plot(MPEDB, label='DB', linewidth=0.5)
plt.plot(MPEDBstar, label='DB*', linewidth=0.5)
plt.plot(MPEDBstarstar, label='DB**',linewidth=0.5)

lw = 0.4
for markerLinePosition in [n_reps*i for i in np.arange(len(cList)-1)+1]:
 plt.axvline(markerLinePosition, c='k', linewidth=lw)

plt.xlim([0, len(MPEDBstar)])
plt.ylim([0, np.max([np.max(MPEDBstar), np.max(MPEDBstarstar), np.max(MPEDB)])])
plt.xticks(np.arange(n_reps/2,n_reps/2 + n_reps*len(cList),n_reps),[f'{i} clusters' for i in cList
])
plt.legend()
plt.title('Percentage error per dataset and CVI')
plt.ylabel('Percentage error')
plt.xlabel('Datasets')
plt.savefig(os.path.join(figSavePath,'PercentageErrorPerDataset.pdf'))

193

In [212]: plt.figure(figsize=(8,12))

plt.subplot(311)
plt.title('Percentage error per dataset and CVI',size=16)
plt.plot(MPEDB, label='DB', linewidth=0.5)
lw = 0.4
for markerLinePosition in [n_reps*i for i in np.arange(len(cList)-1)+1]:
 plt.axvline(markerLinePosition, c='k', linewidth=lw)
plt.xlim([0, len(MPEDBstar)])
plt.ylim([0, np.max([np.max(MPEDBstar), np.max(MPEDBstarstar), np.max(MPEDB)])])
plt.xticks(np.arange(n_reps/2,n_reps/2 + n_reps*len(cList),n_reps),[f'{i} clusters' for i in cList
])
plt.legend()
plt.ylabel("Percentage error")

plt.subplot(312)
plt.plot(MPEDBstar, label='DB*', linewidth=0.5,c="tab:orange")
plt.ylim([0, np.max([np.max(MPEDBstar), np.max(MPEDBstarstar), np.max(MPEDB)])])
plt.xlim([0, len(MPEDBstar)])
plt.legend()
for markerLinePosition in [n_reps*i for i in np.arange(len(cList)-1)+1]:
 plt.axvline(markerLinePosition, c='k', linewidth=lw)
plt.xticks(np.arange(n_reps/2,n_reps/2 + n_reps*len(cList),n_reps),[f'{i} clusters' for i in cList
])
plt.ylabel("Percentage error")

plt.subplot(313)
plt.plot(MPEDBstarstar, label='DB**',linewidth=0.5, c="tab:green")
plt.ylim([0, np.max([np.max(MPEDBstar), np.max(MPEDBstarstar), np.max(MPEDB)])])
plt.xlim([0, len(MPEDBstar)])
plt.legend()
for markerLinePosition in [n_reps*i for i in np.arange(len(cList)-1)+1]:
 plt.axvline(markerLinePosition, c='k', linewidth=lw)
plt.xticks(np.arange(n_reps/2,n_reps/2 + n_reps*len(cList),n_reps),[f'{i} clusters' for i in cList
])
plt.xlabel("Datasets")
plt.ylabel("Percentage error")
plt.tight_layout()
plt.savefig(os.path.join(figSavePath,'PercentageErrorPerDatasetSubplots.pdf'))

194

Due to the number of datasets it is a bit difficult to really be able to discern all the properties of the CVIs using the plot above.
Below a pointplot is made. This plots points at the mean percentage error of the CVIs on datasets containing the same
amount of clusters. The errorbars are the 95 percent confidence intervals around the mean.

195

In [146]: cLabel = np.array([n_reps*[c] for c in cList]).reshape(-1)
cLabel = np.concatenate((cLabel,cLabel,cLabel))
dfDict = {'clusters': cLabel, 'MPE': np.concatenate((MPEDB,MPEDBstar,MPEDBstarstar),axis=0),
 'Method': len(MPEDB)*['DB'] + len(MPEDBstar)*['DB*'] + len(MPEDBstarstar)*['DB**'] }

In [211]: plt.figure(figsize=(8,6))
sns.pointplot(x='clusters', y='MPE', hue='Method', data=df, ci=95)
sns.despine(offset=0, trim=True)
plt.ylabel('Mean percentage error')
plt.savefig(os.path.join(figSavePath,'MPEperClusterGroup.pdf'))

