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Abstract 

Swimming facilities are energy consuming buildings with highly advanced air conditioning 

systems compared to e.g. residential and office buildings. Especially the huge need of 

dehumidification is defining for swimming facilities. Due to high indoor air temperature and 

pool water temperature, also the heating need is huge in such facilities. In order to improve the 

buildings, their technical installations and procedure, a good understand of the energy needs 

for the different posts is essential. This master thesis aims to simulate the dynamic thermal 

behaviour of an existing swimming pool using the building performance simulation (BPS) tool 

IDA ICE. The goal is to determine how accurate these simulations can predict thermal needs 

and how this BPS tool can be used to build more energy efficient swimming pools. 

This report also contains an extensive literature review about use, design of the building 

envelope and air conditioning system.  

A part of Pirbadet, a swimming facility in Trondheim, was used for modelling and 

measurements. The two hot water pools and their belonging air handling unit (AHU) was 

modelled in IDA ICE. The purpose was not to model a copy of the AHU in Pirbadet, but to 

make a model that ensured the same indoor climate and recycled thermal energy from the return 

air. To be able to validate the model to the real system, there were performed measurements in 

the AHU in Pirbadet. There were installed temperature and relative humidity (RH) sensors, as 

well as the integrated volume flow sensors, to be able to do energy calculations for the AHU.  

  

The results from the measurements in Pirbadet and the simulations were compared to decide 

whether the pool and building model was correct in terms of thermal energy need or not. 

Afterwards the thermal energy need of the AHU was investigated.  

The IDA ICE pool model works as intended regarding evaporation rate compared to Pirbadet. 

Compared to theoretical calculations, there is a big leap in the results, but it corresponded quite 

good to the method of Basin & and Krumm. 

The heating need from the ventilation system was a lot higher for the real hall in Pirbadet than 

for the IDA ICE model. This indicates that the model has less heat loss than the reality and 

consequently has less AHU heating need as well. 

Due to a different control strategy, the dehumidifying power for the two cases are very 

different. The fact that the IDA ICE model was made without a heat pump also makes an impact 

on the use of the dehumidifier which is the evaporator of the heat pump. To be able to evaluate 

IDA ICE further, a more correct model in terms of heating need must be tested.  
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Sammendrag 

Svømmeanlegg er svært energikrevende bygg med svært avansert luftbehandlingsanlegg 

sammenlignet med for eksempel bolighus eller kontorbygg. Spesielt det store behovet for 

avfukting er karakteristisk for svømmeanlegg. På grunn av høy innendørs lufttemperatur og 

bassengvannstemperatur er også varmebehovet ved slike anlegg stort. I den hensikt å forbedre 

slike bygg, de tilhørende tekniske installasjonene og styring er det viktig å skaffe innsikt i 

energibruken til de forskjellige delene i et slikt anlegg. Denne masteroppgaven tar for seg 

simulering av dynamisk termisk opptreden av en eksisterende svømmehall ved bruk av 

simuleringsverktøyet IDA ICE. Målet er å bestemme hvor nøyaktig slike simuleringer kan 

anslå termisk energibehov og dermed kunne være til nytte ved energieffektivisering av 

svømmeanlegg. 

Denne rapporten inneholder også et omfattende teorikapittel om bruk av svømmehaller, design 

av bygningskropp og luftbehandlingsanlegg.  

En del av Pirbadet, et svømmeanlegg i Trondheim, ble brukt for modellering og til å utføre 

målinger i. Pirbadets to helsebad og det tilhørende luftbehandlingsaggregatet ble modellert i 

IDA ICE. Målet var ikke å modellere en eksakt kopi av aggregatet i Pirbadet, men å lage en 

modell som sørger for det samme inneklimaet og som gjenvinner den termiske energien fra 

returlufta fra hallen. For å kunne validere modellen med virkeligheten ble det gjort målinger i 

luftbehandlingsaggregatet i Pirbadet. Det ble installert temperatursensorer og sensorer for 

relativ fuktighet for å kunne gjøre energiberegninger. I tillegg var det allerede to integrerte 

sensorer for volumstrøm som ble benyttet. 

Resultatene fra målingene i Pirbadet og simuleringene ble sammenlignet mot hverandre for å 

avgjøre om IDA ICE modellen var riktig med hensyn til termisk energibehov. Etterpå ble det 

termiske energibehovet til luftbehandlingsaggregatet undersøkt. 

IDA ICE bassengmodellen virker som ønsket når det gjelder fordamping sammenlignet med 

fordamping i Pirbadet. Sammenligner man derimot med teoretisk kalkulerte verdier er det stort 

sprik i resultatene. Fordampingen stemmer ganske godt overens med kalkulerte verdier fra 

metoden til Basin & Krumm som også i andre studier er fremhevet som passende. 

Varmebehovet fra ventilasjonssystemet viste seg å være mye høyere i virkeligheten enn i IDA 

ICE modellen. Dette kan være en indikasjon på at modellen har mindre varmetap enn 

virkeligheten og som en konsekvens også trenger mindre varmetilførsel i 

luftbehandlingsaggregatet. 

På grunn av forskjellig regulering er behovet for effekt i avfukteren ganske forskjellig i 

modellen og det som ble målt i Pirbadet. Det faktum at IDA ICE modellen ble modellert uten 

varmepumpe vil også ha innvirkning på bruken av avfukteren, da den er fordamperen til 

varmepumpa. For å kunne evaluere IDA ICE bedre vil man ha behov for å teste en modell som 

er bedre, i form av mer korrekt varmebehov, enn den utviklet i dette prosjektet.  
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1. Introduction 

1.1 Background and motivation 

According to the Norwegian law of climate1, Norway´s target within 2030 is to reduce 

greenhouse gas emissions with at least 40 % compared to the reference year 1990 [1]. Since 

the Norwegian buildings is accounting for around 40 % of the total energy use in Norway, to 

reduce the energy demand for Norwegian buildings can contribute to a large extent in reaching 

this target [2]. Among all Norwegian buildings, swimming halls are huge consumers of energy. 

In 2012 Wolfgang Kampel et al. published an article about energy-use in Norwegian swimming 

halls. They stated that there were registered about 850 swimming facilities in Norway and 

found the potential reduction of the final annual energy consumption of these to be around 28 

% [3]. This explains the need of research within this topic. 

Over the past decades, the new building standards have ensured more leakage proof and better 

insulated buildings. This changes the properties of the building envelope and new research is 

needed to optimize the use of it. Also, the building performance simulation programs have been 

developed, so the possibility for research is better than ever. 

There has been some research on for example solar gain for both outdoor and indoor swimming 

pools and CFD analysis of indoor pools regarding temperature and humidity by use of 

OpenFOAM software [4]. There is also been done some experiments on water evaporation 

compared to calculation methods. However, there is not yet much experience or research on 

using simulation tools in design of swimming halls and their belonging technical systems. 

 

1.2 Problem description 

Swimming pools are buildings with an intensive energy use with complex indoor environment 

parameters. They have continuous heating needs during the entire year. Existing projects show 

a large variation of technical solutions also characterized with large variations of investments 

and energy costs of operation. A good understand of the energy needs for the different posts 

(or services) is essential in order to improve the current buildings and their technical 

installations, as well as to improve their procedure. Understanding of the energy needs is also 

a necessary background to start on optimization process for such buildings. 

 

                                                 
1 Norwegian: Klimaloven 
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To contribute to this goal, the master thesis aims to simulate the dynamic thermal behaviour of 

an existing swimming pool using building performance simulation. This will be done using 

IDA ICE combined with a dedicated plugin for swimming pools. The objective is to determine 

how accurate these simulations can predict thermal needs and how this BPS tool can be used 

to build more energy efficient swimming pools. During the master thesis, the focus will firstly 

be on the air handling unit and the pool heating. Then, the heating plant of the swimming pool 

will be investigated. In order to validate simulations, technical specifications and measurement 

data from an existing swimming pool should be obtained.  A critical physical phenomenon is 

the amount of water evaporation from the swimming pool. This should be investigated, for 

instance using measurements, and used in the simulation model. Finally, based on a validated 

model of a swimming pool, a comprehensive sensitivity analysis should be performed in order 

to optimize and understand its energy performance. 

 Adjustments 

The purpose was not to model a true copy of the AHU in Pirbadet, but to make a model that 

ensured the same indoor climate and recycled thermal energy from the return air. Further on 

this simple model should be compared to measurements to determine if such a model can be 

used as a tool for swimming pool design. 

Due to lack of possibility to measure and log the pool heating, this part is not in focus in this 

thesis. The heat pump was not modelled due to the complexity of modelling a heat pump in 

IDA ICE. A cooler was used for the evaporator and a heating coil for the condenser. So, only 

the output of the heating plant is considered. As a result of a not perfect building model, a 

sensitivity analysis in order to optimize and understand the energy performance of the 

swimming facility was not of interest. This must be done for a correct model to be valuable. 

 

1.3 Structure of the report 

Chapter 2 is a theory part giving an overview over use of swimming pools, challenges 

appearing in these buildings, requirements and technical equipment used in swimming pools. 

Further on, chapter 3 is about methodology and gives some information about the swimming 

facility used, the measuring process and further use of the measurements. Further on, the 

software used and how the pool is modelled and simulated is presented. Chapter 4 presents the 

results from the measurements and simulations including some analysis. In chapter 5, the 

results are discussed while chapter 6 contains a conclusion of the work. There is also a chapter 

7 for further work. 
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2. Theory about swimming pools 

2.1 Use of swimming pools 

Swimming facilities is built to create good and safe conditions for indoor swimming and other 

indoor water activities. One wants to be able to do the activity in a comfortable indoor 

environment. When designing and building a swimming facility, the most important goal is to 

facilitate for the use of the building. 

There are different types of activities with need of different pools and different impact on the 

indoor climate. There are for example small swimming pools used by schools for swimming 

lessons, larger swimming pools for different kind of sports and there are these huge facilities 

with different types of pools and water attractions like slides. Due to diverse use of the different 

facilities, they are designed their own way to ensure a best possible indoor climate for the users. 

 

The different use of swimming pools leads to different evaporation rates from the water surface 

due to different water surface area. This effect has its own factor, which is called the activity 

factor (Fa). This factor is used to calculate the evaporation energy from the pool as in Equation 

(2-3). 

Table 2-1: Typical activity factor for different type of pools [5, 6] 

Type of pool Typical activity factor (Fa). 

Covered 0.1 

Baseline (unoccupied) 0.5 

Residential 0.5 

Condominium 0.65 

Therapy 0.65 

Hotel 0.8 

Public, schools 1 

Whirlpools, spas 1 

Wavepools, water slides 1.5 
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2.2 Design of swimming pools 

 The building structure 

Swimming pools are seldomly built as separate buildings, but rather often inside buildings 

containing several facilities. This might for example be larger sport arenas housing many 

different sports or schools with internal swimming pool. This means there are often one or 

more walls connected to another heated part of the building which is beneficial regarding 

condensation and energy loss. 

In 2012, the average age of the Norwegian swimming pools were 37 years [3]. Over these years 

there has been an almost continuous change of the building requirements, the materials and 

technical equipment used. When Pirbadet in Trondheim was built, the “Byggteknisk forskrift” 

(TEK97) was giving building requirements. Today, the current restrictions are given in TEK17 

for all buildings and in the Norwegian standard NS3701 for non-residential passive house 

buildings. There are not specific restrictions for indoor swimming facilities in these standards, 

but they are subordinate of buildings for sport. The maximum allowable energy demand for 

sports buildings is 145 kWh/m2 heated area each year according to TEK17 [7]. The average 

energy demand of 27 Norwegian swimming facilities over one year was found to be 401 

kWh/m2
UA in a study from 2004 [8]. So, swimming facilities have much higher energy demand 

than the typical Norwegian sports buildings. 

 

Table 2-2: Requirements for U-values [9] [7] [10] 

 TEK972 [W/(m2K)] TEK17 [W/(m2K)] NS3701 [W/(m2K)] 

External walls ≤ 0.22 ≤ 0.22 ≤ 0.22 

External roofs ≤ 0.15 ≤ 0.18 ≤ 0.18 

Floor to ground ≤ 0.15 ≤ 0.18 ≤ 0.18 

Windows and doors ≤ 2 ≤ 1,2 ≤ 0.8 

 

Table 2-3: Other requirements regarding building structure [7] [10] 

 TEK17 NS3701 

Leakage n50 [ach] ≤ 1.5  ≤ 0.6 

Normalized thermal  

bridge 𝜓" [W/(m2K)] 

≤ 0.05 ≤ 0.03 

                                                 
2 Valid for non-residential houses with indoor temperature ≥ 20 C 
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 Pool specifications 

There exist several types of swimming pools made for different purposes with different 

properties. When it comes to size, it ranges from small pools for swimming lessons at schools 

to large pools for sport or recreation. The water temperature is set to be comfortable for the 

activity in the specific pool. A pool for sport has colder water than a pool for therapy for 

example.  

Table 2-4: Requirements for water temperature in different type of pools [11] 

Type of pool Required water temperature [C] 

Training pool 28-34 

Baby swimming pool 33 

Swimming pool 26-29 

Competition pool 26-27 

Diving pool 26-32 

Whirlpool 37-40 

Waterpark pool 28-34 

 

Testing of different water temperatures in IDA ICE by Ole Ø. Smedegård at Jøa indicates that 

a lower water temperature results in less evaporation from the pool, which is preferable [6].  

Regarding the evaporation from the pool surface to the hall air, Byggforsk has some numbers 

on this based on experience tabulated in Table 2-5. 

Table 2-5: Evaporation from pool surface based on experience [8] 

Category Water temperatures [C] Evaporation [kg/(m2h) 

Private pool 27-28 0.10 

Hotel 27 0.18 

Night-time  0.10 

Public pool 28 0.25 

Heated pools 32-36 0.35-0.50 

Whirlpools 36-38 0.9-1.0 

 

There has been done some experiments on evaporation rates by use of small pool models. Ilona 

Rzeźnik has done such an experiment and compared the results against several methods for 

calculating evaporation rate. There was done experiments both with and without occupancy, 
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and the models Shah and Baisin & Krumm gave results most equal to the results from the 

laboratory. The models are shown in Attachment 3. 

Showers/Wardrobes 

According to Byggforsk, the recommended air temperature in the wardrobe is 21-23 C, while 

the recommended air temperature in the showers is 25-27 C [12]. Due to the amount of water 

in the showers compared to the more or less dry wardrobes and the difference in recommended 

air temperature, the wardrobe and showers can be separated in two ventilation zones. The 

todays normal practice is to ventilate the showers with the same AHU as used for the swimming 

hall, and another AHU for the dry wardrobes. 

 The energy system (balance) 

When studying the energy balance of a system it is very important to understand the boundary 

lines of the system. Figure 2-1 is a simple sketch of the system used in this project and some 

relevant energy balance equations is shown in the sections below. For simplicity, the hall and 

wardrobes are assumed to be one zone only.  

 

Figure 2-1: Energy system with boundary lines 

In an article from the Faculty of Mechanical Engineering in the University of Nis (Serbia) there 

is done simulations using TRNSYS software to get to understand the thermal performance of 

an indoor swimming pool. Their simulation showed that pool water heating accounted for about 

22 % while the ventilation and heating of the pool hall for about 60 % of the total pool hall heat 

demand. They also found the evaporation losses to be around 46-54 % of the total pool losses. 

In other words, there is a huge interaction between pool, hall and ventilation system. [13] 
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2.2.3.1 Energy balance for the hall air space 

In this section, the energy balance for the swimming hall within the purple system boundary 

line is presented. 

Equation (2-1) is the balance equation for the heat energy in the hall. 

