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Summary

Child mortality rates are key indicators of the health of a nation. The United Nations’
(UN) millennium development goals (MDGs) and sustainable development goals (SDGs)
focus on reducing child mortality. To measure progress toward the UN goals and to iden-
tify the need for interventions, accurate estimates and forecasts of neonatal mortality rate
(NMR) and under-5 mortality rate (U5MR) are needed. The main goal of this thesis is
to improve on current estimates and forecasts of NMR and U5MR in low-and-medium
income countries by borrowing strength across time and from neighboring countries. The
best performing models are used to make forecasts of NMR and U5MR for 2030 for Kenya
and evaluate Kenya’s progress towards the MDGs and SDGs.

In low- and medium-income countries, child mortality rates are primarily estimated
using survey and census data. Traditional model-based approaches to estimation do not
account for complex survey design. Not accounting for stratification and clustering leads
to biased estimates and incorrect uncertainties. In this thesis, yearly design-based esti-
mates are computed independently. Then, as mortality rates are expected to be slowly
changing over time, a temporal model is applied. The model is latent Gaussian and has
a linear trend in time, a stochastic temporal effect, and an effect correcting for systematic
differences between surveys. Time-dependent covariates can be included, and joint model-
ing of neighboring countries is considered. The models are estimated using the integrated
nested Laplace approximation (INLA).

The analysis concludes that the best model for forecasting NMR in Kenya has an au-
toregressive process of order two as the temporal effect, a linear trend in time, and the
logarithm of the gross domestic product (GDP) as a covariate. It does not borrow strength
from neighboring countries. The best model for forecasting U5MR in Kenya has a random
walk of order one as the temporal effect, GDP as a covariate, and borrows strength from
Uganda and Tanzania. Using that model, Kenya did not reach MDG target 4A: reduce
U5MR by two thirds between 1990 and 2015. SDG target 3.2 is to reduce NMR to 12 per
1000 live birth and U5MR to 25 per live birth by 2030. The preferred models give Kenya
a 29.63% probability of reaching SDG target 3.2 for NMR and a 99.97% probability of
reaching SDG target 3.2 for U5MR. The probability of reaching SDG target 3.2 is sensitive
to the choice of model.
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Sammendrag

Barnedødelighetsrater er viktige indikatorer på en nasjons helse. FNs tusenårsmål (MDG)
og bærekraftsmål (SDG) fokuserer på å redusere barnedødelighet. Man trenger nøyaktige
estimater og prediksjoner for nyfødtdødelighet (NMR) og under-5 dødelighet (U5MR) for
å måle fremdrift mot FNs mål og for å identifisere behovet for intervensjoner. Hovedmålet
med denne oppgaven er å forbedre dagens estimater og prediksjoner for NMR og U5MR
i lav- og medium-inntektsland ved å låne styrke over tid og fra naboland. De beste mod-
ellene brukes til å produsere prediksjoner for NMR og U5MR i Kenya frem til 2030 og
evaluere Kenyas fremgang mot FN-målene.

I lav- og medium-inntektsland estimeres barnedødelighet primært ved hjelp av un-
dersøkelse og folketelling data. Tradisjonelle modellbaserte tilnærminger til estimering
tar ikke hensyn til de komplekse utformingene av undersøkelsene. ignorere stratifisering
og clustering fører til biased estimater og feil usikkerhet. I denne oppgaven beregnes årlige
designbaserte estimater uavhengig. Ettersom det forventes at dødelighetsrater endres sakte
over tid, blir en tidsmodell brukt. Modellen er latent Gaussisk og har en lineær trend i tid,
en stokastisk temporal effekt og en korrigering for systematiske forskjeller mellom un-
dersøkelser. Tidsavhengige kovariater kan inkluderes, og felles modellering av naboland
utforskes. Modellene er estimert ved hjelp av den integrerte nestede Laplace-tilnærmingen
(INLA).

Analysen konkluderer med at den beste modellen for predikering av NMR i Kenya har
en autoregressiv prosess av orden to som tids-effekt, en lineær trend i tid, logaritmen for
bruttonasjonalproduktet (BNP) som kovariat og låner ikke styrke fra nabolandene. Den
beste modellen for prediksjoner for U5MR i Kenya har en random walk av første orden
som temporal effekt, BNP som kovariat og låner styrke fra Uganda og Tanzania. Basert
på prediksjoner produsert av denne modellen nådde Kenya ikke MDG-mål 4A: redusere
U5MR med to tredjedeler mellom 1990 og 2015. SDG-mål 3.2 er å redusere NMR til
12 per 1000 levendefødt og U5MR til 25 per levendefødt innen 2030. Den foretrukne
modellen for prediksjon av NMR gir Kenya en sannsynlighet på 29.63% for å nå SDG mål
3.2 for NMR. Den beste modellen for U5MR gir Kenya en 99, 97% sannsynlighet for å
nå SDG mål 3.2 for U5MR. Sannsynligheten for å nå SDG mål 3.2 er sensitiv til valg av
modell.
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Chapter 1
Introduction

Under-5 mortality rate (U5MR: the probability of dying before the age of five for live
births) and neonatal mortality rate (NMR: the proportion of children who die within the
first month of life for live births) are important indicators of the degree of poverty and
deprivation in a country. The United Nations’ (UN’s) third sustainable development goal
(SDG) is “good health and well-being”. Target 3.2 reads: “By 2030, end preventable
deaths of newborns and children under 5 years of age, with all countries aiming to reduce
neonatal mortality to at least as low as 12 per 1,000 live births and under-5 mortality
to at least as low as 25 per 1,000 live births” (UN (2019a)). Similarly, the fourth UN
millennium development goal (MDG) is “reduce child mortality”, with target 4A: “Reduce
by two thirds, between 1990 and 2015, the under-5 mortality rate” (UN (2019b)). Health
and social-service planning should consider trends in mortality rates and health drivers,
as argued by Foremann et al. (2018). Thus, estimates and forecasts of NMR and U5MR
are necessary both to assess progress towards development goals and to identify and plan
needed interventions.

It is complicated to estimate and forecast child mortality rates because countries that
have not already met SDG target 3.2 are typically low- and medium-income countries
where vital registration systems are deficient. If no complete birth and death data exists,
NMR and U5MR must be estimated using data from sparse complex surveys and censuses.
When using survey data, the design of the survey must be considered. If not, the estimates
will be biased, and one will not account for the uncertainty caused by the sampling. How-
ever, traditional design-based estimation approaches do not borrow strength across time
or space. Spatial or temporal models can be used to improve estimates, obtain estimates
for small areas in which too little data is collected to produce design-based estimates, and
produce forecasts. Several models have been developed, some of which are discussed in
the next section. The goal of this thesis is to investigate models that improve estimates
and forecasts by borrowing strength across time and from neighboring countries and at the
same time, account for the complex survey design.
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Chapter 1. Introduction

1.1 State of the art
The UN currently uses the Bayesian B-spline bias-reduction (B3, Alkema and New (2014))
model to estimate child mortality rates. Alkema and New (2014) produce child mortality
rates for 194 countries using a Bayesian framework where information is exchanged across
countries. They use Bayesian penalized spline regression to produce yearly estimates for
U5MR. When estimating the model, “second-order differences in adjacent spline coeffi-
cients . . . are penalized for guaranteeing the smoothness of the resulting U5MR trajectory”
(Alkema and New (2014), p.8). They estimate the model using a Markov Chain Monte
Carlo (MCMC) algorithm, which involves six parallel chains with a total of 50 000 itera-
tions in each chain. Thus, estimating the B3 model is computationally demanding.

To establish a baseline for the SDGs Golding et al. (2017) carried out a large scale
study for 46 African countries. They used data from 235 household surveys and censuses
to generate estimates for NMR and U5MR for 5× 5 km cells for five-year periods. When
computing estimates for U5MR, Golding et al. (2017) considered four separate age inter-
vals: the first month of life, month 1-11, month 12-35, and month 36-59. They modeled
the age-intervals independently and finally computed the U5MR as one minus the proba-
bility of not dying in any of the age intervals. Wakefield et al. (2018) argue against this
approach. They compute U5MR estimates at a fine spatial grid and estimate different age
intervals simultaneously.

Other approaches described by Wang et al. (2014) and Foremann et al. (2018) estimate
and forecast child mortality rates. Wang et al. (2014) do so simultaneously for 188 coun-
tries, using a three-step modeling process. Step one is a “non-linear mixed effects model
to examine the relationship between child mortality, lagged distributed income per person,
maternal education, and the crude death rate from HIV/AIDS in the under-5 age group”
(Wang et al. (2014), p. 3). The second step borrows strength across time and countries
within the same region using spatiotemporal regression. The third and final step applies a
Gaussian process regression model. Foremann et al. (2018) forecast life expectancy and
cause-specific mortality for 250 causes of death for 195 countries. Their model consists
of three components; the first due to change in risk factors, the second is the underlying
mortality rate for each cause as a function of income per capita, education, fertility rate
under 25 years and time, and the third component models the unexplained stochastic vari-
ation in time using an autoregressive integrated moving average (ARIMA) model. When
modeling the first two components, they assume that the cause-specific mortality rate is
normally distributed on the log scale. The mean is specified as a sum of relevant risks.
After that, the residuals are fitted by ARIMA models.

The models described by Alkema and New (2014), Golding et al. (2017), Wang et al.
(2014) and Foremann et al. (2018) require large amounts of data from many countries. It
is often difficult to collect data from various sources, and some data might be inaccessible.
Further, it requires extensive domain-knowledge and computational powers to be able to
handle huge amounts of data. The data they use is collected by several different programs
and governments and is bound to be of varying quality. While some data is accurate, other
data might be introducing more errors than information.

In addition, the methods described by Alkema and New (2014), Golding et al. (2017),
Wang et al. (2014) and Foremann et al. (2018) are computationally complex. If estimated
and forecasted mortality rates are to be of value, the entities responsible for social/eco-
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1.2 Approach

nomical interventions must trust them. Therefore estimates and forecasts should be easy
to reproduce. User-friendly software should be accessible as well as the computational
powers required to estimate the model should not be too large. The models discussed
above do not meet these criteria.

Mercer et al. (2015) combine data from surveys by the Demographic and Health Sur-
vey (DHS) program and Health Demographic Surveillance System (HDSS) sites from one
country. DHS surveys collect information from a large population, whereas the HDSS data
focus on a smaller population and is more accurate and precise. HDSS data is collected by
repeated visits to the same households. Please see Section 2.1 of Mercer et al. (2015) for
further explanation. The data is used to produce design-based U5MR estimates, and then
a space-time Bayesian hierarchical model is applied. Mercer et al. (2015) aim to produce
U5MR estimates at regional levels. Because of the sparsity of data, they produce estimates
for five-year intervals. A free R-package called SUMMER, designed to generate and model
mortality rate estimates using the methods and models described in Mercer et al. (2015),
is under development. SUMMER allows for transparent estimation of mortality rates. The
estimating method and model are relatively interpretable and straightforward.

To be able to assess progress towards SDG target 3.2, models producing reliable fore-
casts are needed. However, producing reliable forecasts has so far not been a focus for
SUMMER. This thesis aims to investigate, assess, and suggest possible temporal models
that can be included in SUMMER. Furthermore, the effect of covariates and borrowing
strength from neighboring countries is investigated. The best performing model will be
used to assess Kenya’s progress towards the SDGs and MDGs. The focus of the thesis is
limited to temporal models of mortality rates. The models described in this thesis can be
expanded to spatiotemporal models. However, estimating mortality rates at a finer spa-
tial scale requires large amounts of data or model-based approaches. The scope of this
thesis would have been too broad and unfocused if complex spatiotemporal model-based
approaches were included in it.

1.2 Approach

Estimation of mortality rates in low- and medium-income countries relies on complex sur-
vey data and censuses. Surveys collect the full birth history of women, which includes the
dates of birth of the woman’s children and if the children have died, the dates of death. In
contrast, a census typically only contains summary birth histories; the number of children
born to a woman and the number of children who died before turning five. Summary birth
histories require methods such as the Brass method (Brass and Coale (1968)) to determine
the NMR or U5MR. The Brass method, however, is complicated and not within the scope
of this thesis. Surveys are constructed to be representative of the population, often with
complex survey design. When computing estimates, the designs of the surveys have to
be taken into account. If not, the resulting estimates and corresponding variance will be
biased and inaccurate as the observations are not weighted correctly and do not account
for dependence (i.e., clustering). In practice, design-based estimates can be computed us-
ing the R-package survey1, which is used by, among others, SUMMER. The survey

1http://r-survey.r-forge.r-project.org/survey/
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Chapter 1. Introduction

package is developed by Thomas Lumley and is meant to facilitate analysis of complex
survey samples. If data from several different surveys are used, separate estimates should
be computed for each survey. As the surveys are conducted by different people, at different
times, there might be systematic differences between them. That should be accounted for
in the final models.

When computing design-based estimates, yearly NMR and U5MR are estimated with-
out assuming temporal dependency. However, as mortality rates are expected to be slowly
changing in time, yearly mortality rates are expected to have a temporal dependency. By
modeling the temporal dependency, improved estimates of mortality rates can be obtained,
and it is possible to produce forecasts. Temporal smoothing effects used in Mercer et al.
(2015) are limited to random walks of first and second order. They find that random walk
of second order is preferred for modeling U5MR in Tanzania. However, forecasts based
on random walks of second order have exploding credible intervals, as seen in Figure 1.1.
The models in Figure 1.1 are fitted using design-based mortality rates and uncertainty for
Kenya for 1980-2013, and predictions are made until 2030. Both for U5MR and NMR,
the 95% credible interval for the predictions includes unlikely high estimates; values that
are way higher than past estimates and values that are very close to zero are included in the
intervals. In this thesis, temporal effects based on random walks of first and second order
will be compared to temporal effects based on autoregressive models of first and second
order. These four models are chosen because they are simple and transparent. As there
is not that much knowledge about the dynamics of mortality rates, constructing complex
temporal models will not make sense.

In addition to investigating different temporal effects, it is also interesting to investi-
gate the effect of covariates. To produce forecasts of mortality rates, future values of the
covariates must be available. In this thesis, the effect of historical data and reliable fore-
casts of population size and gross domestic product (GDP) is investigated. Population size
and GDP are chosen as covariates primarily to exemplify how covariates can be included.
However, it is reasonable to assume that they affect mortality rates and high-quality his-
torical data and projections at a national level are available. The data is obtained from the
Shared Socioeconomic Pathways (SSP) database (Riahi et al. (2017), Rogelj et al. (2018)
and Gidden et al. (2018)) and forecasts are made for five different future scenarios. It is
also reasonable to assume that mortality rates in similar countries behave in the same way
so that borrowing strength across countries is a good way of taking advantage of available
data and improving the models. To test this, models that jointly estimate mortality rates in
neighboring countries, vector autoregressive models, are investigated.

Due to the complex correlation structure of the problem, hierarchical Bayesian models
are well suited. MCMC methods are widely used to estimate Bayesian models and can be
made to be arbitrarily accurate by letting the algorithm run for long enough time. Thus,
they can achieve accuracy at the cost of computational time. Software named RStan
(Carpenter et al. (2017)) is being developed to fit Bayesian models using MCMC meth-
ods. RStan could have been used to fit the models in this thesis, but the software is
inconvenient. The user is required to make manual adjustments for all different temporal
effects tested, potentially leading to demanding debugging. Besides, it is difficult to assess
convergence and therefore problematic to determine for how long the algorithm should
run.
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● KDHS03 KDHS08−09 KDHS14 Prediction

Figure 1.1: Estimated yearly NMR (left) and U5MR (right) for Kenya, given as expected deaths
per 1000 live birth, with 95% credible intervals. Modeled with a random walk of second order
as the temporal effect. The models are fitted using data for t < 2014, and then predictions are
made until 2030. The red circles, error bars, and dotted lines are the estimated rates based on data
from the Kenya DHS 2003 (KDHS03) survey. The green triangles, error bars, and dotted lines are
the equivalent for estimates based on the Kenya DHS 2008-2009 survey (KDHS08-09), while the
blue lines, error bars, and dotted lines correspond to estimates from the Kenya DHS 2014 survey
(KDHS14). The solid purple lines are the predictions, and the purple areas are the 95% credible
intervals of the predictions.
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Chapter 1. Introduction

As in Mercer et al. (2015), the models developed in this thesis belongs to the class
Bayesian hierarchical models called latent Gaussian models (LGMs). LGMs have an ad-
ditive structure, which makes them easily interpretable. For LGMs, a recent estimation
approach called the integrated nested Laplace approximation (INLA, Rue et al. (2009))
is developed. INLA is a quick, deterministic method that is very popular. INLA is im-
plemented in the R-package INLA2, and used by SUMMER. In contrast to RStan, INLA
allows for easy use of several different temporal models and can estimate LGMs in a matter
of seconds. Therefore, INLA is used in this thesis.

The explanatory and predictive strengths of the developed models are investigated us-
ing several simulated datasets. To evaluate the models, the Watanabe-Akaike information
criterion (WAIC, Watanabe (2010)), marginal log-likelihood, mean absolute error, mean
squared error, and the continuous ranked probability score (CRPS, Gneiting and Raftery
(2007)) are calculated for every fitted model. Based on the models’ performance using the
simulated data sets, the best performing models are applied to design-based mortality rates
in Kenya. The effect on forecasts of covariates and the effect of simultaneously calculat-
ing mortality rates for two neighboring countries, Uganda and Tanzania, is explored and
assessed by CRPS.

1.3 Child mortality in Kenya

The models developed in this thesis are applied to survey data collected in Kenya. Kenya
is an example of a country in which child mortality rates must be estimated from survey
data. Even though it is chosen to analyze data from Kenya, the methods are also applicable
to other low- and medium-income countries. Kenya is situated in East Africa, bordering
Ethiopia (north), Somalia (northeast), Tanzania (south), Uganda (west), and South Sudan
(northwest), as seen in Figure 1.2. Prior to the 2010 approved new Constitution, Kenya
was divided into eight provinces subdivided into districts. After 2013 the country has
seven regions subdivided into 47 counties.

Data from the three surveys undertaken by the Demographic and Health Surveys (DHS)
program in 2003, 2008-09 and 2014 is used in this thesis. The surveys are referred to as
KDHS03, KDHS08-09, and KDHS14, respectively. Census data is not considered, as it
contains only summary birth histories. With some prepossessing, data from other sources
can be included in the models presented here. The KDHS surveys provide enough data
to produce estimates urban and rural area estimates at county/provincial level, but there
is not enough data to produce yearly design-based mortality rates estimates at that level.
Therefore the focus of this thesis is on national mortality rates.

The KDHS surveys have similar designs, described in short in the DHS reports (for
example Kenya National Bureau of Statistics et al. (2015)) with more details in the DHS
sampling manuals (for example MEASURE DHS and ICF International (2012)). The
KDHS03 and KDHS08-09 are designed to be able to produce estimates for urban and
rural areas for each of the eight former regions (except for Nairobi which does not have a
rural area), while the KDHS14 is designed to produce estimates for urban and rural areas
for each of the 47 counties (except for Nairobi and Mombasa which do not have rural

2www.r-inla.org
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1.3 Child mortality in Kenya

Figure 1.2: Map of Kenya, taken from Kenya National Bureau of Statistics et al. (2015), with
permission from the DHS program.

areas). The sample size of the KDHS14 is 40300 households, whereas the size of the
KDHS03 and the KDHS8-09 is approximately 10000 households.

The processes of planning, conducting, and processing the surveys are extensive and
expensive. It includes several weeks of training, test questionnaires, translations, and
workshops. They try to ensure high quality in questionnaires and performance to reduce
the non-sampling error. The non-sampling error cannot be reduced simply by increasing
the sampling size, whereas the sampling error can be reduced by increasing the sample
size and is non-existent in a census. The uncertainties associated with survey-estimates
often consider only the sampling error. The non-sampling error is difficult to quantify and
often much larger than the sampling error. In the KDHS surveys, examples of sources of
non-sampling error that are difficult to address are recollection bias, migration, changes in
maternal mortality (HIV epidemics) and non-responses. In general, DHS surveys have a
high response rate (> 90% for the used KDHSs). Everyone that slept in a sampled house-
hold the night before the interview is interviewed. More details about how the surveys
are planned, conducted, and analyzed are given in the DHS reports (e.g. Kenya National
Bureau of Statistics et al. (2015)).

The DHS program conducts surveys in over 90 countries, including several other coun-
tries in Africa. When investigating the effect of jointly modeling child mortality rates in
neighboring countries, DHS data from the three most recent surveys undertaken in Tan-
zania and Uganda is used. These six surveys are similar to the ones conducted in Kenya;

7



Chapter 1. Introduction

Rate 1990 2015
NMR 29.7 [26.9, 32.8] 21.8 [17.7, 26.9]

U5MR 103.7 [97.6, 110.5] 48.7 [40.7, 58.7]

Table 1.1: NMR and U5MR in Kenya for 1990 and 2015, official estimates from IGME (2017).
Presented as median, [lower level, upper level] for a 90% credible interval.

they are extensively planned for, tested, and efforts are made to reduce the non-sampling
error.

Official estimates of NMR and U5MR in Kenya, obtained by the B3 model, is available
for download at the website of the UN Inter-agency Group for Child Mortality Estimation
(IGME)3. Official estimates for Kenya for key years are presented in Table 1.1. By evalu-
ating the median values presented in Table 1.1, one can conclude that Kenya did not reach
MDG target 4A.

This thesis will investigate how sensitive this conclusion is to the choice of model, and
assess the probability of Kenya reaching SDG target 3.2. Using the KDHS data, models
with autoregressive processes of first and second order as temporal effect are estimated
and used to simulate new datasets. A simulation study investigates if the added model
complexity of autoregressive processes helps describe and predict mortality rates better
than less complex models with random walks. The best performing temporal effects are
chosen to determine if including population size and GDP improves forecasts for child
mortality rates in Kenya. Finally, it is investigated whether or not estimates and predictions
for NMR and U5MR in Kenya are improved by borrowing strength from Uganda and
Tanzania.

The organization of this thesis is as follows. Chapter 2 explains relevant theory, while
Chapter 3 describes the methods used in this thesis in detail. The simulation study is
presented in Chapter 4, in which the two most suitable temporal processes are determined.
In Chapter 5 the models are applied to child mortality data from Kenya, the effect of
including covariates is explored, and the most suitable temporal process determined. The
effect of including information from neighboring countries is investigated in Chapter 6,
before finally, the methods and findings are discussed in Chapter 7.

3https://childmortality.org/files_v22/download/UN%20IGME%20Child%
20Mortality%20Report%202018.pdf
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Chapter 2
Background Theory

In this chapter, important concepts that are used in this thesis are outlined, and terminology
and notation are introduced.

2.1 Complex survey methodology

Child mortality rates in low- and medium-income countries are calculated using survey
data. In surveys, responses are collected from individuals in a subset of the full population
of interest. The units from which information is collected are called observation units or
simply units. When collecting information about child mortality, the observation units are
women. The population of interest must be identified and can be all or some units in a
given village, county, country or similar, depending on the scope of the survey. Obser-
vation units from the population are randomly chosen to be included in the sample. The
sample is not independently drawn. The inclusion probability is determined by a prede-
fined design, called the survey design. The choice of design is not arbitrary and can have
a large impact on the time required and financial costs of conducting the survey as well
as on the accuracy of the estimates generated from the survey. In this section, aspects of
survey methodology relevant for handling DHS data are briefly outlined. More detailed
books on the topic of survey methodology are written by for example Lohr (2010), Groves
et al. (2004) and Lumley (2010).

In the most straightforward situation, the data is an independent identically distributed
(iid) sample of an infinite population. The formulas used to obtain popular statistics from
an iid sample from an infinite population are assumed well known to the reader. Let yi,
i = 1, 2, . . . , n denote the data points, where n is the number of sampled data points. The
expected value is simply the mean, 1

n

∑n
i=1 yi, and the variance can be obtain through the

standard formula V̂(x) = 1
n

∑n
i=1(yi − ȳ)2.

In a survey context, the population of interest is a real, finite population. A sample of
the population is denoted by S, a set containing the indices of the units of the population
included in the sample. Further, N denotes the number of units in the population while
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n denotes the number of units in the sample. An important population quantity is the
population total, t. The population total of y is ty =

∑N
i=1 yi. The true population total

cannot be computed, as information is only available for units in the sample. Consequently,
an estimator for the population total, Ty , must be used. As other interesting population
quantities such as the population mean can be derived easily from the population total, the
formulas in this section will focus on the population total.