References

[1] Minho Kim, R.S. Ramakrishna, New indices for cluster validity assessment, Pattern Recognition Letters, Volume 26,
Issue 15, 2005, Pages 2353-2363, ISSN 0167-8655, https://doi.org/10.1016/j.patrec.2005.04.007
(https://doi.org/10.1016/j.patrec.2005.04.007). (http://www.sciencedirect.com/science/article/pii/S016786550500125X
(http://www.sciencedirect.com/science/article/pii/S016786550500125X))

[2] Olatz Arbelaitz, Ibai Gurrutxaga, Javier Muguerza, Jesús M. Pérez, Iñigo Perona, An extensive comparative study of
cluster validity indices, Pattern Recognition, Volume 46, Issue 1, 2013, Pages 243-256, ISSN 0031-3203,
https://doi.org/10.1016/j.patcog.2012.07.021 (https://doi.org/10.1016/j.patcog.2012.07.021).
(http://www.sciencedirect.com/science/article/pii/S003132031200338X
(http://www.sciencedirect.com/science/article/pii/S003132031200338X))

[3] Scikit-learn, Sklearn.datasets.make_blobs, https://scikit-
learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html (https://scikit-
learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html), retrieved 27.04.2019

196

A.6 Finding the optimal k for the k-means algorithm

In the k-means algorithm k is a required input parameter. Some of the difficul-
ties in using the k-means algorithm thus arises in trying to select the optimal
k for a given dataset. A more in depth discussion about this can be found in
section about Cluster Validity Indices (CVIs) in the theory 2.4.2. The chosen
CVIs for report were the Calinski-Harabasz (CH) Davies-Bouldin family of in-
dices, DB, DB* and DB** and the Silhouette score (Sil). These are all defined
in the relevant section of the theory 2.4.2. The CVIs were computed for both a
dataset including polynomial interaction features up to and including the third
order in DWI features with b-values 25, 50, 100 and 500 s mm−2 and a dataset
without interaction feature.

The are CVIs are computed for k-means clustering solutions with k ∈
{1, 2 . . . 21} with the exception of DB** that is only calculated up to kmax = 20
due to the fact that it relies on the clustering solution for with k = kmax + 1.
CH and the DB familiy of indices were computed using the full dataset which
is feasible due to the fact that both of these indices have linear time complexity
in the number of samples. The Sil was calculated using 20000 samples when
interaction features were included and 5000 samples when these were omitted.
The Sil calculations were repeated 20 times with randomly sampled dataset to
look at the variability due to a particular subsampling of the full dataset.

The scikit-learn implementation of the CH, DB and Sil index was used. No
publicly available DB* or DB** implementations were found and thus one was
implemented. The implemented DB* and DB** index can be found in section
A.4.2 of the appendix. A small performance evaluation of the DB* and DB**
implementations can be found in section A.5 of the appendix where DB* and
DB** are shown to on average outperform DB in simple clustering tasks. For
more information about the testing procedures and datasets tested refer to the
relevant section of the appendix.

Result for the dataset without interaction feature is presented in figures 30,
31 and 32. From the figures it can be seen that the optimal k is two across
almost all criteria. The same conclusion can be drawn from figures 33, 34 and
35 showing the CH, DB, DB* and DB** and Sil calculated for the dataset
without including polynomial interaction features. In the figures showing the
CH and DB family of indices the scores scaled to have a minimum of zero and a
maximum of one since only the relative size of the selected CVI for different k is
of importance in determining the optimal k. In the Sil scores, no such rescaling
is performed since the Sil score by definition ranges from zero to one.

The only criterea for which an optimal k of two is not indicated is the DB
score for the dataset without interactions shown in figure 34 where an optimal
k of four is indicated.

197

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
k

Calinski-Harabsz score ()

Figure 30: Calinski-Harabasz index for the dataset including polynomial inter-
action features.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Sc
or

e

Davies-Bouldin CVIs ()

DB**
DB*
DB

Figure 31: Davies-Bouldin index for the dataset including polynomial interac-
tion features.

198

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
k

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Sc
or

e
Silhouette score ()

Figure 32: Silhouette score for the dataset including polynomial interaction
features.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
k

Calinski-Harabsz score ()

Figure 33: Calinski-Harabasz index for the dataset without including polyno-
mial interaction features.

199

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Sc
or

e

Davies-Bouldin CVIs ()
DB**
DB*
DB

Figure 34: Davies-Bouldin index for the dataset without including polynomial
interaction features.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
k

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Sc
or

e

Silhouette score ()

Figure 35: Silhouette score for the dataset without including polynomial inter-
action features.

200

A.7 Kaplan-Meier estimates with logrank test for the to-
tal tumour volume

The Kaplan-Meier estimates with logrank tests for the total volume partitioned
according to the median tumour volume for each of the treatment groups is
presented in figure 36.

