
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

le
ct

ro
ni

c
Sy

st
em

s

M
as

te
r’

s
th

es
is

Haoyu Tang

Hybrid attention convolutionacoustic
model based on
variationalautoencoder for speech
recognition

Master’s thesis in Electronic Systems Design
Supervisor: Torbjørn Karl Svendsen

June 2019

Hybrid attention convolution
acoustic model based on variational
autoencoder for speech recognition

Haoyu Tang

13-06-2019

Master’s Thesis
Master of Science in Electronic system design

30 ECTS
Department of Electronic Systems

Norwegian University of Science and Technology,

Supervisor: Prof. Torbjørn Karl Svendsen
Co-Supervisor: Dr. Ali Shariq Imram; Dr. AdoIreza Sabzi Shahrebabaki

HACAM-VAE

Preface

This Master Thesis was developed at the Department of Electronics system (Faculty of Information
Technology, Mathematics and Electrical Engineering) at NTNU University (Trondheim, Norway).
And the work is finished during my master period as my Master thesis from September 2017 to
June 2018 including a 7.5 credits Specialization project as a forerunner, 7.5 credits Specialization
course as a guide and 30 credits Master thesis.

The main work of this thesis is developing a new acoustic model in an automatic speech recog-
nition system. And the main innovation in this project is that an new-introduced autoencoder in
acoustics model transforms supervised-learning becoming semi-supervised learning. Also, attention
mechanism is introduced as part of acoustics module for improvement.

For implement it in end-to-end CTC-attention architecture in further work, an training acceler-
ation algorithm is developed and test as well.

The thesis could be read by speech relevant students, PhDs, and other industrial engineers. Since
the acoustic module is realized by a neural network, this work might also inspire other deep learning
relevant peoples.

13-06-2019

i

HACAM-VAE

Acknowledgment

I wish to express my sincere gratitude to my supervisor at NTNU, Professor Torbjørn Karl Svend-
sen, for offering me the opportunity to work with him, and for his indispensable guide during the
execution of the Master Thesis.

I want to thank my two co-supervisors Dr. Ali Shariq Imram and Dr. AdoIreza Sabzi Shahre-
babaki for their great help during my master thesis especially for the help of about data’s prepare.

During my 2018 summer internship in Pattern Recognition Technique Center, Tencent, my col-
leges Jin Li and Jun Li help me a lot. I would give my sincere thanks. Also, thanks for offering
this internship from my supervisor in Tencent, Long Ma as well. After this internship, I decided to
contribute my passion for speech field.

I would like to express my sincere great love to my parents. Their work ethic supports and confi-
dence me during the whole of my life. Their support and confidence during all my life have made
me as I am.

And thanks to the help from friends always next to me, Zhaoyi Liu (Peking University), Yin-
gru Liu (The State University of New York at Stony Brook). With hundreds of online meetings, I
can finish this master thesis. Thanks for their helpful advisement in academics again.

Haoyu Tang

ii

HACAM-VAE

Abstract

In a communication system, smart home and other speech-based application, Automatic Speech
Recognition (ASR) plays a crucial role, and its inputs usually are features extracted from a raw
speech signal. A well-designed feature extractor could improve the accuracy and reduced the com-
putation complexity.

The feature extraction is a basic processing unit not only in ASR but also in Text to Speech
(TTS), Speaker conversion and other conversion systems. Meanwhile, through the analysis of the
feature extracted with a labeled phone in each frame, the result could be used for improving TTS
as well.

The goal of the project is to build a new acoustic model used in ASR system based on neural
network. Moreover, in the case, compared with main streaming acoustics modules, the most sig-
nificant difference is that autoencoder introduces which makes the training of acoustic module
becoming semi-supervised learning from supervised learning.

Feature extraction usually like Mel-frequency cpectrum coefficient (MFCC), Linear predictive cod-
ing (LPC), Warped Minimum Variance Distortionless response cepstral coefficients (WMVDRCC)
are based on standard digital signal processing while neural network based feature extraction is
uncommon.

Moreover, Deep Neural Network (DNN) has been proved as an efficient ASR method used the
DNN module as an acoustic module in the ASR system. Meanwhile, the acoustic module could
be built with Convolution Neural Network (CNN) or Long short-term memory recurrent neural
network (LSTM).

In the master thesis, a hybrid attention mechanism is brought into acoustic. More specifically,
time-frequency attention weighting in autoencoder, a front stage of the acoustic model. And chan-
nel attention weighting in a phone classifier, postage of acoustic model.

For accelerating this semi-supervised later development in VGG-BLSTM structure, a regularization
method is developed for dynamic loss combine weighting. In this method, a regularization item is
added to loss, which not also dynamic control weighting between two loss, but also push the weight
to a preset value for smooth and steady loss decreasing.

iii

HACAM-VAE

Contents

Preface . i
Acknowledgment . ii
Abstract . iii
Contents . iv
List of Figures . vi
List of Tables . viii
1 Introduction . 1
2 THEORETICAL CONCEPTS FOR AUTOMATIC SPEECHRECOGNITION ANDDEEP

LEARING . 3
2.1 Basic concept about speech and linguistics . 3

2.1.1 Speech signal . 3
2.1.2 Short-time Fourier Analysis (STFT) and Mel filter bank 9
2.1.3 Speech phonics . 12

2.2 Basic concept of computational model . 13
2.2.1 Gaussian distribution . 13
2.2.2 Basic properties of Gaussian distribution . 14
2.2.3 Gaussian Mixture Models . 15
2.2.4 Hidden Markov Models . 16
2.2.5 Recognition Unit in linguistics . 17

2.3 Deep neural network . 17
2.3.1 Multilayer Perception . 18
2.3.2 Convolution neural network (CNN) . 20
2.3.3 Recurrent neural network (RNN) . 21
2.3.4 Loss function . 22
2.3.5 Back propagation . 23
2.3.6 Batch Normalization . 23
2.3.7 Regularization item . 24
2.3.8 Dropout . 25
2.3.9 Autoencoder . 26
2.3.10 Residual network . 28
2.3.11 Attention mechanism . 29
2.3.12 Encoder-Decoder Architecture for variable length data 32
2.3.13 Connectionist Temporal Classification (CTC) 33
2.3.14 Loss combine . 36

iv

HACAM-VAE

2.4 Common ASR Architectures . 37
2.4.1 Gaussian Mixture Models - Hidden Markov Models Architecture 38
2.4.2 Deep neural network - Hidden Markov Models Architecture 38
2.4.3 Joint Connectionist Temporal Classification-Attention (CTC-ATT) end-to-

end Architecture . 40
3 Implement of Hybrid attention convolution acoustic model based on variational autoencoder 42

3.1 Time-Frequency attention autoencoder . 43
3.2 Channel attention classifier . 45
3.3 Dynamic loss combine in CTC-ATT architecture . 47
3.4 Corpus and software . 49

4 Result . 50
4.1 Metrics . 50

4.1.1 Reconstruction error . 50
4.1.2 Frame error rate (FER) . 50
4.1.3 Word error rate (WER) . 50

4.2 Traning setting . 51
4.3 Fbank feature preprocessing . 51
4.4 Autoencoer . 51
4.5 Phone classifier . 51
4.6 Joint training . 51
4.7 Dynamic loss combine in CTC-ATT architechture . 54

5 Discussion . 56
5.1 Autoencoder . 56
5.2 Phone Classifier . 56
5.3 Joint training . 57
5.4 Dynamic loss combine in CTC-ATT architechture . 57

6 Conclusion . 58
6.1 Model . 58
6.2 Future Work . 58

Bibliography . 59
A Theoretical data . 64

A.1 IEEE Thesis / Dissertation Reuse copyright . 64
A.2 Recognition Unit . 64

v

HACAM-VAE

List of Figures

1 Top structure . 1
2 Flow graph of speech’s generation, propagation and understanding 3
3 Vocal Apparatus with alphabet symmetric, freely reused from wikimedia, File:Vocal

apparatus and alphabet Symmetric by Makeyev.jpg 4
4 Source-filter model . 5
5 Unvoiced and voiced source-filter model for speech production 5
6 Anatomy of the Human auditory system, freely reused from wikimedia, File:Anatomy

of the Human Ear.svg . 7
7 Uncoiled cochlea with the basilar membrane, freely reused from wikimedia, File:

Uncoiled cochlea with basilar membrane.png . 8
8 equal loudness contours, freely reused from wikimedia, File:FletcherMunson ELC.png 9
9 Mel scale, freely reused from wikimedia, File:Mel-Hz plot.svg 9
10 A typical speech signal and is STFT . 10
11 Hann(a) and Hamming(b) window function, freely reused from wikimedia, File:Window

function and frequency response - Hamming (alpha = 0.53836, n = 0...N).svg and
File:Window function and its Fourier transform – Hann (n = 0...N).svg 11

12 Mel filter banks, freely reused from wikimedia, File:Mel RMel.png 12
13 Gaussian distribution with different variance . 14
14 Multi-variance distribution, freely reused from wikimedia, File:MultivariateNormal.png 16
15 A triphone HMM model . 17
16 A example of MLP, freely reused from wikipedia, File:Neural network bottleneck ar-

chitecture.svg . 18
17 Some common activation function . 19
18 Typical CNN, freely reused from wikipedia, File:3 filters in a Convolutional Neural

Network.gif . 21
19 RNN sturcture . 22
20 Comparsion of a example of without (a) and with (b) squared norm regularization [1],

freely reuse with license Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International Public License https://creativecommons.org/licenses/by-nc-sa/
4.0/ . 25

21 Dropout [1], freely reuse with license Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International Public License https://creativecommons.org/licenses/
by-nc-sa/4.0/ . 26

22 A typical autoencoder, freely reused from wikimedia, File: Autoencoder structure.png 27

vi

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

HACAM-VAE

23 common variational autoencoder structure . 28
24 Residual network, freely reused from wikimedia, File: ResNets.svg 29
25 Attention structure . 30
26 Widely use attention structure . 30
27 Two basic Squeeze-and-Excitation attention which could be used in this case 31
28 Two residual Squeeze-and-Excitation attention which could be used in this case . . . 32
29 encoder-decoder architecture . 33
30 ctc cost computing [2], freely reuse with license Creative Commons Attribution license

(CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ 34
31 GMM-HMM architecture [3], copyright in section A.1 39
32 DNN-HMM architecture [4], copyright in section A.1 40
33 CTC-ATT architecture [5], copyright in sectio A.1 41
34 Top view of HACAM-VAE architecture . 42
35 Variational Autoencoder in this case . 43
36 Jumpblok . 46
37 Classifier . 46
38 Total model structure . 47
39 Four comparsion of input features and reconstruction features from a autoencoder

with time-frequency attention, Upper is input features, lower is reconstruction features 52
40 Some comparsion of input features and reconstruction features from a autoencoder

without attention, Upper is input features, lower is reconstruction features 52
41 VGGBLSTM structure . 54

vii

https://creativecommons.org/licenses/by/4.0/

HACAM-VAE

List of Tables

1 Connection between physical and perception metric [6] 7
2 Activation function [7] . 19
3 Details of each convolution layers . 44
4 Details in classifier . 47
5 Different result of with and without normalization 51
6 A reconstruction error comparision about attention working on different level and

baseline . 53
7 Time-frequency and channel attention in classifier 53
8 Result of joint training and separate training . 53
9 Dynamic CTC-ATT loss combine . 55
10 ARPAbet symbols for transcription of English consonants, [8, Chapter 7] 65

viii

HACAM-VAE

1 Introduction

As speech becomes more and more nature and convenient interaction pattern in man-machine in-
teraction and human communication. Automatic Speech Recognition (ASR) is much accounted and
its inputs usually are features extracted from a raw speech signal. A well-designed feature extractor
could improve the accuracy and reduced the computation complexity [9, Chapter 7].

How the feature extraction compose an essential processing unit in ASR, Text to Speech(TTS),
Speaker conversion and other conversion systems is shown in the figure 1.

It shows that usually ASR and TTS don’t process clean signal directly but through extracted

Figure 1: Top structure

features (sometimes preprocessing as well). Meanwhile, through the analysis of the features ex-
tracted with a linguistic unit in each frame, the result could be used for improving TTS as well.

The goal of the project is to build a new acoustic model used in ASR system based on neural
network. And in the case, compared with mainstreaming acoustics module, the most significant
difference is that introduced autoencoder makes the training becoming semi-supervised learning
from supervised learning.