The simplest form of sample design is a simple random sample (SRS), in which units
are randomly selected from the population independently. Every unit has the same inclu-
sion probability, so each unit is weighted equally. Thus, for an SRS Ty = N

n

∑
i∈S yi.

When calculating the estimated variance of Ty , V̂(Ty), a finite population correction (fpc)
term must be included. The variance is a measure of the sampling error, and the fpc reflects
the fact that the variance should decrease when n increases. The variance can be computed
as V̂(Ty) = N2

(
1− n

N

)
s2

n , where (1− n
N ) is the fpc and s2 is the sample variance of y.

If n = N , the fpc ensures that the variance is 0. If the population is large compared to the
sample size (N � n), the fpc is close to 1. In that case, there is no need to correct for the
finite size of the population.

The DHS surveys must be able to produce estimates at regional levels, using limited
resources, and are conducted by visiting selected households and performing face-to-face
interviews. Therefore, SRS is not a practical design. An SRS could exclude several re-
gions of a country and could require interviewers to travel for hours to visit one sampled
household. Instead, the DHS sample designs combine stratification and cluster sampling.
A stratified sample divides the population into mutually exclusive strata and includes ob-
servation units from every stratum, ensuring that estimates can be obtained for each stra-
tum. Cluster sampling involves dividing the population into smaller groups often based on
geographical location. Thereafter, units are selected only from a sample of the clusters,
limiting the (geographical) spread of sampled observation units.

A population can be divided into strata based on any relevant characteristic such as age,
race, education, etc. The DHS program needs to compute estimates for all administrative
units within a country both for urban and rural areas. Thus, a natural stratification is
regions and urban/rural areas. Let the population be divided into H strata, and let there be
Nh units in total in stratum h. The simplest case is when an SRS of nh units is sampled
from each stratum h, denoted by Sh. Then Ty =

∑H
h=1 Th, where Th = Nh

nh

∑
i∈Sh

yhi,
where yhi denotes unit i in stratum h. In other words, Ty is simply a sum of the estimated
total in every stratum. Similarly, an estimator of the variance of Ty can be computed as a

sum of the variance within each stratum, V(Ty) =
∑H
h=1

(
1− nh

Nh

)
N2
h
s2h
nh

, because strata

are sampled independently. Here, s2
h =

∑
i∈Sh

(yhi−ˆ̄yh)2

nh−1 , where ˆ̄yh denotes the estimated
mean of y in stratum h.

In addition to ensuring that units from every stratum are included in the sample, strati-
fication can also be used to increase the precision of estimates by oversampling from some
strata. See examples in Section 3.2 of Saghagen and Vik (2018). A potential problem with
stratification is that the strata must be well-defined and their sizes known. For low- and
medium-income countries, accurate registries of inhabitants might be difficult to obtain.
The DHS estimates the size of the strata based on the last available census (censuses are
done approximately every decade).
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After stratifying the population, the DHS program applies a two-stage proportional-to-
size sampling cluster design. The country is divided into small geographical areas called
enumeration areas (EAs) using the last census. For example, in the KDHS14 survey, Kenya
is divided into 96 251 EAs using the 2009 census. The EAs are what is called the primary
sampling units (psus), and the DHS selects a sufficient number of psus in each stratum. An
up-to-date list of the households is computed for every sampled psu. The households are
what is called the secondary sampling units (ssus). In a one-stage cluster sample, all ssus
within the sampled psus are included in the sample. In a two-stage cluster sample, only a
subsample of the units in the sampled clusters are included in the sample. At the first stage,
the DHS samples psus. The probability of sampling a psu is proportional to the estimated
size of the psu. At the second stage, the DHS samples a fixed number of households from
each sampled psu. In that way, the inclusion probability of a household is approximately
proportional to the size of the enumeration area and approximately equal for all households
in Kenya. All women aged 15-49 in a sampled household are interviewed.

Cluster sampling reduces the resources needed per sampled unit but increases the num-
ber of sampled units required to achieve a certain level of precision compared to an SRS.
That is because units within a cluster often are more similar than units in different clusters.
For example, all residents in one village might have access to prenatal care, while none
of the residents in neighboring villages do. Consequently, the contribution of each unit
is less valuable in a cluster sample than in an SRS. However, the benefits of reducing the
geographical area, especially for the DHS who conducts face-to-face interviews in several
thousand households, outweigh the cons.

The formulas for estimating the population total and its variance using a clustered sam-
ple will depend on the number of stages of clustering. The idea is to include the sampling
weight from each level. Here, formulas for two-stage cluster samples are presented, and
for simplicity for SRS sampling, not proportional-to-size sampling. Let there beN psus in
a population, n of which are sampled. In the simplest form of cluster sampling, the n psus
are sampled using SRS. Denote the sample of n psus by S. From each of the n clusters,
an SRS of ssus is taken. Let Si denote the sample of mi ssus taken from psu ni, i ∈ S,
and let there be Mi suss in total in psu ni. The population total of quantity y can then be
calculated as

Ty =
N

n

∑
i∈S

∑
j∈Si

Mi

mi
yij .

Here, yij is an observation from ssu j in psu i. The corresponding variance is

V(Ty) = N2
(

1− n

N

)s2
t

n
+
N

n

∑
i∈S

(
1− mi

Mi

)
M2
i

s2
i

mi
,

as derived in Section 6.6 in the book by Lohr (2010). s2
t is the sample variance of the

cluster totals, s2
t = 1

n−1

∑
i∈S
(
ti− t̂y

N

)2
, where t̂y is the estimate of Ty . ti is the estimate

of the total in psu i, with estimator Ti =
∑
j∈Si

yij . s2
i is the sample variance in cluster

i. Thus, the formula is simply a sum of the variance between the clusters and the variance
within each cluster.

When several design strategies are combined, as for the DHS surveys, the formu-
las given in this section must be combined. As the DHS surveys are not SRS samples,
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n/N must be replaced by inclusion probabilities and N/n must be replaced by sampling
weights. The sampling weight is the inverse of the inclusion probability, and can be inter-
preted as the “number of units from the full population the sampled unit represents in the
sample”.

In practice, the R package survey can be used to compute design-based estimates;
more details are given in Chapter 3. To calculate NMR the function svyratio() is used.
svyratio() calculates the ratio between two quantities, such as the number of neonatal
deaths and number of live births, by first estimating the total of each quantity. Denote a
birth by bi and a let di, i = 1, 2, . . . , N be 1 if the child died within the first 30 days of
life and 0 if not. Let t̂b be the estimated total number of children born in the population,
and t̂d be the estimated number of neonatal deaths. The variance of the ratio, r̂ = t̂d/t̂b
is derived in Example 9.2 in Lohr (2010) using Taylor expansions. The expression can be
written as

V(r̂) =
V(t̂e)

t̂2b
,

where t̂e is the estimated total of the residuals, ei = di− r̂bi. When computing the U5MR
the function svyglm() is used. svyglm() essentially performs weighted regression,
in which the likelihood for each observation in weighted with the inclusion probability of
that observation (Lumley et al. (2017)).

If yearly mortality rates are estimated in a way that accounts for the complex survey
design, there is no need to make any further design considerations when moving forward
with analysis. However, the design-based mortality rate estimates are computed for each
year separately and do not borrow strength across time. It is desirable to take advantage
of temporal dependency to produce more accurate estimates and forecasts. Therefore the
design-based estimates are combined with a temporal model. Denote by ηt the logit trans-
formation of the true mortality rate for year t, t = 1, 2, . . . . It is not possible to observe ηt,
however the design-based estimates of ηt, yt, are observed with noise with an estimated
variance σ2

t . Following Mercer et al. (2015), assume yt ∼ N (ηt, σ
2
t ). It is then possible

to construct a temporal model for the underlying true mortality rate, ηt.

2.2 Temporal modeling

Assume the true mortality rate follows a trend, but that there is random variation around
the trend. Let ηt = νt + at, where νt is a deterministic term and at is a stochastic
process. Assume that νt can be written as νt = µ + ξt + zTt β, where µ is an intercept,
ξ is a coefficient for a linear trend and zt is a vector of time-dependent covariates with
coefficients collected in the vector β. νt is important when forecasting mortality rates as
it captures the overall trend, while at ensures reliable uncertainty estimates. It is expected
that the stochastic variation is correlated in time, and there are many possible temporal
processes to consider with different numbers of parameters. This thesis will explore the
suitability of four simple stochastic processes: autoregressive models of first and second
order and random walks of first and second order.

Autoregressive models (AR) is a popular class of temporal models. The output, at, of
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an AR(p) model of the time series {at}, depends linearly on the past p time steps,

at =

p∑
i=1

φiat−i + εt, εt ∼ N (0, σ2
ε), t = 1, 2 . . . . (2.1)

Here, φi i = 1, . . . , p are lag-coefficients and εt is a noise term. Note that the indices are
defined s.t. the first p terms of {at} are a−p+1, a−p+2, . . . a0.

When performing modeling, it is desirable to have a stationary stochastic temporal
process. An AR(1) process is stationary if |φ1| < 1. In general, an AR(p) process is
stationary and has a unique stationary distribution if

φ(z) = 1− φ1z − φ2z
2 − · · · − φpzp 6= 0 for|z| ≥ 1. (2.2)

Thus, an AR(2) process is stationary if −1 < φ2 < 1− |φ1|.
As the conditions for stationarity changes with p and quickly become complicated,

it is desirable to use a different parameterisation. The autocorrelation function (acf) and
partial autocorrelation function (pacf) are often used. The acf, ρ(·), is defined as ρ(h) =
γ(h)/γ(0), h ∈ Z, where γ(·) is the autocovariance function (acvf), defined as γ(h) =
E[at+hat], t > 0, h ∈ Z. For a stationary time series, the acvf is only dependent on the
lags h, not the time t. From the definition one gets that γ(0) = V(at) := σ2

a, where σ2
a

is the marginal variance of the temporal process. It can be shown that γ(h) = γ(−h) and
that for an AR(1) process, φ1 = ρ(1).

The definition of the pacf is

α(h) =
Cov(at, at−h|at−1, . . . , at−h+1)√

V(at|at−1, . . . , at−h+1)×V(at−h|at−1, . . . , at−h+1)
, t > 0, h ≥ 0.

For an AR(p) process, α(p) = φp and α(h) = 0 for h > p (example 3.2.6 in Brockwell
and Davis (2016)). The pacf only considers the direct correlation between two elements
of a time series and from Equation (2.1) it is clear that only elements with lag < p are
directly correlated. The pacf is always in the interval [−1, 1]. Therefore the optimization
problem is easier if one reparameterizes the AR(p) processes in terms of α(·). Also, the
posterior of the parameters will be better behaved.

Given φ-coefficients, the first p terms are required as initial values when simulating an
AR process. The stationary distribution of the first p terms of an AR process is

a(−p+1):0 ∼ N (0,Γ), (2.3)

where 0 is a zero-vector of length p and

Γ = Γ(p) =


γ(0) γ(1) . . . γ(p− 1)
γ(1) γ(0) . . . γ(p− 2)
γ(2) γ(1) . . . γ(p− 3)

...
...

. . .
...

γ(p− 1) γ(p− 2) . . . γ(0)

 ∈ Rp×p. (2.4)
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To be able to simulate from an AR process, the residual variance σ2
ε is also needed. As

explained in Section 5.1 in the book by Brockwell and Davis (2016) and (with simpler
notation) in slides by Nosedal (2016),

σ2
a =

σ2
ε

1− ρ(1)φi − · · · − φpρ(p)
. (2.5)

Autoregressive models are an example of Gaussian Markov random fields (GMRFs),
see definition in Section 2.2.1 of Rue and Held (2005). The stationary distribution of an
AR(1) and AR(2) process, given in Equation (2.3) can be described by the precision ma-
trix,Q = Γ−1. For GMRFs with positive definite precision matrixQ, the joint distribution
of n elements of the process, a = (a1, . . . an), can be written as

π(a) = (2π)(−n/2)|Q|1/2 exp
(
− 1

2
aTQa

)
, a ∈ Rn,

where aT denotes the transpose of a. Note that here, Q = Q(n) =
(
Γ(n)

)−1
. As the

terms of an AR(p) process can be described using only the p previous terms, the precision
matrices of AR(1) and AR(2) processes are sparse, which means that any computations
they are involved in can be executed efficiently.

When the requirement for stationarity in Equation (2.2) is not met, the precision matrix
Q is not positive definite. However, such boundary cases are of interest. An AR(1) with
φ1 = 1 is called a random walk of order 1 (RW(1)), while AR(2) with φ1 = 2, φ = −1
is called a random walk of second order (RW(2)). RW(1) and RW(2) are examples of
intrinsic GRMFs (IGRMFs) of first and second order, respectively. An IGRMF of order k
has rank n− k and, following Definition 3.2 in Rue and Held (2005), density

π(a) = (2π)
−(n−k)

2 (|Q|∗)1/2 exp
(
− 1

2
aTQa

)
, a ∈ Rn, Q ∈ Rn×n, (2.6)

where |·|∗ denotes the generalized determinant as defined in Section 3.1.1 of Rue and Held
(2005). Note that the covariance matrix of an IGRMF does not formally exist, howeverQ
will still be referred to as the precision matrix.

RW(1)s are described in Section 3.3.1 in the book by Rue and Held (2005). RW(1) is
a stochastic sequence, {at}, with independent increments,

∆at = at − at−1 ∼ N (0, σ2
a), t = 2, . . . , n (2.7)

Here, ∆ is the backward differences operator and there are a total of n elements. The
density for a = (a1, . . . an) is described by Equation (2.6), with k = 1. Q = κR is a
positive semi-definite matrix with κ−1 = σ2

a, and

R =



1 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2 −1

−1 1


∈ Rn×n.

14



2.2 Temporal modeling

The rank ofQ is n− 1. The density is invariant to addition of constants. If (a1, . . . , at) is
observed, the k-step ahead prediction, at+k, is distributed as

at+k|a1, . . . at, κ ∼ N (at, k/κ), 0 < t < t+ k ≤ n,

(Section 3.3.1, Rue and Held (2005)). Thus, the variance of RW(1) forecasts increases
linearly with time.

RW(2)s are described in Section 3.4.1 of Rue and Held (2005). The second order
increments are normally distributed,

∆2at = at − 2at−1 + at−2 ∼ N (0, κ−1), t = (3, . . . , n).

The joint distribution of a is given in Equation (2.6), with k = 2 and

Q = κ



1 −2 1
−2 5 −4 1
1 −4 6 −4 1

1 −4 6 −4 1
. . . . . . . . . . . . . . .

1 −4 6 −4 1
1 −4 6 −4 1

1 −4 5 2
1 −2 1


.

The density of RW(2)s is invariant to the addition of linear trends. The variance of the
k-step ahead prediction of a RW(2) is derived in Section 3.4.1 of Rue and Held (2005) and
can be written as σ2k(k + 1)(2k + 2)/6. In other words, the variance increases cubically
with time.

To be able to compare RW(1) and RW(2) to AR(1) and AR(2), it is desirable to estimate
RW(1) and RW(2) models with both an intercept and a linear trend (ξt). To be able to
identify the intercept, RW(1) and RW(2) are estimated using a sum-to-zero constraint,∑n
t=1 at = 0. For RW(2) an additional weighted sum-to-zero constraint,

∑n
t=1(tat)/n is

needed to be able to identify the linear trend.
Recall that design-based estimates, yt,s, of the logit of the mortality rate of year t us-

ing data from survey s, s = 1, 2, 3, is observed and that it is assumed yt,s ∼ N (ηt,s, σ
2
t,s).

In addition to the temporal effect, it is expected that there is a bias due to the survey. The
bias is caused by systematic differences between the surveys, such as who conducted it,
the effect of recollection bias, etc. A simple correction for bias is a survey effect, δs. It
is therefore desirable to construct a model of the form ηts = νt + at + δs. Such mod-
els can be constructed within the framework of Bayesian hierarchical models. Bayesian
hierarchical models are convenient as they incorporate complex dependence structures
with simple, interpretable model components. In the next section, a short introduction to
Bayesian statistics will be given, and a Bayesian hierarchical model for mortality rates will
be developed.
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2.3 Bayesian hierarchical models
To understand Bayesian hierarchical models, one first needs to be familiar with Bayesian
statistics. A quick introduction is given here, based on lecture notes from the course
Bayesian Computation at Ecole Polytechnique Fdrale de Lausanne (EPFL) by Dehaene
(2018). For a complete introduction to Bayesian statistics, the reader is referred to books
such as ”Bayesian Data Analysis” by Gleman et al. (2014).

When first introduced to statistics, one is taught the frequentist approach. The fre-
quentist approach is based on the assumption that the population of interest follows some
underlying model. The parameters of the underlying model, collected in the vector θ, are
not random, but fixed and unobserved. The data is the only random quantity. Once the
data is known, probability statements cannot be made. θ is estimated directly from data.
For example, if the data, y = (y1, . . . , yn), is assumed to follow a normal distribution,
yi ∼ N (µ, σ2), i = 1, . . . , n, then θ = (µ, σ2) and µ is estimated by the sample mean
and σ2 by the sample variance.

An alternative approach is a Bayesian approach. In Bayesian statistics, the observed
data, y, is still assumed to follow some model with likelihood π(y|θ). However, now, θ is
a random quantity. One wants to incorporate a priori belief about θ into the model. This
is done by assigning a prior distribution to θ, π(θ). Given the observations, y, the model
is updated using Bayes’ theorem,

π(θ|y) = π(θ)
π(y|θ)

π(y)
, (2.8)

where π(y) is a normalization constant, π(y) =
∫∞
−∞ π(θ)π(y|θ)dθ. The normalization

constant ensures that
∫∞
−∞ π(θ|y)dθ = 1. In Bayesian statistics, the parameters of the

model, θ, are still random given the data, with probability density function π(θ|x). This
is called the posterior. Thus, Equation 2.8 written in words is

posterior =
prior · likelihood

normalizing constant
.

Bayesian hierarchical models are Bayesian models with several layers of latent struc-
tures. They are suitable when there is correlation within groups of the observations, as
expected survey- or time-effect on mortality rates. “Hierarchical models can have enough
parameters to fit the data well, while using a population distribution to structure some de-
pendence into the parameters, thereby avoiding problems of overfitting” (p. 101, Gleman
et al. (2014)). For the interested reader, Chapter 5 in the book by Gleman et al. (2014)
explains Bayesian hierarchical models to greater detail and with several examples.

As given in the name, a Bayesian hierarchical model can be split into levels. Let yi,
i = i, . . . , n, be the observed quantity or some transformation (e.g., logit) of it. The
distribution of yi is assumed conditional on latent variables, and the distribution of the
latent variables are defined conditional on several parameters. In a three-stage model,
those parameters are hyper-parameters that must be determined. In a hierarchical model
with more levels, those parameters follow distributions that are conditional on a new set of
parameters, and so on. Let x denote the latent field and θ be the parameters. Three-stage
hierarchical models have the following levels:
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1. The observational level consists of the likelihood, y|x,θ ∼ π(y|x,θ).

2. The latent level contains the distribution of the latent field, x|θ ∼ π(x|θ).

3. The parameter level consists of the prior distributions of the parameters, θ ∼ π(θ).

Let yts be the logit of the design-based estimated mortality rate for year t, and survey
s. Assume that

yts ∼ N (ηts, σ
2
ts), ηts = µ+ξt+at+z

T
t β+δs, t = 1, 2, . . . , T s = 1, 2, 3, (2.9)

where ηts is the logit of the true mortality rate for year t and σ2
ts is the known estimated

variance for year t from survey s. Further, µ is an intercept, ξ is a coefficient, at is an
stochastic process, and zt is a vector of covariates with coefficients collected in β. δs is
an iid survey effect and data from three surveys, s = 1, 2, 3, are used. The latent field
is thus x = (µ, ξ, a1, . . . , aT ,β, δ1, δ2, δ3), where a = (a1, a2, . . . , aT ) is the temporal
effect and T is the last year of interest. ηts is the link between the observations and the
latent field. θ = (ρ, σ2

a, σ
2
δ ), where ρ is the coefficients from the temporal model, σ2

a is
the marginal variance of the temporal model and σ2

δ is the variance of the survey-effect.
The models developed in this thesis belong to the class of latent Gaussian models

(LGMs). LGMs is a large class of hierarchical models, where the prior distribution on
the latent field must be Gaussian conditional on the parameters. In other words, every
model component of the latent field must be independently Gaussian conditional on the
model parameters. Using this, the model for mortality rates suggested in Equation (2.9),
can be formulated as an LGM as given in Table 2.1. The high variance of µ, ξ and βj ,
j = 1, . . . , p, indicates that the effects are considered fixed.

Observation level
π(y|η,σ2) =

∏
i∈I π(yi|ηi, σ2

i )

Latent level
π(µ) = N (0,∞)
π(ξ) = N (0, 1000)

π(a|ρ, σ2
a) = N (ρ, σ2

a)
π(βj) = N (0, 1000), j = 1, . . . , p

π(δ|σ2
δ ) = N (0, σ2

δ )

Parameter level
π(ρ), π(σ2

a), π(σ2
δ )

Table 2.1: Model from Equation (2.9) as a LGM. y is the observations, η is the mean, and σ2 is the
variance. I is the set of indices of the observations. µ is the intercept, ξ is a linear trend in time. a, ρ
and σ2

a are elements of the stochastic temporal effect. βj , j = 1, . . . , p are coefficients of additional
p covariates zj . δ is the survey effect and σ2

δ is the variance of the survey effect.

Using the notation from Rue et al. (2016), LGMs can be written on the form

ηi = µ+

J∑
j=1

βjzij +

K∑
k=1

fk,jk(i), (2.10)
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where µ is the intercept, z are fixed effects with covariates βj and there are J fixed effects.
Further, fk = (fk,1, . . . , fk,mk

), where mk is the dimension of fk, are specific Gaussian
processes and there are K such processes. For the model in Equation (2.9), the fixed
effects are t and the covariates collected in z. The fks are model components, in which
element jk(i) contributes to the ith linear predictor. For the model in Equation (2.9), the
model components are the stochastic temporal process, f1 = a, and the survey effect,
f2 = δ, so K := 2. m1 = T , where T is the number of years one wants to estimate
mortality rate and m2 = 3, as data from three different surveys are used. This notation is
useful to keep in mind when estimating the model from Equation 2.9 (Section 3.2).

LGMs are a class of flexible models that are used in a wide range of studies such as
malaria studies (Bhatt et al. (2015)) and studies of traffic pollution and hospital admissions
in London (Halonen et al. (2016)). For an extensive list over studies using LGMs, see the
introduction of Rue et al. (2016) and Section 1.2 of Rue et al. (2009). LGMs allow for
the combination of spatial and temporal effects and covariates. An LGM is a suitable
choice for child mortality rates as the effects are assumed to be additive, and the resulting
models are easily interpreted. However, in other situations where one wishes to model, for
example, a non-linear dynamic system, or multiplicative or non-Gaussian effects, an LGM
might not be suitable.

Once a Bayesian model is defined in terms of the likelihood and (possibly several
stages of ) priors, the posterior should be computed. However, it is often not possible to
compute the posterior directly so an approximation method must be used. There is a wide
range of methods to choose from, and the choice of method is not trivial. Some popular
and relevant methods are presented in the next section.

2.4 Bayesian inference

The posteriors of the parameters of a Bayesian model can be used to answer several statisti-
cal questions about the model. However, for most Bayesian models, the posteriors cannot
be computed analytically. Therefore, there exist several approximation methods. Popu-
lar approximations are the deterministic Laplace approximation and slower, more flexible
Markov chain Monte Carlo (MCMC) approximation samples. The Laplace approxima-
tion is explained in for example Section 2.5 of Rue et al. (2016), while MCMC methods
are explained in for example part three of Gleman et al. (2014). Software such as Stan
(Carpenter et al. (2017)) can be used to do Bayesian inference, using MCMC methods to
approximate the posterior. Recently, a method to obtain a deterministic approximation of
the posterior of an LGM, the integrated nested Laplace approximation (INLA, Rue et al.
(2009)) and the R-INLA software (Lindgren and Rue (2015)), were developed .