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

p = 0.762

CRT: Total Volume
Total Vol >= median
Total Vol < median

(a)

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

p = 0.109

NoCRT: Total Volume

Total Vol >= median
Total Vol < median

(b)

Figure 36: Kaplan-Meier (KM) estimate for the total volume tumour partitioned
according to the median tumour volume for each treatment group. Censored
patients are indicated with crosses on the respective survival curves. The lo-
grank test fails to show any significant association between the total volume and
survival for either of the treatment groups(CRT: p > 0.7, No CRT: p > 0.1)

201

A.8 One component vs. rest histograms for the GMM
clustering solution

Below histograms of one component of the GMM clustering solutions is plotted
against all others mapped backed onto the original, z-scored feature axes. This
is done to see whether any feature in particular is important in the distinction
between component, and to see whether any of the properties of the tissue
associated to a component can be assessed. The plots are given as referance for
the reader.

202

0.0 5.0 10.0

Fr
eq

ue
nc

y

T2

0.0 5.0 10.0

DWI - b = 0 s/mm2

0.0 5.0 10.0

DWI - b = 25 s/mm2

0.0 5.0 10.0

Fr
eq

ue
nc

y

DWI - b = 50 s/mm2

0.0 5.0 10.0

DWI - b = 100 s/mm2

-2.5 0.0 2.5 5.0 7.5

DWI - b = 500 s/mm2

-2.5 0.0 2.5 5.0 7.5

Fr
eq

ue
nc

y

DWI - b = 1000 s/mm2

0.0 5.0 10.0

ADC

-2.0 0.0 2.0 4.0
z-scored voxel intensity

D

-2.0 0.0 2.0 4.0
z-scored voxel intensity

Fr
eq

ue
nc

y

D*

-2.0 0.0 2.0 4.0
z-scored voxel intensity

f

cluster
0
1

Figure 37: Histogram showing component 1 against all other components
grouped together mapped along the original z-scored feature axes.

203

0.0 5.0 10.0

Fr
eq

ue
nc

y

T2

0.0 5.0 10.0

DWI - b = 0 s/mm2

0.0 5.0 10.0

DWI - b = 25 s/mm2

0.0 5.0 10.0

Fr
eq

ue
nc

y

DWI - b = 50 s/mm2

0.0 5.0 10.0

DWI - b = 100 s/mm2

-2.5 0.0 2.5 5.0 7.5

DWI - b = 500 s/mm2

-2.5 0.0 2.5 5.0 7.5

Fr
eq

ue
nc

y

DWI - b = 1000 s/mm2

0.0 5.0 10.0

ADC

-2.0 0.0 2.0 4.0
z-scored voxel intensity

D

-2.0 0.0 2.0 4.0
z-scored voxel intensity

Fr
eq

ue
nc

y

D*

-2.0 0.0 2.0 4.0
z-scored voxel intensity

f

cluster
0
2

Figure 38: Histogram showing component 2 against all other components
grouped together mapped along the original z-scored feature axes.

204

0.0 5.0 10.0

Fr
eq

ue
nc

y

T2

0.0 5.0 10.0

DWI - b = 0 s/mm2

0.0 5.0 10.0

DWI - b = 25 s/mm2

0.0 5.0 10.0

Fr
eq

ue
nc

y

DWI - b = 50 s/mm2

0.0 5.0 10.0

DWI - b = 100 s/mm2

-2.5 0.0 2.5 5.0 7.5

DWI - b = 500 s/mm2

-2.5 0.0 2.5 5.0 7.5

Fr
eq

ue
nc

y

DWI - b = 1000 s/mm2

0.0 5.0 10.0

ADC

-2.0 0.0 2.0 4.0
z-scored voxel intensity

D

-2.0 0.0 2.0 4.0
z-scored voxel intensity

Fr
eq

ue
nc

y

D*

-2.0 0.0 2.0 4.0
z-scored voxel intensity

f

cluster
0
3

Figure 39: Histogram showing component 3 against all other components
grouped together mapped along the original z-scored feature axes.

