
D
ordije B

oskovic
H

ardw
are im

plem
entation of a target detection algorithm

 for hyperspectral im
ages

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

le
ct

ro
ni

c
Sy

st
em

s

M
as

te
r’

s
th

es
is

Dordije Boskovic

Hardware implementation of a target
detection algorithm for hyperspectral
images

Master’s thesis in Embedded Computing Systems

June 2019

Dordije Boskovic

Hardware implementation of a target
detection algorithm for hyperspectral
images

Master’s thesis in Embedded Computing Systems
Supervisor: Kjetil Svarstad and Milica Orlandic
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Abstract

Hyper-Spectral Imager for Oceanographic Applications (HYPSO) is being developed as
a part of SmallSat laboratory at NTNU. The satellite capable of capturing and processing
of hyperspectral images will be equipped with Zynq-7000 on-board processing system
consisting of ARM®-based processor with the hardware programmability of an FPGA.
FPGA offers inherent reconfigurability, smaller size and weight, substantially lower power
consumption and reduced costs, compared to its counterpart in other technologies. In this
thesis, a part of on-board hyperspectral processing in FPGA is explored.

Hyperspectral images obtained by imaging spectrometer contain a vast amount of data
which require techniques such as target detection to extract useful information. This thesis
presents implementations of target detection algorithms for hyperspectral images. The al-
gorithms are implemented as hardware-software partitioned system on Xilinx Zynq-7000
development platform. Prior to FPGA implementation, the algorithms such as ACE, SAM,
CEM and ASMF were reviewed and tested on 5 different hyperspectral datasets. The de-
tection performance of the algorithms was evaluated using MCC score, visibility score and
ROC curves.

Two FPGA solutions for target detection are presented: HW/SW partitioned design
and full FPGA solution. The designs were modelled using VHDL in attempt to gain the
most optimal solution for our application. The operations of algorithms are partitioned on
the heterogeneous platform between processing system and programmable logic with spe-
cial consideration of background estimation. In HW/SW partitioned design, background
estimation is performed prior to detection statistic calculation, while in full-FPGA imple-
mentation background is estimated in real-time as image frames are captured using the
imager. Both solutions provide certain advantages depending on the desired application.
Algorithm modelling and testing was performed in MATLAB environment, while FPGA
modules were synthesized using Xilinx Vivado Design Suite.

In addition to target detection algorithm implementations, PPI endmember extraction
algorithm was implemented using Vivado HLS. This implementation illustrates productiv-
ity benefits of a C-based development flow using HLS.

i

Preface

This master’s thesis is the final part of my Master of Science degree in Embedded
Computing Systems (EMECS). The thesis work was conducted at the Norwegian Univer-
sity of Science and Technology within a SmallSat project (HYPSO). It is an exploratory
work concerning topics such as hyperspectral remote sensing and FPGA design. As I have
not been introduced to hyperspectral imaging prior to the specialization and thesis work,
it has been a challenging learning experience, but also a gratifying and rewarding practice
which has greatly improved my research skills.

First of all, I would like to thank my supervisor Milica Orlandić for her support, en-
couragement and great guidance. Our work together resulted in my first conference paper,
awarded as the best student paper. Furthermore, I would like to thank my fellow students
in the SmallSat lab for creating supportive environment in which one could pleasantly
work and socialize. Special thanks to my family and friends for their continuous support
throughout the years.

Ðord̄ije Bošković
June, 2019

ii

Table of Contents

Summary i

Preface ii

Table of Contents v

List of Tables viii

List of Figures xi

Abbreviations xii

1 Introduction 1
1.1 Motivation . 1
1.2 Hyperspectral imaging and processing 1
1.3 Target Detection in context of HYPSO mission 2
1.4 HYPSO mission payload . 4
1.5 Main contributions . 5
1.6 Structure of the Thesis . 6

2 Background 7
2.1 Hyperspectral data representation . 7

2.1.1 Geometrical data representation 8
2.1.2 Spectral variability and mixing 8
2.1.3 Statistical data representation 9
2.1.4 Hyperspectral image organization 10

2.2 Pixel Purity Index Algorithm . 12
2.3 Target detection algorithms . 13

2.3.1 Spectral angle mapper . 14
2.3.2 Constrained energy minimization 14
2.3.3 Adaptive coherence/cosine estimator 15

iii

2.3.4 Adjusted Spectral Matched Filter 16
2.4 Matrix inversion . 17

2.4.1 Gauss-Jordan elimination . 17
2.4.2 LU decomposition with partial pivoting 18
2.4.3 Sherman-Morrison formula . 19
2.4.4 Computational complexity of algorithms 19

2.5 Overview of Zynq-7000, FPGA cores and primitives 20
2.5.1 DSP blocks on Zynq . 20
2.5.2 AXI protocols . 21
2.5.3 DMA core . 22
2.5.4 Block RAM . 23
2.5.5 AXI divider . 24

2.6 Vivado HLS . 25
2.7 State-of-the-art target detection algorithm implementations on FPGA plat-

forms . 27

3 Review of state-of-the-art target detection algorithms 29
3.1 Hyperspectral datasets . 29

3.1.1 Salinas scene . 29
3.1.2 Hopavågen scene . 31
3.1.3 Indian Pines scene . 31
3.1.4 Pavia University scene . 33
3.1.5 HyMap Cooke City scene . 34

3.2 Target detection performance metrics . 36
3.2.1 Matthews correlation coefficient 36
3.2.2 Receiver operating characteristic curve 37
3.2.3 Visibility score . 37

3.3 Target detection algorithm adaptations 37
3.3.1 Adaptive Cosine Estimator using correlation matrix 38

3.4 Algorithm testing . 39
3.4.1 Salinas scene . 39
3.4.2 Hopavågen scene . 40
3.4.3 Indian Pines scene . 40
3.4.4 Pavia University scene . 41
3.4.5 HyMap Cooke City scene . 41

4 FPGA implementation 43
4.1 Hardware-Software codesign implementation 43

4.1.1 Input logic . 44
4.1.2 Processing logic . 46
4.1.3 Output logic . 51
4.1.4 Software solution for using the FPGA accelerator 52

4.2 Full FPGA implementation . 53
4.2.1 Adaptation of inverse matrix calculation for FPGA implementation 53
4.2.2 Adaptation of target detectors for real-time processing 55
4.2.3 Input logic . 56

iv

4.2.4 Processing logic . 58
4.2.5 Fixed-point considerations . 61
4.2.6 Controller design . 63

4.3 PPI algorithm implementation . 64

5 Results 67
5.1 HW/SW codesign implementation results 67

5.1.1 Performance analysis . 67
5.1.2 Resource utilization . 68
5.1.3 Detection performance analysis 71

5.2 Full FPGA implementation results . 75
5.2.1 Performance analysis . 75
5.2.2 Resource utilization . 76
5.2.3 Detection performance analysis 77

5.3 PPI algorithm implementation results 81

6 Conclusion 83
6.1 Target detection algorithms . 83
6.2 FPGA implementations . 83
6.3 Future work . 84

Bibliography 85

Appendices 89

A Dimensionality reduction 89

B Using HW/SW codesign implementation on Zynq platform 91
B.1 Creating project in Xilinx Vivado . 91
B.2 Simulation . 92
B.3 Synthesis and implementation . 94
B.4 Xilinx SDK . 94

v

vi

List of Tables

2.1 Vivado HLS optimization directives . 26

3.1 Salinas ground truth endmembers . 30
3.2 Hopavågen ground truth endmembers 31
3.3 Indian Pines ground truth endmembers 32
3.4 Pavia University ground truth endmembers 33
3.5 HyMap Cooke City ground truth - targets 35

4.1 AXI-lite register file description for HW/SW codesign solution 45
4.2 Stage 2 multiplexer signals and products 47
4.3 Stage 3 multiplexer signals and products 48
4.4 Generics and example values for HW/SW codesign solution 49
4.5 AXI-lite register file description for full FPGA solution 56
4.6 Fixed-point data types for Sherman-Morrison implementation 62
4.7 Generics for full FPGA solution . 62

5.1 Performance comparison for HW/SW codesign solution 68
5.2 Performance analysis of HW modules for HW/SW codesign solution . . . 68
5.3 Resource utilization report 32x16, 16 bands, 32-bit intermediate data, HW/SW

codesign solution . 69
5.4 Resource utilization report 25x16, 16 bands, 25-bit intermediate data, HW/SW

codesign solution . 69
5.5 Comparison of detection performance scores for fixed- and floating-point

solutions; Salinas scene using HW/SW codesign solution 71
5.6 Comparison of detection performance scores for fixed- and floating-point

solutions; HyMap scene, target signature F1, using HW/SW codesign so-
lution . 73

5.7 Comparison of detection performance scores for fixed- and floating-point
solutions; HyMap scene, target signature F4, using HW/SW codesign so-
lution . 74

5.8 Sensors and FPGA processing data rate for full FPGA solution 75

vii

5.9 Comparison of data processing speed for the FPGA implementations . . . 75
5.10 Resource utilization report, 32 bands, 32-bit intermediate data, full FPGA

solution . 76
5.11 Comparison of used resources for SBS-CEM, DPBS-CEM and our imple-

mentation . 76
5.12 Comparison of detection performance scores using different fixed-point

types for Salinas scene using full FPGA solution 78
5.13 Comparison of detection performance scores using different fixed-point

types for Salinas scene using full FPGA solution with fixed-point type
altering . 78

5.14 Comparison of detection performance scores using different fixed-point
types for HyMap Cooke City scene, target signature F1, using full FPGA
solution . 79

5.15 Comparison of detection performance scores using different fixed-point
types for HyMap Cooke City scene, target signature F4, using full FPGA
solution . 80

5.16 Resource utilization report for PPI algorithm implementation 81

viii

List of Figures

1.1 The satellite image shows an algae bloom in the sea off the coast of North-
ern Norway. This rapid increase of algae population in marine water can
be harmful and have significant negative impact on human health, econ-
omy and environment. 2

1.2 Push-broom scanner concept. 4

2.1 Illustration of a hyperspectral data cube, along with spectra plot for a sin-
gle pixel and a single spectral channel intensities shown in grayscale . . . 7

2.2 Measures of spectral similarity and linear mixing model illustration . . . 9
2.3 Storage formats for hyperspectral images. 11
2.4 An example showing the operation of PPI algorithm with three skewers in

2-dimensional space. 12
2.5 Illustration of a typical hyperspectral target detection system. 13
2.6 Overview of Zynq-7000 architecture . 20
2.7 Simplified schematic of DSP48E1 block. 21
2.8 AXI-Lite interface. 22
2.9 Matrix storage using BRAM . 23
2.10 Generated Divider Block in Xilinx Vivado 24
2.11 Vivado HLS design flow. 25

3.1 Salinas ground truth map . 30
3.2 Hopavågen ground truth map . 31
3.3 Indian Pines ground truth map . 32
3.4 Pavia University ground truth map . 33
3.5 True color image of Cooke City scene 34
3.6 Photos of placed targets in Cooke City scene - F1, F2, F3 and F4. 34
3.7 Region of interest and signatures in HyMap Cooke City scene 35
3.8 Confusion matrix for a binary classifier 36
3.9 The ROC space and example ROC curves 38
3.10 MCC and visibility values for Salinas scene 39

ix

3.11 MCC and visibility values for Hopavågen scene 40
3.12 MCC and visibility values for Indian Pines scene 41
3.13 MCC and visibility values for Pavia University scene 42
3.14 MCC and visibility values for HyMap Cooke City scene 42

4.1 Block design of the FPGA accelerator for target detection. 43
4.2 Block diagram of BRAM module for HW/SW codesign solution. 45
4.3 RTL design of the Stage 1 of the FPGA accelerator. 46
4.4 RTL design of the Stage 2 of the FPGA accelerator. 47
4.5 RTL design of the Stage 3 of the FPGA accelerator. 48
4.6 Task-level pipeline of the accelerator stages. 49
4.7 Example of a dot product unit with specified bit widths. Using a slider to

truncate the result at a specified position. 50
4.8 An example of packet FIFO behaviour with 8 elements. 51
4.9 Block design of the full FPGA solution for target detection. 53
4.10 RTL design of the Stage 2 of the FPGA core. 58
4.11 RTL design of the Stage 3 of the FPGA core. 59
4.12 Timeline of operation stages in Sherman-Morrison updating and target de-

tection. 60
4.13 Timing diagram for Sherman-Morrison updating and target detection hard-

ware. 61
4.14 State machine for Sherman-Morrison updating and target detection hard-

ware. 63
4.15 RTL design of PPI projections (a) and the corresponding C code in HLS (b). 64
4.16 RTL design of a unit determining the maximum/minimum extrema (a) and

the corresponding C code in HLS (b). 65
4.17 RTL design of a pseudo-random sequence generating unit (a) and the cor-

responding C code in HLS (b). 66

5.1 Resource utilization as a function of different number of spectral bands for
BRAM module and processing logic, respectively. 70

5.2 Detection results (probability images) for Lettuce romaine 4th week target
signature from Salinas scene obtained using the implemented accelerator. 72

5.3 . 72
5.4 Detection results (probability images) for F1 target signature from HyMap

Cooke City scene obtained using the implemented accelerator. 73
5.5 Detection results (probability images) for F4 target signature from HyMap

Cooke City scene obtained using the implemented accelerator. 74
5.6 ROC curves obtained by different algorithms for the detection of F1 and

F4 target signatures. 74
5.7 Real-time detection results using Salinas scene and Lettuce romaine 4th

week as the target signature. 77
5.8 Detection results (probability images) for F1 target signature from HyMap

Cooke City scene obtained using the full FPGA implementation with Sherman-
Morrison updating. 79

x

5.9 Detection results (probability images) for F4 target signature from HyMap
Cooke City scene obtained using the full FPGA implementation with Sherman-
Morrison updating. 80

5.10 Comparison of detection performance scores using different fixed-point
types for adapted ACE-R detector. 81

B.1 Simulation block design diagram . 92
B.2 Synthesis block design diagram . 92
B.3 Example simulation waveform . 93
B.4 SDK - create application project . 94
B.5 SDK - change project settings . 95

xi

Abbreviations

ACE = Adaptive Coherence/Cosine Estimator
ASMF = Adjusted Spectral Matched Filter
AXI = Advanced eXtensible Interface
CEM = Constrained Energy Minimization
DMA = Direct Memory Access
DSP = Digital Signal Processing
FPGA = Field Programmable Gate Array
GPU = Graphic Processing Unit
HLS = High-Level Synthesis
HSI = Hyperspectral Imager
HW = Hardware
HYPSO = Hyper-Spectral Imager for Oceanographic Applications
MAC = Multiplier–Accumulator
MCC = Matthews Correlation Coefficient
PL = Programmable Logic
PS = Processing System
SAM = Spectral Angle Mapper
SoC = System on Chip
SW = Software
VHDL = VHSIC Hardware Description Language

xii

Chapter 1
Introduction

1.1 Motivation

The ocean covers more than 70% of the Earth’s surface. This vast body of water is a
principal component of life and home to the first organisms on Earth. Many years later,
the ocean plays an integral role in the human economy, society and most importantly
survival. The human kind is facing the world-changing challenges such as climate change
and global warming, waiting for an extensive solution for the years to come. This is where
HYPSO mission makes its impact on our everyday life.

Hyper-Spectral Imager for Oceanographic Applications (HYPSO) mission is being de-
veloped at the NTNU, Trondheim. The imager will observe the oceanographic phenomena
by using a small satellite equipped with a hyperspectral camera on-board [1], operating in
cooperation with aerial, surface, and underwater vehicles. This approach is employed
since a variety of phenomena can be observed from the space on a large scale, such as
ocean color data or harmful algae blooms approaching fish farms as shown in Fig. 1.1.
This master thesis is a part of the HYPSO mission.

1.2 Hyperspectral imaging and processing

The hyperspectral camera captures hundreds of images, where each corresponds to a cer-
tain wavelength range in the electromagnetic spectrum, for the same area on Earth. This is
the basis of hyperspectral imaging, which exquisitely combines remote sensing and spec-
trometry. In contrast to true color imaging which is adjusted to human spectral sensitivity,
hyperspectral imaging can include abundance of wavelength channels outside and inside
the visible spectrum. Such channels are usually referred to as bands.

The increasing amount of spatio-spectral data obtained using modern hyperspectral
imagers (HSI) has brought in new challenges in the analysis and extraction of useful in-
formation from hyperspectral datasets, especially in scenarios which require real-time op-
eration. Modern satellite missions tend to incorporate new HSI with increased spatial and

1

Chapter 1. Introduction

Figure 1.1: The satellite image shows an algae bloom in the sea off the coast of Northern Norway
[2]. This rapid increase of algae population in marine water can be harmful and have significant
negative impact on human health, economy and environment.

temporal resolution, causing dramatic growth of hyperspectral data and its dimensionality.
Unfortunately, the available satellite down-link bandwidth to ground stations is not follow-
ing this trend [3]. Those reasons lead to the necessary incorporation of high-performance
computing platforms into certain stages of hyperspectral processing on-board and on the
ground, such as: graphic processing units (GPUs), parallel computing and most impor-
tantly field programmable gate arrays (FPGAs) [4]. The hyperspectral data processing
is usually pipelined, consisting of the following stages: binning, optical and sensor cor-
rections, radiometric corrections, geo-referencing and registration, motion blur correction,
super-resolution [5], atmospheric correction, dimensionality reduction [6], classification,
target detection and compression [7, 8]. This thesis explores the target detection algorithms
and how they could be implemented on FPGA.

1.3 Target Detection in context of HYPSO mission
The objective of target detection algorithms is to find an object of interest in the hyper-
spectral image, i.e, target detection algorithms are inspecting the presence of a specific
material in the image. As such, they require spectral information about the target of in-

2

1.3 Target Detection in context of HYPSO mission

terest obtained either from spectral libraries or extracted from the scene. With regard to
HYPSO mission, target detection is the main part of mission objectives [1] listed below:

• To provide and support ocean color mapping through a Hyperspectral Imager (HSI)
payload, autonomously processed data, and on-demand autonomous communica-
tions in a concert of robotic agents at the Norwegian coast;

• To collect ocean color data and to detect and characterize spatial extent of algal
blooms, measure primary productivity using emittance from fluorescence-generating
micro-organisms, and other substances resulting from aquatic habitats and pollution
to support environmental monitoring, climate research and marine resource man-
agement;

as well as user and mission requirements:

• Operational data shall be compressed, have at least 20 spectral bands, and include
radiometric calibration, atmospheric correction, classification, super-resolution and
target detection;

• Should determine many specific plant pigments as well as certain organic and inor-
ganic compounds.

The algorithms inspected in this thesis are based on the statistical approach, where
spectral reflectance features are exploited to identify the target. The concept of many
target detection algorithms has been established in the domain of signal processing, radar
and pattern recognition [9]. Later, the algorithms have been adapted for hyperspectral
processing, with some originally developed in this field due to the amount of spectral
detail [10]. As such, hyperspectral target detection algorithms are usually affiliated with
spectral rather than spatial processing techniques. In the domain of spectral processing,
spatial arrangement of pixels and geometrical shapes are not carrying any information.
Instead, each pixel corresponds to a certain ground-resolution cell containing a spectrum
used to determine specific materials [11].

In statistical signal processing, target detection is regarded as binary hypothesis testing
between a null and alternative hypothesis. A null hypothesis asserts that the pixel being
tested is not a target, while an alternative hypothesis asserts the opposite. This way, each
pixel is either regarded as a target pixel or something other than a target, which is re-
ferred to as background [12]. Modelling the signals under both hypothesis is different and
characteristic for each target detection algorithm.