 𝑄̇𝑛,𝑎𝑠 + 𝑄̇𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + (𝑄̇𝑒𝑣𝑎𝑝 + 𝑄̇𝑟𝑎𝑑 + 𝑄̇𝑐𝑜𝑛𝑣)𝑝𝑠 + 𝑄̇𝑠𝑜𝑙𝑎𝑟 = 𝑄̇𝑒𝑛𝑣𝐿𝑜𝑠𝑠𝐻𝑎𝑙𝑙 (2-1) 

 

Where Equation (2-2) is the net thermal energy supplied to the hall by the AHU 

 𝑄̇𝑛,𝑎𝑠 = (𝑚̇𝑎𝑠 ∗ has) − (𝑚̇𝑎𝑒 ∗ hae) (2-2) 

 

and Equation (2-3) is the energy released from the pool due to evaporation [5]. 

 𝑄̇𝑒𝑣𝑎𝑝 = 4 ∗ 10−5 ∗ 𝐴(𝑝𝑝𝑠 − 𝑝𝑎)𝐹𝑎 ∗ 𝑌 (2-3) 

It is important to know that the airflow used in Equation (2-2) is the supplied air to the hall 

(marked 2), not the fresh air supplied to the AHU (marked 1). 

2.2.3.2 Energy balance for the swimming hall with pool 

In this section, the energy balance for the swimming hall within the red system boundary line 

is presented. 

Equation (2-4) is the balance equation for the heat energy in the hall with the pool. 

 𝑄̇𝑛,𝑎𝑠 + 𝑄̇𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝑄̇𝑠𝑜𝑙𝑎𝑟 + 𝑄̇𝑛,𝑤𝑠 = 𝑄̇𝑒𝑛𝑣𝐿𝑜𝑠𝑠𝐻𝑎𝑙𝑙 + 𝑄̇𝑒𝑛𝑣𝐿𝑜𝑠𝑠𝑃𝑜𝑜𝑙 (2-4) 

 

Where Equation (2-5) is the net thermal energy in the water supplied to the pool 

 𝑄̇𝑛,𝑤𝑠 = 𝑄̇𝑤𝑠 − 𝑄̇𝑤𝑒 (2-5) 

 

2.2.3.3 Water vapor mass balance for the hall air space 

In this section, the water vapor mass balance for the swimming hall within the purple system 

boundary line is presented. 

Equation (2-6) is the balance equation for the water vapor mass in the hall. 

 𝑚̇𝑒𝑣𝑎𝑝 + 𝑚̇𝑠ℎ𝑜𝑤𝑒𝑟𝑠 = 𝑚̇𝑎𝑤𝑒 − 𝑚̇𝑎𝑤𝑠
3 (2-6) 

 

Where Equation (2-7) is the evaporated mass from the pool4 [5] 

 𝑚̇𝑒𝑣𝑎𝑝 = 4 ∗ 10−5 ∗ 𝐴(𝑝𝑝𝑠 − 𝑝𝑎)𝐹𝑎 (2-7) 

                                                 
3 Assuming no infiltration or exfiltration 
4 Equation used in IDA ICE calculations 
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and Equation (2-8) is the water mass extracted from the hall to the AHU 

 𝑚̇𝑎𝑤𝑒 = 𝑥𝑎𝑒 ∗ 𝑉̇2,𝑎𝑒 ∗ 𝜌𝑎𝑖𝑟,𝑑𝑟𝑦 (2-8) 

 

and Equation (2-9) is the water mass supplied to the hall from the AHU. 

 𝑚̇𝑎𝑤𝑠 = 𝑥𝑎𝑠 ∗ 𝑉̇2,𝑎𝑠 ∗ 𝜌𝑎𝑖𝑟,𝑑𝑟𝑦 (2-9) 

 System diagram 

Figure 2-2 illustrates the total system for a typical “easy” swimming pool. In this case the pool 

at Jøa is used. 

 

Figure 2-2: The Jøa swimming pool facility system diagram [6] 

 

1. The swimming pool 

2. Water inlet 

3. Stop valve for draining the pool 

4. Buffer vessel 

5. Wastewater 

6. Hydronic heating circuit 

7. Closed heating circuit 

 

8. Air handling unit 

9. Integrated heat pump in the AHU 

10. Water supply 

11. Air supply 

12. Water heater 

13. Exhaust air 
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2.3 Water treatment 

In the manual dealing with water treatment in public pools from Norsk Bassengbad Teknisk 

Forening (NBTF) there are several important guidelines. There are mainly three important 

actions in the water treatment. These are circulation, filtering and supply of fresh water. The 

water treatment system should ensure hygienic conditions for the users of the pool.  

The amount of circulating water and fresh water is given by the number of users of the pool. 

For pools larger than 4 m3 and water temperature below 34 C the amount of circulating water 

should be minimum 2 m3/hour per visitor and the amount of fresh water should be minimum 

30 liters/day per visitor (60 liters/day per visitor if water temperature is above 34 C) [14]. 

To ensure this hygienic water conditions, the circulated water is filtered and disinfected. 

Chlorine is a well-known chemical agent for disinfection, but has to be used within some 

recommended amounts to avoid harm to the visitors. This topic is mentioned more specific in 

section 2.4. A solution for reducing the use of chlorine is to use ultra violet (UV) light. The UV 

light starts a chemical process that lame the cell division of microorganisms as well as it reduce 

the amount of bound chlorine [14]. Direct eye contact with the UV light is dangerous. 

 

2.4 Ventilation 

In many of today’s swimming pools, chlorine is used to clean the water for bacteria that can be 

hazardous to humans. But this action doesn’t come without consequences. Chemicals such as 

dichloramine and trichloramine are formed when chlorine binds to water contaminants [8]. 

These chloramines are off-gassed to the pool space air and can result in irritated skin and eyes, 

respiratory health hazard and corrosion on building materials [15]. One way to reduce this 

effect is to use other water treatment methods, like UV system, to clean the water and then 

reduce the amount of chlorine. Another way, which is to be considered in this project, is to 

ventilate the air to remove the chloramines. 

Besides ensuring fresh air, ventilation is important for heating, dehumidification and to provide 

a satisfying indoor climate in the entire swimming hall. There will be heat loss through the 

building envelope and in the ventilation that needs to be covered. Due to constant evaporation 

from the pool, a dehumidification method must be used to limit the moisture level in the air as 

described more in detail in section 2.4.3.  
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 Air rates 

Since there are different purposes of the ventilation, all the purposes should be investigated to 

decide the correct air rates. We also divide in need of fresh air and total air rates. 

 

The amount of fresh air (outdoor air) needed depends on dehumidification method as described 

in section 2.5.1. Anyway, the minimum requirements for fresh air supply is the amount needed 

to ensure a good air quality. 

 

To decide the fresh air rates after the method used in TEK17, the amount of fresh air is 

evaluated based on: 

a emissions from people 

b emissions from materials and inventory 

c emissions from activities and processes 

The largest value of (a + b) and (c) is the value used for deciding fresh air rates for ventilation. 

The different numbers for (a) and (b) are given in Table 2-6, while the numbers for (c) is in 

this case given by The American Society of Heating, Refrigerating and Air-Conditioning 

Engineers (ASHRAE) and Byggforsk described below. 

Table 2-6: Air rates for fresh air based on person and material load [7] 

 a [m3/h per person] b [m3/h per m2] 

In use 26 2.5 

Not in use  0.7 

 

According to ASHRAE, the minimum ventilation rate (outdoor air) required to be delivered to 

the breathing zone is 2.4 L/s per m2 for swimming pool and deck area [15]. (The breathing zone 

ranges from 79 mm to 1.8 m above the floor [15].) This corresponds quite good to the values 

in Table 2-7 given by Byggforsk. There are given two values, one per area of water surface and 

floor, and one only per area of water surface. The highest value is to be used as the value (c) 

as described above. 

Table 2-7: Minimum ventilation rate of fresh air (outdoor air) according to Byggforsk [8]. 

Ventilation rate of fresh air per area of water surface and floor 1.4 L/s per m2 

Ventilation rate of fresh air per area of water surface 2.8 L/s per m2 
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The total air flow rate should though be larger than the fresh air supply and is set to ensure 

enough heating and dehumidification of the air. Byggforsk suggests to use  between 4 and 7 

air changes per hour (ach) for normal swimming pools and between 8 and 10 ach for therapy 

baths [8]. According to ASHRAE, the number of ach should be 4-6 for normal recreational 

pools and 6-8 for competition pools with spectators [15]. Therefore, ASHRAE recommend 

starting with 6 ach and just lower it if possible. 

The air volume flow in showers are high due to the large evaporation rate. According to TEK17, 

the (c) is 54 m3/h per shower [7]. 

According to the authors of an ASHRAE journal from 2017, the exhaust air rate should be 2 

% to 10 % higher than the supply air to ensure a favourable underpressure in the hall [15]. 

Here, they recommend using 10 % to be conservative [15]. The underpressure is preventing 

the humid indoor air to damage the building envelope. Another result of the underpressure is 

that the outdoor air of same amount as the excess exhaust air will enter the building through 

infiltration. If the outdoor air is colder and contains less water than the indoor air, this effect 

dehumidifies and cools the indoor air.  

 

The air must enter the hall with some air velocity to be able to mix the air sufficiently. A study 

done by Smith, C. C., et al, where they measured evaporated water by measuring the water 

level, states that a higher air velocity results in higher evaporation rate [16]. This effect also 

works on wet bodies, where a too high air velocity will speed up the evaporation on the bodies 

and have a cooling effect. So, both to minimize pool water evaporation and to ensure comfort 

for the users, the air velocity should be limited. ASHRAE states that the air velocity should be 

below 0.5 m/s while The Norwegian Labour Inspection Authority recommend a maximum air 

velocity of 0.15 m/s in occupied zone [17] [18]. 

 

 Temperature 

The temperature should be comfortable to the users of the swimming hall as well as it should 

minimize the evaporation from the swimming pool. A low air temperature will speed up the 

evaporation rate from the body and can be similar to the feeling of draft while a high air 

temperature will make the water feel cold. So, both a too high and too low air temperature can 

result in thermal discomfort for the users. 
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Regarding evaporation, a higher air temperature is favourable. This is seen of Equation (2-7) 

since a higher temperature implies a higher saturation pressure at room air dew point which 

again means a lower evaporation rate.  

As stated by Byggforsk, a normal rule is that the air temperature should be 2 C higher than 

the water temperature [11].   

 

 Humidity 

The humidity should have upper restrictions to reduce possibility of damages on the building 

structure. An overview over sources for process-caused building damages shows that up to 76 

% of all damages is caused by humidity [19]. This study though, is based on damages in the 

period 1993-2002, a period where the requirements for U-values was less strict than today’s 

new buildings. Condensation is a huge risk to building damage and occurs when the inner 

surfaces reach the dew point temperature. Simple hand-calculations give us some indication of 

window inside surface temperature. Figure 2-3 shows the resulting surface temperature given 

an inside air temperature of 30 C. 

  

Figure 2-3: Graphs of window inside surface temperature as a function of outside air temperature 

(total U-value of windows: 2 W/m2K (left graph) 0.8 W/m2K (right graph)) 

For normal outdoor temperatures, the inside surface temperature will be over about 18 C for 

a window with a U-value of 2 W/m2K and about 24 C for a window with a U-value of 0.8 

W/m2K. During winter, with an indoor air temperature at 30 C and a dew point temperature 

of 18 C, a RH of approximately 50 % will be enough for condensation to occur as shown in 

Figure 2-4. For the window with a dew point temperature of 24 C, a RH of approximately 70 

% will be enough for condensation to occur. This illustrates the difference between new and 

old windows. Anyway, Byggforsk recommend a RH below 55 % during winter and below 65 

% rest of the year to reduce risk of building damage [8].  
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Figure 2-4: Graph of dewpoint as a function of air temperature at varying RH [20] 

The lower limit for RH is set to ensure a comfortable indoor climate for the users of the pool. 

A RH below 50 % will give the users the same feeling as draft, due to increased evaporation 

from the body [8]. 

Table 2-8: Recommended RH depending on season [8] 

Recommended RH setpoints during winter 50-55 % 

Recommended RH setpoints rest of the year 50-65 % 

 Ventilation methods 

The usual way to ventilate a pool facility is to supply dry hot air to the window façade with 

intention to avoid condensation.  The air is supplied from bottom of the window façade, rises 

along the façade and mixes in the room afterwards. A combination of high and low return air 

should ensure a good mixing and effective removal of chloramines as well as it prevents 

stratification [21]. For the calculated example in section 2.4.3, where there in theory would 

occur condensation at the window on the coldest days, this ventilation method would be a 

possible solution. 

For new swimming facilities that are built as passive house buildings, or even better, does not 

necessarily need the air supplied along the window façades. This is the case for a swimming 

facility at Jøa in the northern part of Trøndelag. This facility has a type of displacement 

ventilation with supply in the ceiling and return air at deck level while the supply under the 

windows is just for security [6]. The air is mixed due to convective forces from the evaporation 

and natural convection along the window façade [6].  
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2.5 Air handling unit 

Table 2-9: Requirements regarding components in the AHU [7] [10] 

 TEK17 NS3701 

Heat recovery efficiency [%] ≥ 70 ≥ 80 

Specific fan power (SFP) factor [kW/(m3/s)] ≤ 2.0 ≤ 1.5 

 

 Dehumidifying  

Johansson et al. describes the three most used dehumidification techniques for swimming 

facilities, which are the conventional system, the mechanical heat pump system and the open 

absorption system [22]. They all dehumidify the air as well as heat is recovered to some extent.  

2.5.1.1 The conventional system 

At least in Norway, the outdoor air contains quite little water compared to the indoor air in a 

swimming pool. This is utilized in the conventional system where outdoor air is heated up and 

supplied to the building. This method is very energy demanding, so the outdoor air is mixed 

with a circulation flow from the swimming pool facility to reduce need of heating to some 

extent. This is anyway not an energy efficient way to do dehumidification. [22] 

 

Figure 2-5: Conventional dehumidifying system [22] 

2.5.1.2 The mechanical heat pump system 

Many of today’s swimming pool facilities use a mechanical heat pump in the AHU to 

dehumidify the air. This is done by cooling a part of the air from the swimming facility through 

the heat pump evaporator, and water vapor is condensed. This dehumidified air is then first 

mixed with rest of the exhaust air, and secondly part of the exhaust air is mixed with outdoor 

air before heated through the heat pump condenser. A heating coil is placed after the heat pump 

condenser to ensure a correct supply air temperature. When the swimming pool is closed, the 

air only circulates, and no outdoor air is supplied. [22] 
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Figure 2-6: Mechanical heat pump dehumidifying system [22] 

2.5.1.3 The open absorption system 

In this system, an absorber is used to remove water vapor from the circulated air before mixing 

with the outdoor air and then heated in a heating coil. As well as the air is dehumidified, the 

air temperature is increased somewhat through the absorber. The absorption solution in the 

absorber transports the water to a boiler. Since the boiling-point of the absorption solution is 

higher than for the water, the water is evaporated. The absorption solution is brought back to 

the absorber while the water vapor is brought to a condenser where heat is released to e.g. pool 

water. Similar to the system with mechanical heat pump, the air only circulates outside the 

opening hours for the swimming pool since the absorption solution absorbs the evaporated 

water. [22]  

 

Figure 2-7: The open absorption dehumidifying system [22] 
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 Mollier diagram (HX) 

The Mollier diagram is known as a basic design tool for engineers and is an illustration of the 

relationship between air enthalpy, moisture content and temperature. The diagram was created 

in 1904 by Richard Mollier, a professor of mechanical engineering [23]. The different 

processes in an AHU is described and illustrated in the Mollier diagram in Figure 2-8. 