205

0.0 5.0 10.0

Fr
eq

ue
nc

y

T2

0.0 5.0 10.0

DWI - b = 0 s/mm2

0.0 5.0 10.0

DWI - b = 25 s/mm2

0.0 5.0 10.0

Fr
eq

ue
nc

y

DWI - b = 50 s/mm2

0.0 5.0 10.0

DWI - b = 100 s/mm2

-2.5 0.0 2.5 5.0 7.5

DWI - b = 500 s/mm2

-2.5 0.0 2.5 5.0 7.5

Fr
eq

ue
nc

y

DWI - b = 1000 s/mm2

0.0 5.0 10.0

ADC

-2.0 0.0 2.0 4.0
z-scored voxel intensity

D

-2.0 0.0 2.0 4.0
z-scored voxel intensity

Fr
eq

ue
nc

y

D*

-2.0 0.0 2.0 4.0
z-scored voxel intensity

f

cluster
0
4

Figure 40: Histogram showing component 4 against all other components
grouped together mapped along the original z-scored feature axes.

206

0.0 5.0 10.0

Fr
eq

ue
nc

y

T2

0.0 5.0 10.0

DWI - b = 0 s/mm2

0.0 5.0 10.0

DWI - b = 25 s/mm2

0.0 5.0 10.0

Fr
eq

ue
nc

y

DWI - b = 50 s/mm2

0.0 5.0 10.0

DWI - b = 100 s/mm2

-2.5 0.0 2.5 5.0 7.5

DWI - b = 500 s/mm2

-2.5 0.0 2.5 5.0 7.5

Fr
eq

ue
nc

y

DWI - b = 1000 s/mm2

0.0 5.0 10.0

ADC

-2.0 0.0 2.0 4.0
z-scored voxel intensity

D

-2.0 0.0 2.0 4.0
z-scored voxel intensity

Fr
eq

ue
nc

y

D*

-2.0 0.0 2.0 4.0
z-scored voxel intensity

f

cluster
0
5

Figure 41: Histogram showing component 5 against all other components
grouped together mapped along the original z-scored feature axes.

207

0.0 5.0 10.0

Fr
eq

ue
nc

y

T2

0.0 5.0 10.0

DWI - b = 0 s/mm2

0.0 5.0 10.0

DWI - b = 25 s/mm2

0.0 5.0 10.0

Fr
eq

ue
nc

y

DWI - b = 50 s/mm2

0.0 5.0 10.0

DWI - b = 100 s/mm2

-2.5 0.0 2.5 5.0 7.5

DWI - b = 500 s/mm2

-2.5 0.0 2.5 5.0 7.5

Fr
eq

ue
nc

y

DWI - b = 1000 s/mm2

0.0 5.0 10.0

ADC

-2.0 0.0 2.0 4.0
z-scored voxel intensity

D

-2.0 0.0 2.0 4.0
z-scored voxel intensity

Fr
eq

ue
nc

y

D*

-2.0 0.0 2.0 4.0
z-scored voxel intensity

f

cluster
0
6

Figure 42: Histogram showing component 6 against all other components
grouped together mapped along the original z-scored feature axes.

208

0.0 5.0 10.0

Fr
eq

ue
nc

y

T2

0.0 5.0 10.0

DWI - b = 0 s/mm2

0.0 5.0 10.0

DWI - b = 25 s/mm2

0.0 5.0 10.0

Fr
eq

ue
nc

y

DWI - b = 50 s/mm2

0.0 5.0 10.0

DWI - b = 100 s/mm2

-2.5 0.0 2.5 5.0 7.5

DWI - b = 500 s/mm2

-2.5 0.0 2.5 5.0 7.5

Fr
eq

ue
nc

y

DWI - b = 1000 s/mm2

0.0 5.0 10.0

ADC

-2.0 0.0 2.0 4.0
z-scored voxel intensity

D

-2.0 0.0 2.0 4.0
z-scored voxel intensity

Fr
eq

ue
nc

y

D*

-2.0 0.0 2.0 4.0
z-scored voxel intensity

f

cluster
0
7

Figure 43: Histogram showing component 7 against all other components
grouped together mapped along the original z-scored feature axes.

209

0.0 5.0 10.0

Fr
eq

ue
nc

y

T2

0.0 5.0 10.0

DWI - b = 0 s/mm2

0.0 5.0 10.0

DWI - b = 25 s/mm2

0.0 5.0 10.0

Fr
eq

ue
nc

y

DWI - b = 50 s/mm2

0.0 5.0 10.0

DWI - b = 100 s/mm2

-2.5 0.0 2.5 5.0 7.5

DWI - b = 500 s/mm2

-2.5 0.0 2.5 5.0 7.5

Fr
eq

ue
nc

y

DWI - b = 1000 s/mm2

0.0 5.0 10.0

ADC

-2.0 0.0 2.0 4.0
z-scored voxel intensity

D

-2.0 0.0 2.0 4.0
z-scored voxel intensity

Fr
eq

ue
nc

y

D*

-2.0 0.0 2.0 4.0
z-scored voxel intensity

f

cluster
0
8

Figure 44: Histogram showing component 8 against all other components
grouped together mapped along the original z-scored feature axes.