Target detection algorithms come with a set of challenges related to their application in
a certain field, such as detection of plant pigments. Their performance is limited by many
factors, while some of them are:

• Spatial extent of the target in the hyperspectral image

• Number of spectral bands used for target detection

• Appropriate usage of radiance or reflectance domain in target detection

• Estimation and modeling of the image background for optimal detection

3

Chapter 1. Introduction

• Selection of threshold for automated target detection

• Spectral variability of the target due to spectral mixing in a subpixel target

In this thesis, target detection algorithms are implemented in hardware, specifically
designed for FPGA platform, and therefore, not only concerns about the detection perfor-
mance of the algorithm arise. In addition to that, the algorithm has to perform in real-time
with specific hardware platform constraints accounted for. The algorithms and tests per-
formed are further explained in section 2.3 and chapter 3.

1.4 HYPSO mission payload
At NTNU SmallSat laboratory, we are developing HYPSO payload which will be able to
capture and process a hyperspectral image. The camera used in HYPSO payload is a push-
broom scanner, where the image is acquired one line (frame) at a time, as shown in Fig. 1.2.
Each frame has two dimensions, one spatial, telling the position of captured pixel, and one

Figure 1.2: Push-broom scanner concept [1].

4

1.5 Main contributions

spectral telling the pixel intensity at each wavelength channel. The hyperspectral image is
built from top to bottom, frame by frame. Therefore, the image is usually represented as a
three-dimensional cube (two spatial and one spectral dimension).

To process hyperspectral data, HYPSO payload will be equipped with Xilinx Zynq-
7000 All Programmable System on Chip (SoC). This SoC contains ARM Cortex-A9 pro-
cessor along with FPGA programmable logic. Over the years, FPGAs have become one of
the preferred choices for fast processing of hyperspectral data, due to their reconfigurabil-
ity, parallelization properties, short development time, easy data handling and low power
consumption. Also, new FPGA devices have enhanced resistance to ionizing radiation
inherently present in space (does not refer to Zynq-7000).

Compared to computer clusters or GPUs, FPGAs offer much smaller size and weight,
as well as substantially lower power consumption. The adaptivity of FPGA through recon-
figurability offers on-the-fly changes which indeed extend the life span of remote sensing
satellites. This opens possibility to select algorithms from a ground station [13]. It should
be noted that GPUs are still not incorporated in satellite Earth observation missions due to
radiation-tolerance and power consumption issues, despite the increasing programmability
of low-power GPUs such as those available in smartphones.

The Zynq-7000 SoC offers high performance ports to connect ARM Processing Sys-
tem (PS) and FPGA programmable logic (PL). This is very desirable for hardware and
software codesigned implementations. By deciding which elements will be performed by
the programmable logic, and which elements will run on the ARM Cortex-A9, we partition
the computation system leading to the accelerated execution of hyperspectral processing
algorithms.

In conclusion, FPGA is a reasonable choice for HYPSO SmallSat mission. Example is
a scenario where processing of hyperspectral images is performed on-board, so that only
obtained results are transmitted to the ground station. This scenario does not exclude the
possibility to compress the data and transmit it after transmitting operational data [14].

1.5 Main contributions
The project assignment for master thesis lists the main tasks:

• Further integration of FPGA and SW modules through implementation of correla-
tion matrix and inversion matrix calculation

• Analysis of additional speed-up potential for HW/SW codesigned implementation

• Further analysis of numerical error induced by fixed-point implementation in FPGA

These tasks were approached through two proposed FPGA solutions - HW/SW imple-
mentation and full FPGA implementation.

HW/SW implementation includes the FPGA accelerator and software solution used to
handle a selection of target detection algorithms. After partitioning of the system, main
computation parts of the target detection algorithms were extracted and implemented on
FPGA platform. Static elements of the algorithm which can be used for subsequent runs

5

Chapter 1. Introduction

are software-based. The design was developed during the specialization project, and im-
proved during the thesis work in terms of performance, interoperability and testability.
Additionally, it was upgraded to support two more detectors - ASMF and CEM. Most
importantly, the accelerator has the speed-up factor of 28.54 compared to SW model run
on ARM Cortex-A9. Furthermore, detailed analysis of the influence of numerical error
induced by fixed-point implementation in FPGA on detection performance is done.

Full FPGA implementation is a standalone FPGA solution which performs all required
computation using FPGA fabric. The implementation combines correlation matrix and
inversion matrix calculation using Sherman-Morrison formula, with the possibility of real-
time operation. The implementation supports ACE-R, CEM and ASMF detectors, and
achieves comparable or better performance than state-of-the-art solutions.

A conference paper has been submitted and presented based on the work during thesis
and specialization project:

• Ð. Bošković, M. Orlandić, S. Bakken and T. A. Johansen, "HW/SW Implementation
of Hyperspectral Target Detection Algorithm", 8th Mediterranean Conference on
Embedded Computing (MECO), Budva, Montenegro, June 2019.

In addition to aforementioned target detection algorithm implementations, PPI end-
member extraction algorithm was implemented using Vivado HLS. This implementation
illustrates productivity benefits of a C-based development flow using HLS. The VHDL,
MATLAB and C code developed during the thesis are available on [15].

1.6 Structure of the Thesis
The thesis is divided into 6 chapters. The remainder of the thesis is organized as follows:

Chapter 2 introduces the background information necessary for testing and develop-
ment of target detection algorithm hardware implementation. The chapter presents target
detection algorithms. In addition to that, brief overview of Zynq-7000 platform is pro-
vided, with the state-of-the-art target detection algorithm implementations on FPGA plat-
forms. Chapter 2 also introduces Vivado HLS and PPI endmember extraction algorithm.

Chapter 3 reviews state-of-the-art target detection algorithms. The chapter describes
hyperspectral datasets used for testing as well as metrics used to estimate their detection
performance, and presents the findings of algorithm testing and evaluation.

Chapter 4 presents hardware-software codesigned implementation of target detection
accelerator in section 4.1, full FPGA solution using Sherman-Morrison updating for matrix
inversion in 4.2 and PPI algorithm implementation in 4.3.

Chapter 5 discusses the results of FPGA implementations with respect to hardware
performance, resource utilization and detection performance.

Chapter 6 concludes with guidelines for future development.

6

Chapter 2
Background

2.1 Hyperspectral data representation

This section is strongly influenced and developed from [12] and [11]. Different data repre-
sentations of hyperspectral images regarding target detection algorithms are presented in
this section.

Hyperspectral images contain both spatial and spectral information. We can illustrate
one image as a hyperspectral data cube shown in Fig. 2.1. The cube has three dimensions,
of which two are spatial and one is spectral dimension. If we extract one pixel from a cer-
tain spatial location, we can plot the spectral reflectance curve as a function of wavelength.
On the other side, by choosing one spectral channel, it is possible to extract an intensity
(grayscale) image which will represent the spatial distribution of reflectance captured by
the imager. As spectral information is of primary focus regarding target detection algo-
rithms, data is typically represented as a set of spectral measurements. Therefore, a pixel
xi is a vector containing spectral information and it is formulated as:

Figure 2.1: Illustration of a hyperspectral data cube (in the center), along with spectra plot (on the
left) for a single pixel and a single spectral channel intensities shown in grayscale (on the right) [11].

7

Chapter 2. Background

xi = [Li(λ1) Li(λ2) ... Li(λK)]T (2.1)

where Li(λk) is a measurement of a spectral band with a center frequency λk. Hyperspec-
tral image can then be stored as a matrix X with N pixels and K spectral bands:

X = [x1 x2 ... xN] =

L1(λ1) L2(λ1) . . . LN (λ1)
L1(λ2) L2(λ2) . . . LN (λ2)

...
...

. . .
...

L1(λK) L2(λK) . . . LN (λK)

 . (2.2)

Matrix X does not expose spatial relations between pixels, but the ordering of pixels
and information about image size parameters allow easy conversion to appropriate pixel
arrangement for extraction of spatial information.

2.1.1 Geometrical data representation
As such, a pixel is a vector in K-dimensional Euclidean space, where K is the number
of spectral bands. Since spectral measurements Li(λk) ≥ 0, all pixel vectors belong to
the positive cone of K-dimensional space. As Euclidean spaces also generalize to higher
dimensions, we can define two similarity metrics between pixels x1 and x2:

d12 =
√

(x1 − x2)T (x1 − x2) (2.3)

θ12 = cos−1 xT1 x2√
(xT1 x1)(xT2 x2)

(2.4)

where d12 represents the distance measure, and θ12 is the spectral angle measure. It is,
however, advisable to use Eq. 2.4 rather then Eq. 2.3 to measure spectral similarity. Eq. 2.3
has a particular issue with the variation of pixel illumination, when one pixel is scaled with
factor α, xi = αx. In this case, spectra has the same shape, but the change of illumination
intensity scales the length of a vector representing the pixel. This is the basis for geomet-
rical representation of hyperspectral data. An example is shown in Fig. 2.2(a), where two
pixels x1 and x2 are placed in three dimensional space (three spectral bands). The distance
and angle between pixels is annotated as d12 and θ12, respectively.

2.1.2 Spectral variability and mixing
The observed spectra in remote sensing applications is never fixed, but exhibits inher-
ent variability due to atmospheric conditions, sensor noise, ground-cell position, material
mixing, spatial resolution and other factors. As such, measured spectra with variability
produces a cloud of points (tips of vectors) in spectral space. By contrast, deterministic
invariable spectra is a single fixed vector and it is usually idealized spectra from spectral
libraries. Moreover, hyperspectral data exploitation algorithms also encounter problem of
sub-pixel abundances explained by spectral mixing.

Spectral mixing occurs when spatial resolution of HSI is lower than spatial extent of
ground-cell materials. Therefore, it is very probable that many materials contribute to the

8

2.1 Hyperspectral data representation

(a) Measures of spectral similarity and geometrical
data representation

(b) Linear mixing model and a simplex formed with
two pure materials

Figure 2.2: Measures of spectral similarity (on the left) and linear mixing model (on the right)

measured spectrum. Such spectrum is regarded as a mixed pixel (sub-pixel), whereas a
pure pixel contains only one material called endmember. In other words, endmembers
are spectrally pure, unique materials which occur in the scene. If the spectral mixture
is macroscopic, then each reflected photon reacts with a single surface material present
in the observed ground cell. The reflectance is therefore a combination of all reflected
photons mixed linearly corresponding to the area each material covers on the ground cell.
Assuming that si, i = 1...M , are the endmembers and ai their area fractions (abundances)
of the ground cell, then linear mixing can be defined as:

x =

M∑
i=1

aisi + n (2.5)

where n is the additive noise vector. An example is shown in Fig. 2.2(b), where vertices of
two endmembers s1 and s2 form a simplex. Any linear mixture of these two endmembers
would be a point lying in 2-simplex, regardless of how many spectral dimensions existed
in the data. In general, the endmembers in the scene are not known, but extracted from
the scene using many endmember extraction techniques, such as PPI and N-FINDR [16].
Pixel purity index (PPI) algorithm is described in section 2.2.

Not only low spatial resolution can cause spectral mixing in a pixel, but mixed pix-
els can also appear when distinct materials are combined into a homogeneous mixture.
The spectral mixing can also be modelled using nonlinear mixing model, while spectral
variability is further described using subspace model and probability density models. The
probability density model is used for statistical representation of hyperspectral images.

2.1.3 Statistical data representation
Geometrical representation is particularly useful for describing spectral mixing, similarity
and change transformation due to illumination and environmental conditions. However,
geometrical representation is not an adequate model for noise and the stochastic nature of

9

Chapter 2. Background

hyperspectral data. Therefore, statistical approach for describing hyperspectral images is
employed using three main parameters: mean vector µ, covariance matrix Σ and correla-
tion matrix R.

If we assume noise model n and the additive model x = s+n, where s is a deterministic
signature, then the probability density function is:

p(x; θ) =
1

2πK/2

1

| Σ |1/2
e−

1
2 (x−µ)TΣ−1(x−µ) (2.6)

with parameters of the distribution θ = {µ,Σ}. Assuming zero-mean noise, mean vector
µ = s, whereas covariance matrix Σ = σ2I due to wavelength independent variance
assumption.

The multivariate probabilistic model in Eq. 2.6 with corresponding assumptions can
only characterize the sensor noise of the dataset. This simple normal distribution is unable
to fully incorporate the aforementioned stochastic nature of spectral properties of observed
objects in the image. Typically, the parameters θ are unknown and are estimated from the
provided dataset using sample statistics. The standard statistical method employed for
estimating the unknown parameters is the maximum likelihood estimation, explained in
detail in [12]. Resulting sample statistics are following:

mean vector µ =
1

N

N∑
i=1

xi, (2.7)

covariance matrix Σ =
1

N

N∑
i=1

[xi − µ][xi − µ]T =
1

N
XXT − µµT (2.8)

and correlation matrix R =
1

N
XXT . (2.9)

2.1.4 Hyperspectral image organization
There are three common methods of organizing hyperspectral images in memory: band
interleaved by pixel (BIP), band interleaved by line (BIL) and band sequential (BSQ).
Each of these component ordering schemes provide different computational complexity
for real-time processing of hyperspectral data [17], especially if the data is streamed in a
certain fashion to the processing cores. The schemes are shown in Fig. 2.3.

In BIP format, all spectral components of one pixel are written in subsequent locations,
followed by another pixel in a frame. Next row is formed for the next frame obtained by
a push-broom imager. Therefore, bands 1 to K are written for pixel 1 which is part of
frame 1, followed by components of pixel 2, and so on. On the other side, since the imager
obtains one frame at a time, the image can be stored in BIL format. In this case, data is
stored band by band for each frame. Finally, by storing data band by band for all pixels,
we have created the image in BSQ format. Target detection algorithms presented in this
thesis access the image in BIP format.

10

2.1 Hyperspectral data representation

(a) BIP

(b) BIL (c) BSQ

Figure 2.3: Storage formats for hyperspectral images.

11

Chapter 2. Background

2.2 Pixel Purity Index Algorithm
PPI algorithm is used to find the most spectrally pure pixels in a hyperspectral image. In
other words, PPI is an endmember extraction algorithm, widely used with dimensionality
reduction techniques such as minimum noise factoring (MNF) to reduce the computational
complexity of the algorithm. The PPI algorithm is simple and highly parallelizable, thus
very feasible for FPGA implementation. The full description of the original algorithm
(ENVI’s PPI) is not available in the literature; however similar interpretation is available
in [18] and will be described here.

The PPI algorithm consists of 4 steps: initialization, PPI projections, candidate se-
lection and endmember extraction. The PPI projections step is the most computationally
expensive part of the algorithm. The steps are described as follows:

1. In the initialization step, M unit vectors, named skewers, are randomly generated.

2. For each skewerj , j = 1, ...,M , all pixel vectors xi, i = 1, ..., N , from a hyper-
spectral image X, are projected onto the skewer. Each skewer forms an extrema set
consisting of processed pixel vectors. An example of the projection step on three
skewers is shown in Fig. 2.4.

3. In the candidate selection step, we find the PPI scores NPPI(xi) for all pixels. PPI
score is defined as the sum of appearances in the extrema sets of all skewers for each
pixel vector.

4. Endmember extraction step requires a threshold value tv for the PPI score in order
to extract all pixel vectors with NPPI(xi) ≥ tv .

Figure 2.4: An example showing the operation of PPI algorithm with three skewers in 2-dimensional
space [18].

12

2.3 Target detection algorithms

2.3 Target detection algorithms
Target detection algorithms search for objects of interest in the remotely obtained hyper-
spectral scene. Detection in a general sense also includes searching for anomalies without
the knowledge about a specific spectral signature. In this thesis, the focus is on target de-
tection where a signature is provided to the algorithm to determine if the target is present
in the scene. Those detectors belong to the group of signature-matched detectors. This
section is mainly based on [11, 10, 12].

The simplest reasonable approach to determine the presence of a target in a pixel would
be to use one of the spectral similarity metrics as in Eq. 2.4. The measure of angle between
data pixel and a reference signature is known as a spectral angle, and under certain condi-
tions it becomes spectral angle mapper (SAM) target detection algorithm. However, many
algorithms are based on the estimation of the image background for better distinction be-
tween target and non-target pixels.

Typical target detection system is shown in Fig. 2.5. The system consists of a target
detection algorithm (D(x)) and threshold selection system. The input pixel vector x is
mapped onto a scalar value y = D(x), which is called detection statistic. On the other
side, threshold selection system constructs a background statistic model which would be
used to produce the appropriate threshold value η.

The target detection algorithm provides our system with a value which, when com-
pared with the threshold value, correctly determines if a pixel under test contains a desig-
nated target. In other words, the value produced by target detection algorithm corresponds
to the probability of the input pixel to be a designated target. It is the task of threshold
selection system to set the optimum threshold so that a significant amount of present tar-

Figure 2.5: Illustration of a typical hyperspectral target detection system, modified from [11].

13

Chapter 2. Background

gets are detected while the false alarm rate (false positive rate, i.e., wrongly categorized
as targets) is kept below a certain value. That system is typically constant false alarm
rate (CFAR) processor, which is the important part of automatic target detection systems.
Threshold selection systems are not discussed further in this thesis.

The mathematical framework for development and analysis of target detection comes
from statistical signal processing, where target detection is regarded as binary hypothesis
testing between two competing hypothesis. Hypothesis H0, also called null hypothesis,
asserts that the pixel being tested is not a target. On the contrary, an alternative hypothesis
H1 asserts that the pixel under test contains the target. Each target detection algorithm was
developed under different models of the signals for both hypotheses. Those models are
characteristic for the algorithm and they strongly influence the performance of detection.
The models are introduced in the following subsections.

2.3.1 Spectral angle mapper
The detection problem can be modelled as follows:

H0 : x = b
H1 : x = αs + b

(2.10)

where b is the combination of background and inherent random noise, s is the known
spectral signature and α is the factor used to scale the unresolved intensity of signal s.
The uncertainty modelled by α is due to illumination and spectral mixing characteristic
for subpixel targets. To derive SAM algorithm, we assume that background b is random,
zero-mean and normally distributed with variance σ. Then, SAM is defined as:

DSAM (x) =
(sT x)2

(sT s)(xT x)
. (2.11)

An equivalent detection statistic is:

DSAM (x) = − cos−1 sT x√
(sT s)(xT x)

(2.12)

since both square root as well as cosine operation are monotonic functions. Eq. 2.12 is
equivalent to the aforementioned measure of the angle between a reference spectrum and
a pixel under test in the spectral space. SAM is derived to achieve CFAR characteristics
and therefore, the variance σ, which is presumably varying spatially across the image, is
estimated as the square of spectrum magnitude xT x. In conclusion, SAM is fast and simple
algorithm relatively robust to illumination effects. However, the algorithm is limited in
performance due to the initial assumptions about background modelling.

2.3.2 Constrained energy minimization
CEM is designed using a finite impulse response (FIR) filter with detection statistic defined
as:

14

2.3 Target detection algorithms

DCEM (x) = hT x, (2.13)

where h = [h1, h2, ..., hK]T is the weight factor used to minimize the output power of
a filter [19]. The weight vector is optimized so that the algorithm better separates the
background and the known signature s. Then, the minimization problem is defined under
the following constraint:

minh(
1

N

N∑
i=1

(hT xi)2) = minh(hT Rh) subject to hT s = 1 (2.14)

where R is the sample correlation matrix calculated as R = 1
N

∑N
i=1 xixTi . The constraint

hT s = 1 forces the perfect detection statistic (full match) to have the value 1. Derived
weight factor proposed by problem 2.14 is:

h =
R−1s

sT R−1s
. (2.15)

Finally, the resulting detection statistic after applying linear operation hT is:

DCEM (x) =
sT R−1x
sT R−1s

. (2.16)

As in majority of other signature-based detection algorithms, low-probability distri-
bution of target pixels is assumed. This assumption has direct impact on estimation of
the sample correlation matrix, which can be contaminated if the number of target pixels
surpasses a certain limit. On the contrary, if the number of target pixels is small, their in-
fluence when estimating R can be neglected. Therefore, CEM is considered a small target
detector.