The Laplace approximation is based on Taylor expansions. The idea is that the normal
distribution can approximate the unnormalized posterior. Let y be the observed data and
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θ be a vector collecting the parameters of the model, then

π̃(θ|y) ≈ exp
[
− 1

2
(θ − µ)TH(θ − µ)

]
,

µ = θ∗ = argmaxθ

[
π̃(θ|y)

]
, (2.11)

H = −Hessian
(

log π̃(θ|y)
)
|θ=θ∗ ,

where π̃(θ|y) is the unnormalized posterior, π̃(θ|y) = π(θ)π(y|θ). The Laplace approx-
imation is easy to obtain, as only a maximum, θ∗, and a (inverse) Hessian with respect
to θ, H , is required. However, the Laplace approximation cannot capture multimodal-
distributions and may fail to capture global properties of the posterior (Dehaene (2018)).

MCMC sampling methods are often a preferred alternative to the Laplace approxi-
mation because they can be made arbitrarily accurate. Values of θ are sampled from a
Markov-chain and accepted or rejected according to some acceptance rule to create a sam-
ple approximating the posterior. However, MCMC algorithms have to generate large sam-
ples to produce highly accurate estimates. For LGMs MCMC methods are often painfully
slow, see Section 1.4 of Rue et al. (2009). The software RStan can be used to approximate
the posterior of any Bayesian models, including LGMs, using the MCMC No-U-Turn sam-
pler (Hoffman and Gelman (2014)). However, if the model of interest is an LGM, there are
a few disadvantages when using RStan. The user has to write specific code for all differ-
ent model components and make other adjustments. Further, when using MCMC methods,
obtaining rough estimates is relatively easy, but “an additional correct digit requires 100
times more computationally power” (Section 1.5, Rue et al. (2009)).

A more efficient way to estimate the posterior of LGMs is developed, namely the inte-
grated nested Laplace approximation (INLA). INLA was introduced by Rue et al. (2009)
and quickly became a popular method. INLA assumes two basic properties for the LGMs.
First, it is assumed that even though the dimension of the latent field, n = dim(x), might
be large (102 − 105), the latent field admits conditional independence properties. Thus
the latent field is a GMRF with a sparse precision matrix, which makes it possible to use
efficient numerical methods. Secondly, it is assumed that the number of hyperparameters
m, m = dim(θ), is low, “typically 2-5, but not exceeding 20” (Section 2.1, Rue et al.
(2016)) .

The goal is to compute an accurate approximation of the posterior π(θ|y), the marginal
posteriors π(θj |y) for j = 1, 2, . . . ,m, and the marginal posteriors of the latent field
π(xi|y) for i = 1, 2, . . . , n. Let π̃ denote an approximated distribution. As stated in
Martins et al. (2013), the approximated posterior marginals of interest returned by INLA
have the following form

π̃(xi|y) =
∑
k

π̃(xi|θ(k),y)π̃(θ(k)|y)∆θ(k) (2.12)

and
π̃(θj |y) =

∫
I(θ|y)dθ−j , (2.13)

where “π̃(xi|θ(k),y) are the density values computed during a grid exploration on π̃(θ|y)”
(Martins et al. (2013), p. 6), ∆θ(k) is a weight depending on integration design, I is an
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interpolant constructed from π̃(θ|y) and θ−j = (θ1, . . . , θj−1, θj+1, . . . , θm). The INLA
method can be divided into three main steps. Step 1: Propose an approximation to π(θ|y),
π̃(θ|y). Step 2: Approximate π(xi|θ,y) for i = 1, 2, . . . n. Step 3: Explore π̃(θ|y) on a
grid and use it to integrate out θ in Equation (2.12) and θ−j in Equation (2.13).

From Bayes theorem, one gets that

π(θ|y) ∝ π(θ,x,y)

π(x|θ, y)
=
π(θ)π(x|θ)π(y|x,y)

π(x|θ,y)
. (2.14)

The numerator is known, but the denominator is not. Step one of INLA obtains an ap-
proximation of π(x|θ,y), π̃G(x|θ,y), using an Gaussian approximation as explained in
Section 2.2 of Rue et al. (2009). Using π̃G(x|θ,y) in place of π(x|θ,y) in Equation
(2.14), π̃(θ|y) is obtained.

There are three different ways of approximating π(xi|θ,y), all described in Section 3.2
of Rue et al. (2009). One option is to use a Gaussian approximation, namely the marginals
of π̃G(x|θ,y). The second option is an natural improvement of the Gaussian approxima-
tion, namely the Laplace approximation (LA). However, the LA is too computationally
demanding. Therefore, two aspects of the LA is improved. Firstly, the optimization step
is avoided by “approximating the modal configuration” (p. 12, Rue et al. (2009)),

x∗−i(xi,θ) = Eπ̃G
(x−i|xi).

Second, it is assumed that only points close to xi have an effect on the marginal of xi.
Therefore only points in a region around xi are considered. For more details, see Section
3.2.2 in Rue et al. (2009). The third option is called the simplified Laplace approximation
(SLA). The SLA introduces a skewness correction in each marginal, se details in Section
3.2.3 in Rue et al. (2009).

π̃(θ|y) is explored in order to obtain π̃(θj |y) and π̃(xi|y). Three steps are given in
Section 3.1 of Rue et al. (2009). The first step is to locate the mode of π̃(θ|y), θ∗, by
optimizing π̃(θ|y) with respect to θ. The second step is to compute the negative Hessian,
H > 0, at θ∗. Then, let Σ = H−1 and let Σ = V ΛV T be the eigen-decomposition of
Σ. Define θ(z) = θ∗ + V Λ1/2z, where z ∼ N (0, I) if π̃(θ|y) is a Gaussian density.
The third step computes π̃(θj |y) and π̃(xi|y), using the given z-parameterization. As
described in Section 3.1 of Rue et al. (2009), a grid is constructed and log

(
π̃(θ|y)

)
is

computed for all points in the grid, and π̃(xi|y) can be computed using Equation (2.12).
Finally, an interpolant is constructed using the points in the grid and π̃(θj |y) is computed
using Equation (2.13). More details about the algorithms actually used are given in Martins
et al. (2013).

INLA is implemented in the R-package INLA, which is used by among others SUMMER.
Detailed information about INLA can be found on the website www.r-inla.org. INLA
is easy to use, allows to user to include several different model components without hav-
ing to write complicated code, and is fast. To change the temporal effect in the model
presented in Equation (2.9), only minor adjustments have to be made. Furthermore, it is
easy to estimate models with multivariate temporal processes.
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2.5 Multivariate temporal models

2.5 Multivariate temporal models
Several state-of-the-art methods for estimating child mortality rates do so jointly for sev-
eral countries. Section 1.1 discusses some disadvantages of some of those models, but it
is reasonable to assume that trends in child mortality rates are similar in similar countries.
Thus, using available information from more than one country should improve the esti-
mates and forecasts. The model developed so far in this chapter can easily be extended to
become a multivariate temporal model.

Assume that the mortality rates of k countries are correlated and that it is desired
to modell them together. For simplicity, assume that the only covariate of interest is a
linear trend in time. The model given in Equation (2.9) can then be re-written as ycts ∼
N (ηcts, σ

2
cts), where c = 1, 2, . . . k is an index for the country, t = 1, . . . , T is a time-

index and T is the number of years of interest, s = 1, . . . , S where S is the total number
of surveys used and

ηcts = µc + ξct+ act + δs. (2.15)

The intercept and linear trend are country-specific, and the survey effect is unique for
every survey from which data is used. The survey effect is not modeled as country-specific
because the model should be scalable to consider several countries, and there are too few
observations within a country to be able to estimate variance reliably. The temporal effect,
act, is correlated across countries. In other words, it is a multivariate temporal process.

A simple form of multivariate temporal models are called vector autoregressive (VAR)
models and are described in Chapter 11 of Zivot and Wang (2006). Collect all act, c =
1, . . . k, in a k dimensional vector at = (a1,t, a2,t, . . . , akt)

T , then a VAR(p) model can
be written as

at =

p∑
i=1

Φiat−i + εt, εt ∼ N (0,Σε), t = 1, 2 . . . ,

where Φi, i = 1, . . . , p are k × k matrices of coefficients and εt, t = 1, . . . , T is a k × 1
vector of error terms. For this thesis Φi, i = 1, 2, . . . are restricted to be on the form

Φi =


φi 0 0 . . . 0
0 φi 0 . . . 0
...

. . . . . . . . .
...

0 0 0 . . . φi

 ∈ Rk×k, i = 1, 2, . . . p,

and the covariance matrix of the error terms is on the form

Σε = σ2
ε


1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
...

. . . . . . . . .
...

ρ ρ ρ . . . 1

 ∈ Rk×k,

where σ2
ε is marginal variance and ρ is a correlation coefficient, later referred to as ρgroup.

The covariance structure described by Σε is called exchangeable.
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The marginal variance of each time series is still γ(0) = σ2
a and is identical for all

countries. Let Γ be the covariance matrix of each time series as defined in Equation (2.4).
Then the covariance matrix of the multivariate time series is

Σ = Γ⊗Σε,

where ⊗ is the Kronecker product. Further, ifQ = Σ−1,QΓ = Γ−1 andQε = Σ−1
ε then

Q = QΓ ⊗Qε.

Note that even though Σ is a dense matrix, QΓ is sparse and Qε is in low dimension
soQ is still sparse and computations involvingQ can be made efficient.

As with the univariate temporal processes, multivariate random walks are just a special
case of VAR. The multivariate RW(1) have Φ1 equal to the identity matrix while for the
multivariate RW(2) Φ1 is a diagonal matrix with 2 on the diagonal and Φ2 is a diagonal
matrix with −1 on the diagonal.

The model in Equation (2.15) is still an LGM and can easily be fitted using INLA.
As INLA fits LGMs in a matter of seconds, the user is enabled to run simulation studies
with several different models and compare them. To be able to assess the performance of
models and determine which model is most appropriate for estimation and forecast, some
assessment criteria and scoring rules must be established. The next section outlines some
popular choices that are used in this thesis.

2.6 Model assessment and scoring rules
The main motivations for temporal modeling of child mortality rates are explaining the
historical and current mortality rates and predicting future mortality rates. To assess the
explanatory strength of a model, diagnostics such as log marginal likelihood (MLIK),
Watanabe-Akaike information criterion (WAIC), mean absolute error (MAE), and mean
squared error (MSE) are of relevance. MLIK and WAIC can be computed for all fit-
ted models and be used to compare how well the different models explain the observed
data. MAE and MSE can also be used for model comparison, and the value of these mea-
sures gives direct information about a model’s explanatory strength as well. In predictive
modeling, the goal is to develop a model that can produce accurate predictions of future
observations. It is interesting to compute the MAE, the MSE, and the continuous rank
probability score (CRPS) for predictions to assess the predictive strength of a model.

In Bayesian models, the marginal likelihood is the probability of the data, given the
model. The marginal likelihood is obtained by integrating out the parameters of the model.
For a given model M , described by parameters are collected in θ, the marginal likelihood
is

π(y|M) =

∫
π(y|θ,M)π(θ|M)dθ,

for data y. The model of best fit should be the model with the highest marginal likelihood,
or equivalently the highest log marginal likelihood. INLA computes reliable estimates of
the marginal likelihood (Hubin and Storvik (2016)).
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It is also interesting to investigate the leave-one-one predictive density, estimated by
the Watanabe-Akaike information criterion (Watanabe (2010)), also called the widely ap-
plicable information criterion. It is a generalization of the Akaike information criterion
(AIC), which is assumed known to the reader. WAIC estimates the expected log pointwise
leave-one-out predictive density and is computed as

WAIC =

n∑
i=1

log
(
π(yi|y)

)
−

n∑
i=1

V
(

log
(
π(yi|θ)

))
(2.16)

(Vehtari and Gelman (2017)), where n is the number of datapoints. The variance can be
estimated using the posterior of the log predictive density, see Section 2.2 of Vehtari and
Gelman (2017). The second term in Equation (2.16) is the effective number of parameters,
p̂WAIC, and can be regarded as a measure of the complexity of the model. Similarly to AIC,
the model of best fit w.r.t. WAIC is the model with the lowest WAIC.

MAE and MSE are two well-known performance measures. Let the simulated mortal-
ity rate be yi i = 1, 2 . . . n, while the predicted mortality rate is ŷi i = 1, 2 . . . n, and let
there be n predicted data points for which the true simulated mortality rate is known. Then
the MAE is simply

MAE =
1

n

n∑
i=1

|yi − ŷi|,

and the MSE is

MSE =
1

n

n∑
i=1

(yi − ŷi)2.

The value of MAE/MSE gives the average prediction error and the best performing w.r.t
MAE and MSE are the models with lowest MAE/MSE.

However, in this thesis, the observations themselves are noisy with varying variances,
and the predictions are also probabilistic. That is not taken into account by the MAE and
MSE. CRPS, discussed in Section 4.2 in Gneiting and Raftery (2007), considers not only
the point observations and point predictions but also the associated uncertainty. CRPS is
a proper scoring rule, meaning that the expected score for an observation drawn from the
distribution F is minimized if the probabilistic forecast is F , rather than G 6= F (Section
1, Gneiting and Raftery (2007)). In contrast, MAE and MSE are not proper scoring rules,
meaning that given a large number of observations and a set of models including the true
model, the model selected based on the lowest MAE/MSE might not be the true model.

Given a probabilistic forecast with cumulative distribution function F (y), the CRPS is
defined as

CRPS(F, x) =

∫ ∞
−∞

(
F (y)− 1{y ≥ x}

)2
dy, (2.17)

where x is the true value and 1{·} = 1 if the statement inside the brackests is true and
zero otherwise. With the definition given in Equation (2.17), the CRPS is always positive
and a CRPS close to zero indicates that the approximated distribution is close to the true
distribution. A predicted value with low bias and high variance would have a higher CRPS
value than a predicted value with a higher bias but much lower variance.
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When the predictive distribution is Gaussian, one obtains

CRPS(N (µ, σ2), x) = −σ

[
1√
π
− 2φ

(x− µ
σ

)
− x− µ

σ

(
2Φ
(x− µ

σ

)
− 1

)]
. (2.18)

Here, φ is the probability density function and Φ the cumulative probability function of
the normal distribution. If the true value is not know, which is the case for child mortality
rates, the CRPS can be calculated as

CRPS(Fapproximated, Ftrue) =

∫ ∞
−∞

(
Fapproximated(y)− Ftrue(y)

)2
dy. (2.19)

If the true and forecasted value are point-values (i.e no uncertianty), the CRPS reduces to
the MAE.
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Chapter 3
Methods

3.1 Producing yearly design-based mortality rate estimates

To access the DHS data, one has to apply the DHS program’s website1. The data is
coded according to the DHS recode manuals, which are updated at regular intervals. The
three Kenya surveys used in this thesis are coded according to different recode manuals.
KDHS03 follows DHS (2008), KDHS08-09 follows DHS (2012) and KDHS14 follows
DHS (2013). The surveys from Uganda and Tanzania used in Chapter 6 also follow these
three recode manuals. Even though the surveys follow different recode manuals, the vari-
ables of interest are coded in almost the same way in all data sets, and are presented in
Table 3.1. Century month code is given as the number of months since January 1900.

v002 household number (secondary sampling unit)
v005 sample weight times 106

v008 century month code of date of interview
v021 cluster id (primary sampling unit)
v023 stratification
v024 place of residence (region)
v025 type of residence (urban/rural)

b3 century month code for the date of birth of the child
b6 age at death of the child

Table 3.1: Relevant responses from the DHS recode manuals.

In Table 3.1 there are three responses that contain information about the stratification:
v023, v024 and v025. After a closer examination of the data, it is found that for some
surveys v023 correctly defines the strata, while for others only the combination of v024
and v025 gives the correct stratification. v023 is used as stratification variable for the

1https://dhsprogram.com/Data/
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surveys following DHS (2013) (KDHS14), while v024 and v025 is used for the surveys
following DHS (2008) (KDHS03) and DHS (2012) (KDHS08-09).

The neonatal mortality rate is the probability of dying within the first month of life
for live births. The definition of neonatal mortality rate varies. The UN considers the
deaths within the first 28 days of life. Page 8.5 and on-wards in Croft et al. (2018) outlines
an alternative to calculating simply the proportion of eligible children who died within
the specified time frame. Other sources, such as MEASURE (2019), make a distinction
between the first seven days and the next 14 days. They claim that the risk of dying is
not constant during the first month of life and that it should be reflected in the calculation.
However, the data used in this thesis is not accurate enough to be used to classify the age
of death at such a fine scale. This thesis defines NMR according to Definition 3.1.1. The
first 30 days of life is used to be consistent with the methods used by the DHS program
when producing their reports (e.g., Kenya National Bureau of Statistics et al. (2015)).

Definition 3.1.1. The neonatal mortality rate is the proportion of children who died “at
age 0-30 days (also includes deaths reported at age zero month)” (page 8.5, Croft et al.
(2018)), given that the children were born 30 days or more before data collection.

To calculate the neonatal mortality rate, all children who died within 30 days after birth
have to be flagged. In the KDHS surveys, the date of birth is given in month and year. To
ensure that children who have lived less than 30 days are not included in the analysis,
all children who are born in the same month as the interview, or in the month before the
interview, are removed from the dataset. Observations for which the child was born at the
end of one year and die in the next year are counted as an observation in the birth year.

NMRs are calculated independently for each year and each survey. The design of a sur-
vey can easily be encoded in a survey.design object, using the R package survey,
and the information about the design included in the dataset. Once a design-object is ob-
tained, the function svyratio() is applied to obtain the NMR. An example of how to do
this is given in Listing 3.1. In Listing 3.1 the variable data is a dataframe with columns
neonatal death, ones, time, v002, v005, v021,v023,v024 and v025, with the
final six given in Table 3.1. neonatal death is one if the child died within the first
30 days of life and zero otherwise, while ones is simply a vector of ones. time is the
year the observation belongs to and the variable which.time is the year for which one
wishes to estimate the NMR.

Listing 3.1: Creating a survey.design object and computing NMR for one year.

d a t a $ r w e i g h t s = d a t a $ v005 /1000000
d e s i g n o b j e c t = s v y d e s i g n ( i d s =˜ v021+v002 , w e i g h t s =˜ r w e i g h t s , s t r a t a =˜

v024+v025 , d a t a = d a t a )
tmp = s u b s e t ( d e s i g n o b j e c t , ( t ime == which . t ime ) )
l o g i t NMR= s v y r a t i o ( ˜ n e o n a t a l dea th , ˜ ones , tmp )

The arguments of the svydesign() function are as follows: ids is a formula defin-
ing the stages of clusters, weights are the sample weights of the observations, and
strata is a formula defining the stratification. Listing 3.1 defines a survey.design
object for KDHS03 or KDHS08-09. For KDHS14 v023 defines the strata. The arguments
of svyratio() are a formula for the numerator, a formula for the denominator and a
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survey.design object. For more information about the arguments of svydesign()
and svyratio(), see the documentation2.

The function svyratio() returns the estimated value and the estimated variance of
NMR. It is desirable to obtain the mean and variance of logit(NMR). When transforming
data using a function g, y = g(ỹ), the expected value and variance of y is approximated
using the Delta method, which is based on Taylor expansions evaluated at the expected
value of y, g(ỹ) = g

(
E(y)

)
+
(
y − E(y)

)
g′
(
E(y)

)
. The expected value is approximated

simply as E(y) ≈ g(E(ỹ)) = g(µ), where µ is the expected value of ỹ. The approximation
of the variance becomes

V(y) ≈ (g′(µ))2V(ỹ).

The Delta method is used to compute the approximate expected valye and variance of
logit(NMR) from the value and variance of NMR. The NMR and logit(NMR) with corre-
sponding 95% credible intervals are presented in Figure 3.1.

When calculating the NMR, it is assumed that the risk of dying is constant during the
first 30 days of life. However, the same assumption does not hold for the first five years
of life. To illustrate this point, the piece-wise constant discrete hazard function for under-
5 mortality in Kenya in 2005, calculated using KDHS14, is displayed in Figure 3.2. In
Figure 3.2 the first five years of life is dived into months [0, 1), [1, 12), [12, 24), [24, 36),
[36, 48), [48, 60) and it shows that the risk of dying changes during the first five years
of life. Consequently, the U5MR is calculated using discrete time survival analysis as
described in the article by Mercer et al. (2015) and its supplementary material. The same
method is used by others as well, for example, Wakefield et al. (2018).

The discrete hazard function is defined as h(x) = Pr(dying before x+ 1 | lived until x).
The U5MR is the probability of not dying in any of the first 60 months of life, and can
thus be calculated as 1 −

∏59
a=0(1 − h(a)). Computing the U5MR in this way requires

large amounts of data, as the probability of dying in each of the first 59 months of life
must be calculated. To avoid this problem, a piece-wise constant discrete hazard function
is assumed, as illustrated in Figure 3.2. Let the piece-wise constant discrete hazard be
defined as nqx = Pr(dying before x+ n | lived until x). Following Mercer et al. (2015),
the period from 0 − 5 years is split into J = 6 intervals, which are months [0, 1), [1, 12),
[12, 24), [24, 36), [36, 48), [48, 60). The U5MR is then calculated as

59q0 = 1−
J∏
j=1

(1−nj qxj ), (3.1)

where (x1, . . . , x6) = (0, 1, 12, 24, 36, 48) and (n1, . . . , n6) = (1, 11, 12, 12, 12, 12).
The hazard can be estimated using logistic regression for each of the J intervals, by using
J factors for age intervals. Using logistic regression to estimate a hazard function is a
standard method, described by for example Efron (1988).

Before estimating the hazard using logistic regression, the data have to be prepared.
Each row in the dataset contains information about one child, including when it was born
and when it died. When calculating the probability of dying in each age-interval one have
to consider the total number of child-months at risk and the total number of deaths within

2http://r-survey.r-forge.r-project.org/survey/
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Figure 3.1: Design-based estimates of NMR per 1000 live birth and logit(NMR) with 95% credible
interval, calculated separately for each year from 1980 to 2013, for each KDHS survey.
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Figure 3.2: Piece-wise constant discrete hazard function for the first five years of life in Kenya in
2005, estimated using data form KDHS14. The first five years of life is dived into months [0, 1),
[1, 12), [12, 24), [24, 36), [36, 48), [48, 60).

each interval. Therefore, let each child be represented at up to 60 rows, one for each month
up to and including the month of death or the 59th month of life (the first month of life is
counted as month 0). Each row has an outcome of 0 if the child did not die that month and
1 if it did, so each row represents one child-month. When estimating the hazard function,
logistic regression is performed with child-months as the number of trials. In this thesis,
yearly U5MR is calculated, so only child months belonging to year i, i = 1980 . . . 2013,
is considered when calculating the U5MR of year i.

The function svyglm(), a function that can estimate generalized mixed models while
accounting for the survey design, is used to perform the regression. svyglm() requires
a survey.design object. An example of how to use svyglm() is given in Listing
3.2. The variable data is a dataframe with columns age, died, time, v002, v005,
v021, v023, v024 and v025, with the final six given in Table 3.1. Note that Listing
3.2 defines a survey.design object corresponding to KDHS03 or KDHS08-09. The
strata are defined by v023 in KDHS14. age is a factor indicating the age interval and
time states the year the observation was made. died=1 if the child died that month
and 0 otherwise. The variable which.time is the year for which one wishes to esti-
mate the U5MR. The argument family in svyglm() defines the distribution used in
the model. The quasi-binomial distribution differs from the binomial distribution only as
the dispersion parameter is not fixed at one. Thus, the quasi-binomial distribution can
model overdispersion. For more on overdispersion and quasi-likelihood, see Carruthers
et al. (2008), page 9 and onwards.
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Listing 3.2: Estimating U5MR.

d a t a $ r w e i g h t s = d a t a $ v005 /1000000
d e s i g n o b j e c t = s v y d e s i g n ( i d s =˜ v021+v002 ,

s t r a t a = ˜ v024 +v025 , w e i g h t s = ˜ r w e i g h t s , d a t a = d a t a )
tmp = s u b s e t ( d e s i g n o b j e c t , ( t ime == which . t ime ) )
glm . ob = svyglm ( d i e d ˜ (−1) + f a c t o r ( age ) ,

d e s i g n = tmp , f a m i l y = s t a t s : : q u a s i b i n o m i a l , max i t = 50)

Using the fact that the coefficients, β, obtained by the logistic regression is βj =

logit(jqx) for x ∈ [xj , xj + nj), nqx can be estimated by nj
q̂xj

= 1−
(
1− expit(β̂j)

)nj ,
j = 1, 2, 3, 4, 5, 6. The estimated nqxs are then inserted into Equation 3.1 to obtain the
U5MR. The corresponding variance is obtained using the Delta-method, using the variance
of βj j = 1, . . . , 6, βj = logit(jqx) and Equation (3.1). The covariance matrix of β
is estimated by svyglm(), and since the probability of dying in each time interval is
idependently estimated, only the variance of βj j = 1, . . . , 6 is considered. Since U5MR
is estimated directly, the Delta-method is applied once again to obtain the expected value
and variance of logit(U5MR).