210

0.0 5.0 10.0

Fr
eq

ue
nc

y

T2

0.0 5.0 10.0

DWI - b = 0 s/mm2

0.0 5.0 10.0

DWI - b = 25 s/mm2

0.0 5.0 10.0

Fr
eq

ue
nc

y

DWI - b = 50 s/mm2

0.0 5.0 10.0

DWI - b = 100 s/mm2

-2.5 0.0 2.5 5.0 7.5

DWI - b = 500 s/mm2

-2.5 0.0 2.5 5.0 7.5

Fr
eq

ue
nc

y

DWI - b = 1000 s/mm2

0.0 5.0 10.0

ADC

-2.0 0.0 2.0 4.0
z-scored voxel intensity

D

-2.0 0.0 2.0 4.0
z-scored voxel intensity

Fr
eq

ue
nc

y

D*

-2.0 0.0 2.0 4.0
z-scored voxel intensity

f

cluster
0
9

Figure 45: Histogram showing component 9 against all other components
grouped together mapped along the original z-scored feature axes.

211

A.9 Survival Curves Of the Gaussian Mixture Model (GMM)
components

Underneath a collection of all survival curves made for each of the 9 Gaussian
mixture model components and for each of the two patient groups. The patients
within one treatment group was partitioned according to the median component
volume into low and high volume of a given component. After Bonferroni cor-
rection no significant difference in progression free survival (PFS) was found for
the CRT patients. For the non CRT patient a significant difference was found
for components 6 and 7. No caption will be given in the figures, as this section
is in addition to the information in the figures themselves are regarded as such.
A more detailed is discussion is given in the results section of the report where
the survival curves shown to have a significant difference in PFS are repeated.

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Component 1: p = 0.2147
Vol >= med
Vol < med

Figure 46

212

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0
Su

rv
iv

al
 P

ro
ba

bi
lit

y

Component 2: p = 0.2109
Vol >= med
Vol < med

Figure 47

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Component 3: p = 0.3137
Vol >= med
Vol < med

Figure 48

213

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0
Su

rv
iv

al
 P

ro
ba

bi
lit

y

Component 4: p = 0.7599
Vol >= med
Vol < med

Figure 49

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Component 5: p = 0.4306
Vol >= med
Vol < med

Figure 50

214

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0
Su

rv
iv

al
 P

ro
ba

bi
lit

y

Component 6: p = 0.9884
Vol >= med
Vol < med

Figure 51

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Component 7: p = 0.7307
Vol >= med
Vol < med

Figure 52

215

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0
Su

rv
iv

al
 P

ro
ba

bi
lit

y

Component 8: p = 0.2025
Vol >= med
Vol < med

Figure 53

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Component 9: p = 0.7143
Vol >= med
Vol < med

Figure 54

216

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0
Su

rv
iv

al
 P

ro
ba

bi
lit

y

Component 1: p = 0.0337
Vol >= med
Vol < med

Figure 55

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Component 2: p = 0.5097
Vol >= med
Vol < med

Figure 56

217

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0
Su

rv
iv

al
 P

ro
ba

bi
lit

y

Component 3: p = 0.1159
Vol >= med
Vol < med

Figure 57

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Component 4: p = 0.3221
Vol >= med
Vol < med

Figure 58

218

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0
Su

rv
iv

al
 P

ro
ba

bi
lit

y

Component 5: p = 0.1594
Vol >= med
Vol < med

Figure 59

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Component 6: p = 0.0013

Vol >= med
Vol < med

Figure 60

219

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0
Su

rv
iv

al
 P

ro
ba

bi
lit

y

Component 7: p = 0.0016

Vol >= med
Vol < med

Figure 61

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Component 8: p = 0.8278
Vol >= med
Vol < med

Figure 62

220

0 200 400 600 800 1000 1200 1400 1600
Days

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Component 9: p = 0.1357
Vol >= med
Vol < med

Figure 63

221

A.10 Simulation study - Finding the optiman number of
components in a GMM clustering solution using BIC
on non-Gaussian clusters

222

Simulation study - Selecting the correct number of
components in Gaussian Mixture Modelling using BIC on

non-Gaussian clusters

May 27, 2019

In [83]: %matplotlib inline
import numpy as np
from sklearn.mixture import GaussianMixture
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from joblib import Parallel, delayed

1 The Cluster

To make the example as simple as possible only a single cluster will be generated. This cluster
will be made using an exponential distribution and a multivariate Gaussian distribution added
together. The exponential distribution used is described by the rate λ = 1. The multivariate
Gaussian distribution has mean vector (0,0) and covariance matrix equal to the identity matrix
(spherical covariance).