2.3.3 Adaptive coherence/cosine estimator
The binary hypotheses defined in Eq. 2.17 lead to the formulation of ACE algorithm.

H0 : x = βb
H1 : x = αs + βb

(2.17)

In the extension of hypotheses shown in Eq. 2.10 for deriving SAM algorithm, here we
have newly introduced scaling factor β of the background and noise combination signal b
under both hypotheses. If we assume that b is a zero-mean, white random vector process
(b ∼ N(µ, σ)) we can derive ACE algorithm:

DACE(x) =
(sTΣ−1x)2

(sTΣ−1s)(xTΣ−1x)
. (2.18)

In Eq. 2.18, the covariance matrix Σ is typically estimated from the hyperspectral data
of the scene. In certain cases, designated targets are extracted from the provided scenes

15

Chapter 2. Background

and especially ACE algorithm performs well in these conditions. However, it is possible
that the algorithms may have different performance with normalized laboratory signatures.
Both ACE and CEM are able to achieve CFAR characteristics, and most importantly, they
do not require knowledge about all present endmembers in the hyperspectral image. Un-
like SAM which is considered first-order hyperspectral measure, both CEM and ACE are
second-order hyperspectral measures because of covariance and correlation matrices [20].

2.3.4 Adjusted Spectral Matched Filter
Adaptive spectral matched filter (ASMF) [21] is constructed using the simplified Reed-
Xiaoli (RX) anomaly detector [22] to adjust the output of CEM detector in Eq. 2.16. The
adjustment is implemented by introducing a non-target pixel suppression factor A defined
as:

A =
∣∣∣ xT R−1s
xT R−1x

∣∣∣. (2.19)

The factor A with the variable power n is then combined with CEM as follows:

DASMF (x) = DCEM (x) ·An =
sT R−1x
sT R−1s

·
∣∣∣ sT R−1x
xT R−1x

∣∣∣n. (2.20)

Depending on the power n, different spectral features are amplified or suppressed.
By setting n to 0, the ASMF becomes CEM algorithm. Alternatively, by setting n to 1,
similar form to ACE-R is obtained (which is introduced in section 3.3.1). Weight n can
also be non-integer number, such as 0.5, 1.5 or similar. Setting the weight to provide
substantial detection performance depends on the related scenes used for testing as well as
the designated targets and their properties.

16

2.4 Matrix inversion

2.4 Matrix inversion
The computation of the inverse of a matrix is a part of almost all considered target de-
tection algorithms. This computationally intensive task is usually performed directly or
iteratively, and the choice of the method affects the performance and/or precision of the
solution. Direct computation of the inverse requires a fixed number of operations to obtain
the solution, whereas iterative methods converge to a solution by subsequent updates of
the estimate [23].

Direct methods for inverting matrices, such as Gauss-Jordan elimination, LU decom-
position, and Cholesky decomposition require a-priori created matrix ready for inversion,
for example correlation matrix. This usually means that they are not able to operate as
a part of a system with real-time constraints. In such cases, iterative methods are em-
ployed, such as Sherman-Morrison formula. In the following subsections, Gauss-Jordan
elimination, LU decomposition and Sherman-Morrison formula are briefly presented. Ad-
ditionally, they have been compared in terms of computational complexity for real-time
and non-real time problems.

2.4.1 Gauss-Jordan elimination
If A is a square invertible matrix, we augment it with identity matrix of the same size and
form matrix X, X = [A, I]. Then, by performing Gauss-Jordan elimination as explained
through MATLAB code in Listing 2.1 (inspired by [24]), the left block of matrix X is
reduced to identity matrix through application of row operations. Finally, the right block
of matrix X is the solution: inverted matrix A−1.

The total effect of all the row operations is equivalent to multiplication of X with A−1

from left side as shown in Eq. 2.21. If the algorithm is unable to reduce the left block of
matrix X to an identity matrix, then A is not invertible.

[A | I] −→ [A−1A | A−1I] −→ [I | A−1] (2.21)

Listing 2.1: Gauss-Jordan elimination

for i = 1 : n

if(X(i,i) == 0)
for j = i+1 : n

if(X(i,j) ~= 0)
%row swapping
X([i j],:) = X([j i],:);
break;

end
end

end

if(X(i,i) == 0) error('singular matrix, exit!'); end

%building upper triangular matrix

17

Chapter 2. Background

for j = i+1 : n
%forward elimination
X(j,:) = X(j,:) - X(i,:)*(X(j,i)/X(i,i));

end
end

%building diagonal matrix
for i = n :-1: 2

for j = i-1 :-1: 1
%backward elimination
X(j,:) = X(j,:) - X(i,:)*(X(j,i)/X(i,i));

end
end

%building identity matrix
for i = 1 : n

%last division to build matrix I
X(i,:) = X(i,:)*(1/X(i,i));

end

2.4.2 LU decomposition with partial pivoting
After decomposing the matrix using LU decomposition, it is straightforward to find its
inverse. LU decomposition starts with factoring of a matrix into a product of upper and
lower triangular matrices, U and L, respectively. Assuming that P is the permutation
matrix obtained by partial pivoting, and A is the matrix being decomposed, it follows:

PA = LU. (2.22)

The method consists of three main steps:

1. Find the row in column k that contains the largest absolute value entry

2. Swap the rows of A and P (perform partial pivoting)

3. Perform the k-th step of Gaussian elimination

Upon obtaining L and U, we can find the inverse X of matrix A:

AX = I
PAX = PI
LUX = PI,

(2.23)

which can be rewritten as:

LY = PI
UX = Y.

(2.24)

18

2.4 Matrix inversion

Solving equations in 2.24 row by row (using forward and back substitution), leads to
the inverse matrix X = A−1.

2.4.3 Sherman-Morrison formula
If u and v are two arbitrary column vectors and A is an invertible square matrix, then
Sherman-Morrison formula is expressed as:

(A + uvT)−1 = A−1 − A−1uvT A−1

1 + vT Au
(2.25)

To invert the matrix A using Sherman-Morrison formula, we initialize matrix X to an
identity matrix of the same size as A. Then, the following iteration scheme is used:

X0 = I

Xi = Xi−1 −
Xi−1(ai − ii)iTi Xi−1

1 + iTi Xi−1(ai − ii)

(2.26)

where ai is the i-th column of matrix A, and ii is the i-th column of the identity matrix.
After n iterations, where n is the number of columns of matrix A, the inverse Xn = A−1

is obtained. Most importantly, Sherman-Morrison formula can be used to compute the
corrected inverse of matrix A after it is subjected to rank-1 update. Using Eq. 2.25, we
avoid the costly computation of inverting A + uvT anew.

2.4.4 Computational complexity of algorithms
In case of a non-real time system, full image or its subset is needed to calculate the correla-
tion matrix. Then, its inverse can be found using the aforementioned methods. To calculate
the correlation matrix of an image with N pixels consisting of K spectral components, it
is necessary to perform NK2 multiplications. Afterwards, the inverse is performed using
a method with general complexity of O(K3) multiplications.

Using Sherman-Morrison formula as in Eq. 2.25, N(3K2 + K) multiplications are
needed to obtain the final inverse matrix. This is much higher computational complex-
ity than non-real time system when all pixels are used. Nevertheless, Sherman-Morrison
formula enables the system to estimate certain spectral features on-the-fly as pixels are
being acquired. If other matrix inversion methods were used under real-time constraints,
they would need K2 + O(K3) multiplications for each incoming pixel, while Sherman-
Morrison formula requires only (3K2+K) multiplications. As such, operation of a target
detection algorithm in real-time using Sherman-Morrison formula is explained in section
4.2. On the other side, both Gauss-Jordan elimination and LU decomposition for ma-
trix inversion are implemented in software for use in HW/SW codesign implementation
explained in section 4.1.

19

Chapter 2. Background

2.5 Overview of Zynq-7000, FPGA cores and primitives
Zynq-7000 is a family of Xilinx System-on-Chip (SoC) products which provide full pro-
grammability using ARM-based processor and FPGA technology. The aforementioned
high performance communication between PS and PL on a single chip allows integration
and acceleration of software and hardware designs. Zynq-7000 chips are equipped with
Artix-7 or Kintex-7 FPGA fabric with appreciable performance-per-watt metrics. The
overview of the Zynq architecture is shown in Fig. 2.6, showing processing system with
two processor cores and programmable logic connected using AXI ports.

Figure 2.6: Overview of Zynq-7000 architecture

The remainder of this section will be dedicated to essential FPGA primitives and cores
found on Zynq platform, such as AXI protocol, DSP blocks, BRAM blocks, DMA core
and AXI divider.

2.5.1 DSP blocks on Zynq
The programmable logic on Zynq SoC contains digital signal processing (DSP) blocks
with the structure as depicted in Fig. 2.7. These dedicated blocks are used to enhance
the speed of the design involving multiply-accumulate (MAC) operations, barrel shifting
or wide bus multiplexing. Zynq PL has a limited amount of DSP blocks available, and
therefore the fundamental features and characteristics must be known to the designer so
that implementation of the source code can appropriately exploit these resources.

The DSP block contains a multiplier and an accumulator, with three additional pipeline
data registers. If full pipelining is utilized for multiplication and addition operations, then
the DSP block can run at full speed for MAC units. The pipelining is used to boost the
performance as well as reduce the overall power consumption.

20

2.5 Overview of Zynq-7000, FPGA cores and primitives

Figure 2.7: Simplified schematic of DSP48E1 block [25].

The accumulator is 48-bits wide, while one DSP multiplier has the capability to operate
on a pair of operands with the width of 25 and 18-bits. For arithmetic operations requiring
operands with wider data bus such as multiplication, the DSP block can perform a right
wire shift by 17, which is used to combine and add partial products from two DSP slices
and produce the final result. Therefore, it is possible to build larger multipliers, which are
not limited by the inherent size of DSP block operands.

2.5.2 AXI protocols

Advanced eXtensible Interface (AXI) is a part of ARM Advanced Microcontroller Bus
Architecture (AMBA) interface widely used with the ARM Cortex-A processors, as well
as in Zynq architecture. There are three types of AXI bus interfaces: AXI (full), AXI-lite
and AXI-stream. As Zynq uses AMBA 4.0 released in 2010, the focus is placed on that
version.

AXI4-lite interface

AXI and AXI-lite interfaces are defined by three channels: address, data and response
channels, and two data flow directions: write and read. AXI4 allows simultaneous and
bidirectional data transfer by separating data buses for reading and writing, along with the
corresponding address buses.

Two end-points of the interface are called master and slave. The master initiates all
data transfers by setting signals on corresponding address and data channels. One read
transfer is shown in Fig. 2.8(a), where master sends the corresponding address on the read
address channel and waits for the slave to respond with the requested data on the read
data channel. Similarly, writing is performed by sending an address on the write address
channel and corresponding data on the write data channel, as in Fig. 2.8(b). Additionally,
there is a write response channel used to inform the master that the transfer was successful

21

Chapter 2. Background

and complete.
The slave responds to master’s requests using a common handshake protocol consisting

of VALID and READY signal. If both handshake signals are asserted during one clock cy-
cle, the transfer occurs. Moreover, all AXI and AXI-lite transactions are memory mapped,
which allows direct access to the slave registers on PL from PS. AXI interface has more
optional signals, allowing burst transfers, which are explained in detail in [26].

(a) AXI-Lite read channels (b) AXI-Lite write channels

Figure 2.8: AXI-Lite interface.

AXI-stream interface

AXI-stream is a simplified AXI interface used for high-speed data streaming with un-
limited burst mode. The simplification consists of removing the concept of addresses and
memory-mapping, and defining the protocol using a single write or read channel. Two con-
secutive transfers can be differentiated using additional handshake signal - LAST, which
is asserted at the end of the transfer. Stream interfaces are usually connected to the DMA
core which performs memory-mapped to stream conversion.

2.5.3 DMA core
In the process of design and verification, two DMA cores were considered, namely, AXI
DMA and Cube DMA. AXI DMA [27] is a Xilinx IP module, while Cube DMA [28, 29]
was specifically designed for hyperspectral images as a part of the HYPSO project. In
general, DMA cores are used to allow direct memory access to peripherals with minimal
CPU intervention. In the case of Zynq system, DMA is instantiated in PL and it is used to
transfer data from DDR memory to the FPGA cores with AXI-stream interfaces.

The configurability of the general purpose DMA module provided by Xilinx reflects
in options such as the number of read and write channels or usage of scatter-gather engine.
It is configured using General Purpose (GP) AXI ports, while the memory data transfers
occur over AXI High Performance (HP) ports. However, AXI DMA core has certain
disadvantages when used for hyperspectral images which are overcome by the use of Cube

22

2.5 Overview of Zynq-7000, FPGA cores and primitives

DMA. The disadvantages include inability to stream BSQ image formats without high rate
of CPU interventions and unacceptable number of descriptors needed for block transfers.

2.5.4 Block RAM
In addition to distributed RAM available on the programmable logic, Zynq-7000 features
36Kb block RAM (BRAM) units. They represent dedicated blocks which allow wider
memory utilization optimized for timing. BRAMs can be configured in single and dual-
port modes with simultaneous read and write operations.

In Listing 2.2, a memory used for storing a matrix is defined as a VHDL array of
NB_COL columns with predefined width. As BRAM devices are synchronous, on each
positive clock edge this implementation can output one row NB_COL*COL_WIDTH-bits
wide. On the other side, one element at a time can be written to the memory. As the
number of columns and column width increases, memory is distributed into more RAM
blocks. This behavior is depicted in Fig. 2.9.

Figure 2.9: Matrix storage using BRAM

Listing 2.2: BRAM VHDL template

architecture behavioral of bram is

type ram_type is array (SIZE-1 downto 0) of
std_logic_vector (NB_COL*COL_WIDTH-1 downto 0);

signal RAM : ram_type := (others => (others => '0'));

begin

23

Chapter 2. Background

process (clk)
begin
if rising_edge(clk) then

dout <= RAM (conv_integer(r_addr));

for i in 0 to NB_COL-1 loop
if we(i) = '1' then

RAM (conv_integer(w_addr))
((i+1)*COL_WIDTH-1 downto i*COL_WIDTH) <= din;

end if;
end loop;

end if;
end process;

2.5.5 AXI divider
Divider core provided by Xilinx is used for integer division based on High Radix, Radix-2
or look-up table method [30]. The core is instantiated in PL, with AXI-stream interfaces
used as inputs and outputs. Depending on the division method chosen, the throughput and
utilization of DSP, RAM blocks and FPGA fabric varies. High Radix division exploits
resource reuse, especially of DSP and BRAM units, at the expense of a lower throughput.
On the other side, Radix-2 division is designed for high throughput with increased usage of
FPGA fabric. A divider with look-up tables simply estimates the reciprocal of the divisor
based on a fixed table, which is afterwards multiplied with a dividend.

In the divider generator the user can configure flow control of the core, set optimiza-
tion goals, latency options and additional control signals. All AXI-stream interfaces can
be optimized in respect to data bus bit width, while setting the output channel to either
fractional or division remainder type. Figure 2.10 shows the generated block in the Vivado
Design Suite with the corresponding streaming interfaces.

Figure 2.10: Generated Divider Block in Xilinx Vivado

24

2.6 Vivado HLS

2.6 Vivado HLS
The Vivado High-Level Synthesis (HLS) is a part of Vivado Design Suite produced by
Xilinx. This HLS tool allows C, C++ and SystemC programs to be directly targeted into
Xilinx devices without the need to create RTL design manually. In other words, HLS tool
transforms a specification written in C into a RTL implementation which can be easily
synthesized for FPGA platforms. Nowadays, HLS tools are gaining popularity as they
improve developer productivity, allow designing at higher levels of abstraction as well as
software/hardware cosimulation.

The design flow with Vivado HLS is shown in Fig. 2.11. The design starts with func-
tional C code design and C testbench design. Usually, the golden reference is generated
from a high-level model, for example in MATLAB. The reference serves to verify the
function of the C code using the testbench. Once the code passes the functional verifi-
cation phase, C-to-RTL HLS tool runs with provided directives and constraints used to
define and refine the RTL implementation. Thus, the directives direct the HLS process to
implement a specific behavior or hardware optimization.

Once the RTL is generated using HLS, C/RTL cosimulation verifies the RTL output,
using the same testbench. The user evaluates the implementation, and this is usually one of
many design iterations. Directives and constraints are then adjusted accordingly to obtain
the required implementation before exporting RTL and packing it into an IP block.

Figure 2.11: Vivado HLS design flow.

25

Chapter 2. Background

In this thesis, Vivado HLS is used to design the PPI algorithm implementation. The PPI
is an ideal example for rapid development and design space exploration with optimization
directives. The implementation is described in 4.3. Additionally, in Table 2.1, frequently
used Vivado HLS directives (pragmas) are described.

Table 2.1: Vivado HLS optimization directives [31]

Directive Description

#pragma HLS UNROLL Unroll for-loops to create multiple indepen-
dent operations rather than a single collection
of operations.

#pragma HLS PIPELINE Reduces the initiation interval by allowing the
concurrent execution of operations within a
loop or function.

#pragma HLS INTERFACE Specifies how RTL ports are created from the
function description.

#pragma HLS ARRAY_PARTITION Partitions large arrays into multiple smaller
arrays or into individual registers, to improve
access to data and remove block RAM bottle-
necks.

#pragma HLS DATAFLOW Enable task level pipelining, allowing func-
tions and loops to execute concurrently. Used
to minimize interval.

26

2.7 State-of-the-art target detection algorithm implementations on FPGA platforms

2.7 State-of-the-art target detection algorithm implemen-
tations on FPGA platforms

As of today, not many hyperspectral target detection algorithms have been implemented
on FPGA platforms. Main contributions in this field come from papers such as [32, 33,
24]. The goal of majority of FPGA implementations is achieving real-time operation, i.e.,
processing pixels as soon as they are registered from HSI and optionally pre-processed
(e.g. atmospheric correction). Real-time performance is usually limited by background
estimation techniques, which require collection of entire image data. Those algorithms are
considered as global target detectors.

On the other side, we have local target detectors for which streaming background statis-
tics (SBS) method has been proposed in [32]. Instead of estimating background statistics
using all pixels in the image, the authors have proposed streaming structure which uses a
subset of pixels. This subset is actually a sliding window of pixels with fixed size, which
defines a local region used to estimate the local background statistics based on the corre-
lation matrix. The chosen algorithm for implementation in this work is CEM, requiring
inverse of the correlation matrix to compute detection statistic. Rather than inverting cor-
relation matrix for each subset of pixels, Sherman-Morrison formula [34] has been used
to gradually update the inverse of the correlation matrix as the window slides through
the image. However, this approach has a few problems which have been analyzed in [33].
Namely, updating the inverse of correlation matrix is a very computationally intensive task
and it is performed twice for the incoming and outgoing pixel of the window. Moreover, it
creates data dependency since a new update cannot proceed until the last one has finished.
This causes stalls in the processing pipeline and considerably degrades the overall com-
putational performance. The sliding window adaptation is explained in detail in section
4.2.1.

In [33], a few optimizations of SBS method have been proposed. Firstly a non-sliding
window has been introduced. This indicates that the outgoing pixel is actually never moved
out of background statistic estimation leading to the substantial reduction in the number of
calculations required to update the correlation matrix. In other words, only incoming pix-
els from stream are added into the window. Additionally, SBS has been deeply pipelined.
Aforementioned data dependency has been partially resolved by making inverse calcu-
lations of neighboring pixels independent. Applying these optimizations has achieved a
certain speed-up of the system, however, resource utilization is 5 times increased com-
pared to [32]. Also, data accuracy is an issue since dynamic range of inverted correlation
matrix varies dramatically due to the non-sliding window.

