
A
nders N

ilsen
A

ccelerating keyw
ord spotting neural netw

orks on FP
G

A
s using Intel O

penVIN
O

 and Xilinx D
N

N
D

K

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

le
ct

ro
ni

c
Sy

st
em

s

M
as

te
r’

s
th

es
is

Anders Nilsen

Accelerating keyword spotting neural
networks on FPGAs using Intel
OpenVINO and Xilinx DNNDK

Master’s thesis in Electronic Systems Design
Supervisor: Kjetil Svarstad

June 2019

Anders Nilsen

Accelerating keyword spotting neural
networks on FPGAs using Intel
OpenVINO and Xilinx DNNDK

Master’s thesis in Electronic Systems Design
Supervisor: Kjetil Svarstad
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Accelerating keyword spotting neural
networks on FPGAs using Intel OpenVINO
and Xilinx DNNDK

Anders Nilsen

Master of Science in Electrical Engineering
Submission date: June 2019
Supervisor: Kjetil Svarstad, IET
Co-supervisor: Florian Bochud, Cisco Norway AS

Norwegian University of Science and Technology
Department of Electronic Systems

Project Assignment

Candidate name: Anders Nilsen
Assignment title: FPGA Implementation of the Google Speech recognition challenge

Assignment text

Background: Machine Learning has increased dramatically in popularity the last years
and is now being used in various applications like web search, speech recognition,
object detection, face recognition, etc.

Huge set of data are used to train a neural network (Learn), before the network
can be used stand-alone to classify new patterns (inference).

Today’s most common Machine Learning architecture is deep neural networks,
which can be seen as layers of matrix multiplication. The network can have typically
many layers with many weights (up to several 100k). Therefore, inference requires
heavy processing resources, usually run on a GPU.

Both pre-processing of audio/video data and inference of neural networks is very
well adapted for FPGA acceleration, due to its huge parallel-processing capabilities.
This project will go through the step to achieve this accelerations.

In this project, the student will:
- Train a neural network for a speech recognition applications. Network like Convo-
lutional neural network (CNN) or Long short term memory network (LSTM) should
be trained with different parameters, ideally a in order to get a good classification of the
data samples from theGoogle Speech recognition challenge: https://www.kaggle.com/c/tensorflow-
speech-recognition-challenge/data
- Accelerate the network on a FPGA development kit (Altera or Xilinx)
- Implement the data pre-processing in the FPGA (sliding window FFT), using available
IP and own coding. High-level-Synthesis (HLS) is recommended. Pre-processing:
https://github.com/udacity/AIND-VUI-Capstone/blob/master/utils.py

i

- Implement a C++ application instantiating both the pre-processing acceleration and
the neural network, preferable getting the input data from a laptop/desktop micro-
phone.
To implement these networks, the student will use:
- Xilinx SDAccel andXFDNN (https://www.xilinx.com/applications/megatrends/machine-
learning.html) on an Amazon AWS F1 cloud platform.
- Intel/Altera Deep Learning development toolkit (https://software.intel.com/en-us/computer-
vision-sdk) running on an Intel development kit available in a NTNU server.

Assignment proposer/co-supervisor: Florian Bochud (flobochu@cisco.com)

Supervisor: Kjetil Svarstad (kjetil.svarstad@ntnu.no)

ii

Abstract

Neural networks are used for almost all devices performing speech recognition, such
as Amazon’s Alexa and Apple’s Siri. The networks have to process and understand
large vocabularies while having a small of a processing time as possible. This requires
substantial computational power, which is difficult to achieve in edge devices. The
computational requirements have led to keyword spotting neural networks being
implemented on these edge devices. These networks specialise in detecting a small
vocabulary of words, establishing an uplink to a server if a target word is detected.
Though small, the networks still require substantial amounts of computational power
to perform keyword spotting in addition to the associated pre-processing.

Research is being made into accelerating these networks using Field-Programmable
Gate Arrays (FPGAs), an attractive target due to their high performance-per-watt ratio
and relatively small size. Traditionally, FPGAs have required specialised skill to be
programmed. High-level Synthesis (HLS) tools aim to remove the need for these skills
by generating Hardware Description Language (HDL) code from high-level languages
such as C++. Additionally hardware manufacturers are developing toolkits to help
developers accelerate neural networks on FPGAs.

This thesis examines the acceleration possibilities of using HLS for the acceleration
of speech recognition pre-processing, as well as the FPGA-acceleration possibilities for
Intel OpenVINO and Xilinx DNNDK for three types of neural networks: Convolutional
Neural Network (CNN), Long Short-Term Memory (LSTM) and Attentive LSTM (att-
LSTM).

iii

Though pre-processing implementation was unsuccessful, it was estimated to be
accelerated from 718.61ms to 111.5ms by running on an FPGA. Of the three networks,
only the convolutional network was accelerated on an FPGA using OpenVINO, achiev-
ing a median classification time of 3.69ms with 0.02% loss in classification accuracy
on an Intel Arria 10 GX. Network acceleration using DNNDK was unsuccessful due to
incompatibilities with non-image data, though initial testing shows promising possi-
bilities for the Software Development Kit (SDK).

Keywords: Neural networks, FPGA acceleration, Keyword spotting, High level synthesis,
Speech recognition

iv

Sammendrag

Nevrale nettverk brukes i nesten alle enheter med talegjenkjenning, som blant an-
net Alexa fra Amazon og Siri fra Apple. Disse nettverkene må kunne klassifisere
store ordforråd med så liten forsinkelse som mulig. Dette krever betydelige mengder
prosesseringskraft, noe som er vanskelig å få til i såkalte "edge devices". Disse prosesser-
ingskravene har ført til at man i stedet implementerer nevrale nettverk for søkeords-
deteksjon. De resulterende nettverkene har små ordforråd, og oppretter automatisk
en forbindelse til en server dersom et av ordene oppdages. Selv om de er mindre
krever disse nevrale nettverkene relativt store mengder prosesseringskraft for å utføre
søkeordsdeteksjon i tillegg til den tilhørende forhåndsprosesseringen.

På grunn av høy ytelse-per-watt og relativt liten størrelse forskes det på hvor-
dan man kan aksellerere nevrale nettverk på FPGAer. Tradisjonelt sett har FPGA-
programmering krevd spesialisert kunnskap, og for å redusere kunnskapen som trengs
prøver verktøy for høynivå-syntese å generereHDL-kode fra høynivå-programmeringsspråk
som C++. I tillegg til FPGA-aksellerering av høynivå-kode lager maskinvareprodusen-
ter verktøy for å gjøre det lettere å aksellerere nevrale nettverk på FPGA.

Denne oppgaven undersøker mulighetene for FPGA-aksellerering av forhånd-
sprosesseringen til nevrale nettverk for stemme- og nøkkelordsgjenkjenning, i tillegg
til mulighetene for FPGA-aksellering av tre nevrale nettverkstopologier med Intel
OpenVINO og Xilinx DNNDK: CNN, LSTM og att-LSTM.

Forhåndsprosesseringen ble ikke kjørt på FPGA, men ble estimert til å bli aksellerert
fra en kjøretid på 718.61ms til 111.5ms. Av de tre nettverkene ble bare CNN-nettverket

v

aksellerert på FPGA med OpenVINO, og fikk en median-kjøretid på 3.69ms med 0.02%
tap i klassifiseringstreffsikkerhet på en Intel Arria 10 GX FPGA. Aksellerering av
nevrale nettverk med DNNDK ga ingen resultater på grunn av begrensninger under
nettverksoptimalisering, men sett bort fra dette virker DNNDK lovende for FPGA-
aksellerering av nevrale nettverk.
Nøkkelord: Nevrale nettverk, FPGA-aksellerering, Nøkkelorddeteksjon, Høynivå syntese,
Stemmegjenkjenning

vi

Acknowledgements

I’d like to thank my supervisor at NTNU, Kjetil Svarstad, and my co-supervisor at
Cisco, Florian Bochud, for their invaluable assistance throughout the thesis. I’d also
like to thank Håkon Sandsmark at Cisco for helping me with problems related to
neural networks and Adrian Sparrenborn and Graham McKenzie at Intel for technical
assistance regarding OpenVINO. Finally, I’d like to thank my friends and family for
supporting me throughout the studies.

Anders Nilsen
Trondheim, June 2019

vii

Contents

1 Introduction 1
1.1 Problem description . 1
1.2 Own contributions . 2
1.3 Method . 3
1.4 Thesis structure . 4

2 Background 5
2.1 Machine learning . 5
2.2 Speech recognition . 6
2.3 Previous work . 7

2.3.1 Google Speech Commands dataset 7
2.3.2 The Kaggle TensorFlow Speech Recognition Challenge 8
2.3.3 Kaggle Speech Challenge neural networks 8
2.3.4 Keras . 10
2.3.5 Microsoft MMdnmn . 10
2.3.6 Semester project . 10

2.4 Neural Networks on FPGA . 11
2.4.1 FPGA acceleration frameworks 12

2.5 High level synthesis . 15
2.5.1 Vivado HLS . 15

viii

3 Theoretical background 17
3.1 Neural networks . 17

3.1.1 Neural network basics . 17
3.1.2 Topologies . 27
3.1.3 Neural network optimisations 28

3.2 High level synthesis . 29
3.3 Speech recognition . 30

3.3.1 Speech recognition fundamentals 30
3.3.2 Hidden Markov Models . 30

3.4 Speech pre-processing . 31
3.4.1 Fast Fourier Transform . 31
3.4.2 Framing . 33
3.4.3 Window function . 35
3.4.4 Mel-frequency scaling . 36
3.4.5 Mel-scale filterbank . 37
3.4.6 Mel Frequency Cepstral Coefficients 37

4 Implementation 39
4.1 Pre-processing . 39

4.1.1 Testing using Xilinx FFT example code 39
4.1.2 Prototyping in C++ . 41
4.1.3 Porting the code to Vivado HLS 44
4.1.4 Integrating the HLS IP with the Zynq Processing Unit 45

4.2 Neural network training . 46
4.2.1 Deciding the network topology 46
4.2.2 Preparing the input data . 47
4.2.3 Loading data into the network 48
4.2.4 Training the network . 48
4.2.5 Verifying network functionality 49

4.3 FPGA acceleration . 50
4.3.1 Intel OpenVINO . 50

ix

4.3.2 Xilinx DNNDK . 52

5 Results 55
5.1 Pre-processing . 55

5.1.1 On Processing Unit . 55
5.1.2 On FPGA . 56

5.2 Neural networks . 58
5.2.1 Training results . 59
5.2.2 Verification results . 60

5.3 Neural network acceleration using OpenVINO 64
5.3.1 On CPU . 64
5.3.2 On FPGA . 65

6 Discussion 73
6.1 Pre-processing . 73

6.1.1 Comparing C++ and HLS . 73
6.1.2 Using Vivado HLS for FPGA acceleration 75

6.2 Neural networks . 76
6.2.1 Accuracy evaluation . 76
6.2.2 Runtime comparison . 77
6.2.3 Using Keras for neural network development 77

6.3 FPGA acceleration . 78
6.3.1 OpenVINO accuracy . 78
6.3.2 OpenVINO runtimes . 78
6.3.3 Using Xilinx DNNDK for FPGA acceleration 79
6.3.4 Using OpenVINO for FPGA acceleration 80

6.4 Error sources . 80
6.4.1 Classification accuracy . 80
6.4.2 Classification times . 81

6.5 Further work . 82
6.5.1 FPGA acceleration of pre-processing 82
6.5.2 FPGA acceleration of the whole CNN using OpenVINO . . . 82

x

6.5.3 FPGA acceleration using DNNDK 82
6.5.4 FPGA acceleration of LSTM networks 83

7 Conclusion 85

References 87

A Inference Engine per-layer execution times 99

B Precision and recall curves for the 12 classification words 101

C Confusionmatrices for FPGA-inferredCNNnetworks usingOpenVINO115

xi

List of Tables

3.1 List of common neural network activation functions 22

5.1 Execution times for each part of the C++ pre-processing code running
on an Ultra96 . 56

5.2 Resource usage estimates for synthesised single-precision mel-log-
filterbank energy pre-processing on Ultrascale+ ZU3EG A484 FPGA . 59

5.3 Execution time minimums, medians and averages for OpenVINO ac-
celerated CNNs on different inference targets and precisions 66

5.4 Classification accuracies for OpenVINO accelerated CNNs on different
inference targets and precisions . 67

A.1 Execution times for each layer of the CNN on Central Processing Unit
(CPU) and single-precision- and half-precision FPGA. Dashed entry
means that the layer was not run on the inference target 100

xii

List of Figures

2.1 Example of dilated convolutions, converting a 2D data matrix into a
3D data cube . 9

2.2 Program flow for the Intel OpenVINO Inference Engine 14
2.3 Code example showing the use of pragmas in Vivado HLS 16

3.1 Perceptronmodel as described by Frank Rosenblatt [28]. The activation
function is an adjustable threshold for deciding whether the result of
the input function is 1 or 0 . 18

3.2 Types of artificial neural networks [30] 19
3.3 Convolutional neural network layer containing several layer types to

form one deep convolution layer, starting at 2DConv 1 and ending at
Dropout 1 . 21

3.4 Simple 2D-convolution of a 3x3 matrix with a 2x2 kernel producing a
2x2 output matrix . 23

3.5 An LSTM layer for three discrete time steps [34] 23
3.6 Comparison of a Recurrent Neural Network (RNN) and Bidirectional

Recurrent Neural Network (BRNN) layer functionality [36]. In an
LSTM network, the LSTM layers are used for the squared circles of the
figure . 24

3.7 Hidden Markov Model (HMM) showing the probability of different
activities occurring based on the current weather [49] 31

xiii

3.8 Discrete Fourier Transform (DFT) of theword "yes" with an Fast Fourier
Transform (FFT) size of 16000 . 33

3.9 DFT with a length of 1024 for the word "yes" 34
3.10 Hamming window weighting with corresponding FFT [52] 35
3.11 Non-windowed and Hamming-windowed DFT frames for 1024 samples

of the word "yes" . 36
3.12 Mel-filterbank of 10 filters from 0Hz to 8000Hz [55] 37

4.1 Hot/cold Colormap-representation of log-mel-filterbank energies for
the word "yes". Calculated using an FFT windows size of 1024, a shift
length of 128 and 80 mel-filterbanks from 300Hz to 8000Hz 43

4.2 Settings struct used for the Xilinx FFT IP-core in Vivado HLS 44
4.3 Block diagram fromVivado IP BlockDesign tool for the communication

between the FFT HLS IP block and the Zynq Processor System (PS) . 46
4.4 Layer execution times as reported by the Inference Engine 51
4.5 Execution times and throughputs reported at the end of Inference

Engine-based prediction using OpenVINO 52
4.6 DECENT input images generated from log-mel-filterbank energies

using the Pillow library for Python 53
4.7 Error message generated by DNNC upon kernel compilation 54

5.1 Comparison of power data calculated using 64-bit C++ and 16-bit HLS 57
5.2 Hot/cold Colormap-representation of log-mel-filterbank energies for

the word "yes". Calculated using 16-bit HLS FFT with a window size of
1024, shift length of 128 and 80 mel-filterbanks from 300Hz to 8000Hz 58

5.3 Training and validation loss and accuracy for CNN 60
5.4 Training and validation loss and accuracy for LSTM network 61
5.5 Training and validation loss and accuracy for att-LSTM network . . . 62
5.6 Confusion matrix for CNN for 12 words with no thresholding 63
5.7 Precision and recall curve for CNN with thresholding from 1.00 to 0.00

with 0.05 decrements per step . 64

xiv

5.8 Confusion matrix for Keyword Spotting (KWS) LSTM for 12 words
with no thresholding . 65

5.9 Precision and recall curve for KWS LSTM network with thresholding
from 1.00 to 0.00 with 0.05 decrements per step 66

5.10 Confusion matrix for KWS att-LSTM network for 12 words with no
thresholding . 67

5.11 Precision and recall curve for KWS att-LSTM network with threshold-
ing from 1.00 to 0.00 with 0.05 decrements per step 68

5.12 Confusion matrix for single-precision CPU-inferred KWS CNN . . . 69
5.13 Runtimes for single-precision CPU-inferred KWS CNN 70
5.14 Execution times for different precision CPU/FPGA-deployed KWS

CNNs using OpenVINO . 71

6.1 Classification times across 100 iterations with CPU and FPGA as infer-
ence targets using OpenVINO . 79

B.1 Precision and recall curve for the word "yes" for all networks 102
B.2 Precision and recall curve for the word "no" for all networks 103
B.3 Precision and recall curve for the word "up" for all networks 104
B.4 Precision and recall curve for the word "down" for all networks . . . 105
B.5 Precision and recall curve for the word "left" for all networks 106
B.6 Precision and recall curve for the word "right" for all networks 107
B.7 Precision and recall curve for the word "on" for all networks 108
B.8 Precision and recall curve for the word "off" for all networks 109
B.9 Precision and recall curve for the word "stop" for all networks 110
B.10 Precision and recall curve for the word "go" for all networks 111
B.11 Precision and recall curve for the "silence" for all networks 112
B.12 Precision and recall curve for the unknown word ("marvin)" for all

networks . 113

C.1 Confusion matrix for single-precision KWS CNN inferred on half-
precision bitstream . 116

xv

C.2 Confusion matrix for single-precision KWS CNN inferred on 11-bit
precision bitstream . 117

C.3 Confusionmatrix for half-precision KWSCNN inferred on half-precision
bitstream . 118

C.4 Confusion matrix for half-precision KWS CNN inferred on 11-bit pre-
cision bitstream . 119

xvi

Chapter 1

Introduction

This chapter briefly explains the problem, the contributions made during the project
and the report structure.

1.1 Problem description

Speech recognition is the process of recording, converting and interpreting spoken
words and sentences. One device performing speech recognition is Amazon’s Alexa,
which takes user commands and responds based on these commands. Speech recogni-
tion requires large vocabularies on the receiving end, somethingwhich has traditionally
been done using Hidden Markov Models (HMMs), though recently Deep Neural Net-
works (DNNs) have become the standard for such tasks. DNNs for large-vocabulary
tasks can have several million parameters and computations, requiring large amounts
of computational power, usually computed using powerful servers and computers.
The power required makes these networks unsuitable for edge-deployment on devices
such as Microcontroller Units (MCUs), small CPUs or FPGAs. To solve this, keyword
detection networks are used, which specialise in recognising a subset of words. If the
network detects one of the words in question, it establishes a link to a server which
can classify the rest of the sentence and the words to come.