2 300 samples

First the cluster is made using 300 samples. The GMM is used to cluster for number of components
k ∈ {1, 2, . . . 20} and the BIC is calculated for each k. The process is repeated 5 times due to the
randomness in the initialization of the components

In [111]: dist = np.random.exponential(scale=1.0, size=(300,2))
dist2 = np.random.multivariate_normal([0,0],

[[1, 0], [0, 1]], size=300)
dist = dist+dist2

In [113]: sns.scatterplot(x=dist[:,0],y=dist[:,1])
plt.show()

1

223

In [114]: gm = GaussianMixture()

In [115]: def fitGaussianMixture(X, k):
return(GaussianMixture(n_components=k,

max_iter=300, n_init=3).fit(X))

In [116]: kList = np.arange(1,20)
reps = 5

In [117]: mixMods = Parallel(n_jobs=-2,
verbose=10)(delayed(fitGaussianMixture)(dist,

k) for k in kList for r in range(reps))

[Parallel(n_jobs=-2)]: Using backend LokyBackend with 3 concurrent workers.
[Parallel(n_jobs=-2)]: Done 2 tasks | elapsed: 2.5s
[Parallel(n_jobs=-2)]: Done 7 tasks | elapsed: 2.6s
[Parallel(n_jobs=-2)]: Done 12 tasks | elapsed: 2.7s
[Parallel(n_jobs=-2)]: Done 19 tasks | elapsed: 2.9s
[Parallel(n_jobs=-2)]: Batch computation too fast (0.2000s.) Setting batch_size=2.
[Parallel(n_jobs=-2)]: Done 26 tasks | elapsed: 3.1s
[Parallel(n_jobs=-2)]: Done 43 tasks | elapsed: 3.9s
[Parallel(n_jobs=-2)]: Done 61 tasks | elapsed: 5.1s
[Parallel(n_jobs=-2)]: Done 83 tasks | elapsed: 8.0s
[Parallel(n_jobs=-2)]: Done 95 out of 95 | elapsed: 10.2s finished

In [118]: BICtest = [mixMod.bic(dist) for mixMod in mixMods]

2

224

In [119]: plt.figure()
sns.lineplot(x=np.repeat(kList,reps), y=BICtest,

ci='sd', err_style='bars')
plt.xlabel('k')
plt.ylabel('BIC Score')
plt.title('BIC(k) on GMM clusters')
plt.xticks(kList)
plt.show()

We can see that when using a limited number of samples the BIC find the correct number of
clusters in the data being one.

3 1000 samples

Now using a dataset of 1000 samples from the same probability distribution function. The settings
are the same as for the above.

In [120]: dist = np.random.exponential(scale=1.0, size=(1000,2))
dist2 = np.random.multivariate_normal([0,0], [[0, 1],[1,0]], size=1000)
dist = dist+dist2

C:\Users\bendi\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: RuntimeWarning: covariance is not positive-semidefinite.

3

225

In [121]: mixMods = Parallel(n_jobs=-2,
verbose=10)(delayed(fitGaussianMixture)(dist,

k) for k in kList for r in range(reps))

[Parallel(n_jobs=-2)]: Using backend LokyBackend with 3 concurrent workers.
[Parallel(n_jobs=-2)]: Batch computation too fast (0.0230s.) Setting batch_size=16.
[Parallel(n_jobs=-2)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=-2)]: Done 22 tasks | elapsed: 1.5s
[Parallel(n_jobs=-2)]: Done 70 out of 95 | elapsed: 5.2s remaining: 1.8s
[Parallel(n_jobs=-2)]: Done 95 out of 95 | elapsed: 6.3s finished

In [122]: BICtest = [mixMod.bic(dist) for mixMod in mixMods]

In [123]: plt.figure()
sns.lineplot(x=np.repeat(kList,reps), y=BICtest,

ci='sd', err_style='bars')
plt.xlabel('k')
plt.ylabel('BIC Score')
plt.title('BIC(k) on GMM clusters')
plt.xticks(kList)
plt.show()

In [124]: mixMods[np.argmin(BICtest)].n_components

4

226

Out[124]: 2

We can now see that the BIC reaches a global minimum of 2 even though we know there is
only one cluster in the dataset.

4 30000 samples

Now clustering 30000 samples from the same pdf and calculating the BIC.