Feature extraction usually like Mel-frequency cpectrum coefficient (MFCC), Linear predictive cod-
ing (LPC), Warped Minimum Variance Distortionless response cepstral coefficients (WMVDRCC)
[9, Chapter 7] are based on standard digital signal processing while neutral network-based feature
extraction is uncommon.

And Deep Neural Network (DNN) has been proved as a efficient ASR improving [7]. [10] used the
DNN module as acoustic module in ASR system. Meanwhile, the acoustic module could built with
Convolution Neural Network(CNN) [11], [12], [13], [14] [15] or Long short-term memory recurrent

1

HACAM-VAE

neural network(LSTM) [16]. Zhang [17] reachs the highest recognition rate on 96.04% LibriSpeech
[18] with acoustics module, Deep improved Feedforward Sequential Memory Networks (DFSMN).

In other DNN speech application methods, [19] used DNN to realize speech enhancement in fea-
tures’ level. [20] introduced denoise autoencoder in (DAE) feature level for speech enhancement.
[21] also used DAE for dereverberation as well. There also a some research about using autoencoder
in speech motion emotion recognition area, like [22], [23].

[24] make a big breakthrough on Natural Language Processing (NLP) with an attention mech-
anism. In the speech field, as a natural extension, there is an attention mechanism in [25] as well.
With popularization of end-to-end speech recognition [26], attention mechanism also plays a crucial
import role in joint CTC/attention architecture [27] [5].

The mainly innovation points are listed above:

1. semi-supervised autoencoder learning: how to achieve semi-supervised learning structure with
an autoencoder.

2. hybird-attention: As the whole acoustics module is divided as different part, different dimen-
sion attention mechanisms are performed in each section.

3. dynamic loss combine in semi-supervised learning: There are several different loss in semi-
supervised autoencoder learning structure, combined dynamically.

4. Dynamic loss combing weight: viewing loss combine weight as a training parameter, not
hyper-parameter and adding as a regularization item.

2

HACAM-VAE

2 THEORETICAL CONCEPTS FOR AUTOMATIC SPEECH
RECOGNITION AND DEEP LEARING

This Theoretical chapter will give a crucial part of the background of automatic speech recognition
(ASR) and its some typical working architecture in order to understanding in how speech signal is
model and recognized in the system.

The chapter is divided into four sections, first section 2.1 will introduce some understanding of
how human generate and precept speech also how these generation and perceptions are modeled.
section 2.2 is an introduction of some basic concept about computing modelling sequence and speech
signal. Then section 2.3 introduce the recent successful discriminative model, deep neural network
(DNN). Then section 2.4 is described some conventional ASR architectures including Gaussian
Mixture Models - Hidden Markov Models (GMM-HMM), Deep neural network - Hidden Markov
Models (HMM-DNN) and Joint Connectionist Temporal Classification-Attention (CTC-ATT).

2.1 Basic concept about speech and linguistics
2.1.1 Speech signal
In physics, a sound signal is mechanical pressure wave formed of vibration of the medium could
be solid, liquid or air [28]. In mostly causes in the speech field, a speech signal is a pressure wave
propagating in air. In original cases, as the base as communication and interaction, the main usage
of speech is express by one person and reception by others. The flow graph of speech’s generation,
propagation, and understanding are drawn in figure 2.

Figure 2: Flow graph of speech’s generation, propagation and understanding

As described in the figure, speech is generated based on a specific text and propagated to someone

3

HACAM-VAE

else. Then received speech signal will be proposed and decoded into text. So, primary analysis of a
speech signal is based on its generation, propagation and perception.

Generation of speech signal
The main speech generation model used is the source-filter model. However, before introducing this
model, an understanding of how humans generate speech is necessary. It also is reviewed as the basis
of text-speech-generation. In figure 3, it is a clear description example of human’s vocal apparatus
and its corresponding alphabet symmetric relation in the Russian language.

As mention above the speech signal is air-pressure in the air. Compared with other acoustics

Figure 3: Vocal Apparatus with alphabet symmetric, freely reused from wikimedia, File:Vocal apparatus
and alphabet Symmetric by Makeyev.jpg

signals, the unique is it emanated from the mouth and nostrils of a human speaker [6, Chapter
2]. In most language, the inventory of phonemes, talked later in subsection 2.1.3. These phonemes
could be classified into two basic classes:

1. Consonants: the presence of constrained by the throat or obstruction in the mouth (tongue,
teeth, lips) when air flow from lung as speaking.

2. vowels: there is not evident constrain during the speaking.

These constrain description could be verification in figure 3 as well especially with the position of
each part.

For further classification into linguistics subunit, these properties derive from anatomy of a handful
of essential articulators and the boundaries place of the human vocal tract. Besides, the whole

4

HACAM-VAE

speech process is contributed by thousands of muscle’s moving and shrink.

Classic source-filter model
To simplify the vocal apparatus model into a source-filter model, with input excitation signal e[n]
and output speech signal s[n] showed in figure 4.

Figure 4: Source-filter model

In the figure, h[n] represent an all-pole system function of vocal apparatus. Except for the si-
lence status, the sound here could be grouped as two: Unvoiced sounds and Voiced sounds. The
representative difference between them could be explained from whether vocal cords tense and vi-
brate. When vocal cords are tensed and vibrated periodically, a quasi-periodic speech waveform is
emitted from a mouth (quasi-periodic waveform: stationary over short periods, but changes occa-
sionally to a new mode of stationarity [29]). Moreover, this description is drawn in figure 5.

In the figure, it is clear that there are two types of sound, unvoiced sound and voiced sound.

Figure 5: Unvoiced and voiced source-filter model for speech production

Both could be gain by a gain function G. The difference is that the voiced sound is passed through
glottal filter G(z) before the gain control. Moreover, the source of these two respectively is Dirac
comb and random noise. Then gain controlled sound will be fed into vocal tract filter V (z), radia-
tion filter orderly R(z).

5

HACAM-VAE

For simplification, Glottal G(z), vocal V (z)and radiation filter R(z)could be integrated as a all-pole
filter as mentioned above, So this integrated function could be rewritten as [6]:

H(Z) = G(z)V (Z)R(Z) = G

1−
∑p
i=1 aiz

−i (2.1)

So as the system function H(z), the relation between of excitation and speech signal is written as
[6]:

s[n] =
p∑
i=1

ais(n− i) + Ge[n] (2.2)

Perception of speech signal
In this paragraph, something about auditory perception system and its nonlinear system response
will be present for a better understanding of human hearing. Further details will not be present
since these are not directly relevant to this master thesis.

Mainly, the auditory system could be split to two-part based its propagation property:

• Mechanical wave propagation part (Ear)
• Auditory nervous part (Brain)

The human auditory system’s anatomy is draw in figure 6.

When a speech signal reaches human auricle, this air vibration received by auricle and propa-
gated through auditory canal which could be reviewed as acoustics filter increasing the effect of
sound in 3 − 4 Khz. Then it will be transformed into mechanical acoustics vibration by eardrum
keeping its frequency. During propagation this vibration to cochlea through malleus, the amplitude
of mechanical vibration will be amplified via malleus.

With vibration finally transformed into a nervous signal in cochlea’s basilar membrane as these
structures showed in figure 7. It is clear that signal with different frequency propagates with dif-
ferent basilar channels. That will result in a different response. Then the system function could be
seen as a filter bank. Obviously, the final nerve signal will drive a representation into the brain as
an electronical signal.

Psychological acoustics and Mel scale
Psychological acoustics is a kind of field to study the distinction between the perceptual attribute
of sound and physical attribute of sound [6]. Also, even some perceptual merits are strongly related
to other physical merits showed in the table 1.

Even there is still some mismatches between two merits, but these mismatches would not be
further talk in this master thesis and will be ignored here.

6

HACAM-VAE

Figure 6: Anatomy of the Human auditory system, freely reused from wikimedia, File:Anatomy of the
Human Ear.svg

Physical merit Perceptual merit
Intensity Loudness

Fundamental frequency Pitch
Spectral shape Timbre

Onset/Offset time Timing
Phase difference in binaural hearing Location

Table 1: Connection between physical and perception metric [6]

As described in the table 1, sound loudness mostly times could be think as same with sound wave
intensity. However, ear sensitivity varies with incoming waves’ frequency. So, this divergence could
be called the phenomenon of non-uniform equal loudness perception of tones of varying frequencies.
General speaking, tons with different pitch have different inherent perceived loudness. In ISO 226
[30], the graph of equal loudness contours defined, draw in figure 8.

It should be noted that the curve value of equal loudness in 1 KHz always equals its intensity.

7

HACAM-VAE

Figure 7: Uncoiled cochlea with the basilar membrane, freely reused from wikimedia, File: Uncoiled cochlea
with basilar membrane.png

Hearing sensitivity have a low response at low frequency, and it climbs with increasing frequency
until around 4 KHz reaching the maximum response. Also, it shows decreasing with frequency up
to 10 KHz. So it is clear say that the relation between physical intensity with perception equal
loudness is a nonlinear response.

For simulating this nonlinear response, Fletcher (1940) at the first time introduced a term critical
band, which is inspired by exist cochlear response. After that, other experiments about investigation
crucial band phenomena and its bandwidth were carried out. There are two usual scale nowadays:
Bark scale and Mel scale [6].

Mel scale is a perceptual motivated scale, almost linear below 1 KHz and logarithm above, which
could be represented in equation 2.3 and figure 9:

B(f) = 2595 log10(1 + f

700) (2.3)

in figure 9, it is clear that below 1 KHz the curve keeps linearity and above it grows slowly. Also,
1 KHz is the defining point in equal loudness curves.

8

HACAM-VAE

Figure 8: equal loudness contours, freely reused from wikimedia, File:FletcherMunson ELC.png

Figure 9: Mel scale, freely reused from wikimedia, File:Mel-Hz plot.svg

2.1.2 Short-time Fourier Analysis (STFT) and Mel filter bank
Compared with image, video signal and other higher dimensional signal, speech or audio signal is
an only one-dimension signal in conventional view. Except for the temporal time scale, there is
another inner characteristic. In a few decades, speech signals tend to be view as a two-dimensional
signal [7, Chapter 3.6]. The one more dimension in this "new point" is the frequency, which is the

9

HACAM-VAE

new representation of one-dimension data could not be described. The one more dimension means
that the ASR system could capture more variety in frequency.

For a better using this property, speech signal, 1D time-series signal, should be transformed into
a 2D time-frequency signal before further processing. One of a famous method of transformation
is Short-time Fourier Analysis. An example of a 1D time-series signal and its transformation is
drawn in figure 10. The upper image shows the raw signal while lower is its STFT signal, colors
representing magnitude in 2D data.

Then, this STFT will be introduced step by step. First, in modern computer-based signal pro-

Figure 10: A typical speech signal and is STFT

cessing, STFT talked is discrete STFT. So, a Discrete Fourier Transform based STFT is showed in
the equation below:

X(m,ω) =
∞∑

n=−∞
x[n]w[n−m]e−jωn (2.4)

where, x[n], w[n] respectively are speech and window signal. Hann and Hamming windows are
common used window function in STFT, both showed in the equation:

w[n] = a0 − (1− a0) · cos
(

2πn
V

)
, 0 ≤ n ≤ N (2.5)

If a0 = 0.5, that produce Hann window function. While if a0 approximate 0.54, or more precisely
25/46, Hamming window function is produced [6]. These two window function and their Fouries

10

HACAM-VAE

transform are shown in figure 11. More details, figure (a) is Hann window and figure (b) is Hamming
window.

X(m,ω) is 2D short time Fourier analysis, where m and ω respectively represent time and fre-

(a)

(b)

Figure 11: Hann(a) and Hamming(b) window function, freely reused from wikimedia, File:Window function
and frequency response - Hamming (alpha = 0.53836, n = 0...N).svg and File:Window function and its
Fourier transform – Hann (n = 0...N).svg

quency dimension. These 2D data will be processed for feature extraction.

In final steps of feature extraction, Mel filter bank (Fbank) is applied to STFT domain as a set
of triangular filters, typically 40 filters. Each triangular filter in filter bank is having a maximum

11

HACAM-VAE

response of 1 at the centre frequency and decrease linearly towards until 0. A mathematics equation
and figure are showing in the equation 2.6 and figure 12.

Hm(k) =



0 k < f(m− 1)
k−f(m−1)

f(m)−f(m−1) f(m− 1) ≤ k < f(m)
1 k = f(m)

f(m+1)−k
f(m+1)−f(m) f(m) < k ≤ f(m+ 1)

0 k > f(m+ 1)

(2.6)

where, m represent the mth filter.