1

2 CHAPTER 1. INTRODUCTION

Keyword detection networks still require relatively large amounts of computational
power when compared to traditional embedded systems such as smart-devices. To
solve this, neural networks can be optimised and accelerated on FPGAs, exploiting the
parallel computation capabilities of the device along with its low power consumption.
This results in energy-efficient and accurate neural networks with relatively short
classification times.

Previously, a keyword spotting neural network was accelerated on an Intel Arria
10 GX FPGA using OpenVINO as part of a semester project at NTNU in 2018. The
network had been trained using the Caffe framework to detect the phrase "Hey Spark".
A C++ program was developed to interface with OpenVINO’s Inference Engine which
also recorded live audio from a microphone and pre-processed the recording using a
pre-compiled binary file from Cisco.

This thesis will focus on training and accelerating three different neural networks
to perform KWS based on the Google Speech Commands dataset using Keras. The
networks will then be accelerated on an FPGA using Intel OpenVINO or Xilinx DNNDK.
The pre-processing required for the network will be programmed using C or C++ and
also accelerated on an FPGA using Vivado HLS.

1.2 Own contributions

The following own contributions have been made to the thesis:

• A literary study of speech recognition neural networks in regards to history,
theory and previous work. The previous work is mostly in regards to the Kaggle
Speech Recognition challenge.

• A C++-implementation of the required pre-processing, converting .wav audio
files into log-mel-filterbank energies.

• A synthesisable C++ implementation of the pre-processing, developed using
Vivado HLS.

1.3. METHOD 3

• A modified Vivado HLS example for performing pre-processing with 16-bit
floating point precision on an FPGA and PS.

• Development of a Python program for training KWS neural networks using
Keras.

• Development of a Python program for verifying the functionality of KWS neural
networks using Keras.

• An updated C++-program for inferring an optimised neural network using Intel
OpenVINO on an Intel Arria 10 GX or on a CPU. Also involves verification of
the inferred network.

• An exploration into using Intel OpenVINO and Xilinx DNNDK for acceleration
of KWS neural networks on FPGA.

• Recommendations for future works in regards to FPGA acceleration of KWS
neural networks.

1.3 Method

To test the FPGA acceleration possibilities of Intel OpenVINO and Xilinx DNNDK,
some neural networks have to be trained. This requires networks, either pre-designed
or designed from scratch, and corresponding training data. Training data has to be
created or generated for the purpose, and most likely require some pre-processing
before being used by the network. This pre-processing requires theoretical knowledge
in the field of signal processing.

After training data has been generated, the networks have to be trained and
validated. Once trained, the networks can be accelerated on FPGAs using OpenVINO
or DNNDK. This requires setting up the SDKs and programming the required programs
using their respective Application Programming Interfaces (APIs), as well as preparing
the networks as required. In addition, the pre-processing has to be accelerated on an
FPGA using Vivado HLS. Using these tools and programs requires knowledge about
how they work and how to use them.

4 CHAPTER 1. INTRODUCTION

To verify that the pre-processed data is correct, the generated training data, using
the non-accelerated C++ code, is compared against the data generated by a known
good implementation, and the FPGA-accelerated pre-processing is verified against the
non-accelerated results. In the case of the network classifications, the classifications
are verified by earmarking a part of the dataset for verification purposes prior to
training.

The results are analysed and discussed to evaluate the performance of the SDKs, in
terms of speedup, accuracy and usability, as well as the performance of the networks,
to determine what network type is most suitable for FPGA acceleration and possibly
deployment. If no direct result can be achieved, an estimate can be made if enough
related results are available.

1.4 Thesis structure

This chapter, chapter 1, introduces the problem, the contributions made to the thesis,
the method for solving the problem and the thesis structure. Chapter 2 presents some
background information in regards to the history and concepts of machine learning and
speech recognition, as well as some previous work in the field of speech recognition
and keyword detection. Chapter 2 also presents some FPGA acceleration SDKs and HLS
tools. In chapter 3, theory for neural networks, HLS, speech recognition and speech
pre-processing is presented. Chapter 4 covers the development and implementation
process of: Developing and accelerating speech recognition pre-processing code, using
C++ and Vivado HLS; neural network training, using Keras; and FPGA acceleration,
using Intel OpenVINO and Xilinx Deep Neural Network Development Kit (DNNDK).
Next, chapter 5 presents the results of the training and acceleration, while chapter 6
discusses the results achieved. Chapter 7 presents the conclusion of the thesis.

Chapter 2

Background

This chapter presents a brief history of machine learning and speech recognition, as
well as some related work in neural network speech recognition and FPGA acceler-
ation. Additionally, this chapter presents some information on the Google Speech
Commands dataset and the accompanying Kaggle Speech Challenge, some related
works and examines some frameworks for FPGA acceleration of neural networks and
HLS. Chapters 2.4.1.1 and 2.4.1.2 were initially written for the semester project.

2.1 Machine learning

Machine learning is a concept which dates back to 1959 when the term was coined
by Arthur Samuel [1], though its origins can be traced back to Alan Turing [2] and
his concept of the "learning computer". The concept revolves around using statistical
techniques to make a computer "learn" an operation using sets of data instead of
manually adjusting and writing the program to achieve the desired response. Initially,
machine learning was restricted to relatively simple tasks such as playing checkers [3].
Though advances were being made, the field experienced periods of disinterest and
reduced funding, caused mainly by unsatisfied expectations, notably in the Lighthill
Report from 1973 [4]. Interest in machine learning remained dormant, increasing and

5

6 CHAPTER 2. BACKGROUND

decreasing for small periods during the 1980s, until the 1990s when interest flourished.
Development shifted from general-purpose A.I. to task-specific applications, leading to
more clearly defined goals and less heightened expectations from the public. 2002 saw
the release of Torch [5], a machine learning framework, to simplify the development
of neural networks. Publicly available tools, lower cost of computational power and
public interest saw the creation of other frameworks, such as free and open-source
frameworks such as TensorFlow [6] and Caffe [7].

2.2 Speech recognition

The field of speech recognition can be traced back to Bell Labs’ 1952 system "Audrey"
[8], a primitive computer capable of recognising digits uttered by a single speaker.
Early systems were limited to single-speaker, single word utterances and small vocab-
ularies, but after researchers started using Hidden Markov Models (HMMs) for speech
recognition in the 70’s [9], vocabularies increased to the thousands, with IBM’s 1984
typewriter system "Tangora" boasting a trainable vocabulary of 20.000 words [10].
Progress was limited by the cost of computers and storage space, but as technology
improved, so did speech recognition. In 1992, AT&T started using speech recognition
to route telephone calls [11] and for customer service [12]. As computational power
increased and costs decreased, more advanced speech recognition systems were devel-
oped, mostly based on HMMs. The 2000s saw the rise of neural networks and were
soon deployed in speech recognition. Early systems used HMMs alongside neural
networks, but in recent years the focus has shifted to primarily using neural networks.

Today, speech recognition platforms have mostly shifted from HMMs to neural
networks, using either Convolutional Neural Networks (CNNs) or Recurrent Neu-
ral Networks (RNNs). These models are often deployed on servers using Graphical
Processing Units (GPUs) for acceleration, using edge-devices for detecting speech
commands, also known as keyword spotting, to create an uplink when a keyword is
detected.

While previously limited to specific devices, today, speech recognition is available
on most computer platforms, from home computers to smart-phones. The most notable

2.3. PREVIOUS WORK 7

example is Apple’s Siri, recognising and answering questions from the user. Most
major electronic brands have their own speech recognition system, such as Apple’s Siri
and Microsoft’s Cortana. Speech recognition is still being used for customer service,
voice-controlled applications and are a significant part of the "smart home" concept.

2.3 Previous work

2.3.1 Google Speech Commands dataset

The Google Speech Commands dataset is a dataset consisting of speech samples for up
to 35 different words. Initially released in 2017, the dataset featured 30 different words,
eachword featuring 1600 to 4000 different variations [13], and has since been updated to
include over 100.000 samples for 35 words. The dataset is targeted towards developers
of edge-deployed Keyword Spotting (KWS) neural networks as a toolset to train and
verify the functionality of the networks, while another target audience is hardware
manufacturers. By having a common dataset, manufacturers can demonstrate their
products by using networks trained with the toolkit, in addition to creating specialised
hardware or optimisations to cater to KWS neural networks.

All recordings in the dataset have the same file properties: Recorded at 16 kHzwith
a bit-rate of 16 bits, all clips are 1 s long and stored as .wav-files. The recordings were
selected based on specific criteria, such as intelligibility and loudness, initially using
file size and average loudness levels to filter unsuitable samples, followed by manual
verification to check that the pronounced word is the same as the label. The words in
the dataset were chosen based on commonness, such as "yes" and "no", the number
of phonemes, such as "Marvin" and "Sheila", or their similarity to other words in the
dataset, such as "tree" and "three". The recordings were collected through a website
where users could record themselves pronouncing words from the dataset. No specific
guidelines were set, ensuring different recording qualities and background noises for
the recorded samples, creating a more realistic dataset.

8 CHAPTER 2. BACKGROUND

2.3.2 The Kaggle TensorFlow Speech Recognition Challenge

The Kaggle TensorFlow Speech Recognition Challenge was a neural network design
competition issued by Google Brain in January 2018 on the Kaggle platform. The
challenge consisted of designing and training a CNN using TensorFlow to recognise
12 words from the Google Speech Commands dataset, with a special extra competition
which required the network to run on a Raspberry Pi 3 with specific requirements [14].
The Google Speech dataset consists of 30 different words, each recorded 2000 times
resulting in a data set of 60.000 samples, in addition to 6 background noise samples.
To reduce network size and scope, the Kaggle challenge selected 10 words from the
dataset: yes, no, up, down, left, right, on, off, stop, go, silence and unknown. Unknown is
one of the remaining words in the dataset, selected by the user, used to represent any
word other than the ones listed, while silence represents no sound.

After designing and training the network, contestants could test their network on
a test-dataset by uploading it to the Kaggle website and afterwards submitting it as an
entry in the competition. The top three networks were able to achieve a classification
accuracy of 91% using CNNs. Afterwards, the winning entries explained how they were
able to achieve these results on the discussion pages for the challenge. The winning
submission, achieving a classification accuracy of 91.06%, used log-mel-filterbanks as
the input data to a CNN-based network, with several networks running simultaneously
in ensemble-form to achieve higher accuracy.

2.3.3 Kaggle Speech Challenge neural networks

Though the techniques used by the winners were explained, the neural networks
themselves were not released. Still, several papers have used the challenge and dataset
as a metric for measuring the accuracy of their networks. McHahan et al. [15] used the
dataset to evaluate pre-trained speech recognition models as well as "fresh" models,
using two different input techniques. One set of models used regular input, a 2D-matrix
of mel-filterbank data, and another using multiscaling. Multiscaling is the technique of
performing several dilated convolutions on the same set of data. Dilation is a relatively
new parameter in convolutions, introduced in 2015 by Yu et al. [16], in addition to

2.3. PREVIOUS WORK 9

stride and kernel size, which increases the stride length by skipping spaces of data.
Performing dilated convolutions 2D input data creates 3D output data, as illustrated
by figure 2.1.

Figure 2.1: Example of dilated convolutions, converting a 2D data matrix into a 3D
data cube

The networks using dilated convolutions achieved a classification accuracy of
82.22% and 85.52% for fresh and pre-trained, respectively, compared to 81.32% and
82.84% for non-multiscale networks for 20 words.

In 2018, de Andrade et al. [17] used the dataset to evaluate the classification
accuracy of three networks: A CNN , an LSTM network and an Attentive LSTM (att-
LSTM) network. The att-LSTM network used an attention model to detect parts of
the data which were of interest, such as ignoring periods of silence and increasing
attentiveness when speech information was present. Also illustrated by Bahdanau et
al. [18] and Vaswani et al. [19], neural attention models increase performance on long
sequence-to-sequence models, such as speech recognition. In addition to accuracy,
de Andrade et al. [17] focused on developing network models with relatively few
parameters, around 200K, to make the networks more suitable for edge deployment.
Similar to McHahan et al. [15], the networks used 2D mel-filtered data as the input,
though logarithmised. The final att-LSTM network had 202K trainable parameters,
compared to 185K and 3060K for the LSTM network and CNN, respectively. The
att-LSTM network achieved a classification accuracy of 94.5% for 20 words and 96.9%
for 12 words, as used for the Kaggle Speech Challenge. The final network models were
uploaded to GitHub under no specific license.1

1https://github.com/douglas125/SpeechCmdRecognition

https://github.com/douglas125/SpeechCmdRecognition

10 CHAPTER 2. BACKGROUND

2.3.4 Keras

Keras2 is an open-source neural network library for Python. Originally released in
March 2015, Keras aims at providing a high-level interface towards machine learning
frameworks such as TensorFlow and MXNet and features GPU support along with
the standard CPU support. Keras describes a neural network model as a sequential
structure of layers, allowing for rapid prototyping and modularity.

2.3.5 Microsoft MMdnmn

MMdnn3 is a toolkit developed byMicrosoft to convert models between frameworks, i.e.
convert TensorFlow-models to MXNet-models. As of 2019-06-03, the framework sup-
ports conversion between Caffe, Keras, TensorFlow, CNTK, MXNet, PyTorch, CoreML
and ONNX. The toolkit converts between the frameworks by initially converting the
model into an intermediate representation before converting it into the target frame-
work. The toolkit also features a graph visualiser for visualising the neural network
structure.

2.3.6 Semester project

During autumn 2018, a semester project was conducted examining FPGA acceleration
of a KWS neural network using OpenVINO for Cisco [20]. The neural network was
a binary classifier performing keyword spotting for the phrase "Hey Spark" on a
0.9 s input recording, either performed live using a microphone or a pre-recorded
sample. The network was accelerated on a server at NTNU on an Intel Arria 10 GX
Development Kit, achieving a classification time of 5.85ms and 3.10ms for CPU and
FPGA, respectively. The network was inferred on the CPU/FPGA using a C++-program
integrating the Inference Engine with the live audio recording or sample loading. The
program was partially based on a master’s thesis from Spring 2018, where the same
network was accelerated using OpenCL and the Arria 10 GX Development Kit. The
semester project C++ program used the same pre-processing, live recording technique

2https://keras.io/
3https://github.com/microsoft/MMdnn

2.4. NEURAL NETWORKS ON FPGA 11

and sample loading as the program from the master’s thesis. The pre-processing was a
pre-compiled binary file supplied by Cisco which generated Mel-Frequency Cepstrum
Coefficient (MFCC) values for the input sample. The neural network was designed
and trained using Caffe. The project report is available along with the associated code
on GitHub4.

2.4 Neural Networks on FPGA

FPGAs offer high performance per watt, making it a strong candidate for neural
network computations and inference. Neural networks deployed on an FPGA can also
be sped up when the inferred algorithm uses low numeric precision in calculations,
e.g. using fixed point weighting and quantisation data instead of 32-bit floating point.
These optimisations can provide substantial speedup while maintaining reasonable
accuracy [21][22].

Due to this, FPGAs are a preferred platform for running inferred artificial neural
networks. One of the main problems reducing the adoption rate is, and has been for
many applications, how they are programmed. FPGAs are not programmed in the
same way as MCUs or computer programs using a programming language such as C++
or C which is assembled into machine-level instructions. An FPGA is "programmed"
by describing the functionality using a Hardware Description Language (HDL), such
as VHDL or Verilog. The HDL code is then synthesised into a netlist which is mapped
onto the FPGA. This way of programming differs from regular programming and in-
creases the difficulty of writing effective and quality HDL-code, in most cases requiring
specialised engineers. To reduce the difficulty of programming FPGAs, several tools
exist to synthesise high-level programming languages, such as C, C++ and Python, into
HDL code. This is called High-level Synthesis (HLS), and can be utilised in conjunction
with Artificial Neural Networks (ANNs) to allow for inference of C++ code using
OpenCV, TensorFlow, Caffe and other frameworks to FPGA without the need for the
designer to write HDL-code.

4https://github.com/andernil/OpenVINO_project

12 CHAPTER 2. BACKGROUND

2.4.1 FPGA acceleration frameworks

2.4.1.1 OpenCL

Open Computing Language (OpenCL) [23] is a platform heterogeneous framework for
writing and running programs on several computing platforms, including CPUs, GPUs,
FPGAs, Digital Signal Processors (DSPs) and other hardware accelerators. OpenCL
was launched in 2009 by Apple to utilise the acceleration possibilities of on-board GPU.
A collaborative group, the Khronos Compute Working Group, was created featuring
representatives from several CPU, GPU, embedded-processing and software companies
to maintain and improve the framework. As of this report, the newest version was 2.2,
which incorporated more C++ features to the language.

The OpenCL framework is officially available for C and C++, but is unofficially
available for Python, Java, Perl and .NET. An OpenCL implementation of a program
is based around a host containing several compute devices, such as a CPU and a
GPU, which is further divided into multiple processing elements. A function which
is executed using OpenCL is called a kernel and can run in parallel on all processing
elements. A programmer can utilise the acceleration capabilities available on a system
by getting the device information from the computer the program is running on.

While OpenCL provides good possibilities for acceleration and resource usage, it is
limited by its low-level nature. While it has functions for standard operations like FFT,
neural networks have to be manually declared unless the frameworks used to generate
the network have OpenCL-branches. Caffe has such a branch [24], but it is currently
under development. TensorFlow has an OpenCL-branch on its roadmap. The lack of
neural network framework support limits its adoption. A more supported and similar
framework to OpenCL is Nvidia’s CUDA, although this only runs on Nvidia GPUs.

2.4.1.2 Intel OpenVINO

The OpenVINO toolkit is Intel’s solution for running neural networks on FPGAs, and
aims to simplify the process compared to existing solutions. The OpenVINO toolkit
was launched in 2018 by Intel, and allows users to program applications where neural
networks can be accelerated on Intel processors, GPUs, FPGAs and Vision Processing

2.4. NEURAL NETWORKS ON FPGA 13

Units (VPUs) [25]. The toolkit is available for Windows 10, CentOS, Ubuntu and Yocto
Project Poky Jethro, but compatibility with different inference targets varies between
platforms. As of this report, FPGA acceleration with OpenVINO works on the Altera
Arria 10 GX development kit and the Intel Vision Accelerator Design with Intel Arria
10, with a retail price of $4,495, while there is no publicly available retail price for the
Vision Accelerator. These FPGAs have a PCI-Express connector which allow them to
easily be integrated into a computer.

OpenVINO is mainly used for accelerating image recognition CNNs, but can be used
for other purposes such as speech recognition. It supports frameworks such as Caffe
and TensorFlow and deep learning architectures such as AlexNET and GoogleNET. It
supports a set amount of layers for each framework out of the box, with custom layer
support available for developers.