The obtained estimates for U5MR and logit(U5MR) in Kenya in 1980-2013 are pre-
sented in Figure 3.3. Separate estimates are computed for each year for each of the three
KDHS surveys. For more details the reader is referred to the article by Mercer et al.
(2015), the corresponding supplementary material and the package SUMMER in R. Be
aware that the functions implemented in SUMMER cannot be directly applied to calcu-
late yearly U5MR for Kenya, as they compute estimates on a regional level for five-year
periods.
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Figure 3.3: Design-based estimates of U5MR and logit(U5MR) with 95% credible interval, calcu-
lated separately for each year from 1980 to 2013, and each KDHS survey.
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3.2 Estimating models using inla()
Recall that the logit of the design-based estimate of the mortality rates is denoted by yts,
t = 1, 2, . . . s = 1, 2, 3. Further, yts ∼ N (ηts, σ

2
ts) is assumed by Mercer et al. (2015).

The model given in Equation (2.9), ηts = µ+ ξt+zTt β+at + δs, is chosen in this thesis,
where µ is an intercept, ξt is a linear drift, zTt is a vector of time dependent covariates
with coefficients β, at is a temporal stochastic process and δs is a survey effect. Four dif-
ferent temporal processes are explored, AR(1), AR(2), RW(1) and RW(2). INLA quickly
provides a deterministic approximation of the posterior of the LGM. The models are fitted
using the function inla() from the R-package INLA. To simplify presentation, the only
covariate considered in the rest of this section is the linear trend ξt. Other covariates can
easily be added in the same way as the linear trend.

To estimate the model using inla() and data from more than one DHS survey, the
data should be arranged in a dataframe with columns y and var, idxs, idxt and idxt1. y
contains the logit of the estimated mortality rate (yts) and var contains the corresponding
estimated variance (σ2

ts), idxs contains the survey-indices (s), and the last two contain
time indices (t). idxt is used for the temporal stochastic process, while idxt1 is used for
the linear trend. The data is arranged as illustrated in Table 3.2. The first part of rows
contains data from KDHS03, the next from KDHS08-09 and the third part from KDHS14.
The fourth part of rows defines the predictions.

It is desirable to fit the model for the period for which there is data (1980-2013) and
survey-independent forecasts are needed until 2030. Therefore, as seen in Table 3.2, idxt
is (1980, . . . , 2013, 1980, . . . , 2013, 1980, . . . , 2013, 1980, . . . , 2030). idxt1 is used to
model the linear trend, and to avoid numerical problems idxt1 contains time-indices that
are transformed by subtracting 1980, giving (0 : 33, 0 : 33, 0 : 33, 0 : 50). idxs is a
vector, (1, . . . , 1, 2, . . . , 2, 3, . . . , 3, NA, . . . ,NA), where inla() interprets any “NA”
(not a number in R) as “missing information”. The final elements of idxs are NAs as the
predictions should not be assigned to a specific survey.

As seen in Table 3.2, the position of yts is in column y, in the row where idxt=t and
idxs=s. Likewise for the design-based variance in the var-column. As seen in Figure 3.1
and Figure 3.3, design-based estimates are not obtained from every survey for every year
between 1980-2013. For the combinations of year and survey for which a design-based
estimate is not obtained, y-values are represented by a NA and variances are set to one.
The same goes for the rows where the idxs-column contains NA. The object returned by
inla() will contain predictions for all missing y-values. To test the predictive strength
of the models, it is desired to fit models using only estimated mortality rates until a specific
year ts, ts < 2013. To fit those models, all y-values that corresponds to idxt > ts are set
to NA and the corresponding variance is set to 1.

Once the input is defined, the model can be fitted. An example of how the models in
this thesis are fitted is given in Listing 3.3. The first argument of the inla() function is a
formula, given on the format of Equation (2.10). Note that the intercept µ is automatically
added. The function f() defines a model component and the code written in Listing 3.3
defines components as given in Table 2.1. The argument extraconstr in the RW(2)
model adds the weighted sum-to-zero constraint, which is needed to allow for a linear
trend. The sum-to-zero constraint is automatically in place for RW(1) and RW(2), so no
additional arguments are needed for the RW(1) model. The second argument of inla()

32



3.2 Estimating models using inla()

y var idxt idxt1 idxs
y1980,1 σ2

1980,1 1980 0
1...

...
...

...
y2013,1 σ2

2013,1 2013 33
y1980,2 σ2

1980,2 1980 0
2...

...
...

...
y2013,2 σ2

2013,2 2013 33
y1980,3 σ2

1980,3 1980 0
3...

...
...

...
y2013,3 σ2

2013,3 2013 33

NA 1
1980 0

NA...
...

2030 55

Table 3.2: Table illustrating how the data is arranged in a dataframe before being used as an input
in inla(), when using data from three different surveys from the same country. Data is available
for 1980-2013 and predictions are made until 2030. NA is interpreted as missing information and
inla() returns predictions for y-values given as NA.

is the name of the dataframe, and the third argument defines the scale, which is the inverse
of the variance. The other arguments define whether or not marginals and statistics should
be computed.

Listing 3.3: Fitting an inla model

#Use one o f t h e f o l l o w i n g , depend ing on d e s i r e d t e m p o r a l model
f o r m u l a =y ˜ i d x t 1 + f ( i d x t , model=” a r ” , o r d e r =1 , v a l u e s =min ( i n p u t $

i d x t ) : max ( i n p u t $ i d x t ) ) + f ( idxs , model=” i i d ” )
f o r m u l a =y ˜ i d x t 1 + f ( i d x t , model=” a r ” , o r d e r =2 , v a l u e s =min ( i n p u t $

i d x t ) : max ( i n p u t $ i d x t ) ) + f ( idxs , model=” i i d ” )
f o r m u l a =y ˜ i d x t 1 + f ( i d x t , model=” rw1 ” , v a l u e s =min ( i n p u t $ i d x t ) :

max ( i n p u t $ i d x t ) ) + f ( idxs , model=” i i d ” )
f o r m u l a =y ˜ i d x t 1 + f ( i d x t , model=” rw2 ” , v a l u e s =min ( i n p u t $ i d x t ) :

max ( i n p u t $ i d x t ) , e x t r a c o n s t r = l i s t (A= r b i n d ( 1 , ( 0 : ( end year−min
( i n p u t $ i d x t ) ) / ( end year−min ( i n p u t $ i d x t ) ) ) ) , e= m a t r i x ( 0 , nrow =
2 , n c o l =1) ) ) + f ( idxs , model=” i i d ” )

model= i n l a ( f o r m u l a = formula , d a t a = i n p u t , s c a l e =1/ var , c o n t r o l . f a m i l y
= l i s t ( f i x e d =TRUE, i n i t i a l =0) , c o n t r o l . p r e d i c t o r = l i s t (
compute = TRUE) , c o n t r o l . compute = l i s t ( waic=TRUE, ml ik =TRUE) )

To fit the multivariate time model given in Equation (2.15) simple adjustments have to
be made to the input and the formula in the function call. The columns should be extended
so that the first rows contain data from the first country, then the next part of rows contain
the second country, and so on. As country-specific linear trends are wanted, the column
idxt1 should contain only NAs in the additional rows, and for each additional country
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y var idxt idxt1 idxs idxt2 idxt3 group group1
1 NA NA 1 1
2 NA NA 1 1
3 NA NA 1 1

NA 1 NA NA NA 1 1
NA 4 NA 2 2
NA 5 NA 2 2
NA 6 NA 2 2

NA 1 NA NA NA 2 2
NA 7 NA 3 3
NA 8 NA 3 3
NA 9 NA 3 3

NA 1 NA NA NA 3 3

Table 3.3: Table illustrating how data is arranged in a dataframe when estimating models using
data from nine independent surveys from three different countries (three surveys from each country).
Each row represents several rows in the dataframe. The upper left corner marked in blue corresponds
to Table 3.2 and all empty cells are filled with information as shown in Table 3.2.

that is considered a new time-index column should be added. Call the new columns for
idxti, i = 2, . . . , k, column idxti is all NAs except for the rows corresponding to country
i, in which the scaled time indices are. When adding covariates that are to be estimated
jointly for the different countries, only one additional column per covariate is needed (for
example, one column containing GDP-data). Two more columns must be added, group
and group1, both containing factor(i), where i corresponds to the relevant country. group
is used for the VAR model, while group1 allows for country-specific intercepts. See Table
3.3 for an illustration of how the complete dataframe looks like when data from a total of
nine surveys from three different countries is used. An example of how the formula must
be updated when estimating a model with information about three countries and temporal
effect RW(1) is given in Listing 3.4. In Listing 3.4 -1 removes the overall intercept.

Listing 3.4: Fitting an multivariate time inla model

f o r m u l a = y ˜ −1 + group1 + i d x t 1 + i d x t 2 + i d x t 3 + f ( i d x t , model=”
rw1 ” , v a l u e s =max ( i n p u t $ i d x t ) : min ( i n p u t $ i d x t ) , g roup =group ,
c o n t r o l . g roup = l i s t ( model=” e x c h a n g e a b l e ” ) ) + f ( idxs , model=” i i d ”
)

The priors used are the inla() defaults. The priors for the fixed effects are normal
distributions with high variances, as given in Table 2.1. Detailed information about the
priors used on the parameters of the model (π(ρ), π(σ2

a), π(σ2
δ )) can be found by executing

the command inla.doc("model"), with "model" equal to "ar", "rw1", "rw2",
or "iid". Key information is given in the following paragraphs.

The priors on parameters of AR(p) models are defined for θ1, α(1), . . . , α(p), where
θ1 = log(1/σ2

a) and α(·) is the partial autocorrelation function. The prior on θ1 is pc.prec,
a penalized complexity (PC) prior (Sørbye and Rue (2017)) for precision. For details about
the distribution, see the document obtained by the command inla.doc("pc.prec").
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The hyperparameters are (u, α) = (3, 0.01). The interpretation of (u, α) is Prob(σa >
u) = α, u > 0, 0 < α < 1. The prior on the α(·)s are pc.cor0, a PC prior for cor-
relation. More information about pc.cor0 can be found in the pdf accessed by the com-
mand inla.doc("pc.cor0"). The hyperparameters are (u, α) = (0.5, 0.5) for α(1)
and (u, α) = (0.5, 0.4) for α(2). The hyperparameters are s.t Prob(|α(·)| > u) = α,
0 ≤ u < 1, 0 < α. The PC distributions are used because they penalize complex temporal
models and prefer simpler ones.

The parameter of RW(1) and RW(2) models, σ2
a is defined on θ1 = log(1/σ2

a). The
default prior in INLA on θ1 is the log gamma distribution (inla.doc("loggamma")),
with hyper parameters (a, b) = (1, 5× 10−05). a > 0 is the shape parameter and b > 0 is
the rate parameter. The survey effect is iid∼ N (0, τ−1). The prior is defined on log(τ) and
the default is the log gamma distribution, with hyper parameters (a, b) = (1, 5× 10−05).

For multivariate models, there is also a prior on ρgroup, or more precisely on θ =
log
(
(1 + ρgroup)/(1 − ρgroup)

)
. Information about the prior can be found by executing

inla.models(), and then search for “exchangeable” in the resulting output. The prior
is θ ∼ N (0, 0.20). Thus, the 95% credible interval for θ is [−0.88, 0.88] and [−0.41, 0.41]
for ρgroup.

A call to the function inla() returns a model object with several attributes. In the
next section, relevant attributes for extracting posterior inference and information about
useful functions in the INLA package is given.

3.3 Extracting posterior inference
To help the reader understand the object returned by inla(), Table 3.4 displays relevant
attributes. Fitted values are “obtained by transforming the linear predictors by the inverse
of the link function” (Rue and Martino (2019)). Note that fitted values and linear predictor,
in this case, are the same values, as the identity link function has been used. The subset
[is.na(input$idxs)] of the fitted values are what is later referred to as “predic-
tions”, as they are the fitted values that are not associated with a survey. As seen from
Table 3.4, the WAIC, and MLIK can be obtained directly from an inla object. MSE,
MAE, and CRPS have to be computed using the attributes in Table 3.4.

$summary.fitted.values$mean mean of fitted values
$summary.fitted.values$‘0.025quant‘ 2.5% quantile of fitted values
$summary.fitted.values$‘0.975quant‘ 97.5% quantile of fitted values

$waic$waic WAIC
$mlik[1] marginal log likelihood

$summary.linear.predictor$mean mean of linear predictor
$summary.linear.predictor$sd standard deviation of linear predictor
$marginals.linear.predictor marginals of the linear predictor

Table 3.4: Relevant attributes for model analysis of an inla object.

The returned inla object also contains information about the parameters of the model.
Information about the hyperparameters are given in $summary.hyperpar while infor-
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mation about the fixed effects are given in $summary.fixed. As an example, some
relevant attributes from models estimated with AR(1) and AR(2) as temporal effect are
given in Table 3.5 and Table 3.6, respectively. The φ coefficients and autocorrelation func-
tion of the AR(2) process can be obtained using the functions inla.ar.pacf2phi()
and inla.ar.pacf2acf().

$summary.hyperpar$‘0.5quant‘[1] γ(0)−1

$summary.hyperpar$‘0.5quant‘[2] φ1

$summary.fixed$mean[2] ξ
$summary.fixed$mean[1] µ

Table 3.5: Relevant attributes of an inla object estimated with AR(1) as temporal effect.

$summary.hyperpar$‘0.5quant‘[1] γ(0)−1

$summary.hyperpar$‘0.5quant‘[2] α(1)
$summary.hyperpar$‘0.5quant‘[3] α(2)

$summary.fixed$mean[2] ξ
$summary.fixed$mean[1] µ

Table 3.6: Relevant attributes of an inla object estimated with AR(2) as temporal effect.

3.4 Including covariates
It is reasonable to assume that mortality rates are associated with, for example, the size
of the population, money spent on health interventions, natural disasters, and temperature.
Covariates that are correlated with the response can improve a model’s predictive strength.
Therefore one should explore the effect of including covariates for which there exists re-
liable data in the mortality rates models. When using a model with covariates to produce
forecasts, forecasted values of the covariates must be available. This section provides in-
formation about population size and gross domestic product (GDP), two covariates that
are used in Chapter 5 to illustrate the impact of covariates.

It is impossible to know future values of population size and GDP, partly because it is
not possible to know how human behavior will affect these quantities. The climate change
research community have produced forecasts for population, GDP, and urbanization for
five different scenarios. The scenarios are based on five different sets of assumptions,
called Shared Socioeconomic Pathways (SSP). Riahi et al. (2017) gives an overview of the
SSPs. Table 2 in the article by Riahi et al. (2017) gives an explanation of the five SSPs
and the headings from that table is re-given in Table 3.7. For more details about the SSPs,
please see ONeill et al. (2017) and the SSP database at the IIASA website3.

Historical and forecasted GDP and population size of many countries are available at
the IIASA website. There are two competing models for the development of GDP, and
it is recommended that both are used and compared. Henceforth they will be referred to

3https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=10
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3.4 Including covariates

SSP1 Taking the Green Road (Low challenges to mitigation and adaptation)
SSP2 Middle of the Road (Medium challenges to mitigation and adaptation)

SSP3
Regional Rivalry. A Rocky Road (High challenges to mitigation and
adaptation)

SSP4
Inequality. A Road Divided (Low challenges to mitigation, high chal-
lenges to adaptation)

SSP5
Fossil-fueled Development. Taking the Highway (High challenges to
mitigation, low challenges to adaptation)

Table 3.7: Summary of Table 2 in the article by Riahi et al. (2017), explaining the SSPs.

as GDP1 and GDP2. The historical GDP and population numbers are available for every
fifth year from 1980 to 2010 plus the year 2008. Predictions for each of the five scenarios
are available for every fifth year from 2010 to 2100. As mortality estimates are computed
yearly, it is desirable to get the yearly population and GDP data. That is obtained using
cubic spline interpolation. It is reasonable to assume that the relative change in covariates
is more indicative of changes in mortality rates than the absolute change. Therefore, log
transformations of the covariates are also considered.

Models with covariates are estimated as described in Section 3.2, with minor modifi-
cations. The input has to contain one column for each covariate, and the formula must be
updated to include the name of the columns with covariates.
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Chapter 4
Simulation Study

The goal of this simulation study is to determine which temporal processes that are most
suitable in models for NMR and U5MR for estimation and forecasting.

4.1 Details of the simulation study
Simulated NMR and U5MR are used to explore the performance of models with temporal
effect AR(1), AR(2), RW(1), and RW(2). These temporal effects are chosen because they
are simple and keep the modeling process transparent. In this chapter, the model given in
Equation (2.9) is considered without any covariates. The coefficients and parameters used
when simulating yearly NMR and U5MR are estimated using data from DHS surveys
undertaken in Kenya in 2003, 2008-2009 and 2014. As random walks are non-stationary
with exploding variances, NMR and U5MR are simulated using AR(1) and AR(2) models.
The models are estimated as explained in Section 3.2. The parameters of the four fitted
models are given in Table 4.1.

To simulate NMR and U5MR, the initial values of the temporal effect must be ob-
tained. As explained in Section 2.2, the initial p values of an AR(p) process can be sim-
ulated using their joint distribution, N (0,Γ). The co-variance matrix, Γ, is computed
using the pacf values in the returned inla object. Once the required initial values, at,
t = −p+ 1, . . . , 0, are simulated, at for t > 0 can be simulated using Equation (2.1), with

Rate Model φ1 φ2 σa
NMR AR(1) 0.14 0.13
NMR AR(2) 0.14 0.04 0.13
U5MR AR(1) 0.97 0.27
U5MR AR(2) 0.97 -0.03 0.29

Table 4.1: Estimated parameters of models (median). φ1 and φ2 are the estimated coefficients of
the AR process, while σa is the marginal standard deviation of the AR process.
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p = 1 for AR(1) and p = 2 for AR(2). Unique initial values should be simulated for every
desired simulated dataset and unique innovations should be simulated for every simulated
dataset and for every time step. An inla object does not contain the residual variance,
σ2
ε , only the (inverse of the) marginal variance σ2

a. Therefore Equation (2.5) must be used
to obtain σ2

ε .
It is desirable to reproduce the uncertainty of the survey estimates in the simulations.

Therefore, models are fitted to “observed” simulated NMR and U5MR, where the obser-
vation noise for year t, ωt, is distributed N (0, σ2

t,3), for years t < 2014 and ωt = 0 for
t ≥ 2014. The variance from the 2014 survey is preferred over the variance from the two
other surveys as the KDHS14 is the most recent survey and has the largest number of ob-
servations. As evident in Figure 3.3 and Figure 3.1, KDHS14 gives estimates for U5MR
for 1980-2013 and for NMR for 1982-2013. Therefore, when simulating data, U5MR is
simulated for 1980-2030 while NMR is simulated for 1982-2030. To ensure reproducibil-
ity, set.seed(222) is used when simulating the initial values and when simulating
from AR(1)/AR(2).

In addition to investigate how well the models work if the current trend continues,
it is also interesting to explore scenarios where there are significant positive or negative
changes in mortality rates. Such scenarios are simulated by adding a quadratic effect
ψ(t − 2013)2, where t is the year and ψ = 0 if t ≤ 2013 but ψ 6= 0 if t > 2013, to the
the simulated logit(NMR) and logit(U5MR). Negative values of ψ lead to a decrease in
simulated mortality rate, thus a ”better health” scenario, while positive values of ψ do the
opposite, a ”worse health” scenario. For convenience, henceforth S0 will refer to the ”no
change in trends” scenario, SBH to ”scenario better health” and SWH to ”scenario worse
health”. As it is desired to make predictions until 2030, |ψ| is set to 1/172, leading to an
increase or decrease of 1 on the logit scale when t = 2030. It could have been interesting
to investigate other values of |ψ|. However, that is not within the scope of this thesis.

The model assessments and scoring rules explained in Section 2.6 are used to evaluate
the performance of the models. WAIC, MLIK, MAE, root MSE (RMSE), and CRPS are
used to evaluate the models’ explanatory strength. MAE, RMSE, and CRPS are also cal-
culated to evaluate the predictive strength of the models. When computing MAE, RMSE,
and CRPS, the fitted values are compared to the simulated values. RMSE is presented
instead of MSE so that the values are comparable with MAE. MAE and RMSE are calcu-
lated both at logit-scale and using the mortality rates directly. CRPS is calculated, using
Equation (2.18), only at logit-scale as it is believed that absolute changes in probability
are not comparable. For example, a reduction of 0.1 percentage points is different if the
reduction is from 1% to 0.9% compared to 0.1% to 0.0%. When determining which mod-
els perform best the focus is on prediction and in particular the CRPS scores. Most weight
is given to scenario S0.

In the following two sections, analysis of 1000 simulated datasets is presented. All
models are fitted using data for t < 2014, thereafter predictions are made until t = 2030.
Statistics explaining the explanatory strength of the models are calculated for years t <
2014, while statistics evaluating the predictive strength of the models are calculated for
years t ∈ [2014, 2030]. In Section 4.2 the datasets are simulated from an AR(1) model,
whereas in Section 4.3 the datasets are simulated from an AR(2) model. All models that
are fitted to the simulated datasets are estimated without a survey-effect.
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4.2 Autoregressive process of order 1
In this section, datasets are simulated using an AR(1) model with coefficients as presented
in Table 4.1. Logit(NMR) and NMR per 1000 live birth are presented in Figure 4.1.
Corresponding figures for U5MR can be found in Figure 4.2. From the plots in Figure
4.1 one can see that RW(2) is the only model for which all three scenarios are well within
the credible interval. Figure 4.2 shows that the credible intervals for U5MR created by
the AR(1), AR(2) and RW(1) models are reasonable. The credible intervals of the RW(2)
models for NMR and U5MR are so large that the predictions are not informative. This is
expected and coherent with the theory presented in Section 2.2. The AR(1) and RW(1)
models look very similar, while the AR(2) model is less smooth and better at capturing the
year-to-year variation for NMR.

Model WAIC -MLIK MAE ×10−01 RMSE ×10−01 CRPS ×10−01

AR(1) 5.31 11.96 1.86 2.44 1.59
AR(2) -1.60 13.00 1.34 1.88 1.07
RW(1) 5.66 13.88 1.87 2.45 1.60
RW(2) 6.28 25.72 1.80 2.35 1.53

Table 4.2: Mean explanatory statistics over 1000 NMRs simulated from an AR(1) model. All
statistics are computed using the logit transformation of the NMR. The values marked with green
are most favorable in each column.

Model WAIC -MLIK MAE ×10−01 RMSE ×10−01 CRPS ×10−01

AR(1) -24.99 0.78 1.23 1.85 1.18
AR(2) -31.24 0.17 1.02 1.64 0.78
RW(1) -27.16 1.33 1.20 1.80 1.04
RW(2) -28.04 11.55 1.19 1.74 0.91

Table 4.3: Mean explanatory statistics over 1000 U5MRs simulated from an AR(1) model. All
statistics are computed using the logit transformation of the U5MR. The values marked with green
are most favorable in each column.

From Table 4.2 one can see that the best temporal effect for NMR with respect to WAIC
is AR(2), with the other three performing worse and relatively similar. The best temporal
effect in terms of MLIK is AR(1), and the worst is RW(2). The negative marginal log-
likelihood of the AR(2) and RW(1) models are much closer to that of the AR(1) models
than the RW(2) models. That indicates that RW(2) models are not good fits for the datasets.
In terms of MAE, RMSE and CRPS AR(2) performs best, with RW(2) on second place
followed by AR(1) and RW(1). That indicates that even though RW(2) models have the
least favorable MLIK scores, RW(2) models can produce smooth fits of the data. Overall,
the models with AR(2) as temporal effect have the highest explanatory strength, as the
AR(2) models score best with respect to four out of five criteria.