CEM algorithm and background estimation have also been implemented using Coor-
dinate Rotation Digital Computer (CORDIC) in [35]. CORDIC algorithm successfully
solves matrix inversion problem by employing QR-decomposition. This approach could
allow real-time operation, however CORDIC is usually unable to support fast execution,
in this case target detection.

It is worth mentioning the implementation of automatic target-generation process using
an orthogonal projection operator (ATGP-OSP) [24]. Without mentioning complex oper-
ation of ATGP-OSP algorithm, we will explain main computation elements implemented
on FPGA. Inverse matrix calculation was also considered in this work. Gauss-Jordan elim-

27

Chapter 2. Background

ination method has been selected for matrix inversion, since it can be fully parallelized.
Unfortunately, this solution is still far from real-time operation. ATGP was also done with
Gram-Schmidt method for orthogonal projection [36] which does not involve an inverse
calculation.

In [17], various detection algorithms have been analyzed for their real-time imple-
mentation in hardware depending on availability of data and data formats such as: BIP
pixel-by-pixel processing, BIL line-by-line processing and BSQ band-by-band process-
ing. BIP certainly provides advantages for target detection algorithms, whereas with BSQ
processing we can compute detection statistics only after all the bands have been received.
The paper also discusses usage of sample correlation matrix instead of sample covariance
matrix in certain cases, as they both provide comparable results. Real-time implementa-
tions mostly benefit from using the correlation matrix which does not require data mean
removal and allows intermediate data analysis as discussed before. In addition to that, to
accelerate overall execution time, we can use a certain percentage of pixels to calculate the
background statistics, instead of using all of the incoming pixels. This paper claims that
the statistics with appropriately chosen percentage of pixels does not affect the detection
performance. Finally, hardware architectures for iterative correlation matrix inversion are
proposed using multiply–accumulate (MAC) blocks.

Collaborative-representation-based detector (CRD) was implemented on FPGA in [37].
This algorithm also requires matrix inversion operation, which was processed in real-time
manner using Sherman-Morrison formula in this paper. The detection performance results
of the algorithm implementation cannot be compared with other implementations due to
different selection of hyperspectral datasets used for evaluation. Nevertheless, the algo-
rithm shows promising results.

28

Chapter 3
Review of state-of-the-art target
detection algorithms

In this chapter, detection performance of target detection algorithms, such as SAM, CEM,
ASMF and ACE is tested using various hyperspectral scenes. To evaluate their perfor-
mance, metrics such as Matthews correlation coefficient (MCC), visibility score (VIS) and
receiver operating characteristic curve (ROC) are used. This analysis serves as a basis for
the FPGA implementation, choice of algorithms and later verification of the implemented
algorithms.

3.1 Hyperspectral datasets
In this thesis, five hyperspectral datasets have been used, namely, Salinas, Pavia, Indian
Pines, Hopavågen and HyMap Cooke City. Salinas, Pavia and Indian Pines dataset are
publicly available on [38] and preprocessed as described in [39], while HyMap scene can
be found on [40]. They have been chosen due to the fact that the datasets contain known
ground truth, which maps real objects and spectral features to the image data. There-
fore, ground truth represents essential information for target detection algorithm testing.
Hopavågen dataset provides a scene related to the HYPSO project, while other datasets do
not contain oceanographic scenes.

3.1.1 Salinas scene
Salinas scene has been collected by Airborne Visible / Infrared Imaging Spectrometer
(AVIRIS) with 224 spectral bands over Salinas Valley, California, USA. The spatial res-
olution of the scene is 3.7m, which is considered very high in terms of hyperspectral
imaging. The scene has width of 512 pixels and height of 217 pixels, forming a cube with
16 classes of data (endmembers), such as vegetables, bare soils and vineyard fields. It
is important to mention that not all 224 spectral bands are used, but 20 water absorption

29

Chapter 3. Review of state-of-the-art target detection algorithms

bands are discarded. In Table 3.1, number of samples for each present endmember of
Salinas scene are shown. The endmembers are mapped to form the ground truth map and
depicted as in Fig. 3.1.

Figure 3.1: Salinas ground truth map

Table 3.1: Salinas ground truth endmembers

Number Endmember Samples

1 Broccoli_green_weeds_1 2009
2 Broccoli_green_weeds_2 3726
3 Fallow 1976
4 Fallow_rough_plow 1394
5 Fallow_smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes_untrained 11271
9 Soil_vineyard_develop 6203

10 Corn_senesced_green_weeds 3278
11 Lettuce_romaine_4wk 1068
12 Lettuce_romaine_5wk 1927
13 Lettuce_romaine_6wk 916
14 Lettuce_romaine_7wk 1070
15 Vinyard_untrained 7268
16 Vinyard_vertical_trellis 1807

30

3.1 Hyperspectral datasets

3.1.2 Hopavågen scene

In 2018, by joint efforts of Trondheim Biological Station and the Department of Engineer-
ing Cybernetics at NTNU, Hopavågen hyperspectral dataset was acquired. The image has
been captured using commercial hyperspectral camera for underwater imaging (Ecotone)
on an UAV as a prototype for the HYPSO mission. The resulting scene has 158 by 282
pixels, with corresponding 86 spectral bands. All classified endmembers and number of
samples are listed in Table 3.2. The ground truth map is shown in Fig. 3.2.

Figure 3.2: Hopavågen ground truth map

Table 3.2: Hopavågen ground truth endmembers

Number Endmember Samples
1 Green_algae 3021
2 Seafloor 1428
3 Coralline_algae 830
4 Fucus_serratus 237

3.1.3 Indian Pines scene

Indian Pines is another dataset collected by the AVIRIS sensor over Northwest Indiana,
USA. The scene has height and width of 145 pixels with 224 spectral reflectance bands.
Again, water absorption bands are discarded, thus reducing the number of bands to 200.

31

Chapter 3. Review of state-of-the-art target detection algorithms

Present endmembers and their sample count is listed in Table 3.3, while ground truth map
is shown in Fig. 3.3.

Figure 3.3: Indian Pines ground truth map

Table 3.3: Indian Pines ground truth endmembers

Number Endmember Samples
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20

10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

32

3.1 Hyperspectral datasets

3.1.4 Pavia University scene

Pavia University scene has been acquired using Reflective Optics System Imaging Spec-
trometer (ROSIS) during a flight campaign over Pavia, northern Italy. The spatial resolu-
tion of the dataset is 1.3m. The image has width of 610 pixels and height of 340 pixels,
with 103 spectral reflectance bands. All endmembers with their abundances are reported
in Table 3.4 and mapped in Fig. 3.4.

Figure 3.4: Pavia University ground truth map

Table 3.4: Pavia University ground truth endmembers

Number Endmember Samples
1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare Soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947

33

Chapter 3. Review of state-of-the-art target detection algorithms

3.1.5 HyMap Cooke City scene

HyMap dataset [41] includes atmospherically compensated hyperspectral images of Cooke
City, Montana, USA, with the width of 800 pixels and the height of 180 pixels. The dataset
is provided by the Digital Imaging and Remote Sensing Group in Center for Imaging
Science at Rochester Institute of Technology [42], and it has been used successfully in
previous studies [21, 32]. The pixels are composed of 126 spectral bands between 0.45µm
and 2.4µm, with the ground resolution of approximately 3m.

In the area marked by red square in Fig. 3.5, four types of real colored panels (Fig. 3.6)
were placed. The details about the panels are listed in Table 3.5. Additionally, the dataset
includes the exact positions in form of region of interest (ROI) files, as well as standard
spectral library (SPL) files of the targets. The ROI is shown in Fig. 3.7(a) for the marked
area. Spectral signatures of the targets are plotted in Fig. 3.7(b).

Figure 3.5: True color image of Cooke City scene

(a) F1 (b) F2 (c) F3 (d) F4

Figure 3.6: Photos of placed targets in Cooke City scene - F1, F2, F3 and F4.

Pixels defined by regions of interest are all regarded as target pixels, and include full-
pixels, sub-pixels, and guard-pixels (border-pixels). Therefore, different ground truth
maps can be generated based on the ROIs. In this thesis, ground truth is formed based
on full-pixel and sub-pixel candidates. Only targets F1 and F2 can form near-full pixel
targets due to their size and the ground resolution, while F3 and F4 are always sub-pixel.

34

3.1 Hyperspectral datasets

(a) ROI (b) Signatures

Figure 3.7: Region of interest and signatures in HyMap Cooke City scene

Table 3.5: HyMap Cooke City ground truth - targets

Target pixel Size Type Full-pixel Sub-pixel Guard-pixel Total
F1 3x3m Red Cotton 1 8 16 25
F2 3x3m Yellow Nylon 1 8 16 25
F3a 2x2m Blue Cotton 1 8 16 25
F3b 1x1m Blue Cotton 0 1 8 9
F4a 2x2m Red Nylon 1 8 16 25
F4b 1x1m Red Nylon 0 1 8 9

35

Chapter 3. Review of state-of-the-art target detection algorithms

3.2 Target detection performance metrics
The evaluation of target detection algorithms is performed using metrics such as Matthews
correlation coefficient (MCC), visibility score (VIS) and receiver operating characteristic
curve (ROC). They are broadly used in different research areas including machine learn-
ing, signal detection theory, radar technologies and medical research. MCC and visibility
metrics were previously used in the master thesis on target detection algorithms [39] as a
part of HYPSO project in 2018, and they have demonstrated certain advantages over alter-
native metrics. To make use of the methods previously developed and allow comparisons
and compatibility, this thesis adopts aforementioned metrics for binary classification and
target detection.

To visualize the performance of a binary classifier (such as target detector), we usually
use confusion matrix as depicted in Fig. 3.8. Since the result of target detection is binary,
i.e. a target is present in a pixel or not, there are four elements in a confusion matrix: true
positives, false positives, false negatives and true negatives. True elements of the matrix
are correctly classified pixels: true positives are present targets regarded as detected, while
true negatives are confirmed background pixels. On the contrary, undetected targets are
false negatives, and background pixels classified as targets are false positives. From the
confusion matrix, MCC score and ROC curve are developed.

Figure 3.8: Confusion matrix for a binary classifier

3.2.1 Matthews correlation coefficient
MCC metric is defined as:

MCC =
tp · tn− fp · fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
(3.1)

where tp are true positive, tn are true negative, fp are false positive and fn are false
negative counts. MCC score takes value in the range from −1 to 1. Ideally, MCC score is

36

3.3 Target detection algorithm adaptations

1, which means successful detection of all hyperspectral targets without any false positives
or negatives. On the other side, MCC = −1 indicates that the algorithm always gives the
opposite class in case of binary classification. It is important to mention that this metric
involves all four elements of the binary confusion matrix.

3.2.2 Receiver operating characteristic curve
Receiver operating characteristic (ROC) is a statistical method employed to show the in-
formation of confusion matrices produced for a range of threshold values. The ROC curve
was first used to analyze radar signals before the application has been expanded to other
fields, such as signal detection theory.

Each detection threshold produces a corresponding confusion matrix. To construct a
ROC curve, true positive rate (TPR) is plotted against the false positive rate (FPR), for an
array of thresholds, where rates are calculated as:

TPR =
TP

TP + FN

FPR =
FP

FP + TN
.

(3.2)

The ROC space with example curves is shown in Fig. 3.9. In general, detection perfor-
mance of the algorithm is higher as ROC curve approaches maximum boundary, annotated
as Perfect Classification in the figure. Two example ROC curves have corresponding area
under curve (AUC), which varies between 0 and 1. Example curve 1 corresponds to a
detector with better detection performance and higher AUC, when compared to the curve
2. ROC data can also be plotted as logarithmic scale for the x-axis.

3.2.3 Visibility score
Using the visibility metric [43], the robustness of a detection algorithm can be evaluated.
The robustness is defined as a measure of the algorithm’s ability to separate background
pixels and target pixels. Therefore, visibility score is calculated as:

V isibility =
| Tt − Tb |

Tmax − Tmin
(3.3)

where Tt is the average detection statistic for target pixels, and Tb is the average detec-
tion statistic for non-target pixels. Factors Tmax and Tmin are the maximum and minimum
evaluated detection statistics in the scene for a given algorithm, respectively. The best and
the maximum score of visibility is 1, and the lowest score is 0.

3.3 Target detection algorithm adaptations
Not all target detection algorithms explained in section 2.3 meet real-time requirements
for operation on FPGA platforms. In this context, real-time operation signifies processing
of the pixels as soon as they are acquired by the imager, and no later than the next frame is

37

Chapter 3. Review of state-of-the-art target detection algorithms

Figure 3.9: The ROC space and example ROC curves

captured. Therefore, they have been adapted in terms of background estimation methods
used in algorithm operation. In this section, the ACE-R adaptation is introduced prior
to performance testing, while adaptation of inverse matrix calculation for target detection
algorithms is elaborated in section 4.2.1.

3.3.1 Adaptive Cosine Estimator using correlation matrix
As defined in Eq. 2.17, adaptive cosine estimator operates on three variables: pixel under
test x, target signature s and the inverse of the covariance matrix Σ−1. As such, the al-
gorithm is not prepared for real-time operation, since the covariance matrix is estimated
using de-meaned hyperspectral image data (Eq. 2.8). In other words, this approach re-
quires acquisition of the entire hyperspectral cube prior to processing. Therefore, ACE
has been adaptively adjusted to use the inverse of the correlation matrix R−1 as follows:

DACE−R(x) =
(sT R−1x)2

(sT R−1s)(xT R−1x)
. (3.4)

Similar modifications of other algorithms have been made in [17, 44], with the claims
that both solutions provide similar results. The proposed adaptation has been analyzed and
compared with other algorithms in the remainder of this chapter.

38

3.4 Algorithm testing

3.4 Algorithm testing
In order to choose the adequate algorithm for FPGA implementation, detector performance
has been considered and comparatively evaluated. The detectors have been tested using
aforementioned hyperspectral scenes with full image dimensionality. Introduced perfor-
mance metrics are calculated for each endmember of the corresponding scene (or each
known spectral signature) by iterating through 10000 threshold values ranging from the
obtained minimum to the maximum of the probability image. Final MCC values for each
endmember are selected as the highest MCC values obtained over all threshold values.
Furthermore, MCC values plotted in the following section are the average over all known
signatures in the scene. Visibility values are plotted in the same manner.

3.4.1 Salinas scene
The Salinas scene contains 16 endmembers of which many are similar crops planted at
different time. This represents a near-homogeneous scene, where target signatures are not
fully distinct from the background. Therefore, it is a challenging task to perform target
detection on scenes such as Salinas.

The performance of ACE, ACE-R, ASMF (with n equal to 1 and 2), CEM and SAM
is shown in Fig. 3.10. It is unambiguous that ACE, ACE-R, ASMF and CEM are able to
achieve very high MCC score. However, the visibility is drastically degraded for CEM
and SAM. The adapted ACE-R achieves highest visibility score on average of all Salinas
endmembers, with the score of 0.45. On the other side, ASMF with n = 2 achieved
highest average MCC score of 0.7723.

Figure 3.10: MCC and visibility values for Salinas scene

39

Chapter 3. Review of state-of-the-art target detection algorithms

3.4.2 Hopavågen scene
The Hopavågen scene is an oceanographic scene, highly relevant to HYPSO project due to
the similar signatures of interest. The scene contains 4 distinct endmembers, which were
manually classified using a method similar to the SAM detector.

Performance of the tested algorithms for Hopavågen scene is shown in Fig. 3.11. In-
terestingly, adapted ACE-R has substantially higher MCC score than the original ACE
algorithm with the covariance matrix. Also, ACE-R achieved highest visibility score of
0.2336. ASMF achieved highest MCC score of 0.7937, which is negligibly different from
ACE-R (0.7932). CEM also shows good performance, both in terms of MCC and visibility
in this scene.

Figure 3.11: MCC and visibility values for Hopavågen scene

3.4.3 Indian Pines scene
The Indian Pines scene was cropped as a part of a larger hyperspectral image. It is another
scene dominated by agricultural areas and plants, covering two-thirds of the scene. Apart
from that, it contains forest areas, other perennial vegetation and infrastructure such as
highway lanes, rail line, smaller roads and housing. It should be noted that 16 present
endmembers in the Indian Pines scene are not all mutually exclusive.

As in previously analyzed scenes, ACE-R and ASMF achieved highest MCC and vis-
ibility score, 0.6766 and 0.3726, respectively, as shown in Fig. 3.12. However, ASMF has
13% lower visibility score than ACE-R algorithm. SAM has consistently lowest MCC and
visibility scores, being unable to fully distinguish between different endmembers and the
background. It is interesting to note that the visibility of ASMF drops as n increases, thus
reducing the robustness of the algorithm for threshold selection.

40

3.4 Algorithm testing

Figure 3.12: MCC and visibility values for Indian Pines scene

3.4.4 Pavia University scene
The detection performance results for Pavia University scene are shown in Fig. 3.13. The
scene has 9 distinct endmembers, with large non-classified area regarded as background.
None of the endmembers can be considered small targets, which significantly reduces the
performance of algorithms with background statistics estimation. Nevertheless, the ASMF
and ACE-R were again able to achieve the highest MCC and visibility values, 0.3533 and
0.2423, respectively.

3.4.5 HyMap Cooke City scene
The HyMap Cooke City is the only scene amongst used that is specifically designed for
testing target detection algorithms. It contains target ground truth locations, with a very
small number of target pixels compared to the image size.

The performance estimation results are shown in Fig. 3.14. ACE, ACE-R and ASMF
achieved very high MCC and visibility scores, while CEM and SAM algorithm have not
been able to put up with the challenging spectral features in the scene. ACE, ACE-R and
ASMF achieved highest MCC score of 0.7608, while ACE achieved highest visibility of
0.6718.

41

Chapter 3. Review of state-of-the-art target detection algorithms

Figure 3.13: MCC and visibility values for Pavia University scene

Figure 3.14: MCC and visibility values for HyMap Cooke City scene

42

Chapter 4
FPGA implementation

4.1 Hardware-Software codesign implementation
To reduce the execution time of target detection algorithms, specialized FPGA accelerator
has been developed for Zynq-7000 SoC. The overview of the system is shown in Fig. 4.1.
This hardware-software partitioned design features high customizability and flexibility for
different hyperspectral imagers and pixel component bit widths. It utilizes DMA to trans-
fer vast amounts of data to the accelerator, while the data is being stored in DDR memory.

Figure 4.1: Block design of the FPGA accelerator for target detection.

The accelerator core was partly developed during specialization project [45] in autumn
semester 2018 as a preparatory research project for the master thesis. Here, the special-
ization project accomplishments are briefly explained, with the focus on thesis work and

43

Chapter 4. FPGA implementation

improvements to the system in terms of performance, interoperability and testability. The
FPGA accelerator is developed for ACE(-R), ASMF, and CEM algorithm. It is possible to
synthesize the core for only one algorithm in order to minimize resource utilization, or to
synthesize full FPGA core and control its function from the PS via AXI-lite registers.

In the following subsections, input, processing and output logic of the design are
explained. It should be noted that during the thesis major speed-up of the system was
achieved, as well as interaction of the core with Cube DMA. Furthermore, new detectors
have been added to the design, such as ASMF and CEM.

4.1.1 Input logic
DMA module

Two different DMA cores have been used to transfer data to the FPGA accelerator, namely,
AXI DMA and Cube DMA. Both DMA modules use AXI streaming interfaces, explained
in section 2.5.3. Master stream interface of the DMA initiates the transfers and sends the
hyperspectral cube in BIP format to the accelerator. The processed data is then received
by the DMA slave interface.

DMA modules are configured in interrupt mode to control the data flow. The config-
uration is performed from PS in software using the corresponding driver. For AXI DMA,
driver provided by XILINX has been used to initialize the module and set up the transac-
tions using buffer descriptors, which carry information about the address of the data being
transferred, length of the buffer and other control information. The buffers are stored in
cache coherent memory, therefore they must be flushed from the cache before allocating
a block descriptor to the driver. In the same manner, the receiving buffer has to be invali-
dated before accessing its elements after DMA transfer has completed.