To use OpenVINO in a project, the neural network model is optimised using the
model provided by the neural network framework, such as a .caffemodel (from Caffe),
with the calculated weights with the Model Optimizer. The default model precision is
single-precision floating point, while quantisation to half-precision floating point is
available in the Optimizer. 8-bit integer quantisation is also available. The Optimizer
provides an optimised intermediate representation which is loaded into the code using
the Inference Engine API. The API prepares and infers the network to the target device
and runs the network with the supplied input data. All pre- and post-processing is
done in C++, so the only part which has to be replaced is the inference or prediction
process. On FPGA, OpenVINO uses a pre-loaded bitstream programmed onto the FPGA
to accelerate instructions. It does not utilise HLS, but uses the FPGA as a specialised
processor for performing mathematical operations found in neural networks, such as
convolutions and activations. The OpenVINO bitstreams utilise all available space on
the FPGA, leaving no room for additional HDL code.

Figure 2.2 show the program flow when using the Inference Engine:

1. Load Plugin - The appropriate plugin for the deployment target is selected, such
as FPGA and CPU, or for multiple targets, Hetero, which runs the network on
the CPU if it is unsupported on the primary targeted device.

14 CHAPTER 2. BACKGROUND

Figure 2.2: Program flow for the Intel OpenVINO Inference Engine

2. Read Model IR - The Intermediate Representation of the target neural network
is loaded into the Inference Engine. If Hetero-execution is selected, the network
layers are split between the target device and the CPU depending compatibility.

3. Configure input and output - The input and output accuracies are specified, as
well as the input layout.

4. Load Model - The model is loaded from the IR into the system memory

5. Create Infer Request - An inference request is sent to the Inference Engine to
ready for inference onto the target device(s).

6. Prepare input - The input data is loaded into the network.

7. Infer - The network is inferred onto the target device(s) along with the input
data. The layers are executed in order and an output is generated.

8. Process Output - The output is loaded from the Inference Engine.

As illustrated by figure 2.2, it is recommended to repeat steps 6 through 8 when
the network is used multiple times in one session.

Several network topologies are supported by OpenVINO, such as CNN and LSTM;
however, LSTM support is limited to only the Kaldi-framework and partially for MXNet.

2.4.1.3 Xilinx DNNDK

To compete with OpenVINO, Xilinx acquired Chinese developer DeePhi in 2018 and
their neural network FPGA acceleration SDK, the Deep Neural Network Development

2.5. HIGH LEVEL SYNTHESIS 15

Kit (DNNDK). The DNNDK SDK features model pruning, quantisation and deployment
on Xilinx FPGA development kits such as the Xilinx ZCU102 ($2800), ZCU104 ($1000)
and Avnet Ultra96 ($250) along with some of DeePhi’s development kits. Along with
FPGAs, the systems have embeddedMCUs, on the Xilinx devices calledMulti-Processor
System-on-Chip (MPSoC), with FPGA as Programmable Logic and MCU as Processor
System (PS). According to DeePhi, the SDK is capable of accelerating CNNs as well as
RNNs, achieving a throughput speedup of 1.8x and 19x when compared to Application
Specific Integrated Circuit (ASIC) and HLS-implementations of the same network,
using 56x less power than the HLS implementation [26]. The SDK is divided into three
main programs: DECENT, DNNC and the C++-API.

DeePhi’s solution to running neural networks on an FPGA is to accelerate them
using a soft-core processor, the Deep-learning Processor Unit (DPU). The DPU is
designed to support and accelerate common neural network designs, such as AlexNET,
SSD and SqueezeNet, as well as custom networks. In contrast to OpenVINO, the FPGA
image does not occupy the whole FPGA, leaving space for custom HDL-code to run
alongside the SDK.

DECENT performs quantisation on the weights and activations in the SDK, from
32-bit floating point to 8-bit signed integer precision, optimising mathematical func-
tions and memory usage. DECENT also performs pruning, removing unnecessary
connections and neurons.

DNNC splits the neural network into smaller kernels for either deployment on
main parts of the MPSoC, the PS or FPGA/DPU, depending on the network type, which
are then loaded and used using a C++-program to interface with the target devices.

2.5 High level synthesis

2.5.1 Vivado HLS

Vivado HLS is Xilinx’ HLS tool for HDL synthesis of C, C++ and SystemC. Initially a
paid upgrade to the standard Vivado package, Vivado HLS has since been included for
free alongside the core Vivado package. The program allows for any of the supported

16 CHAPTER 2. BACKGROUND

programming languages to be loaded into the program, simulated and synthesised
into HDL and exported either as HDL or as a Vivado IP Core. The program has several
features, such as specialised HLS libraries, IP cores such as FFT and FIR-filters, C-
simulation and software/hardware co-simulation. Vivado HLS is integrated with other
Xilinx programs, using Vivado XSim for HDL debugging and waveform analysis, in
addition to Vivado’s IP Block Design tool. Vivado HLS also features the use of pragma
directives to perform optimisations to the synthesised code, such as loop unrolling,
parallelisation and interface optimisation. Figure 2.3 shows an example of pragmas for
specifying loop-unrolling and partitioning.

Figure 2.3: Code example showing the use of pragmas in Vivado HLS

The code to be synthesised is defined by selecting a "top-function", the function
from which all code within shall be synthesised. This requires all functionality of the
program to be divided into subfunctions, and only one function can be selected as
the top function. If several independent parts of the code are to be synthesised, the
functions have to be synthesised separately.

Chapter 3

Theoretical background

This chapter explores some of the theory behind Artificial Neural Networks (ANNs),
High-level Synthesis (HLS) and digital signal processing for speech recognition. Chap-
ter 3.1.1 was originally written for the semester project.

3.1 Neural networks

3.1.1 Neural network basics

Machine learning uses Artificial Neural Networks (ANNs) to perform calculations and
predict or classify an output based on a set of input data, attempting to emulate the
functionality of the neural networks found in the human brain. Although computers are
more efficient at performing mathematical computations and storing data, humans are
better at learning tasks. Learning a new skill, recognising faces and voices and decision
making are tasks which humans are better at, and which computers struggle with
performing. These actions are, in humans, performed by a neural network in the brain.
This neural network consists of approximately 1011 neurons which are interconnected
into a decision tree [27]. The desire to mimic the human neural network motivated
scientists to create a mathematical model of a neuron called a perceptron. A model of

17

18 CHAPTER 3. THEORETICAL BACKGROUND

the perceptron was described by Frank Rosenblatt in 1958.

Figure 3.1: Perceptron model as described by Frank Rosenblatt [28]. The activation
function is an adjustable threshold for deciding whether the result of the input function
is 1 or 0

Figure 3.1 shows a block diagram of themodel proposed by Rosenblatt. The diagram
served as a basis for further computational models and was implemented in software
by IBM in 1958 to perform image recognition, though limited to only one pattern.
The limitation was due to the network having only one layer. The solution to this
limitation was to implement a feed-forward, multi-layered neural network consisting
of perceptrons, as suggested by Stephen Grossberg in 1973 [29]. This type of network
is called a Deep Neural Network (DNN), while networks with a single hidden layer
are traditionally called a Artificial Neural Network (ANN).

These new types of networks consist of several different types. The most common

3.1. NEURAL NETWORKS 19

network types are shown in figure 3.2. The network types can be divided into several
categories: Feed-forward, recurrent, competitive and self-organising. Feed-forward
networks, such as figure 3.2a and 3.2b, can be compared to combinatorial logic circuits.
Recurrent networks, such as figure 3.2c and 3.2d, are more akin to sequential circuits
with the recursive connections acting as a short-term memory. Competitive neural
networks and self-organising networks, such as figure 3.2e and 3.2f, allow the networks
to self-organise and build input feature maps, a feature used during network training.

Figure 3.2: Types of artificial neural networks [30]

The neural network type to use depends on the task of the network. For image
recognition, convolutional neural networks can be used, while for handwriting and
speech recognition, recursive neural networks can be used. After selecting a network

20 CHAPTER 3. THEORETICAL BACKGROUND

type, the weighting of the connection between the nodes has to be calculated. This is
performed by training the network.

3.1.1.1 Network design

Neural network design is a complex field, with several layer types to choose from to
perform different functions. The only standard, go-to layers are the input and output
layers. The input layer is usually some form of pre-processing, such as normalisation
or re-ordering. The output layer represents the result of the network, often in one-
hot encoding or integer values. Neural networks can be further divided into smaller
"networks" for each layer, as they might contain convolutions, activations and poolings
to perform a function, such as a deep convolution network layer as shown in figure
3.3. Several layers exist, such as:

Activation functions: Activation functions are used to perform gating and weight-
ing on the input values of the function, adding a non-linear property to the neural
networks. Several activation function types exist with different mathematical proper-
ties. Linear activation uses a linear scaling factor on the input value, while the step
function is zero for negative values and one for positive values. Table 3.1 shows some
common activation functions.

Pooling: Pooling layers are used to reduce the spatial dimension without reducing
the depth of the data, e.g. if the data has the dimensions H x W x Depth, pooling
reduces the dimensions to H’ x W’ x Depth. Reduction can be done in several ways,
either downsampling using algorithms such as skipping or averaging, leading to
several different variations of the pooling function. One such variation of pooling is
max-pooling, where a window "slides" over an area of the input data and selects the
highest value. Pooling reduces the amount of data in the neural network, increasing
computation performance and decreasing the number of tunable parameters, further
improving performance and reducing the risk of overfitting.

3.1. NEURAL NETWORKS 21

Figure 3.3: Convolutional neural network layer containing several layer types to form
one deep convolution layer, starting at 2DConv 1 and ending at Dropout 1

Dense: Dense layers are fully connected layers, i.e. each input node is connected
to each output node with adjustable weights for each connection. These layers are
computationally heavy as they involve multiple Multiply–Accumulate Operations
(MACs) for each connected node.

Dropout: Dropout is similar to dense, but will randomly "drop" a neuron, i.e. remove
the neuron from the computation. Random neuron removals force the neural network
to be more versatile and robust, reducing the chance of overfitting the neural network
to a particular dataset.

22 CHAPTER 3. THEORETICAL BACKGROUND

Table 3.1: List of common neural network activation functions

Name Function

Linear f (x) = ax

Step f (x) =

{
0 forx < 0
1 forx ≥ 0

Sigmoid f (x) =
1

1 + e−x
Tanh f (x) = tanh(x) =

2
1 + e−2x − 1

ReLu f (x) =

{
0 forx < 0
x forx ≥ 0

Convolution: Convolution layers perform convolution functions on the input data,
sliding a fixed-size window across the 2D input data matrix, similar to pooling. The
fixed-size window is called a kernel and contains adjustable weight values in the matrix
which are multiplied with the input data. Mathematically, a convolution produces
a function expressing how one function is modified by another. Figure 3.4 shows a
simple 2D-convolution. Convolutional layers excel with matrix-shaped data, such as
image data [31], but as a result, are computationally intensive with a large amount of
MACs.

Batch normalisation: Batch normalisation is the process of normalising values
between layers to reduce "internal covariate shift". Internal covariate shift is a by-
product of adjusting weights during the training phase, where the input data of the
next layer is affected to the prior layer, causing a varying offset during training. Batch
normalisation deals with this by always normalising values before the next layer’s
input, resulting in increased learning rate and reducing the number of learning steps
required [32].

3.1. NEURAL NETWORKS 23

Figure 3.4: Simple 2D-convolution of a 3x3 matrix with a 2x2 kernel producing a 2x2
output matrix

Long short-term memory: Memory cells are used as temporary storage in neural
networks, and can "remember" previous input values, i.e. in a video input, it can
"remember" previous frames. This memory feature makes the networks recursive,
which are classified as a RNN These form the building blocks for Long Short-Term
Memory (LSTM) layers. LSTM layers consist of memory cells and activation functions
combined in a single block [33], along with the ability to bypass the memory cells.
Their depth, or memory length, can be defined by the task and requirements. Smaller
memories have less trainable parameters and require less storage. LSTMs layers are
one of the main components of recurrent neural networks.

Figure 3.5: An LSTM layer for three discrete time steps [34]

24 CHAPTER 3. THEORETICAL BACKGROUND

Figure 3.5 shows an unrolled LSTM layer with three states. The key to the LSTM
layer functionality is the top line shown in the figure, the cell state. It functions
similarly to a conveyor belt, where each stage has the ability to modify the cell data
passing through the stage. Whether to adjust or not is decided by the activation layers,
illustrated as the four square boxes with sigmoid and tanh activation functions. These
four activation layers are the trainable parameters of the LSTM block. These activation
functions are based on the input data, X , which is multiplied with the cell state after
the cell state has passed a static tanh activation function. The output, h, is passed
to the next time the LSTM layer is called. The depth of the LSTM layer decides how
many of the previous cell state and output values are kept in memory and used for the
calculation of h.

LSTM layers can have an additional bidirectional property, allowing for future and
past values to be used in computations [35]. This differs from traditional RNN and
LSTM layers as they require future values to be delayed, shown in figure 3.6 comparing
an RNN and a BRNN.

Figure 3.6: Comparison of a RNN and BRNN layer functionality [36]. In an LSTM
network, the LSTM layers are used for the squared circles of the figure

3.1. NEURAL NETWORKS 25

3.1.1.2 Training

Neural network training can be performed in several ways but is generally performed
by loading testing data, which has been manually classified, into the network and
verifying the output. The prediction error is measured using a cost function, and the
goal of training is to find the global minimum for this function. This is performed
by tuning the weights of the network until this value is reached, or is as low as
achievable. All weights in a layer can be expressed as a gradient, and the optimisation
algorithms focus on tuning the values of the gradients for each layer to reduce loss.
Gradient tuning can be done using several optimisation algorithms, such as gradient
descent. Gradient descent is an optimisation algorithm which attempts to find the
local minimum by finding the steepest descent for a function using backpropagation.
Backpropagation is an algorithm which steps backwards through the different layers
and gradients of the network. One cycle of sample input and weight adjustment is
called an "epoch".

During training, callback functions can be used to perform specific actions after
the end of an epoch. In theory, any function can be called, but these functions are
usually reserved for training functions, such as:

• Model Checkpointer - Saves the neural network configuration with weights
when a specified training metric improves.

• CSV Logger - Saves epoch results to a .csv-file.

• Early Stopping - Stops the training process if the specified training metric, such
as validation accuracy, fails to improve for a specified number of epochs.

• Learning rate adjustment - Adjusts the learning rate if the specified training
metric fails to improve for a specified number of epochs.

• Terminate on NaN - Terminates the training if the loss of the network is calcu-
lated to be NaN. Usually indicates an error in the training data.

Using callback functions helps reduce unnecessary time spent training, though
some should be used with caution. Terminating training too early, due to a strict early

26 CHAPTER 3. THEORETICAL BACKGROUND

stopper, can result in a sub-par neural network as it is based on a local minimum.
Training a neural network is a resource intensive process, both in data and compu-

tational power. To properly train a neural network, training-, testing- and validation
data is required, usually combined in a dataset. First, the dataset has to be related to
the desired output of the data. To achieve good classification accuracy across different
classification scenarios, the dataset has to be diverse and plentiful. Though the size of
the dataset depends on the problem, research indicates that a data set of over 500 sam-
ples per class [37] is sufficient for some classification tasks, while others recommend
datasets of 10 to 50 times the amount of weights in the network [38].

After finding or creating a varied and large dataset, the network can be trained.
Training requires the calculation and adjustment of up to several million weights. Also,
the dataset and the number of epochs required to achieve optimal loss can be high,
leading to long training times. Therefore, training is often accelerated on GPUs, either
locally or on servers.

3.1.1.3 Verification

To verify a trained neural network, verification data is loaded into the network, and the
outputs analysed. The verification data is usually unused data from the dataset, split
before the network training. The split-ratio can vary, but a common ratio is 60/30/10
for training, validation and verification, respectively. The output of the network is
compared with the reference, and the results can be analysed in several ways, such as
overall accuracy, precision and recall.

Overall accuracy is the most straightforward metric, illustrating how many of the
predictions were correct. Overall accuracy, though, can be an inaccurate metric as
many predictions might be to "large" labels, such as "unknown" words. Precision and
recall is a more detailed metric, illustrating two similar aspects. Precision represents,
for a given class, howmany of the predicted labels for that category were correct, while
recall represents, for a given label, how many of the possible labels were predicted.
E.g., if class A was predicted 20 times out of a possible 40 times, but label A was used
80 times, class A would have a precision of 0.5 and a recall of 0.25. For multiclass
predictions, such as the Kaggle challenge, the precision and recall of a model can be

3.1. NEURAL NETWORKS 27

found by calculating the average of the precision and recall for the individual words.
Precision and recall requires the definition of four classification categories: True

positive, false positive, false negative and true negative. These can be explained using
the following analogies: True positive, a pregnant woman is diagnosed as pregnant;
false positive, a non-pregnant woman is diagnosed as pregnant; false negative, a
pregnant woman is diagnosed as not pregnant; and true negative, a non-pregnant
woman is diagnosed as not pregnant. These four categories are used to calculate
precision based on equations 3.1 and 3.2.

Precision =
tp

tp + f p
(3.1)

Recall =
tp

tp + f n
(3.2)

Both of these metrics can be used to help increase the robustness of the network
by serving as reference metrics when performing adjustments to the network, or
when performing post-processing such as thresholding and weighting. By setting a
threshold for prediction values, false positives can be reduced when the prediction
value is low. Weighting can be performed on the prediction values to compensate for
the uncertainty in the model’s predictions.

3.1.2 Topologies

Though several topologies exist, the most common are Convolutional Neural Network
(CNN) and Recurrent Neural Network (RNN).

3.1.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) mainly feature convolutional layers to perform
classification and other machine learning tasks. As convolution layers work well with
2D-matrices, CNNs are commonly deployed for image and video recognition purposes;
however they can serve as the basis for small and effective networks [39], CNNs usually
have thousands tomillions of parameters [40], making them susceptible to long training

28 CHAPTER 3. THEORETICAL BACKGROUND

times and high memory usage. Still, CNNs are the standard for image recognition,
forming the backbone for popular neural network designs such as SqueezeNet [39]
and YoloNet [41].

3.1.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are an alternative to CNNs, and instead of primarily
using convolution layers, utilise memory cell layers, often in the form of an LSTM layer,
to remember and sequence input data. The memory property enables the network
to remember input sequential patterns, making it ideal for speech recognition, while
having relatively few parameters [42] and of smaller sizes.