 

HEATING in terms of sensible heat is illustrated with a vertical arrow directing upwards as 

the red one in Figure 2-8. This means an increase in temperature and enthalpy. The air 

maintains the same absolute humidity, but a decreased relative humidity.  

COOLING in terms of sensible cooling is illustrated with a vertical arrow directing downwards 

as the dark blue one in Figure 2-8, just opposite of heating. The temperature and enthalpy 

decrease, the absolute humidity stays the same while the relative humidity increases. Sensible 

cooling occurs when air is cooled by a surface with a temperature above the dewpoint 

temperature of the air. In Figure 2-8, the dewpoint (DP) for “Air 1” is marked at the saturation 

curve. The dewpoint temperature is the corresponding temperature of this point, about 20.5 C 

for “Air 1”.  

DEHUMIDIFICATION in terms of latent cooling is illustrated with an arrow directing 

downwards to left as the light blue one in Figure 2-8. In this case, the air is cooled by a surface 

with a temperature below the dewpoint temperature of the air. The resulting air is along the 

line from the original air condition to the saturation point of the cold surface. In Figure 2-8, 

“Air 1” is cooled by a surface with surface temperature 18 C. The resulting air ends up on a 

line between “Air 1” and the saturation point at 18 C. The more the air is cooled by the surface, 

the further down this line the air ends up. 

MIXING of two airflows is illustrated with purple arrows in Figure 2-8. Here “Air 1” and “Air 

2” is mixed and the resulting mix ends up on a straight line between these air properties in the 

Mollier diagram. In the example in Figure 2-8, the portion of “Air 1” is slightly larger than the 

portion of “Air 2”. Therefore, the resulting air mix ends up closer to “Air 1” than “Air 2”. 
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Figure 2-8: Mollier diagram illustrating the AHU processes 

 

2.6 Power calculations 

Equation (2-10) shows the calculation of power given to (if positive) or extracted from (if 

negative) an airflow as in Figure 2-9. 

 Q = 𝑚̇ ∗ cp ∗ ΔT =   𝑚̇ ∗ 𝐶p ∗ (T2 − 𝑇1) (2-10) 

Where Q is the power [kW], 𝑚̇ is the massflow [kg/s], 𝐶p is the specific heat capacity 

[kJ/(kg*K)] and T is temperature [C]. The specific heat capacity of air is varying with 

temperature as tabulated in Table 2-10.  

 

Figure 2-9: Illustration of an airflow with mass 𝒎̇ in a pipe being heated from T1 to T2 
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Table 2-10: Specific heat capacity of air [24] 

Temperature [K] Cp [kJ/(kg*K)] 

240 1.003 

260 1.003 

280 1.004 

300 1.005 

320 1.006 
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2.7 Existing energy evaluation methods 

To be able to evaluate the energy use of a building, the value for energy use must be comparable 

to e.g. restrictions and to other buildings. Therefore, researchers should use the same building 

energy index in their research. As well as it is important that the energy index is comparable, 

it should really characterize the energy use.  

 

 Energy efficiency index (EEI) 

The EEI is known to be the most commonly used index for comparing performance of energy 

use in buildings [25]. Just the fact that it is widely spread makes it beneficial to use. EEI is 

presented in Equation (2-11) as the ratio of energy input to a factor related to the energy using 

component [25]. 

 
EEI =

Energy input

Factor related to the energy using component
  

(2-11) 

The energy input is mostly defined as energy consumption (kWh) during a year or another 

appropriate timespan. Regarding the “factor related to energy using component”, area (m2) is 

a often used factor for most building types. In TEK17, the requirements for maximum net 

energy consumption use the factor area (m2).  

 

For swimming pools, the most commonly used factors related to the energy using component 

is usable area (UA) and water surface area (WS). These corresponds to the EEI kWh/m2
UA and 

kWh/m2
WS. According a study by Wolfgang Kampel, the delivered energy can have low values 

when water surface is used and high values when usable area is used and vice versa [26]. In 

the same study, an analysis showed that the correlation between delivered energy and water 

usage is highest, followed by the correlation between delivered energy and visitors [26]. Based 

on the same study, Bjørn Aas claims that one should use kWh/m2 when comparing swimming 

pools with other types of buildings and kWh/visitor when comparing different swimming pools 

[27].  
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3. Methodology 

To characterize the thermal energy needs of a swimming pool, the building performance 

simulation software IDA ICE is used together with a dedicated extension for swimming pools 

and ice rinks. This tool is used to build a model of a pool facility in Trondheim and is validated 

by comparing the results to measurements from the same pool. In this section, IDA ICE, the 

modelling of the facility and the measurements are described. 

 

3.1 IDA ICE 

IDA ICE is a simulation tool for indoor climate and energy by EQUA Simulation AB, a 

Swedish company founded in 1995 [21]. The tool allows the user to model a building with its 

technical systems and do simulations to ensure a low energy consumption and best possible 

indoor climate.  The tool uses Neutral Model Format (NMF) and is transparent, so the user can 

easily look into the NMF to figure out how components work. The possibility to log any 

variable is also an advantage of this simulation tool. In IDA ICE, the air in a zone is assumed 

fully mixed. Therefore, simulation in IDA ICE does not give results for local differences in a 

zone. 

For the IDA ICE version 4.7.1, the old version, sensitivity analysis is done by a method called 

“simulation tree”. In this method, a mother version is made first and then one can make one or 

more child versions with changing parameters to perform sensitivity analysis. Then, by 

changing anything in the mother version, all child versions are changed as well. The downside 

of this method is that the sensitivity analysis is restricted to the number of child versions made. 

So, it is not a continuous sensitivity analysis between some borders. Another downside is that 

one must extract the results manually from each of the child versions, which is quite time-

consuming for good analyses. 

In the new version of IDA ICE, version 4.8, there is a method for sensitivity analysis called 

parametric run. This allows the user to choose an input parameter to be changed and one or 

more output parameters for use in the sensitivity analysis. The user can then decide the number 

of simulations for the input parameter between a minimum and a maximum value. This means 

that the parametric run does not provide a continuous sensitivity analysis, but by increasing the 

number of simulations, the resulting sensitivity analysis is getting closer to continuous. IDA 

ICE can also plot the input parameter against the output in a diagram defined by the user. The 

parametric run is much easier and faster to use than the simulation tree, so IDA ICE version 

4.8 and parametric run is used in this master thesis. 
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 Pool extension 

To be able to simulate a pool in IDA ICE, the ice rinks and pools extension is needed. This 

extension provides the opportunity to simulate an open water surface in a zone and the needed 

heating of the water as illustrated in Figure 3-1. Mass transfer, as well as heat transfer is 

simulated between the water surface and the zone. 

 

Figure 3-1: Illustration of pool-system in IDA ICE (Qmoist is negative due to opposite direction in IDA 

ICE) 

 IDA ICE components in the AHU 

3.1.2.1 Heat recovery unit 

The heat recovery unit in IDA ICE is a latent heat recovery unit with temperature control. An 

effectiveness parameter eta is set by the user. The supply temperature of the heat recovery unit 

is if possible adjusted to the given setpoint. The capacity control is attained by adjusting the 

eta from 0 to the value set by the user. 

The dewpoint is set as the entering temperature of the opposite medium. So, the dewpoint for 

the exhaust air is set as the entering supply air. Leaving air state lies on a straight line between 

entering air state and the apparatus dewpoint as shown in the Mollier diagram in Figure 3-3.  
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Figure 3-2: IDA ICE heat recovery unit 

 

Figure 3-3: Mollier diagram illustrating the working of the IDA ICE heat recovery unit 

3.1.2.2 Mixing box 

The mixing box in IDA ICE can be controlled in two ways. Either by governing the fresh air 

mass flow or by governing the fraction fresh air over supply air. The model takes account of 

possible condensation in the mixing process. The process is illustrated in Figure 2-8 and further 

described in section 2.5.2. 



23 

 

 

Figure 3-4: IDA ICE mixing box 

3.1.2.3 Fan 

The fan in IDA ICE is on/off controlled and ensures a given pressure rise as well as a 

temperature rise. The temperature rise is either given or calculated based on the motor effect. 

The efficiency of the fan is set as a given eta. 

 

Figure 3-5: IDA ICE fan 

3.1.2.4 Sensor 

The sensor component in IDA ICE can measure different parameters and one can log the 

parameters to an output-file or connect the output of the sensor to another component. The 

parameters possible to measure is the following: 

Pressure difference [Pa] 

Mass flow [kg/s] 

Temperature of air flow [C] 

Pollutant ratio of air flow [µg/kg dry air] 

Relative humidity of air flow [%] 

Airflow [L/s] 

CO2 ratio [PPM (vol)] 

Enthalpy [J/kg] 

Humidity ratio [kg/kg] 

Wet bulb [C] 

Dew point [C] 

 

Figure 3-6: IDA ICE sensor 
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3.1.2.5 Heating coil (electric) 

The electric heating coil in IDA ICE is a temperature-controlled heater with a given electrical 

effect. The process is showed in the Mollier diagram in Figure 3-8. 

 

Figure 3-7: IDA ICE electrical heater 

 

Figure 3-8: Mollier diagram illustrating the working of the IDA ICE heater 
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3.1.2.6 Cooling coil 

The cooling coil in IDA ICE is a temperature controlled liquid cooler. The liquid side 

temperature drop is given while the effect is adjusted by liquid flowrate. The process is showed 

in the Mollier diagram in Figure 3-10. 

 

Figure 3-9: IDA ICE cooling coil 

 

 

Figure 3-10: Mollier diagram illustrating the working of the IDA ICE cooler 
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3.2 Swimming pool for validation 

 Requirements 

Before choosing a swimming facility for validation of the IDA ICE model, there were made 

some requirements to increase the quality of the validation. First of all, the swimming facility 

should be possible to model. Most likely, the facility should be easy to model to reduce the 

possibility of errors. A rectangular hall with a rectangular pool is sort of the “best case”. 

In order to make a good model of the indoor swimming pool climate, the airflows in and out 

of the hall, for example through doors and patches, should be known. But this is often not 

known, so the absolute best case would be a hall without any open doors or other openings. 

An important requirement is that the AHU must only serve the modelled swimming hall. Else, 

the energy use of the AHU does not correspond to the need of the modelled swimming hall. 

To be able to use a swimming facility in this validation, availability for both installation and if 

necessary, changing the setup of the sensors in the AHU was essential. 

 Location & climate 

The used swimming facility in this project was Pirbadet in Trondheim, at 63°26'27"N 

10°24'05"E. The swimming facility is built just beside the sea water in the harbour of 

Trondheim. Trondheim has a climate close to a maritime climate. Between 1946 and 2018, the 

coldest month average temperature was -3.2 °C (January), while the warmest month average 

temperature was 13.9 °C (July) [28].   

 

Figure 3-11: Location of Pirbadet in Trondheim (Norway) [29] 
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 The building 

Pirbadet in Trondheim is a large swimming facility with several pools of different kinds that 

opened in June 2001 [30]. There are for example pools dedicated to swim training for children, 

whirlpools, water slides, hot water pools and swimming pools for adults. In this project, two 

hot water pools that are connected to the same AHU is studied. These pools (pool 1 & pool 2) 

are in separated halls (respectively H1 & H2) just beside each other as shown in Figure 3-12. 

The same AHU is also serving a small steam sauna marked yellow in Figure 3-12.  

The only external wall for these halls is the one marked with green colour in Figure 3-12. This 

is mostly covered by windows. Rest of the walls are internal walls facing against rest of the 

building. The internal walls marked with yellow colour are facing a fitness studio, while the 

walls marked with red are facing rest of the swimming facility and the sauna area. 

The building is rotated such that the external façade is facing north-east.  

Both pools have a water temperature of 34 °C and a hall air temperature of 30.8 °C. Both pools 

have an average depth of about 1.5 meters. Pool 1 is 149 m2, while Pool 2 is 192 m2 in size. 

 

Figure 3-12: Blueprint of ground floor in Pirbadet in Trondheim 

 Use of the pools 

The two hot water pools are normally used for group sessions by the local fitness studio (H2) 

and physiotherapy activity by the local physiotherapists (H1) during weekdays. H2 is on the 

other hand normally open for all users in the weekends (Saturdays and Sundays) while H1 is 

locked.  

After doing some research (asking the employees in Pirbadet), a reasonable average use would 

be about 20 persons in each group session in H2 and 12 in H1. The group sessions in H2 are 

scheduled from 9am until 2pm and from 4pm until 8pm, each with a duration of one hour. The 

group sessions in H1 are scheduled from 15pm until 18pm, also these with a duration of one 

hour. 
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 Ventilation system 

The ventilation system serves both H1 and H2 as well as a steam sauna. The AHU for this 

system is a MENERGA ThermoCond product from 2016 with maximum delivering capacity 

of 25 000 m3/h. The AHU is set to hold the air temperature in the halls at 30.8 C and the RH 

at 55 % as well as to ensure fresh air and a small underpressure in the halls. 

 

The defrosting damper is used to avoid frost in the supply side of the heat recovery unit. By 

opening the defrosting damper and at the same time closing the fresh air damper, the warm 

return air will heat up the supply side of the heat recovery unit and remove frost. 

The dehumidification damper is opened when the dehumidifier is used for dehumidifying. 

Dehumidified air is then mixed together with the fresh air before supplied again. 

The recirculation damper opens when there are less or no need of dehumidification or fresh air. 

The return air is then sent to supply air for recirculation (and heated if necessary). 

 

The heat pump in the AHU in Pirbadet is placed as illustrated in Figure 3-13. The heat pump 

consists of an evaporator (the dehumidifier) and three condensers. The only condenser 

considered in this thesis is the one heating the ventilation air in the AHU, placed just after the 

heat pump. Else, there is a condenser for the pool water heating and a subcooler. 

 

Figure 3-13: Sketch of the MENERGA AHU in Pirbadet in Trondheim 
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3.2.5.1 Air handling unit mode 

Since the activity of the swimming pool is varying a lot, the return air to the AHU is not 

constant and the AHU has to react likewise. Different activity factors, as described in section 

2.1, introduce different levels of evaporation from the pool. Thereby, the AHU must be able to 

handle different air loads and be able to control itself. 

There are mainly four different modes for a swimming pool AHU described and sketched 

below. 

STANDBY MODE is used when there is no need of fresh air, heating or dehumidification. The 

AHU only works for circulation of the air. Its function is sketched in Figure 3-14. 

 

Figure 3-14: AHU in standby mode 

RECIRCULATION WITH HEATING MODE is used when there is no need of fresh air or 

dehumidification, but a need of heating. The AHU recirculates the air and the heat battery heats 

the supply air before entering the facility. Its function is sketched in Figure 3-15. 

  

Figure 3-15: AHU in recirculation with heating mode 

NORMAL MODE is used when there is need of fresh air, heating and dehumidification. In this 

mode, a part of the return air goes through the heat recovery unit, which heats the incoming 

outside air. In an AHU with a mechanical heat pump dehumidifying system, the return air is 

further cooled in the heat pump evaporator while the supply air is heated in the heat pump 

condenser. 
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Figure 3-16: AHU in normal mode 

OUTSIDE AIR MODE is used when the outside air humidity is sufficient, so that 

recirculation is unnecessary. In this mode, all the return air is lead through the heat recovery 

unit. In an AHU with a mechanical heat pump dehumidifying system, the return air is further 

cooled in the heat pump evaporator before the exhaust. The outside air is first heated through 

the heat recovery unit and further heated in the heat pump condenser before supplied to the 

hall. 