And different color in figure 12 represent different filter in the filter bank.

Figure 12: Mel filter banks, freely reused from wikimedia, File:Mel RMel.png

2.1.3 Speech phonics
There is an educational debate between "whole language" and "phonics" methods of teaching chil-
dren reading and listening. In some invented languages, like Chinese and Sumerian, they were
mainly logographic (one symbol represented one word). However, in most other languages, these
language systems contain more subdivide unit like syllabic or phonemic, in which, symbols represent
the sounds that make up the words [8].

12

HACAM-VAE

In modern speech and language study, the idea implicit in a sound-based writing system, how
the spoken words are composed of sub-units of speech, is call phonology. This decomposing ideas
indeed also underlies ASR, TTS.

From a computational perspective, phonetics is the study of how linguistics sound is produced.
Normally, words’ pronunciation could be modeled as a sequence of symbols represent phones.

ARPAbet is a set of phonetic representation codes developed by Advanced Research Projects Agency
(ARPA) developed in the 1970s for American English using ASCII symbol [8]. There is an example
of ARPAbet symbols for transcription of English consonants in table 10. In the table, it is clear
that word dill is composed by three phone symbol represented by ARPAbet symbol d, ih, l.

There is an other International Phonetic Alphabet (IPA) commonly used. That standard origi-
nally is developed by the International Phonetic Association with obtaining transcribe all speech
of human language [8, Chapter 7].

2.2 Basic concept of computational model
2.2.1 Gaussian distribution
The most cases, the speech signal is considered as feature representation based random variables
signal [6, Chapter 4]. Before introduced Gaussian Mixture Models(GMM) in speech signal, the
Gaussian distribution will be described firstly.

Until now, Gaussian distribution (also called Normalization distribution) is the most important
distribution for wide-spread variables in the real physical world. There are two parameters for each
continuous random variable X: mean µ and variance σ2 (σ > 0). This distribution could be
described by equation 2.7:

f
(
x|µ, σ2) = N

(
µ, σ2) = 1√

2πσ
exp

[
− (x− µ)2

2σ2

]
(2.7)

And some Gaussian distributions with different variance are plotted by Probability Density Function
(p.d.f.) in figure 13. Where, p.d.f. represents statistic expression for a continuous random variable.
The area under the interval curve in the figure equals the probability of a continuous random vari-
able occurring. Usually, a Gaussian distribution with mean µ = 0 and σ = 1 denoted as N(0, 1)
with a specific calling Standard Gaussian Distribution.

Also, some Gaussian distributions with different variance are showed at figure 13. Literally, it
is apparent in the figure that the median and mean value of Gaussian distribution both equal µ.
Moreover, the left side and right side in µ are symmetrical and its distribution probability becomes
smaller with distance to µ growing. Another interesting appearance in this figure is with variance

13

HACAM-VAE

-5 0 5

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Gaussian distribution

2
=1

2
=0.25

2
=0.4

Figure 13: Gaussian distribution with different variance

σ increasing the whole distribution tend to concentrate around more mean µ.

2.2.2 Basic properties of Gaussian distribution
For later on extend single Gaussian distribution into GMM, there are some basic properties of
Gaussian distribution should be noted here.

If there is a continuous random variable X with its linear conversion Y = aX + b where a
and b both are constant with a > 0. The mean and variance of Y are respectively aµ + b and
b2σ [6, Chapter 3].

This linear conversion means that vice versa, all Gaussian distribution could be linearly trans-
formed back into a standard Gaussian distribution as well. Its implement showed in the equation
below:

X = Y − µ
σ

∼ N(0, 1) (2.8)

Where, X is a continuous random variable with standard Gaussian distribution and Y is arbitrary
Gaussian with mean µ and variance σ.

In next step, co-variance and correlation indexes will be talked. There are two continuous ran-

14

HACAM-VAE

dom variable X, Y following respective distribution. The expectation of those two variables could
noted as E(X) = µX , E(Y) = µY and each variance: V ar(X) = σ2

X , V ar(Y) = σ2
Y . If there

is a index to describe mutual relation between two variable, denoted as Cov(X,Y) with calling
co-variance in equation 2.9:

Cov(X,Y) = E [(X − µX) (Y − µY)] = Cov(Y,X) (2.9)

In addition, for normalized this co-variance from two variance value, correlation ρXY is introduced.
Compared with co-variance, the correlation is a normalized value. Its normalization is showed in
the equation 2.10:

ρXY = Cov(X,Y)
σXσY

(2.10)

With these basic properties, the single Gaussian distribution could be expand into GMM in next
part.

2.2.3 Gaussian Mixture Models
There is a n-dimensional continuous random variables vector X = (X1, . . . , Xn) whose p.d.f could
be represented as the following equation 2.11:

f(X = x|µ,Σ) = N(x;µ,Σ) = 1
(2π)n/2|Σ|1/2 exp

[
−1

2(x− µ)tΣ−1(x− µ)
]

(2.11)

Where µ represent the n-dimensional mean vector of each random variables while σ is an n-
dimensional co-variance matrix of each random variables in the vector. These mathematical relations
are shown in the equation 2.12:

µ = E(x)
Σ = E [(x− µ)(x− µ)t] (2.12)

If each random variables Xi are independent to each other, the covariance matrix is degenerated
to a diagonal matrix in which all off-diagonal matrix elements are zero. If there are only two inde-
pendent variables in n-dimension variable vector, X, Y respectively, these joint p.d.f. are draw in
figure 14.

In the figure, blue and red lines are respectively are p.d.f functions of X and Y . The centre
green cycle surround all joint sample.

With multiple unimodal Gaussian distributions, a more complex distribution could be approxi-
mated by linear combine multiple Gaussian distributions with equation 2.13:

f(x) =
K∑
k=1

ckNk (x;µk,Σk) (2.13)

15

HACAM-VAE

Figure 14: Multi-variance distribution, freely reused from wikimedia, File:MultivariateNormal.png

where ck represent mixture weight for kth component and are subject with the following equation:

ck ≥ 0 and
K∑
k=1

ck = 1 (2.14)

This Gaussian mixture could approximate arbitrary complex distribution just with enough distri-
bution components.

2.2.4 Hidden Markov Models
One of the most interesting and unique points in the speech signal is its variety in feature sequence
length, even some sequences representative same linguistic sequence but still different in length.
This unique property is the reason for the speech signal keeping the temporal dimension. The basic
reason for this depends on how fast speakers speak and how many break during their speaking.
Furthermore, the main cue of modeling and discriminate each linguistic unit is distributed in a
temporal length sequence.

The Hidden Markov Models (HMM) is a powerful statistic model to build a discrete hidden states
sequence from an observation sequence [6, Chapter 8]. This model offers not only a parametric
states transform process and its parametric launch process from each state to observed feature.

16

HACAM-VAE

There is an assumption of the launch process, from discrete states to sample observed data in
HMM is a parametric random process, whose stochastic parameters could be estimated by a precise
process for its discrete states. An example of an HMM model could be drawn in figure ??.

It is clear that in the figure, x1 to x3 represent three different hidden states and y1 to y3 respectively

s1

a11

s2
a12

a22

s3
a23

a33

y1

b1

y2

b2

y3

b3

Figure 15: A triphone HMM model

are their launched observed data. Meanwhile, there are some transform and launch parameters as
described above, aij and bi. More precisely, aij are the transform parameters from state i to state
j, and bi describe how to launch observed data from each different state i.

2.2.5 Recognition Unit in linguistics
Normally, movement of articulators (tongues, lips velum) during speech are continuous and sub-
ject to physical constraints like momentum, which means articulators may start moving during
one phone to get into place in time for the next phone. This constraints representative in phone
sequence with phone-context-dependent relation [8].

To model phones in different context, most ASR replace original context-independent (CI) phone
with context-dependent (CD) phone. For introduce context-dependent information into ASR, even
phone is minimum unit within a word for linguistics speaking, phone still could be divided into
sub units: triphone. Its means there are three states to represent a phone with start-this-phone,
median-this-phone and end-this-phone. This triphone reresentation could be draw in figure 15.

In the figure, A triphone is represented by a HMM model. States s1 ∼ s3 now are start-this-
phone, median-this-phone and end-this-phone. And aii represent is stuck on the i state. Besides, yi
is the acoustic presentation of its state.

2.3 Deep neural network
The deep neural network is a method from Machine learning based on the layers used in artificial
neural networks. It plays a crucial role in the modern speech recognition system. It could replace
GMM in GMM-HMM system with DNN as DNN-HMM system in final recognition process [7]. And

17

HACAM-VAE

Figure 16: A example of MLP, freely reused from wikipedia, File:Neural network bottleneck architecture.svg

Recently with the population of end-to-end ASR architecture, the whole wave-to-word ASR process
could be totally realized by DNN without HMM [31] [5] [27] [32]. GMM-HMM, DNN-HMM, Joint
Connectionist Temporal Classification-Attention end-to-end Architecture will later are talked in the
section 2.4.

2.3.1 Multilayer Perception
Modern first DNN-HMM ASR is implemented by Multilayer perceptron (MLP). Early DNN struc-
ture could be review as conventional MLP. And an example of this structure is showed in figure 16.

There are three colors nodes inside of MLP. Yellow, blue and orange respective means input, hidden
and output nodes noted with 1, 2 and 3. In this MLP, there are one input layer, two hidden layers
and one output layer. For simply notation, assuming in total there are L layers in an MLP, input
and output layer are noted as 0 and L + 1 layer respectively. And each node represents only one
value conversion, which means one layer represents one vector conversion whose vector length N`
equals how many nodes in this layer `. Further, typically, the values in the MLP propagate layer
by layer. A propagation equation from one layer to the next layer could be described by equation
2.15:

v` = f
(
z`
)

= f
(
W`v`−1 + b`

)
, for 1 < ` < L (2.15)

where,
z` = W`v`−1 + b` ∈ RN`×1: the excitation vector. As mentioned above v0 = o, vL = y, could

18

HACAM-VAE

Figure 17: Some common activation function

respectively represent the input observable vector and the output observable vector.
v` ∈ RN`×1: the activation vector.
W` ∈ RN`×N`−1 : the weight matrix.
b` ∈ RN`×1: the bias vector.
N` ∈ R: the number of neurons at layer `.

f(·) is the activation function, in most case nonlinear function. some activate function in com-
mon using could be found in the table 2 and drwan in figure 17.

It should be noted that ReLu is most common use activation function and could be reviewed

Name Math equation
ReLu f(x) = max(x, 0)

Sigmoid f(x) = 1
1+e−x

Tanh f(x) = ez−e−z
ez+e−z

Softmax f(xi) = exi∑J

j=1
exi

Table 2: Activation function [7]

as a piece-wise linear function, linear in x greater than 0 and nonlinear in x smaller than 0. In
the attention mechanism, sigmoid also is a widespread activation function, since its output range

19

HACAM-VAE

starts from 0 to 1. Besides, the tanh could be reviewed as a rescaled version of sigmoid function
scaled to from -1 to 1. One of the differences between these two activation function is both even and
symmetric but different symmetric point. Different with above 3 activation function, the Softmax
function often be used in the last layer for a classification task, usually could be normalized into
a probability distribution consisting of NL probabilities where NL is the number of neurons is the
last layer L. In multi-class task, usually, the NL equals the number of Class C. The value of the ith
output neuron in laster layer vL represents the posterior probability PDNN (i|o) that the observation
vector o belongs that class i.

With propagating layer by layer from observation vector, the final output observation vector V L

could be computed with given parameters W, b. And this process could be called forward propaga-
tion.

2.3.2 Convolution neural network (CNN)
Convolution neural network original is used for processing grid-like topology data [33] [1]. For in-
stance, 2D discrete time-frequency X[m, f] is a typical topology data. However the 1D discrete
time-series signal x[n] could viewed as 2D topology data through STFT or Fbank method intro-
ducing time-frequency dimensions. A typical CNN is show in figure 18.

Literally, the core operation of CNN is convolution computing which is kind of local linear
computing. The forward propagation of 2D convolution layer has changed from 2.15 to following
equation:

z`ij =
m−1∑
a=0

m−1∑
b=0

ωlabv
`−1
(i+a)(j+b) + blij (2.16)

where v, z are respective are the input and output features of CNN, while ωlab, blij are weight and
bias parameters of this convolution layer.

Besides, there is an option named stride which usually equal 1. More specifically, the stride is the
number of pixels shifts over the input feature. When the stride is one then the filters move pixel by
pixel at a time. For instance, when the stride is two then the filters jump 2 pixels at a time and so on.