Furthermore, the FPGA accelerator has been tested using Cube DMA for pixel stream-
ing. Since Cube DMA module is designed for HSI images, it requires additional param-
eters such as cube dimensions (width, height and depth), format in which the cube is
transferred and block dimensions if block transfer mode is enabled. Performance analysis
and resource utilization details for different DMA cores is presented in section 5.1.2.

BRAM module

BRAM module shown in Fig. 4.1 and detailed in Fig. 4.2 consists of block RAM modules
and AXI-lite register file used to control the accelerator and initialize/update the data stored
in BRAM. Block RAMs are used in two port mode, where one port is used for writing
from PS, and the other port is read port from PL with separate address buses, as shown in
Fig. 2.9.

BRAM module is used to store the inverse of the correlation matrix R−1, the precal-
culated vector sT R−1 and the value sT R−1s, all initialized from PS. The initialization is
performed using keyhole writing through AXI-lite registers. As the writing to BRAM from
PS should happen infrequently, one AXI slave register is used to sequentially send the data
from PS. The customized logic design is used to control BRAM and assert corresponding
write enable and write address signals. The register file used to handle the BRAM logic is
shown in Table 4.1.

44

4.1 Hardware-Software codesign implementation

Figure 4.2: Block diagram of BRAM module for HW/SW codesign solution.

Table 4.1: AXI-lite register file description for HW/SW codesign solution

Register Value Description

0 Data Writing Inverse Correlation Matrix elements or
reading in Debug Mode

1 Data Writing precalculated vector sT R−1 elements or
reading in Debug Mode

2 Data or Address Writing precalculated value sT R−1s or reading
matrix or vector elements from PS in Debug Mode

3 [0,4] Selecting Algorithm or Enabling Debug Mode

45

Chapter 4. FPGA implementation

4.1.2 Processing logic
Processing logic of the FPGA accelerator is divided into three main stages. All stages
are pipelined at task-level, allowing them to overlap in their operation. Therefore, the
concurrency of the RTL implementation is increased, along with the the overall throughput
of the accelerator.

Stage 1

Figure 4.3 shows the first stage in the accelerator pipeline. Uploaded matrix R−1, vec-
tor sT R−1 and incoming pixel x are used to calculate intermediate results xT R−1 and
sT R−1x, respectively. Corresponding matrix-vector and vector-vector products are per-
formed using deeply pipelined dot product units placed on dedicated DSP blocks.

Figure 4.3: RTL design of the Stage 1 of the FPGA accelerator.

The stage 1 performs the following vector-matrix product:

[
x1 x2 . . . xK

]
∗

r1,1 r1,2 r1,3 . . . r1,K
r2,1 r2,2 r2,3 . . . r2,K

...
...

...
. . .

...
rK,1 rK,2 rK,3 . . . rK,K

 ,
where xi is a pixel component xi = Lp(λi). After K + delay clock cycles, we obtain

the result:

46

4.1 Hardware-Software codesign implementation

xT R−1 =
[
xT · row1(R−1) xT · row2(R−1) . . . xT · rowK(R−1)

]
.

K is number of spectral components in a pixel and delay corresponds to the pipeline
delay of dot product units. Additionally, synchronous BRAM latency is incorporated in
the mentioned delay. In parallel with this, dot product of vectors x and sT R−1 produces
result sT R−1x.

Stage 2

The inputs of stage 2 are pixel under test x (as in stage 1, delayed using a shift register) and
results of stage 1, xT R−1 and sT R−1x. The RTL design is shown in Fig. 4.4. Execution
of stage 2 takes K + 1 + delay clock cycles. Two parallel execution paths are balanced
using additional delay registers. The second stage of the pipeline produces two results, p1
and p2, which depend on the chosen target detection algorithm. Table 4.2 summarizes the
control signals and corresponding products of this stage. CEM detector does not require
any of the intermediate results produced in stage 2.

Figure 4.4: RTL design of the Stage 2 of the FPGA accelerator.

Table 4.2: Stage 2 multiplexer signals and products

Algorithm Multiplexer signal Product p1 Product p2

ACE(-R) 0 xT R−1x (sT R−1x)2

ASMF 1 |xT R−1x| (sT R−1x)|sT R−1x|
ASMF-2 2 (xT R−1x)2 (sT R−1x)|sT R−1x|2

CEM any N/A N/A

47

Chapter 4. FPGA implementation

Stage 3

The last stage in this implementation is shown in Fig. 4.5. The signals to the divider are
multiplexed, ultimately deciding what detection statistic is being produced. The multi-
plexer signals are derived from the selection register in the AXI-lite register file. Table 4.3
summarizes the final results.

Figure 4.5: RTL design of the Stage 3 of the FPGA accelerator.

Table 4.3: Stage 3 multiplexer signals and products

Algorithm Multiplexer signal Result y

ACE(-R) 1 p2/(p1(sT R−1s))
ASMF 1 p2/(p1(sT R−1s))

ASMF-2 1 p2/(p1(sT R−1s))
CEM 0 (sT R−1x)/(sT R−1s)

Task-level pipeline

The stages of the accelerator are pipelined as shown in Fig. 4.6, where the time-line ini-
tiates as first pixel components arrive to the accelerator. Stages 1 and 2 have latency of
K clock cycles, while ASMF-2 implementation has an additional delay in stage 2 (which
overlaps with the next pixel calculation), as marked with light-blue color in the figure. The
latency of stage 3 is dominated by the divider, which for 32-bit inputs has latency of 71
clock cycle. Nevertheless, the divider is able to absorb a new set of inputs on each cycle,
masking the relatively long latency and maintaining the high throughput.

In summary, the throughput of the accelerator is one output per K clock cycles for
ACE, ASMF and CEM detector, where K is the number of spectral bands in a hyperspec-
tral image. When CEM is activated, stage 2 is not performed.

48

4.1 Hardware-Software codesign implementation

Figure 4.6: Task-level pipeline of the accelerator stages.

Fixed-point considerations

The accelerator has been designed to operate on fixed-point values, with full consideration
of adequate bit widths for each stage in the pipeline. Therefore, using generic values it
is possible to adapt the design to the new hyperspectral data with different bit width of
inputs. Table 4.4 shows the generics, their description and example values for an image
with 16 spectral bands, where each band component is represented with 16-bit value.

Table 4.4: Generics and example values for HW/SW codesign solution

Generic value Description Default
value

NUM_BANDS Number of bands in the hyperspectral image 16
PIXEL_DATA_WIDTH Bit width of each component in a pixel 16
BRAM_DATA_WIDTH Bit width of pre-processed data from PS 32
BRAM_ADDR_WIDTH Address bit width 4
BRAM_ROW_WIDTH Matrix full row/column bit width 512
ST2IN_DATA_WIDTH Bit width of input data for stage 2 32
ST3IN_DATA_WIDTH Bit width of input data for stage 3 32
OUT_DATA_WIDTH Bit width of divider inputs 32
ST2IN_DATA_SLIDER Slider cutting the output of stage 1 to fit as an

input of stage 2
50

ST3IN_DATA1_SLIDER Slider cutting the output of stage 2 to fit as an
input of stage 3

50

ST3IN_DATA2_SLIDER Slider cutting the output of stage 2 to fit as an
input of stage 3

62

OUT_DATA1_SLIDER Slider cutting the output of stage 3 to fit as
input of the divider

62

OUT_DATA2_SLIDER Slider cutting the output of stage 3 to fit as
input of the divider

31

49

Chapter 4. FPGA implementation

Special attention was given to the method for truncation of multiplier products (and
MAC products). Sliders present in the table are used to adjust the start and stop bits
of the truncation manually, along with output bit width generics. Slider value is the de-
sired MSB bit position where the cut starts. In other words, the result is a consecutive
slice of bits, starting at position pointed by slider value and ending at position SLIDER-
OUT_WIDTH+1.

One example is shown in Fig. 4.7 featuring a dot product unit. Bit widths of each
signal are annotated in the figure, including the accumulator which is ceil(log2(K)) bits
wider than result of multiplication. After K MAC operations, the result is truncated to the
corresponding output data width using a slider, as depicted in the bottom half of the figure.

Figure 4.7: Example of a dot product unit with specified bit widths. Using a slider to truncate the
result at a specified position.

50

4.1 Hardware-Software codesign implementation

4.1.3 Output logic
Master Output is a module designed to comply with AXI-stream master interface and
communicate with DMA or other stream interfaces. The module was designed during
specialization project, so it is briefly mentioned here to keep the thesis self-contained.

The module resembles AXI-4 Stream FIFO IP provided by Xilinx, where processed
detection statistic values are stored in intermediate registers or BRAM blocks, depending
on the choice made during the synthesis. After a defined number of values are read, this
module streams the stored values to the DMA core (Fig. 4.8).

This module is an important part of the design since it communicates with DMA and
generates control signals that affect the whole hardware pipeline. For instance, if DMA
cannot accept the stream coming from the output module, then the pipeline has to be stalled
until DMA is free again. The output module accepts two VHDL generics: DATA_WIDTH
and PACKET_SIZE which represents the depth of the packet FIFO. It accepts the incoming
data until it is full, when it starts streaming to DMA (if DMA is ready). It asserts TVALID
signal and puts data on the bus, compliant to the AXI protocol. As soon as the DMA
asserts TREADY, the transfer begins and read pointer is incremented. As the last element
of a packet is being transferred, TLAST can be set to let the DMA know that the transfer
is complete. If the DMA is not ready and the packet FIFO is full, the stream is stalled. It
should be noted that packet mode can be disabled.

Figure 4.8: An example of packet FIFO behaviour with 8 elements.

51

Chapter 4. FPGA implementation

4.1.4 Software solution for using the FPGA accelerator
Software solution used to control the FPGA accelerator on Zynq SoC platform is devel-
oped in C programming language. The program is executed on Zynq PS with the following
procedure:

1. Processing system is initialized

2. Hyperspectral cube is loaded from the SD card to DDR memory

3. Designated target (s) is loaded from the SD card to DDR memory

4. Pre-processing of the data is performed

• Correlation matrix R is calculated using the entire cube or its subset

• Inverse of the correlation matrix R−1 is calculated

• Intermediate values sT R−1 and sT R−1s are obtained

• Scaling factors for R−1, sT R−1 and sT R−1s are found

• R−1, sT R−1 and sT R−1s are scaled to fit the predefined bit width for the
FPGA accelerator

5. BRAM module is configured via AXI-lite register file

• Debug mode is disabled while writing

• Scaled inverse of the correlation matrix R−1 is written to BRAM

• Scaled values sT R−1 and sT R−1s are written to BRAM

• Algorithm choice is made using register number 4

6. DMA transfer is configured and initiated

7. Operation of FPGA accelerator starts as the first pixel component is received

8. As the last pixel is processed and detection statistic received by the DMA, cache is
invalidated

9. (Optional) Resulting probability image is compared with the threshold value to ob-
tain the detection map

10. Probability image and other results are written to the SD card

The steps for integration of software and hardware modules on Zynq SoC are explained
in Appendix B.

52

4.2 Full FPGA implementation

4.2 Full FPGA implementation
To achieve (near) real-time operation of target detection algorithms, full FPGA solution
has been developed for Zynq-7000 SoC. The system has the structure as shown in Fig. 4.9.
As in HW/SW implementation, DMA is used to stream the vast amounts of hyperspectral
data to the FPGA core, while configuration parameters are uploaded through dedicated
AXI-lite register file in the initialization module. This implementation also includes ACE,
ASMF and CEM detectors, which are highly integrated with Sherman-Morrison updating
to achieve high performance and low resource utilization. The blocks presented in the
figure are described in detail in the following text.

Figure 4.9: Block design of the full FPGA solution for target detection.

4.2.1 Adaptation of inverse matrix calculation for FPGA implemen-
tation

Assuming that the correlation matrix R is properly trained for a certain ground area, it is
possible to use the accelerator developed in section 4.1 for subsequent runs of the target
detection algorithms. Otherwise, the correlation matrix is estimated using the captured
hyperspectral image. With the assumption that the hyperspectral image is stored in BIP
format, the correlation matrix can be estimated from the data as following:

R =
1

N

N∑
i=1

xixT
i , (4.1)

resulting in a square symmetric matrix:
r11 r12 r13 . . . r1K
r21 r22 r23 . . . r2K

...
...

...
. . .

...
rK1 rK2 rK3 . . . rKK

 .
53

Chapter 4. FPGA implementation

The inverse can be found using methods explained in 2.4, but we will put the focus on
Sherman-Morrison formula as in Eq. 4.3. Sherman-Morrison formula has been success-
fully used for target detection in [32, 33]. Using R, we can define matrix S as:

S = N · R, (4.2)

thus eliminating the constant N in the further calculations. For the forthcoming pixel
xi, the inverse can be updated with the assumption of having a matrix inverse S−1

i−1, thus
obtaining S−1

i :

S−1
i = (Si−1 + xixTi)

−1 = S−1
i−1 −

S−1
i−1xixTi S−1

i−1

1 + xTi S−1
i−1xi

. (4.3)

The initial inverse matrix S−1
0 can be set to:

• an identity matrix I multiplied with a scaling factor β [32] or

• a (pseudo) inverse of correlation matrix for a certain percentage of pixels.

Sliding-window adaptation

As described in [32], this adaptation includes a sliding window of P pixels surrounding a
pixel under test used to estimate the correlation matrix. Mathematically, correlation matrix
corresponding to the pixel xi is expressed as:

Ri =
1

P

i+P/2∑
n=i−P/2

xnxT
n

Si =

i+P/2∑
n=i−P/2

xnxT
n

(4.4)

therefore, the update of the relative matrix S is performed as following:

Si = Si−1 + (xi+P/2xTi+P/2 − xi−P/2xT
i−P/2). (4.5)

The inverse of the matrix is again obtained using Sherman-Morrison formula, which
allows us to update S−1

i for each incoming pixel in two steps as following:

T−1 = (Si−1 + xi+P/2xTi+P/2)
−1 = S−1

i−1 −
S−1
i−1xi+P/2xTi+P/2S−1

i−1

xTi+P/2S−1
i−1xi+P/2 + 1

(4.6)

S−1
i = (T− xi−P/2xT

i−P/2)
−1 = T−1 −

T−1xi−P/2xTi−P/2T−1

1− xTi−P/2T−1xi−P/2

(4.7)

This adaptation is also feasible for real-time operation, however it adds to the calcula-
tion complexity due to the sliding-window. It should be noted that removing pixel xi−P/2

from the estimation does not significantly (or at all) contribute to the improvement of the
algorithm detection performance as discussed in [33].

54

4.2 Full FPGA implementation

Running Sherman-Morrison update

Tests performed during this thesis have confirmed that the estimation does not suffer from
significant degradation if the tailing pixel from sliding window is not removed. There-
fore, FPGA core developed in this thesis consistently uses Eq. 4.3 to update the previous
estimation of the inverse matrix S−1

i−1. Therefore, matrix S can be expressed as:

S =
1

β
· I + x1xT1 + x2xT

2 + · · ·+ xNxT
N (4.8)

The adoption of this method increases the dynamic range of values of the matrix S−1

over the number of iterations, thus increasing the required FPGA resources due to ex-
tended word length. However, it certainly reduces the execution time of the full FPGA
implementation. These claims are further discussed in results section 5.2.

4.2.2 Adaptation of target detectors for real-time processing
ACE-R, CEM and ASMF are target detectors feasible for real-time processing, as they use
the correlation matrix to estimate the background statistics. In this implementation, they
are integrated with Sherman-Morrison inverse updating method, as follows:

DCEM−RT (xi) =
sT S−1

i+kxi
sT S−1

i+ks
, (4.9)

DACE−RT (xi) =
(sT S−1

i+kxi)2

(sT S−1
i+ks)(xTi S−1

i+kxi)
, (4.10)

DASMF−RT (xi) =
sT S−1

i+kxi

sT S−1
i+ks

·
∣∣∣ sT S−1

i+kxi
xTi S−1

i+kxi

∣∣∣n. (4.11)

In the Eq. 4.9, 4.10 and 4.11, the target detection results are delayed by k pixels, allow-
ing the initial k updates of the inverse matrix S−1. This behavior is described in MATLAB
code segment in Listing 4.1. During this thesis, experiments were performed to determine
the relationship between the detection performance and delay k. The experimental results
demonstrate that the delay k can be set to K, which is the number of bands in a pixel.

Listing 4.1: Algorithmic level, target detectors and Sherman-Morrison inverse updating

% initialization of matrix S
S = (beta) * eye(num_bands,num_bands);

% initial k updates of matrix S
for i = 1:k
x = M(:,i);
[S] = ShermanMorrison(S,x);

end

for i = 1:num_pixels

55

Chapter 4. FPGA implementation

% target detection algorithm
x = M(:,i);
results(i) = algorithm(x,S,target);

% remainder of Sherman-Morrison updates
if(i < num_pixels-k)

x = M(:,i+k);
[S] = ShermanMorrison(S,x);

end
end

4.2.3 Input logic

Initialization module

Initialization module shares similar structure with the BRAM module described in section
4.1.1. The core is controlled using AXI-lite register file presented in Table 4.5, where
register 0 is used to enable the core operation after the data is initialized using registers 1
and 2.

Table 4.5: AXI-lite register file description for full FPGA solution

Register Value Description

0 Control Enable Core operation
1 Data Writing elements of the initial matrix S−1

0

2 Data Writing target spectral signature vector s
3 [0,3] Algorithm selection

The initialization process follows four control steps (shown in detail in Fig. 4.14),
starting with state Idle, where the FPGA core waits for the initialization to start. The
initialization begins with transfer of elements of the initial matrix S−1

0 through AXI-lite
interface using keyhole writing procedure to register 1. As K elements are collected, they
are written to BRAM dedicated for storing matrix S−1 in a parallel manner. This occurs
in state InitializeMatrix, which lasts until all K columns/rows have been written to the
BRAM. In other words, K2 elements are sent to register 1 during this state. Finally, the
target pixel s is uploaded to the FPGA core using register 2.

The next state is WaitForStart, where the controller waits for Enable Core signal cor-
responding to register 0. As soon as Enable Core signal is asserted from the processing
system, the state changes to WriteVector and the core becomes ready to accept incom-
ing pixel components by asserting the ready signal on AXI stream slave interface. The
pixel components are streamed using DMA cores as in section 4.1.1. This completes the
initialization process of the core.

56

4.2 Full FPGA implementation

AXI FIFO and AXI broadcaster

As shown in Fig. 4.9, the FPGA core has two AXI-stream slave interfaces. The first inter-
face is connected to DMA via AXI broadcaster, while the other receives pixels delayed by
AXI stream FIFO block. The delay is implemented according to Listing 4.1. As a single
stream is coming from DMA core, it needs to be replicated into multiple outbound inter-
faces. For this purpose, the AXI4-Stream Broadcaster is used. The outbound interfaces
are connected to the FPGA core and FIFO block. The broadcaster remaps TDATA ports of
AXI-stream interface, while the handshake signals are implemented as follows:

• Broadcaster’s slave interface becomes ready only if both master interfaces are re-
ceiving a ready signal.

• Broadcaster’s master interface becomes valid only if slave interface receives a valid
signal and the other master interface is ready.

FIFO block is generated using Vivado’s FIFO generator with AXI stream interface
type. Both master and slave interface have a common clock and a TLAST signal. The
FIFO is implemented using BRAMs, with the depth corresponding to the delay k and
number of components K. If the delay is set to k = K, the FIFO requires depth of at least
K2 elements. The read latency of the FIFO is 2 clock cycles, caused by inherent BRAM
read latency and AXI-stream handshake.