Table 4.3 shows similar results for U5MR. The AR(2) models have the lowest average
for all assessment criteria. The RW(2) models come in second with respect to WAIC but
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Figure 4.1: logit(NMR) and NMR per 1000 live birth, simulated by an AR(1) model. S0 and
observations of S0 (with noise) are plotted as well as projections for SBH and SWH with |γ| =
1/172. The solid purple line is the fitted model/predictions, computed using data for t < 2014, with
a 95% credible interval.

42



4.2 Autoregressive process of order 1

● ● ●

●
●

● ● ●
● ● ● ●

●
● ●

● ● ● ● ●
● ●

●

●
●

●
●

●
●

● ●

●
● ●

●

● ● ● ●
●

● ● ●
●

●

● ● ● ● ● ●

●

● ● ● ●
● ●

●
● ● ●

●
●

●
●

●
●

●

●
● ●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

● ●

● ●

●
●

●

●

● ●
●

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

1980 1990 2000 2010 2020 2030
Year

lo
gi

t(
U

5M
R

)

AR(1)

● ● ●

●
●

● ● ●
● ● ● ●

●
● ●

● ● ● ● ●
● ●

●

●
●

●
●

●
●

● ●

●
● ●

●

● ● ● ●
●

● ● ●
●

●

● ● ● ● ● ●

●

● ● ● ●
● ●

●
● ● ●

●
●

●
●

●
●

●

●
● ●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

● ●

● ●

●
●

●

●

● ●
●

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

1980 1990 2000 2010 2020 2030
Year

logit(U
5M

R
)

AR(2)

● ● ●

●
●

● ● ●
● ● ● ●

●
● ●

● ● ● ● ●
● ●

●

●
●

●
●

●
●

● ●

●
● ●

●

● ● ● ●
●

● ● ●
●

●

● ● ● ● ● ●

●

● ● ● ●
● ●

●
● ● ●

●
●

●
●

●
●

●

●
● ●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

● ●

● ●

●
●

●

●

● ●
●

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

1980 1990 2000 2010 2020 2030
Year

lo
gi

t(
U

5M
R

)

RW(1)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

●
●

●

●
●

● ● ● ●
● ● ●

●
●

● ● ●
● ● ●

●
● ●

● ● ● ●
● ● ●

● ● ● ●

−9

−6

−3

0

1980 1990 2000 2010 2020 2030
Year

logit(U
5M

R
)

RW(2)

●●●● ●●●● ●●●● ●●●●S0 Observed S0 SWH SBH Prediction

● ●
●

●
●

● ● ●

● ● ● ●

●

● ●
● ● ● ● ●

●
●

●

●
●

●

●

●

●
● ●

●
● ●

●

● ● ● ●
●

● ● ●
●

●

● ● ● ● ● ●

●

● ● ● ●
● ●

●
● ● ●

●
●

●

●

●

●

●

●
● ●

●

●
●

● ●
●

●

●
● ●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

● ●

● ●

●
●

●

●

● ●
●

50

100

150

1980 1990 2000 2010 2020 2030
Year

U
5M

R
 (

pe
r 

10
00

 b
ir

th
) 

 AR(1)

● ●
●

●
●

● ● ●

● ● ● ●

●

● ●
● ● ● ● ●

●
●

●

●
●

●

●

●

●
● ●

●
● ●

●

● ● ● ●
●

● ● ●
●

●

● ● ● ● ● ●

●

● ● ● ●
● ●

●
● ● ●

●
●

●

●

●

●

●

●
● ●

●

●
●

● ●
●

●

●
● ●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

● ●

● ●

●
●

●

●

● ●
●

50

100

150

1980 1990 2000 2010 2020 2030
Year

U
5M

R
 (per 1000 birth)  

AR(2)

● ●
●

●
●

● ● ●

● ● ● ●

●

● ●
● ● ● ● ●

●
●

●

●
●

●

●

●

●
● ●

●
● ●

●

● ● ● ●
●

● ● ●
●

●

● ● ● ● ● ●

●

● ● ● ●
● ●

●
● ● ●

●
●

●

●

●

●

●

●
● ●

●

●
●

● ●
●

●

●
● ●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

● ●

● ●

●
●

●

●

● ●
●

50

100

150

1980 1990 2000 2010 2020 2030
Year

U
5M

R
 (

pe
r 

10
00

 b
ir

th
) 

 RW(1)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

●
●

● ● ● ●
●

● ●

●
●

● ● ●
● ● ●

●
● ●

● ●
● ●

● ● ●
● ● ● ●

0

250

500

750

1980 1990 2000 2010 2020 2030
Year

U
5M

R
 (per 1000 birth)  

RW(2)

●●●● ●●●● ●●●● ●●●●S0 Observed S0 SWH SBH Prediction

Figure 4.2: logit(U5MR) and U5MR per 1000 live birth, simulated by an AR(1) model. S0 and
observations of S0 (with noise) are plotted as well as projections for SBH and SWH with |γ| =
1/172. The solid purple line is the fitted model/predictions, computed using data for t < 2014, with
a 95% credible interval.
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Chapter 4. Simulation Study

have once again a far higher negative marginal log-likelihood score than the other three
model types. RW(2) models also have the second lowest MAE, RMSE and CRPS, again
revealing that RW(2) models can produce smooth fits of observed data.

Next, it is desirable to investigate the models’ predictive strengths. Plots of CRPS are
given in Figure 4.3 and Figure 4.4 for logit(NMR) and logit(U5MR), respectively. CRPS
and RMSE for 2, 7, 12 and 17 steps (corresponding to year 2015, 2020, 2025 and 2030)
can be found in Table 4.4 and Table 4.5.

From Figure 4.3 and Table 4.4 one can see that RW(2) models for NMR are outper-
formed by the three other model types. However, RW(2) models have the lowest average
CRPS score for the final prediction steps in the alternative scenarios. The differences in
CRPS for RW(2) models and the other types of models are smaller for scenario SBH and
SWH than for scenario S0. Both in terms of CRPS and RMSE AR(1), AR(2) and RW(1)
models perform very similarly. From Table 4.4 one can see that the AR(2) models most
often have the lowest average CRPS and a competitive RMSE for NMR, while AR(1)
models most often have the lowest RMSE. For U5MR, Figure 4.4 and Table 4.5 show that
AR(2) and RW(1) models have similar scores and that they perform better than AR(1) and
RW(2). For scenario SBH and SWH RW(2) models once again have the lowest average
CRPS for the final prediction steps, due to the high uncertainty in the RW(2) predictions.

Plots similar to Figure 4.3 and Figure 4.4 are given for MAE and RMSE for both
logit of mortality rates and mortality rates in Appendix A. The plots in the appendix are
consistent with the results presented in this section. They show that in general RW(2)
models perform worse than the other three model types, which performs very similar.

In conclusion, Table 4.2 and Table 4.3 reveal that models with RW(2) as temporal
effect are capable of smoothing observed data, however, the RW(2) models do not per-
form well with respect to marginal log likelihood. The AR(2) models consistently have
the lowest WAIC, MAE, RMSE, and CRPS. For NMR, AR(2) models have average nega-
tive MLIK close to the lowest value, and AR(2) models have the lowest average negative
MLIK for U5MR. Therefore one can argue that AR(2) models have the highest explanatory
strength. Based on analysis of predictions one can conclude that AR(2) models perform
best for NMR with respect to CRPS while AR(2) and RW(1) models perform well for
U5MR.
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Figure 4.3: CRPS of NMR simulated by AR(1).

CRPS ×10−01 RMSE×10−01

2015 2020 2025 2030 2015 2020 2025 2030
Model S0
AR(1) 1.05 0.96 1.07 1.23 1.67 1.61 1.81 2.09
AR(2) 0.97 0.94 1.05 1.20 1.68 1.63 1.81 2.09
RW(1) 1.06 0.98 1.10 1.29 1.72 1.67 1.89 2.19
RW(2) 1.29 1.99 3.11 4.44 2.30 3.67 5.42 7.22
Model SBH
AR(1) 1.06 1.49 4.31 9.13 1.67 2.32 5.30 10.20
AR(2) 0.97 1.36 3.85 8.58 1.69 2.34 5.31 10.20
RW(1) 1.06 1.46 4.06 8.69 1.73 2.35 5.32 10.20
RW(2) 1.29 2.16 4.11 7.13 2.30 3.98 7.23 12.10
Model SWH
AR(1) 1.05 1.54 4.31 9.24 1.67 2.36 5.30 10.30
AR(2) 0.97 1.39 3.84 8.67 1.68 2.36 5.29 10.30
RW(1) 1.06 1.52 4.10 8.85 1.72 2.41 5.34 10.30
RW(2) 1.29 2.24 4.27 7.44 2.31 4.11 7.49 12.60

Table 4.4: 2, 7, 12 and 17 step ahead prediction CRPS and RMSE of NMRs simulated by AR(1),
for scenario S0, SBH and SWH. Last year with data is 2013, so the prediction steps corresponds to
year 2015, 2020, 2025 and 2030. The values marked with green are the lowest (most favorable) in
each column, for each scenario. CRPS and RMSE are calculated at logit-scale.
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Figure 4.4: CRPS of U5MR simulated by AR(1).

CRPS ×10−01 RMSE ×10−01

2015 2020 2025 2030 2015 2020 2025 2030
Model S0
AR(1) 0.88 1.50 2.07 2.47 1.43 2.40 3.23 3.88
AR(2) 0.77 1.36 1.88 2.26 1.35 2.33 3.15 3.79
RW(1) 0.78 1.36 1.88 2.25 1.32 2.28 3.11 3.76
RW(2) 0.86 1.96 3.24 4.61 1.55 3.48 5.51 7.52
Model SBH
AR(1) 0.89 1.98 4.57 9.21 1.44 3.01 6.07 10.90
AR(2) 0.78 1.80 4.26 8.80 1.36 2.94 6.02 10.80
RW(1) 0.79 1.81 4.24 8.65 1.34 2.90 5.99 10.80
RW(2) 0.87 2.17 4.26 7.31 1.56 3.86 7.37 12.40
Model SWH
AR(1) 0.88 1.86 4.31 8.89 1.43 2.87 5.81 10.60
AR(2) 0.77 1.69 4.03 8.50 1.35 2.82 5.77 10.50
RW(1) 0.78 1.71 4.01 8.38 1.32 2.78 5.76 10.60
RW(2) 0.87 2.19 4.34 7.52 1.56 3.89 7.49 12.60

Table 4.5: 2, 7, 12 and 17 step ahead prediction CRPS and RMSE of U5MRs simulated by AR(1),
for scenario S0, SBH, and SWH. Last year with data is 2013, so the prediction steps correspond to
the years 2015, 2020, 2025 and 2030. The values marked with green are the lowest (most favorable)
in each column, for each scenario. CRPS and RMSE are calculated at logit-scale.
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4.3 Autoregressive process of order 2
In this section, datasets are simulated from a model with AR(2) as the temporal stochastic
process. The model coefficients are presented in Table 4.1. AR(1), AR(2), RW(1) and
RW(2) models for one simulated NMR dataset and one simulated U5MR dataset are pre-
sented in Figure 4.5 and Figure 4.6, respectively. From Figure 4.5 and Figure 4.6 one can
see that RW(2) is the only stochastic process for which all three scenarios are within the
95% credible interval for NMR, and that the credible intervals of the RW(2) models are
huge. The other three models are more similar, but once again the AR(2) models are less
smooth and capture more of the simulated data and observation noise within the credible
intervals than the AR(1) and RW(1) models for NMR.

From Table 4.6 and Table 4.7 one can see the same tendencies as in Table 4.2 and
Table 4.3. It is again evident that RW(2) models have less favorable average marginal
log-likelihood score compared to the other models, but that they are capable of smoothing
observed data. The AR(2) models have the lowest average WAIC, MAE, RMSE, and
CRPS. For NMR, the AR(2) models have a competitive marginal log likelihood and for
U5MR AR(2) models have the lowest marginal log likelihood. Therefore one can conclude
that AR(2) models have the overall best explanatory strength.

Model WAIC -MLIK MAE ×10−01 RMSE ×10−01 CRPS ×10−01

AR(1) 4.16 11.32 1.85 2.44 1.47
AR(2) -2.14 12.64 1.35 1.89 1.01
RW(1) 4.36 13.23 1.86 2.44 1.48
RW(2) 4.85 25.09 1.78 2.33 1.42

Table 4.6: Mean explanatory statistics over 1000 NMRs simulated from an AR(2) model. All
statistics are computed using the logit transformation of the NMR. The values marked with green
are the most favorable in each column.

Model WAIC -MLIK MAE ×10−01 RMSE ×10−01 CRPS ×10−01

AR(1) -24.44 1.09 1.25 1.94 1.25
AR(2) -30.70 0.49 1.04 1.73 0.89
RW(1) -26.59 1.64 1.23 1.89 1.14
RW(2) -27.38 11.88 1.21 1.82 1.00

Table 4.7: Mean explanatory statistics over 1000 U5MRs simulated from an AR(2) model. All
statistics are computed using the logit transformation of the U5MR. The values marked with green
are the most favorable in each column. CRPS and RMSE are calculated at logit-scale.

With respect to predictive strength, the conclusions one can draw based on Figure
4.7, Figure 4.8, Table 4.8, and Table 4.9 are similar to those based on the corresponding
figures and tables in Section 4.2. RW(2) is outperformed by the other three models with
respect to the prediction scores, although RW(2) models have the lowest CRPS score for
scenario SBH and SWH for the final prediction steps. The other three models score very
similarly. It is possible to argue that AR(2) and RW(1) models are better at predicting
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Figure 4.5: logit(NMR) and NMR per 1000 live birth, simulated by an AR(2) model. S0 and
observations of S0 (with noise) are plotted as well as projections for SBH and SWH with |γ| =
1/172. The solid purple line is the fitted model/predictions, computed using data for t < 2014, with
a 95% credible interval.
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Figure 4.6: logit(U5MR) and U5MR per 1000 live birth, simulated by an AR(2) model. S0 and
observations of S0 (with noise) are plotted as well as projections for SBH and SWH with |γ| =
1/172. The solid purple line is the fitted model/predictions, computed using data for t < 2014, with
a 95% credible interval.
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Figure 4.7: Average CRPS for NMR simulations with AR(2).

CRPS ×10−01 RMSE ×10−01

2015 2020 2025 2030 2015 2020 2025 2030
Model S0
AR(1) 1.04 0.92 1.07 1.19 1.66 1.53 1.81 2.03
AR(2) 0.96 0.90 1.05 1.17 1.67 1.55 1.82 2.03
RW(1) 1.04 0.93 1.09 1.23 1.70 1.58 1.88 2.11
RW(2) 1.27 1.92 3.01 4.27 2.25 3.55 5.25 6.96
Model SBH
AR(1) 1.05 1.47 4.32 9.15 1.67 2.27 5.30 10.10
AR(2) 0.97 1.33 3.86 8.60 1.68 2.28 5.31 10.20
RW(1) 1.05 1.43 4.08 8.75 1.71 2.29 5.31 10.10
RW(2) 1.27 2.10 4.03 7.03 2.26 3.87 7.11 11.90
Model SWH
AR(1) 1.05 1.52 4.33 9.26 1.66 2.31 5.30 10.30
AR(2) 0.96 1.36 3.86 8.70 1.67 2.31 5.30 10.30
RW(1) 1.05 1.49 4.12 8.89 1.70 2.35 5.33 10.30
RW(2) 1.27 2.18 4.19 7.33 2.26 3.99 7.36 12.40

Table 4.8: 2, 7, 12 and 17 step ahead prediction CRPS and RMSE of NMRs simulated by AR(2),
for scenario S0, SBH, and SWH. Last year with data is 2013, so the prediction steps correspond to
the years 2015, 2020, 2025 and 2030. The values marked with green are the lowest (most favorable)
in each column, for each scenario. CRPS and RMSE are calculated at logit-scale.
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Figure 4.8: CRPS of U5MR simulated by AR(2).

CRPS×10−01 RMSE ×10−01

2015 2020 2025 2030 2015 2020 2025 2030
Model S0
AR(1) 0.87 1.49 2.02 2.40 1.43 2.37 3.16 3.74
AR(2) 0.77 1.35 1.84 2.20 1.35 2.30 3.08 3.66
RW(1) 0.79 1.36 1.84 2.19 1.33 2.27 3.05 3.65
RW(2) 0.88 1.99 3.29 4.70 1.57 3.54 5.60 7.63
Model SBH
AR(1) 0.89 1.97 4.53 9.18 1.44 2.98 6.02 10.80
AR(2) 0.78 1.79 4.24 8.78 1.36 2.92 5.98 10.80
RW(1) 0.80 1.80 4.20 8.61 1.34 2.88 5.94 10.80
RW(2) 0.88 2.20 4.29 7.35 1.58 3.91 7.42 12.40
Model SWH
AR(1) 0.87 1.85 4.29 8.90 1.43 2.85 5.78 10.50
AR(2) 0.77 1.68 4.01 8.50 1.35 2.80 5.74 10.50
RW(1) 0.78 1.70 4.00 8.38 1.33 2.78 5.74 10.50
RW(2) 0.88 2.23 4.39 7.58 1.58 3.95 7.58 12.80

Table 4.9: 2, 7, 12 and 17 step ahead prediction CRPS and RMSE of U5MRs simulated by AR(2),
for scenario S0, SBH, and SWH. Last year with data is 2013, so the prediction steps correspond to
the years 2015, 2020, 2025 and 2030. The values marked with green are the lowest (most favorable)
in each column, for each scenario. CRPS and RMSE are calculated at logit-scale.
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Chapter 4. Simulation Study

than AR(1) models, as the AR(2) and RW(1) models overall have marginally lower CRPS
scores for U5MR. Plots similar to Figure 4.7 and Figure 4.8 are given for MAE and RMSE
in Appendix A. The plots in the appendix are consistent with the results presented in this
section. In general, the RW(2) models are outperformed by the other three models. In
some plots, one can also see that the AR(1) models perform slightly worse than AR(2) and
RW(1) models.

The analysis of datasets simulated from a model with AR(2) as temporal effect thus
leads to the same conclusion as the analysis of the datasets simulated by a model with
AR(1) as temporal effect; AR(2) models have the greatest explanatory strength and pro-
duce best predictions for NMR with respect to CRPS while AR(2) and RW(1) models
perform well for U5MR.

4.4 Discussion
RW(2) models have the lowest average CRPS scores for many steps ahead predictions
in alternative scenarios. However, the CRPS scores for the alternative scenarios are not
considered more important than the CRPS score for scenario S0 because they are simply an
addition of a quadratic trend in time. Provided availability of expert knowledge, it would
have been interesting to develop more realistic scenarios that, for example, incorporate the
effect of potential government interventions. If a model is to be evaluated based on its
ability to produce forecast in alternative futures, some covariate should be included in the
model allowing it to account for the changes. The RW(2) models have low CRPS scores
for far-ahead forecasts in alternative scenarios not because they were able to predict the
change in trend in mortality rates, but because they have large credible intervals.

The results presented in this chapter clearly show that different model assessment
scores prefer different models. For example in Table 4.2 and Table 4.6 AR(1) models
most often have the lowest RMSE while AR(2) models most often have the lowest CRPS
score. In addition, the difference in performance of the different models is relatively small.
Because of this, it is not possible to determine an absolute best model, and the choice of
criteria used in analysis affects the conclusions.

The assessed models are of different complexity. RW(1) and RW(2) have only one
parameter, but the study has shown that even though they are simple, RW(1) models can
produce competitive forecasts. AR(1) has two parameters, and AR(2) has three. If there
is not enough data to estimate φ2 in the AR(2) models, the AR(2) models may produce
worse forecasts than AR(1) models. In this situation, the simulation study has shown that
there is enough data for the added complexity of AR(2) models to improve on the AR(1)
models.

The overall conclusion from the simulation study is that AR(1), AR(2) and RW(1) are
preferred over RW(2) as the stochastic temporal process in an LGM for mortality rates.
RW(2) models interpolate data well, but they are not able to extrapolate data with mean-
ingful credible intervals. AR(2) models have the greatest explanatory strength, and AR(2)
models perform well with respect to prediction scores. For U5MR and one can argue that
AR(2) and RW(1) models produce better predictions that AR(1) models. Mortality rates
in Kenya are, therefore, analyzed using LGMs with stochastic temporal effects AR(2) and
RW(1) in Chapter 5.
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Chapter 5
Univariate Modeling of Child
Mortality Rates in Kenya

In this chapter, historical and forecasted population size (POP) and gross domestic product
(GDP) of Kenya are explored as possible covariates in models aiming to produce long-
term forecasts of child mortality rates. Models with temporal effect AR(2) and RW(1)
are applied to yearly NMR and U5MR in Kenya from 1980-2013, and their predictive
strengths are compared. The overall best models to predict child mortality rates in Kenya
are used to evaluate Kenya’s progress towards the SDGs and MDGs.

5.1 Model selection
The SSP database has published forecasts for POP and GDP under multiple scenarios for
several countries, including Kenya. The population data and their log transformations are
shown in Figure 5.1. The two different projections for GDP and their log transformations
are presented in Figure 5.2 and Figure 5.3. Population size and GDP are expected to
continue to grow, and a more rapid growth in GDP is projected in the future.

To explore the correlation between mortality rates and the potential covariates, cross
plots are presented in Appendix B. Figure B.1 and Figure B.2 show POP, GDP, log(POP)
and log(GDP) for years 1980-2010 plotted against logit(NMR) and logit(U5MR), respec-
tively. Figure B.3 and Figure B.4 show the ratio and ratio of log of GDP and POP for years
1980-2010 plotted against logit(NMR) and logit(U5MR). Figure B.1 and Figure B.3 do
not indicate a clear correlation between NMR and any of the possible covariates. How-
ever, this is not that surprising as Figure 5.1, Figure 5.2 and Figure 5.3 show clear trends
whereas Figure 3.1 show no clear trends. From Figure B.2 and Figure B.4 it appears that
U5MR is correlated with the covariates.

Impact of covariates in models for mortality rates should be tested for every combina-
tion of covariates available. As the two GDP models are two competing models, it is not
meaningful to include GDP1 and GDP2 in the same model. Since it is possible that the
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Figure 5.1: Population and log(population) data and projections for Kenya for five different scenar-
ios. Historical data until year 2010.
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Figure 5.2: GDP data and GDP projections for Kenya for five different scenarios, using two different
models. Historical data until year 2010.
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Figure 5.3: log(GDP) data and log(GDP) projections for Kenya for five different scenarios, using
two different models. Historical data until year 2010.

effect of POP and GDP are confounded in the linear trend, models with and without linear
trend are explored. Recall that yts denotes the logit of the estimated mortality rate for year
t, and survey s and that

yts ∼ N (ηts, σ
2
ts), ηts = µ+ ξt+ at + zTt β + δs, t = 1, 2, . . . , s = 1, 2, 3.

Here ηts is the logit of the true mortality rate for year t and σ2
ts is the estimated variance

for year t from survey s. µ is an intercept, ξ is an estimated coefficient, at is a stochastic
process, and zt is a vector of covariates with coefficients collected in β. δs is a survey
effect and data from three different surveys are used. An overview of the different com-
binations of covariates and corresponding model names are given in Table 5.1. The 22
different models are fitted with temporal effect AR(2) and RW(1), for NMR and U5MR.

It is interesting to investigate the coefficients of the covariates and their credible inter-
vals. The estimated coefficients are presented in Appendix C, in Table C.1 for NMR and
Table C.2 for U5MR. From Table C.1, one can see that none of the coefficients are signif-
icant. Based on the previously shown plots of yearly NMR in Kenya (Figure 3.1), plots
of simulated NMR (Figure 4.1 and Figure 4.5), and the NMR plots in Appendix B, this is
not surprising results; there is no clear trend in change in NMR between 1980 and 2013,
and it is, therefore, difficult to extract signals. Table C.2 reveals that for U5MR, several
of the coefficients are significant. Using AR(2) as temporal effect makes the coefficients
in model 2, 3, 4, 7, 8, 9, and 12 significant. Also, the coefficient of GDP1 in model 19 is
significant. RW(1) makes the coefficients in model 3, 4, 8, and log(GDP1) in model 16
significant. As one could expect, the signs of the significant coefficients are negative.
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Name Covariates Name Covariates
1 - 12 t
2 log(POP) 13 t, log(POP)
3 log(GDP1) 14 t, log(GDP1)
4 log(GDP2) 15 t, log(GDP2)
5 log(POP), log(GDP1) 16 t, log(POP), log(GDP1)
6 log(POP), log(GDP2) 17 t, log(POP), log(GDP2)
7 POP 18 t, POP
8 GDP1 19 t, GDP1
9 GDP2 20 t, GDP2

10 POP, GDP1 21 t, POP, GDP1
11 POP, GDP2 22 t, POP, GDP2

Table 5.1: Overview of model names and corresponding covariates. t is a linear trend, POP is
population size, GDP1 is GDP according to model 1 and GDP2 is GDP according to model 2.