Usually, there is another common layer in CNN named pooling layer, which could reduce the size of
features. Moreover, spatial pooling could be seen as downsampling working as dimension reduction
and most information retrieve. There are three types of common poolings:

• Max pooling: Fragment’s maximum as retrieve
• Average pooling: Fragment’s average as retrieve
• Sum pooling: Fragment’s sum as retrieve

Since the speech 2D property has been talked in subsection 2.1.2. The speech, image and video

20

HACAM-VAE

Figure 18: Typical CNN, freely reused from wikipedia, File:3 filters in a Convolutional Neural Network.gif

these topology data could be processed by CNN.

2.3.3 Recurrent neural network (RNN)
Recurrent neural network (RNN) is a set of neural networks for processing sequential data, obvi-
ously including speech signal. For sequential data, there is an import property, current output not
only depend on current input not also past input. That means some memory blocks have to be
inserted to memory past information. A basic RNN block has been shown in figure 19.

In the figure, a state vector is stored by memory block and converted from the input and past state
vector. So this mathematics equation are shown in the below:

h`(t) = fh(W `
hv
`(t) + U `hh(t− 1) + b`(h))

v`+1(t) = fy(W `
yh

`(t) + b`y)
(2.17)

where, fh and fy are two different activation function. W `
h, W `

y and U ` are weight parameters ma-
trix.
Also b`y and b`y are bias parameter matrix. h`t is the memory state vector as mentioned.

CNN and RNN have been tremendously successful in practical applications during decades, and
there are plenty of books and paper have been talked, and that isn’t an innovation in this master

21

HACAM-VAE

Figure 19: RNN sturcture

thesis. So, this structure would be introduced furthermore.

2.3.4 Loss function
As mentioned before, the observation output vector computation depends on the parameters on the
network. Except for proper activations, parameters in the network is essential for forward propaga-
tion.

The training process is very complicated and there are many techniques during the training process.
But these processes are not the innovation of this master thesis, only basic theorem will be talked.

First of all, the training process is implement by two basic concept: loss function, back propa-
gation. The loss function is to quantification to show the difference between current output with
ideal output. Back propagation will update parameters with a corresponding loss function.

Labelled data or called training set as well S = {(om,ym) |0 ≤ m < M} means a pair of ideal
input and output data for each task. More precisely, the ym is the mth ideal corresponding output
of each input om.

In details, one of loss function mean square error (MSE) loss function could be expressed as:

JMSE(W,b;S) = 1
M

M∑
m=1

JMSE (W,b; om,ym) (2.18)

It is commonly use loss function in regression task, where

JMSE(W,b; o,y) = 1
2
∥∥vL − y

∥∥2 = 1
2 (v− y)T (v− y) (2.19)

where, v is the network’s prediction from input o.

22

HACAM-VAE

For other classification task, there is a common used cross entropy loss function JCE :

JCE(W,b;S) = 1
M

M∑
m=1

JCE (W,b; om,ym) (2.20)

where,

JCE(W,b; o,y) = −
C∑
i=1

yi log vi (2.21)

yi = Pemp(i|o) is the empirical (labeled data in the training set) probability that the input o be-
longs to class i , and vLi = PDNN (i|o) is the corresponding output probability estimated from the
network. Minimize this cross-entropy, in statistics, equivalent to minimizing the Kullback-Leibler
divergence (KLD) between empirical probability distribution and the probability distribution esti-
mated from the network.

2.3.5 Back propagation
With a given loss, the back-propagation algorithm could update parameters layer-by-layer from the
last L layer to the first 1 layer. The base of back propagation is gradient descent computation,
which could be represented as the simplest form equation like with parameters {W, b}:

W`
t+1 < W`

t − ε4W`
t

b`t+1 ← b`t − ε4b`t
(2.22)

where, W `
t and b`t respective represent the weight matrix and bias vector in ` layer at tth time

update and ε is a parameter named learning rate to control the update rate of parameters. ∇XJ is
the gradient decent of J with regard to x.The gradient decent is computed with equation:

∆W`
t = 1

Mb

Mb∑
m=1
∇W`

t
J (W,b; 0m,ym) (2.23)

and,

∆b`t = 1
Mb

Mb∑
m=1
∇b`tJ (W,b; om,ym) (2.24)

where Mb means the number sample in tth update within a batch. Equation 2.23 and 2.24 mean
the each updating is based on a average of a batch’s gradient descent.

2.3.6 Batch Normalization
The train of parameters needs amounts of data. Usually, the range and distrubution of these data are
quite different. In conversational image and speech data processing, there is a classic preprocessing
technique named normalization which usually could be written as:

x̃i = xi − µ
σ

(2.25)

where µ and σ respectively are mean and deviation of whole or part of data set.

23

HACAM-VAE

Later on, this normalization technique also is introduced into neural networks as well. Batch nor-
malization is one of normalization implement used in DNN.

Literally, batch means normalization is applied within each batch, and the mean and deviation
are computed within batch during training [34] like:

µB = 1
n

n∑
i=1

(xi)

σB = 1
n

n∑
i=1

(xi − µB)2
(2.26)

With these parameter, the input feature could be normalized as:

x′i = xi − µB√
σ2
B + ε

(2.27)

Where ε is for a minimum value to avoid data overflow. Besides, µB and σB both are networks
parameters, which means they can only be tunned in training not prediction.

The batch normalization indeed controls distribution difference of input feature to a standard
distribution which will further help gradient back propagation. With a more efficient gradient back
propagating, a higher learning rate could be applied in training [34].

2.3.7 Regularization item
The regularization item is introduced for weight decay [1]. Originally this technique is developed
for control overfitting ("the production of an analysis that corresponds too closely or exactly to a
particular set of data, and may therefore fail to fit additional data or predict future observations
reliably" [35]).

Considered a simple linear function f(x) = w>x with weight vector w, there is a method to
keep it small, adding norm as a regularization item (or penalty item)to the problem of minimizing
the loss. With the label pair data xm, ym, the MSE loss function 2.19 could be rewritten with
regularization item:

J ′MSE(W,b; o,y) = 1
2
∥∥vL − y

∥∥2 = 1
2
(
vL − y

)T (vL − y
)

+ λ

2 ‖w‖
2 (2.28)

The red part in the equation is an added regularization item. It is clear this extra regularization
item will push weights to a small value compared with origin through a greater loss value.

There is a example figure 20 to show a training with and without regularization item [1].

In the figure, it is clear, this regularization technique does help ease overfitting. Compared with

24

HACAM-VAE

(a) (b)

Figure 20: Comparsion of a example of without (a) and with (b) squared norm regularization [1], freely reuse
with license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License
https://creativecommons.org/licenses/by-nc-sa/4.0/

the original, the testset’s loss decrease not maintain.

And something should be noted that the regularization example in equation 2.28 added a squared
norm regularization. Except for this squared regularization, other dimension regularizations like
linear or high-dimensional linear regression are common methods as well.

2.3.8 Dropout
Dropout is a advanced regularization method for avoid over fitting [36].

Basically, during training the dropout works like part of neurons on a particular are deactivated.
Meanwhile, predictions of left neurons will be amplified. This process shows like:

vl =
{

0 with probability p
vl

1−p otherwise
(2.29)

Meanwhile, the dropout mechanism working with MLP could be shown in figure 21.

In the figure, xi, hi and oi are respectively input weight and output of each neuron i. It is clear that
some of the neurones are blocked by dropout. Since it is a random block, the blocked neurons are
different at each time. This stochastic process could be reviewed as random training multi-models
which are similar to the original model. These multi-models training could significantly improve
generalisation ability.

Something should be pointed out is that since it is a regularization method, it only works dur-
ing training not prediction.

25

https://creativecommons.org/licenses/by-nc-sa/4.0/

HACAM-VAE

Figure 21: Dropout [1], freely reuse with license Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International Public License https://creativecommons.org/licenses/by-nc-sa/4.0/

2.3.9 Autoencoder
Basic idea
An autoencoder is unsupervised learning neural network and trained to attempt to copy input to
output showed in figure 22. Usually, it has a hidden layer h that describes a code z used to represent
the input internally. So, the whole network could divided two encode, decode. These two respectively
represent the process from input to code and the process from code to output noted as:

z = fφ(x)
x′ = gθ(x)

(2.30)

where, the f and g functions are encoded and decoded function. φ and θ are respective are param-
eters in encoder and decoder as well.

During the training, the labelled data is generated by copy input into the output. That is the
reason the training is called unsupervised learning. There is no extra label needed indeed.

And if autoencoder could represent all g(f(x)) = x ideally, it could be used for an unsupervised
feature representative learning and compress data into a small dimension. When the dimension of
code is smaller than input vector, the code layer h normally is call bottleneck layer.

Variational Autoencoder (VAE)
First of all, the two posterior qφ(z|x) and pθ(x|z) respective describe two posterior probability from
input to code and from code to input. Assume there is a prior probability for code z noted as p(z),
the loss variational autoencoder could be rewritten by the following equation:

LVAE(θ, φ) = Ep̂(x)
[
Eqφ(z|x) [− log pθ(x|z)] + Ep̂(x) [DKL (qφ(z|x)‖p(z))] (2.31)

The first term in equation 2.31 is the reconstruction error also used for autoencoder loss, and the

26

https://creativecommons.org/licenses/by-nc-sa/4.0/

HACAM-VAE

Figure 22: A typical autoencoder, freely reused from wikimedia, File: Autoencoder structure.png

second term is the KLD between priory probability with posterior probability. The KLD between
two probabilities px and py definition could be written as:

Df (px‖py) =
∫
f

(
px(x)
py(x)

)
py(x)dx (2.32)

So, expect the normal autoencoder loss, there is more other KLD loss is added into VAE as a reg-
ularization term. This regularization will force the posterior probability approach to the set priory
probability.

If the prior probability is Gaussian distribution (in most cases), the network structure could be
implemented in figure 23. The encoder of VAE will computer a vector of mean µ and a vector of
variance σ. These two vectors will be used for not only computing KLD later but also fed to decoder
of VAE using reparameterization trick [37]:

z = µ+ σε (2.33)

where z is a code vector computed from reparameterization trick with µ and σ. Since in VAE
normally priory probability is set with Gaussian distribution, ε usually is an auxiliary noise variable
ε ∼ N (0, 1).

27

HACAM-VAE

Figure 23: common variational autoencoder structure

2.3.10 Residual network
The study of short connection starts from [38]. Originally it works for the acceleration of gradient
back propagation. Then, Raiko, Tapani and Valpola, Harri and LeCun, Yann give details of how it
influence networks [39]. In this study, short connection indeed improves image classification accu-
racy. In 2015, Srivastava R K, Greff K, Schmidhuber J introduced a residual network and highway
network extended from short connection, they borrow gate control idea from LSTM structure used
in highway network [40]. But later in 2016, He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing
and Sun, Jian extend resident network [41]. An example of a residual network is showed in figure 24.

In the figure, a short connection from layer l− 2 to l is a typical short connection. During gradient
back propagation, the gradient could propagate from l to l−2 directly. This type of short connection
could help training very deep network significantly especially when short connection strides much
more layers.

In mathematics, the strided layers’ function (for example, from (l − 2) ∼ (l − 1) ∼ (l)) could
be written as f(x) and short connection is written as x. The whole residual network’s function g(x)
could be rewritten as:

g(x) = f(x) + x (2.34)

Compared with the original equation g̃(x) = f̃(x), the new f(x) tend to express original resident.

28

HACAM-VAE

Figure 24: Residual network, freely reused from wikimedia, File: ResNets.svg

2.3.11 Attention mechanism
"Attention" is defined as the "how to direct of mind of an object", about choice. For human persons,
people may make choices about how to direct their attention when they look at a garden to find a
specific flower.

[42] initially introduced attention mechanism in neural machine translation application. Later on,
it becomes more and more popular in common encoder-decoder RNN architecture, especially for
common Natural Language Process (NLP) field. Later on, it has been introduced to ASR field as
well [25] since ASR actually is a wave sequence to letter sequence task. Moreover, then [13] im-
plement a CNN with attention mechanism for ASR task. More specifically, attention mechanism is
applied at time and frequency dimension.

Basic attention
Attention mechanisms in neural networks serve to orient perception as well as memory access (could
be a subset of whole memory as well). It filters and weights the perception stored in memory.