BRAM for matrix storage

Two memory resources for storing the matrix S−1 and target pixel s are available during
the synthesis process (chosen via VHDL architectures): BRAM and registers. For hyper-
spectral datasets with high numbers of spectral bands, it is recommended that dedicated
BRAM blocks are used for higher performance and lower utilization of logic blocks. The
design of matrix storage is similar to the design presented in section 2.5.4, with the dif-
ference that the matrix row can be written parallelly in one clock cycle, instead of writing
each element sequentially. It should be noted that reading elements from BRAM blocks
introduces latency of one clock cycle. Accordingly, controller for the FPGA core is de-
signed.

57

Chapter 4. FPGA implementation

4.2.4 Processing logic
The computation of Sherman-Morrison inverse matrix update is divided into three stages:

1. In the first stage, matrix-vector product S−1
i−1xi is calculated.

2. In the second stage, outer vector product S−1
i−1xixTi S−1

i−1 is obtained. Simultaneously,
d = 1 + xT

i S−1
i−1xi is calculated. Then, inverse p = 1

d is calculated.

3. In the third stage, the updated matrix S−1
i is obtained as S−1

i−1− (S−1
i−1xixTi S−1

i−1) · p.

Due to apparent high data dependency between each stage in the calculation process,
the stages are scheduled sequentially in hardware. Nevertheless, the FPGA core meets
the objectives with optimized performance and resource utilization. In the following text,
each stage is explained in detail.

Stage 1

The first stage of Sherman-Morrison inverse updating produces a vector S−1
i−1xi using an

array of dot product units, as in the upper part of Fig. 4.3. As stage 2 requires the result of
stage 1 to commence the operation, they cannot be scheduled in parallel manner.

Stage 2

Figure 4.10 shows the stage 2 of the FPGA core. This stage has S−1
i−1xi and xi as data in-

puts, and the outputs are available afterK+delay clock cycles (delay is pipeline latency).

Figure 4.10: RTL design of the Stage 2 of the FPGA core.

58

4.2 Full FPGA implementation

After S−1
i−1xixTi S−1

i−1 and d = 1 + xTi S−1
i−1xi are computed, inverse p = 1

d is obtained
using an AXI divider. Therefore, the total execution time of this stage is K +D + delay
clock cycles, where D is divider latency.

Stage 3

The final stage in Sherman-Morrison updating procedure is performed as shown in Fig. 4.11.
The output of the divider p is multiplied with each column in the matrix S−1

i−1xixTi S−1
i−1,

using a multiplier array. Simultaneously, corresponding column of the matrix S−1
i−1 is sub-

tracted from the product column.

Figure 4.11: RTL design of the Stage 3 of the FPGA core.

Resource sharing and target detection algorithms

Due to the aforementioned data dependencies, in the corresponding stages of the process-
ing algorithm, certain FPGA resources would be idling, such as multiplier array in stage
1 and dot product array in stage 2 and 3. This opens a possibility for sharing of these
resources between stages of Sherman-Morrison updating and target detection algorithms.
Sharing multi-cycle hardware blocks like the DSP blocks results in significant resource
savings. However, operation scheduling becomes more complicated, as later explained in
section 4.2.6.

Figure 4.12 shows the timeline of operations performed sequentially or simultaneously,
depicted in parallel or perpendicular to the timeline axis, respectively. Memory and com-
putation resources named identically are the same physical resources used at different time
points. As such, one multiplier array is used in both stage 2 and 3 of Sherman-Morrison
updating, while dot product array is used in stage 1, and during stage 2 and 3 to obtain the
products required for target detection, S−1

i−1s and S−1
i−1xi−k, respectively. The remainder of

target detection hardware is designed as in HW/SW implementation presented in section
4.1, with specific scheduling related to Sherman-Morrison updating hardware.

59

Chapter 4. FPGA implementation

Figure 4.12: Timeline of operation stages in Sherman-Morrison updating and target detection.

60

4.2 Full FPGA implementation

Figure 4.13: Timing diagram for Sherman-Morrison updating and target detection hardware.

Timing diagram in Fig. 4.13 shows initialization phase and processing of three pixels
with Sherman-Morrison updating. After system initialization, pixels are read simulta-
neously during stage 3 of Sherman-Morrison updating. Additionally, the delayed pixel
stream is read from FIFO in target detection step 1. The calculation of detection statistics
overlaps with Sherman-Morrison updating. This leads to significant reduction of number
of clock cycles needed for processing of each pixel. In this implementation, number of
required clock cycles per pixel is 3K+D+3, where K is the number of spectral bands and
D is the divider latency. The comparison of run-time with other state-of-the-art imple-
mentations is presented in section 5.2.1.

4.2.5 Fixed-point considerations

As the Sherman-Morrison updating is an iterative process which highly influences target
detection performance, special attention was given to the design of optimized fixed-point
data types. Using MATLAB Fixed-Point Converter, proposed types are obtained which
represent the generic inputs to the VHDL design. As such, the design can be adapted to
various hyperspectral datasets with different degrees of precision.

As described in section 4.1.2, this design also involves slider values which correspond
to the desired MSB bit position. In Fixed-Point Converter, we specify the desired word
length, while the tool proposes fraction lengths based on simulation results. The sim-
ulation script is set up to use all the pixels in the scene, thus obtaining maximum and
minimum simulation values for input, output and local variables of the function (in this
case, Sherman-Morrison formula). Other fixed-point math attributes are set to:

• Rounding method: Floor

• Overflow action: Wrap

• Product mode: Full Precision

• Sum mode: Full Precision

• Signedness: Signed

61

Chapter 4. FPGA implementation

which correspond to the actual hardware properties. The Floor rounding method is equiv-
alent to two’s complement truncation. As such, it provides the most efficient rounding
implementation. Similarly, overflow is handled to reduce the amount of created logic us-
ing the standard method for wrapping with modulo arithmetic.

Proposed fixed point data types for HyMap scene are presented in Table 4.6 for 30,
35, 38, 42 and 52-bits word length. The word lengths are chosen according to the number
of DSP blocks used to form a P · P multiplier. It can be observed that the integer part is
not changing, while the fractional part is extended for longer words. The fractional part of
S−1xxT S−1 can be extended by 4−7 bits without inferring additional DSP blocks to boost
the detection performance. In this case, factor β is set to 1000. This is necessary measure
to prevent dramatic degradation of target detection performance, which occurs for smaller
fractional parts. Derived fixed-point data types are converted into VHDL generics as listed
in Table 4.7.s

Table 4.6: Fixed-point data types for Sherman-Morrison implementation

Intermediate
data

Word
length-30

Word
length-35

Word
length-38

Word
length-42

Word
length-52

DSP blocks 4 4 5 5 9
x (16,1,15) (16,1,15) (16,1,15) (16,1,15) (16,1,15)
S−1 (30,11,19) (35,11,24) (38,11,27) (42,11,31) (52,11,41)
S−1x (30,11,19) (35,11,24) (38,11,27) (42,11,31) (52,13,41)
S−1xxT S−1 (30,22,8) (35,22,13) (38,22,16) (42,22,20) (52,22,30)
d=1 + xT S−1x (30,18,12) (35,18,17) (38,18,20) (42,18,24) (52,18,34)
p=1/d (30,5,25) (35,5,30) (38,5,33) (42,5,37) (52,5,47)
(S−1xxT S−1)·p (30,11,19) (35,11,24) (38,11,27) (42,11,31) (52,11,41)

Table 4.7: Generics for full FPGA solution

Generic value Description

NUM_BANDS Number of bands in the hyperspectral image
PIXEL_DATA_WIDTH Bit width of each component in a pixel
CORR_DATA_WIDTH Bit width of elements of matrix S−1

OUT_DATA_WIDTH Bit width of intermediate results
DP_DATA_SLIDER Slider cutting the output of dot product array
MARR_DATA2_SLIDER Slider cutting the output of multiplier array in stage 2
MARR_DATA3_SLIDER Slider cutting the output of multiplier array in stage 3
XRX_DATA_SLIDER Slider cutting the output of xT S−1x DP unit
C_S_AXI_DATA Bit width of memory-mapped AXI data bus
C_S_AXI_ADDR Bit width of memory-mapped AXI address bus

62

4.2 Full FPGA implementation

4.2.6 Controller design
The state machine for full FPGA implementation is shown in Fig. 4.14. First four states,
namely, Idle, Initialize, WaitForStart and WriteVector are part of the initialization phase
explained in section 4.2.3. Afterwards, the controller iterates through states Step1Fetch to
Step3 for each incoming pixel. As the last pixel component is received and processed, the
controller goes to Idle state, where it waits for the new image.

Figure 4.14: State machine for Sherman-Morrison updating and target detection hardware.

Each step in the state machine corresponds to the stages of Sherman-Morrison up-
dating and target detection algorithms. Fetch and Wait states are designed to accommo-
date latency of BRAM blocks and other cores such as AXI divider. For instance, in state
Step2Wait, the controller waits D clock cycles until the divider produces a valid result.
Moreover, the controller is designed to control the inputs and outputs of processing blocks
to enable sharing of resources.

63

Chapter 4. FPGA implementation

4.3 PPI algorithm implementation
The proposed PPI algorithm implementation for endmember extraction is inspired by
FPGA implementation in [18]. This implementation uses parallelization strategy by skew-
ers, whereM PPI projections are calculated simultaneously for the same pixel. Paralleliza-
tion strategy by skewers suits the AXI-stream interface, where pixels are streamed as they
are captured by HSI or streamed from memory. The implementation proposed in this the-
sis follows Vivado HLS design flow, with adaptations of the communication architecture
for Zynq-7000 platform. Along with architecture, C code for HLS with the corresponding
directives is presented.

The most computationally expensive part of PPI algorithm are PPI projections obtained
as:

PPIproj =

K∑
n=1

x(n)i · skewer(n)j , (4.12)

which requires K multiplications. Previous publications [46] show that skewer values can
be limited to {−1, 1}, which eliminates the need for multiplication. The PPI projection is
then reduced to simple accumulator with adder/subtractor as shown in Fig. 4.15.

(a) (b)

Figure 4.15: RTL design of PPI projections (a) and the corresponding C code in HLS (b).

The calculated dot products (dpj or vec_dpj) are then compared with the maximum
and minimum projections obtained for each skewerj (vec_maxj and vec_minj), as shown
in Fig. 4.16. Simultaneously, endmembers array is updated with the pixel index which has
provided this extrema, which is not shown in the figure for simplicity.

The skewers are generated using the random number generation module presented in
[18]. This simple generator module pseudo-random and uniformly distributed sequences
using registers and XOR gates. Figure 4.17 shows the RTL design of the random genera-
tion module and corresponding C code for HLS. The module has four M -bit registers, of
which two are used to store seeds and two are used in the generation process. The seeds

64

4.3 PPI algorithm implementation

(a) (b)

Figure 4.16: RTL design of a unit determining the maximum/minimum extrema (a) and the corre-
sponding C code in HLS (b).

are initialized by the system each time that the PPI algorithm is executed for an image. The
initialization is performed over AXI memory-mapped registers. At the beginning of PPI
projections for a new incoming pixel, two seeds are copied into two generating registers.
Afterwards, for each pixel component, content of register B is shifted and XOR-ed with
content of register A, producing a component for each skewer.

The AXI-lite register file contains two seed registers, new seed write enable register,
endmembers register and done register indicating that all pixels have been processed. Sig-
nal Done is asserted when endmembers are ready to be extracted and new seeds to be
uploaded. The interfaces for mentioned ports are defined as follows:

• #pragma HLS INTERFACE s_axilite port=new_seed

• #pragma HLS INTERFACE s_axilite port=new_seed1

• #pragma HLS INTERFACE s_axilite port=new_seed2

• #pragma HLS INTERFACE s_axilite port=endmembers_mem

• #pragma HLS INTERFACE s_axilite port=done

• #pragma HLS INTERFACE axis port=vec_pix

PPI projections using the developed solution in HLS are repeated several times, de-
pending on the number of skewers M that are synthesized on FPGA platform. Assuming
that M = 100, the image has to be processed 100 times according to the experiments
performed in [18]. In other words, each pixel is projected on 104 random skewers.

65

Chapter 4. FPGA implementation

(a)

(b)

Figure 4.17: RTL design of a pseudo-random sequence generating unit (a) and the corresponding C
code in HLS (b).

66

Chapter 5
Results

This chapter presents results of HW/SW codesign of target detection algorithm for FPGA
platform (in section 5.1) and full FPGA implementation using Sherman-Morrison method
(in section 5.2). The results are divided into three subsections for each implementation,
namely, hardware performance analysis, resource utilization and detection performance
analysis. The results obtained during the specialization project for HW/SW implemen-
tation are briefly introduced, while additional analysis is performed for the proposed im-
provements in this thesis. Furthermore, the full FPGA implementation is discussed with
the focus on aforementioned result sections.

In addition to that, hardware performance and resource utilization are reported for the
PPI algorithm implementation using HLS in section 5.3.

5.1 HW/SW codesign implementation results

5.1.1 Performance analysis
The performance profile for HW/SW codesign implementation is obtained using post-
synthesis results. The design and each sub-module have been individually analyzed to
determine the maximum operating frequencies and the speed-up factor.

Due to the limitations of the used ZedBoard platform, the images used to determine
the speed-up factor were pre-processed with dimensionality reduction technique - princi-
pal component analysis (PCA), explained in Appendix A. The effects of dimensionality
reduction on target detection algorithms is explained in the specialization project [45]. Ta-
ble 5.1 shows the measured execution time of ACE-R algorithm on Salinas dataset reduced
to 16 spectral bands. The speed-up is evaluated in comparison with the software solution
running on ARM Cortex-A9 processor clocked with 666.67MHz. The software solution
was developed during the specialization project [45]. It was tested on ZedBoard and op-
timized for performance using -O3 compiler directive. It is assumed that the correlation
matrix is uploaded once and reused for consequent algorithm runs to detect a target sig-
nature. The table shows full execution time containing correlation matrix calculation and

67

Chapter 5. Results

its inversion in software, as well as the accelerator execution time, annotated as algorithm
execution time. The FPGA accelerator is clocked with frequency of 100MHz, achieving
a speed-up factor of 28.54 compared with ARM processor, and 4.34 compared with Intel
i7-7500U clocked at 2.7GHz. It is important to note that the throughput of the design stays
constant for any chosen algorithm implemented in the accelerator, thus not significantly
affecting the execution time of the accelerator.

Table 5.1: Performance comparison for HW/SW codesign solution

Implementation Full execution
time

Algorithm
execution time

Speed-up
factor

SW model ARM (666.67MHz) 4s 0.59828s 28.54
SW model Intel i7-7500U 0.559s 0.091s 4.34
HW/SW design (100MHz) 3.29s 0.02096s 1

The highest achievable operating frequencies for XC7Z020-CLG484-1 SoC are shown
in Table 5.2. The generic values are set as presented in Table 4.4. These are not optimal
values for the performance of the accelerator, due to the constrained input sizes of the
DSP blocks on ZYNQ PL. Nevertheless, the design accepts generic values which will con-
sequently affect the performance of the accelerator. Using the recommended input word
sizes (25 x 18), it is possible to achieve higher operating frequencies. The dot product units
(consisting of multipliers and adders) are pipelined with three pipeline stages, introducing
the latency of three clock cycles. The addition of pipeline registers has a great impact on
the overall design performance.

Table 5.2: Performance analysis of HW modules for HW/SW codesign solution

Module Minimum period Maximum frequency

PS-PL system (32 x 16) 6.835ns 146.3MHz
FPGA accelerator (32 x 16) 5.745ns 174.06MHz

Stage 1/2 (32 x 16) 5.745ns 174.06MHz
DP controller (16 bands) 1.644ns 608.27MHz

DP datapath (32 x 16) 5.745ns 174.06MHz
Master Output (16 packets) 2.628ns 380.52MHz

BRAM module (32) 4.663ns 214.45MHz

It is important to mention that both AXI DMA and Cube DMA are able to achieve the
same throughput for BIP sequential transfer, as used in this design.

5.1.2 Resource utilization
Post-synthesis resource utilization is presented in Tables 5.3 and 5.4 for two different sets
of word lengths of input data and intermediate data. All modules were synthesized out-of-
context with default Vivado settings.

68

5.1 HW/SW codesign implementation results

Table 5.3 shows resource utilization for FPGA accelerator synthesized for word length
of pre-processed data from PS set to 32-bits and pixel component set to 16-bits. The inter-
mediate data is truncated to 32-bits between stages of the accelerator. Finally, the divider
has two inputs of 32-bits, generating a 64-bit result. This resource-wise non-optimal set
of word length parameters provides high precision, however it requires substantially more
resources to generate dot product units, such as 2 DSP blocks for one 16x32 multiplier.

Table 5.3: Resource utilization report 32x16, 16 bands, 32-bit intermediate data, HW/SW codesign
solution

Module Slice
LUTs

Slice Reg-
isters

DSP
blocks

BRAM
tiles

PS-PL system 10105 18135 57 10.5
Input logic 2044 2859 0 10.5

AXI DMA 1882 2448 0 2.5
BRAM module (32-bit) 162 411 0 8

Processing logic 4265 9468 57 0
Stage 1 926 1161 34 0

DP controller 26 5 0 0
DP datapath 83 68 2 0

Stage 2 650 226 19 0
Stage 3 (w/o divider) 79 52 4 0
AXI Divider (64-bit) 2563 7345 0 0

Output logic 311 1114 0 0

Table 5.4: Resource utilization report 25x16, 16 bands, 25-bit intermediate data, HW/SW codesign
solution

Module Slice
LUTs

Slice Reg-
isters

DSP
blocks

BRAM
tiles

PS-PL system 7889 12348 37 10.5
Input logic 2040 2817 0 10.5

AXI DMA 1882 2448 0 2.5
BRAM module (25-bit) 158 369 0 8

Processing logic 2105 5275 37 0
Stage 1 33 5 17 0

DP controller 8 5 0 0
DP datapath 25 0 1 0

Stage 2 314 99 17 0
Stage 3 (w/o divider) 27 27 2 0
AXI Divider (50-bit) 1657 4608 0 0

Output logic 259 438 0 0

69

Chapter 5. Results

The word lengths of the BRAM elements and input samples in Table 5.4 belong to the
range of recommended input word lengths for DSP blocks on ZYNQ PL. It can be observed
that the DP datapath uses exactly one block for this setup and no additional programmable
logic is used to create a multiplier or an adder.

Figure 5.1 shows resource utilization as a function of number of spectral bands for
BRAM module in 5.1(a) and processing logic in 5.1(b). Resource utilization increases as
expected with the number of spectral bands. Most interestingly, BRAM module uses the
least LUTs for number of bands which are power of two.

(a) BRAM module

(b) Processing logic (w/o divider)

Figure 5.1: Resource utilization as a function of different number of spectral bands for BRAM
module and processing logic, respectively.

70

5.1 HW/SW codesign implementation results

5.1.3 Detection performance analysis
In order to verify the operation of the implemented accelerator, it has been tested using
aforementioned scenes and chosen spectral signatures as targets. Testing has been per-
formed using simulation tools, as well as the ZedBoard prototyping platform.

The analysis starts with determining the range of the variables to be used by the pro-
cessing logic. Using MATLAB NumericTypeScope, it is feasible to adequately determine
the dynamic range and corresponding bit widths of variables. Since the accelerator uses the
precalculated inverse of the correlation matrix R−1, vector sT R−1 and parameter sT R−1s,
they are scaled in SW prior to being uploaded to the BRAM. As all of these parameters are
used during the whole execution of the algorithm for each pixel, their precision strongly
influences the detection performance. Therefore, no data values should be outside range or
below chosen precision. Additionally, C program developed for Zynq PS is used to adap-
tively scale the parameters and control the operation of the target detection accelerator.