3.1.3 Neural network optimisations

After training, a neural network often has redundant layers and neurons which can
be optimised away. Also, networks are often trained using floating point data types
for weights and activations, which can be optimised to fixed-point representation.
Together, these optimisations can reduce the size of the network and computational
power required to run the network. These optimisations can be divided into two cate-
gories: Pruning and quantization. These functions are often run during the inference,
the process of tuning and optimising the network to run on a target device, such as a
phone or an edge device.

3.1.3.1 Pruning

Pruning is the process of removing unnecessary layers, neurons and connections
between them to reduce network size and computational demand. The removal process
can be done by using pruning algorithms which search through the network, removing
unnecessary parts and connections [43]. Pruning might come with the cost of reduced
network accuracy, but this is of negligible and in some cases none [44].

3.2. HIGH LEVEL SYNTHESIS 29

3.1.3.2 Quantisation

Quantisation converts weights and activation values from floating-point or fixed-point
notations to smaller fixed-point notations and even binary values. Mathematical
functions on computers and in processors are performed faster when the data width is
decreased. Quantisation, therefore, reduces the computations required to calculate the
output of a neural network.

3.1.3.3 Inference

Inference combines pruning and quantisation to optimise the network for deployment
on a target device such as a phone or an edge device. The inference process can be
done manually but is often performed using a neural network acceleration framework
such as Intel OpenVINO.

3.2 High level synthesis

High-level Synthesis (HLS) is the term used to describe the process of converting and
compiling high-level language code, such as C++ or SystemC, to Hardware Description
Languages (HDLs) such as VHDL and Verilog. One of the main goals of HLS is to
accelerate product development, allowing complex functions to be written and tested
in C before being synthesised to HDL. HDL-programming has traditionally required
specialised skill as the fundamentals are different from traditional object-oriented
and functional programming. One of these fundamental differences is that HDL
is a descriptive language, as the code is synthesised into logic gates and functions.
Formal programming languages, on the other hand, are compiled into instructions
for execution on a processor. In addition, HDL is executed in parallel on an FPGA
while formal programming languages are sequential, though parallelisation is possible
through the use of multi-core processors.

While HLS has been a concept for several decades [45], it has recently progressed
to the point of being adopted and used in industry and academia [46], with languages
such as SystemC and HLS-tools like Vivado HLS being popular choices.

30 CHAPTER 3. THEORETICAL BACKGROUND

3.3 Speech recognition

Speech recognition is usually performed on computers by sampling and converting
a speech symbol from acoustic waves into uncompressed data, such as Pulse-Code
Modulated (PCM) data, and then analysed in a neural network. Though raw PCM
data can be used [47], the data is often processed in some form, such as filtering and
Fourier-transformation, to reduce noise and extract the most relevant information.

3.3.1 Speech recognition fundamentals

Speech recognition is based on the analysis of speech signals, attempting to convert
audio to text for further use in a computer program or system. It can be described
as oral communication; the use of vowel and consonant sounds to generate words.
As such, words, and the speech recognition used to detect them can be split into
individual sounds. These individual sounds are called "phonemes", and one goal of
speech recognition is to recognise the individual phonemes in a recorded phrase and
assemble these into a word. This method, however, has proven challenging to utilise
as phonemes can be hard to differentiate. The most common method is to divide the
speech signal into smaller frames for analysis, mapping the analysed frames to vectors
and inputting them into a neural network or an HMM.

3.3.2 Hidden Markov Models

A Hidden Markov Model (HMM) is a statistical system used to model sequences such
as speech and handwriting by modelling them as hidden states connected by weighted
connections. The weights describe the probability of the next member of the sequence.
Figure 3.7 shows an example HMM for activities based on the current weather. HMMs
were the standard for speech recognition until neural networks were adopted for
the same purpose, though both have been used in combination to perform speech
recognition [48].

3.4. SPEECH PRE-PROCESSING 31

Figure 3.7: HMM showing the probability of different activities occurring based on the
current weather [49]

3.4 Speech pre-processing

The speech signal is processed to reduce noise, remove unnecessary information and
filter it for analysis. Pre-processing can be performed in several ways, but the most
common method is to frame the signal into smaller frames, perform DFT and possibly
calculate MFCC values.

3.4.1 Fast Fourier Transform

Though raw speech data can be used, the common way of analysing speech data is to
perform a Fourier transform, usually using a Fast Fourier Transform (FFT) algorithm
to perform a Discrete Fourier Transform (DFT). Performing a DFT on the speech signal
produces a frequency representation which can be mapped to a particular word, such as
figure 3.8 which shows the DFT of the word "yes". This FFT can be performed either on
a CPU or an FPGA for higher throughput. Computing the FFT can be performed using

32 CHAPTER 3. THEORETICAL BACKGROUND

several different algorithms, such as the Cooley-Tukey algorithm with a complexity
of O(n logn). The pseudocode for the Cooley-Tukey algorithm is shown in algorithm
1. The Cooley-Tukey algorithm is based on the fact that an FFT of composite size

Algorithm 1 Out-of-place Cooley-Tukey Radix-2 algorithm [50]
X0, ...,N−1 ⇐ dit f f t2(x ,N , s) : {x = data start, N = number of samples, s = stride}
if N = 1 then
X0 ⇐ x0

else
X0, ...,N /2−1 ⇐ dit f f t2(x ,N /2, 2s)
XN /2, ...,N−1 ⇐ dit f f t2(x + s,N /2, 2s)
for k = 0 to N /2 − 1 do
t ⇐ Xk
Xk ⇐ t + exp(−2πi k/N) Xk+N /2
Xk+N /2 ⇐ t − exp(−2πi k/N) Xk+N /2

end for
end if

N = n1n2 can be expressed as smaller DFTs of size n1 and n2 where the output is
transposed [50]. This makes it possible to calculate the DFT depth first. In general, the
Cooley-Tukey algorithm calculates the DFT of a frame by first performing n1 DFTs of
size n2, then multiplying the result with the twiddle factor, before finally performing
n2 DFTs of size n1.

Due to the nature of the Fourier transform on real-valued data the resulting FFT
has an output which is mirrored, i.e. the data in the first half of the output is equal to
the second half, albeit reversed. This property helps reduce the input data width of
the input data to a neural network or an HMM.

Performing a Fourier transform on a signal produces a complex result consisting
of a frequency and a phase shift. In speech recognition, the power of the frequency is
the interesting part. To compute the power, the absolute value of the complex result
is calculated. Performing this on the whole signal produces a power spectrum of the
signal.

An FFT performed on a short time signal, such as a framed and overlapping speech
sample, is called a Short-Time Fourier Transform (STFT), as opposed to an FFT which

3.4. SPEECH PRE-PROCESSING 33

Figure 3.8: DFT of the word "yes" with an FFT size of 16000

is most often on a complete, non-overlapping signal. Performing Short-Time Fourier
Transform (STFT) on a signal is inherently more resource-intensive when compared
to an FFT, as the STFT of a signal requires an FFT to be calculated for each frame, but
in return extracts more detailed frequency information from the input data. As the
length of the DFT is decreases, so is the amount of "bins" for the FFT, i.e. the horizontal
resolution of the transform is reduced. E.g. a DFT of 16000 compared to a DFT of 1024
represents a horizontal resolution decrease of 15.625.

3.4.2 Framing

Framing divides the signal into smaller pieces, usually with a duration between 10ms to
20ms. This interval is commonly used in speech recognition to capture rapid changes
in the voice data which would otherwise be masked when analysing longer frames.

34 CHAPTER 3. THEORETICAL BACKGROUND

Framing a signal can also be seen as an extension of the concept of phonemes: Dividing
a signal, or a word, into smaller pieces for further analysis and sequential mapping.
By mapping the frames as a sequence, their relation can be extracted and used in the
speech recognition process, either by a neural network or an HMM. Figure 3.9 shows
the DFT of 1024 samples (64ms of the word "yes". Note how the peak of the transform
has shifted from around 3000Hz in figure 3.8 to around bin 210, equivalent to 3300Hz,
while the upper frequencies are almost flat.

Figure 3.9: DFT with a length of 1024 for the word "yes"

Additionally, framing can be performed by overlapping frames on top of each other,
commonly performed by shifting the framing window N samples for a given number
of iterations. This technique is called a sliding window and results in a Short-Time
Fourier Transform (STFT).

3.4. SPEECH PRE-PROCESSING 35

3.4.3 Window function

After framing, a windowing function is applied to the framed data to weight the
samples in the middle of the window, reducing the effect of the side-lobes generated at
the start and end of each FFT frame. The most common weighting function for speech
recognition is the Hamming Window, given in equation (3.3).

w[n] = 0.54 − 0.46 · cos 2πn
N
, 0 < n < N (3.3)

The Hamming Window is a special case of the Hann-function which weights
the data in the middle of the frame while reducing the flank data, as seen in figure
3.10. This, together with the sliding-window technique, produces a smoothly varying
sequence of detailed spectral data [51].

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 N

am
pl
it
ud

e

samples

Hamming window (a0= 0.53836)

-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0

-40 -20 0 20 40

de
ci
be

ls

bins

Fourier transform

Figure 3.10: Hamming window weighting with corresponding FFT [52]

Figures 3.11 shows two overlapping DFT frames with and without Hamming-
windowing. Note how the windowed DFT lowers the peaks of the information be-
tween bins 0 and 50, indicating that the input data causing the peaks is located in an
overlapping area. As such, windowing produces a more realistic view of the frequency
information stored in the input data.

36 CHAPTER 3. THEORETICAL BACKGROUND

Figure 3.11: Non-windowed and Hamming-windowed DFT frames for 1024 samples of
the word "yes"

3.4.4 Mel-frequency scaling

To further weight the signal in terms of perceived loudness, mel-frequency scaling is
applied to the power spectrum calculated by the STFT. Mel-frequency scaling is based
on the mel scale as devised by Stevens et al. in 1937 [53] and further improved by
Makhoul and Cosell in 1976 [54]. The scale was created by playing individual pitches
to test subjects, increasing the pitch until the test subject perceives the pitches to have
the same distance between them. By setting 1000Hz to equal 1000 mels, (3.4) can be
used to convert from frequency (in hertz) to mels.

m(f) = 2595 log(1 + f

700) (3.4)

3.4. SPEECH PRE-PROCESSING 37

3.4.5 Mel-scale filterbank

A filterbank is a series of bandpass-filter and can be used to express the area of a
frequency signal as a single, accumulated value. Combined with mel-scaling, this can
create mel-filterbanks consisting of a varying number of mel-filters. Each mel-filter
has a triangular shape when viewed on a logarithmic scale, reaching a peak at the
filter’s specified frequency, e.g. a mel-filter at frequency f starts at 0 at f − 1, increases
up to 1 at f and decreases to 0 again at f + 1. The filters are equally distributed in the
mel-frequency range before being transformed back to regular frequencies, with the
filters having the same length as the result of the FFT. Figure 3.12 shows a 10-filter
mel-filterbank from 0Hz to 8000Hz.

Figure 3.12: Mel-filterbank of 10 filters from 0Hz to 8000Hz [55]

3.4.6 Mel Frequency Cepstral Coefficients

After applying mel-frequency scaling to the power data, Mel-Frequency Cepstrum Co-
efficient (MFCC) can be calculated. MFCC values describe the mel-frequency cepstrum,
represent the time based power spectrum of a signal. MFCC values are calculated by
taking the logarithm of the mel-weighted power data, to better resemble the signals

38 CHAPTER 3. THEORETICAL BACKGROUND

perceived by the human ear, and then performing a Discrete Cosine Transform (DCT)
to reduce the impact of low-energy components. After calculating the MFCC values,
only the first half of the values are used as the upper half represent high-frequency
data, which is not used for most speech recognition purposes.

Chapter 4

Implementation

This chapter covers the process of programming the pre-processing in C++, using
Vivado HLS to synthesise the design, and Vivado to run the pre-processing on an
FPGA. This chapter also covers the training of the three neural networks and the
process of deploying them on an FPGA. The code for the pre-processing, both C++
and HLS implementations, is available on GitHub1 along with the code for the neural
network training and verification. The code for the OpenVINO inference is available
on on GitHub2 aswell.

4.1 Pre-processing

4.1.1 Testing using Xilinx FFT example code

To test the design flow of the HLS Intellectual Property (IP), Vivado IP Block Design
tool and Vivado SDK, an FFT example was modified and run on an Ultra96 development
kit with a Xilinx Zynq UltraScale+ MPSoC ZU3EG A484 FPGA. The example, found in
Xilinx User Guide 871 - HLS Tutorials [56], described the process of synthesising C-
code using Vivado HLS, importing it and connecting it with the Zynq Processor System

1https://github.com/andernil/lstm_speech_recognition
2https://github.com/andernil/OpenVINO_project/tree/master-thesis/

39

40 CHAPTER 4. IMPLEMENTATION

(PS) using the Vivado IP Block Design tool and finally setting up communication with
the PS and performing tests using Vivado SDK.

The C-code was an AXI streaming interface to and from the Vivado FFT IP core. The
two main parts of the code, which were synthesised, were the input, which performed
windowing and framing, and the output, which re-ordered the output from the FFT IP
and transmitted it back to the Zynq PS. The frame shift was 512 samples, and the data
had an input width of 16 bits in the ap_fixed-format with 1 bit for integers and the
remaining 15 for fractional values.

Initially, the project files were imported into Vivado HLS and simulated using C-
simulation. This simulation passed, but synthesis failed due to errors with the memory
interfaces. The example code had not been updated to fit with newer updates, resulting
in the AXI streaming interface having double declarations for the data_pack pragma.
This was fixed by removing the data_pack pragma, as it was already included in the
AXI pragma. Fixing this made the two functions, real2xfft and xfft2real, synthesise
without error and successfully pass software/hardware co-simulation. Afterwards,
the code was edited to be more general purpose: The framing was removed, instead
using all the input data as opposed to storing some of the input data for further use in
the framing process, shifting the framing process from the FPGA to the CPU. After
synthesising the input and output functions and exporting them as IP blocks, the IP
cores and the Zynq PS were connected using the Vivado IP Block Design tool according
to the tutorial.

Continuing the tutorial, a "Hello World"-example was instantiated on the PS and
uploaded to the Ultrascale+ FPGA to test whether the communication was functioning.
When attempting to connect to the JTAG connected to the Ultra96, Vivado SDK was
unable to detect it. To fix this, specifically on Linux, the user running Vivado SDK had
to be added to the user group "dialout". After doing this, the Ultra96 was successfully
programmed with the example.

After checking that communication with the target device functioned, the tutorial
was continued and edited to fit with the modified HLS code. The test data was changed
to a sample from the Google Speech dataset, and the input length was edited to 1024
samples per transfer. The execution time was measured using the XTime_GetTime-

4.1. PRE-PROCESSING 41

function.

4.1.2 Prototyping in C++

As the chosen HLS tool, Vivado HLS supported C and C++ as input languages; the
pre-processing was initially programmed in C++ using as few external libraries as
possible to avoid dependency issues when porting the code to Vivado HLS. The data
type used for the program was double-precision floating point to ensure accurate
reference and training data. Using information from guides for pre-processing of audio
signals online [55][57], the pre-processing program was divided into five sections:

Reading the input data: The input files were stored in the .wav-format. To read
these files, the header of the file had to be decoded to determine the size of the file,
which had a fixed format consisting of a mixture of little- and big-endian format values.
The header information required for extracting the audio data was the number of
channels, sample rate, byte rate, data size and the data field, which were all little-endian.
The samples from the Kaggle Speech Challenge had a sample rate of 16 kHz, a byte
rate of 16 bit, 1 channel and were 1 s. Based on these specifications, a function was
written which filled a pre-allocated 16000-field short int array and the input file-name
and returned the audio data and the peak value of the audio data.

Windowing and scaling: The samples had varying amplitude depending on the
recording levels used. To remove this variation, the input data was normalised to ±1
before being used further in the pre-processing. The windowing shifted the FFT along
the sample data, performed in a for-loop by incrementing the start position of the
input data until the end of the data was reached. The number of frames of FFT-data
was be calculated based on the length of the input data, the FFT length and the frame
step length, i.e. how many samples the window shall shift for each iteration, given in
(4.1).

Nf rames =
Nsamples − lenDFT

Nshif t + 1
(4.1)

42 CHAPTER 4. IMPLEMENTATION

In addition to the sliding DFT window, a windowing function was applied for
each frame. The selected windowing function was the Hamming window, which was
calculated in advance prior to the FFT-framing and then applied to each frame. The
framed data was input into the FFT function.

Computing the FFT: The FFT method implemented in the prototype was the
Cooley-Tukey algorithm. This was chosen for its simplicity and speed, and was
implemented as a recursive function in two parts: FFT and Separate. Initially, the
input data was separated into two halves: Even number elements to the lower half and
odd number elements to the upper half of the input data array. This was performed
recursively until the input array area only contained one sample. Afterwards, the DFT
was calculated using the FFT function. After the DFT was computed, the amplitude of
each element was calculated. Only the first half of the output data from the FFT was
used due to the mirrored nature of the FFT. The amplitude was found by calculating
the absolute value of the FFT based on the real and imaginary parts of the FFT.

Generating the mel-filterbanks: To transform the power data into mel-filterbank
energies, a mel-filterbank was required based on a user-definable amount of mel-filters
and specified upper and lower frequency bounds. The filters in the filterbank were
calculated by initially calculating the upper and lower mel-frequency bounds based
on the specified frequencies. Next, the difference between each filter frequency was
calculated and converted back to regular frequencies. Then, filters were created with a
length equal to the output of the FFT. The resulting filter arrays were then filled with
values rising to and sinking from 1 at the peak position, generating triangular filters
according to the ones described in chapter 3.4.5.

Calculating the mel-scaled filterbanks for each frame: After generating the
mel-filterbanks, each filter was multiplied with each frame of the FFT and the total
power in the frame was summed, generating mel-filterbank energies for each FFT
frame. After the mel-filterbanks were calculated, the logarithm of each sum was
calculated along with the average logarithm of all the filterbank-energies. To improve

4.1. PRE-PROCESSING 43

the Signal-to-Noise ratio, the average logarithm was subtracted from the filterbank-
energies, balancing the signal across the mean. This also helped with the case of silence
or constant sound, as the balancing would result in 0 as the filterbank-energy for every
filterbank. Figure 4.1 shows the resulting mean-normalized log-mel-filterbanks for the
word "yes".

Figure 4.1: Hot/cold Colormap-representation of log-mel-filterbank energies for the
word "yes". Calculated using an FFT windows size of 1024, a shift length of 128 and 80
mel-filterbanks from 300Hz to 8000Hz

The final code was tested using a sample from the Google Speech dataset of the
word "yes" and compared with a Python-implementation3. The Python code had to be
modified slightly, removing pre-emphasising and matching parameters such as upper
and lower frequency bounds.