Before introducing this attention mechanism, the basic concept of RNN and its structure have been
talked and show in figure 19. It is clear that RNNs cram everything they know about a sequence of
data elements into the final hidden state of the network. However, the attention mechanism takes

29

HACAM-VAE

input from several time steps into account to make one prediction. And this mechanism is shown
in figure 25.

Further, if these several time steps are weighted by a layer named attention layer during prediction,

Figure 25: Attention structure

showing in figure 26, in neural networks, it is called attention primarily serves as a memory-access
mechanism.

In the figure, green layer attentionlayer weights hidden vector.

Figure 26: Widely use attention structure

Squeeze-and-Excitation Networks (SEnet)
Original used in image classification, squeeze-and-excitation and its variety are published in [43]
shown in figure 27.

In speech application, as mentioned in subsection 2.3.2, speech could be reviewed as 2D data.
If a channel dimension is added prior to the time-frequency dimension as channel-time-frequency,
this data structure is equivalent to pictures’ channel-width-hight data structure. These data struc-
ture could be seen in figure 27 as well.

Compared with other attention mechanisms [13], there are three unique points:

30

HACAM-VAE

(a) (b)
Channel attention Time-frequency attention

Figure 27: Two basic Squeeze-and-Excitation attention which could be used in this case
Pool:Average pooling layer, FC: Fully connect layer

1. Self computing attention vector: The weight vector is not set as trainable parameters but
parameters transformed from a hidden vector. And then this weight vector weights its source
hidden vector.

2. Attention working dimension: Usually, in image data or image-like speech data, attention
mechanism is working on time and frequency dimension, but in SEnet, attention mechanism
is working on channel dimension which means the network could more focus on the difference
of each channel, not time or frequency.

3. Attention vector excitation mechanism: During this weight vector transformation, the dimen-
sion of the vector will be squeeze and excitation. in figure 27, the role of two Fully connect
layer playing in SEnet is dimension alternation.

31

HACAM-VAE

As [13] mentioned, the squeeze-and-excitation process could be reviewed as a global information
embedding and adaptive re-calibration. The main idea of these squeeze process coming from tackle
the inner dependencies of each channel but excitation just rebuild this attention vector to its orig-
inal form.

If there is no squeeze ”/16” process, the attention mechanism could be called Self-attention. Obvi-
ously, without the squeeze process, there is only one fully connected layer, fewer parameters.

Combining SEnet with a residual network, a residual SEnet commonly used in image classifica-
tion as well. An application in the speech field is showed in figure 28

(a) (b)
Res-channel attention Res-time-frequency attention

Figure 28: Two residual Squeeze-and-Excitation attention which could be used in this case

2.3.12 Encoder-Decoder Architecture for variable length data
It is a common method to dealing with inequality of length in input and prediction sequence for
instance in machine translation, video captioning, and ASR.

32

HACAM-VAE

During this subsection, a new-introduced encoder-decoder architecture is used for dealing with
variable length data. The conventional encoder-decoder architecture dealing with fixed length data
could be review as an autoencoder has been introduced in subsection 2.3.9.

At the first time introducing the encoder-decoder architecture [44], Google implements a new auto-
matic translation system. The automatic translation implements a mapping from one sequence to
another correlation based on linguistics. So this architecture could be used in ASR well. And there
is a simple encoder-decoder architecture showed in figure 29.

In the figure, inputs xt is fed to encoder RNN which model all input as a encoder vector. This

Figure 29: encoder-decoder architecture

encoder vector is resolved by decoder RNN. The decoding sequence’s length could be adjusted and
equals the expected output length.

2.3.13 Connectionist Temporal Classification (CTC)
Compared with encoder-decoder architecture mentioned in the subsection 2.3.12, Connectionist
Temporal Classification (CTC) is another method to dealing with inequality length of feature and
prediction and it does not need to implement a complex architecture.

Mainly, the CTC is implemented by add a "blank" (noted as "-" usually) probability to handle
invariant length. Within the CTC don’t annotate every prediction some of them could be anno-
tated as a "blank". Benefited from "blank", two different lengths of feature and prediction would be
aligned as well.

This "blank" implement gonna will be described by the following steps:

1. Loss calculation
2. Decoding

Loss calculation
Before talking CTC loss, the text encoder has to be introducing firstly. A label without blank
could be inserted some "blank" and repetitive character as an encoded prediction which is directly
corresponding with prediction. Some examples are shown the following:

• "to” → “—ttttttooo”, or “-t-o-”, or “to”

33

HACAM-VAE

• “too” → “—ttttto-o”, or “-t-o-o-”, or “to-o”, but not “too”

These examples prove that the predictions of DNN “—ttttttooo”, or “-t-o-”, or “to” all correspond
with a label "to". And these predictions to label process could be called decoding introducing later.
The inverse encoding process, decoding, could be noted as:

β(c) = y (2.35)

where y is prediction, same with before and c is encoded prediction, like β(”−−−ttttttooo”) = ”to”

Moreover, it is clear that a prediction could be decoding from several encoded predictions whose
probabilities which are directly from network ("-" are one of the outputs of a network as well). A
decoded prediction probability adding is written as:

p(y|x) =
∑

c∈β−1(y)

p(c|o) (2.36)

Then the loss value should be calculated for given pairs of input features and labels to train the
network. The network outputs a matrix containing probabilities for each character at each time-
step, and the character-scores sum to 1 for each time-step. The probability of prediction calculation
step by step is showed in figure 30.

In the figure, one column represents all prediction at the same time step, but the "blank" la-

Figure 30: ctc cost computing [2], freely reuse with license Creative Commons Attribution license (CC BY
4.0) https://creativecommons.org/licenses/by/4.0/

bel (here is ε) are inserted between every character prediction for the following description. This
inserted label sequence is represented as:

Z = [−, y1,−, y2, . . . ,−, yU ,−] (2.37)

34

https://creativecommons.org/licenses/by/4.0/

HACAM-VAE

where, yt is character of label sequence at each time step and U is the length of yt.

Encoded sequence probabilities are computed one step by step. This forward computing is issued
with dynamic programming. A probability of encoded sequence in a time step is noted as αs,t, the
next time step probability could be rewritten as:

αs,t =
{

(αs−1,t−1 + αs,t−1) pt (zs|X) , last character in αs,t is "blank"
(αs−2,t−1 + αs−1,t−1 + αs,t−1) pt (zs|X) , otherwise

(2.38)

where, pt(zs|X) is a probability of the current character at input step t. Obviously, this decoded
forward computing is issued with dynamic programming. This forward probabilities computing pro-
cess is showed in figure 30.

With feature sequence’s personalities computed by the equation 2.38, the CTC loss could be com-
puted from paths probabilities decoded from outputs matrix could be described as:

loss = − log p(y|x) (2.39)

Decoding
Even a decoding process has been described above, but the described process usually used only in
the loss computing. However, based on this basic process, recognition process usually is issued with
two algorithms: Beam search and Token passing.

For the beam search algorithm, the genesis beam is the empty labeling and at later each time-step,
the beams in the set beams are extended by all possible characters. The extensions are weighted
by a language model normally which scores depending on the new character and the last character
in the beam y next to each other.

Typically, there is a dictionary W containing words given by train set, and output of it is con-
strained to a sequence of these words. For each model, there is a corresponding word phone-level
model which is a state machine undirectional connecting an encoded phone sequence like equation
2.37. A sequence is modeled by putting multiple words-models in parallel, connecting all end-states
with all begin-states. The decoding flow is implemented by tokens like viterbi decoding, which are
passed from state to state. Each token holds the score and the history of already visited words. As
time step goes by, a final characters sequence could be decoded.

A comparison of these two decoded algorithms is offered by [45]. Usually, Output of token pass
is constraint by a dictionary. With a bigger dictionary, the decoding running time is increased
quadratically. A smaller diction could not handle out of vocabulary (OOV) which will significantly
increase error. But beam search decoding could handle arbitrary output word.

35

HACAM-VAE

2.3.14 Loss combine
In most multitask-training, since there are multiple pairs of labels and prediction, there are multiple
losses corresponding. And there are several methods about how to integrate these losses into one
total loss.

Static loss combine
Usually, if there are several losses in a multitask learning network lossi. The classic and simple
static losses combine could be written as below equation:

loss =
∑
i

wilossi (2.40)

where, wi are tunable hyper-parameters representing corresponding weight of each loss. So in the
equation, each wi is a tunable parameter, which could combine loss value as a preset ratio.

Dynamic loss combine
Original used in multitask image field [46], it could adjust the loss weight dynamic based on its
task’s uncertainty.

This advanced method will be introduced step by step. Firstly, assume all task implement by
the network could be classified as two subgroups: regression and classify. For regression task, all
regression tasks are represented by a set of functions fi(x), while all classify task are represented
by a set of functions gi(x).

Second, assume likelihood as a Gaussian with mean given by the model regression output with
labelled data as:

p (y|fi(x)) = N
(
fi(x), σ2

i

)
(2.41)

Where σi is an observation noise scala of each regression task.

And then, the log likelihood of the network is led to the equation as:

log p (yi|fi(x)) ∝ − 1
2σ2 ‖yi − fi(x)‖2 − log σ (2.42)

In that equation, ‖yi − fi(x)‖2 noted as L exactly is the minimum square error (MSE) loss.

If two-tasks of a model are both regression task, the two-regression likelihood function could be
written as:

p (y1,y2|f(x)) = p (y1|f1(x)) · p (y2|f2(x))
= N

(
y1; f1(x), σ2

1
)
· N

(
y2; f2(x), σ2

2
) (2.43)

Then, multitask negative log lilihood leads to a joint loss function L (W, σ1, σ2) and is written as:

− log p (y1,y2|f(x))
∝ 1

2σ2
1
‖y1 − f1(x)‖2 + 1

2σ2
2
‖y2 − f2(x)‖2 + log σ1σ2

= (1
2σ2

1
L1(W) + 1

2σ2
2
L2(W) + log σ1σ2

(2.44)

36

HACAM-VAE

where, ‖yi − fi(x)‖2 = Li(W) exactly is the MSE loss of each task.

Normally, the classification predictions are squashed by softmax function.

p (y|gi(x)) = Softmax (gi(x)) (2.45)

For each task p (y1|g(x)), if a positive scale times each classification probability, its likelihood
equation is written as:

p (y|g(x), σ) = Softmax
(

1
σ2 g(x)

)
(2.46)

This euqation could be proved by Boltzmann distribution. Similar with above, the log likelihood is
leaded as joint loss L (W, σ1, σ2), eqaution is written as:

log p (y = c|g(x), σ) = 1
σ2 gc(x)− log

∑
c′

exp
(

1
σ2 gc′(x)

)
= log p (y2 = c|g1(x), σ1) + log p (y2 = c|g2(x), σ2)

(2.47)

where, gc(x) respectively represent the cth class’s prediction.

Further, a two task network’s negative log likelihood is rewritten as following:

− log p (y1,y2 = c|g(x))
= Softmax (y1 = c; g(x), σ1) + Softmax (y2 = c; g(x), σ2)
= log p (y1 = c|g(x), σ1) + log p (y2 = c|g(x), σ2)

= 1
σ2

1
L1(W) + 1

σ2
2
L2(W) + log

∑
c′

exp
(

1
σ2

1
gc′ (x)

)
(
∑

c′
exp(gc′ (x)))

1
σ2

1

+ log
∑

c′
exp
(

1
σ2

2
gc′ (x)

)
(
∑

c′
exp(gc′ (x)))

1
σ2

2

≈ 1
σ2

1
L1(W) + 1

σ2
2
L2(W) + log σ1 + log σ2

=
∑2
i=1(1

σi
Li(W) + logσi)

(2.48)

It should be noted that comparing equation 2.44, 2.48 with 2.40, except each weight loss, there are
corresponding extra uncertainty added as a regularization part for each loss.

The only difference between this dynamic loss combine of regression and classification is the addi-
tivity index of each loss.

2.4 Common ASR Architectures
In general ASR architecture, the observed vector at each time could be represented as:

O = o1, o2, o3 . . . , ot (2.49)

Similar, traeat an sentence will be predicted as:

W = w1, w2, w3 . . . , wt (2.50)

37

HACAM-VAE

The general ASR task could be explained as Bayes classification task:

Ŵ = argmax
W∈L

P (W |O)P (O) (2.51)

where L is a lexicon, which means all words recognized belongs to a finite set. The acoustic model
will compute a posterior probability P (W |O) based on input vector O. And language model, usually
representing linguistic probability, will model a language probability P (O). For most similar model,
it can be model as:

p(s) = Ts

T
(2.52)

where p(s) is the prior probability of each state estimated from the training set. Ts is the number
of frames labeled as state s, and T is the total number of frames.