The WAIC of each model and the CRPS and MSE of one-step, two-step, and three-
step predictions are computed to evaluate the models’ explanatory and predictive strengths.
All values are calculated on logit-scale. Since the predictions are to be compared with the
design-based estimates from KDHS14, a small modification is made to the input fed to
inla(); the fourth part of the survey-index column (idxs) does not contain NAs, but the
index corresponding to KDHS14 (3). When calculating CRPS it is assumed that both the
logit of the estimated mortality rates and the logit of the predicted mortality rates follow
a normal distribution, therefore Equation (2.19) is used. The calculated MSE considers
the design-based estimate of mortality rate from KDHS14 and the corresponding mean
prediction made by the models.

Stepwise CRPS and MSE are computed by estimating models using data until year
2005, . . . , 2012, and then computing one-, two-, and three-steps predictions. This makes
it possible to compute six 3-step ahead, seven two-steps ahead, and eight one-step ahead
CRPS scores and take the average. As the goal is to make predictions until 2030 when
the last year of observations is 2013, 17-step ahead predictions are what one is really
interested in. However, only data up until and including 1996 could have been used to
estimate models if one were to produce a 17-step ahead prediction score. Thus, three-step
ahead predictions are considered as a compromise between what is practical to compute
and the desire for long-term forecasts.

The WAIC and average CRPS scores for NMR are presented in Table 5.2 while the
MSE scores are presented in Table 5.3. The final row in each of the tables is the median
difference between the AR(2) and RW(1) models. A negative median indicates that the
AR(2) models most often perform best, while a positive value indicates that RW(1) models
most often perform best. The median differences presented in the last row of Table 5.2
show that in general, the models fitted with temporal effect AR(2) have lower WAIC and
CRPS scores than the corresponding models with temporal effect RW(1). From the median
differences in Table 5.3 one can see that models with temporal process AR(2) most often
have the lowest three-step ahead prediction MSE, whereas RW(1) processes most often
have the lowest one and two-step ahead prediction MSE. Overall, model 15 with temporal
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5.1 Model selection

effect AR(2) performs best with respect to prediction as it has the lowest MSE and CRPS
score for two- and three-step predictions. Consequently, it is decided to study model 15
further. However, model 14 is the equivalence of model 15, using GDP model 1. It is not
known which of the two GDP projections that are most accurate, and the SSP database
recommends that both projections are used. In that way, the results can be compared,
and the model’s sensitivity to GDP projections evaluated. Therefore model 14 is also
considered when moving forward. For comparison, model 12 (only linear trend) fitted
with AR(2) is also studied further.

Different conclusions can be drawn for U5MR based on Table 5.4 and Table 5.5. The
median values presented in the two tables show that models with temporal effect RW(1) in
general have lower CRPS and MSE scores for one-, two-, and three-step predictions, but
that models with AR(2) have the lowest WAIC. Thus, the models best describing the data
are not necessarily the best at producing forecasts. Three models stand out in both tables;
model 8, 10, and 16. Model 10 has the lowest CRPS and MSE scores for models with
temporal effect AR(2) and lowest one-step ahead prediction MSE and CRPS score with
temporal effect RW(1). Model 16 is almost consistently in second place. Model 8 with
temporal effect RW(1) has the overall lowest three-step ahead prediction CRPS score and
has competitive scores otherwise. The goal of this thesis is to produce forecasts far into the
future with reasonable credible intervals. Model 8 with temporal effect RW(1) is therefore
chosen for analysis of Kenya’s progress towards the SDGs and MDGs for U5MR. Model
8 and model 9 have the same covariate, for two alternative futures. Therefore model 9 also
has to be considered. For comparison, model 12 is also interesting.

Based on this analysis is it chosen to evaluate Kenya’s progress towards the SDGs and
MDGs using model 14, 15 and 12 with temporal effect AR(2) for NMR and model 8, 9
and 12 with temporal effect RW(1) for U5MR.
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WAIC One-step Two-step Three-step
CRPS ×10−02 CRPS ×10−02 CRPS ×10−02

Model AR(2) RW(1) AR(2) RW(1) AR(2) RW(1) AR(2) RW(1)
1 19.07 30.62 2.16 3.85 2.17 3.73 2.37 3.89
2 20.32 31.58 2.13 2.97 2.22 2.87 2.71 3.93
3 20.35 31.43 1.92 2.68 2.03 2.56 2.63 3.56
4 20.36 31.34 1.91 2.64 2.02 2.50 2.63 3.52
5 20.94 31.44 1.51 2.38 1.77 2.35 2.71 3.45
6 20.49 30.33 1.49 2.20 1.67 2.07 2.64 3.18
7 20.33 31.50 2.26 2.96 2.41 2.90 2.92 4.11
8 20.38 31.42 2.00 2.56 2.16 2.50 2.94 3.80
9 20.42 31.29 1.99 2.50 2.16 2.42 2.96 3.76

10 20.78 31.17 1.74 2.25 2.55 2.80 4.66 5.12
11 20.30 29.83 1.81 2.19 2.51 2.50 4.65 4.84
12 20.32 31.74 2.24 3.02 2.37 2.96 2.83 4.08
13 21.24 33.02 3.72 3.52 4.33 3.71 5.43 5.28
14 20.80 31.86 1.72 2.61 1.76 2.56 2.27 3.49
15 20.24 30.29 1.55 2.43 1.49 2.17 1.98 2.98
16 21.91 33.14 2.23 2.33 2.55 2.33 3.75 3.94
17 21.29 32.38 2.06 2.16 2.22 2.00 3.40 3.62
18 21.40 31.29 2.76 2.09 3.52 2.07 5.75 4.57
19 20.84 30.79 1.79 2.22 2.78 2.96 5.31 5.87
20 20.45 29.90 1.87 2.20 2.78 2.76 5.35 5.69
21 22.00 33.36 2.44 2.18 3.77 3.12 6.53 6.61
22 21.20 32.38 2.14 2.13 2.97 2.70 5.52 6.11

Median
difference

-11.05 -0.54 -0.29 -0.66

Table 5.2: WAIC and step-wise prediction CRPS ×10−02 for NMR, at logit scale. The median
difference is the median of the difference between the CRPS score for the same models fitted by
AR(2) and RW(1). The values marked with green are the lowest values in the column, while the
yellow values are the second lowest.
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One-step Two-step Three-step
MSE ×10−02 MSE ×10−02 MSE ×10−02

Model AR(2) RW(1) AR(2) RW(1) AR(2) RW(1)
1 1.22 1.34 1.25 1.41 1.39 1.64
2 1.24 1.23 1.31 1.32 1.64 2.05
3 1.11 1.13 1.18 1.21 1.59 2.02
4 1.11 1.13 1.18 1.20 1.60 2.02
5 0.85 0.90 1.01 1.05 1.66 1.92
6 0.84 0.88 0.94 0.96 1.60 1.85
7 1.33 1.27 1.43 1.38 1.80 2.22
8 1.16 1.14 1.26 1.24 1.80 2.31
9 1.16 1.13 1.26 1.23 1.82 2.32
10 0.98 0.97 1.52 1.49 3.24 3.41
11 1.02 1.00 1.46 1.41 3.18 3.34
12 1.31 1.27 1.40 1.38 1.74 2.15
13 2.32 1.69 2.78 1.95 3.67 3.11
14 0.98 0.98 1.01 1.07 1.36 1.75
15 0.88 0.90 0.84 0.91 1.17 1.54
16 1.28 1.10 1.39 1.21 2.21 2.47
17 1.16 1.03 1.16 1.05 1.95 2.31
18 1.65 1.06 2.03 1.11 3.73 3.10
19 0.99 0.99 1.65 1.66 3.84 4.15
20 1.04 1.05 1.62 1.63 3.81 4.13
21 1.34 1.20 2.07 1.92 4.35 5.08
22 1.11 1.13 1.44 1.62 3.44 4.73

Median
difference

0.01 0.01 -0.37

Table 5.3: Step-wise prediction MSE ×10−02 for NMR, at logit scale. The median difference is
the median of the difference between the MSE for the same models fitted by AR(2) and RW(1). The
values marked with green are the lowest values in the column, while the yellow values are the second
lowest.
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WAIC One-step Two-step Three-step
CRPS ×10−02 CRPS ×10−02 CRPS ×10−02

Model AR(2) RW(1) AR(2) RW(1) AR(2) RW(1) AR(2) RW(1)
1 -84.28 -84.42 4.79 3.65 7.71 4.98 12.16 7.43
2 -84.02 -83.97 3.63 2.82 4.91 3.10 7.52 4.61
3 -84.04 -83.79 2.98 2.23 3.60 2.06 5.59 3.24
4 -83.35 -82.99 3.15 2.48 3.63 2.24 5.45 3.31
5 -82.63 -82.14 2.43 1.97 2.68 1.72 4.25 2.91
6 -82.13 -81.63 2.78 2.41 2.81 2.05 4.13 3.09
7 -83.80 -83.55 3.16 2.48 3.67 2.26 5.53 3.38
8 -83.48 -82.93 2.18 1.79 1.91 1.28 3.13 2.48
9 -82.32 -81.50 2.66 2.48 2.36 2.07 3.44 3.21

10 -82.20 -80.13 1.58 1.68 1.18 1.48 2.56 3.26
11 -81.90 -81.41 2.82 2.81 2.60 2.75 3.98 4.48
12 -83.97 -83.78 3.42 2.66 4.38 2.72 6.62 4.05
13 -83.09 -82.92 2.71 2.45 2.84 2.20 4.50 3.43
14 -83.42 -83.23 2.71 2.14 3.23 1.96 5.19 3.21
15 -82.82 -82.53 2.92 2.43 3.27 2.17 5.02 3.29
16 -80.56 -75.83 1.73 1.78 1.37 1.37 2.61 2.64
17 -81.13 -79.50 2.44 2.52 2.11 2.16 3.29 3.35
18 -82.39 -82.05 2.72 2.82 2.65 3.00 4.88 5.73
19 -82.16 -77.94 1.63 1.81 1.40 1.83 3.17 4.00
20 -81.80 -81.25 2.99 3.03 3.09 3.25 4.95 5.43
21 -81.77 -79.59 2.40 2.95 3.14 4.52 6.83 9.24
22 -81.92 -81.35 3.45 3.98 4.55 5.82 8.28 10.75

Median
difference

-0.49 0.32 0.63 0.85

Table 5.4: WAIC and step-wise prediction CRPS ×10−02 for U5MR, at logit scale. The median
difference is the median of the difference between the CRPS score for the same models fitted by
AR(2) and RW(1). The values marked with green are the lowest values in the column, while the
yellow values are the second lowest.
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5.1 Model selection

One-step Two-step Three-step
MSE ×10−02 MSE ×10−02 MSE ×10−02

Model AR(2) RW(1) AR(2) RW(1) AR(2) RW(1)
1 1.97 1.38 3.72 2.14 6.98 3.67
2 1.44 1.04 2.20 1.26 3.89 2.12
3 1.15 0.80 1.54 0.80 2.73 1.41
4 1.23 0.90 1.54 0.87 2.64 1.43
5 0.93 0.71 1.09 0.66 1.97 1.27
6 1.09 0.89 1.15 0.80 1.88 1.33
7 1.23 0.91 1.57 0.89 2.70 1.47
8 0.82 0.64 0.73 0.48 1.35 1.08
9 1.04 0.95 0.93 0.85 1.48 1.45

10 0.61 0.63 0.38 0.59 1.04 1.58
11 1.20 1.15 1.12 1.21 1.86 2.25
12 1.35 0.98 1.92 1.09 3.34 1.82
13 1.06 0.92 1.17 0.87 2.10 1.51
14 1.06 0.78 1.37 0.76 2.52 1.41
15 1.15 0.90 1.38 0.85 2.41 1.43
16 0.66 0.64 0.48 0.52 1.08 1.19
17 0.98 0.96 0.83 0.88 1.43 1.53
18 1.14 1.16 1.07 1.31 2.29 2.95
19 0.64 0.68 0.49 0.76 1.42 2.04
20 1.30 1.26 1.39 1.47 2.51 2.85
21 1.01 1.23 1.35 2.08 3.86 5.36
22 1.53 1.69 2.17 2.76 4.90 6.33

Median
difference

0.16 0.27 0.41

Table 5.5: Step-wise prediction MSE ×10−02 for U5MR, at logit scale. The median difference is
the median of the difference between the MSE for the same models fitted by AR(2) and RW(1). The
values marked with green are the lowest values in the column, while the yellow values are the second
lowest.
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Chapter 5. Univariate Modeling of Child Mortality Rates in Kenya

5.2 Estimation and forecasting
At this point the chosen models are used to forecast mortality rates in Kenya until 2030.
Forecasts of NMR are presented in Figure 5.4, Figure 5.5 and Figure 5.6 for model 12,
15, and 14, respectively. Forecasts for U5MR are presented in Figure 5.7, Figure 5.8
and Figure 5.9 for model 12, 8, and 9, respectively. In the figures, SSP0 referrers to ”no
scenario”, which is always the case for year < 2011 and for models that do not include
any covariates.

From Figure 5.4, Figure 5.5 and Figure 5.6 one can see that the models with covariates
produce forecasts with wider credible intervals. This could be due to the relatively large
credible intervals of the coefficients, especially for that of log(GDP) in both model 14
and model 15 (see Table C.1). Several different linear combinations of log(GDP) and t
might explain the observed data well, leading to the uncertain estimates of the coefficients
of the covariates. If the relative trend of the covariates change outside the interval for
which one has observations, predictions become even more uncertain. The same is not
true for U5MR, based on Figure 5.7, Figure 5.8 and Figure 5.9. The models with GDP as
covariate, model 8 and model 9, have tighter credible intervals than the model with only
a linear trend, model 12. For both NMR and U5MR one can see that the models with
covariates produce forecasts whose mean decrease more rapidly compared to the forecasts
made by model 12.

Recall that SDG target 3.2 is to reduce NMR to “at least as low as 12 per 1000 live
births” (UN (2019a)) and U5MR to “at least as low as 25 per 1000 live birth” (UN (2019a))
by 2030, while MDG target 4A was to reduce U5MR by two thirds between 1990 and
2015. As it is difficult to assess the progress towards the SDGs and MDGs based on the
figures, Table 5.6 and Table 5.7 presents the estimated/forecasted mortality rates for key
years, namely 1990, 2015 and 2030. When comparing the values in Table 5.6 and Table 5.7
one can see that in 2030 the median predicted U5MR is lower than the median predicted
NMR, which is not realistic.

Using the median values for NMR and U5MR presented in Table 5.6 and Table 5.7
one gets that SDG target 3.2 is reached for NMR only in scenario SSP5 using model 15
(rounding to the nearest whole number), and for U5MR in all scenarios using model 8 or
9. When considering SSP0 or SSP2 (middle of the road) the projected NMR per 1000
live birth in 2030 is 26.50 for model 12, 15.51 for model 14 and 14.93 for model 15. For
U5MR, the corresponding median projected values for 2030 are 39.06 using model 12,
4.86 using model 8 and 9.18 using model 9. Thus it is clear that the median predictions
are sensitive to model choice. However, compared to the size of the credible intervals, the
differences in predictions for the different models and scenarios are small for both NMR
and U5MR.

As the forecasts are probabilistic, it is more interesting to look at the probability of
reaching SDG target 3.2. That is done by using the marginal posterior of the linear predic-
tor. The probabilities of reaching SDG target 3.2 in scenario SS0 or SSP2 are presented in
Table 5.8. Table 5.8 further highlights the fact that the models with covariates give very
different projections than the models without covariates. The probability of reaching SDG
target 3.2 for NMR is 0.19% for model 12, but 29.28% and 29.63% for model 8 and 9.
Thus, the probability of reaching SDG target 3.2 for NMR is not that sensitive to the choice
of GDP model. The probability of reaching SDG target 3.2 for U5MR is more sensitive
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Figure 5.4: NMR for Kenya fitted using model 12 (linear trend, no covariates), using AR(2) as
temporal effect and estimated NMR from 1980-2013.
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Figure 5.5: NMR for Kenya fitted using model 15 (t and log(GDP2) as covariates), using AR(2) as
temporal effect and estimated NMR from 1980-2013.
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Figure 5.6: NMR for Kenya fitted using model 14 (t and log(GDP1) as covariates), using AR(2) as
temporal effect and estimated NMR from 1980-2013.
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Figure 5.7: U5MR for Kenya fitted using model 12 (linear trend, no covariates), using RW(1) as
temporal effect and estimated U5MR from 1980-2013.

64



5.2 Estimation and forecasting

●
●
●●●●●

●
●●

●●

●
●
●
●●●●

●
●
●●

−8

−6

−4

−2

1980 1990 2000 2010 2020 2030
Year

lo
gi

t(
u5

m
r)

●

●

●
●●

●
●

●

●●
●●

●

●

●

●●●●

●

●

●●

0

100

200

300

1980 1990 2000 2010 2020 2030
Year

u5m
r per 1000 live birth

● KDHS03
KDHS08−09

KDHS14
SSP0

SSP1
SSP2

SSP3
SSP4

SSP5

Figure 5.8: U5MR for Kenya fitted using model 8 ( GDP1 as covariate), using RW(1) as temporal
effect and U5MR rates from 1980-2013.

●
●
●●●●

●
●
●●

●●

●
●
●
●●●●

●

●
●●

−6

−4

−2

1980 1990 2000 2010 2020 2030
Year

lo
gi

t(
u5

m
r)

●

●

●
●●

●
●

●

●●
●●

●

●

●

●●●●

●

●

●●

0

100

200

300

1980 1990 2000 2010 2020 2030
Year

u5m
r per 1000 live birth

● KDHS03
KDHS08−09

KDHS14
SSP0

SSP1
SSP2

SSP3
SSP4

SSP5

Figure 5.9: U5MR for Kenya fitted using model 9 ( GDP2 as covariate), using RW(1) as temporal
effect and U5MR rates from 1980-2013.
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Model 12 (liner trend,no covariates)
Scenario 1990 2015 2030

SSP0 30.77 [24.38, 39.32] 26.90 [18.51, 38.55] 26.50 [16.17, 41.46]

Model 14 ( t, log(GDP1))
Scenario 1990 2015 2030

SSP1 29.67 [23.33, 38.32] 28.12 [19.46, 40.22] 13.63 [4.29, 44.82]
SSP2 29.63 [23.31, 38.25] 28.18 [19.56, 40.21] 15.51 [5.96, 41.19]
SSP3 29.62 [23.30, 38.23] 28.58 [19.74, 40.91] 19.68 [10.27, 37.81]
SSP4 29.68 [23.34, 38.33] 28.64 [19.64, 41.23] 19.40 [9.84, 38.42]
SSP5 29.67 [23.33, 38.33] 28.10 [19.44, 40.20] 12.77 [3.64, 46.60]

Model 15( t, log(GDP2))
Scenario 1990 2015 2030

SSP1 29.28 [23.03, 37.79] 23.73 [16.19, 34.75] 13.15 [4.97, 35.09]
SSP2 29.24 [23.04, 37.74] 23.53 [16.04, 34.54] 14.93 [6.51, 34.35]
SSP3 29.25 [23.02, 37.78] 23.21 [15.70, 34.33] 16.09 [7.63, 34.01]
SSP4 29.27 [23.06, 37.81] 23.26 [15.73, 34.41] 16.87 [8.35, 34.12]
SSP5 29.28 [23.03, 37.79] 23.76 [16.22, 34.77] 12.06 [4.13, 35.59]

Table 5.6: Median estimated and forecasted NMR in Kenya in 1990, 2015 and 2030, with 95%
credible intervals.

Model 12 (linear trend, no covariates)
Scenario 1990 2015 2030

SSP0 98.20 [85.13, 113.24] 54.44 [42.12, 70.69] 39.06 [19.21, 78.44]

Model 8 (GDP1)
Scenario 1990 2015 2030

SSP1 97.09 [84.65, 111.43] 53.91 [43.12, 67.99] 2.86 [0.34, 23.72]
SSP2 97.09 [84.65, 111.43] 54.05 [43.24, 68.15] 4.86 [0.83, 28.48]
SSP3 97.08 [84.65, 111.42] 54.97 [44.09, 69.11] 10.33 [2.87, 36.92]
SSP4 97.08 [84.65, 111.42] 55.18 [44.27, 69.31] 9.77 [2.62, 36.07]
SSP5 97.09 [84.65, 111.42] 53.86 [43.07, 67.94] 2.15 [0.21, 21.55]

Model 9 (GDP2)
Scenario 1990 2015 2030

SSP1 97.36 [84.70, 111.99] 48.41 [37.19, 64.65] 6.46 [1.09, 45.93]
SSP2 97.38 [84.70, 112.02] 48.23 [36.96, 64.63] 9.18 [1.99, 49.84]
SSP3 97.40 [84.71, 112.07] 47.84 [36.46, 64.55] 11.27 [2.80, 53.15]
SSP4 97.39 [84.70, 112.06] 47.90 [36.55, 64.56] 12.47 [3.34, 53.77]
SSP5 97.36 [84.70, 111.99] 48.46 [37.25, 64.68] 5.04 [0.71, 44.02]

Table 5.7: Median estimated and forecasted U5MR in Kenya in 1990, 2015 and 2030, with 95%
credible intervals.
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5.2 Estimation and forecasting

Rate Model 12 Model 14/8 Model 15/9
NMR 0.19 % 29.28% 29.63%

U5MR 9.82% 96.73 % 89.35%

Table 5.8: Probability or reaching SDG 3 in scenario SSP0 (model 12) or SSP2 (model 8 and 9 for
U5MR, and model 14 and 15 for NMR).

to the choice of GDP model, with a probability of 96.73% for model 8 and 89.35% for
model 9. For comparison, the probability of reaching SDG target 3.2 for U5MR is 9.82%
using model 12.

To properly assess if Kenya reached MDG target 4A, the joint posterior distribution
of the linear predictor for the year 1990 and the year 2015 should be used. However, in
this thesis, the discussion is limited to an evaluation of median values, presented in Table
5.7. When rounding to the nearest child, a 2/3 reduction between 1990 and 2015 in U5MR
equals a U5MR of 33 per 1000 live birth for model 12 and a U5MR of 32 per 1000 live
birth using model 8 and 9. Thus, MDG target 4A was not reached regardless of scenario
and model. Model 12 gives a U5MR of 54.44 per 1000 live birth in 2015, while model 8
gives 54.05 and model 9 gives 48.23, both for scenario SSP2.

The analysis concludes that the probability of reaching SGD target 3.2 is heavily de-
pendent on the choice of model. If using model 12, the probability of reaching SDG target
3.2 is 0.19% for NMR and 9.82% for U5MR. The probability of reaching the target in-
creases when using models with covariates. If GDP model 1 is accurate, the probability
of reaching SDG 3 in scenario SSP2 is 29.28% for NMR and 96.73% for U5MR. If GDP
model 2 is accurate, the probabilities change to 29.63% for NMR and 89.35% for U5MR.
Further, the analysis shows that Kenya did not reach MDG target 4A. For NMR including
covariates generally increased the size of credible intervals of predictions, whereas the op-
posite is true for U5MR. Modeling NMR is difficult as there is no clear trend in the change
in NMR between 1980-2013.

For a complete analysis, the effect of other covariates than those explored here could
be considered. Besides using information about Kenya, it is also possible to include infor-
mation from countries that are similar to Kenya or who are likely to influence Kenya. An
example of two such countries is Uganda and Tanzania, two of Kenya’s neighbors. In the
following chapter, models that simultaneously estimate child mortality rates in those three
countries are analyzed and compared to the best-performing models from this chapter.
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Chapter 6
Joint Modeling of Child Mortality

This chapter explores the effect of including information from two neighboring countries,
Uganda and Tanzania, in models for NMR and U5MR in Kenya. Section 6.1 presents
the estimated mortality rates for Uganda and Tanzania and the effect of joint modeling
on forecasts is investigated. Section 6.1 aims to determine if more reliable forecasts for
one country can be produced by using data from neighboring countries as well, compared
to only using data from the country of interest. The goal of Section 6.2 is to examine
if estimates of mortality rates for a country for which recent data is not available can be
improved by borrowing strength from neighboring countries for which more recent data is
available.