3https://github.com/jameslyons/python_speech_features

44 CHAPTER 4. IMPLEMENTATION

4.1.3 Porting the code to Vivado HLS

To run the pre-processing code on an FPGA, the code had to be synthesised into HDL
using Vivado HLS. The code was added to a Vivado HLS project, and the initial build
attempt resulted in several errors. The original pre-processing code used the standard
C math-library, while the HLS code required the use of Vivado HLS’ math-library.
Replacing the library made the code build properly, but upon running C-simulation,
several errors arose: Dynamic arrays and recursive functions were not allowed by
the synthesis tool. Dynamic arrays were fixed by defining constant variables and
reducing memory allocation functions, but as the FFT function, the Cooley-Tukey
algorithm, was recursive, the function had to either be unrolled or replaced. Unrolling
proved unsuccessful, as initial investigation showed that the function would have to be
unrolled for the length of the FFT, i.e. for a 1024 length FFT the function would have
to be unrolled 1024 times. Instead, the function was replaced by the FFT IP-core from
Xilinx. Based on documentation from Xilinx [58][59], the FFT core was set up using
an FFT-length of 1024 with 32-bit fixed point values using the Radix-2 FFT algorithm
based on the Cooley-Tukey algorithm, with the output in natural order, i.e. FIFO,
selected using the struct shown in figure 4.2. Several FFT configurations are available,
but Radix-2 was chosen due to having a relatively small logic footprint and reasonable
speed.

Figure 4.2: Settings struct used for the Xilinx FFT IP-core in Vivado HLS

To test the pre-processing program, a test bench was created to verify the function-
ality of the pre-processing code. The test-bench loaded .wav-data from a text file along
with a text file containing the results of the FFT from the original C++ pre-processing

4.1. PRE-PROCESSING 45

program. The results, referred to as the "golden reference", was compared with the
output of the HLS code. The accuracy for the results was calculated along with the
total accuracy for the whole dataset.

Initially, the results generated by the IP-core FFT differed substantially from the
golden reference. The cause of this was scaling issues in the FFT core. The input and
output data to the FFT was 32 bit fixed point with 1 bit for whole numbers and 31 bits
for the decimal values, as the FFT IP core required data to be within ±1. This caused
incorrect values to be output when the results of the FFT were equal to or greater
than 2. To fix this, the input data was scaled down by right-shifting the value until no
overflows occurred, which in the case of the test data was a 9 right-shifts or a division
by 512. Performing right-shifts before the FFT and left-shifts afterwards, the output
data matched the golden reference.

After C-simulation achieved sufficient accuracy, synthesis was performed with a
target clock speed of 100MHz. Initially, the top function was the window FFT-function,
but this synthesis failed due to interface errors. This was fixed by placing the pragmas
required by the HLS tool inside the window FFT-function instead of in the FFT-function.
This allowed the code to synthesise correctly, but upon running the software/hardware
co-simulation, the simulation got stuck, most likely indicating an error in the design.
Instead, the FFT-function was selected as the top function, and the pragmas moved
there. This code synthesised and simulated properly, and was exported as an IP core
for further use in the Vivado IP Block Design tool.

4.1.4 Integrating the HLS IP with the Zynq Processing Unit

To easier facilitate communication with the Zynq PS, the interfaces were changed to
AXI-streaming interfaces to communicate with the PS, similar to the example from
the tutorial used in chapter 4.1.1. To set up communication with the PS, the setup and
steps from this tutorial were used for the pre-processing HLS IP, though the width of
the AXI interface was changed to 64 bit to accommodate for the data size of 32 bit. The
completed block design, shown in figure 4.3, was generated by the IP Block Design
Tool.

46 CHAPTER 4. IMPLEMENTATION

Figure 4.3: Block diagram from Vivado IP Block Design tool for the communication
between the FFT HLS IP block and the Zynq PS

After passing design verification, an HDL interface was created and the code was
synthesised and exported to Vivado SDK. Following the tutorial for the FFT example,
the "Hello World"-program was programmed onto the FPGA and run successfully.
Afterwards, the same C-code from the tutorial was used for interfacing between the
CPU and FPGA.

4.2 Neural network training

4.2.1 Deciding the network topology

Designing a neural network from scratch is complex and time-consuming, so to save
time it was decided that an existing neural network was to be used. The three networks
from de Andrade et al. [17], as mentioned in chapter 2.3.2, were selected due to being
available on GitHub and having achieved good classification accuracies. In addition to
this, the three networks would serve as an indication on the compatibility of the FPGA
acceleration SDKs in terms of layers and topologies. As the models were designed in

4.2. NEURAL NETWORK TRAINING 47

Keras, it was used as the framework for the training and verification process.

4.2.2 Preparing the input data

As the data from the Google Speech Commands dataset were stored as .wav, they had
to be converted into log-mel-filterbank energeis before being input into the neural
networks. Pre-processing parameters were selected according to de Andrade et al.
[17]: The input .wav-data was framed into frames of 1024 samples with a frame shift
of 128 bits, with Hamming-windowing applied afterwards. The mel-filterbank had 80
filters from 300Hz to 8000Hz. In addition, the input recording was normalised to ±1
before framing to reduce loudness variations between samples, and afterwards right
shifted 9 times, or divided by 512, to match the scaling of the HLS-implementation.
The result of the pre-processing, a 118x80 input data matrix, was stored to a text file
with a filename corresponding to the input sample and stored in a subdirectory, "mels",
within the source folders.

After the pre-processing program had been compiled with the specified parameters,
two Python-scripts were written to automate the data generation process. The first,
generate_mels.py, performed pre-processing for all .wav-files in a given folder. All
samples from the dataset were stored within subfolders corresponding to their category,
i.e. all samples for the word "no" were stored to the folder "no/mels/". This made it
easy to select each word for a sample, as Python has a function for cycling through all
elements in a folder. In addition to this script, another script, generate_all_mels.py, was
written which called generate_mels.py for each subfolder, or word, in the dataset and
defined in a target-directory array. To generate the pre-processing data for the words
used in the Kaggle challenge, generate_all_mels.py was run for the words in question.

The Kaggle challenge required ten words to be interpreted by the neural network
in addition to an unknown word and silence. For these networks, the unknown word
was "Marvin". For the silence samples, text files with zeroes were generated. If no
sound was present during recording, the pre-processing would get 0 from the FFT
which would, which would be set to a low-bound value of 1e-10 to avoid errors from
calculating the logarithm of 0.

48 CHAPTER 4. IMPLEMENTATION

4.2.3 Loading data into the network

To load the pre-processed data into the network during training, the data was loaded
from the log-mel-filterbank text files, corresponding to each recording in the dataset,
into the training program written in Python. The training program read through sub-
folders in the dataset corresponding to the words in the target list, storing all recording
names in an input file register. The target list was split into three parts with a split
ratio of 60/30/10 for training, validation and verification, respectively. The verification
filenames and label values were saved to a text file for use in the verification process.

Loading the input data from the text files was performed by using the numpy.loadtxt
function from the Numpy-library. This function loaded an input text file using a
specified delimiter, in this case, a comma, into the numpy array. The array was then
reshaped into a matrix with dimensions of 118x80. Initially, all training data used
was loaded into memory before training, but as the training dataset increased during
development, the memory size increased beyond the computer’s capabilities. To fix this,
a data generator was programmed, loading data from a list of files generated from the
label folders. The input data was loaded into a 1D-array which was reshaped to match
the input dimensions of the network prior to being loaded into the neural network.
The data generator was stored as a class in a separate Python file, data_classes.py.

4.2.4 Training the network

The three network models were stored in a separate Python file, NetworkModels.py,
defined as classes, while the training program was stored as train.py. The models
were trained according to de Andrade et al. [17]: The optimiser used was "Adam", the
number of epochs was 40, and the batch size was 64. The network was trained using
Keras’ "model.fit_generator" with three callback functions called after the end of each
epoch: Early stopping, checkpointer and learning rate adjustment. The early stopper
was set to stop after the learning rate had stopped improving for 5 consecutive epochs,
while the learning rate adjuster was set to adjust the learning rate from 0.001 down to a
minimum of 4e-5 using the function shown in equation (4.2). The LSTM and att-LSTM
layers were trained using GPU-deployed LSTM layers, called CuDNNLSTM-layers.

4.2. NEURAL NETWORK TRAINING 49

For non-GPU devices, these layers were replaced with regular LSTM layers with tanh
activation functions and sigmoid recurrent activation functions.

lrate = 0.001 · 0.4
⌊
1+epoch

10

⌋
(4.2)

After training, the network which achieved the highest validation score during
training was saved in the as a .hdf5-file.

4.2.5 Verifying network functionality

After the networks had been trained, they were verified using a separate verification
program in Python, predict.py. The program loaded the saved neural network along
with the list of verification files. The program ran for a user-definable number of
iterations and loaded a verification file for each iteration. The number of iterations was
divided by 12 to ensure that an equal amount of verification files for each word were
loaded and tested. The networks were tested using the Keras-function "model.predict",
returning an array of classification values for each label, representing the possibility of
each label being the input word. The label with the highest value, and the classification
value, were returned and compared with the reference label in a confusion matrix,
and the classification values were plotted in a graph. In addition to the classification
values, the execution time was recorded and saved in a text file for each classificaion
using "time.perf_counter()" for further analysis. Additionally, the classification values
were filtered using thresholding to generate precision and recall curves for all words
and for the whole model.

To prepare the LSTM networks for deployment on non-GPU targets, the CPU-
compatible networks were created based on the weights of the trained networks. The
weights extracted from the .hdf5 network file and applied to a network with corre-
sponding, CPU-compatible architecture using a Python-script, create_cpu_network.py.
The CPU-compatible network models were stored in a separate model file, Network-
Models_for_CPU.

50 CHAPTER 4. IMPLEMENTATION

4.3 FPGA acceleration

4.3.1 Intel OpenVINO

To accelerate the neural networks on an FPGA, the Intel OpenVINO SDK was used.
OpenVINO version 2019 R1.01 was installed on a server at NTNU running Ubuntu 16.04
with an Intel Arria 10 GX development kit, following the "Install Intel® Distribution
of OpenVINO™ toolkit for Linux with FPGA Support" guide [60]. During installation
of the FPGA support-files, the setup_env.sh-script had to be edited to target the Arria
10 development kit. This was done by changing "USE_HDDLF" from 1 to 0.

To make the network compatible with the Inference Engine for deployment on the
FPGA, it was converted to an Intermediate Representation using the Model Optimizer.
As the optimiser was incompatible with the .hdf5-format of Keras, it was converted to
TensorFlow’s .pb-format by "freezing" the model. This was done by writing a Python-
script which loaded a Keras-model, froze it using graph-utilities from the TensorFlow
library and saved it as a TensorFlow-model.

After converting the file to the .pb-format, the network was optimised using
the TensorFlow-version of the Model Optimizer, specifying the input model, the
input shape and the precision. Only the CNN was converted to an intermediate
representation. As LSTM networks were not supported for TensorFlow nor Keras,
attempts weremade to convert themodel into a framework compatible with OpenVINO
and LSTM layers. Using Microsoft’s MMdnn-toolkit, the CPU-compatible LSTM and
att-LSTM networks were converted into MXnet from TensorFlow. This, however,
proved unsuccessful as the conversion had created layers unsupported by OpenVINO.
Another solution was attempted: By switching the Keras-backend from TensorFlow
to MXNet, MXNet-models could be created and exported after training. The LSTM
networks were re-trained and saved as MXNet-models, but were still incompatible
with OpenVINO.

To run the neural network on the FPGA, a C++-program was written to interface
with the Interface Engine, load the input data and verify the accuracy of the network.
The program was based on the program written for the semester project, removing the
voice recording functionality, instead changing the data loading to load verification

4.3. FPGA ACCELERATION 51

data from text file. The program follows the program flow illustrated in figure 2.2.
Initially, the program reads several input arguments: The path to the neural network
IR files, the number of iterations to run, the path to the verification register text file,
what device to deploy to and whether to display detailed debug information. To decide
the input data, the program read the verification register text file and added them to an
input data file array. The number of loops was divided by 12 to get an equal amount
of files. To avoid running the network without input data, the input data was "padded"
with samples from the "unknown" label. This padding was performed after an equal
amount of input data has been loaded for each label in case of uneven label distribution.
The input and output precisions of the network were set to single-precision floating
point.

Figure 4.4: Layer execution times as reported by the Inference Engine

After deciding what input text files to use for verification, the samples were loaded
iteratively for each inference loop. The corresponding label was checked against the
reference label, and the output was stored in a text file and printed to the console. In
addition to the labels, the execution time for each layer in the network was reported
by the Inference Engine and, if running with debug mode, printed to the console,
producing the output shown in figure 4.4. The total runtime for each inference and
prediction was stored, and the average, median and minimum execution times were

52 CHAPTER 4. IMPLEMENTATION

calculated along with the corresponding throughputs, as shown in figure 4.5.

Figure 4.5: Execution times and throughputs reported at the end of Inference Engine-
based prediction using OpenVINO

To run the network on an FPGA, the FPGA was programmed with a pre-generated
bitstream supplied by Intel along with the OpenVINO SDK. The bitstreams used were
"2019R1_A10DK_FP16_ResNet_SqueezeNet_VGG" and "2019R1_A10DK_FP11_ResNet_VGG",
due to VGG having similar network topology to the inferred networks. The model
was converted into single-precision and half-precision floating point to examine the
effects of reducing the model precision.

4.3.2 Xilinx DNNDK

In addition to OpenVINO, FPGA acceleration using Xilinx DNNDK was attempted.
Xilinx DNNDK SDK version 2.08 was installed on an AVNet Ultra96 and a laptop; the
laptop serving as a development platform while the Ultra96 served as the inference
target. Initially, example code from Xilinx was run to demonstrate the capabilities of
the system. One example, showcasing pose detection CNN acceleration, achieved a
throughput of around 20 frames per second, while another example showcasing image
classification using ResNet, achieved a throughput of around 25 images per second.
As the development process using DNNDK was similar to OpenVINO, performing
quantisation on the network then creating an intermediate representation before
deployment through an API in C++, the network models were initially prepared for
quantisation. DNNDK version 2.08 supported only Caffe-models, requiring the Keras-
trained models to be converted, which was performed using MMdnn. As MMdnn

4.3. FPGA ACCELERATION 53

had no support for LSTM layers, only the CNN model was converted into Caffe. In
addition, it was discovered through communications with Xilinx that LSTM networks
were not supported in the current version of DNNDK.

After conversion, quantisation was attempted using the DNNDK-tool, DECENT.
Initial optimisation efforts proved fruitless, as the quantisation required input data
during the quantisation process to validate the optimisations. DNNDK required the
input data to be specified using any data-layer in Caffe, such as image data or HDF5.
After creating a text file according to the specifications of the image data layer, with
the log-mel-filterbank text files as the "image" data input. This did not work, as the data
layer required input files in image-data formats such as .png or .jpeg. To provide image
files for the data input, a Python-script was written to convert the log-mel-filterbank
energies into images. Using the Pillow library, the 118x80 log-mel-filterbank energies
was converted into a 118x80 pixel greyscale image in the .png-format. Figure 4.6a
shows a generated image for the word "yes", while figures 4.6b and 4.6c show images
for the word "no".

(a) Yes (b) No (c) No

Figure 4.6: DECENT input images generated from log-mel-filterbank energies using
the Pillow library for Python

After picture generation, the input data list was updated with the generated images.
Running the quantisation again resulted in a reported model loss of 0. In addition, an
optimised network was generated. Following quantisation, kernel compilation using

54 CHAPTER 4. IMPLEMENTATION

the DNNC tool was attempted. Using the newly quantised network, DNNC was run
targeting a 64-bit ARM processor, as found on the Ultrascale+ on the Ultra96. Running
DNNC resulted in an error and a subsequent program exit, reporting an assertion
failure for convolutional layer 2, as shown in figure 4.7.

Figure 4.7: Error message generated by DNNC upon kernel compilation

Researching online and reaching out to Xilinx resulted in little progress in regards
to debugging the network, so a decision was made to wait for the next update to the
DNNDK SDK, scheduled for late April, but finally released in May. Further attempts at
accelerating the networks using DNNDK were not attempted as focus was shifted to
OpenVINO.

Chapter 5

Results

This chapter presents the results of the implementation. First, the results for the
pre-processing are shown for the CPU implementation, followed by the results of the
code deployed on the FPGA. Following the pre-processing are the results of the neural
networks in terms of training and verification on CPU. Lastly, the chapter presents for
the FPGA acceleration of the neural networks, including the successful OpenVINO
acceleration and the unsuccessful DNNDK acceleration. The code pre-processing
source code and neural network related code is available on GitHub.1

5.1 Pre-processing

5.1.1 On Processing Unit

Running on an Avnet Ultra96, the initial C++-code, prior to being ported to Vivado
HLS, had a total execution time of 718.6ms with the time spent for each section of the
code shown in table 5.1.

1https://github.com/andernil/lstm_speech_recognition

55

56 CHAPTER 5. RESULTS

Table 5.1: Execution times for each part of the C++ pre-processing code running on an
Ultra96

Code section Time spent [µs]

Read .wav-file 1125
Calculate window FFT 633104
Generate filterbanks 1067
Calculate log-mel filterbank energies 83314

5.1.2 On FPGA

5.1.2.1 Xilinx FFT example code

Software/hardware co-simulation using Vivado HLS reported an estimated execution
latency of 1032 clock cycles and an execution interval of 512 clock cycles for the
xfft2real-function, and an execution latency of 1025 clock cycles and an execution
interval of 1025 clock cycles for the real2xfft-function. No estimate was provided for the
FFT-core as it was not part of the synthesised code. The 16-bit FFT example code was
deployed on the Ultrascale+ MPSoC ZU3EG A484 FPGA on an Ultra96. The input data
was 118 frames of 1024 samples of 16-bit floating point data. Including I/O-operations
to and from the PS to the FPGA, the synthesised program used 758566 clock cycles, or
3792.73 µs on the pre-processing, not counting post-processing such as scaling. Figure
5.1 shows the calculated power data from the 16-bit HLS implementation and the C++
source. In addition to the 16-bit FFT example, a modified 32-bit FFT example was
simulated and synthesised, though it was not able to run on the FPGA. Still, it achieved
an estimated clock cycle count equal to the 16-bit implementation.

Using this power data, the corresponding log-mel-filterbank energies were calcu-
lated, shown in figure 5.2.