These two probabilities are noted as Acoustics and Languate score respective. A decoding algo-
rithm model an optimal word sequence based on two these scores.

2.4.1 Gaussian Mixture Models - Hidden Markov Models Architecture
The GMM-HMM is excellent architectures of selected speech modelling and recognition applications
has been review in [7, section 3.6]. In this architectures, the HMM in speech recognition system
plays a role as a generative sequence model of acoustic features of speech while the popularity of
the GMM from its ability as a generative single unit model of acoustic features.

With recognizing sequence frame by frame, the HMM hidden state will transition from state to
state. Each state is corresponding a unique GMM (sometimes, several state will share parameters
[7] [8]). Within a frame, current state GMM will compute a generative probability corresponding
current input feature vector.

As showed in figure 31, HMM hiden state corresponding GMM models input vector as a pos-
terior probability P (W |O).

2.4.2 Deep neural network - Hidden Markov Models Architecture
The DNN-HMM takes advantage of DNN’s strong nonlinear representation learning power and
HMM’s sequential modeling ability. The main improvements compared with classic GMM-HMM
architecture is DNN usually have a strong nonlinear representation learning, but DNN model could
not be modeled speech signal directly.

As described in figure 32, the difference with GMM generation model, DNN usually is viewed
as discrimination model. So ASR architecture is different from GMM-HMM. The first item in

38

HACAM-VAE

Figure 31: GMM-HMM architecture [3], copyright in section A.1
The circle with shadow represents the hidden mode, circle without shadow represents

the unobservable state, and square represents the observable state

equation 2.51 in DNN could be rewritten as:

p(o|w) =
∑
q

p(o|q, w)p(q|w)

≈ max π (q0)
T∏
t=1

aqt−1qt

T∏
t=0

p (qt|ot) /p (qt)
(2.53)

where q is states of HMM. p(qt|xt) probability is computed from the DNN, describing a discrim-
inative probability of a state based on feature vector. Also, π(q0) and aqt−1qt are the initial state
probability and state transition probability, respectively, determined by the HMM.

39

HACAM-VAE

Figure 32: DNN-HMM architecture [4], copyright in section A.1

2.4.3 Joint Connectionist Temporal Classification-Attention (CTC-ATT) end-to-end Archi-
tecture

From architecture GMM-HMM to DNN-HMM, the main innovation is improving the model’s repre-
sentation learning within a single frame, but sequences are always modelled by HMM. The recently
improving focus on sequential modelling power. CTC and encoder-decoder architecture both are
recent academic achievements for dealine with unequality of different length in label and features.

As mention above, subsection 2.3.12 and 2.3.13 have introduced encoder-decoder and CTC mecha-
nism. And [5] and [27] developed a CTC/attention (CTC-ATT) architecture for end-to-end speech
recognition. This architecture implements an encoder-attention-decoder architecture, adding an at-
tention mechanism as the "attention" part. Also, CTC is working as another loss function of the
encoder in encoder-decoder architecture to train it. This architecture is showed in figure 33.

40

HACAM-VAE

Figure 33: CTC-ATT architecture [5], copyright in sectio A.1

41

HACAM-VAE

3 Implement of Hybrid attention convolution acoustic model based
on variational autoencoder

In the implement, a time-frequency attention autoencoder extracts feature from FBank and send
secondary extracted feature into a channel-attention convolutional acoustic model. During this
architecture, autoencoder also introduces an unsupervised-learning into this original supervised-
learning ASR system. So, this semi-supervised learning system could be reviewed as a two-stage
system. The top view of the whole system (HACAM-VAE) is shown in figure 34.

In the figure, it is clear that there are two losses losssuper and lossupser, respectively supervised-

Figure 34: Top view of HACAM-VAE architecture

42

HACAM-VAE

learning loss and unsupervised-learning loss. These two could dynamic combine mention in the
subsection 2.3.14.

In this chapter, section 3.1 describe a time-frequency attention variational autoencoder (for simply
notation, later this variational autoencoder will be stated as autoencoder) which is preceding stage.
Then the next section 3.2 shows the composing of postage, a convolution acoustic model.

3.1 Time-Frequency attention autoencoder
The example implement of this forestage is shown in figure 35. The input feature is working on the
Fbank level.

In the figure, there are four convolution layers in encoder and decoder respectively, two of them are

Figure 35: Variational Autoencoder in this case

43

HACAM-VAE

Conv number channel_in channel_out kernal_size stride Activation function
Conv1 1 16 (3,4) (1,2) ReLu
Conv2 16 32 (3,3) (2,2) ReLu
Conv3 32 64 (3,3) (2,2) ReLu
Conv4 64 90 (4,4) (1,1) ReLu
Conv5 45 64 (4,4) (1,1) ReLu
Conv6 64 32 (3,3) (2,2) ReLu
Conv7 32 16 (3,3) (2,2) ReLu
Conv8 16 1 (3,4) (1,2) Sigmoid

Table 3: Details of each convolution layers

weighted by attention vector. One of interesting thing is the attention vector at same level in en-
coder and decoder is same (multiplication weight in encoder and division weight in decoder), which
could be seen at how Conv3, Conv7 and Conv2, Conv8 are weighted. Meanwhile, since normally,
there is a reconstruction error from input feature xt to rebuild feature x̂t, the weight self-attention
vector is computed from encoder’s hidden state but decoder’s hidden state.

Another interesting point in the network, there are two types of connection from attention weight
propagating to decoder division: regular and detach. For detach connection, there is only forward
propagating without back propagating. This idea comes from there always exists a reconstruction
error. Encoder’s hidden vector have a stronger relevant decoder’s hidden vector. Detach connec-
tion keeps only encoder’s back propagation training weight vector. For regular connection, during
training, loss backward propagation still could propagate from decoder, which will stronger help
train not only attention parameters but also convolution parameters in the encoder. Actually, its
behaviors act like ResNet helping train deep layer avoid gradient descent. Besides, these Conv3,
Conv7 and Conv2,Conv8 could be noted as attention at level 2 and 3. There are four levels for
adding attention mechanism seen at figure 35.

Present original in [47] in image recognition field, and then [11] [12] and [13] replace all 7 × 7
big kernels with 3× 3 small kernels in convolution layer in ASR. The reason for this replacement is
explained as multiple small kernels are equivalent with a single large core, but the deeper layer has
a strong nonlinear represent learning ability. In this work, most sizes of kernels are close to 3 × 3
small kernels. Moreover, all of the details of each convolutional layer are shown in table 3.

It should be noted that Conv4 ∼ Conv8 exist at decoder, so these convolution layers actually
are transposed convolution. And the last activation function in the decoder, "Sigmoid", actually is
inserted for matching the range of input and output.

The attention mechanism is work on time-frequency these two dimensions since the number of
these two dimensions are greater than the size of the channel which could improve more. And the

44

HACAM-VAE

attention mechanism is implement with the SEnet mentioned in the figure 27 (b).

The input feature is 40 dimension Fbank, and frame windows are extended to 21 frames. As-
sume feature at one frame t could be represented as xt, the input feature at this time are repre-
sented as xt = [xt−10, xt−9, . . . , xt, . . . , xt+9, xt+10]. These input feature could be organized as
(N,C,W,H) format, where N, C, W, H is the batch size, channel size, frame size, feature size. The
reason for using W, H not T, F represent frame size, the feature size is keeping the same symbol
as image field application. When features are fed into the network, obviously C = 1, and N is a
set hyper-parameter. Besides, input and rebuild feature are normalized to 0 1 before training and
testing.

3.2 Channel attention classifier
Then, a phone classifier will be built as postage. Since a time-frequency attention has been intro-
duced in the forestage. Within this stage, the network focus on the attention on channel dimension.
This channel attention is implemented with a resident network together. Specifically, this structure
is showed in the figure 36.

In each junpnet, there is a resident network, from Conv to Element-wise plus forming a short
connection. The Batch Normalization-ReLu structure could import local connection sparsity for
further brain simulation and performance improvement since batch Normalization will transform
features into normalization distribution and then half of the features could be activated in ReLu.
The first Conv1 is set in the beginning of JumpBlock for dimension transformation since the resid-
ual network could not transform dimension. At the end of Jumpblok, there is a channel-attention
mentioned in figure 27 (a) for composing a hybrid attention mechanism with time-frequency atten-
tion in autoencoder.

In total phone classifier, there are three jump block and two fully connected layers showed in
the figure 37.

There is a table 4 to show the details of each block and layers.

It should be noted that there is a reshape layer between JumpBlock4 and FC1 to transform
data from (N,1024,4,4) to (N,1024*4*4). In JumpBlock1, JumpBlock2 and JumpBlock4, Conv1
only double the number of channels, so 1× 1 kernels and 1 stride are used. And in another Jump-
Block not only double the number of channels but also decrease the size of time-frequency dimension
through 3×3 kernels and 2 stride. The finnal channel number in last JumpBlock is a common-used
1024 keeping same channel number with other popular CNN AMs. The first fully connection FC1 is
built with dropout, batch normalization and Relu activation function to increase sparsity and gen-
eralization ability, while there are a dropout and a softmax classification activation function in FC2.

45

HACAM-VAE

Figure 36: Jumpblok

Figure 37: Classifier

This phone classification idea comes from [13], a pure attention CNN AM. In this master, these,
JumpBlock structure and attention mechanism are adjusted for autoencoder forestage.

The total structure of autoencoder and phone classifier are showed in figure 38. It should be noted
that to avoid training disturb, the connection between classifier with autoencoder is a detached

46

HACAM-VAE

Layer name Input format Output format
JumpBlock1 (N,64,9,9) (N,128,9,9)
JumpBlock2 (N,128,9,9) (N,256,9,9)
JumpBlock3 (N,256,9,9) (N,512,4,4)
JumpBlock4 (N,512,4,4) (N,1024,4,4)

FC1 (N,1024*4*4) (N,799)
FC2 (N,799) (N,39)

Table 4: Details in classifier

connection as blue text noted in the figure.

Figure 38: Total model structure

3.3 Dynamic loss combine in CTC-ATT architecture
In subsection 2.3.14, a dynamic loss combine for multitasking has been introduced. However, in
CTC-ATT architecture, actually, there are two losses (respectively CTC and ATT loss) for a single
task. So, it means that the above dynamic loss combine algorithm actually does not work for this
situation. A new algorithm is developed and introduced in this section.

47

HACAM-VAE

In multitask loss combine algorithm, losses for different tasks are assumed mutual independent
to others. However, single task multiloss architecture like CTC-ATT, each loss are dependent on
others. Based on this dependent assume, the loss combine should be rewritten as:

loss = w loss
ctc

+f(w) loss
att

+g(w) (3.1)

where w is CTC loss weight. f(w) is the corresponding ATT loss weight base on w. Besides, for
multiloss control, there is a regularization term g(w).

As the assumption, f(w) should be decreasing function, usually could be:

f(w) = 1− w (3.2)

For regularization term g(w), it should be noted be that it act as penalty when weight deviates a
preset value. If g(w) is setted as g(w) = a(w − 0.5)2 (The preset value here is 0.5, a is numerical
matching factor), partial derivatives could rewritten as:

∂ loss

∂w
= loss

ctc
− loss

att
+2a(w − 0.5) (3.3)

When ∂ loss
∂w > 0, it means:

loss
ctc

+2a(w − 0.5) > loss
att

Furthen, if there is no penalty, this could become like:

loss
ctc

> loss
att

At this condition, the w should be decreased to keep two loss synchronous decline. And ∂ loss
∂w > 0

do increase w.

This weight control still working on when ∂ loss
∂w < 0:

loss
ctc

+2a(w − 0.5) < loss
att

without penalty:
loss
ctc

< loss
att

Within this condition, w will be increased.

Combining regularization term with loss synchronous decline, weight w could dynamic float be-
tween a certain range. Obviously, w should be at a range (0, 1), but for two-loss contribute to a
total loss.

48

HACAM-VAE

3.4 Corpus and software
For a more flexible model building, a dynamic graph model toolkit needs. With this suppose, Py-
torch [48] toolkit is the best choice in the case. Besides, Pytorch offers flexible training for multiple
optimizers control for different part (encoder, decoder, phone classifier) in HACAM-VAE. Espnet[31]
is a end-to-end ASR toolkit which implement Kaldi’s [49] feature extraction and Pytorch or Chainer
[50] [51] as backend DNN toolkit.