 

Figure 3-17: AHU in outside air mode 

 Measurements 

3.2.6.1 Purpose 

The purpose of doing measurements in the AHU is to be able to compare the in/out airflows to 

the simulated airflows as well as to be able to compare heating and cooling needs to the 

simulated model. The measured supply and return air can be used to calculate the evaporation 

rate from the pool. This can be compared to both standards and simulated model. All these 

comparisons are done for validation of the IDA ICE model. 

3.2.6.2 Equipment 

The built-in sensors for volume flow rate were used. They are delivered by SE-ELECTRONIC 

GMBH and is named M 05 10 61_C-VS3_GB. There were two of these, one placed in the 

supply air and one in the return air. The sensors measure the pressure difference and 

temperature difference over the fans and calculate the volume flow rates. The accuracy of the 

volume flow sensors are 2 %. 

An advantageous scenario would be to measure the volume flow rate in all four in/out airflows. 

Since there only was these two sensors available, the other airflows had to be calculated. 
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Figure 3-18: Volume flow sensor of type M 05 10 61_C-VS3_GB 

 

For measuring RH and temperature, 6 EasyLog EL-USB-2+ sensors from LASCAR electronics 

were installed in the AHU. This datalogger measures and stores relative humidity and 

temperature in the range from 0 to 100 % RH and -35 to 80 C. The datalogger is protected to 

IP67 standard when the plastic cap and seal are fitted. The logger can store up to 16 382 

readings of RH and the same for temperature and there are 7 optional logging rates (10s, 1m, 

5m, 30m, 1hr, 6hr, 12hr). A logging rate of 1 minute was chosen. The accuracy of the RH 

measurement is 2.0 %RH and the accuracy of the temperature measurement is 0.3 C. 

Following loggers were used (sensor name, serial number): (5, 010011449), (3, 010011462), 

(4, 10203180), (6, 10204439), (7, 010012319), (8, 010011665) 

 

Figure 3-19: RH and temperature data logger of type EL-USB-2+ 

 

For measuring the rest of the temperatures, where RH data was not needed, thermocouple 

probes connected to a 12-channel temperature recorder Lutron Electronic was used. The 

temperature recorder was of model BTM-4208SD. 

The temperature recorder measures and stores temperature in the range of -100 to 1300 C by 

using type K thermocouple probes. The data is stored at a 1 GB SD memory card. The accuracy 

of the temperature measurements in the range from -50 to 999.9 C is  (0.4 % + 0.5 C). The 

recorder used has serial number 465212. 
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Figure 3-20: 12 channel temperature recorder (left) and type K thermocouple probe (right) 

3.2.6.3 Placing of the sensors 

As, stated in section 3.2.6.1, the properties of the airflows in/out of the AHU and the heating 

and cooling power is of interest. In order to determine these, the sensors showed in Figure 3-21 

and Table 3-1 was installed together with the already installed volume flow sensors. The further 

calculations to determine the airflow rate on the outdoor side of the AHU is shown in section 

3.2.6.5. 

 

Airflow 1, 2, 4, 5, 10 and 11 is supposed to be fully mixed since they are just after the fans or 

in a distance from another components. Airflow 3, 6, 7, 8 and 9 appears just after a damper, 

the heat recovery unit or the condenser, and is therefore assumed not fully mixed. 

 

Table 3-1: Overview of the sensors 

Sensor Type Measuring Placement 

1 Integrated Volume flow Over the return fan 

2 Integrated Volume flow Over the supply fan 

3 EasyLog Temperature, RH Return air, before filter 

4 EasyLog Temperature, RH Exhaust air, end of AHU 

5 EasyLog Temperature, RH Fresh air, before filter 

6 EasyLog Temperature, RH Supply air, attached to end of HR, on upper half 

7 EasyLog Temperature, RH Supply air, attached to end of HR, on lower half 

8 EasyLog Temperature, RH Supply air, after heating coil 

9 Thermocouple Temperature Return air, after fan 

10 Thermocouple Temperature Supply air before condenser, upper half 
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11 Thermocouple Temperature Supply air before condenser, lower half 

12 Thermocouple Temperature Supply air, between condenser and fan, upper half 

13 Thermocouple Temperature Supply air, between condenser and fan, lower half 

14 Thermocouple Temperature Supply air, between fan and heating coil 

 

 

Figure 3-21: Illustration of the placement of the sensors 
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3.2.6.4 Extraction of measuring data 

The temperature data from the 12-channel temperature recorder was imported to a computer as 

an Excel file (.csv) with a memory card. The data from the EasyLog units were imported to a 

computer as Excel files (.csv) through its USB-output. The data from the integrated volume 

flow sensors is stored in the AHU control system. This data was therefore exported from the 

system to an Excel-file (.csv). 

The clock at the AHU user monitor was 22 minutes behind real time, so the data obtained from 

the integrated AHU sensors was shifted 22 minutes ahead in time to match the other sensors. 

The sensors were logging over an extended period of time, but the data used for analysis is 

from Wednesday April 10th, 2019. Therefore, only this day is considered in rest of this thesis. 

3.2.6.5 Determining airflow properties 

All the gathered data was put into an Excel sheet for processing. The setup of needed airflow 

properties below was made, and the dataset was updated with the calculated airflow properties.  

In order to calculate some of the unknown airflow properties, an Excel extension called hxLib 

was used5. This is an application for calculation of refrigeration technology systems. The 

functions used was the following: 

Specific volume HX_Vtoerr_trh 

Absolute humidity HX_X_trh 

 

When all the needed airflow properties was set up in the Excel sheet, it was possible to calculate 

the heating and cooling power as well as the evaporation rate as described in section 3.2.6.6 

and 3.2.6.7 below. For all calculations, the atmospheric pressure was used. 

Airflow 1 

Temperature [C] 𝑇1 = 𝐸𝐿3  

Relative humidity [%] 𝑅𝐻1 = 𝐸𝐿3  

Humidity [kgwet_air/kgdry_air] 𝑥1 = 𝐻𝑋_𝑋_𝑡𝑟ℎ(𝑝, 𝑇1, 𝑅𝐻1)  

Specific volume 

[m3/kgdry_air] 

𝑣1 = 𝐻𝑋_𝑉𝑡𝑜𝑒𝑟𝑟_𝑡𝑟ℎ(𝑝, 𝑇1, 𝑅𝐻1)  

Massflow [kg/s] 
𝑚̇1 =

𝑉̇1
𝑣1 ∗ 3600

 
(3-1) 

 

Volumeflow [m3/h] 𝑉1̇ = 𝐼1  

                                                 
5 Information about the program can be found here (Norwegian): https://nkf-norge.no/litteratur-

dataprogrammer/dataprogrammer/ 
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Airflow 2 

Temperature [C] 𝑇2 = 𝑇9  

Humidity [kgwet_air/kgdry_air] 𝑥2 = 𝑥1  

Specific volume 

[m3/kgdry_air] 

𝑣2 = 𝐻𝑋_𝑉𝑡𝑜𝑒𝑟𝑟_𝑡𝑟ℎ(𝑝, 𝑇2, 𝑅𝐻2)  

Massflow [kg/s] 
𝑚̇2 =

𝑉̇2
𝑣2 ∗ 3600

 
(3-2) 

Volumeflow [m3/h] 𝑉2̇ = 𝑉1̇  

 

Airflow 3 

Temperature [C] 𝑇3 = 𝑇4  

Humidity [kgwet_air/kgdry_air] 𝑥3 = 𝑥4  

Massflow [kg/s] 𝑚̇3 = 𝑚̇2 − (𝑚̇8 − 𝑚̇7) (3-3) 

 

Airflow 4 

Temperature [C] 𝑇4 = 𝐸𝐿4  

Relative humidity [%] 𝑅𝐻4 = 𝐸𝐿4  

Humidity [kgwet_air/kgdry_air] 𝑥4 = 𝐻𝑋_𝑋_𝑡𝑟ℎ(𝑝, 𝑇4, 𝑅𝐻4)  

Specific volume 

[m3/kgdry_air] 

𝑣4 = 𝐻𝑋_𝑉𝑡𝑜𝑒𝑟𝑟_𝑡𝑟ℎ(𝑝, 𝑇4, 𝑅𝐻4)  

Massflow [kg/s] 𝑚̇4 ∗ 𝑥4 = 𝑚̇3 ∗ 𝑥3 − (𝑚̇6 − 𝑚̇5) ∗ 𝑥3   

⇒ 𝑚̇4 =
𝑚̇3 ∗ 𝑥3 − (𝑚̇6 − 𝑚̇5) ∗ 𝑥3

𝑥4
 

(3-4) 

(3-5) 

Volumeflow [m3/h] 𝑉4̇ = 𝑚̇4 ∗ 𝑣4 ∗ 3600  (3-6) 
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Airflow 5 

Temperature [C] 𝑇5 = 𝐸𝐿5  

Relative humidity [%] 𝑅𝐻5 = 𝐸𝐿5  

Humidity [kgwet_air/kgdry_air] 𝑥5 = 𝐻𝑋_𝑋_𝑡𝑟ℎ(𝑝, 𝑇5, 𝑅𝐻5)  

Specific volume 

[m3/kgdry_air] 

𝑣5 = 𝐻𝑋_𝑉𝑡𝑜𝑒𝑟𝑟_𝑡𝑟ℎ(𝑝, 𝑇5, 𝑅𝐻5)  

Massflow [kg/s] 𝑚̇5 ∗ 𝑥5 = 𝑚̇6 ∗ 𝑥6 − (𝑚̇6 − 𝑚̇5) ∗ 𝑥3  

⇒ 𝑚̇5 =
𝑚̇6 ∗ (𝑥6 − 𝑥3)

𝑥5 − 𝑥3
 

(3-7) 

(3-8) 

Volumeflow [m3/h] 𝑉5̇ = 𝑚̇5 ∗ 𝑣5 ∗ 3600  (3-9) 

 

Airflow 6 

Temperature [C] 𝑇6 ∗ 𝑚̇6 = 𝑇5 ∗ 𝑚̇5 + 𝑇4 ∗ (𝑚̇3 − 𝑚̇4) 

⇒ 𝑇6 =
𝑇5 ∗ 𝑚̇5 + 𝑇4 ∗ (𝑚̇3 − 𝑚̇4)

𝑚̇6
 

 

(3-10) 

(3-11) 

Humidity [kgwet_air/kgdry_air] 𝑥6 = 𝑥7  

Massflow [kg/s] 𝑚̇6 = 𝑚̇7  

 

Airflow 7 

Temperature [C] 𝑇7 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒( 𝐸𝐿6, 𝐸𝐿7)  

Relative humidity [%] 𝑅𝐻7 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒( 𝐸𝐿6, 𝐸𝐿7)  

Humidity [kgwet_air/kgdry_air] 𝑥7 = 𝐻𝑋_𝑋_𝑡𝑟ℎ(𝑝, 𝑇7, 𝑅𝐻7)  

Massflow [kg/s] 𝑚̇8 ∗ 𝑥8 = 𝑚̇7 ∗ 𝑥7 + (𝑚̇8 − 𝑚̇7) ∗ 𝑥1  

⇒ 𝑚̇7 =
𝑚̇8 ∗ (𝑥8 − 𝑥1)

𝑥7 − 𝑥1
 

(3-12) 

(3-13) 

 

Airflow 8 

Temperature [C] 𝑇8 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒( 𝑇10, 𝑇11)  

 

Airflow 9 

Temperature [C] 𝑇9 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒( 𝑇12, 𝑇13)  
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Airflow 10 

Temperature [C] 𝑇10 = 𝑇14  

 

Airflow 11 

Temperature [C] 𝑇11 = 𝐸𝐿8  

Relative humidity [%] 𝑅𝐻11 = 𝐸𝐿8  

Humidity [kgwet_air/kgdry_air] 𝑥11 = 𝐻𝑋_𝑋_𝑡𝑟ℎ(𝑝, 𝑇11, 𝑅𝐻11)  

Specific volume 

[m3/kgdry_air] 

𝑣11 = 𝐻𝑋_𝑉𝑡𝑜𝑒𝑟𝑟_𝑡𝑟ℎ(𝑝, 𝑇11, 𝑅𝐻11)  

Massflow [kg/s] 
𝑚̇11 =

𝑉̇11
𝑣11 ∗ 3600 

  
(3-14) 

Volumeflow [m3/h] 𝑉̇11 =  𝐼2  

 

3.2.6.6 Calculating heating and cooling power 

The heating/cooling power in this section is calculated by using Equation (2-10). The specific 

heat capacity is taken from Table 2-10. Based on an assumed temperature range from 0 C (273 

K) to 40 C (313 K) in the AHU, the specific heat capacity is assumed constant at 1.005 

[kJ/(kgK)] in all further calculations. 

 

Heating power from condenser is calculated based on the properties of airflow 8 and 9:  

 Qcondenser = 𝑚̇8 ∗ 1.005 ∗ (T9 − T8) (3-15) 

Heating power from the heating coil is calculated based on the properties of airflow 10 and 11: 

 Qℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑖𝑙 = 𝑚̇10 ∗ 1.005 ∗ (T11 − T10) (3-16) 

Cooling power from the dehumidifier is a bit trickier to calculate since the temperature between 

the heat recovery unit and the dehumidifier (Tb) is unknown. This temperature is also 

hard/impossible to measure as the dehumidifier and heat recovery unit are too close to each 

other. One way to calculate Tb is to use Equation (2-10) and set the heat recovery unit heating 

power (Qh) equal to the heat recovery unit cooling power (Qc) as in Equation (3-17) below.  

 

 𝑚̇6 ∗ 1.005 ∗ (T7 − T6) = 𝑚̇3 ∗ 1.005 ∗ (T2 − T𝑏) (3-17) 

 

And then isolating Tb on the left side. 
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Tb =

𝑚̇3 ∗ 𝑇2 − 𝑚̇6 ∗ (𝑇7 − 𝑇6)

𝑚̇3
 

(3-18) 

 

The resulting cooling power from the dehumidifier is defined in Equation (3-19). 

 QDH = 𝑚̇3 ∗ 1.005 ∗ (T𝑏 − T3) (3-19) 

 

Delivered heating power to the swimming hall through ventilation is calculated with the mass 

flow in the supply and the difference between supply air and return air temperature. 

 Qhall = 𝑚̇11 ∗ 1.005 ∗ (T11 − T1) (3-20) 

 

Dumped heating power to the outdoor is calculated the same way as the delivered heating 

power to the swimming hall through ventilation. It depends on the exhaust mass flow and the 

difference between exhaust airflow and fresh airflow (outdoor) temperature.  

 Q𝑑𝑢𝑚𝑝𝑒𝑑 = 𝑚̇4 ∗ 1.005 ∗ (T4 − T5) (3-21) 

3.2.6.7 Calculating evaporation rate of the swimming pools 

As long as the indoor humidity is kept constant, the difference between water content in return 

air and supply air to the swimming halls equals the evaporation rate from the pools. This is not 

completely true since some dry air from outside and the fitness studio is infiltrated and dries 

the air as well as some air leaks from the halls to the surrounding halls. These airflows are 

however neglected in order to limit the workload of this thesis. Also, the activity in the steam 

sauna is neglected. The indoor humidity might not always be constant, but the average indoor 

humidity should be more or less constant due to the control of the AHU. 

The water content in the return and supply airflow is the product of massflow [kg/s] and 

humidity [kgwater/kg]. Therefore, the evaporation rate from the pools is the following. 

 𝑚̇evap = 𝑚̇1 ∗ 𝑥1 − 𝑚̇11 ∗ 𝑥11 (3-22) 

By multiplying 𝑚̇evap with 3600, the evaporation rate in kg per hour is achieved.  