5.1. PRE-PROCESSING 57

Figure 5.1: Comparison of power data calculated using 64-bit C++ and 16-bit HLS

5.1.2.2 32-bit FFT custom code

Software/hardware co-simulation using Vivado HLS reported an estimated execution
latency of 7331 clock cycles and an execution interval of 7332 clock cycles for the
FFT-function, copying and data to and from the FFT IP-core in addition to perform-
ing the FFT with the FFT-function as the top function. For 118 frames, this results
in an estimated execution latency of 865176 clock cycles. In addition, selecting the
window-FFT-function as the top function, which included scaling, framing and win-
dowing, resulted in an estimated execution latency and interval of 2529653 clock
cycles, or 25.30ms at a clock speed of 100MHz. This estimate was for the whole
FFT-preprocessing, i.e. for all 118 frames with an FFT-length of 1024. Both FFT and
window-FFT as top functions yielded an average accuracy of 99.86% on the output data
when compared to the C++-implementation. The resources used for the synthesised

58 CHAPTER 5. RESULTS

Figure 5.2: Hot/cold Colormap-representation of log-mel-filterbank energies for the
word "yes". Calculated using 16-bit HLS FFT with a window size of 1024, shift length
of 128 and 80 mel-filterbanks from 300Hz to 8000Hz

solution is shown in table 5.2.
The synthesised IP blocks for both implementations were not able to run on the

FPGA, waiting indefinitely for the AXI DMA service to become available after the
initial data transfer. Due to no debug information being available, no further progress
was made.

5.2 Neural networks

The networks were trained on a desktop computer with an Intel i5 3570k CPU, an
Nvidia GTX 1070 GPU and 8GiB of DDR3 RAM. Verification was performed on the

5.2. NEURAL NETWORKS 59

Table 5.2: Resource usage estimates for synthesised single-precision mel-log-filterbank
energy pre-processing on Ultrascale+ ZU3EG A484 FPGA

Name BRAM_18K DSP48E FF LUT URAM

DSP - - - - -
Expression - 62 219 5658 -
FIFO 8 - 196 272 -
Instance 13 44 20426 19930 -
Memory 16 - 213 852 -
Multiplexer - - - 589 -
Register - - 1831 - -
Total 37 106 22885 27301 -
Available 432 360 141120 70560 -
Utilisation (%) 8 29 16 38 -

same computer used for training unless otherwise stated.

5.2.1 Training results

The networks were trained with 1740 recordings for each category, limited by the
number of recordings for the unknown word, "Marvin". The early-stopper was set
with a tolerance of 5.

5.2.1.1 CNN

The CNN was trained for 17 epochs, lasting a total of 6 hours, before being stopped
by the early-stopper, achieving a maximum validation accuracy of 0.847. Figure 5.3
shows the accuracy and loss through the training epochs.

60 CHAPTER 5. RESULTS

(a) CNN training and validation accuracies dur-
ing training

(b) CNN training and validation loss during
training

Figure 5.3: Training and validation loss and accuracy for CNN

5.2.1.2 LSTM

The LSTM network trained for 3 hours across 15 epochs, achieving a maximum
validation accuracy of 0.823. Training and validation accuracy and loss are shown in
figure 5.4

5.2.1.3 Attentive LSTM

The att-LSTM network trained for 4 hours across 26 epochs, achieving a validation
accuracy of 0.86276. Training and validation accuracy and loss are shown in figure 5.5

5.2.2 Verification results

The three networks were verified using a subset of the dataset, consisting of 2088
samples in total, split from the rest during training. Classification was performed on
the same computer as training. From these, 600 were used for verification; 50 for each
class. Initially, no threshold value was used for the predictions; it was later increased to
1 and decreased by 0.05 for 20 steps to produce precision and recall curves for further

5.2. NEURAL NETWORKS 61

(a) LSTM training and validation accuracies dur-
ing training

(b) LSTM training and validation loss during
training

Figure 5.4: Training and validation loss and accuracy for LSTM network

analysis. Precision and recall were calculated for every word and for the complete
model by averaging across the per-word precision and recall.

To calculate precision and recall, three classification classes were defined for a given
word: True positive, the corresponding label and input word matching the given word;
false positive, different input word but the predicted label matches the given word; and
false negative, the incorrect label for the given word or sub-threshold classification
value. The false negative class was undefined as the model always classified a word,
either "silence" for no word or "unknown" for unknown words.

Using the verification program from earlier, predict.py, with the samewords used for
verification for all networks, the three networks were tested with varying thresholding.
Initially, no thresholding was used, resulting in the following confusion matrices, along
with average precision and recall curves. Precision and recall curves for every word
with all three networks are included in appendix B.

5.2.2.1 CNN

Figure 5.6 shows the confusion matrix for the CNN with no threshold on the predic-
tion values. Average prediction time was 5ms, while the median was 2.3ms. The

62 CHAPTER 5. RESULTS

(a) att-LSTM training and validation accuracies
during training

(b) att-LSTM training and validation loss during
training

Figure 5.5: Training and validation loss and accuracy for att-LSTM network

classification accuracy accuracy was 84.3%.

Figure 5.7 shows the precision and recall for the network with thresholding on the
prediction value. The prediction threshold was reduced from 1.00 to 0.00 in decrements
of 0.05 for 20 steps, stabilising at a precision of 0.84 and a recall of 0.84.

5.2.2.2 LSTM

Figure 5.8 shows the confusion matrix for the LSTM network with no threshold on the
prediction values. Average prediction time was 26ms, while the median was 24ms
using GPU-accelerated LSTM-layers. On the non-GPU model, the average prediction
time was 521ms, while the median was 514ms. Both models achieved a classification
accuracy of 83.1%.

Figure 5.9 shows the precision and recall for the network with thresholding on the
prediction value. The prediction threshold was reduced from 1.00 to 0.00 in decrements
of 0.05 for 20 steps, stabilising at a precision of 0.834 and a recall of 0.837.

5.2. NEURAL NETWORKS 63

Figure 5.6: Confusion matrix for CNN for 12 words with no thresholding

5.2.2.3 Attentive LSTM

Figure 5.10 shows the confusion matrix for the att-LSTM network with no threshold
on the prediction values. Average prediction time was 27ms, while the median was
24ms. On the non-GPU model, the average prediction time was 540ms, while the
median was 516ms. Both networks achieved a classification accuracy of 86.5%.

Figure 5.11 shows the precision and recall for the network with thresholding on the
prediction value. The prediction threshold was reduced from 1.00 to 0.00 in decrements
of 0.05 for 20 steps, stabilising at a precision of 0.86 and a recall of 0.86.

5.2.2.4 CNN on HP Z800 server

As only the CNN was optimised into an intermediate representation using OpenVINO,
it was the only network run on the FPGA. To provide grounds for comparison, the
Keras CNN implementation was run on the HP Z800 workstation to reduce the runtime
impact of having different CPUss when comparing the OpenVINO results with the

64 CHAPTER 5. RESULTS

Figure 5.7: Precision and recall curve for CNN with thresholding from 1.00 to 0.00 with
0.05 decrements per step

Keras results. Running on the Z800 server, the network had an average runtime of
22ms and a median time of 2.5ms.

5.3 Neural network acceleration using OpenVINO

Initially, the network was optimised using the Model Optimiser with a precision of
32-bit floating point. After getting results, the network was optimised again with a
precision of 16-bit floating point for further optimised FPGA deployment.

5.3.1 On CPU

The optimised model was run on the workstation CPU, achieving an average runtime
of 7.4ms and a median of 7.4ms. The confusion matrix for the CPU inferred network
is shown in figure 5.12, while figure 5.13 shows the execution times for the network.

5.3. NEURAL NETWORK ACCELERATION USING OPENVINO 65

Figure 5.8: Confusion matrix for KWS LSTM for 12 words with no thresholding

The network achieved a classification accuracy of 84.6%.

5.3.2 On FPGA

On FPGA, the model was run using four combinations of model and bitstream preci-
sions: single-precision and half-precision floating point models and 16-bit and 11-bit
FPGA bitstreams. The network was deployed in "Hetero" mode, accelerating all convo-
lutional and pooling layers on the FPGA while the dense-layers were run on the CPU.
Table 5.3 shows the minimum, median and average execution times for the different
configurations. Figure 5.14 shows the execution times for target- and bitstream com-
binations, while table A.1 shows the execution times for each layer for the CPU and
FPGA implementations. The confusion matrices for the FPGA inferences are included
in appendix C.

66 CHAPTER 5. RESULTS

Figure 5.9: Precision and recall curve for KWS LSTM network with thresholding from
1.00 to 0.00 with 0.05 decrements per step

Table 5.3: Execution time minimums, medians and averages for OpenVINO accelerated
CNNs on different inference targets and precisions

Device Precision Bitstream Minimum [ms] Median [ms] Average [ms]

CPU FP32 - 7.00 7.41 7.45
FPGA FP32 FP16 5.50 6.17 6.46
FPGA FP32 FP11 3.16 3.70 3.97
FPGA FP16 FP16 3.59 4.08 4.44
FPGA FP16 FP11 3.13 3.69 3.96

5.3. NEURAL NETWORK ACCELERATION USING OPENVINO 67

Figure 5.10: Confusion matrix for KWS att-LSTM network for 12 words with no
thresholding

Table 5.4: Classification accuracies for OpenVINO accelerated CNNs on different
inference targets and precisions

Device Precision Bitstream Accuracy [%]

CPU FP32 - 84.8
FPGA FP32 FP16 84.8
FPGA FP32 FP11 84.5
FPGA FP16 FP16 84.8
FPGA FP16 FP11 84.6

68 CHAPTER 5. RESULTS

Figure 5.11: Precision and recall curve for KWS att-LSTM network with thresholding
from 1.00 to 0.00 with 0.05 decrements per step

5.3. NEURAL NETWORK ACCELERATION USING OPENVINO 69

Figure 5.12: Confusion matrix for single-precision CPU-inferred KWS CNN

70 CHAPTER 5. RESULTS

Figure 5.13: Runtimes for single-precision CPU-inferred KWS CNN

5.3. NEURAL NETWORK ACCELERATION USING OPENVINO 71

Figure 5.14: Execution times for different precision CPU/FPGA-deployed KWS CNNs
using OpenVINO

72 CHAPTER 5. RESULTS

Chapter 6

Discussion

This chapter investigates and discusses the results from the previous chapter. Along
with pre-processing, neural networks and FPGA acceleration results, the chapter also
discusses the programs and tools used.

6.1 Pre-processing

6.1.1 Comparing C++ and HLS

Figures 4.1 and 5.2 reveal that the power data generated by the two implementations,
illustrated in figure 5.1, differs too much to produce accurate results. Figure 5.1
does show some similarities in the normalised power data calculated by the two
implementations; however, the result differs in several areas, most notably peak values.
The cause of this is the resolution of the data types. Figure 5.1 shows normalised values
close to zero, while in actuality the C++-values are greater than 0, leading to more
detailed power data and consequentially more detailed log-mel-filterbank energies.
This result is somewhat predictable, as half-precision floating point is inherently less
accurate than double-precision floating point. This inaccuracy, as a result of lower
resolution, is confirmed when running the ported C++-code in Vivado HLS with an FFT

73

74 CHAPTER 6. DISCUSSION

resolution of 16-bit, achieving an average accuracy of 21%. Figure 5.1 shows that the
half-precision FPGA implementation is able to calculate a rough but somewhat correct
FFT, indicating that it can be used for less precise tasks. The 32-bit FFT implementation
was not able to run on the FPGA, but the simulated results indicate that single-precision
floating point is sufficient for the task of speech pre-processing, achieving an average
calculation accuracy of 99.86%.

Analysing the execution times in table 5.1, it is clear that the FFT is the most
time-consuming part of the computation, comprising 88% of the total execution time.
The 16-bit FFT implementation is 166 times faster by comparison, though highly
inaccurate. No results were achieved for the 32-bit FPGA-implementation; however,
an execution time can be estimated based on the synthesis results of the attempted
32-bit port of the C++ code, the 32-bit modification of 16-bit Vivado example code,
and the execution time results of the 16-bit implementation. Synthesising the ported
C++-code with the FFT-function as the top function, with a resolution of 16 bits, results
in an estimated clock cycle interval equal to the 32-bit implementation. Based on this,
it can be assumed that the execution latency and interval of the FFT IP-core, using
the Radix-2 architecture, is similar for 16-bit and 32-bit precisions. Changing the
architecture of the FFT IP-core from Radix-2 to streaming, which is the architecture
used for the 16-bit example, results in an execution interval and latency of 3196 clock
cycles, half of the cycles spent on the Radix-2-architecture. Adjusting the FFT-length
to 512 for the same code results in an execution interval and latency of 1654 clock
cycles.

Based on the assumptions and results above, the execution time of the Vivado
HLS-port of the C++-code can be roughly estimated to be four times that of the 16-bit
example, resulting in an estimated execution time of 16ms. This is faster than the
estimate provided during synthesis, which was 25.30ms. Realistically, the execution
time estimated during synthesis would be lower than the implemented speed due to
the overhead associated with transferring data to and from the FPGA from the CPU.
This would be negligible compared to the time spent performing the FFT as the PS is
located on the same chip as the FPGA. For comparison’s sake, the estimated time spent
performing the custom pre-processing can be rounded up to 26ms. This would result

6.1. PRE-PROCESSING 75

in a speedup by a factor of 24 when compared to the PS implementation. Taking into
account the whole pre-processing, the estimated execution time would be 111.5ms,
resulting in a total pre-processing speedup by a factor of 6.4.

Examining table 5.2, the synthesised code utilises 29% and 39% of DSP and Lookup
Table (LUT) resources on the FPGA. Though no statistics are available for the resource
utilisation of the DPU core used by DNNDK, it most likely uses a substantial amount of
DSP and LUT resources as they are a source of significant speedup when compared to
flip-flops. As such, running DNNDK and pre-processing on an Ultra96 is unlikely, most
likely requiring a larger DNNDK-compatible development kit such as the ZCU102
which has a larger and more powerful FPGA.

The neural networks used, and the ones from McMahan et al. [15], did not use
MFCC values for input. This was, according to McMahan et al. [15], due to the "high
noise intolerance of MFCC features" [15]. de Andrade et al. [17] did not specify any
reason for not using MFCC values as the input for their networks, but it was most likely
for the same reasons. This affects pre-processing runtime, as MFCC values requires
performing several DCTs. The FFT IP core from Xilinx has a runtime re-configurable
transform length, and could be reduced to the required DCT length. These transforms
would then most likely be computed using the FFT module instantiated on the FPGA,
which would increase pre-processing time.

6.1.2 Using Vivado HLS for FPGA acceleration

Using Vivado HLS for FPGA acceleration of C/C++-code is a seemingly simple task at
first glance, with examples and several compatible libraries to help port code. When
problems occur, however, debugging information is scarce, error messages are vague,
and pragma directives can be confusing; though Xilinx does have several user guides
to help explain how the program works. Due to this, the initial learning phase is
difficult unless supported by an Field Applications Engineer (FAE). The integration
process, using Vivado and Vivado SDK to run the program on FPGA and PS, provides
less debug information than Vivado HLS, making debugging difficult, and due to the
complex nature of the interfacing, a difficult task. The IP Block Design tool helps

76 CHAPTER 6. DISCUSSION

alleviate some of the complexity through connection automation, but this also makes
it more difficult to debug.

6.2 Neural networks

6.2.1 Accuracy evaluation

Comparing the three networks, it’s initially clear that the att-LSTM network has the
highest accuracy, achieving an overall classification accuracy of 86.5%, though not
as high as the 96.9% achieved by de Andrade et al. [17]. The achieved score was not
significantly higher than the 84.3% achieved by the CNN, and even more surprisingly,
the LSTM network performed worse overall than the CNN, with a classification accu-
racy of 83.1%. Figures 5.7, 5.9 and 5.11 show that the att-LSTM curve has the highest
and most linear degradation of classification precision as the threshold is decreased
and recall increases. The LSTM network declines the quickest, losing 6% of precision
between thresholds of 1.00 and 0.75, while the CNN is similar to the att-LSTM-network,
though decreasing quicker.

The precision and recall curves in appendix B also show that the networks are
good at classifying different words. This indicates that for a network requiring high
precision and recall, an ensemble of neural networks can be used; however, this is
more computationally intensive.

The confusion matrices for the networks, figures 5.6, 5.8 and 5.10, show that the
most challenging words to classify are "go" and "on", with "go" being the most difficult,
being classified as "no" for at least 7 classifications. This is not surprising, as both
words have similar duration and sound. Interestingly, "no" is not misclassified as "go"
a comparable number of times, instead being classified as "down". Figures B.2 and
B.10 reveal that the precision sharply declines as the threshold is decreased for "no",
indicating that the classification confidence is low for this word. This can indicate
that more training is required to increase the accuracy or that the training data is too
similar, not capturing the differences separating the two words. This can possibly be
solved by applying high-pass filtering to the audio samples during pre-processing to

6.2. NEURAL NETWORKS 77

decrease the impact of the low-frequency sounds of the "o" in "no" and "go".

6.2.2 Runtime comparison

Comparing the runtimes from chapters 5.2.2.1, 5.2.2.2 and 5.2.2.3 for CPU, it is clear that
non-GPU accelerated deployment of LSTM networks comes at a significant decrease
in throughput. The median classification time of the CNN was roughly 226 times
shorter than the LSTM network; however for GPU-accelerated LSTM layers the CNN
classification time was roughly 10 times shorter. Still, this is a considerable difference
for CPU-deployed networks. The difference might be a result of memory speed
differences, as GDDR-ram used mainly by the GPU has higher bandwidth and wider
busses than the DDR-ram used mainly by the CPU.

6.2.3 Using Keras for neural network development

Designing and developing neural networks using Keras is simple but powerful. Net-
works are designed by specifying layers, and connections are automatically made
between the layers. Each layer features several adjustable parameters, and are all
documented in Keras’ user guide as well as other online resources. Due to its simplic-
ity, Keras has been widely adopted by researchers and hobbyists, resulting in readily
available information online on user forums and blogs. As Keras allows for several
backends to be used, the generated networks can be deployed on different targets or
in different situations. MXNet, for instance, uses fewer resources than TensorFlow,
making it more ideal for more extensive networks requiring more resources, while
TensorFlow can be used for smaller networks on platforms such as Google’s Coral
edge-AI device.

78 CHAPTER 6. DISCUSSION

6.3 FPGA acceleration

6.3.1 OpenVINO accuracy

Figures 5.6, 5.12 and the figures in appendix C reveal that the results are practically
the same, with small variations for the words "off", "on". Table 5.4 confirms this, as the
maximum accuracy deviation from the CPU implementation is 0.03%.