The project starts with TIMIT speech Corpus [52], since it is a rare phone-level label dataset.
This corpus is designed to provide speech data for acoustic phonetic and ASR studies. Since the
amount of TIMIT is not enough, a much bigger Corpus is needed. Then librispeech [18], a public
domain speech corpus is added as a supplement.

49

HACAM-VAE

4 Result

In this chapter, some metrics about how to evaluate models are introduced in section 4.1. Then,
some setting during training the model are list in section 4.2. A extra preprocessing result are shown
in the section 4.3.Some result about autoencoder, phone classifier and joint training are respectively
are placed in the section 4.4, 4.5 and 4.6. And for dynamicloss CTCATT loss combine algorithm’s
results are showed in the section 4.7.

4.1 Metrics
4.1.1 Reconstruction error
Usually, the Reconstruction error is specific metrics for evaluation autoencoder. It could be repre-
sented as:

ε = x̂t − xt

xt
(4.1)

This metrics is a quantity to describe the distance two distribution. It is clear that a decent recovery
is according to a small reconstruction error.

4.1.2 Frame error rate (FER)
For evaluation phone classifier, since it is a typical classification task, this basic metrics accuracy
could be represented as:

εt =
{

1 ∀j yt(ct) > yt(cj)
0 otherwise

(4.2)

This equation shows that at time t, the accurate linguistics have the biggest output probability
(∀j yt(ct) > yt(cj)).

For a whole sequence, accuracies are extended as a sequence accuracy like ε =
∑

t
(εt)
T which are

some common metrics for an acoustic model.

4.1.3 Word error rate (WER)
It is general that the recognized word sequence is different with reference word sequence. And WER
is come from the Levenshtein distance, instedad working at phone level but at the word level. And
there is quantity named word error rate (WER) described as:

WER = S +D + I

N
= S +D + I

S +D + C
(4.3)

where, S, D, I and C respectively are the number of substitutions, deletions, insertions, correct.
Obviously, N is the number of words in the reference (N = S +D + C).

50

HACAM-VAE

With Normalization to 0 ∼ 1 Without Normalization
convergence fail

Table 5: Different result of with and without normalization

4.2 Traning setting
For a higher accuracy, the number of phones in TIMIT is reduced to 39 [53].

In the case, there are four Adam optimizers respectively trains encoder, decoder, phone classi-
fier, and twos trainable loss combine weights. All these optimizer are setted with 1.0 learning rate,
(0.9, 0.99) beat and 0 weight decay.

Moreover, loss functions for autoencoder and phone classifier are minimus square error and cross
entropy. These trainable two loss weights are initialized with 0.5.

All training processes are computed by two NVIDIA 1080Ti GPU with CUDA 10.1 driver and
a 7.3 cuDNN toolkit. Sixteen cores Intel i7-5960X CPU is used for building model and data read-
ing.

4.3 Fbank feature preprocessing
Something has to be noted is extracted Fbank feature is preprocessed with a normalization to (0,1)
range. Also, a test result about this preprocessing is showed in table 5.

4.4 Autoencoer
A comparison of input feature and reconstruction feature from a autoencoder with time-frequency
attention are listed in the figure 39.

Another a comparison of input feature and reconstruction feature from a autoencoder without
time-frequency attention are listed in the figure 40.

There are table 6 to show reconstriction error comparision of attention working at different level
as figure 35. The Baseline in the table 6 means there is no attention mechanism in autoencoder.

4.5 Phone classifier
For compare the result of different attention could be used in the phone classifier, two different
phone classifier are built and tested. These results are showed in table 7.

4.6 Joint training
For testing the joint training algorithm, the model is training with two differesent method. The
joint training means forestage and postage are training together with joint training algorithm while

51

HACAM-VAE

Figure 39: Four comparsion of input features and reconstruction features from a autoencoder with time-
frequency attention, Upper is input features, lower is reconstruction features

Figure 40: Some comparsion of input features and reconstruction features from a autoencoder without
attention, Upper is input features, lower is reconstruction features

52

HACAM-VAE

Attention1 Attention2 Detach Reconstruction error
Hybrid SE SA attention

Leve1: SE Level2: SE true 20.1%
false 6.7%

Leve1: SE Level3: SE true 20.1%
false 7.5%

Leve1: SE Level4: SA true 20.1%
false 7.8%

Leve2: SE Level3: SE true 20.1%
false 8.5%

Leve2: SE Level4: SA true 20.1%
false 9.3%

Leve3: SE Level4: SA true 20.1%
false 8.6%

Pure SA attention

Leve1: SE Level2: SE true 20.0%
false 3.7%

Leve1: SE Level3: SE true 20.0%
false 4.7%

Leve1: SE Level4: SE true 20.0%
false 7.2%

Leve2: SE Level3: SE true 20.2%
false 5.4%

Leve2: SE Level4: SE true 20.2%
false 7.6%

Leve3: SE Level4: SE true 20.2%
false 9.1%

Baseline 20.1%

Table 6: A reconstruction error comparision about attention working on different level and baseline
SA:Self attention, SE:SEnet

FER
Time-frequency attention Channel attention

26% 22%

Table 7: Time-frequency and channel attention in classifier

separate training means forestage and postage are trained in order. The test FERs are shown in
table 8.

FER
joint training seperate training

22% 25%

Table 8: Result of joint training and separate training

53

HACAM-VAE

4.7 Dynamic loss combine in CTC-ATT architechture
This test is different from above sections, so new architecture and dataset are adopted. Within the
test, CTC-ATT architecture is implemented with VGGBLSTM in [54] encoder and RNN language
model. This structure could be seen in figure 41.

It is clear that the character sequences are decoded from the RNN language model and CTC-

Figure 41: VGGBLSTM structure

ATT joint acoustic model.

Also, this model is trained with adadelt optimizer and numerical matching factor is selected to
a detached root mean squared

√
loss2

att + loss2
att for its decreasing more smooth and steady. A

table 9 showed the result of WERs for different training method.

54

HACAM-VAE

WER Training time
Epoch8 Epoch9 Epoch10 Epoch8 Epoch9 Epoch10

Static loss combine 4.9% 4.4% 4.4% 39.38h 45.03h 50.86h
Dynamic CTC-ATT loss combine 4.4% 4.4% 4.4% 39.25h 44.83h 50.38h

Table 9: Dynamic CTC-ATT loss combine

55

HACAM-VAE

5 Discussion

5.1 Autoencoder
In table 5, it is clear that without this preprocessing, the autoencoder couldn’t convergence, and
postage phone off course cannot reach a higher accuracy as well.

As seen in the figure 39 and 40 in section 4.4, it is clear that compared with original input feature,
the construction feature looks like a "smoothed" feature. That is because encoded space is a con-
tinuous distribution (i.e. N(0,1)), hence there bound to be some smooth transition on the edge of
the clusters.

Also in table 6, it should be noted that all detach false connection attention autoencoders in-
deed decrease reconstruction error for kinds of attention method. Moreover, attention at a low level
has a better result compared with at a high level. The reason for this could be explained with low-
level attention could have a more direct influence on the decoder’s output, which could significantly
reduce the reconstruction error.

And with two types of attention implement, the self-attention have a lower reconstruction error.
Maybe SEnet’s performance worse than self-attention could be explained by the reason SEnet has
more parameters. It usually needs a considerable training dataset. Also, SEnet original working at
a dimension with a considerable size. Its squeeze mechanism could not come into play at all. This
might be another reason that SEnet could not work better that self-attention.

Another interesting point should be noted is that all detached connection does not improve the
performance. It proves the attention in this model also play a short connection role. More specifi-
cally, this role could help deep layer in encoder training.

Self-attention working on level 1 and 2 autoencoder reaches the lowest reconstruction error at
2.7%. Meanwhile, the baseline model (an autoencoder without autoencoder) have a reconstruction
error of around 20.1%.

5.2 Phone Classifier
In the Classifier, composed hybrid attention has been improved the performance compared with a
single type of attention.

From the point of attention, it could be reviewed as the network should focus not only on time-

56

HACAM-VAE

frequency dimension as a conventional acoustic network but only in channel dimension.

5.3 Joint training
In the comparison of joint training with separate, joint not only indeed improve the FER perfor-
mance but also reduce the training process.

Since there are two types of label, autoencoder’s and phone classifier’s label during this semi-
supervised learning, these two learning indeed could be weighted integrated through by each un-
certainty.

5.4 Dynamic loss combine in CTC-ATT architechture
It is clear that transforming tunable to trainable parameters don’t remarkable increase the training
time for each epoch. However, it indeed decreases the number of reach to the highest WER from 9
Epoch to 8 Epoch.

57

HACAM-VAE

6 Conclusion

6.1 Model
During this master thesis, a hybrid attention convolution acoustic model autoencoder based is built.
For autoencoder, it indeed reduces reconstruction error with time-frequency attention compared
with the baseline structure. With another attention, channel attention inserted into post stage of
autoencoder, the hybrid attention does improve its performance as well. Also, this semi-supervised
learning could be combined loss by an uncertainty assumption.

6.2 Future Work
Since semi-supervised HACAM-VAE and dynamic loss combine algorithm in CTC-ATT architec-
ture have been separately developed to a mature level, the next step of work should be inserted this
HCAM-VAE and VGGBLSTM in CTC-ATT architecture to improve performance. More specifi-
cally, the time-frequency autoencoder’ encoder could replace original VGG, and channel attention
mechanism could be inserted into BLSTM network. Meanwhile, there are three loss in total, autoen-
coder, CTC, ATT loss. Last two loss could be integrated with the dynamic loss combine algorithm
in CTC-ATT architecture, and then combined supervised loss will be integrated with autoencoder
loss with dynamic loss combine algorithm based on uncertainty.

58

HACAM-VAE

Bibliography

[1] Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. 2019. Dive into Deep Learning. http:
//www.d2l.ai.

[2] Hannun, A. 2017. Sequence modeling with ctc. Distill. https://distill.pub/2017/ctc. doi:
10.23915/distill.00008.

[3] Wang, W., Zhao, D., Han, W., & Xi, J. 2018. A learning-based approach for lane departure
warning systems with a personalized driver model. IEEE Transactions on Vehicular Technol-
ogy, 67(10), 9145–9157.

[4] Dahl, G. E., Yu, D., Deng, L., & Acero, A. 2012. Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition. IEEE Transactions on audio, speech, and
language processing, 20(1), 30–42.

[5] Kim, S., Hori, T., &Watanabe, S. 2017. Joint ctc-attention based end-to-end speech recognition
using multi-task learning. In 2017 IEEE international conference on acoustics, speech and
signal processing (ICASSP), 4835–4839. IEEE.

[6] Huang, X., Acero, A., Hon, H.-W., & Reddy, R. 2001. Spoken language processing: A guide to
theory, algorithm, and system development, volume 1. Prentice hall PTR Upper Saddle River.

[7] Yu, D. & Deng, L. 2016. AUTOMATIC SPEECH RECOGNITION. Springer.

[8] Jurafsky, D. & Martin, J. H. 2014. Speech and language processing, volume 3. Pearson London.

[9] Virtanen, T., Singh, R., & Raj, B. 2012. Techniques for noise robustness in automatic speech
recognition. John Wiley & Sons.

[10] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke,
V., Nguyen, P., Sainath, T. N., et al. 2012. Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups. IEEE Signal processing magazine,
29(6), 82–97.

[11] Sercu, T., Puhrsch, C., Kingsbury, B., & LeCun, Y. 2016. Very deep multilingual convolutional
neural networks for lvcsr. In 2016 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 4955–4959. IEEE.

[12] Sercu, T. & Goel, V. 2016. Advances in very deep convolutional neural networks for lvcsr.
arXiv preprint arXiv:1604.01792.

59

http://www.d2l.ai
http://www.d2l.ai
http://dx.doi.org/10.23915/distill.00008
http://dx.doi.org/10.23915/distill.00008

HACAM-VAE

[13] Yu, D., Xiong, W., Droppo, J., Stolcke, A., Ye, G., Li, J., & Zweig, G. 2016. Deep convolutional
neural networks with layer-wise context expansion and attention. In Interspeech, 17–21.

[14] Palaz, D., Collobert, R., et al. Analysis of cnn-based speech recognition system using raw
speech as input. Technical report, Idiap, 2015.

[15] Abdel-Hamid, O., Mohamed, A.-r., Jiang, H., & Penn, G. 2012. Applying convolutional neural
networks concepts to hybrid nn-hmm model for speech recognition. In 2012 IEEE international
conference on Acoustics, speech and signal processing (ICASSP), 4277–4280. IEEE.