3.2.6.8 Temperature after heat recovery unit in supply air 

As illustrated in Figure 3-21, there are placed two sensors after the heat recovery unit in the 

supply air (EL6 and EL7). The logged temperatures from these sensors are presented in a graph 

to check if there are any difference of matter between them. A hypothesis is that the 

dehumidifier connected to the bottom side of the heat recovery unit cools the air in the lower 

part where EL 7 is placed. 
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3.2.6.9 Fault analysis 

When doing measurements, measuring fault is something that will occur. The error is possible 

to reduce by using more accurate measuring equipment, but it cannot be eliminated. Often the 

uncertainty of a measured result is dependent on several individual factors, and the outcome is 

not available before several parameters have been measured. There was done a fault analysis 

based on the accuracy of the sensors used. The fault is presented as a shaded error band around 

the lines in the graphs in the chapter with results. 

The fault analysis method used is the Gauss’ law of error propagation. 

 N = f(u1, … , 𝑢𝑛) (3-23) 

Where N is the result of the function and u1 to un is the individual factors that are directly 

measured. Each measured factor has its own uncertainty Δu1 to Δun. 

The goal is to find the uncertainty (ΔN) of the function N. 

 N ± ΔN = f(u1 ± Δu1, … , 𝑢𝑛 ± Δu𝑛) (3-24) 

Isolating ΔN on one side: 

 (N ± ΔN) − 𝑁 = ±ΔN (3-25) 

By using a Taylor’s series development where elements of higher order are removed, the 

following can be found: 

 
f(u1 ± Δu1, … , 𝑢𝑛 ± Δu𝑛) − f(u1, … , 𝑢𝑛) =

𝛿𝑓

𝛿𝑢1
Δ𝑢1 +⋯+

𝛿𝑓

𝛿𝑢𝑛
Δ𝑢𝑛 

(3-26) 

The resulting error can then be predicted as: 

 

ΔN = ±√(
𝛿𝑓

𝛿𝑢1
Δ𝑢1)

2

+⋯+ (
𝛿𝑓

𝛿𝑢𝑛
Δ𝑢𝑛)

2

 

(3-27) 

 

The calculations for the error propagation are presented in Attachment 2. 
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3.3 The pool and AHU model 

 Location and climate 

In IDA ICE there are some predefined weather files that can be downloaded from a database. 

In this master thesis, the weather file for Værnes in Stjørdal, at 63°28'01"N 10°55'59"E, is used. 

Værnes is just 25 km east of Pirbadet (Trondheim), is at the same altitude and has the same 

climate. The different locations are showed in Figure 3-22. 

 

Figure 3-22: Map with placing of Pirbadet (black arrow) and Værnes (orange arrow) 

 Designing the building model 

3.3.2.1 Sizing 

The model made in IDA ICE is representing the two swimming halls and the steam sauna 

connected to the same AHU. The swimming halls H1 and H2 are in reality divided by a wall, 

but since the ventilation rate for the two halls is unknown, they are modelled as one zone 

together with the steam sauna. For simplicity, the steam sauna is only represented as extra area 

in the bottom right corner in Figure 3-23. 

The model is rotated with the external facade facing east. 

The model is sized after the blueprint in Attachment 1. Since the lengths of all elements are not 

on the blueprint, an estimation based on ratios on the blueprint is done. The resulting lengths 

are shown in Figure 3-23. The height used in the IDA ICE model is the height of the two halls 

which is measured to 3.5 meters. At the external wall, there is a window covering the whole 

width. The window starts at floor height and is 2.3 meters high. 

The pools are both modelled with a depth of 1.5 meters. Pool 1 is 13.8 x 10.8 meters and Pool 

2 is 17.8 x 10.8 meters. The placing of the pools in the zone is not of importance for the 
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simulation since IDA ICE operates with the zone as a point. However, the pools are placed 

more or less as in reality. 

 

Figure 3-23: Sketch of the building model with lengths 

3.3.2.2 U-values 

The window in the model is a 2-pane glazing with a total U-value of 2 W/(m2K). The external 

wall U-value is 0.22 W/(m2K). Both these U-values are assumed values based on the 

Norwegian technical building regulations of 1999. 

The normalized thermal bridge value is set as 0.1 W/(m2K), assumed to be twice as large as 

the TEK17 requirement. 

The inner walls have an assumed U-value of 2.9 W/(m2K) while the floor and ceiling have an 

assumed U-value of 2 W/(m2K). 

3.3.2.3 Pool properties 

The water setpoint temperature in both pools is 34 ℃, while the design supply water 

temperature is 36 ℃ for both pools. The fresh water supply is assumed to be 60 liters/day per 

visitor as described in section 2.3. This amount of water is supplied between 3am and 4am. 
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This results in a fresh water supply of 
60

𝑙
𝑑𝑎𝑦

𝑣𝑖𝑠𝑖𝑡𝑜𝑟
 ∗188

𝑣𝑖𝑠𝑖𝑡𝑜𝑟𝑠

𝑑𝑎𝑦

3600 𝑠
= 3.14

𝑙

𝑠
 during the one hour at night 

for pool 2 and 
60

𝑙
𝑑𝑎𝑦

𝑣𝑖𝑠𝑖𝑡𝑜𝑟
 ∗36

𝑣𝑖𝑠𝑖𝑡𝑜𝑟𝑠

𝑑𝑎𝑦

3600 𝑠
= 0.6

𝑙

𝑠
 for pool 1. 

 

The two hot water pools are mostly used by a fitness studio and for physiotherapy, so the 

activity factor is assumed to be as pools for therapy. Following Table 2-1, the activity factor 

during occupancy therefore is set as 0.65, while when unoccupied, it is set as 0.5. 

3.3.2.4 Use of the pools 

First of all, the use of the steam sauna is completely neglected. The use of the two pools are 

divided in each occupancy component in IDA ICE. Both groups have an assumed activity level 

of 3 MET and clothing level of 0.2 CLO.  

The occupancy component for pool 2 is following the schedule in Figure 3-24, where 100 % 

means there are 20 people in the group. This corresponds to 20 people per hour during group 

sessions and 4 people per hour during the break. 

 

Figure 3-24: Schedule of occupancy in pool 2 

The occupancy component for pool 1 is following the schedule in Figure 3-25, where 100 % 

means there are 12 people in the group. 
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Figure 3-25: Schedule of occupancy in pool 1 

 

 Designing the AHU model 

3.3.3.1 Key values 

In order to figure out these key values, the AHU control system was used to collect some data 

as well as an engineer at Menerga was helpful with some essential details about this specific 

AHU. 

 

After an inspection of the logged data in the AHU control system, the daytime for the AHU is 

set between 8am and 10:30pm. 

The volume flow rates in supply and return was found in the AHU control system. The volume 

flow rates were different in daytime and night-time and the return air was at average 2.4 % 

higher than supply air. The average supply volume flow rate at night-time was just below 

14 000 m3/h, and just below 19 000 m3/h at daytime. A constant value throughout the whole 

day had to be used in IDA ICE, so the average value, 17 000 m3/h, was therefore used for 

supply air. For return air, 17 400 m3/h was used. 

 

The fresh air volume flow rate to the pools are decided based on information from Menerga. 

The minimum fresh air during daytime is 5 % of supply air, while there is no fresh air supplied 

at night. In reality, there is an option for supplying fresh air also at night if there is an extensive 

need of cooling or dehumidification, but this is neglected in this case. 

Beyond the minimum fresh air volume flow rate, it increases with 50 m3/h per evaporated kg 

of water to ensure a comfortable indoor air quality. As the supply air volume flow rate is 17 000 

m3/h, the fresh air volume flow rate is controlled as in Figure 3-26 during daytime. The amount 
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of evaporated water in kg/s is calculated from Equation (3-28). This value is multiplied with 

3600 s/h before inserted in the control in Figure 3-26. 

 

Figure 3-26: Control of fresh air volume flow rate at daytime 

The setpoint temperature for heating found in the AHU control system and further used in the 

IDA ICE model was 30.8 ℃.  

The supply air temperature is set to operate between the return air temperature and 53 ℃, also 

based on the log in the AHU control system. 

 

The heat recovery unit in Pirbadet is a cross plate heat recovery unit with 78 % temperature 

efficiency in wet operation [31]. This efficiency was used in the air to air heat recovery unit in 

the IDA ICE model. 

 

The setpoint for RH found in the AHU control system was 55 %. And by watching the RH 

logging curve from the AHU control system, it is mostly varying between 50 % and 60 %. 

Therefore, 55 % is used as the lower setpoint for RH and 60 % is used as upper setpoint for 

RH to make it as similar as possible. 

 

3.3.3.2 AHU setup 

The AHU in IDA ICE is illustrated in Figure 3-27. On the right side, the airflows are connected 

to the zone and on the left side they are connected to the outdoor. In between there is a heat 

recovery unit, a cooling coil, heating coil, two bypass units and two fans. The defrosting 

damper is neglected in this model since it is the normal operation modes that are to be 

considered for energy efficiency. 
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Figure 3-27: IDA ICE AHU without control components 

 

The fans are both given a SFP of 2 kW/(m3/s) as in TEK17 and a efficiency (electrical to air) 

of 0.6 which is the standard value in IDA ICE. The fans are always on. 

The heating coil, which is supposed to represent both the heat from the heat pump condenser 

and the heating coil is seen as ideal. Therefore, the maximum power is set as 100 000 W.  

The cooling coil, which is supposed to represent the dehumidifier, is also seen as ideal with its 

cooling capacity of 99 999 kW. The air side effectiveness is set as 1 and the liquid side 

temperature rise is set as 5 ℃ as standard in IDA ICE. 

 

3.3.3.3 AHU control strategy 

Control of bypasses 

The outer bypass (closest to outside) is controlled to ensure the correct amount of fresh air to 

the AHU. During daytime, the bypass input signal is the fresh air volume flow rate (𝑉̇𝐹𝐴) 

divided by the volume flow rate between the two bypasses (𝑉̇𝐵). 𝑉̇𝐹𝐴 is as illustrated in Figure 

3-26, while 𝑉̇𝐵 is logged by a sensor in the AHU.  (Since the bypasses actually are controlled 

by mass flow ratios, the resulting fresh air volume flow is some wrong.) During night-time, the 

bypass input signal is 0.001. This is supposed to be 0, but IDA ICE would not simulate without 

a small amount of fresh air. Therefore, the negligible value 0.001 was used. A switch 

component controlled by an on/off schedule switches between daytime mode and night-time 

mode. 
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Figure 3-28: Outer bypass control 

The inner bypass is controlled after the humidity level in the return air. If the humidity of the 

return air is higher than the setpoint (55 %) the bypass closes. If opposite, the bypass opens to 

avoid further dehumidification of the air. This is controlled by a proportional-integral-

controller (PI) by comparing the measured RH and the setpoint. However, this bypass is 

controlled to always let through the minimum needed fresh air. This is illustrated in Figure 

3-29. 

 

Figure 3-29: Inner bypass control 

Control of dehumidifier 

The air needs dehumidification if the RH in the return air is over a certain value. This upper 

value is set in order to avoid condensation on the building envelope and is set to 60 % as 

described in section 3.3.3.1. 
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A PI controller regulates the amount of dehumidification needed by comparing the measured 

RH in return air and the upper value for RH. The output from the PI-controller is between 0 

(no dehumidification) and 1 (max dehumidification). Since the dehumidifier/cooling coil is 

controlled by inserting the temperature after the cooler, a linear transformation is performed, 

where 10 C is max dehumidification and the temperature before the cooler is set as the value 

for no dehumidification as in Figure 3-30. 

 

Figure 3-30: Dehumidifier control 

Heating control 

Like the heat recovery unit in Pirbadet, the heat recovery unit in the IDA ICE model is always 

on. This is controlled by setting the setpoint temperature very high (55 ℃ in this case). 

The heating coil in the IDA ICE model is controlled as illustrated in Figure 3-31.  

 

A PI-controller regulates the heating needed by comparing the measured temperature in return 

air and the setpoint temperature for return air. The output from the PI-controller is between 0 

(no heating) and 1 (max heating). Since the heating coil is controlled by inserting the 

temperature after the cooler, a linear transformation is performed, where 53 C is max heating 

and the temperature measured in the return air is set for min heating. 
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Figure 3-31: Heating control 
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General information about the PI-controllers 

The PI-controllers used in the IDA ICE model get a setpoint signal and a measured signal to 

calculate the error. This error is then used to calculate a control variable between for example 

0 and 1. 0 means e.g. the bypass is off, while 1 means on. Linear transformations are then used 

to convert the control variable to a physical entity just before the process. E.g. the condenser 

that is controlled with outlet temperature of the condenser. A block diagram of the controllers 

is presented in Figure 3-32. 

 

Figure 3-32: Block diagram of the PI-controllers (general) 

The control parameters used is the standard ones in IDA ICE tabulated in Table 3-2. 

Table 3-2: Control parameters used in IDA ICE 

Parameter Value Description 

K [-] 0.3 Gain parameter 

Ti [s] 300 Integration time in seconds 

Tt [s] 30 Tracking time in seconds 

Mode 0 0 = heating, 1 = cooling 

Hilimit 1 High limit for out-signal 

Lolimit 0 Low limit for out-signal 

Tau 0 Time constant on in-signal 

Conv_unit 1 Unit conversion factor for sensed signal 
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 Validating the model 

To ensure that the model of the two hot water pools in Pirbadet works as intended, a sensitivity 

analysis is done on some essential parameters. This is mainly done by using the parametric run 

tool in IDA ICE version 4.8. The analysed parameters are listed in Table 3-3. They are analysed 

against the resulting heating need from the ventilation system and the heating need in the pool. 

Some are also analysed against the average water evaporation rate. 

There is done a manual sensitivity analysis on the pool activity factor since there is no 

possibility for using the parametric run tool on this parameter. This is since the pool activity 

factor is given as a schedule. The activity factor is analysed against the resulting average 

evaporation rate over a day. 

Table 3-3: Parameters for sensitivity analysis 

Parameter Initial Unit Analysis range Resolution6 

Zone height 3.5 m 2.5 → 5 10 

Window frame U-value 2 W/m2K 0.001 → 5 10 

External wall insulation thickness 0.15 m 0.001 → 2 10 

Internal floor/roof thickness 0.5 m 0.25 → 2 10 

Length of pool 2 17.8 m 1 → 20 10 

Pool 2 water temperature 34 C 20 → 40 10 

Air setpoint temperature 30.8 C 20 → 50 10 

Pool activity factor for both pools 

when used7 

0.65 - 0.5 → 1.5 10 

An increased zone height and window frame U-value and a decreased external wall insulation 

thickness and internal floor/roof thickness will all increase the heat loss of the zone. A valid 

model would therefore need more heating, mostly by the ventilation system and thereafter by 

the pool. 

A longer pool 2, a higher water temperature in pool 2 and a lower air temperature will for a 

valid model result in higher evaporation rate and heat loss from the pool to the zone. Therefore, 

the pool heating is supposed to increase while the ventilation heating is supposed to decrease. 

An increased pool activity factor will for a valid model result in a higher evaporation rate. As 

the increase in activity factor is linear, the resulting increase in evaporation rate should be linear 

as well. 

                                                 
6 This is the planned resolution. Some parameters might have a lower number of results due to simulation error. 
7 Only the activity factor defining use of the pools is changed. The activity factor for unused pools is always 0.5. 
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 Comparing evaporation rate in pool model and calculated evaporation 

rate based on water content in return and supply airflow 

The evaporation rate from the pools is an important parameter of such experiment as this. 

Therefore, this is investigated in the beginning. In the IDA ICE pool model, there is a 

possibility to log the evaporated mass from the pool to the air in kg/s. This value was therefore 

logged for both pools, summarized and multiplied by 3600 s/h in order to get a common result 

in kg/h. 

Since there are no direct measurement of this evaporation rate in Pirbadet, the evaporation rate 

in the IDA ICE model is also calculated as the difference in water content in the return and 

supply airflow. 