Salinas scene

Detection performance test on the implemented accelerator was performed using Salinas
scene and Lettuce romaine 4th week endmember as a designated target (ground truth shown
in Fig. 5.3(a)). The full dimensionality image was used to estimate the correlation matrix.
Furthermore, pixel component bit width was set to 14 bits, while BRAM elements and
intermediate data are of 30 bits. Minimal BRAM element bit width is 30 bits, thus chosen
in order to accommodate high dynamic range of the inverse correlation matrix values. The
obtained probability images using the FPGA accelerator are shown in Fig. 5.2. Addition-
ally, table 5.5 shows the detection performance scores of the accelerator fixed-point and
software floating-point solutions.

It can be observed that the accelerator fixed-point solution has certainly not degraded
the detection performance of the algorithm. In cases of ACE-R and ASMF(-2) algorithms,
visibility scores are slightly lower, but despite that, MCC scores are not degraded but
higher. When comparing the implemented algorithms, it is clear that the proposed ACE-R
method has the highest visibility, which can be perceived from Fig. 5.2. In Fig. 5.3(b),
ROC curve obtained by FPGA implementation of algorithms for the detection of Lettuce
Romaine 4th week target signature. Furthermore, the area under ROC curve (AUC) is
given in table 5.5. The higher the AUC, the better the detection results.

Table 5.5: Comparison of detection performance scores for fixed- and floating-point solutions; Sali-
nas scene using HW/SW codesign solution

Algorithm MCC score Visibility AUC
Fixed-
point

Floating-
point

Fixed-
point

Floating-
point

Fixed-
point

Floating-
point

ACE-R 0.8639 0.8465 0.5469 0.5708 0.9965 0.9963
ASMF 0.8639 0.8465 0.4844 0.4928 0.9972 0.9970
ASMF-2 0.8690 0.8500 0.3678 0.4447 0.9968 0.9971
CEM 0.8403 0.8403 0.1825 0.1825 0.9967 0.9967

71

Chapter 5. Results

(a) ACE-R (b) ASMF (c) ASMF-2 (d) CEM

Figure 5.2: Detection results (probability images) for Lettuce romaine 4th week target signature
from Salinas scene obtained using the implemented accelerator.

(a) Lettuce romaine 4th
week ground truth

(b) ROC curve obtained by different algorithms for the detection of Lettuce Ro-
maine 4th week target signature.

Figure 5.3

72

5.1 HW/SW codesign implementation results

HyMap Cooke City scene

Another scene used to verify the operation of the implementation is HyMap Cooke City
scene. The scene has been cropped off for testing purposes to 90 by 90 pixel image area
containing all known target pixels (starting from locations x = 90 and y = 458 of the
full image). Designated targets are F1 and F4, with corresponding ground truth shown in
Fig. 5.4(e) and 5.5(e), respectively. As all spectral bands of the image were used, BRAM
elements and intermediate data word lengths are of 30 bits, while pixel component word
length is 15 bits, accommodating all components.

The results from the accelerator are shown in Fig. 5.4 and 5.5 for target signatures
F1 and F4, respectively. Furthermore, tables 5.6 and 5.7 show the detection performance
scores for all algorithm implementations in fixed-point and floating-point precision. Most
importantly, the FPGA accelerator provides comparable results in shorter time than its
floating-point counterpart, as confirmed by testing. Differences in resulting detection per-
formance scores are therefore usually negligible. Additionally, ROC curves are shown
in Fig. 5.6. As expected, implemented ACE-R and ASMF-2 algorithms demonstrate the
best detection performance, while conventional CEM method shows inferiority by offering
substantially higher false alarm rates for the same or lower true positive rates.

(a) ACE-R (b) ASMF (c) ASMF-2 (d) CEM (e) F1 ground truth

Figure 5.4: Detection results (probability images) for F1 target signature from HyMap Cooke City
scene obtained using the implemented accelerator.

Table 5.6: Comparison of detection performance scores for fixed- and floating-point solutions;
HyMap scene, target signature F1, using HW/SW codesign solution

Algorithm MCC score Visibility AUC
Fixed-
point

Floating-
point

Fixed-
point

Floating-
point

Fixed-
point

Floating-
point

ACE-R 0.9486 0.9486 0.7584 0.7426 0.9999 0.9999
ASMF 0.9486 0.9486 0.6536 0.6418 0.9999 0.9999
ASMF-2 0.9486 0.9486 0.7765 0.7609 0.9999 0.9999
CEM 0.8430 0.8430 0.4778 0.4778 0.9998 0.9998

73

Chapter 5. Results

(a) ACE-R (b) ASMF (c) ASMF-2 (d) CEM (e) F4 ground truth

Figure 5.5: Detection results (probability images) for F4 target signature from HyMap Cooke City
scene obtained using the implemented accelerator.

Table 5.7: Comparison of detection performance scores for fixed- and floating-point solutions;
HyMap scene, target signature F4, using HW/SW codesign solution

Algorithm MCC score Visibility AUC
Fixed-
point

Floating-
point

Fixed-
point

Floating-
point

Fixed-
point

Floating-
point

ACE-R 0.5802 0.5684 0.4444 0.4311 0.9959 0.9966
ASMF 0.5802 0.5802 0.4067 0.3934 0.9974 0.9977
ASMF-2 0.5802 0.6322 0.3623 0.3643 0.9966 0.9964
CEM 0.5370 0.5370 0.3122 0.3122 0.9983 0.9983

(a) F1 (b) F4

Figure 5.6: ROC curves obtained by different algorithms for the detection of F1 and F4 target
signatures.

74

5.2 Full FPGA implementation results

5.2 Full FPGA implementation results

5.2.1 Performance analysis
The performance of the full FPGA implementation is analyzed using post-synthesis re-
sults. The design performs at 123MHz on ZedBoard’s XC7Z020-CLG484-1 SoC.

The design requires 3K+D+3 clock cycles to process one pixel withK spectral bands,
which allows real-time operation with respect to the HSI imager planned for usage. It is
assumed that the imager ideally acquires 32 frames per second (FPS), with 1216 pix-
els containing 100 spectral bands after binning. Therefore, the FPGA core clocked with
100MHz has 31.25ms to process the incoming frame. As one pixel now requires 403 cy-
cles (withD set to 100), it is estimated that one frame can be processed in 4.9ms. Table 5.8
presents the data rates for three hyperspectral sensors, namely HSI, HyMap and AVIRIS.
For all considered instruments, the FPGA implementation is able to perform in real-time.
Incoming data rate from sensor is compared with the processing data rate of the FPGA im-
plementation for the provided parameters. The processing data rate is theoretically limited
to 66.67MB/s for FPGA clocked with 100MHz and 16-bit components. It is important
to note that the latency of AXI divider varies with precision from D=68 cycles for 32-bit
inputs to D=100 for 48-bit precision.

Table 5.8: Sensors and FPGA processing data rate for full FPGA solution

Sensor FPS Spectral
bands

Pixels per
frame

Data Res-
olution

Incoming
throughput

FPGA core
throughput

HSI 32 100 1216 16 bits 7.78MB/s 49.63MB/s
HyMap 16 126 512 16 bits 1.97MB/s 49.96MB/s
AVIRIS 100 224 512 16 bits 22.93MB/s 57.80MB/s

Table 5.9 shows the number of clock cycles required by SBS-CEM, DPBS-CEM and
implementation proposed in this thesis to process the full HyMap image of 224000 pixels.
DPBS-CEM requires the lowest number of clock cycles; however, it is not suitable for
all FPGA platforms due to very high resource utilization caused by the deep pipelined
structure.

Table 5.9: Comparison of data processing speed for the FPGA implementations

Implementation Number of clock cycles Speed-up factor

SBS-CEM [32] 229,607,996 2.28
OUR IMP 100,774,324 1

DPBS-CEM [33] 31,360,557 0.31

75

Chapter 5. Results

5.2.2 Resource utilization
Post-synthesis resource utilization presented in Table 5.10 corresponds to full FPGA im-
plementation synthesized for 32 spectral bands with 32-bit intermediate data. The syn-
thesis has been performed for ZedBoard with default Vivado settings. As the ZedBoard
has low amount of DSP blocks (220), the design has been synthesized for 32 bands, as it
directly affects the number of required DSP blocks. Similarly, the intermediate data pre-
cision has impact on resource utilization, especially DSP blocks. The estimated power for
FPGA implementation is 1.418W . The processing system consumes additional 1.533W .
The largest fractions of power consumption belongs to DSP and BRAM blocks used in the
design.

Table 5.10: Resource utilization report, 32 bands, 32-bit intermediate data, full FPGA solution

Module Slice
LUTs

Slice Reg-
isters

DSP
blocks

BRAM
tiles

PS-PL system 16018 20074 198 35
Input logic 2945 4080 0 2

AXI DMA 1669 2140 0 2
Initialization module 1276 1940 0 0

Processing logic 9267 11048 198 32
Dot Product Array 2983 2950 64 0

DP controller 7 6 0 0
DP datapath 43 69 2 0

Multiplier Array 1567 580 128 0
Mult. controller 34 5 0 0
Mult. datapath 59 18 4 0

AXI Divider 2439 7133 0 0
Matrix storage 117 0 0 14.5/17.5

Controller 275 39 0 0
Output logic 79 297 0 0

To compare with other implementations, such as DPBS-CEM and SBS-CEM, the core
has been synthesized for a larger FPGA device, namely, Zynq-7035 with 900 DSP blocks.
The results for HyMap image with 126 bands are shown in Table 5.11.

Table 5.11: Comparison of used resources for SBS-CEM, DPBS-CEM and our implementation

Implementation Slice LUTs Slice Registers DSP blocks BRAM tiles

SBS-CEM 21730 28245 265 120
DPBS-CEM 111073 217958 1396 379
OUR IMP 32-bit 36233 28719 762 135
OUR IMP 35-bit 45900 31035 762 136

76

5.2 Full FPGA implementation results

5.2.3 Detection performance analysis
The implemented full FPGA solution with Sherman-Morrison inverse updating has been
tested using Salinas and HyMap scene and chosen spectral signatures as targets. Testing
has been performed using MATLAB fixed-point tools, as well as the ZedBoard prototyping
platform. The detection results for different fixed-point data types are reported.

Salinas scene

Detection performance test on the implemented FPGA solution was performed using Sali-
nas scene and Lettuce romaine 4th week endmember as a designated target. Figure 5.7
shows real-time operation on the full Salinas scene with 111104 pixels reduced to 20
spectral bands using PCA dimensionality reduction method. The algorithm chosen in the
figure is adapted ACE-R. The target is clearly detected with high detection accuracy for
40-bits fixed-point word length, while results for other fixed-point types are reported in
Table 5.12.

(a) (b) (c) (d)

Figure 5.7: Real-time detection results using Salinas scene and Lettuce romaine 4th week as the
target signature.

The results presented in Table 5.12 show that the detection performance proportionally
increases with word length. For 32-bit intermediate data, the performance is significantly
degraded due to high amount of occurring underflows during Sherman-Morrison updating.
High dynamic range of data requires longer words for processing, however two solutions
can be implemented to relieve the problem. First, change of fixed-point data type dur-
ing execution would allow growth of fractional part, and therefore higher detection accu-
racy. Second, it is possible to use a subset of pixels for Sherman-Morrison method, thus
additionally limiting the dynamic range of intermediate data. Publications such as [17]

77

Chapter 5. Results

claim that if the subset is appropriately selected, the detection performance will remain
unchanged. Experiments conducted during this thesis have shown that when using 10%
randomly selected pixels from image, the detection performance changes negligibly.

Table 5.12: Comparison of detection performance scores using different fixed-point types

Algorithm MCC score
32 36 40 Global

ACE-R 0.0154 0.6167 0.8284 0.8191
ASMF 0.0200 0.6167 0.8284 0.8191
CEM 0.2237 0.6312 0.6507 0.6811

Algorithm Visibility
32 36 40 Global

ACE-R 4.14·10−5 0.7114 0.7052 0.7078
ASMF 5.72·10−5 0.3614 0.3619 0.4569
CEM 11.2·10−5 0.0487 0.0356 0.0268

Algorithm AUC
32 36 40 Global

ACE-R 0.4524 0.9367 0.9811 0.9795
ASMF 0.4586 0.9447 0.9838 0.9825
CEM 0.8967 0.9833 0.9881 0.9785

The improvement when using two different fixed-point types is presented in Table 5.13
with ACE-R as example. Firstly, types described in section 4.2.5 are used (annotated in
table as FP1), with extended fractional part for S−1xxT S−1. AfterK pixels are processed,
the hardware switches to new fixed-point types for intermediate data (annotated in table
as FP2). New types retain the same word length, but with increased fractional part. This
modification would not significantly increase resource utilization on FPGA.

Table 5.13: Comparison of detection performance scores using different fixed-point types

Algorithm MCC score
32 36 40

ACE-R FP1 0.0154 0.6167 0.8284
ACE-R FP2 0.6063 0.8286 0.8328

Algorithm Visibility
32 36 40

ACE-R FP1 4.14·10−5 0.7114 0.7052
ACE-R FP2 0.7083 0.7049 0.7285

Algorithm AUC
32 36 40

ACE-R FP1 0.4524 0.9367 0.9811
ACE-R FP2 0.9832 0.9811 0.9849

78

5.2 Full FPGA implementation results

HyMap Cooke City scene

The solution has been tested using target signatures F1 and F4 from HyMap Cooke City
scene dataset. As in section 5.1.3, the scene has been cropped off for testing purposes
to 90 by 90 pixel image area containing all implanted target pixels. The results from the
implementation are shown in Fig. 5.8 and 5.9 for target signatures F1 and F4, respectively.
In the figures, results of global algorithms, as well as results of implementations using
32 and 42 bits are shown. Additionally, tables 5.14 and 5.15 presents MCC and visibil-
ity scores for different bit widths of Sherman-Morrison implementation intermediate data
when detecting signatures F1 and F4, respectively.

(a) Global ACE-R (b) Global ASMF (c) Global ASMF-2 (d) Global CEM (e) F1 ground truth

(f) ACE-RT 32-bit (g) ASMF-RT 32 bit (h) ASMF-2-RT 32 (i) CEM-RT 32 bit (j) F1 ground truth

(k) ACE-RT 42 bit (l) ASMF-RT 42 bit (m) ASMF-2-RT 42 (n) CEM-RT 42 bit (o) F1 ground truth

Figure 5.8: Detection results (probability images) for F1 target signature from HyMap Cooke City
scene obtained using the full FPGA implementation with Sherman-Morrison updating.

Table 5.14: Comparison of detection performance scores using different fixed-point types

Algorithm MCC score Visibility
30 35 38 42 Global 30 35 38 42 Global

ACE-R 0.94 1 1 1 0.95 0.64 0.76 0.79 0.81 0.76
ASMF 0.94 1 1 1 0.95 0.61 0.68 0.71 0.71 0.67
ASMF-2 0.88 0.88 0.90 0.95 0.95 0.61 0.57 0.55 0.53 0.81
CEM 0.89 0.90 0.90 0.90 0.84 0.53 0.53 0.53 0.53 0.49

79

Chapter 5. Results

(a) Global ACE-R (b) Global ASMF (c) Global ASMF-2 (d) Global CEM (e) F4 ground truth

(f) ACE-RT 32 bit (g) ASMF-RT 32 bit (h) ASMF-2-RT 32
bit

(i) CEM-RT 32 bit (j) F4 ground truth

(k) ACE-RT 42 bit (l) ASMF-RT 42 bit (m) ASMF-2-RT 42
bit

(n) CEM-RT 42 bit (o) F4 ground truth

Figure 5.9: Detection results (probability images) for F4 target signature from HyMap Cooke City
scene obtained using the full FPGA implementation with Sherman-Morrison updating.

Table 5.15: Comparison of detection performance scores using different fixed-point types

Algorithm MCC score Visibility
30 35 38 42 Global 30 35 38 42 Global

ACE-R 0.35 0.45 0.45 0.55 0.57 0.32 0.39 0.43 0.45 0.43
ASMF 0.35 0.45 0.45 0.55 0.58 0.30 0.34 0.38 0.39 0.39
ASMF-2 0.32 0.47 0.63 0.56 0.63 0.26 0.31 0.36 0.34 0.36
CEM 0.36 0.48 0.48 0.47 0.54 0.27 0.24 0.24 0.24 0.31

From the presented scores it can be concluded that detectors maintain high detection
performance even with the short word length on small image sizes. In majority of cases,
the resulting scores are very close to those obtained using global detectors. Similarly, as
with Salinas scene, changing the fixed-point types in order to increase the fractional part,
proportionally boosts the detection performance. This effect is shown in Fig. 5.10.

80

5.3 PPI algorithm implementation results

Figure 5.10: Comparison of detection performance scores using different fixed-point types for
adapted ACE-R detector.

5.3 PPI algorithm implementation results
The performance profile and resource utilization for PPI algorithm implementation are
obtained using post-synthesis results for ZedBoard platform. The results presented in
Table 5.16 are synthesis results for an image with 224 spectral bands, where each pixel
component is represented with 16 bits. The number of skewers varies from 20 to 120, with
a constant increase of slice LUTs and slice registers on FPGA fabric.

Table 5.16: Resource utilization report for PPI algorithm implementation

Number
of skewers

Slice
LUTs

Slice Reg-
isters

BRAM
tiles

20 2173 3130 6
40 4120 5963 6
60 6029 8827 6
80 7879 11667 6
100 9817 14509 6
120 11677 17346 6

The maximum achievable frequency is 196.6MHz on ZedBoard platform. For a pixel
with 224 spectral components, PPI projections take 226 clock cycles, where 2 additional
cycles are required for control logic and Min/Max unit to determine the extrema set.

It should be noted that this implementation was developed using Vivado HLS. The de-
sign achieves comparable performance to other FPGA implementations developed using
VHDL, such as [18]. A very important aspect is the shortened development time which
can be achieved using the automated approach with HLS compared with traditional HDL
coding. Testing of PPI algorithm has been extensively performed and reported in publica-

81

Chapter 5. Results

tions such as [47, 18, 46].

82

Chapter 6
Conclusion

This thesis has investigated target detection algorithms and feasibility of real-time FPGA
implementation of detectors. Two solutions were proposed, namely, hardware/software
codesign implementation of target detection algorithms and full FPGA solution using
Sherman-Morrison method for target detection algorithms in hyperspectral imagery. More-
over, PPI endmember extraction algorithm has been designed using Vivado HLS. This
chapter draws conclusions from the implementation and results, and presents guidelines
for further development.

6.1 Target detection algorithms
A selection of state-of-the-art target detection algorithms has been tested using 5 hyper-
spectral datasets. The datasets are not algorithmically created, but rather real scenes cap-
tured using different hyperspectral imagers. The evaluation has been performed using
using MCC score, visibility metric and ROC curves.

The overall robustness of algorithms with respect to visibility corresponds with the
reported findings in other publications [9, 11], especially for ACE algorithm. The ACE-R
adaptation presented in this thesis maintains or even improves the detection performance
of ACE algorithm, with the feasibility for real-time operation. ASMF algorithm, with in-
creased complexity over other algorithms, shows promising results in terms of both MCC
and visibility scores.

6.2 FPGA implementations
It is important to maintain the simplicity of FPGA solutions for on-board satellite systems,
while satisfying all critical timing constraints that the system might have. Fast target de-
tection is the crucial part of HYPSO mission, especially in case of satellite cooperation
with aerial, surface, and underwater vehicles. With this in mind, two solutions proposed
in this thesis were designed using VHDL.

83

Chapter 6. Conclusion

HW/SW codesign implementation is the FPGA accelerator for ACE-R, ASMF and
CEM detection algorithms, with static background estimation method. On ZedBoard plat-
form with Zynq-7000 SoC, the implementation is able to achieve speed-up factor of 28.54
over its software counterpart running on ARM processor, without degradation of detection
performance.

Full FPGA solution using Sherman-Morrison method for target detection algorithms
does not require any computation in software. This implementation provides real-time
operation for three analyzed hyperspectral imagers, including the HSI which will be part
of HYPSO satellite payload.