[16] Tian, X., Zhang, J., Ma, Z., He, Y., Wei, J., Wu, P., Situ, W., Li, S., & Zhang, Y. 2017. Deep
lstm for large vocabulary continuous speech recognition. arXiv preprint arXiv:1703.07090.

[17] Zhang, S., Lei, M., Yan, Z., & Dai, L. 2018. Deep-fsmn for large vocabulary continuous speech
recognition. arXiv preprint arXiv:1803.05030.

[18] Panayotov, V., Chen, G., Povey, D., & Khudanpur, S. 2015. Librispeech: an asr corpus based
on public domain audio books. In Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on, 5206–5210. IEEE.

[19] Han, K., He, Y., Bagchi, D., Fosler-Lussier, E., & Wang, D. 2015. Deep neural network based
spectral feature mapping for robust speech recognition. In Sixteenth Annual Conference of the
International Speech Communication Association.

[20] Lu, X., Tsao, Y., Matsuda, S., & Hori, C. 2013. Speech enhancement based on deep denoising
autoencoder. In Interspeech, 436–440.

[21] Feng, X., Zhang, Y., & Glass, J. 2014. Speech feature denoising and dereverberation via
deep autoencoders for noisy reverberant speech recognition. In Acoustics, Speech and Signal
Processing (ICASSP), 2014 IEEE International Conference on, 1759–1763. IEEE.

[22] Deng, J., Zhang, Z., Marchi, E., & Schuller, B. 2013. Sparse autoencoder-based feature transfer
learning for speech emotion recognition. In 2013 Humaine Association Conference on Affective
Computing and Intelligent Interaction, 511–516. IEEE.

[23] Deng, J., Zhang, Z., Eyben, F., & Schuller, B. 2014. Autoencoder-based unsupervised domain
adaptation for speech emotion recognition. IEEE Signal Processing Letters, 21(9), 1068–1072.

[24] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., &
Polosukhin, I. 2017. Attention is all you need. In Advances in Neural Information Processing
Systems 30, Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., & Garnett, R., eds, 5998–6008. Curran Associates, Inc. URL: http://papers.nips.cc/
paper/7181-attention-is-all-you-need.pdf.

[25] Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., & Bengio, Y. 2015. Attention-based
models for speech recognition. In Advances in neural information processing systems, 577–585.

60

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

HACAM-VAE

[26] Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., & Bengio, Y. 2016. End-to-end attention-
based large vocabulary speech recognition. In 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 4945–4949. IEEE.

[27] Watanabe, S., Hori, T., Kim, S., Hershey, J. R., & Hayashi, T. 2017. Hybrid ctc/attention
architecture for end-to-end speech recognition. IEEE Journal of Selected Topics in Signal
Processing, 11(8), 1240–1253.

[28] Garrett, S. L. 2017. Understanding acoustics. Cham, CH: Springer.

[29] Anderson, J. & Law, C.-W. 1977. Real-number convolutional codes for speech-like quasi-
stationary sources (corresp.). IEEE Transactions on Information Theory, 23(6), 778–782.

[30] for Standardization, I. O. Iso 226:2003 acoustics – normal equal-loudness-level contours. In-
ternational Organization for Standardization, Geneva, Switzerland.

[31] Watanabe, S., Hori, T., Karita, S., Hayashi, T., Nishitoba, J., Unno, Y., Enrique Yalta Soplin,
N., Heymann, J., Wiesner, M., Chen, N., Renduchintala, A., & Ochiai, T. 2018. Espnet:
End-to-end speech processing toolkit. In Interspeech, 2207–2211. URL: http://dx.doi.org/
10.21437/Interspeech.2018-1456, doi:10.21437/Interspeech.2018-1456.

[32] Chan, W., Jaitly, N., Le, Q., & Vinyals, O. 2016. Listen, attend and spell: A neural network
for large vocabulary conversational speech recognition. In 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 4960–4964. IEEE.

[33] Goodfellow, I., Bengio, Y., & Courville, A. 2016. Deep Learning. MIT Press, http://www.
deeplearningbook.org.

[34] Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. 2018. How does batch normalization help
optimization? In Advances in Neural Information Processing Systems, 2483–2493.

[35] Leinweber, D. J. 2007. Stupid data miner tricks: overfitting the s&p 500. Journal of Investing,
16(1), 15.

[36] Everitt, B. S. 2006. The Cambridge dictionary of statistics. Cambridge University Press.

[37] Doersch, C. 2016. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908.

[38] Schraudolph, N. 1998. Accelerated gradient descent by factor-centering decomposition. Tech-
nical report/IDSIA, 98.

[39] Raiko, T., Valpola, H., & LeCun, Y. 2012. Deep learning made easier by linear transformations
in perceptrons. In Artificial intelligence and statistics, 924–932.

[40] Srivastava, R. K., Greff, K., & Schmidhuber, J. 2015. Training very deep networks. In Advances
in neural information processing systems, 2377–2385.

61

http://dx.doi.org/10.21437/Interspeech.2018-1456
http://dx.doi.org/10.21437/Interspeech.2018-1456
http://dx.doi.org/10.21437/Interspeech.2018-1456
http://www.deeplearningbook.org
http://www.deeplearningbook.org

HACAM-VAE

[41] He, K., Zhang, X., Ren, S., & Sun, J. 2016. Identity mappings in deep residual networks. In
European conference on computer vision, 630–645. Springer.

[42] Bahdanau, D., Cho, K., & Bengio, Y. 2014. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473.

[43] Hu, J., Shen, L., & Sun, G. 2018. Squeeze-and-excitation networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, 7132–7141.

[44] Sutskever, I., Vinyals, O., & Le, Q. V. 2014. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, 3104–3112.

[45] Scheidl, H. Comparison of connectionist temporal classi
cation decoding algorithms. URL: https://github.com/githubharald/CTCDecoder/blob/
master/doc/comparison.pdf.

[46] Cipolla, R., Gal, Y., & Kendall, A. 2018. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 7482–7491. IEEE.

[47] Simonyan, K. & Zisserman, A. 2014. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

[48] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,
Antiga, L., & Lerer, A. 2017. Automatic differentiation in pytorch.

[49] Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M.,
Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., & Vesely, K. December 2011.
The kaldi speech recognition toolkit. In IEEE 2011 Workshop on Automatic Speech Recognition
and Understanding. IEEE Signal Processing Society. IEEE Catalog No.: CFP11SRW-USB.

[50] Tokui, S., Oono, K., Hido, S., & Clayton, J. 2015. Chainer: a next-generation open source
framework for deep learning. In Proceedings of Workshop on Machine Learning Systems (Learn-
ingSys) in The Twenty-ninth Annual Conference on Neural Information Processing Systems
(NIPS). URL: http://learningsys.org/papers/LearningSys_2015_paper_33.pdf.

[51] Akiba, T., Fukuda, K., & Suzuki, S. 2017. Chainermn: Scalable distributed deep learning
framework. In Proceedings of Workshop on ML Systems in The Thirty-first Annual Conference
on Neural Information Processing Systems (NIPS). URL: http://learningsys.org/nips17/
assets/papers/paper_25.

[52] Garofolo, J. S. 1993. Timit acoustic phonetic continuous speech corpus. Linguistic Data
Consortium, 1993.

[53] Lee, K.-F. & Hon, H.-W. 1989. Speaker-independent phone recognition using hidden markov
models. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(11), 1641–1648.

62

https://github.com/githubharald/CTCDecoder/blob/master/doc/comparison.pdf
https://github.com/githubharald/CTCDecoder/blob/master/doc/comparison.pdf
http://learningsys.org/papers/LearningSys_2015_paper_33.pdf
http://learningsys.org/nips17/assets/papers/paper_25
http://learningsys.org/nips17/assets/papers/paper_25

HACAM-VAE

[54] Hori, T., Watanabe, S., Zhang, Y., & Chan, W. 2017. Advances in joint ctc-attention
based end-to-end speech recognition with a deep cnn encoder and rnn-lm. arXiv preprint
arXiv:1706.02737.

63

HACAM-VAE

A Theoretical data

A.1 IEEE Thesis / Dissertation Reuse copyright
1) In the case of textual material (e.g., using short quotes or referring to the work within these
papers) users must give full credit to the original source (author, paper, publication) followed by the
IEEE copyright line c© 2011 IEEE. 2) In the case of illustrations or tabular material, we require that
the copyright line c© [Year of original publication] IEEE appear prominently with each reprinted
figure and/or table. 3) If a substantial portion of the original paper is to be used, and if you are
not the senior author, also obtain the senior author’s approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:
1) The following IEEE copyright/ credit notice should be placed prominently in the references:

c© [year of original publication] IEEE. Reprinted, with permission, from [author names, paper title,
IEEE publication title, and month/year of publication] 2) Only the accepted version of an IEEE
copyrighted paper can be used when posting the paper or your thesis on-line. 3) In placing the thesis
on the author’s university website, please display the following message in a prominent place on the
website: In reference to IEEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of [university/educational entity’s name goes here]’s products or ser-
vices. Internal or personal use of this material is permitted. If interested in reprinting/republishing
IEEE copyrighted material for advertising or promotional purposes or for creating new collective
works for resale or redistribution, please go to http://www.ieee.org/publications_standards/
publications/rights/rights_link.html to learn how to obtain a License from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may
supply single copies of the dissertation.

A.2 Recognition Unit

64

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

HACAM-VAE

ARPAbet sysbol Word ARPA Transcription
p parsley p aa r s l iy
t tea t iy
k cook kuh k
b bay b ey
d dill d ih l
g garlic g aa r l ix k
m mint m ih n t
n nutmeg n ah t m eh g
ng baking b ey k ix ng
f flour k l ow v
v clove k l ow v
th thick th ih k
dh those dh ow z
s soup s uw p
z eggs eh g z
sh squash s k w aa sh
zh ambrosio ae m b r ow zh ax
ch cherry ch eh r iy
jh jar jh aa r
l licorice l ih k axr ix sh
w kiwi k iy w iy
r rice r ay s
y yellow y eh l ow
h honey h ah n iy

Less commonly used phones
q uh-ph q ah q ow
dx butter b ah dx axr
nx winner w oj mx axr
el table t ey b el

Table 10: ARPAbet symbols for transcription of English consonants, [8, Chapter 7]

65

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

le
ct

ro
ni

c
Sy

st
em

s

M
as

te
r’

s
th

es
is

Haoyu Tang

Hybrid attention convolutionacoustic
model based on
variationalautoencoder for speech
recognition

Master’s thesis in Electronic Systems Design
Supervisor: Torbjørn Karl Svendsen

June 2019

	Preface
	Acknowledgment
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	THEORETICAL CONCEPTS FOR AUTOMATIC SPEECH RECOGNITION AND DEEP LEARING
	Basic concept about speech and linguistics
	Speech signal
	Short-time Fourier Analysis (STFT) and Mel filter bank
	Speech phonics

	Basic concept of computational model
	Gaussian distribution
	Basic properties of Gaussian distribution
	Gaussian Mixture Models
	Hidden Markov Models
	Recognition Unit in linguistics

	Deep neural network
	Multilayer Perception
	Convolution neural network (CNN)
	Recurrent neural network (RNN)
	Loss function
	Back propagation
	Batch Normalization
	Regularization item
	Dropout
	Autoencoder
	Residual network
	Attention mechanism
	Encoder-Decoder Architecture for variable length data
	Connectionist Temporal Classification (CTC)
	Loss combine

	Common ASR Architectures
	Gaussian Mixture Models - Hidden Markov Models Architecture
	Deep neural network - Hidden Markov Models Architecture
	Joint Connectionist Temporal Classification-Attention (CTC-ATT) end-to-end Architecture

	Implement of Hybrid attention convolution acoustic model based on variational autoencoder
	Time-Frequency attention autoencoder
	Channel attention classifier
	Dynamic loss combine in CTC-ATT architecture
	Corpus and software

	Result
	Metrics
	Reconstruction error
	Frame error rate (FER)
	Word error rate (WER)

	Traning setting
	Fbank feature preprocessing
	Autoencoer
	Phone classifier
	Joint training
	Dynamic loss combine in CTC-ATT architechture

	Discussion
	Autoencoder
	Phone Classifier
	Joint training
	Dynamic loss combine in CTC-ATT architechture

	Conclusion
	Model
	Future Work

	Bibliography
	Theoretical data
	IEEE Thesis / Dissertation Reuse copyright
	Recognition Unit