 𝑚̇evap = 𝑚̇𝑅𝐴 ∗ 𝑥𝑅𝐴 − 𝑚̇𝑆𝐴 ∗ 𝑥𝑆𝐴 (3-28) 

 

 Some calculations 

3.3.6.1 Delivered heating power to the swimming hall through ventilation 

Delivered heating power to the swimming hall through ventilation is calculated with the mass 

flow in the supply and the difference between supply air and return air temperature.  

 Qhall = 𝑚̇𝑆𝐴 ∗ 1.005 ∗ (T𝑆𝐴 − TRA) (3-29) 

3.3.6.2 Dumped heating power to the outdoor 

Dumped heating power to the outdoor is calculated the same way as the delivered heating 

power to the swimming hall through ventilation. It depends on the exhaust mass flow and the 

difference between exhaust airflow and fresh airflow (outdoor) temperature.  

 Q𝑑𝑢𝑚𝑝𝑒𝑑 = 𝑚̇𝐸𝐴 ∗ 1.005 ∗ (T𝐸𝐴 − T𝐹𝐴) (3-30) 

 Extraction of IDA ICE results 

In order to extract results from IDA ICE, OUTPUT-FILES are used. These are objects that can 

receive logging data and present the data in tables, graphs and that has the possibility to export 

logging data to Excel. All interesting results are therefore logged to such OUTPUT-FILES and 

further exported to Excel. They are all exported as minute values. For use of hourly values, the 

arithmetic average is calculated in Excel. 
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3.4 Comparison of measured data and simulation results 

 Thermal properties of return and supply air 

The temperature and RH for the return and supply air is illustrated in graphs, both for the 

measured data and simulation results.  

 

 Delivered heating power to the swimming hall through ventilation 

The amount of heat delivered to the swimming halls is compared and is a way to understand if 

the model needs the same amount of energy as the measured swimming pools in Pirbadet. The 

heating power is calculated in Excel using Equation (3-20) for the measured data and Equation 

(3-29) for the simulated data. 

 

 Dumped heating power to the outdoor 

The dumped heating power to the outdoor can say something about the heat recovery of the 

AHU. A good model of Pirbadet should give the correct result of dumped heat power to the 

outdoor, therefore the simulated results and the measured data are compared. The dumped 

heating power to the outdoor is calculated in Excel using Equation (3-21) for the measured data 

and Equation (3-30) for the simulated data. 

 

 Volume flow rates 

The volume flow rates are presented in a diagram to show the difference of the simulated model 

and the measured supply and return volume flow rates. Also, the resulting fresh air and exhaust 

air volume flow rates are compared and should be equal in a good model. 

 

 Evaporation rate 

The evaporation rate calculated based on water content in the return and supply airflow for the 

IDA ICE model and in Pirbadet are both presented in a diagram for comparison. 

Also, the theoretical assumed evaporation rate based on the experienced numbers in Table 2-5 

and the Basin & Krumm method, showed in Attachment 3, are compared to the evaporation 

rates.  

For calculating the evaporation rate using the method of Basin & Krumm, the number of users 

(N), pool area (F), water vapor partial pressure at water temperature in boundary layer at 
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saturation state (p”
w) and water vapor partial pressure at the air temperature (pw) was used as 

inputs. 

N is set to 20 people and F is 341 m2. 

p”
w is found to be 53.26 hPa for a water temperature of 34 C from The Engineering Toolbox 

[32]. 

Calculation of pw: 

 𝑅𝐻 =
𝑝𝑤
𝑝𝑤𝑠

∗ 100 % (3-31) 

where pws is the water saturation vapor partial pressure at the air temperature. Rearranging 

Equation (3-31) we get 

 
𝑝𝑤 =

𝑅𝐻 ∗ 𝑝𝑤𝑠
100 %

 
(3-32) 

pws is found to be 44.47 hPa for an air temperature of 30.8 C from The Engineering Toolbox 

[32]. Using Equation (3-32) with a RH of 55 %, pw is found to be 24.46 hPa. 

 

 AHU heating need 

The heating need in the modelled AHU and the measured AHU in Pirbadet is compared in a 

diagram. In order to be able to use IDA ICE for designing swimming pools and their belonging 

AHU, a correct sizing of the heating need is essential and should be like the real heating need. 

 

 AHU dehumidification 

Just like the AHU heating need, the AHU dehumidification need is essential to be like the real 

dehumidification need to be a good supportive tool for design of swimming pools and their 

belonging AHU. Therefore, also the needed AHU dehumidification in the model and in 

Pirbadet is compared in a diagram. 
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4. Results & analysis 

In this chapter the results from both the simulation and the measurements are presented. First, 

the results from the sensitivity analysis of the IDA ICE model are presented to be able to 

determine whether the model is valid or not. Thereafter, a validation of the calculation method 

for evaporation rate is presented. The valid IDA ICE model is then compared to the measured 

data from Pirbadet. In the end, also a result of the measured temperature after the heat recovery 

unit is presented. 

4.1 Simulation results 

 Model validation 

Zone height (volume) 

A higher room or a zone with a larger volume has higher heating need, both for ventilation and 

pool heating. A larger volume implies larger envelope surface and therefore larger heat loss 

which must be covered. Figure 4-1 shows that the increased heating need mostly is covered by 

the ventilation system, but also somewhat by heat loss from the pool. 

  

Figure 4-1: Sensitivity analysis of zone height 
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Window frame U-value 

A larger U-value of the window frame results in a larger heat loss and therefore an increased 

heating need. From Figure 4-2, one can see that the heating need is increased by about 7-8 kWh 

that day. The ventilation system manages to cover most of the extra heat loss, while the pool 

heating increases by 1 kWh. 

  

Figure 4-2: Sensitivity analysis of window frame U-value 

External wall insulation thickness 

As the thickness of insulation in the outer wall is increased, the pool and ventilation heating 

decrease as showed in Figure 4-3 due to less heat loss to the outdoor. The change of thickness 

from 0 to 0,3 meters makes an impact on the heating need, while further increase makes less 

impact.  

  

Figure 4-3: Sensitivity analysis of external wall insulation thickness 

Inner floor/roof thickness 

A thicker inner floor/roof results in less heating need for both the pool and from the ventilation 

system due to less heat loss through the floor and roof as showed in Figure 4-4. The change of 

energy need is much larger then for the other parameters due to the large area of the floor and 

roof. 
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Figure 4-4: Sensitivity analysis of inner floor/roof thickness 

Length of pool 2 

When the pool length is increased, the pool area is increased. This means a larger pool surface 

area for heat loss and evaporation to the zone. Therefore, the pool heating and water 

evaporation increases while the ventilation system can deliver less heat as showed in Figure 

4-5. Here, the pool heating off course varies more than ventilation heating with an increasing 

pool length. The pool heating needs almost doubles from 1 m pool length to 20 m. At the same 

time also the evaporation rate doubles which makes sense since the evaporation stands for 

about 50 % of the pool losses as mentioned in section 2.2.3. 

  

Figure 4-5: Sensitivity analysis of pool length 

Water temperature of pool 2 

An increasing pool temperature results in increased heat loss and evaporation to the zone as 

seen from Equation (2-3) and Equation (2-7). Therefore, the pool heating need and water 

evaporation increases while the ventilation heating decreases as illustrated in Figure 4-6. There 

occurred simulation error for temperatures above 34 C, which explains the lack of data 

between 34 and 40 C.  
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Figure 4-6: Sensitivity analysis of pool water temperature 

Zone air temperature 

A higher air temperature works just the opposite of a higher pool temperature as seen in Figure 

4-7. The heat loss and evaporation from the pool to the zone decreases as the air temperature 

increases. The ventilation heating increases to cover the increasing envelope heat loss. 

  

Figure 4-7: Sensitivity analysis of zone air temperature 

Pool activity factor 

An increasing pool activity factor results in a higher evaporation rate from the pool as 

illustrated in Figure 4-8. The increase in evaporation rate per increasing activity factor is linear, 

starting at about 72 kg/h for an activity factor of 0.5 and increasing to about 113 kg/h for an 

activity factor of 1.5. 
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Figure 4-8: Sensitivity of activity factor and resulting average evaporation rate over a day 

 

The results from the sensitivity analysis is as expected for a valid model explained in section 

3.3.4. Therefore, the model can be used in further analysis. This does not mean the model gives 

the correct results, but it reacts as expected to change in the tested parameters. 
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 Evaporation rate calculating method 

Figure 4-9 shows the water evaporation rate for the integrated variable for evaporation rate in 

IDA ICE and the calculated evaporation rate based on water content in the return and supply 

airflow. All over, the calculated evaporation rate is higher than the integrated variable. It was 

reasonable to think that this is due to infiltration and occupancy. Therefore, the same model, 

but without occupancy, with minimal infiltration and balanced ventilation (𝑉̇𝑆𝐴 = 𝑉̇𝑅𝐴) was 

simulated and compared with the integrated pool variable in Figure 4-10. Here there are 

minimal difference between those two rates of water evaporation.  

During night-time, the calculated evaporation rate is only a couple kilograms per hour higher 

than the integrated variable in the standard model. During daytime on the other hand, the 

difference is up to 18 kg/h. This is since there is always infiltration while the occupancy only 

occurs at daytime. 

 

Figure 4-9: Hourly values for water evaporation in the IDA ICE model 

 

Figure 4-10: Hourly values for water evaporation in the IDA ICE model without occupancy, with 

minimal infiltration and balanced ventilation 
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4.2 Comparisons of measured data and simulation results 

 Thermal properties of return and supply air 

The results are shown in Figure 4-11 to Figure 4-14. The minute values for both temperature 

and RH shows that the measured properties in Pirbadet changes more frequent than the 

simulated results. 

Looking at the hourly temperature values in Figure 4-12, one can see that the difference 

between the measured temperature and simulated temperature is quite small for the return air. 

The error band for the measured temperatures occasionally overlap the IDA ICE temperatures. 

For the supply air, the measured temperature is up to 2 ℃ higher than the simulated temperature 

this day. This can be a cause of the higher heat demand as described in section 4.2.2. 

 

Figure 4-11: Minute values for temperature in RA and SA 

 

Figure 4-12: Hourly values for temperature in RA and SA (with error bands of 0.3 ℃) 
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Figure 4-13 shows the minute values for RH. The hourly values for RH showed in Figure 4-14 

are corresponding quite well during daytime. There are however some differences due to 

different control strategies. During night-time, the RH in RA is a couple percent lower in the 

measured dataset than the simulated results. For the SA, the RH is about 5 % lower in the 

measured dataset than the simulated results at night. This lower RH in SA is probably to make 

the RH in the return air lower to compensate that the air rates is less in Pirbadet than in the 

simulated model during night as explained in section 3.3.3.1. 

 

Figure 4-13: Minute values for RH in RA and SA 

 

 

Figure 4-14: Hourly values for RH in RA and SA (with error bands of 2 %RH) 

 

 Delivered heating power to the swimming hall through ventilation 

Due to a more variable supply air temperature in Pirbadet than in the IDA ICE model, the 

heating through ventilation also fluctuates more as one can see in Figure 4-15. Looking at the 

average hourly values in Figure 4-16, the heating power for the two ventilation systems are 

more similar. During night-time, the heating power for both is about 22 kW. During daytime, 

the heating need through ventilation is somewhat lower, probably due to heat gain from the 
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visitors and higher heat gain from the pool surface. At daytime the IDA ICE model needs less 

heating than measured in Pirbadet.  

Since the heat power is directly connected to the supply air mass flow, which is higher at 

daytime in Pirbadet than in the IDA ICE model, it is reasonable that the heating through 

ventilation also gets higher at daytime in Pirbadet than in the IDA ICE model. The blue line in 

Figure 4-16 is the heating through ventilation with the same airflow rate as in Pirbadet at 

daytime. This means that the IDA ICE model anyway needs less heat supply. There are more 

heat losses in reality than in the model. 

The average accuracy is  2.3 kW. 

 

 

Figure 4-15: Minute-values for heating through ventilation 

 

 

Figure 4-16: Hourly values for heating through ventilation 
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 Dumped heating power to the outdoor 

Figure 4-17 shows the amount of dumped heat power to outdoor from the AHU in Pirbadet and 

the modelled AHU in IDA ICE. The IDA ICE model seems to be better (in terms of dumping 

less heat) than Pirbadet during night-time, but much worse during daytime. The main reason 

for the huge difference at daytime is use of the heat pump in Pirbadet. Due to heating need, the 

heat pump is turned on and the evaporator (dehumidifier) is therefore cooling the exhaust air. 

This results in less dumped heat power to outdoor.  

During night-time, the IDA ICE model is not supplying any fresh air, so the only exhaust air is 

the return air ensuring underpressure. In Pirbadet on the other hand, fresh air is supplied also 

during night-time. This results in a higher exhaust air volume flow rate and therefore more 

dumped heat power to outdoor. Due to an average error of  7.8 kW, the error band overlaps 

the IDA ICE line during night-time. It is though, most likely some difference due to the 

different control strategies. Figure 4-17 also shows a wider error band at night than at daytime. 

The calculation for the error is found in Attachment 2 and shows that the error depends on the 

temperature difference between exhaust and fresh air. Since this temperature difference is 

larger at night-time, also the error increases. 

 

Figure 4-17: Hourly values for dumped heat power to outdoor 

 Volume flow rates 

Figure 4-18 shows the volume flow rates in and out of the IDA ICE AHU and the AHU in 

Pirbadet. The volume flow rates at the pool side (RA and SA) are as described in 3.3.3.1. The 

resulting airflow rates at the outdoor side are more stable for the AHU in Pirbadet than the IDA 

ICE AHU since there are supply of fresh air even during night in Pirbadet. The fresh air rate 

and the resulting exhaust air rate is higher during daytime for the IDA ICE model than in 

Pirbadet due to different control strategy. 
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Figure 4-18: Air volume flow rates 

 Evaporation rate 

As the thermal properties of the supply air changes very frequently, the water evaporation rate 

calculated based on the return and supply air behaves the same way as illustrated in Figure 

4-19. The resulting hourly values in Figure 4-20 gives a better representation of the water 

evaporation rates. 

According to the graph in Figure 4-20, the resulting evaporation rates for the IDA ICE model 

and Pirbadet, both based on water content in return and supply airflow, are corresponding quite 

well. Overall, the evaporation rate from IDA ICE is somewhat higher than measured in Pirbadet 

during night-time, but opposite at daytime. This might be because of the less volume flow rate, 

so less infiltration, during night-time and opposite at daytime. The error band of the measured 

data is overlapping the IDA ICE results all the time. The average accuracy is about  18 kg/h. 

Since the total swimming pool area is 341 m2, the evaporation rates based on the experienced 

numbers should be between 0.35 ∗ 341 = 119 kg/h and 0.5 ∗ 341 = 170 kg/h during daytime 

for heated pools. At night-time it should be 0.1 ∗ 341 = 34 kg/h. This means both the 

measured and simulated values are about twice as large as the experienced values during night-

time, but actually smaller than the experienced values at daytime. 

The calculated evaporation rate from the method of Basin & Krumm is about 92 kg/h daytime 

and about 57 kg/h night-time. This fits very good to the measured and simulated results. 
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Figure 4-19: Calculated minute values for water evaporation in the IDA ICE model and in Pirbadet 

 

Figure 4-20: Calculated hourly values for water evaporation in the IDA ICE model and in Pirbadet 

 

 AHU heating need 

The heating power measured in the AHU in Pirbadet is larger than in the simulated model 

throughout the day as the graph in Figure 4-21 shows. The difference between those two is less 

during night-time than during daytime. It is also clear that the condenser accounts for most of 

the heating need, while the heating coil supports the condenser if necessary, mostly at daytime. 