In []: dist = np.random.exponential(scale=1.0, size=(30000,2))
dist2 = np.random.multivariate_normal([0,0], [[0, 1],[1,0]], size=30000)
dist = dist+dist2

In [103]: mixMods = Parallel(n_jobs=-2,
verbose=10)(delayed(fitGaussianMixture)(dist,

k) for k in kList for r in range(reps))

[Parallel(n_jobs=-2)]: Using backend LokyBackend with 3 concurrent workers.
[Parallel(n_jobs=-2)]: Batch computation too fast (0.1309s.) Setting batch_size=2.
[Parallel(n_jobs=-2)]: Done 2 tasks | elapsed: 0.0s
[Parallel(n_jobs=-2)]: Done 8 tasks | elapsed: 1.7s
[Parallel(n_jobs=-2)]: Batch computation too slow (2.0203s.) Setting batch_size=1.
[Parallel(n_jobs=-2)]: Done 18 tasks | elapsed: 6.7s
[Parallel(n_jobs=-2)]: Done 27 tasks | elapsed: 13.4s
[Parallel(n_jobs=-2)]: Done 34 tasks | elapsed: 21.5s
[Parallel(n_jobs=-2)]: Done 43 tasks | elapsed: 39.7s
[Parallel(n_jobs=-2)]: Done 52 tasks | elapsed: 59.4s
[Parallel(n_jobs=-2)]: Done 63 tasks | elapsed: 1.5min
[Parallel(n_jobs=-2)]: Done 74 tasks | elapsed: 2.1min
[Parallel(n_jobs=-2)]: Done 87 tasks | elapsed: 2.8min
[Parallel(n_jobs=-2)]: Done 95 out of 95 | elapsed: 3.3min finished

In [104]: BICtest = [mixMod.bic(dist) for mixMod in mixMods]

In [105]: plt.figure()
sns.lineplot(x=np.repeat(kList,reps), y=BICtest,

ci='sd', err_style='bars')
plt.xlabel('k')
plt.ylabel('BIC Score')
plt.title('BIC(k) on GMM clusters')
plt.xticks(kList)
plt.show()

5

227

In [110]: mixMods[18].n_components

Out[110]: 4

We see that the BIC now has it minimum at 4 components.

5 Discussion

The reason why we see that the number of components predicted by the BIC when more samples
are included in the dataset is due to the fact that the BIC consistent in selecting the true model.
That is when the number of samples n → ∞ the probability of selecting the true model → 1 given
it is among the candidate models considered [1, 2]. The natural reason behind why we do not see
a convergence of the BIC towards one component as the number of samples increase is here due
to the fact that the true model is not part of the candidate models considered.

In many clustering task when using GMM the components are rarely ensured to be purely
gaussian. Thus when clustering based on a large number of samples, the same trend as high-
lighted in this small simulation study might appear. A solution for this problem can be to use
other mixtures where the true model is in the candidates considered. Another solution find a rea-
sonable number of components instead of best solution based on the BIC. That is to acknowledge
that the true model likely is not in the candidates tested.

As stated by Xu et al [3]: "The goal of the clustering is the separate a finite unlabelled data
set into a finite discrete set of "natural", hidden data structures, rather than to provide an accu-
rate characterization of unobserved samples generated the same probability distribution." and as
stated by Everitt [4] that a clustering solution should not be based on its usefulness, rather than
by in terms of whether it is true or false.

6

228

References

[1] S. I. Vrieze. “Model selection and psychological theory: a discussion of the differences be-
tween the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)”.
In: Psychol Methods 17.2 (June 2012), pp. 228–243.

[2] Yuhong Yang. “Can the strengths of AIC and BIC be shared? A conflict between model in-
dentification and regression estimation”. In: Biometrika 92.4 (2005), pp. 937–950.

[3] Rui Xu and Donald C. Wunsch. Clustering. IEEE Series on Computational Intelligence. Wiley-
IEEE Press, 2009. ISBN: 9780470276808. URL: http://search.ebscohost.com/login.aspx?
direct=true&db=e230xww&AN=254099&site=ehost-live.

[4] Brian S Everitt. Cluster Analysis. eng. 5th edition. Vol. v.886. Wiley Series in Probability and
Statistics. Chicester, 2010. ISBN: 1-280-76795-2.

7

229

A.11 Correlation heatmaps

In the following subsection the Pearson correlation coefficient is calculated be-
tween the volume of each component including the total volume. The results are
presented as heatmaps. This is performed both for the CRT and the No CRT
treatment groups and the results are presented in figure 64a and 64b respec-
tively. A strong correlation (Persons correlation coefficient > 0.7) was found
between certain volume components and between certain volume components
and the total volume.