PPI algorithm implementation was developed using Vivado HLS. This design showed
how C-code can be rapidly converted into corresponding VHDL or Verilog code at RTL
level. The synthesized design achieves comparable performance to other state-of-the-art
implementations designed using traditional HDL design flow.

6.3 Future work
As with almost all hardware designs, there is still more room for potential paralellization,
pipelining and performance improvements. Further testing on more hyperspectral images
and with their corresponding spectral signatures is always necessary to fully characterize
adaptability and usability of the developed systems. As the on-board processing pipeline
is being developed for a small, energy-limited satellite, additional power consumption
estimation should be performed. The end goal is integration of the developed FPGA im-
plementations with other modules in the hyperspectral processing pipeline, for example,
dimensionality reduction techniques.

84

Bibliography

[1] Mariusz E. Grøtte, Roger Birkeland, Joao F. Fortuna, Julian Veisdal, Milica Or-
landic, Evelyn Honore-Livermore, Gara Quintana-Diaz, Harald Martens, J. Tommy
Gravdahl, Fred Sigernes, Jan Otto Reberg, Geir Johnsen, Kanna Rajan, and Tor A.
Johansen. Hyperspectral imaging small satellite in multi-agent marine observation
system. Unpublished-Internal document, 2018.

[2] Norsk Romsenter. Norway and Earth Observation, 2019.

[3] Roland Trautner. ESA’s roadmap for next generation payload data processors. Proc.
of DASIA Conference, 2011.

[4] Jose M. Bioucas-Dias, Antonio Plaza, Gustavo Camps-Valls, Paul Scheunders,
Nasser Nasrabadi, and Jocelyn Chanussot. Hyperspectral remote sensing data analy-
sis and future challenges. IEEE Geoscience and Remote Sensing Magazine, 1(2):6–
36, 2013.

[5] Karine Avagian, Milica Orlandic, and Tor Arne Johansen. An FPGA-oriented
HW/SW Codesign of Lucy-Richardson Deconvolution Algorithm for Hyperspectral
Images. 8th Mediterranean Conference on Embedded Computing – MECO, 2019.

[6] Sivert Bakken, Milica Orlandic, and Tor Arne Johansen. The effect of dimensionality
reduction on signature-based target detection for hyperspectral imaging. CubeSats
and SmallSats for Remote Sensing III, 2019.

[7] Milica Orlandic, Johan Fjeldtvedt, and Tor Arne Johansen. A Parallel FPGA Imple-
mentation of the CCSDS-123 Compression Algorithm. Remote Sensing, 11(6):673,
2019.

[8] Johan Fjeldtvedt, Milica Orlandic, and Tor Arne Johansen. An Efficient Real-Time
FPGA Implementation of the CCSDS-123 Compression Standard for Hyperspectral
Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 11(10):3841–3852, 2018.

[9] Dimitris Manolakis. Is there a best hyperspectral detection algorithm? SPIE News-
room, 2009.

85

[10] Shunlin Liang and James J. Butler. Comprehensive remote sensing. Elsevier Science,
1 edition, 2017.

[11] Dimitris Manolakis, David Marden, and Gary A. Shaw. Hyperspectral image pro-
cessing for automatic target detection applications. Lincoln laboratory journal,
14(1), 2003.

[12] Michael T Eismann. Hyperspectral remote sensing. SPIE Press, 2012.

[13] Antonio Plaza, Qian Du, Yang-Lang Chang, and Roger L. King. High performance
computing for hyperspectral remote sensing. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 4(3):528–544, 2011.

[14] Sebastian Lopez, Tanya Vladimirova, Carlos Gonzalez, Javier Resano, Daniel Mo-
zos, and Antonio Plaza. The promise of reconfigurable computing for hyperspec-
tral imaging onboard systems: A review and trends. Proceedings of the IEEE,
101(3):698–722, 2013.

[15] Dordije Boskovic Github repository. https://github.com/dordijeb/
HW-implementation-of-hyperspectral-target-detection-algorithm,
2019.

[16] Pablo J. Martínez, Rosa M. Pérez, Antonio Plaza, Pedro L. Aguilar, María C. Can-
tero, and Javier Plaza. Endmember extraction algorithms from hyperspectral images.
Annals of Geophysics, 49(1), 2006.

[17] Qian Du and Reza Nekovei. Fast real-time onboard processing of hyperspectral
imagery for detection and classification. Journal of Real-Time Image Processing,
4(3):273–286, 2008.

[18] Carlos González, Javier Resano, Daniel Mozos, Antonio Plaza, and David Valencia.
FPGA Implementation of the Pixel Purity Index Algorithm for Remotely Sensed
Hyperspectral Image Analysis. EURASIP Journal on Advances in Signal Processing,
2010(1), 2010.

[19] Joseph C Harsanyi. Detection and classification of subpixel spectral signatures in
hyperspectral image sequences. University of Maryland Baltimore County, 1993.

[20] Chein-I Chang. Hyperspectral data processing. Wiley-Blackwell, 2013.

[21] Lianru Gao, Bin Yang, Qian Du, and Bing Zhang. Adjusted spectral matched filter for
target detection in hyperspectral imagery. Remote Sensing, 7(6):6611–6634, 2015.

[22] Chein-I C Chang, Hsuan Ren, and Shao-Shan Chiang. Real-time processing algo-
rithms for target detection and classification in hyperspectral imagery. IEEE Trans-
actions on Geoscience and Remote Sensing, 39(4):760–768, 2001.

[23] M. Ylinen, A. Burian, and J. Takala. Updating matrix inverse in fixed-point represen-
tation: direct versus iterative methods. Proceedings. 2003 International Symposium
on System-on-Chip (IEEE Cat. No.03EX748).

86

https://github.com/dordijeb/HW-implementation-of-hyperspectral-target-detection-algorithm
https://github.com/dordijeb/HW-implementation-of-hyperspectral-target-detection-algorithm

[24] Carlos Gonzalez, Sergio Bernabe, Daniel Mozos, and Antonio Plaza. Fpga imple-
mentation of an algorithm for automatically detecting targets in remotely sensed hy-
perspectral images. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 9(9):4334–4343, 2016.

[25] 7 Series DSP48E1 Slice. https://www.xilinx.com/support/
documentation/user_guides/ug479_7Series_DSP48E1.pdf,
2018.

[26] AXI Reference Guide. https://www.xilinx.com/support/
documentation/ip_documentation/axi_ref_guide/latest/
ug1037-vivado-axi-reference-guide.pdf, 2018.

[27] AXI DMA v7.1 LogiCORE IP. https://www.xilinx.com/support/
documentation/ip_documentation/axi_dma/v7_1/pg021_axi_
dma.pdf, 2018.

[28] Johan Fjeldtvedt and Milica Orlandic. CubeDMA – Optimizing three-dimensional
DMA transfers for hyperspectral imaging applications. Microprocessors and Mi-
crosystems, 65:23–36, 2019.

[29] Johan Fjeldtvedt. Direct memory access for hyperspectral imaging applications.
Master’s thesis, NTNU, 2018.

[30] Divider Generator v5.1 LogiCORE IP. https://www.xilinx.com/
support/documentation/ip_documentation/div_gen/v5_1/
pg151-div-gen.pdf, 2018.

[31] Vivado High-Level Synthesis Design Suite User Guide. https://www.
xilinx.com/support/documentation/sw_manuals/xilinx2018_
3/ug902-vivado-high-level-synthesis.pdf, 2018.

[32] Bin Yang, Minhua Yang, Antonio Plaza, Lianru Gao, and Bing Zhang. Dual-mode
fpga implementation of target and anomaly detection algorithms for real-time hyper-
spectral imaging. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 8(6):2950–2961, 2015.

[33] Jie Lei, Yunsong Li, Dongsheng Zhao, Jing Xie, Chein-I Chang, Lingyun Wu,
Xuepeng Li, Jintao Zhang, and Wenguang Li. A deep pipelined implementation
of hyperspectral target detection algorithm on fpga using hls. Remote Sensing,
10(4):516, 2018.

[34] Jack Sherman and Winifred J. Morrison. Adjustment of an inverse matrix corre-
sponding to a change in one element of a given matrix. The Annals of Mathematical
Statistics, 21(1):124–127, 1950.

[35] Jianwei Wang, Chein-I Chang, and Mang Cao. Fpga design for constrained energy
minimization. Chemical and Biological Standoff Detection, 2004.

87

https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/div_gen/v5_1/pg151-div-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/div_gen/v5_1/pg151-div-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/div_gen/v5_1/pg151-div-gen.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf

[36] Sergio Bernabe, Sebastian Lopez, Antonio Plaza, Roberto Sarmiento, and Pablo Gar-
cia Rodriguez. Fpga design of an automatic target generation process for hyper-
spectral image analysis. 2011 IEEE 17th International Conference on Parallel and
Distributed Systems, 2011.

[37] Jingjing Wu, Yu Jin, Wei Li, Lianru Gao, and Bing Zhang. Fpga implementation
of collaborative representation algorithm for real-time hyperspectral target detection.
Journal of Real-Time Image Processing, 15(3):673–685, 2018.

[38] Hyperspectral Remote Sensing Scenes. http://www.ehu.eus/ccwintco/
index.php?title=Hyperspectral_Remote_Sensing_Scenes, 2018.

[39] Sivert Bakken. Dimensionality reduction and target detection in hyperspectral remote
sensing. Master’s thesis, NTNU, 2018.

[40] Target Detection Blind Test. http://dirsapps.cis.rit.edu/
blindtest/, 2009.

[41] T. Cocks, R. Jenssen, A. Stewart, I. Wilson, and T. Shields. The hymap airborne
hyperspectral sensor: The system, calibration and performance. Proceedings of 1st
EARSEL Workshop on Imaging Spectroscopy, Zurich, pages 37–42, 1998.

[42] D. Snyder, J. Kerekes, I. Fairweather, R. Crabtree, J. Shive, and S. Hager. Develop-
ment of a web-based application to evaluate target finding algorithms. IGARSS 2008
- 2008 IEEE International Geoscience and Remote Sensing Symposium, 2008.

[43] Xiaoying Jin, Scott Paswaters, and Harold Cline. A comparative study of target
detection algorithms for hyperspectral imagery. Algorithms and Technologies for
Multispectral, Hyperspectral, and Ultraspectral Imagery XV, 2009.

[44] Qian Du and Reza Nekovei. Implementation of real-time constrained linear discrimi-
nant analysis to remote sensing image classification. Pattern Recognition, 38(4):459–
471, 2005.

[45] Dordije Boskovic. HW/SW implementation of target detection algorithm. NTNU,
2018.

[46] Dominique D Lavenier, James P Theiler, John J Szymanski, Maya Gokhale, and
Janette R Frigo. Fpga implementation of the pixel purity index algorithm. In Re-
configurable Technology: FPGAs for Computing and Applications II, volume 4212,
pages 30–42. International Society for Optics and Photonics, 2000.

[47] Antonio Plaza, Pablo Martínez, Rosa Pérez, and Javier Plaza. A quantitative and
comparative analysis of endmember extraction algorithms from hyperspectral data.
IEEE transactions on geoscience and remote sensing, 42(3):650–663, 2004.

[48] Louise H. Crockett, Ross A. Elliot, Martin A. Enderwitz, and David Northcote. The
Zynq Book Tutorials. Strathclyde Academic Media, 2015.

88

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://dirsapps.cis.rit.edu/blindtest/
http://dirsapps.cis.rit.edu/blindtest/

Appendix A
Dimensionality reduction

Principal component analysis (PCA) is a statistical method used in many fields, amongst
others in hyperspectral processing. In this thesis, PCA was used as a dimensionality re-
duction technique where data is represented using fewer samples. Assuming that we have
a spectral space with N dimensions, we want to reduce it to a lower-dimensional subspace
n < N . Apart from reducing the number of dimensions, PCA would ideally surpress
present noise in the hyperspectral data.

PCA transformation [12] diagonalizes a sample covariance matrix C (of the original
data X), thus determining its eigenvalues and eigenvectors. They can be determined using
the following equation:

det(C− σ2I) = 0, (A.1)

where σ2 are the eigenvalues which represent the variance corresponding to a certain
eigenvector, assuming that the sample covariance matrix C has full rank. Then, to find the
eigenvectors vj , we solve a system of linear equations:

Cvj = σ2vj . (A.2)

If we place the eigenvalues on the diagonal of newly formed matrix D in descending
order, and the corresponding eigenvectors in matrix V, it then follows that:

CV = VD, (A.3)

which can easily be transformed to

C = VDVT (A.4)

due to the unitary property of the eigenvector matrix V. Finally, PCA transformation
is:

Z = VT X. (A.5)

89

where newly formed matrix Z has uncorrelated principal-component bands ordered in
decreasing variance. Choosing n out of N PCA bands with largest eigenvalues is the last
step of the dimensionality reduction using PCA.

90

Appendix B
Using HW/SW codesign
implementation on Zynq platform

This tutorial describes the setup steps for HW/SW codesign implementation of target
detection algorithms on ZedBoard development platform. The tutorial includes project
creation, block design generation, simulation, synthesis and usage of SDK Environment
for interaction between software and hardware modules. In this tutorial, Xilinx Vivado
v2018.2 (64-bit) is used.

B.1 Creating project in Xilinx Vivado
Open Vivado and using Tcl Console change the directory to Vivado Project folder obtained
from GitHub repository available at [15]. The folder contains all necessary VHDL files,
SystemVerilog and VHDL testbenches, as well as Tcl scripts.

Run the create_proj.tcl script, which will recreate the project. The project is set to
xc7z020clg484-1 part number, which can be manually changed. First, it will include all
source files, IP repositories, constraints and simulation files. Then, three block designs
will be created:

• Simulation block diagram with AXI VIP

• Synthesis block diagram with AXI DMA

• Synthesis block diagram with Cube DMA

All block designs are automatically created and verified. The provided Tcl scripts
create instances, set properties and create interface and port connections between corre-
sponding IPs. Finally, HDL wrappers for block designs are generated. By selecting the
active block design, the user can run simulation or synthesis tool.

Figures B.1 and B.2 show the generated block designs for simulation and synthesis.

91

Figure B.1: Simulation block design diagram

Figure B.2: Synthesis block design diagram

B.2 Simulation
First, check that SystemVerilog testbench is set to top simulation source. Simulation block
design includes AXI Verification IP (VIP) which is used to control the AXI Register file in
BRAM module. The testbench reads files containing data such as incoming pixel stream
and corresponding static data described previously. Using AXI VIP instantiated in the
testbench, we can write to the AXI-Lite register file:

master_agent.AXI4LITE_WRITE_BURST (addr1, prot, data1, resp);
where addr1 is the allocated address of the register and data1 is the data being sent. The
other VHDL testbench communicates over AXI-stream interface to send the pixels and re-
ceive detection statistics. The resulting statistics are saved in a file. An example waveform
generated using aforementioned testbenches is shown in Fig. B.3.

The testbench can be easily modified to use different test patterns, data bit widths, etc.

92

Figure B.3: Example simulation waveform

93

B.3 Synthesis and implementation

Using Vivado, run synthesis, implementation and generate bitstream. The implementation
stage consists of routing and placement. Upon generating bitstream, the hardware should
be exported. This is done in Vivado GUI as follows: File −→ Export −→ Export Hardware,
with included bitstream.

The synthesis, implementation and generate bitstream steps can be automatically exe-
cuted when running create_proj.tcl if conf.tcl properties are set to:

• set run_synthesis true

• set run_implementation true

• set gen_bitstream true

When hardware configuration is exported, we can launch SDK from GUI.

B.4 Xilinx SDK

The Xilinx Software Development Kit (SDK) provides an environment for creating soft-
ware platforms and applications targeted for Xilinx embedded processors. SDK works
with hardware designs created with Vivado. SDK is based on the Eclipse open source
standard. We first need to create a new application project in SDK. This is done by navi-
gating to File −→ New −→ Application Project.

Figure B.4: SDK - create application project

94

In the New Project window, we set the desired project name, OS platform to stan-
dalone and create new Board Support Package (BSP). Hardware platform is obtained from
exported hardware from Vivado. Now press Next −→ Empty Application −→ Finish.

The application project is now created, but we need to modify the BSP’s settings to add
support for SD card reading and writing. Navigate to Modify BSP’s settings and add xilffs
(Generic FAT file system library). Also, in project settings (Right click on the application
project folder in project explorer and press the C/C++ Build Settings) we have to include
the math library. Under ARM v7 gcc linker −→ Libraries, add m. In compiler settings, we
can set the optimization level to -O3.

Figure B.5: SDK - change project settings

Now available files in GitHub repository [15] under HW_SW_CODESIGN/C/HW-SW/
can be copied to application project. main.c file runs the program which reads the data
from SD card, pre-processes the data, and initiates transfers using DMA core. After all
outputs from the dedicated hardware have been received, the program reports the execution
time and writes the results to a file on SD card. The results can then be used in MATLAB
environment to estimate the detection performance.

To read the printed strings from the program, USB UART port on the development
board is used to connect with the PC. Then, inputs and outputs can be redirected to the
console, using the terminal plugin program included with SDK. Detailed examples on
how to set up the UART connection or create block designs are available in [48].

95

D
ordije B

oskovic
H

ardw
are im

plem
entation of a target detection algorithm

 for hyperspectral im
ages

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

le
ct

ro
ni

c
Sy

st
em

s

M
as

te
r’

s
th

es
is

Dordije Boskovic

Hardware implementation of a target
detection algorithm for hyperspectral
images

Master’s thesis in Embedded Computing Systems

June 2019

	Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Hyperspectral imaging and processing
	Target Detection in context of HYPSO mission
	HYPSO mission payload
	Main contributions
	Structure of the Thesis

	Background
	Hyperspectral data representation
	Geometrical data representation
	Spectral variability and mixing
	Statistical data representation
	Hyperspectral image organization

	Pixel Purity Index Algorithm
	Target detection algorithms
	Spectral angle mapper
	Constrained energy minimization
	Adaptive coherence/cosine estimator
	Adjusted Spectral Matched Filter

	Matrix inversion
	Gauss-Jordan elimination
	LU decomposition with partial pivoting
	Sherman-Morrison formula
	Computational complexity of algorithms

	Overview of Zynq-7000, FPGA cores and primitives
	DSP blocks on Zynq
	AXI protocols
	DMA core
	Block RAM
	AXI divider

	Vivado HLS
	State-of-the-art target detection algorithm implementations on FPGA platforms

	Review of state-of-the-art target detection algorithms
	Hyperspectral datasets
	Salinas scene
	Hopavågen scene
	Indian Pines scene
	Pavia University scene
	HyMap Cooke City scene

	Target detection performance metrics
	Matthews correlation coefficient
	Receiver operating characteristic curve
	Visibility score

	Target detection algorithm adaptations
	Adaptive Cosine Estimator using correlation matrix

	Algorithm testing
	Salinas scene
	Hopavågen scene
	Indian Pines scene
	Pavia University scene
	HyMap Cooke City scene

	FPGA implementation
	Hardware-Software codesign implementation
	Input logic
	Processing logic
	Output logic
	Software solution for using the FPGA accelerator

	Full FPGA implementation
	Adaptation of inverse matrix calculation for FPGA implementation
	Adaptation of target detectors for real-time processing
	Input logic
	Processing logic
	Fixed-point considerations
	Controller design

	PPI algorithm implementation

	Results
	 HW/SW codesign implementation results
	Performance analysis
	Resource utilization
	Detection performance analysis

	Full FPGA implementation results
	Performance analysis
	Resource utilization
	Detection performance analysis

	PPI algorithm implementation results

	Conclusion
	Target detection algorithms
	FPGA implementations
	Future work

	Bibliography
	Appendices
	Dimensionality reduction
	Using HW/SW codesign implementation on Zynq platform
	Creating project in Xilinx Vivado
	Simulation
	Synthesis and implementation
	Xilinx SDK