Another observation is that the AHU heating need is restricted to between about 23 kW and 33 

kW for the real AHU in Pirbadet, and between about 14 kW and 24 kW for the simulated 

model. So, the heating need varies with about 10 kW this day. 
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Figure 4-21: Calculated hourly values for AHU heating power 

 AHU dehumidification 

The dehumidification or cooling results are shown in Figure 4-22. There is a big difference 

between the results from the simulated model and the results from the measurements in 

Pirbadet regarding dehumidification or cooling. For the IDA ICE model, the fresh air supply 

during daytime is enough for dehumidification. Since there is no fresh air supply during night-

time, the dehumidifier works almost constant at about 54 kW. 

The AHU dehumidification result in Pirbadet is not very accurate as seen in Figure 4-22. There 

is a simulation error in the 7th hour, but otherwise the error is around 30-50 kW, several times 

more than the measured data. This huge error band originates from the error of the temperature 

between the heat recovery unit and the dehumidifier which has a lot of propagation error due 

to the many calculations. 

 

Figure 4-22: Calculated hourly values for AHU cooling (dehumidification) power 
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4.3 Temperature after heat recovery unit in supply air 

The temperature logged with sensor EL6 and EL7 is presented in Figure 4-23. The overall 

result is that the lower sensor (EL7) measures a lower temperature than the upper one (EL6). 

Occasionally, the temperatures do a jump and at the same time they are getting closer to each 

other, the temperature gets higher and more equal in the heat recovery unit. 

 

Figure 4-23: Temperature measured with EL6 and EL7 after heat recovery unit in supply air 
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5. Discussion 

All measurements will involve some measuring fault. In this case, the placing of the sensors 

does probably not represent a huge source of error. This since the sensors are placed in the 

middle of the channels and since there are used more sensors where there might be differences 

over the cross-section. The measuring equipment used in this experiment is not of the best 

quality regarding accuracy, but it should at least be able to give some reasonable results. The 

probably biggest source of error in this experiment is the propagation of error in the 

calculations. When using many parameters with an uncertainty in an equation, the resulting 

uncertainty will be larger than if using a few parameters.  

There are in general higher errors on the outdoor side of the AHU than on the indoor side. So, 

use of more sensors, for example for volume flow rate would be helpful to reduce this 

propagation of error, and a conclusion would have been more accurate. Due to propagation of 

error, the temperature between the heat recovery unit and the dehumidifier has a large 

uncertainty. This makes the uncertainty of the cooling need large as well. Perhaps another 

calculation method for the temperature should be used or perhaps do the experiment on an 

AHU with separated heat recovery unit and dehumidifier. 

 

The IDA ICE building model is made to be a representative model of the swimming facility in 

Pirbadet with the specifications available. The validation of the model showed that it reacts as 

supposed to changes of different important parameters, but that is no guarantee for a correct 

model. It is important to have in mind that the purpose of this project was not to model a true 

copy of the AHU in Pirbadet, but to make a model that ensured the same indoor climate and 

recycled thermal energy from the return air. And since the correct control of the components 

was not handed over from Menerga before the end of the project period, the control in the 

model is not precise enough. Beneath, the results from the comparisons of the simulated model 

and the measured data are discussed in order to decide if the IDA ICE model is usable for 

design of swimming pools. 

 

The comparison between the integrated variable for evaporation rate and the calculated 

evaporation rate based on water content in return and supply air shows that the calculation 

method is functioning. Therefore, this calculation method can be used for comparison between 

the simulated model and the measured datasets from Pirbadet. This calculation method can also 

be used for control of the AHU model.  
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Since the supply air temperature in Pirbadet is higher than in the simulated model throughout 

the day, and the air volume flow is higher during daytime in Pirbadet than in the simulated 

model, the heating through ventilation is bigger in Pirbadet. This is the case even when the 

measurement uncertainty is accounted for. Night-time, there is almost no difference though. 

So, the model of the swimming hall is not a perfect model and the resulting energy needs will 

be affected by this. 

 

The fact that the AHU model in IDA ICE is made without a heat pump makes the results for 

the energy use in the AHU quite different to the measured results in Pirbadet. This has to do 

with the control of the heat pump. Since the heat pump is controlled to work both if there is a 

dehumidification need and if there is a heating need, the dehumidifier works more often than 

in the simulated model. This influences the results for dehumidification power so that the 

simulated model uses less power for dehumidification during daytime. This also makes the 

dumped heating power at daytime for the simulated model much larger than the reality in 

Pirbadet. During night-time the situation is the opposite due to the fact that there is a fresh air 

supply in Pirbadet, but nothing in the simulated model. This makes the dehumidifier in the 

simulated model work at night-time and cool down the exhaust air. In Pirbadet, fresh air supply 

and less use of the dehumidifier makes the dumped heat to outdoor bigger night-time.  

If a correct AHU model was made in IDA ICE, an interesting test would have been to use the 

heat pump to utilize more of the exhaust heat during night-time to preheat water in a tank for 

use whenever needed. This might probably make the AHU more energy efficient, but perhaps 

the investment of a tank system not would be financially reasonable. 

 

The impact of the different air volume flow rates is present and makes the model imperfect. 

Also, the fact that the outer bypass controls the fresh air volume flow rate as a volume ratio 

instead of a mass ratio (that would be correct) makes the model worse.  

 

The comparing of evaporation rate between the simulated model and the measurements in 

Pirbadet is very positive as Figure 4-20 shows. If having in mind the measuring uncertainty in 

Pirbadet that overlaps the IDA ICE result, the IDA ICE model can actually have correct 

evaporation rate. They are not completely similar to each other, but they are definitely 

following each other’s reactions. If the IDA ICE model had been more similar to the real 
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swimming facility, the results could have been even better. This on the other hand, requires 

quite good specifications of the building body, use and ventilation system.  

 

When it comes to the heating and cooling (dehumidification) need in the AHU, the results are 

not sufficiently good enough. The procedure to find the heating need in the AHU in Pirbadet 

is not completely accurate, but with a correct building model, the results should be more equal. 

It is hard to compare the cooling power in the dehumidifier in the AHU for the two datasets 

due to the different control strategies. The results however show that the fresh air supply in the 

simulated model ensures sufficient dehumidification during daytime, while there is a huge 

dehumidification need (54 kW) at night-time without fresh air supply. Since there is a heating 

need at daytime, but no dehumidification need (beyond the fresh air supply), the warm exhaust 

air could advantageously be utilized in a heat pump system as in reality. 

 

The way the dehumidifier power is calculated in this thesis is not very accurate. The power 

calculation assume that the cooling and heating is equal in the heat recovery unit. And the 

heating power in the heat recovery unit is based on a calculated temperature of airflow 6 where 

the assumption that the product of mass and temperature is in balance (Equation (3-10)). This 

calculation would have been better if it was possible to directly measure the temperature change 

over the dehumidifier. 

 

The temperature difference of the upper and lower temperature sensor after the heat recovery 

unit in the supply air is interesting. Even when considering sensor accuracy, the difference is 

quite big. One reason for this might be that the dehumidifier is connected too close to the heat 

recovery unit that it cools the air in the lower part. Another possible reason is that the upper air 

in the heat recovery unit is heated more than the lower part since the intake of warm return air 

is at the top. The third possible reason discussed here has to do with fresh air supply. Perhaps 

the fresh air creates a layer at the bottom of the heat recovery unit while the recirculated warmer 

air creates a layer on the upper half. This can also explain the occasionally higher and more 

equal temperatures after the heat recovery unit which might be the case when no fresh air is 

supplied. 
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6. Conclusion 

IDA ICE is used to make a model of part of the swimming facility in Pirbadet in Trondheim. 

The pool extension is used to model the pools. The software is user friendly and it mostly has 

the desired opportunities when building such a model, but there are some negative aspects. For 

example, the lack of possibility (at least as known) of setting the airflow rates different at night-

time compared to daytime is crucial for the simulation results. 

After setting up the model of the specific swimming hall and its AHU, a sensitivity analysis 

was done in order to validate the model. The validation showed that the model worked just as 

expected. 

 

One of the issues for this thesis was to evaluate the evaporation rate from the IDA ICE pool. 

The evaporation rate calculated based on difference in water content in return and supply air 

was compared to an integrated variable for evaporation rate in IDA ICE. The result was that 

the calculated value is usable for further analysis. By comparing the IDA ICE model to the 

measured data from Pirbadet, using the calculation method, the two evaporation rates seem to 

correspond quite good. Also, the calculation method of Basin & Krumm gave corresponding 

results. Having in mind the resulting error band that overlapped the IDA ICE result, the 

evaporation rate in IDA ICE works quite well, given that the correct input values are used. 

Though, comparing the evaporation rate with the experienced values in Byggforsk is less 

positive. The experienced evaporation rate is lower at night-time and higher at daytime, so 

perhaps these are not accurate enough to be used for pool design? 

 

The goal for this project was not necessarily to make a completely correct AHU, but to make 

an AHU that ensures the correct indoor climate and that recycles the thermal energy from the 

return air. This was done by using bypasses and a heat recovery unit. A consequence of using 

different control strategy from the real AHU is that the fresh air supply and therefore also the 

dehumidifier (cooling) need becomes different in the two cases. The heating need on the other 

hand, should in theory be the same as long as the correct setpoint temperature is used. The 

results showed that the IDA ICE model had lower AHU heating need than the AHU in Pirbadet, 

which is also seen at the averagely lower supply temperature. This has though, probably more 

to do with the properties of the building body than the AHU control itself. 

 



72 

 

Due to the large differences in heating need for the simulated model and the measured 

swimming hall, the basis for this experiment is weak. A more correct building model with 

correct heat losses should therefore be made by adjusting the heat loss. To be able to measure 

the temperature over the dehumidifier would be a huge advantage in order to validate the 

cooling power of the IDA ICE model. 

All in all, one can conclude that the IDA ICE pool extension works quite similar to the real 

pool in terms of evaporation rate. The resulting heating power for the IDA ICE AHU did not 

correspond to the measured value, but a better model of the building should be made in order 

to decide if a simple model like this can be used for swimming pool design. Regarding cooling 

power in the AHU, it is hard to compare the IDA ICE model to the cooling power in the AHU 

in Pirbadet due to the control of the dehumidifier as part of a heat pump. A completely equal 

AHU model should be used for this purpose. 
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7. Further work 

For further work, there are two main tasks to fix. The water evaporation rate from the pool 

model seems to work as supposed, but the heating need of both the air space and the pool water 

is still not fully validated. Since there were no sensor on the heat supply to the pool water in 

Pirbadet, this was not considered in this thesis. So, modelling a swimming facility even more 

in detail with possibility for also measuring the pool water heating would be a huge step in the 

right direction in order to be able to predict heating need. Then, detailed information about the 

building envelope and some information about the infiltration/exfiltration should be accessible. 

Use of a new swimming hall built as a passive house would be a solution, else adjustment of 

the heat loss of the building model can be done to match the real heating need. If possible, in 

IDA ICE, the correct volume airflow should be modelled both daytime and night-time. 

 

The second main task is to model an exact copy of the real AHU to be able to predict the use 

of and to size the heat exchangers in the heat pump system. Without this it is possible to 

simulate the model and get the resulting cooling power for dehumidification. But, since the 

dehumidifier is used whenever there is a heating need, the total use of it is still unknown without 

making this AHU copy. Also, a solution for a smaller uncertainty of the temperature between 

the heat recovery unit and the dehumidifier should be investigated. A correct copy of the AHU 

demands correct control of the components and use of a heat pump system. The control strategy 

of the MENEREGA ThermoCond was not handed over before the end of the period for this 

master thesis, but it should be used to make a better model for further work. 

 

An interesting experiment would be to investigate the impact of mounting the dehumidifier in 

contact with the heat recovery unit. This can e.g. be done by measuring the temperature over 

the heat recovery unit and check for different reactions with the dehumidifier on and off. 

 

If IDA ICE manages to model a swimming facility correct, the model can be used for design 

of swimming facility. A sensitivity analysis by using the parametric run method can be used in 

order to fine-tune the model to be as energy efficient as possible and at the same time ensure a 

good indoor environment. 
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Attachment 1: Blueprint of Pirbadet 
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Attachment 2: Fault analysis calculations 

The accuracy of the temperature, RH and volume flow measurements are already known from 

the sensor specifications. The accuracy of the calculated properties must be calculated. These 

calculations are explained here. 

The accuracy of the output from the Excel extension hxLib is estimated.  

Deriving the Δx: 

𝑅𝐻 =
𝑥

𝑥𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑
  →    𝑥 = 𝑅𝐻 ∗ 𝑥𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 

xsaturated is calculated for the temperatures 1 to 30 C using hxLib with 100 %RH. Then, 

regression in Excel is done to find a function xsaturated(T): 

𝑥𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 = 2 ∗ 10−7 ∗ 𝑇2 + 9 ∗ 10−7 ∗ 𝑇 + 4 ∗ 10−5 

And then 

𝑥 = 𝑅𝐻 ∗ (2 ∗ 10−7 ∗ 𝑇2 + 9 ∗ 10−7 ∗ 𝑇 + 4 ∗ 10−5) 

The fault analysis described in section 3.2.6.9 is used for finding Δx. 

The already known and constant Δ𝑢′𝑠 are the following:  

Δ𝑇𝐸𝐿 = 0.3 °𝐶8 

Δ𝑇𝑇 = 0.5 °𝐶9 

Δ𝑅𝐻 = 2 %𝑅𝐻 

 

𝑑𝑥

𝑑𝑅𝐻
=  2 ∗ 10−7 ∗ 𝑇2 + 9 ∗ 10−7 ∗ 𝑇 + 4 ∗ 10−5 

𝑑𝑥

𝑑𝑇
= 𝑅𝐻 ∗ (4 ∗ 10−7 ∗ 𝑇 + 9 ∗ 10−7) 

Δ𝑥 = ±√
((2 ∗ 10−7 ∗ 𝑇2 + 9 ∗ 10−7 ∗ 𝑇 + 4 ∗ 10−5) ∗ Δ𝑅𝐻)

2

+(𝑅𝐻 ∗ (4 ∗ 10−7 ∗ 𝑇 + 9 ∗ 10−7) ∗ Δ𝑇)2
 

                                                 
8 For the EasyLog sensors 
9 For the thermocouples 
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Deriving the Δv: 

The specific volume (v) is calculated for the temperatures 1 to 30 C using hxLib with 100 

%RH. Then, regression in Excel is done to find a function v(T), neglecting the small change of 

changing RH: 

𝑣 = 3 ∗ 10−5 ∗ 𝑇2 + 0.003 ∗ 𝑇 + 0.808 

The fault analysis described in section 3.2.6.9 is used for finding Δv. 

𝑑𝑣

𝑑𝑇
= 6 ∗ 10−5 ∗ 𝑇 + 0,003 

Δ𝑣 = √((6 ∗ 10−5 ∗ 𝑇 + 0,003) ∗ Δ𝑇)2 

 

Beneath, the calculations for the accuracy of the calculated properties are shown for the 

different airflows. The method described in section 3.2.6.9 is used. 