230

Vo
lu

m
eC

om
p1

Vo
lu

m
eC

om
p2

Vo
lu

m
eC

om
p3

Vo
lu

m
eC

om
p4

Vo
lu

m
eC

om
p5

Vo
lu

m
eC

om
p6

Vo
lu

m
eC

om
p7

Vo
lu

m
eC

om
p8

Vo
lu

m
eC

om
p9

to
ta

lV
ol

um
e

VolumeComp1

VolumeComp2

VolumeComp3

VolumeComp4

VolumeComp5

VolumeComp6

VolumeComp7

VolumeComp8

VolumeComp9

totalVolume

1.00 -0.00 -0.19 0.69 -0.18 -0.17 0.25 -0.00 0.71 0.66

-0.00 1.00 0.42 -0.02 0.13 0.64 0.18 0.11 0.08 0.37

-0.19 0.42 1.00 -0.24 0.04 0.71 0.00 -0.18 -0.26 -0.00

0.69 -0.02 -0.24 1.00 0.03 -0.13 0.15 -0.05 0.43 0.73

-0.18 0.13 0.04 0.03 1.00 0.31 -0.10 -0.03 -0.05 0.42

-0.17 0.64 0.71 -0.13 0.31 1.00 0.40 -0.30 -0.29 0.21

0.25 0.18 0.00 0.15 -0.10 0.40 1.00 -0.26 -0.01 0.18

-0.00 0.11 -0.18 -0.05 -0.03 -0.30 -0.26 1.00 0.66 0.25

0.71 0.08 -0.26 0.43 -0.05 -0.29 -0.01 0.66 1.00 0.67

0.66 0.37 -0.00 0.73 0.42 0.21 0.18 0.25 0.67 1.00 0.25

0.00

0.25

0.50

0.75

1.00

(a) CRT treatment group

Vo
lu

m
eC

om
p1

Vo
lu

m
eC

om
p2

Vo
lu

m
eC

om
p3

Vo
lu

m
eC

om
p4

Vo
lu

m
eC

om
p5

Vo
lu

m
eC

om
p6

Vo
lu

m
eC

om
p7

Vo
lu

m
eC

om
p8

Vo
lu

m
eC

om
p9

to
ta

lV
ol

um
e

VolumeComp1

VolumeComp2

VolumeComp3

VolumeComp4

VolumeComp5

VolumeComp6

VolumeComp7

VolumeComp8

VolumeComp9

totalVolume

1.00 0.40 -0.12 0.51 0.74 0.25 0.45 0.10 0.42 0.71

0.40 1.00 0.13 0.51 0.66 0.35 0.08 0.27 0.26 0.70

-0.12 0.13 1.00 -0.07 -0.11 0.45 -0.02 -0.14 -0.19 0.07

0.51 0.51 -0.07 1.00 0.63 0.10 0.10 0.26 0.38 0.79

0.74 0.66 -0.11 0.63 1.00 0.27 0.17 0.33 0.37 0.89

0.25 0.35 0.45 0.10 0.27 1.00 0.29 -0.21 -0.07 0.32

0.45 0.08 -0.02 0.10 0.17 0.29 1.00 -0.08 -0.01 0.28

0.10 0.27 -0.14 0.26 0.33 -0.21 -0.08 1.00 0.54 0.51

0.42 0.26 -0.19 0.38 0.37 -0.07 -0.01 0.54 1.00 0.50

0.71 0.70 0.07 0.79 0.89 0.32 0.28 0.51 0.50 1.00

0.00

0.25

0.50

0.75

1.00

(b) No CRT treatment group

Figure 64: Correlation matrix for the volume components and the total vol-
ume for both treatment groups. The correlation metric used is the Pearson
correlation coefficient.

231

A.12 Dice-Sørensen Coefficient

The Sørensen-Dice similarity coefficient (DSC) [1] given two sets X and Y can
be defined as

DSC =
2|X ∩ Y |
|X|+ |Y | . (64)

The coefficient ranges from zero, when there is no overlap between the elements
of the two sets, to one when there is completer overlap between the two sets.

References

[1] Lee R. Dice. “Measures of the Amount of Ecologic Association Between
Species”. In: Ecology 26.3 (1945), pp. 297–302. doi: 10.2307/1932409.
eprint: https://esajournals.onlinelibrary.wiley.com/doi/pdf/
10.2307/1932409. url: https://esajournals.onlinelibrary.wiley.
com/doi/abs/10.2307/1932409.

232

https://doi.org/10.2307/1932409
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.2307/1932409
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.2307/1932409
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1932409
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1932409