6.3.2 OpenVINO runtimes

To serve as a basis for evaluating the speedup provided by FPGA inference, the CNNwas
run on the Z800 workstation with CPU as the target device. As shown in chapter 5.2.2.4,
the network was able to achieve a median classification time of 2.05ms, while the
optimised network using OpenVINO achieved a median classification time of 7.45ms.
Comparing the results with table 5.3, the Keras CPU implementation was quicker than
all FPGA variations. This is surprising, as one would expect the combination of the
optimisations performed by the Model Optimiser in addition to the parallel possibilities
of the FPGA to make the runtime faster.

The runtimes in table A.1 reveal why the execution times are greater: The dense1-
layer, arguably the most computationally intensive layer in the network, is run on the
CPU. In addition, most of the time spent during FPGA processing is spent on transfer
to and from the FPGA. The table clearly illustrates the benefits of FPGA acceleration
when comparing the convolutional layers. As all convolutional layers are run on the
FPGA, the execution time is roughly improved by a factor of 6.5 for all FPGA and
precision configurations. All FPGA execution times are relatively similar, further
strengthening the assumption in chapter 6.1.1 that FPGA execution times are similar
for half- and single-precision floating point computations.

Examining figure 5.14 reveals relatively large spikes in the execution time, some-
times increasing the execution time by a factor of 3.5. The reason for this might be low
system priority; however, it seems that the spikes occur roughly at the same iteration
for all curves, such as iteration 20, 76 and 85. This might indicate a buffer overload
when transferring to and from the FPGA. Comparing the execution times for CPU and

6.3. FPGA ACCELERATION 79

Figure 6.1: Classification times across 100 iterations with CPU and FPGA as inference
targets using OpenVINO

FPGA in figure 6.1 reveals that the CPU has no indicating, further strengthening this
theory, though figure 5.13 shows some initial spiking in execution time, though not as
severe as the FPGA spikes.

6.3.3 Using Xilinx DNNDK for FPGA acceleration

The Xilinx DNNDK SDK is the most recent of the two SDKs, something that becomes
apparent when developing with it. There is little information online, and only one user
guide available in addition to some examples on Github, and this makes it difficult to
program for once the target application deviates from the examples included with the
SDK. In the case of speech recognition, the major flaw limiting the adoption of Xilinx
DNNDK is the quantisation step, as the input data methods available were designed
primarily for image recognition. Still, speech recognition might be possible at the
current state of the SDK, as the HDF5-input format might be used to input arbitrary

80 CHAPTER 6. DISCUSSION

data into the quantisation program. Recently, Xilinx added support for TensorFlow
networks to the SDK, which might also make it possible to use DNNDK for non-image
recognition purposes. In addition, a separate Xilinx AI SDK is included along with
the newest version, which simplifies development and integration of DNNDK with
Petalinux, the OS running on the Ultra96.

Most of these problems can be categorised as early-adoption problems, as more
documentation and user guides will most likely appear once users start using the
program. Having the SDK compatible with the Ultra96 reduces the entry cost for
FPGA acceleration for consumers, increasing the chance of user adoption. In addition
to entry cost, DNNDK has an advantage over OpenVINO as it does not use all the
resources available on the FPGA, allowing for custom HDL code to be run alongside it.

6.3.4 Using OpenVINO for FPGA acceleration

Compared to DNNDK, OpenVINO is a more mature and well-documented FPGA
acceleration toolkit. Documentation from Intel’s end is good, and it has a sizeable
following resulting in active forums and blogs which can serve as helpful resources
when programming with the SDK. The program flow is relatively simple to follow,
and the compatibility with several neural network frameworks makes it versatile.
The possibility to run the same accelerated program with the Inference Engine on
any target device, by changing one parameter, makes it simple to test and verify the
functionality of the program. The quantisation is also optional with several options
available, with 8-bit integer precision quantisation performed similarly to DNNDK
through verification.

6.4 Error sources

6.4.1 Classification accuracy

As mentioned in chapter 6.2.1, the trained networks were not able to reproduce the
classification accuracies achieved by de Andrade et al. There are several error sources
which might contribute to this lowered accuracy, such as incorrect training data. As

6.4. ERROR SOURCES 81

mentioned in chapter 4.2.2, the input samples from the .wav-file were normalised to ±
1 and then divided by 512, further narrowing the dynamic range, which might cause
inaccurate FFT results. This seemingly small error is propagated through the rest of
the pre-processing, possibly creating a larger error as a result.

Differences in pre-processing are, arguably, the cause of the different classification
accuracies. de Andrade et al. [17] used the Python-library Kapre [61] to perform the
pre-processing, which might perform additional processing on the input signal such
as pre-emphasising or filtering.

During training, an early stopper was used to avoid unnecessary training epochs
due to stagnated or lowered classification accuracy. The tolerance used during the
training of the networks in this report might have been too strict, stopping the training
process when the classification accuracy reached a local minimum instead of the global
minimum.

6.4.2 Classification times

As shown in figure 5.14, the classification times achieved using OpenVINO varied
significantly at times, spiking at nearly 15ms. These deviations are most likely a
result of process priorities. As the operating system used did not feature any real-time
capabilities, OpenVINO had lower priority than the operating system, resulting in it
being halted when OS tasks such as garbage removal were due to be performed. On an
edge-AI device, the OS would most likely be an Real-Time Operating System (RTOS),
ensuring more predictable classification times.

In addition to priority, the hardware on the system provided limitations on the
classification times. OpenVINO has recommended system requirements of a 6th or
8th generation Intel CPU, and the Intel Arria 10 GX development kit requires a PCI
Express Gen 3.0 x8 port. The Z800 workstation has neither of these: The CPU was a
2nd generation Intel CPU, and the motherboard used in the system had a PCI Express
Gen 1.0 x8 port. Despite these limitations, OpenVINO ran successfully on the system,
though most likely at limited capacity. The 6th generation and onward support the
AVX2 instruction set extensions, which OpenVINO uses when targeting the CPU for

82 CHAPTER 6. DISCUSSION

inference. In regards to the PCI Express port, the generation difference represents a
speed difference of a factor of 4, with Gen 1.0 at 2Gbit s−1 and Gen 3.0 at 8Gbit s−1.
Examining table A.1 strengthens the theory that transfer speed is a limiting factor, as
roughly 2/3 of the processing time on FPGA is spent on transfer to and from the FPGA.

6.5 Further work

6.5.1 FPGA acceleration of pre-processing

As no actual results were achieved for the FPGA acceleration of the single-precision
pre-processing on the Ultra96, a next step would be to continue working on this
example. This would, initially, involve fixing the communication between the FPGA
and PS, as this seemed to be the problem during the initial implementation.

6.5.2 FPGA acceleration of the whole CNN using OpenVINO

Only part of the KWS CNN was accelerated on the FPGA using OpenVINO, most
likely due to the reshape layer in the network. Replacing this layer, while maintaining
the same functionality, could result in all of the network being accelerated on the
FPGA. This would accelerate the Dense-layers, possibly resulting in a classification
time lower than the Keras implementation. This would also give a more realistic result
in terms of implementation, as an embedded system using an FPGA for neural network
acceleration would likely not have an Intel CPU.

6.5.3 FPGA acceleration using DNNDK

In addition to HLS, no results were achieved for acceleration using DNNDK. The
starting point would be to use the quantiser with a .hdf5-layer in the converted
Caffe-model to load data during quantisation. An alternative would be to explore the
possibilities when using a TensorFlow-model as support for TensorFlow was added in
release 3.0 of the SDK.

6.5. FURTHER WORK 83

If image data was the only method of loading data during the quantisation process,
different image formats and representations could be used to see if one is maintains
the data resolution as required. One of the limitations with image data is the reduced
precision, as most image formats store data as 3-channel RGB data, with 8 bits of
resolution for each colour. As the log-mel-filterbank energies calculated during pre-
processing are negative and positive, 8-bit unsigned data used by some image formats
cannot correctly represent the pre-processed data.

If accelerationwas successful, furtherwork could be done tomake the pre-processing
work on the FPGA to run alongside the DPU on the Ultra96.

6.5.4 FPGA acceleration of LSTM networks

As only the CNN was accelerated using OpenVINO, and LSTM networks were not
supported by DNNDK, the LSTM network could be re-written using MXNet utilising
only supported MXNet-layers. Though the network would not be a replica, the main
functionality might be kept and reasonable classification results could be achieved.

84 CHAPTER 6. DISCUSSION

Chapter 7

Conclusion

As the results and discussion show, FPGA acceleration of C/C++-code for speech
recognition pre-processing code is possible, albeit somewhat difficult when the goal is
to create code communicating with the FPGA and the PS. The half-precision FFT-code
was able to run properly but was too inaccurate to provide useable data. The single-
precision FFT-code was promising, with an average computation accuracy of 99.86
when compared with the double-precision C++-implementation, with an estimated
runtime of 26ms. Given more time and help from an FAE at Xilinx, the code could be
integrated successfully on the Ultra96, though this illustrates a problem with using
Vivado HLS and the associated tools to perform intra-MPSoC communication between
the FPGA and PS: It is difficult when not in direct contact with support, as the freely
available resources are not sufficient to quickly develop the desired application. Still,
if the code is successfully deployed on the Ultra96, it will most likely not be able to
run alongside the DNNDK DPU as the DPU most likely uses most if the resources on
the device, leaving little to no resources for the pre-processing to use.

The three neural networks were trained successfully using the pre-processed data;
however they were not able to achieve the same accuracies as achieved by de Andrade
et al. [17]. This might have been a result of different input data, and also illustrates
that neural network accuracy is severely dependent on input data. Still, the networks

85

86 CHAPTER 7. CONCLUSION

achieved reasonably good results, though somewhat surprising. The regular LSTM
network performed worse than the CNN, while also having longer classification times.
The classification times also illustrate a problem with LSTM layers: Though capable of
achieving results better than CNNs, they require substantially more computational
power. This was proved when running the LSTM layers on the CPU, resulting in
a median classification time 21 times higher than the GPU-accelerated version, and
226 times higher than the CPU deployed CNN. While LSTM networks are promising
for speech recognition purposes, CNNs are not far behind in terms of classification
accuracy while still ahead in terms of classification speed.

While the three networks were trained and deployed on a CPU and GPU success-
fully, only the CNNs was able to be accelerated on an FPGA. The results achieved
using FPGA acceleration were worse than the ones achieved using a relatively old
CPU, but the results were most likely limited by outdated hardware. Comparing layer-
by-layer, the FPGA showed promising results, and if the network can be adjusted to
run primarily on the FPGA, even better results can be achieved.

Acceleration of LSTM networks was limited by the layers supported by Open-
VINO, while acceleration using DNNDK was limited by the quantisation requirements.
OpenVINO reveals itself as a more mature platform with better documentation and
framework support, but DNNDK shows promising results despite its limitations. As
more and more users adopt DNNDK for FPGA acceleration of neural networks, and Xil-
inx creates more user guides and examples, DNNDK will become a powerful contender
to OpenVINO.

The goal of this thesis was to examine the FPGA acceleration possibilities for three
speech recognition neural networks, and the associated pre-processing code, using
acceleration toolkits such as Intel OpenVINO, Xilinx DNNDK and Vivado HLS. This is
possible, achieving reasonable results without requiring any HDL to be programmed,
but somewhat difficult when relying mostly on freely available resources with little
support from the software manufacturers. Still, the results are promising, especially
considering the focus the developers have on improving the tools and programs in
question, in addition to the sinking cost of entry, with the Ultra96 leading the charge
at $250.

References

[1] A. Samuel, “Some studies in machine learning using the game of checkers,” IBM
Journal of Research and Development, vol. 3, 1959.

[2] A. M. TURING, “I.—COMPUTING MACHINERY AND INTELLIGENCE,” Mind,
vol. LIX, no. 236, pp. 433–460, Oct. 1950. eprint: http://oup.prod.sis.lan/
mind/article-pdf/LIX/236/433/9866119/433.pdf. [Online]. Available:
https://doi.org/10.1093/mind/LIX.236.433.

[3] A. L. Samuel, “Some studies in machine learning using the game of checkers,”
IBM Journal, vol. 3, no. 3, Jul. 1959.

[4] S. J. Lighthill and N. S. Sutherland, Artificial Intelligence: a paper symposium.
Science Research Council, 1973.

[5] R. Collobert, S. Bengio, and J. Mariéthoz, “Torch: A modular machine learning
software library,” IDIAP, 1920 Martigny, Switzerland, Research report 02-46,
2002.

[6] Google Brain Team, Tensorflow, 2017. [Online]. Available: https://www.tensorflow.
org/.

87

http://oup.prod.sis.lan/mind/article-pdf/LIX/236/433/9866119/433.pdf
http://oup.prod.sis.lan/mind/article-pdf/LIX/236/433/9866119/433.pdf
https://doi.org/10.1093/mind/LIX.236.433
https://www.tensorflow.org/
https://www.tensorflow.org/

88 REFERENCES

[7] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,”
arXiv preprint arXiv:1408.5093, 2014.

[8] K. H. Davis, R. Biddulph, and S. Balashek, “Automatic recognition of spoken
digits,” The Journal of the Acoustical Society of America, vol. 24, no. 6, pp. 637–642,
1952.

[9] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, “An introduction to the applica-
tion of the theory of probabilistic functions of a markov process to automatic
speech recognition,” The Bell System Technical Journal, vol. 62, no. 4, pp. 1035–
1074, Apr. 1983.

[10] S. K. Das and M. A. Picheny, “Issues in practical large vocabulary isolated
word recognition: The ibm tangora system,” in Automatic Speech and Speaker
Recognition: Advanced Topics, C.-H. Lee, F. K. Soong, and K. K. Paliwal, Eds.
Boston, MA: Springer US, 1996, pp. 457–479. [Online]. Available: https://doi.
org/10.1007/978-1-4613-1367-0_19.

[11] J. G. Wilpon and D. B. Roe, “At&t telephone network applications of speech
recognition,” in Proceedings from the COST232 Workshop, Nov. 1992.

[12] A. L. Gorin, G. Riccardi, and J. H. Wright, “How may i help you?” Speech com-
munication, vol. 23, no. 1-2, pp. 113–127, 1997.

[13] P. Warden, “Speech commands: A dataset for limited-vocabulary speech recog-
nition,” arXiv preprint arXiv:1804.03209, 2018.

[14] G. Brain, Tensorflow speech recognition challenge, 2018. [Online]. Available:
https://www.kaggle.com/c/tensorflow-speech-recognition-challenge/.

[15] B. McMahan and D. Rao, “Listening to the world improves speech command
recognition,” CoRR, vol. abs/1710.08377, 2017. arXiv: 1710.08377. [Online].
Available: http://arxiv.org/abs/1710.08377.

https://doi.org/10.1007/978-1-4613-1367-0_19
https://doi.org/10.1007/978-1-4613-1367-0_19
https://www.kaggle.com/c/tensorflow-speech-recognition-challenge/
http://arxiv.org/abs/1710.08377
http://arxiv.org/abs/1710.08377

REFERENCES 89

[16] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”
arXiv preprint arXiv:1511.07122, 2015.

[17] D. C. de Andrade, S. Leo, M. L. D. S. Viana, and C. Bernkopf, “A neural attention
model for speech command recognition,” arXiv preprint arXiv:1808.08929, 2018.

[18] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in neural information
processing systems, 2017, pp. 5998–6008.

[20] A. Nilsen, K. Svarstad, and F. Bochud, “Fpga acceleration of neural network
voice recognition,” Semester project, Norwegian University of Science and Tech-
nology, 2018. [Online]. Available: https://github.com/andernil/OpenVINO_
project/blob/master/Hey_Spark_OpenVINO/Project_Thesis_Voice_

Recognition_Cisco_AN.pdf.

[21] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of deep con-
volutional networks,” in International Conference on Machine Learning, 2016,
pp. 2849–2858.

[22] P. Colangelo, N. Nasiri, A. Mishra, E. Nurvitadhi, M. Margala, and K. Nealis,
“Exploration of Low Numeric Precision Deep Learning Inference Using Intel
FPGAs,” arXiv preprint arXiv:1806.11547, 2018.

[23] Khronos Group, Opencl, 2008. [Online]. Available: https://www.khronos.org/
opencl/.

[24] Community, OpenCL Caffe, 2018. [Online]. Available: https://github.com/
BVLC/caffe/tree/opencl.

https://github.com/andernil/OpenVINO_project/blob/master/Hey_Spark_OpenVINO/Project_Thesis_Voice_Recognition_Cisco_AN.pdf
https://github.com/andernil/OpenVINO_project/blob/master/Hey_Spark_OpenVINO/Project_Thesis_Voice_Recognition_Cisco_AN.pdf
https://github.com/andernil/OpenVINO_project/blob/master/Hey_Spark_OpenVINO/Project_Thesis_Voice_Recognition_Cisco_AN.pdf
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://github.com/BVLC/caffe/tree/opencl
https://github.com/BVLC/caffe/tree/opencl

90 REFERENCES

[25] Intel, Computer Vision Hardware, Accessed 2018-12-09. [Online]. Available:
https://software.intel.com/en-us/openvino-toolkit/hardware.

[26] S. Zeng, K. Guo, S. Fang, J. Kang, D. Xie, Y. Shan, Y. Wang, and H. Yang, “An
efficient reconfigurable framework for general purpose cnn-rnn models on
fpgas,” in 2018 IEEE 23rd International Conference on Digital Signal Processing
(DSP), Nov. 2018, pp. 1–5.

[27] S. Herculano-Houzel, “The human brain in numbers: A linearly scaled-up pri-
mate brain,” Frontiers in Human Neuroscience, vol. 3, p. 31, 2009. [Online]. Avail-
able: https://www.frontiersin.org/article/10.3389/neuro.09.031.
2009.

[28] F. Rosenblatt, “The perceptron: A probabilistic model for information storage
and organization in the brain,” Psychological Review, vol. 65, no. 6, 1958.

[29] S. Grossberg, “Contour Enhancement, Short Term Memory, and Constancies in
Reverberating Neural Networks,” Studies in Applied Mathematics, vol. 52, no. 3,
pp. 213–257, [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/sapm1973523213.