6.1 Effect of borrowing strength from neighboring coun-
tries on forecast

Data from three separate DHS surveys undertaken in Uganda in 2006, 2011, and 2016 is
used to produce design-based estimates of NMR and U5MR in Uganda. The surveys are
henceforth referred to as UDGS06, UDHS11, and UDHS16. The survey data is coded in a
similar way to the KDHS data, so the mortality rates are computed as explained in Section
3.1. Design-based estimates of NMR and U5MR in Tanzania are produced in the same
way, using data from DHS surveys undertaken in 2004-2005, 2010 and 2015-2016. The
surveys are henceforth referred to as TDGS05, TDHS10, and TDHS16.

The NMR in Uganda from 1980-2015 is given in Figure 6.1 and the U5MR is given
in Figure 6.2. The estimated NMR and U5MR for Tanzania are presented in Figure 6.3
and Figure 6.4, respectively. By comparing Figure 3.1, Figure 6.1 and Figure 6.3 one
can see that the behaviour of NMR is quite similar in all three countries. The same can
be said for U5MR by comparing Figure 3.3, Figure 6.2 and Figure 6.4. Thus there are
reasons to believe that models of child mortality rates in Kenya might improve by including
information from Uganda and Tanzania.

In this section, multivariate time models as explained in Section 2.5 with latent struc-
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Figure 6.1: Design-based NMR per 1000 live birth and logit(NMR) in Uganda with 95% credible
interval, calculated separately for each year from 1980 to 2015, using data from three independent
UDHS surveys.
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Figure 6.2: Design-based U5MR and logit(U5MR) in Uganda with 95% credible interval, calcu-
lated separately for each year from 1980 to 2015, using data from three independent UDHS surveys.
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Figure 6.3: Design-based NMR per 1000 live birth and logit(NMR) in Tanzania with 95% credible
interval, calculated separately for each year from 1980 to 2014, using data from three independent
UDHS surveys.

72



6.1 Effect of borrowing strength from neighboring countries on forecast

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Year

U
5M

R
 p

er
 1

00
0 

liv
e 

bi
rt

h

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

−3.2
−3.1
−3.0
−2.9
−2.8
−2.7
−2.6
−2.5
−2.4
−2.3
−2.2
−2.1
−2.0
−1.9
−1.8
−1.7
−1.6
−1.5
−1.4
−1.3
−1.2
−1.1
−1.0
−0.9
−0.8
−0.7
−0.6
−0.5

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Year

lo
gi

t(
U

5M
R

)

● TDHS05 TDHS10 TDHS16

Figure 6.4: Design-based U5MR and logit(U5MR) in Tanzania with 95% credible interval, calcu-
lated separately for each year from 1980 to 2014, using data from three independent UDHS surveys.
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ture defined by Equation (2.15) are explored. Recall that the logit of the design-based
estimate of the mortality rate for country c and year t estimated using data from survey s
is denoted ycts, is fixed and known. Further, ycts ∼ N (ηcts, σ

2
cts), where c = 1, 2, . . . k, k

is the number of countries considered, t = 1, 2, . . . , s = 1, 2, . . . , S, where S is the total
number of surveys used and

ηcts = µc + ξct+ act + δs + zTctβ.

µc is a country-specific intercept, ξc is a country-specific linear trend in time, act is a vector
autoregressive temporal effect and δs is a survey effect. The last term is needed when
additional covariates are considered; zct is a vector of country specific, time-dependent
covariates with estimated coefficients collected in β. The model is estimated as explained
in Section 3.2 using data from Kenya, Uganda, and Tanzania. For NMR models equivalent
to model 12, 14 and 15 from Chapter 5 are explored, and they are from this point onward
called model 12M, 14M, and 15M, respectively. For U5MR, models equivalent to model
12, 8 and 9 from Chapter 5 are explored, and referred to as model 12M, 8M, and 9M.
Using the results from Chapter 5, NMR is fitted using a model with temporal effect AR(2)
while U5MR is fitted using a model with temporal effect RW(1).

Even though the focus of this thesis is mortality rates in Kenya, the estimated models
can also be used to estimate and predict mortality rates in Uganda and Tanzania. Estimated
and forecasted NMR for the three countries using model 15M are presented in Figure 6.5,
while corresponding plots for U5MR estimated by model 8M is given in Figure 6.6. For
years after 2010, SSP2 data is used for GDP. Please note that although estimated mortality
rates for Kenya is only available until 2013, estimated mortality rates for 2014 and 2015
for Uganda and Tanzania are also available.

It is desirable to compare estimations and forecasts of mortality rates in Kenya as
produced by model 15 and 15M for NMR and model 8 and 8M for U5MR. Estimated
and forecasted NMR is presented in Figure 6.7, while U5MR is presented in Figure 6.8.
From Figure 6.7 and Figure 6.8 one can see that the multivariate time models have tighter
credible intervals. The fitted/predicted values appear to be more smooth when fitted using
the multivariate time model. The predicted NMR is increasing using model 15M and
decreasing using model 15. The predicted U5MR is lower for model 8M compared to
model 8. For the interested reader, plots of model 14M and 15M for NMR and 8M and 9M
for U5MR for Kenya for all five scenarios are given in Appendix D. The plots presented in
Appendix D show no major differences between model 14M and 15M or model 8M and
9M, other than that the predictions produced by model 14M are a bit higher than those of
model 15M.

To explore the difference in the univariate and multivariate models further, the esti-
mated parameters of the best models from Chapter 5, model 15 with AR(2) for NMR and
model 8 with RW(1) for U5MR, are compared to the estimated parameters of the equiva-
lent multivariate models (model 15M and model 8M). The estimated parameters for NMR
are presented in Table 6.1, while the parameters for the U5MR models are presented in
Table 6.2. The covariates (including linear trend) are transformed using exp, so the effect
is a multiplicative effect on odds-ratio on an increase of one unit of the covariate. Thus,
an estimated effect less than one decreases the mortality rate, while an effect greater than
one increases it.
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Figure 6.5: Estimated and predicted NMR and logit(NMR) in Kenya, Uganda and Tanzania with
95% credible intervals, estimated model 15M with temporal effect AR(2).
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Figure 6.6: Estimated and predicted U5MR and logit(U5MR) in Kenya, Uganda and Tanzania with
95% credible intervals, estimated using model 8M with temporal effect RW(1).
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Figure 6.7: Estimated and predicted NMR and logit(NMR) in Kenya with 95% credible interval,
estimated using a univariate time model (model 15) and a multivariate time model (model 15M),
with temporal effect AR(2).
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Figure 6.8: Estimated and predicted U5MR and logit(U5MR) in Kenya with 95% credible interval,
estimated using a univariate time model (model 8) and a multivariate time model (model 8M), with
temporal effect RW(1).
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From Table 6.1 one can see that the median of the intercept, µ, in model 15 is 0.30,
whereas the country-specific intercept for Kenya in model 15M, µ1, is much lower,−4.51.
The 95% credible interval for µ is wide, [-4.51, 4.90], so both a significant negative and
positive effect is possible. The credible interval for µ1 is much narrower, and µ1 is sig-
nificantly different from zero. The estimated median and credible interval for exp(ξ) and
exp(ξ1) in Table 6.1 are similar. The credible intervals are relatively narrow and the mean
and median values are exp(ξ) = 1.04 and exp(ξ1) = 0.99. Both credible intervals include
1, so an increase in time can lead to a small decrease or a small increase in NMR. This is
supported by previously shown plots of NMR (Figure 3.1), where NMR does not seem to
follow a linear trend in time. The mean and median value of exp(β) in Table 6.1 is higher
for model 15M than for model 15. For model 15M, increasing log(GDP2) increases NMR,
which can explain the increase in NMR in the predictions in Figure 6.7. The credible in-
terval is tightest for model 15, but both credible intervals include 1. It is therefore difficult
to determine the effect of log(GDP2) on NMR.

Table 6.1 further shows that the standard deviation of the AR(2) process is smaller for
model 15M than for model 15. The interval [exp(−2σa), exp(2σa)] gives the approximate
95% credible interval for the time series’ effect on the odds-ratio. For model 15 that
interval is approximately [0.79, 1.21] and for model 15M it is approximately [0.85, 1.17].
The AR coefficients for both model 15 and model 15M have large credible intervals, which
include 0. The credible intervals are somewhat narrower for model 15 than for model 15M.
The medians of the AR coefficients are positive, indicating a positive correlation in time.
The credible intervals given for σs for both models in Table 6.1 do not contain zero and
the credible interval for σs is tightest for model 15M. In Table 6.1 ρgroup has a median of
0.46, with 95% credible interval [−0.20, 0.92]. Thus the effect is not significantly different
from zero. When comparing the 95% credible interval to that of the default prior given
in Section 3.2 ([−0.41, 0.41]) one can see that the interval has shifted upwards, indicating
that there is a positive correlation.

Table 6.2 shows that equivalent parameters in model 8 and model 8M are almost identi-
cal. The median of µ and µ1 are close in value, but µ1 have a tighter 95% credible interval.
The median estimates for expit(β) are identical for the two models at 0.98, but once again
model 8M has a tighter credible interval. The median of the standard deviation of the
random walk and the survey effect are almost identical for the two models, but model 8M
still have tighter credible intervals. [exp(−2σa), exp(2σa)] = [0.90, 1.11] for both mod-
els. The correlation between countries presented in Table 6.2 has median ρgroup = 0.42,
with 95% credible interval [−0.04, 0.77]. Thus the correlation is not significantly different
from zero, but it is more skewed towards positive correlation than the default prior.

To properly assess the new models’ capability of predicting mortality rates, average
one-, two-, and three-step prediction CRPS scores and MSE are computed. As in Chapter
5, the predictions are computed by estimating models using data until and including year
2005, 2006, . . . , 2012 (for all three countries) and then computing one, two and three steps
predictions for KDHS14. When calculating CRPS, it is assumed that both the estimated
mortality rates and the predicted mortality rates follow a normal distribution, so Equation
(2.19) is used. As in Chapter 5, SSP2 is used for POP, GDP1 and GDP2 for year >
2010. The resulting average CRPS scores and MSE are presented in Table 6.3 and Table
6.5, for NRM and U5MR, respectively. For comparison, the scores for the corresponding
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Parameter 0.025Q Median 0.975Q
Model 15

µ -4.51 0.30 4.90
exp(ξ) 0.99 1.04 1.09
exp(β) 0.07 0.29 1.38
σa 0.07 0.12 0.20
φ1 -0.42 0.27 0.56
φ2 -0.38 0.14 0.37
σs 0.05 0.11 0.27

Model 15M
µ1 -6.38 -4.51 -2.65

exp(ξ1) 0.97 0.99 1.01
exp(β) 0.77 1.39 2.52
σa 0.05 0.08 0.14
φ1 -0.69 0.71 0.97
φ2 -0.34 0.24 0.55
σs 0.04 0.07 0.15
ρgroup -0.20 0.46 0.92

Table 6.1: Estimated 0.025 quantile, median and 0.975 quantile of parameters of the model 15 and
15M for NMR, estimated using all available data. µ is the overall intercept, µ1 is the country specific
intercept for Kenya. Similarly, ξ and ξ1 are the estimated linear trends for Kenya. β is the coefficient
of the covariate, log(GDP2). σa is the standard deviation of the time series, while φ1 and φ2 are the
estimated coefficients in the autoregressive process. σs is the standard deviation of the survey effect.
ρgroup is the estimated correlation between temporal process in Kenya, Uganda and Tanzania.

Parameter 0.025Q Median 0.975Q
Model 8

µ -2.18 -1.49 -0.80
exp(β) 0.96 0.98 0.99
σa 0.03 0.05 0.09
σs 0.4 0.08 0.19

Model 8M
µ1 -1.87 -1.46 -1.08

exp(β) 0.97 0.98 0.99
σa 0.03 0.05 0.07
σs 0.03 0.05 0.10
ρgroup -0.04 0.42 0.77

Table 6.2: Estimated 0.025 quantile, median and 0.975 quantile of parameters of the model 8 and
8M for U5MR, estimated using all available data. µ is the overall intercept, µ1 is the country specific
intercept for Kenya. β is the coefficient of the covariate, GDP1. σa is the standard deviation of the
time series and σs is the standard deviation of the survey effect. ρgroup is the estimated correlation
between temporal process in Kenya, Uganda and Tanzania.
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Model One-step Two-step Three-step
CRPS MSE CRPS MSE CRPS MSE

12 2.24 1.31 2.37 1.40 2.83 1.74
12M 4.11 1.89 4.36 2.08 5.20 2.61
14 1.72 0.98 1.76 1.01 2.27 1.36

14M 4.17 1.93 4.39 2.12 5.19 2.62
15 1.55 0.88 1.49 0.84 1.98 1.17

15M 4.48 2.11 4.89 2.41 5.74 2.97

Table 6.3: One, two and three step prediction CRPS×10−02 and MSE×10−02 for NMR in Kenya,
using models with temporal effect AR(2). The values marked in green are the most favourable in
each column.

Survey 15 15M
KDHS03 0.11 0.09

KDHS08-09 0.04 0.04
KDHS14 -0.15 -0.14

Table 6.4: Survey effects for Kenya estimated by model 15 and 15M using data from 1980-2013.

univariate models (presented in Chapter 5) are also included in the tables.
From Table 6.3, one can see that the average CRPS scores and the MSE are larger for

the multivariate models than for the univariate models. To further investigate the reason
behind this, the three-step predicted NMR with credible interval for 2008-2013 is pre-
sented in Figure 6.9. Figure 6.9 shows that the credible interval of model 15M does not
appear to be tighter than that of model 15, but it has shifted a bit upwards. The mean pre-
dictions have also shifted upwards and are thus further away from the KDHS14 estimates.
To check if this is due to the estimated survey effects, the survey effects of model 15 and
15M estimated using data from 1980-2013 are presented in Table 6.4. As seen in Table
6.4, the differences between the estimated survey effects are small. Furthermore, there
are no apparent systematic differences between the survey effects in Kenya, Uganda, and
Tanzania.

Model One-step Two-step Three-step
CRPS MSE CRPS MSE CRPS MSE

12 2.66 0.98 2.72 1.09 4.05 1.82
12M 3.51 1.14 3.31 1.21 3.36 1.35

8 1.79 0.64 1.28 0.48 2.48 1.08
8M 1.93 0.67 1.46 0.55 1.65 0.69
9 2.48 0.95 2.07 0.85 3.21 1.45

9M 3.78 1.43 3.85 1.66 4.02 1.78

Table 6.5: One-, two-, and three-step prediction CRPS ×10−02 and MSE ×10−02 for U5MR
in Kenya, using models with temporal effect RW(1). The values marked in green are the most
favourable in each column.
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Figure 6.9: Three-steps predictions for NMR for 2008-2013 produced by model 15 and 15M, with
95% credible intervals, and KDHS14 NMR estimates.

Rate Model 12M Model 14M/8M Model 15M/9M
NMR 0.05% 0.07% 0.05%

U5MR 9.13% 99.97% 99.96%

Table 6.6: Probability of reaching SDG 3 for Kenya.

Table 6.5 shows that for U5MR, the multivariate models 12M and 9M have lower
average three step prediction MSE and CRPS scores than their univariate counterparts,
while the opposite is true for one- and two-step predictions and for model 9M. To further
assess the three-step predictions, the three-step predictions and 95% credible intervals
produced using model 8 and 8M are plotted with the KDHS14 estimates in Figure 6.10.
From Figure 6.10 one can see that model 8 and model 8M have predicted mean closest to
the estimated mean three times each, and that the credible interval of model 8M is better
at capturing the uncertainty in the KDGS14 estimates.

Finally it is interesting to closer study the estimates/projections for 1990, 2015 and
2030 and investigate the progress towards the SDGs and MDGs, using the multivariate
time models. As in Section 5.2, progress towards the SDGs is assessed by calculating
the probability of reaching SDG target 3.2, whereas progress towards MDG target 4A is
assessed by studying median predicted U5MR. The probabilities of reaching SDG target
3.2 is presented in Table 6.6, and the final estimates/predictions with credible intervals for
1990, 2015 and 2030 are presented in Table 6.7 and Table 6.8.

From Table 6.6 one gets that the probability of reaching SDG target 3.2 using model
12M is 0.05% for NMR and 9.13% for U5MR. That is a small reduction compared to
the results for model 12 (the univariate model) presented in Table 5.8. The probability
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Figure 6.10: Three-steps predictions for U5MR for 2008-2013 produced by model 8 and 8M, with
95% credible intervals, and KDHS14 U5MR estimates.

Model 12M (liner trend, no covariates)
Scenario 1990 2015 2030

SSP0 29.08 [24.83, 34.40] 26.76 [20.92, 33.90] 25.61 [17.08, 36.26]

Model 14M ( t, log(GDP1))
Scenario 1990 2015 2030

SSP1 29.49 [25.12, 34.91] 26.26 [20.49, 33.28] 31.10 [18.05, 50.78]
SSP2 29.51 [25.11, 34.98] 26.35 [20.55, 33.42] 30.16 [18.15, 47.51]
SSP3 29.50 [25.12, 34.94] 26.22 [20.43, 33.26] 28.07 [18.01, 41.35]
SSP4 29.50 [25.12, 34.94] 26.19 [20.40, 33.24] 28.23 [18.04, 41.78]
SSP5 29.49 [25.12, 34.91] 26.26 [20.49, 33.28] 31.72 [17.96, 53.07]

Model 15M( t, log(GDP2))
Scenario 1990 2015 2030

SSP1 29.27 [24.92, 34.70] 27.14 [21.03, 34.69] 28.65 [16.68, 46.97]
SSP2 29.27 [24.92, 34.70] 27.17 [21.04, 34.74] 28.07 [16.97, 44.15]
SSP3 29.27 [24.92, 34.70] 27.23 [21.06, 34.87] 27.72 [17.08, 42.68]
SSP4 29.28 [24.92, 34.70] 27.22 [21.06, 34.85] 27.51 [17.13, 41.82]
SSP5 29.27 [24.92, 34.70] 27.13 [21.02, 34.68] 29.08 [16.45, 49.10]

Table 6.7: Median estimated and forecasted NMR in Kenya in 1990, 2015 and 2030, with 95%
credible intervals.
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Model 12M (linear trend, no covariates)
Scenario 1990 2015 2030

SSP0 98.66 [89.32, 108.74] 51.21 [42.81, 61.94] 35.48 [20.94, 59.85]

Model 8M (GDP1)
Scenario 1990 2015 2030

SSP1 97.23 [88.00, 107.34] 53.87 [45.09, 64.71] 2.60 [0.86, 8.74]
SSP2 97.07 [87.90, 107.12] 52.92 [44.41, 63.49] 3.47 [1.30, 10.09]
SSP3 97.02 [87.86, 107.06] 53.55 [44.95, 64.24] 7.69 [3.61, 17.20]
SSP4 97.01 [87.85, 107.05] 53.76 [45.12, 64.48] 7.19 [3.31, 16.42]
SSP5 97.23 [88.00, 107.34] 53.82 [45.05, 64.66] 1.94 [0.59, 7.24]

Model 9M (GDP2)
Scenario 1990 2015 2030

SSP1 97.17 [87.80, 107.47] 44.19 [36.27, 54.67] 3.01 [0.98, 11.07]
SSP2 97.20 [87.83, 107.51] 44.13 [36.21, 54.61] 4.89 [1.85, 14.98]
SSP3 97.23 [87.85, 107.55] 43.65 [35.74, 54.15] 6.39 [2.61, 17.83]
SSP4 97.23 [87.85, 107.55] 43.76 [35.85, 54.25] 7.34 [3.13, 19.36]
SSP5 97.16 [87.79, 107.47] 44.23 [36.31, 54.71] 2.15 [0.63, 9.06]

Table 6.8: Median estimated and forecasted U5MR in Kenya in 1990, 2015 and 2030, with 95%
credible intervals.

of reaching SDG target 3.2 for NMR is not that sensitive to the choice of GDP model,
with 0.07% and 0.05% for model 14M and 15M, respectively. The probability of reaching
target 3.2 using model 14 and 15 is much higher, almost 30%. The probability of reaching
target 3.2 for U5MR using model 8M and 9M is higher than when using model 8 and 9.
However, the change in probability is not as large as the change for NMR. Model 8M gives
a probability of reaching the target of 99.97%, whereas model 9M gives a probability of
99.96%. Thus, if the model 8M and 9M are accurate, Kenya will most likely reach SDG
target 3.2 for U5MR but not for NMR.

When comparing the NMR values for model 12 in Table 5.6 to the values for model
12M in Table 6.7, one can detect a small decrease. As also seen from Figure 6.7, the
credible intervals are in general tighter for model 12M in Table 6.7 than for model 12
in Table 5.6. The median predictions for 2030 using model 14M and 15M have increased
compared to the ones from model 14 and 15. An increasing trend in NMR can also be seen
in Figure D.1 and Figure D.2. If model 14M and 15M are accurate, this is an indication
that interventions should be implemented in Kenya.

In general the median values for U5MR in 2015 and 2030 presented in Table 6.8 are
lower than the corresponding values in Table 5.7 and the credible intervals are tighter.
Using the median values presented in Table 6.8 one gets that MDG target 4A becomes 33
per 1000 live birth in 2015 for U5MR using model 12M and 32 using model 8M and 9M
(rounded to the nearest child). Thus the conclusion is once again that MDG target 4A was
not reached for Kenya.

Judging by three-step prediction CRPS and MSE it appears that the best model for
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NMR is model 15, while the best model for U5MR is model 8M. Using these models,
the probability of reaching SDG target 3.2 is 29.63% for NMR and 99.97% for U5MR.
However, the probability of reaching SDG target 3.2 is sensitive to the choice of model and
somewhat sensitive to the choice of GDP projections. MDG target 4A was not reached for
Kenya.

The analysis in this section concludes that NMR predictions for Kenya are not im-
proved by including information about Tanzania and Uganda, whereas U5MR predictions
are. The probability of reaching SDG target 3.2 for NMR is low but approximately equal
for the three investigated multivariate models. The probability of reaching SDG target 3.2
for U5MR is approximately 10% for the multivariate model without covariates, and ap-
proximately 100% for the multivariate models with GDP as a covariate. By comparing
this to the probabilities obtained in Chapter 5, it is clear that the probability of reaching
SDG target 3.2 is sensitive to the choice of model.

6.2 Effect of borrowing strength from neighboring coun-
tries on estimation

Besides being interested in producing accurate forecasts, it is also desirable to produce ac-
curate estimates of the past and present. DHS surveys are normally undertaken every fifth
year, so imagine the following scenario: KDHS14 is not published yet, but information
from UDHS 16 and TDHS16 is available up to and including the year 2013. Let the focus
be on obtaining accurate estimates of NMR and U5MR in Kenya in the years 2009-2013.
It is desirable to determine if joint modeling of the mortality rates in Kenya, Uganda, and
Tanzania leads to more accurate estimates for Kenya than a model that only considers data
from Kenya.

Model 12, 12M, 14, 14M, 15 and 15M are fitted for NMR, without using data from
the KDHS14 survey, for the period 1980-2013. For U5MR, model 12, 12M, 8, 8M, 9 and
9M are fitted in the same way. The resulting predictions for the KDHS14 survey plotted
together with KDHS data are presented in Appendix E. From the plots, one can see that in
general, the multivariate models have tighter credible intervals than previously seen plots,
and it looks like the predicted values for the multivariate models are closer to the expected
values estimated using data from the KDHS14. This is more apparent for the models
including covariates than for model 12 and 12M. To further investigate this observation,
the average CRPS (calculated using Equation (2.19)) and MSE for KDHS14 estimates for
2009-2013 are computed, and presented in Table 6.9 and Table 6.10. When calculating
CRPS and MSE, estimates for SSP2 are used for 2011-2013, for the models that include
GDP.