Airflow 1 

Δ𝑉̇1 = ±𝑉̇1 ∗ 0,02 

𝑚̇1 =
𝑉̇1

𝑣1 ∗ 3600
→
𝑑𝑚̇1

𝑑𝑉̇1
=

1

𝑣1 ∗ 3600
   ,   

𝑑𝑚̇1

𝑑𝑣1
=

−𝑉̇1

𝑣1
2 ∗ 3600

 

Δ𝑚̇1 = ± √(
1

𝑣1 ∗ 3600
∗ Δ𝑉̇1)

2

+ (
−𝑉̇1

𝑣1
2 ∗ 3600

∗ Δ𝑣1)

2

 

Airflow 2 

Δ𝑉̇2 = Δ𝑉̇1 

𝑚̇2 =
𝑉̇2

𝑣2 ∗ 3600
→
𝑑𝑚̇2

𝑑𝑉̇2
=

1

𝑣2 ∗ 3600
   ,   

𝑑𝑚̇2

𝑑𝑣2
=

−𝑉̇2

𝑣2
2 ∗ 3600

 

Δ𝑚̇2 = ± √(
1

𝑣2 ∗ 3600
∗ Δ𝑉̇2)

2

+ (
−𝑉̇2

𝑣2
2 ∗ 3600

∗ Δ𝑣2)

2

 

Airflow 3 

𝑚̇3 = 𝑚̇2 − (𝑚̇8 − 𝑚̇7) = 𝑚̇2 − 𝑚̇8 + 𝑚̇7   →   
𝑑𝑚̇3

𝑑𝑚̇2
=  1   ,   

𝑑𝑚̇3

𝑑𝑚̇8
= −1  ,   

𝑑𝑚̇3

𝑑𝑚̇7
=  1 
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 Δ𝑚̇3 = ± √Δ𝑚̇2
2 + (−Δ𝑚̇8)

2 + Δ𝑚̇7
2 

Airflow 4 

𝑚̇4 =
𝑚̇3 ∗ 𝑥3 − (𝑚̇6 − 𝑚̇5) ∗ 𝑥3

𝑥4
  →    

𝑑𝑚̇4

𝑑𝑚̇3
=
𝑥3
𝑥4
   ,   

𝑑𝑚̇4

𝑑𝑥3
=
𝑚̇3 − 𝑚̇6 + 𝑚̇5

𝑥4
   ,   

𝑑𝑚̇4

𝑑𝑚̇6
= −

𝑥3
𝑥4
   ,   

𝑑𝑚̇4

𝑑𝑚̇5
=
𝑥3
𝑥4
   ,   

𝑑𝑚̇4

𝑑𝑥4
=
(𝑚̇6 − 𝑚̇5) ∗ 𝑥3 − 𝑚̇3 ∗ 𝑥3

𝑥4
2  

Δ𝑚̇4 = ± 

√
  
  
  
  
  

(
𝑥3
𝑥4
∗ Δ𝑚̇3)

2

+ (
𝑚̇3 − 𝑚̇6 + 𝑚̇5

𝑥4
∗ Δ𝑥3)

2

+ (−
𝑥3
𝑥4
∗ Δ𝑚̇6)

2

+ (
𝑥3
𝑥4
∗ Δ𝑚̇5)

2

+(
(𝑚̇6 − 𝑚̇5) ∗ 𝑥3 − 𝑚̇3 ∗ 𝑥3

𝑥4
2 ∗ Δ𝑥4)

2  

 

𝑉4̇ = 𝑚̇4 ∗ 𝑣4 ∗ 3600  →   
𝑑𝑉4̇
𝑑𝑚4̇

= 𝑣4 ∗ 3600   ,
𝑑𝑉4̇
𝑑𝑣4

= 𝑚4̇ ∗ 3600 

Δ𝑉̇4 = ±√(𝑣4 ∗ 3600 ∗ Δ𝑚̇4)2 + (𝑚̇4 ∗ 3600 ∗ Δ𝑣4)2 

Airflow 5 

𝑚̇5 =
𝑚̇6 ∗ (𝑥6 − 𝑥3)

𝑥5 − 𝑥3
  →   

𝑑𝑚̇5

𝑑𝑚̇6
=
𝑥6 − 𝑥3
𝑥5 − 𝑥3

   ,
𝑑𝑚̇5

𝑑𝑥6
=

𝑚̇6

𝑥5 − 𝑥3
   , 

  
𝑑𝑚̇5

𝑑𝑥3
=

𝑚̇6 ∗ 𝑥5
(𝑥5 − 𝑥3)2

   ,   
𝑑𝑚̇5

𝑑𝑥5
= −

𝑚̇6 ∗ (𝑥6 − 𝑥3)

(𝑥5 − 𝑥3)2
 

Δ𝑚̇5 = ±

√
  
  
  
  
  

(
𝑥6 − 𝑥3
𝑥5 − 𝑥3

∗ Δ𝑚̇6)
2

+ (
𝑚̇6

𝑥5 − 𝑥3
∗ Δ𝑥6)

2

+ (
𝑚̇6 ∗ 𝑥5
(𝑥5 − 𝑥3)2

∗ Δ𝑥3)
2

+(−
𝑚̇6 ∗ (𝑥6 − 𝑥3)

(𝑥5 − 𝑥3)2
∗ Δ𝑥5)

2  

 

𝑉5̇ = 𝑚̇5 ∗ 𝑣5 ∗ 3600  →   
𝑑𝑉5̇
𝑑𝑚5̇

= 𝑣5 ∗ 3600   ,
𝑑𝑉5̇
𝑑𝑣5

= 𝑚5̇ ∗ 3600 

Δ𝑉̇5 = ±√(𝑣5 ∗ 3600 ∗ Δ𝑚̇5)2 + (𝑚̇5 ∗ 3600 ∗ Δ𝑣5)2 
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Airflow 6 

𝑇6 =
𝑇5 ∗ 𝑚̇5 + 𝑇4 ∗ (𝑚̇3 − 𝑚̇4)

𝑚̇6
  →   

𝑑𝑇6
𝑑𝑇5

=
𝑚̇5

𝑚̇6
   ,   

𝑑𝑇6
𝑑𝑚̇5

=
𝑇5
𝑚̇6

   , 

  
𝑑𝑇6
𝑑𝑇4

=
𝑚̇3 − 𝑚̇4

𝑚̇6
  ,   

𝑑𝑇6
𝑑𝑚̇3

=
𝑇4
𝑚̇6

 ,   
𝑑𝑇6
𝑑𝑚̇4

= −
𝑇4
𝑚̇6

   ,   
𝑑𝑇6
𝑑𝑚̇6

= −
𝑇5 ∗ 𝑚̇5 + 𝑇4 ∗ (𝑚̇3 − 𝑚̇4)

𝑚̇6
2  

Δ𝑇6 = ± 

√
  
  
  
  
  

(
𝑚̇5

𝑚̇6
∗ Δ𝑇5)

2

+ (
𝑇5
𝑚̇6

∗ Δ𝑚̇5)
2

+ (
𝑚̇3 − 𝑚̇4

𝑚̇6
∗ Δ𝑇4)

2

+ (
𝑇4
𝑚̇6

∗ Δ𝑚̇3)
2

+(−
𝑇4
𝑚̇6

∗ Δ𝑚̇4)
2

+ (−
𝑇5 ∗ 𝑚̇5 + 𝑇4 ∗ (𝑚̇3 − 𝑚̇4)

𝑚̇6
2 ∗ Δ𝑚̇6)

2  

Airflow 7 

𝑚̇7 =
𝑚̇8 ∗ (𝑥8 − 𝑥1)

𝑥7 − 𝑥1
  →   

𝑑𝑚̇7

𝑑𝑚̇8
=
𝑥8 − 𝑥1
𝑥7 − 𝑥1

   ,   
𝑑𝑚̇7

𝑑𝑥8
=

𝑚̇8

𝑥7 − 𝑥1
   , 

  
𝑑𝑚̇7

𝑑𝑥1
=
𝑚̇8 ∗ (𝑥8 − 𝑥7)

(𝑥7 − 𝑥1)2
   ,   

𝑑𝑚̇7

𝑑𝑥7
=
𝑚̇8 ∗ (𝑥1 − 𝑥8)

(𝑥7 − 𝑥1)2
 

Δ𝑚̇7 = ±

√
  
  
  
  
  

(
𝑥8 − 𝑥1
𝑥7 − 𝑥1

∗ Δ𝑚̇8)
2

+ (
𝑚̇8

𝑥7 − 𝑥1
∗ Δ𝑥8)

2

+ (
𝑚̇8 ∗ (𝑥8 − 𝑥7)

(𝑥7 − 𝑥1)2
∗ Δ𝑥1)

2

+(
𝑚̇8 ∗ (𝑥1 − 𝑥8)

(𝑥7 − 𝑥1)
2

∗ Δ𝑥7)

2  

Airflow 11 

Δ𝑉̇11 = ±𝑉̇11 ∗ 0,02 

𝑚̇11 =
𝑉̇11

𝑣11 ∗ 3600
→
𝑑𝑚̇11

𝑑𝑉̇11
=

1

𝑣11 ∗ 3600
   ,   

𝑑𝑚̇11

𝑑𝑣11
=

−𝑉̇11

𝑣11
2 ∗ 3600

 

Δ𝑚̇11 = ± √(
1

𝑣11 ∗ 3600
∗ Δ𝑉̇11)

2

+ (
−𝑉̇11

𝑣11
2 ∗ 3600

∗ Δ𝑣11)

2

 

Heating power from condenser 

𝑄 =  𝑚̇8 ∗ 1.005 ∗ (𝑇9 − 𝑇8)  →   
𝑑𝑄

𝑑𝑚̇8
= 1.005 ∗ (𝑇9 − 𝑇8)   ,

𝑑𝑄

𝑑𝑇9
= 𝑚̇8 ∗ 1.005   , 

  
𝑑𝑄

𝑑𝑇8
= −𝑚̇8 ∗ 1.005 
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Δ𝑄 = ±√(1.005 ∗ (𝑇9 − 𝑇8) ∗ Δ𝑚̇8)2 + (𝑚̇8 ∗ 1.005 ∗ Δ𝑇9)2 + (−𝑚̇8 ∗ 1.005 ∗ Δ𝑇8)2 

Heating power from heating coil 

𝑄 =  𝑚̇10 ∗ 1.005 ∗ (𝑇11 − 𝑇10)  →   
𝑑𝑄

𝑑𝑚̇10
= 1.005 ∗ (𝑇11 − 𝑇10)   ,   

𝑑𝑄

𝑑𝑇11
= 𝑚̇10 ∗ 1.005   , 

  
𝑑𝑄

𝑑𝑇10
= −𝑚̇10 ∗ 1.005 

Δ𝑄 = ±√
(1.005 ∗ (𝑇11 − 𝑇10) ∗ Δ𝑚̇10)2 + (𝑚̇10 ∗ 1.005 ∗ Δ𝑇11)2

+(−𝑚̇10 ∗ 1.005 ∗ Δ𝑇10)2
 

Temperature between heat recovery unit and dehumidifier 

Tb =
𝑚̇2 ∗ 𝑇2 − 𝑚̇6 ∗ (𝑇7 − 𝑇6)

𝑚̇3
  →   

𝑑𝑇𝑏
𝑑𝑚̇2

=
𝑇2
𝑚̇3

   ,
𝑑𝑇𝑏
𝑑𝑇2

=
𝑚̇2

𝑚̇3
   ,

𝑑𝑇𝑏
𝑑𝑚̇6

=
𝑇6 − 𝑇7
𝑚̇3

   , 

𝑑𝑇𝑏
𝑑𝑇7

= −
𝑚̇6

𝑚̇3
   ,

𝑑𝑇𝑏
𝑑𝑇6

=
𝑚̇6

𝑚̇3
   ,

𝑑𝑇𝑏
𝑑𝑚̇3

=
𝑚̇6(𝑇7 − 𝑇6) − 𝑚̇2 ∗ 𝑇2

𝑚̇3
2   

Δ𝑇𝑏 = ±

√
  
  
  
  
  

(
𝑇2
𝑚̇3

∗ Δ𝑚̇2)
2

+ (
𝑚̇2

𝑚̇3
∗ Δ𝑇2)

2

+ (
𝑇6 − 𝑇7
𝑚̇3

∗ Δ𝑚̇6)
2

+ (−
𝑚̇6

𝑚̇3
∗ Δ𝑇7)

2

+(
𝑚̇6

𝑚̇3
∗ Δ𝑇6)

2

+ (
𝑚̇6(𝑇7 − 𝑇6) − 𝑚̇2 ∗ 𝑇2

𝑚̇3
2 ∗ Δ𝑚̇3)

2   

Cooling power 

𝑄 =  𝑚̇3 ∗ 1.005 ∗ (𝑇𝑏 − 𝑇3)  →   
𝑑𝑄

𝑑𝑚̇3
= 1.005 ∗ (𝑇𝑏 − 𝑇3)   ,

𝑑𝑄

𝑑𝑇𝑏
= 𝑚̇3 ∗ 1.005   , 

  
𝑑𝑄

𝑑𝑇3
= −𝑚̇3 ∗ 1.005 

Δ𝑄 = ±√(1.005 ∗ (𝑇𝑏 − 𝑇3) ∗ Δ𝑚̇3)2 + (𝑚̇3 ∗ 1.005 ∗ Δ𝑇𝑏)2 + (−𝑚̇3 ∗ 1.005 ∗ Δ𝑇3)2 

Delivered heating power to the hall 

𝑄 =  𝑚̇11 ∗ 1.005 ∗ (𝑇11 − 𝑇1)  →   
𝑑𝑄

𝑑𝑚̇11
= 1.005 ∗ (𝑇11 − 𝑇1)   ,    

𝑑𝑄

𝑑𝑇11
= 𝑚̇11 ∗ 1.005   , 

  
𝑑𝑄

𝑑𝑇1
= −𝑚̇11 ∗ 1.005 
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Δ𝑄 = ±√(1.005 ∗ (𝑇11 − 𝑇1) ∗ Δ𝑚̇11)2 + (𝑚̇11 ∗ 1.005 ∗ Δ𝑇11)2 + (−𝑚̇11 ∗ 1.005 ∗ Δ𝑇1)2 

Dumped heating to outdoor 

𝑄 =  𝑚̇4 ∗ 1.005 ∗ (𝑇4 − 𝑇5)  →   
𝑑𝑄

𝑑𝑚̇4
= 1.005 ∗ (𝑇4 − 𝑇5)   ,

𝑑𝑄

𝑑𝑇4
= 𝑚̇4 ∗ 1.005   , 

  
𝑑𝑄

𝑑𝑇5
= −𝑚̇4 ∗ 1.005 

Δ𝑄 = ±√(1.005 ∗ (𝑇4 − 𝑇5) ∗ Δ𝑚̇4)2 + (𝑚̇4 ∗ 1.005 ∗ Δ𝑇4)2 + (−𝑚̇4 ∗ 1.005 ∗ Δ𝑇5)2 

Evaporation rate 

𝑚̇ = (𝑚̇1 ∗ 𝑥1 − 𝑚̇11 ∗ 𝑥11) ∗ 3600  →   
𝑑𝑚̇

𝑑𝑚̇1
= 𝑥1 ∗ 3600   ,

𝑑𝑚̇

𝑑𝑥1
= 𝑚̇1 ∗ 3600   , 

𝑑𝑚̇

𝑑𝑚̇11
= −𝑥11 ∗ 3600   ,

𝑑𝑚̇

𝑑𝑥11
= −𝑚̇11 ∗ 3600 

Δ𝑚̇ = ±√
(𝑥1 ∗ 3600 ∗ Δ𝑚̇1)2 + (𝑚̇1 ∗ 3600 ∗ Δ𝑥1)2 + (−𝑥11 ∗ 3600 ∗ Δ𝑚̇11)2

+(−𝑚̇11 ∗ 3600 ∗ Δ𝑥11)2
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Attachment 3: Evaporation rate calculation methods 

Symbols used 

 

 

Shah’s method for unoccupied swimming pools 

 

Shah’s method for occupied swimming pools 

 

Basin & Krumm’s method for unoccupied swimming pools 

 

Basin & Krumm’s method for occupied swimming pools 
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