[30] A. Perez-Uribe, “Artificial Neural Networks: Algorithms and Hardware Imple-
mentation,” in Bioinspired Computing Machines: Towards Novel Computational
Architectures, D. Mange andM. Tomassini, Eds. PPUR Press, 1998, ch. 11, pp. 289–
316.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing
Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.,
Curran Associates, Inc., 2012, pp. 1097–1105. [Online]. Available: http://
papers.nips.cc/paper/4824- imagenet- classification- with- deep-

convolutional-neural-networks.pdf.

https://software.intel.com/en-us/openvino-toolkit/hardware
https://www.frontiersin.org/article/10.3389/neuro.09.031.2009
https://www.frontiersin.org/article/10.3389/neuro.09.031.2009
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm1973523213
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm1973523213
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

REFERENCES 91

[32] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” CoRR, vol. abs/1502.03167, 2015. arXiv:
1502.03167. [Online]. Available: http://arxiv.org/abs/1502.03167.

[33] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[34] C. Olah, Understanding lstm networks, 2015. [Online]. Available: http://colah.
github.io/posts/2015-08-Understanding-LSTMs/.

[35] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE
Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[36] Incfk8, Structural diagrams of unidirectional and bidirectional recurrent neural
networks, accessed 2019-06-01, 2015. [Online]. Available: https://commons.
wikimedia.org/wiki/File:Structural_diagrams_of_unidirectional_

and_bidirectional_recurrent_neural_networks.png.

[37] J. Cho, K. Lee, E. Shin, G. Choy, and S. Do, “Medical image deep learning with
hospital PACS dataset,” CoRR, vol. abs/1511.06348, 2015. arXiv: 1511.06348.
[Online]. Available: http://arxiv.org/abs/1511.06348.

[38] A. Alwosheel, S. van Cranenburgh, and C. G. Chorus, “Is your dataset big
enough? sample size requirements when using artificial neural networks for
discrete choice analysis,” Journal of Choice Modelling, vol. 28, pp. 167–182, 2018.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1755534518300058.

[39] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer,
“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model
size,” CoRR, vol. abs/1602.07360, 2016. arXiv: 1602.07360. [Online]. Available:
http://arxiv.org/abs/1602.07360.

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://commons.wikimedia.org/wiki/File:Structural_diagrams_of_unidirectional_and_bidirectional_recurrent_neural_networks.png
https://commons.wikimedia.org/wiki/File:Structural_diagrams_of_unidirectional_and_bidirectional_recurrent_neural_networks.png
https://commons.wikimedia.org/wiki/File:Structural_diagrams_of_unidirectional_and_bidirectional_recurrent_neural_networks.png
http://arxiv.org/abs/1511.06348
http://arxiv.org/abs/1511.06348
http://www.sciencedirect.com/science/article/pii/S1755534518300058
http://www.sciencedirect.com/science/article/pii/S1755534518300058
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360

92 REFERENCES

[40] H. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and
R. M. Summers, “Deep convolutional neural networks for computer-aided de-
tection: Cnn architectures, dataset characteristics and transfer learning,” IEEE
Transactions on Medical Imaging, vol. 35, no. 5, pp. 1285–1298, May 2016.

[41] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” CoRR, vol. abs/1506.02640, 2015. arXiv: 1506.
02640. [Online]. Available: http://arxiv.org/abs/1506.02640.

[42] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory based recurrent
neural network architectures for large vocabulary speech recognition,” CoRR,
vol. abs/1402.1128, 2014. arXiv: 1402.1128. [Online]. Available: http://arxiv.
org/abs/1402.1128.

[43] R. Reed, “Pruning algorithms-a survey,” IEEE Transactions on Neural Networks,
vol. 4, no. 5, pp. 740–747, Sep. 1993.

[44] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for
efficient convnets,” CoRR, vol. abs/1608.08710, 2016. arXiv: 1608.08710. [Online].
Available: http://arxiv.org/abs/1608.08710.

[45] M. C. McFarland, A. C. Parker, and R. Camposano, “Tutorial on high-level
synthesis,” in Proceedings of the 25th ACM/IEEE Design Automation Conference,
IEEE Computer Society Press, 1988, pp. 330–336.

[46] G. Martin and G. Smith, “High-level synthesis: Past, present, and future,” IEEE
Design Test of Computers, vol. 26, no. 4, pp. 18–25, Jul. 2009.

[47] D. Palaz, M. Magimai.-Doss, and R. Collobert, “Convolutional neural networks-
based continuous speech recognition using raw speech signal,” in 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr.
2015, pp. 4295–4299.

http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1402.1128
http://arxiv.org/abs/1402.1128
http://arxiv.org/abs/1402.1128
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1608.08710

REFERENCES 93

[48] A. Graves, N. Jaitly, and A. Mohamed, “Hybrid speech recognition with deep
bidirectional lstm,” in 2013 IEEE Workshop on Automatic Speech Recognition and
Understanding, Dec. 2013, pp. 273–278.

[49] Terencehonles, Hidden markov model, accessed 2019-04-05, 2009. [Online]. Avail-
able: https://commons.wikimedia.org/wiki/File:HMMGraph.svg.

[50] C. S. Burrus, Fast Fourier Transforms. Burrus-Williamson, 2008, ch. 11. [Online].
Available: https://cnx.org/contents/gua6b7go@22.1:ulXtQbN7@15/
Implementing-FFTs-in-Practice.

[51] J. W. Picone, “Signal modeling techniques in speech recognition,” Proceedings of
the IEEE, vol. 81, no. 9, pp. 1215–1247, Sep. 1993.

[52] O. Niemitalo, Window function and frequency response - hamming (alpha =
0.53836, n = 0...n), accessed 2019-04-07, 2013. [Online]. Available: https://
commons.wikimedia.org/wiki/File:Window_function_and_frequency_

response_-_Hamming_(alpha_%3D_0.53836,_n_%3D_0...N).svg.

[53] S. S. Stevens, J. Volkmann, and E. B. Newman, “A scale for the measurement
of the psychological magnitude pitch,” The Journal of the Acoustical Society of
America, vol. 8, no. 3, pp. 185–190, 1937.

[54] J. Makhoul and L. Cosell, “Lpcw: An lpc vocoder with linear predictive spectral
warping,” in ICASSP ’76. IEEE International Conference on Acoustics, Speech, and
Signal Processing, vol. 1, Apr. 1976, pp. 466–469.

[55] Mel frequency cepstral coefficient (mfcc) tutorial, accessed 2019-05-09. [Online].
Available: http://practicalcryptography.com/miscellaneous/machine-
learning/guide-mel-frequency-cepstral-coefficients-mfccs/.

[56] UG871 Vivado Design Suite Tutorial - High-Level Synthesis, v2018.3, Xilinx, Dec.
2018.

https://commons.wikimedia.org/wiki/File:HMMGraph.svg
https://cnx.org/contents/gua6b7go@22.1:ulXtQbN7@15/Implementing-FFTs-in-Practice
https://cnx.org/contents/gua6b7go@22.1:ulXtQbN7@15/Implementing-FFTs-in-Practice
https://commons.wikimedia.org/wiki/File:Window_function_and_frequency_response_-_Hamming_(alpha_%3D_0.53836,_n_%3D_0...N).svg
https://commons.wikimedia.org/wiki/File:Window_function_and_frequency_response_-_Hamming_(alpha_%3D_0.53836,_n_%3D_0...N).svg
https://commons.wikimedia.org/wiki/File:Window_function_and_frequency_response_-_Hamming_(alpha_%3D_0.53836,_n_%3D_0...N).svg
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/

94 REFERENCES

[57] H. Fayek, Speech processing for machine learning: Filter banks, mel-frequency
cepstral coefficients (mfccs) and what’s in-between, accessed 2019-05-09, 2016.
[Online]. Available: https://haythamfayek.com/2016/04/21/speech-
processing-for-machine-learning.html.

[58] UG902 Vivado Design Suite User Guide - High-Level Synthesis, v2018.3, Xilinx,
Dec. 2018.

[59] PG109 LogiCORE IP Product Guide - Fast Fourier Transform v9.0, Xilinx, Oct. 2017.

[60] Install intel® distribution of openvino™ toolkit for linuxwith fpga support, accessed
2019-05-24, 2019. [Online]. Available: https://docs.openvinotoolkit.org/
2019_R1.01/_docs_install_guides_installing_openvino_linux_fpga.

html.

[61] K. Choi, D. Joo, and J. Kim, “Kapre: On-gpu audio preprocessing layers for
a quick implementation of deep neural network models with keras,” CoRR,
vol. abs/1706.05781, 2017. arXiv: 1706.05781. [Online]. Available: http://
arxiv.org/abs/1706.05781.

https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
https://docs.openvinotoolkit.org/2019_R1.01/_docs_install_guides_installing_openvino_linux_fpga.html
https://docs.openvinotoolkit.org/2019_R1.01/_docs_install_guides_installing_openvino_linux_fpga.html
https://docs.openvinotoolkit.org/2019_R1.01/_docs_install_guides_installing_openvino_linux_fpga.html
http://arxiv.org/abs/1706.05781
http://arxiv.org/abs/1706.05781
http://arxiv.org/abs/1706.05781

Acronyms

ANN Artificial Neural Network. 11, 17, 18

API Application Programming Interface. 3, 13, 15

ASIC Application Specific Integrated Circuit. 15

att-LSTM Attentive LSTM. iii, v, xiv, xv, 9, 48, 50, 60, 62, 63, 67, 68, 76

BRNN Bidirectional Recurrent Neural Network. xiii, 24

CNN Convolutional Neural Network. iii, v, xii, xiv–xvi, 6, 8, 9, 13–15, 27, 28, 50, 52,
53, 59–61, 63, 64, 66, 67, 69–71, 76–78, 82, 83, 86, 100, 116–119

CPU Central Processing Unit. xii, xv, 1, 3, 10, 12, 13, 31, 40, 46, 49, 50, 55, 58, 63–65,
74, 77–79, 81, 82, 86, 100

DCT Discrete Cosine Transform. 38, 75

DFT Discrete Fourier Transform. xiv, 31–36, 42

DNN Deep Neural Network. 1, 18

DNNDK Deep Neural Network Development Kit. 4, 14, 15, 75, 79, 80, 82, 83, 85, 86

DPU Deep-learning Processor Unit. 15, 75, 83, 85

95

96 Acronyms

DSP Digital Signal Processor. 12, 75

FAE Field Applications Engineer. 75, 85

FFT Fast Fourier Transform. xiv, 12, 16, 31–33, 35, 37, 39–47, 56, 57, 73–75, 81, 85

FPGA Field-Programmable Gate Array. iii–vi, xii, xv, 1–5, 10–13, 15, 29, 31, 39, 40, 44,
46, 50, 52, 55, 56, 58, 59, 63–65, 73–75, 78–80, 82, 83, 85, 86, 100

GPU Graphical Processing Unit. 6, 10, 12, 26, 48, 49, 58, 62, 63, 77, 86

HDL Hardware Description Language. iii, v, 11, 13, 15, 16, 29, 44, 46, 80, 86

HLS High-level Synthesis. iii, xiv, 4, 5, 11, 13, 15–17, 29, 39, 44–46, 75, 82

HMM Hidden Markov Model. xiii, 1, 6, 30–32, 34

IP Intellectual Property. 39, 45

KWS Keyword Spotting. xv, xvi, 2, 3, 7, 10, 65–71, 82, 116–119

LSTM Long Short-Term Memory. iii, v, xiii–xv, 9, 14, 23, 24, 28, 48–50, 53, 60–62, 65,
66, 76, 77, 83, 86

LUT Lookup Table. 75

MAC Multiply–Accumulate Operation. 21, 22

MCU Microcontroller Unit. 1, 11, 15

MFCC Mel-Frequency Cepstrum Coefficient. 11, 31, 37, 38, 75

MPSoC Multi-Processor System-on-Chip. 15, 39, 85

OpenCL Open Computing Language. 12

Acronyms 97

PCM Pulse-Code Modulated. 30

PS Processor System. xiv, 3, 15, 39, 40, 45, 46, 56, 74, 75, 82, 85

RNN Recurrent Neural Network. xiii, 6, 15, 23, 24, 27, 28

RTOS Real-Time Operating System. 81

SDK Software Development Kit. iv, 3, 4, 14, 15, 46, 50, 52, 54, 75, 79, 80, 82

STFT Short-Time Fourier Transform. 32–34, 36

VPU Vision Processing Unit. 12

98 Acronyms

Appendix A

Inference Engine per-layer
execution times

99

100 APPENDIX A. INFERENCE ENGINE PER-LAYER EXECUTION TIMES

Table A.1: Execution times for each layer of the CNN on CPU and single-precision- and
half-precision FPGA. Dashed entry means that the layer was not run on the inference
target

Execution times [us]
CPU FPGA SP FPGA HP

Layer FP32 FP16 FP11 FP16 FP11

Conv2d_1 312 - - - -
Conv2d_2 1397 - - - -
Conv2d_3 2449 - - - -
Preprocessing - 107 117 122 112
To DDR - 675 565 609 634
FPGA Execute time - 693 466 887 520
From DDR - 538 336 304 301
FPGA Post-processing - 0 0 0 0
copy to IE blob - 752 224 253 435
dense1 3338 3023 1436 1615 1550
dense1_activation 10 7 6 6 6
dense2 9 7 7 6 6
dense2_activation 2 2 3 2 2
dense3 3 3 3 3 3
dense3_activation 8 7 7 7 6
max_pooling_2d_1 413 - - - -
max_pooling_2d_2 85 - - - -
max_pooling_2d_3 89 - - - -
max_pooling2d_3_nchw8c_nchw_flatten_1 98 - - - -
Flatten_1 - - - - -
out_dense_3 - - - - -
conv2d_1_activation - - - - -
conv2d_2_activation - - - - -
conv2d_3_activation - - - - -
Total 8207 5814 3170 3814 3575

Appendix B

Precision and recall curves for
the 12 classification words

101

102APPENDIX B. PRECISIONANDRECALLCURVES FORTHE 12 CLASSIFICATIONWORDS

Figure B.1: Precision and recall curve for the word "yes" for all networks

103

Figure B.2: Precision and recall curve for the word "no" for all networks

104APPENDIX B. PRECISIONANDRECALLCURVES FORTHE 12 CLASSIFICATIONWORDS

Figure B.3: Precision and recall curve for the word "up" for all networks

105

Figure B.4: Precision and recall curve for the word "down" for all networks

106APPENDIX B. PRECISIONANDRECALLCURVES FORTHE 12 CLASSIFICATIONWORDS

Figure B.5: Precision and recall curve for the word "left" for all networks

107

Figure B.6: Precision and recall curve for the word "right" for all networks

108APPENDIX B. PRECISIONANDRECALLCURVES FORTHE 12 CLASSIFICATIONWORDS

Figure B.7: Precision and recall curve for the word "on" for all networks

109

Figure B.8: Precision and recall curve for the word "off" for all networks

110APPENDIX B. PRECISIONANDRECALLCURVES FORTHE 12 CLASSIFICATIONWORDS

Figure B.9: Precision and recall curve for the word "stop" for all networks

111

Figure B.10: Precision and recall curve for the word "go" for all networks

112APPENDIX B. PRECISIONANDRECALLCURVES FORTHE 12 CLASSIFICATIONWORDS

Figure B.11: Precision and recall curve for the "silence" for all networks

113

Figure B.12: Precision and recall curve for the unknown word ("marvin)" for all
networks

114APPENDIX B. PRECISIONANDRECALLCURVES FORTHE 12 CLASSIFICATIONWORDS

Appendix C

Confusion matrices for
FPGA-inferred CNN networks
using OpenVINO

115

116APPENDIXC. CONFUSIONMATRICES FOR FPGA-INFERREDCNNNETWORKSUSINGOPENVINO

Figure C.1: Confusion matrix for single-precision KWS CNN inferred on half-precision
bitstream

117

Figure C.2: Confusion matrix for single-precision KWS CNN inferred on 11-bit preci-
sion bitstream

118APPENDIXC. CONFUSIONMATRICES FOR FPGA-INFERREDCNNNETWORKSUSINGOPENVINO

Figure C.3: Confusion matrix for half-precision KWS CNN inferred on half-precision
bitstream

119

Figure C.4: Confusion matrix for half-precision KWS CNN inferred on 11-bit precision
bitstream

A
nders N

ilsen
A

ccelerating keyw
ord spotting neural netw

orks on FP
G

A
s using Intel O

penVIN
O

 and Xilinx D
N

N
D

K

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

le
ct

ro
ni

c
Sy

st
em

s

M
as

te
r’

s
th

es
is

Anders Nilsen

Accelerating keyword spotting neural
networks on FPGAs using Intel
OpenVINO and Xilinx DNNDK

Master’s thesis in Electronic Systems Design
Supervisor: Kjetil Svarstad

June 2019

	Introduction
	Problem description
	Own contributions
	Method
	Thesis structure

	Background
	Machine learning
	Speech recognition
	Previous work
	Google Speech Commands dataset
	The Kaggle TensorFlow Speech Recognition Challenge
	Kaggle Speech Challenge neural networks
	Keras
	Microsoft MMdnmn
	Semester project

	Neural Networks on FPGA
	FPGA acceleration frameworks

	High level synthesis
	Vivado HLS

	Theoretical background
	Neural networks
	Neural network basics
	Topologies
	Neural network optimisations

	High level synthesis
	Speech recognition
	Speech recognition fundamentals
	Hidden Markov Models

	Speech pre-processing
	Fast Fourier Transform
	Framing
	Window function
	Mel-frequency scaling
	Mel-scale filterbank
	Mel Frequency Cepstral Coefficients

	Implementation
	Pre-processing
	Testing using Xilinx FFT example code
	Prototyping in C++
	Porting the code to Vivado HLS
	Integrating the HLS IP with the Zynq Processing Unit

	Neural network training
	Deciding the network topology
	Preparing the input data
	Loading data into the network
	Training the network
	Verifying network functionality

	FPGA acceleration
	Intel OpenVINO
	Xilinx DNNDK

	Results
	Pre-processing
	On Processing Unit
	On FPGA

	Neural networks
	Training results
	Verification results

	Neural network acceleration using OpenVINO
	On CPU
	On FPGA

	Discussion
	Pre-processing
	Comparing C++ and HLS
	Using Vivado HLS for FPGA acceleration

	Neural networks
	Accuracy evaluation
	Runtime comparison
	Using Keras for neural network development

	FPGA acceleration
	OpenVINO accuracy
	OpenVINO runtimes
	Using Xilinx DNNDK for FPGA acceleration
	Using OpenVINO for FPGA acceleration

	Error sources
	Classification accuracy
	Classification times

	Further work
	FPGA acceleration of pre-processing
	FPGA acceleration of the whole CNN using OpenVINO
	FPGA acceleration using DNNDK
	FPGA acceleration of LSTM networks

	Conclusion
	References
	Inference Engine per-layer execution times
	Precision and recall curves for the 12 classification words
	Confusion matrices for FPGA-inferred CNN networks using OpenVINO