From Table 6.9 one can see that model 12M is not an improvement compared to model
12, but model 14M and 15M have lower average CRPS and MSE than model 14 and
model 15. Model 14M and model 15M performs very similarly. That is not that surprising
as log(GDP1) and log(GDP2) are identical up to and including the year 2010 for all three
countries, so only three years with different GDP values are considered. Despite this,
model 14 and 15 perform quite differently, with model 15 still being the best out of these
two.
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Model CRPS ×10−01 MSE ×10−01

12 1.80 14.61
14 1.47 11.70
15 1.08 8.08

12M 2.92 20.05
14M 0.28 0.90
15M 0.28 0.91

Table 6.9: Average CRPS and MSE for KDHS14 NMR estimates, 2009-2013. The values marked
in green are the most favourable in each column.

Model CRPS ×10−01 MSE ×10−01

12 2.54 17.67
8 1.97 12.78
9 1.71 10.82

12M 2.14 11.61
8M 0.15 0.30
9M 0.31 0.77

Table 6.10: Average CRPS and MSE for KDHS14 U5MR estimates, 2009-2013. The values marked
in green are the most favourable in each column.

From Table 6.10, one can see that all multivariate models are an improvement on their
corresponding univariate models. There is a small difference in the performance of model
8M and 9M, with model 8M still being the preferred one. It is interesting to note that
model 9 have lower CRPS score and MSE score than model 8. That is unexpected since
model 8 performs better than model 8 in Chapter 5.

From this analysis, one can learn that historical and current estimates of mortality
rate in a country can be improved by borrowing strength from similar countries for which
newer data is available. This is a significant result, as it shows that joint modeling of
mortality rates produce the most reliable estimates for a country for which recent data is
unavailable.
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Discussion

The primary sources of information when estimating child mortality rates in low-and
medium-income countries are censuses and surveys. The DHS surveys used in this the-
sis are of high quality, the DHS data is simple to access, and the coding is explained in
the DHS recode manuals. However, exploring the different datasets reveals that they are
not coded in the same way even though the recode manuals indicate that they are. This
indicates issues with data accuracy and the need to check the coding of the designs. The
DHS reports are structured in the same way for different surveys, but information about
the sample design is given differently in the different reports. This means that there are
issues of the quality of the data provided.

The unaccounted for non-sampling error in the data affects all findings of this thesis.
The non-sampling error is caused by, for example, recollection bias, migration or epidemic
of diseases such as HIV/AIDS. Data from UNAIDS (2018) shows that the number of
deaths related to AIDS peaked in Kenya around 1998-2006. Women who died in that
period were not able to report births and deaths and are more likely to have had children
who died young (p. 5, Wakefield et al. (2018)). Thus, estimates of NMR and U5MR for
an extended period of time are inaccurate. Section 2.2 of Wakefield et al. (2018) describes
a method of adjusting for HIV, which could have been interesting to apply in this thesis.
Despite the non-sampling errors and the challenges discussed in the previous paragraph,
the DHS data is of high quality, and there is no other data source that is comparable with
respect to quality, content, and accessibility.

In this thesis, the designs of the DHS surveys are accounted for by splitting the model-
ing process into two parts; first, design-based yearly mortality rates are estimated, then a
temporal model is applied. If one were to use the observation units directly in a temporal
model for mortality rates without design-based estimation, one would have to develop a
model that is valid for every location. Then the model would have to account for urban/ru-
ral effects, cluster effects, stratum effects, and so on. That would make the modeling
process much more complicated, require detailed urban/rural maps, and spatial sparsity of
data could lead to problems with parameter estimation. In addition, unknown information
about birth density is needed to produce estimates at county or national level. The two-step
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approach taken in this thesis, on the other hand, directly targets national mortality rates.
The fact that the true national mortality rate is not known for any year makes it difficult

to assess the accuracy and precision of the models. The CRPS score balances accuracy and
precision. Therefore CRPS is considered most important in this thesis. If two models are
equally inaccurate, the model that is best at capturing the uncertainty in the predictions will
have the lowest CRPS score. However, predictions with too high uncertainty are of little
use. Assessments of point predictions are arguably less important, as one cannot know
if the observation or the prediction is at that point. Ideally, one should assess predictions
using techniques such as cross-validation, but that is challenging in this situation.

To perform cross-validation, one could randomly select some clusters to leave out of
the modeling process and then try to predict the child mortality rates in those clusters.
However, the developed method estimates child mortality rates at a national scale, not
for specific enumeration areas. Therefore the comparison would not be useful for eval-
uating the models’ performance at the national level. Computing design-based mortality
estimates using all observations, then performing cross-validation by randomly selecting
some years to be a part of the training set is not possible as the observations are time-
dependent. Only observations from the final years can be left out when estimating models,
as is done when computing step-wise predictions.

As mentioned in Chapter 5, 17-step ahead prediction CRPS scores should have been
considered not only in Chapter 4 but also in Chapter 5 and in Chapter 6. However, 17-step
ahead predictions bring with it two problems. First one cannot know if the trend from
17 years ago will continue. From Figure 3.3, one can see that U5MR behaves differently
between 1980-1996 than from 1996-2013. Therefore models that could have predicted
1996-2013 accurately would not necessarily predict 2013-2030 equally well. Second,
when aiming to evaluate 17-step predictions, very few years of estimated mortality rates
are left for model-estimation. If one were to train models on data for years ≤ 1996, only
one 17-step prediction CRPS score could have been computed. In Chapter 5 and Chapter
6, six three-step ahead CRPS scores are computed and the average taken. If one were to
do the same for 17-step prediction scores, only data for years prior to 1990 would have
been considered for the first model.

Throughout the thesis, the choices of best models have been sensitive to the choices
of assessment criteria and different models have performed relatively similar. Three-step
ahead prediction CRPS scores are considered most important in this thesis, as a com-
promise between the need for long-term predictions and the problems discussed in the
previous paragraph. However, models with the lowest three-step ahead CRPS score have
not always had the lowest one- and two-step CRPS scores or the lowest MSE scores. If
a different assessment criterion had been deemed most important, different models would
have been considered the best models.

The predictions produced in this thesis answers the question “what will happen if the
current trend continues?” That is an important question as it identifies where one has to
implement interventions in order to reach the UN goals. However, it is not possible to
know what will change in the future and directly impact mortality rates. If for example,
the weather changes and that affects mortality rates, a need for human interventions that
were not identified by the models could arise. It is possible to include covariates that
explain changes in trend, but the covariates also have to be forecasted.
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The covariates used in this thesis are bound to have associated uncertainty, which was
not accounted for in the models. Instead, the uncertainty in the covariates is, to some
extent, accounted for by the five different scenarios. The estimated coefficients of the co-
variates have large credible intervals, indicating that the effect of the covariates is difficult
to determine. The uncertainty is amplified for predictions if the covariates have high val-
ues so that they have a big impact or if confounded effects interact differently in future
years.

This thesis aimed not only to produce accurate forecasts but to do so in a transparent,
easily reproducible manner. Computing design-based estimates of yearly NMR using the
survey package is straight forward, and SUMMER is helpful when computing yearly
design-based estimates of U5MR. The function inla() was efficient and easy to use.
All tested models were estimated in a matter of seconds, including the multivariate models
with covariates, making the analysis conducted in this thesis feasible. Only one argument
of inla() had to be modified to change between temporal processes and, in addition to
adjusting the input, only minor changes had to be made to estimate multivariate models.
Thus the modeling process is transparent, and it is possible for non-experts to produce
forecasts.

The models developed in this thesis are relatively simple, and the default priors in
R-INLA are used. It would have been interesting to examine the effect of the choice of
the family of priors and choice of hyperparameters in the priors. However, a proper anal-
ysis of the effect of different priors and hyperparameters would require inspection of a
vast amount of models. It would not be feasible to conduct given the time and computa-
tional resources available for this thesis. If an extensive investigation of priors were to be
undertaken, it would have been interesting to test the priors developed in Fuglstad et al.
(2019). Fuglstad et al. (2019) models the random effect through a total latent variance and
attribution of total variance to the model components.

The models would be more realistic if NMR ≤ U5MR was ensured. One way to do
that is to jointly estimate separate temporal models for each of the six age intervals and
make predictions for each age interval prior to computing the U5MR, similar to what is
done in Wakefield et al. (2018). Then the NMR would be an inherent part of the U5MR
and NMR ≤ U5MR also for predictions. Furthermore, it would be interesting to expand
the model so that it could produce estimates and forecasts at sub-national levels. Then
model-based methods are needed to estimate NMR and U5MR in areas where there is too
little data for design-based estimation.

This thesis shows that Latent Gaussian models can be used to forecast NMR and
U5MR, and do so most successfully with AR(2) and RW(1) as the temporal effect, for
NMR and U5MR respectively. Applying the developed models to data from Kenya re-
veals that the probability of Kenya reaching SDG target 3.2 is sensitive to the choice of
model. The best models give a probability of reaching SDG target 3.2 of 29.63% for NMR
and 99.97% for U5MR, given that the current development continues. Based on this, inter-
ventions attempting to reduce NMR should be implemented in Kenya. The best models for
U5MR developed in this thesis all conclude that Kenya did not reach MDG target 4A, con-
sistent with the conclusion one can draw from the official estimates presented in Table 1.1.
However, those conclusions are based on a consideration of mean predictions only, even
though the joint posterior marginal of the linear predictor for 1990 and linear predictor for
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2015 should have been considered.
This thesis finds that estimates for one country can be improved by borrowing strength

from neighboring countries for which newer data is available. Given the assumption that
historical data is used, the result does not depend on forecasted covariates. Therefore,
they are deemed more reliable than the prediction results. However, the effect of differ-
ent past interventions in different countries is not studied. If different interventions have
been implemented in the neighboring countries compared to the country of interest, the
conclusion might not hold. Despite this, the findings are of importance. The DHS should
continue undertaking surveys in neighboring countries in different years, as that allows for
maximal exploitation of the data. The results provide arguments for the current practice of
simultaneously estimating child mortality rates in several countries.

This thesis demonstrates that the two-step approach for modeling child mortality rates
is efficient and valuable. Temporal models can be used to predict mortality rates for 2030
and to assess the probability of reaching SDG target 3.2. Identifying a trend in NMR is
difficult. Predictions for U5MR are improved by borrowing strength from neighboring
countries. Estimates of past values of NMR and U5MR are improved by including infor-
mation from neighboring countries for which newer information is available. Based on
the findings of the thesis, models with temporal effect RW(1) and AR(2) best forecasts
child mortality rates and forecasts can be improved by including covariates and borrow-
ing strength from nearby countries. Therefore, it is recommended that SUMMER includes
AR(2) as a possible temporal effect and makes it possible to include covariates and borrow
strength from neighboring countries.

88



Bibliography

Alkema, L., New, J. R., 2014. Global estimation of child mortality using a bayesian b-
spline bias-reduction model. The Annals of Applied Statistics 8 (4), 2122–2149.

Bhatt, S., Weiss, D. J., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U., Battle, K.,
Moyes, C. L., Henry, A., Eckhoff, P. A., Wenger, E. A., Brit, O., Penny, M. A., Smith,
T. A., Bennett, A., Yukich, J., Eisele, T. P., Griffin, J. T., Fergus, C. A., Lynch, M.,
Lindgren, F., Cohen, J. M., Murray, C. L. J., Smith, D. L., Hay, S. I., Cibulskis, R. E.,
Gething, P. W., 2015. The effect of malaria control on plasmodium falciparum in africa
between 2000 and 2015. Nature 8 (526), 207–211.

Brass, W., Coale, A. J., 1968. Methods of Analysis and Estimation.

Brockwell, P. J., Davis, R. A., 2016. Introduction to Time Series and Forecasting.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., Riddell, A., 2017. Stan: A probabilistic programming
language. Journal of statistical software 76 (1).

Carruthers, E., Lewis, K., McCue, T., Westley, P., 2008. Generalized linear models: model
selection, diagnostics, and overdispersion. Memorial University of Newfoundland.

Croft, T. N., Marshall, A. M. J., Allen, C. K., 2018. Guide to dhs statis-
tics. https://dhsprogram.com/pubs/pdf/DHSG1/Guide_to_DHS_
Statistics_DHS-7.pdf, [Accessed: 28.01.19].

Dehaene, G., 2018. Lecture notes, math-435, bayesian computation, epfl.

DHS, 2008. Standard recode manual for dhs-4. https://www.dhsprogram.com/
pubs/pdf/DHSG4/Recode4DHS.pdf, [Accessed: 28.01.19].

DHS, 2012. Standard recode manual for dhs-5. https://www.dhsprogram.com/
pubs/pdf/DHSG4/Recode5DHS_23August2012.pdf, [Accessed: 28.01.19].

DHS, 2013. Standard recode manual for dhs-6. https://www.dhsprogram.com/
pubs/pdf/DHSG4/Recode6_DHS_22March2013_DHSG4.pdf, [Accessed:
28.01.19].

89

https://dhsprogram.com/pubs/pdf/DHSG1/Guide_to_DHS_Statistics_DHS-7.pdf
https://dhsprogram.com/pubs/pdf/DHSG1/Guide_to_DHS_Statistics_DHS-7.pdf
https://www.dhsprogram.com/pubs/pdf/DHSG4/Recode4DHS.pdf
https://www.dhsprogram.com/pubs/pdf/DHSG4/Recode4DHS.pdf
https://www.dhsprogram.com/pubs/pdf/DHSG4/Recode5DHS_23August2012.pdf
https://www.dhsprogram.com/pubs/pdf/DHSG4/Recode5DHS_23August2012.pdf
https://www.dhsprogram.com/pubs/pdf/DHSG4/Recode6_DHS_22March2013_DHSG4.pdf
https://www.dhsprogram.com/pubs/pdf/DHSG4/Recode6_DHS_22March2013_DHSG4.pdf


Efron, B., 1988. Logistic regression, survival analysis, and the kaplan-meier curve. Journal
of the American Statistical Association 83 (402), 414–425.

Foremann, K. J., Maraquez, N., Doglert, A., Fukutaki, K., Fullman, N., McGaughey, M.,
Pletcher, M. A., Smith, A. E., Tang, K., Yuan, C.-W., Brown, J. C., Friedman, J., He,
J., Heuton, K. R., Holmberg, M., Patel, D. J., Reidy, P., Carter, A., Cercy, K., Chaplin,
A., Douwes-Schultx, D., Frank, T., Goettsch, F., Liu, P. Y., 2018. Forecasting life ex-
pectancy, years of life lost, and all-cause and specific-cause mortality fr 250 causes of
death: reference and alternative scenarios for 2016-2040 for 195 countries and territo-
ries. Lancet 392, 2052–2090.

Fuglstad, G.-A., Hem, I. G., Knight, A., Rue, H., Riebler, A., 2019. Intuitive principle-
based priors for attributing variance in additive model structures. arXiv:1902.00242v1
[stat.ME].

Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren,
D. P., van den Berg, M., Feng, L., Klein, D., Calvin, K., Doelman, J. C., Frank, S.,
Fricko, O., Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J.,
Popp, A., Stehfest, E., Takahashi, K., nov 2018. Global emissions pathways under dif-
ferent socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions
trajectories through the end of the century. Geoscientific Model Development Discus-
sions, 1–42.

Gleman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., Runin, D. B., 2014.
Bayesian Data Analysis. CC Press, Taylor and Francis Group.

Gneiting, T., Raftery, A. E., 2007. Strictly proper scoring rules, prediction and estimation.
Journal of the American Statistical Association 102 (477), 359–378.

Golding, N., Burstein, R., Longbottom, J., Browne, A. J., Fullman, N., Osgood-
Zimmerman, A., Earl, L., Bhatt, S., Cameron, E., Casey, D. C., Dwyer-Lindgren, L.,
Farag, T. H., Flaxman, A. D., Fraser, M. S., Gething, P. W., Gibson, H. S., Graetz, N.,
Krause, L. K., Kulikoff, X. R., Lim, S. S., Mappin, B., Morozoff, C., Reiner, R. C. J.,
Sligar, A., Smith, D. L., Wang, H., , Weiss, D. J., Murray, C. J. L., Moyes, C. L., Hay,
S. I., 2017. Mapping under-5 and neonatal mortality in africa, 2000-2015: a baseline
analysis for the sustainable development goals. The Lancet 390 (10108), 2171–2182.

Groves, R. M., Fowler Jr., F. J., Couper, M., Lepkowski, J. M., Singer, E., Tourangeau, R.,
2004. Survey Methodology. John Wiley & Sons.

Halonen, J. I., Blangiardo, M., Toledano, Mireille B. Fecht, D., Gulliver, J., Anderson,
H. R., Beevers, S. D., Dajnak, D., Kelly, F. J., Tonne, C., 2016. Long-term exposure to
traffic pollution and hospital admissions in london. Environmental Pollution 208, 48–
57.

Hoffman, M. D., Gelman, A., 2014. The no-u-turn sampler: adaptively setting path lengths
in hamiltonian monte carlo. Journal of Machine Learning Research 15 (1), 1593–1623.

Hubin, A., Storvik, G., 2016. Estimating the marginal likelihood with integrated nested
laplace approximation (inla). arXiv:1611.01450v1 [stat.CO].

90



IGME, 2017. Most recent child mortality estimates, 2017. https://
childmortality.org/files_v22/download/UN%20IGME%20Child%
20Mortality%20Report%202018.pdf, [Accessed:30.04.19].

Kenya National Bureau of Statistics, Ministry of Health and National AIDS Control Coun-
cil, Kenya Medical Research Institute, National Council for Population and Develop-
ment, The DHS Program, ICF International, 2015. Kenya demographic and health sur-
vey. https://dhsprogram.com/pubs/pdf/fr308/fr308.pdf, [Accessed:
31.01.19].

Lindgren, F., Rue, H., 2015. Bayesian spatial modelling with r-inla. Journal of Statistical
Software 63 (19), 1–25.

Lohr, S. L., 2010. Sampling: Design and Analysis. Brooks/Cole.

Lumley, T., 2010. Complex Surveys: A Guide to Analysis Using R. John Wiley & Sons.

Lumley, T., Scott, A., et al., 2017. Fitting regression models to survey data. Statistical
Science 32 (2), 265–278.

Martins, T. G., Simpson, D., Lindgren, F., Rue, H., 2013. Bayesian computing with inla:
new features. Computational Statistics Data Analysis 67, 68–83.

MEASURE, 2019. Measure evaluation. https://www.
measureevaluation.org/prh/rh_indicators/womens-health/
nb/neonatal-mortality-rate-nmr, [Accessed: 28.01.19].

MEASURE DHS, ICF International, 2012. Sampling and household listing man-
ual. https://dhsprogram.com/pubs/pdf/DHSM4/DHS6_Sampling_
Manual_Sept2012_DHSM4.pdf, [Accessed: 21.02.19].

Mercer, L., Wakefield, J., Pantazis, A., Lutambi, A., Masanja, H., Clark, S., 2015. Space-
time smoothing of complex survey data: Small area estimation for child mortality. The
Annals of Applied Statistics 9 (2), 1889–1905.

Nosedal, A., 2016. The autocorrelation function and ar(1), ar(2) models. https:
//mcs.utm.utoronto.ca/˜nosedal/sta457/ar1-and-ar2.pdf, [Ac-
cessed: 13.02.19].

ONeill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S.,
van Ruijven , B. J., van Vuuren , D. P., Birkmann, J., Kok, K., Levy, M., Solecki, W.,
2017. The roads ahead: Narratives for shared socioeconomic pathways describing world
futures in the 21st century. Global Environmental Change 42, 169–180.

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S.,
Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC,
S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T.,
Havlik, P., Humpender, F., Silva, L. A. D., Smith, S., Stehfest, E., Bosetti, V., Eom,
J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G.,
Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M., Klimont,

91

https://childmortality.org/files_v22/download/UN%20IGME%20Child%20Mortality%20Report%202018.pdf
https://childmortality.org/files_v22/download/UN%20IGME%20Child%20Mortality%20Report%202018.pdf
https://childmortality.org/files_v22/download/UN%20IGME%20Child%20Mortality%20Report%202018.pdf
https://dhsprogram.com/pubs/pdf/fr308/fr308.pdf
https://www.measureevaluation.org/prh/rh_indicators/womens-health/nb/neonatal-mortality-rate-nmr
https://www.measureevaluation.org/prh/rh_indicators/womens-health/nb/neonatal-mortality-rate-nmr
https://www.measureevaluation.org/prh/rh_indicators/womens-health/nb/neonatal-mortality-rate-nmr
https://dhsprogram.com/pubs/pdf/DHSM4/DHS6_Sampling_Manual_Sept2012_DHSM4.pdf
https://dhsprogram.com/pubs/pdf/DHSM4/DHS6_Sampling_Manual_Sept2012_DHSM4.pdf
https://mcs.utm.utoronto.ca/~nosedal/sta457/ar1-and-ar2.pdf
https://mcs.utm.utoronto.ca/~nosedal/sta457/ar1-and-ar2.pdf


Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., Tavoni, M., jan
2017. The shared socioeconomic pathways and their energy, land use, and greenhouse
gas emissions implications: An overview. Global Environmental Change 42, 153–168.

Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D., Fujimori,
S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V., Kriegler, E., Riahi, K., van
Vuuren, D. P., Doelman, J., Drouet, L., Edmonds, J., Fricko, O., Harmsen, M., Havlı́k,
P., Humpender, F., Stehfest, E., Tavoni, M., mar 2018. Scenarios towards limiting global
mean temperature increase below 1.5 °c. Nature Climate Change 8 (4), 325–332.

Rue, H., Held, L., 2005. Gaussian Markov Random Fields.

Rue, H., Martino, S., 2019. Bayesian analysis of structured additive models (r documenta-
tion).

Rue, H., Martino, S., Chopin, N., 2009. Approximate bayesian inference for latent gaus-
sian models using integrated nested laplace approximations (with discussion). Royal
Statistics Society, Series B 71 (2), 319–392.

Rue, H., Riebler, A., Sørbye, S., Illian, J. B., Simpson, D. P., 2016. Bayesian computing
with inla: A review. Annual Review of Statistics and Its Application (4), 395–421.

Saghagen, M., Vik, H., 2018. A beginners guide to complex survey methodology. (Project
assignment at NTNU, TMA4500).

Sørbye, S. H., Rue, H., 2017. Penalised complexity priors for stationaryautoregressive
processes. Journal of time series analysis 38, 923–935.

UN, 2019a. Goal 3: Ensure healthy lives and promote well-being for all at all
ages. https://www.un.org/sustainabledevelopment/health/, [Ac-
cessed: 28.01.19].

UN, 2019b. Goal 4: Reduce child mortality. http://www.un.org/
millenniumgoals/childhealth.shtml, [Accessed: 31.01.19].

UNAIDS, 2018. Kenya hiv and aids estimates. http://www.unaids.org/en/
regionscountries/countries/kenya, [Accessed: 30.04.19].

Vehtari, A., Gelman, Andrew Gabry, J., 2017. Practical bayesian model evaluation using
leave-one-out cross-validation and waic. Statistics and Computing 27 (5), 1413–1432.

Wakefield, J., Fuglstad, G.-A., Riebler, A., Godwin, J., Wilson, K., Clark, S. J., 2018. Esti-
mating under-five mortality in space and time in a developing world context. Statistical
methods in medical research, 1–21.

Wang, H., Liddell, C. A., Coates, M. M., Mooney, M. D., Llevitz, C. E., Schumacher,
A. E., Apfel, H., Iannarone, M., Phillips, B., Lofgren, K. T., et al, 2014. Global, re-
gional, and national levels of neonatal, infant, and under-5 mortality during 1990-2013:
A systematic analysis for the global burden of disease study 2013. The Lancet 384,
957–979.

92

https://www.un.org/sustainabledevelopment/health/
http://www.un.org/millenniumgoals/childhealth.shtml
http://www.un.org/millenniumgoals/childhealth.shtml
http://www.unaids.org/en/regionscountries/countries/kenya
http://www.unaids.org/en/regionscountries/countries/kenya


Watanabe, S., 2010. Asymptotic equivalence of bayes cross validation and widely appli-
cable information criterion in singular learning theory. Journal of Machine Learning
Research 11.

Zivot, E., Wang, J., 2006. Modeling Financial Time Series with S-PLU®. Springer, New
York, NY.

93



94



95



96



Appendix A
Additional Simulation Results

In this section, additional plots referred to in Chapter 4 is displayed.
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Figure A.1: MAE of prediction error for models with temporal effect AR(1), AR(2), RW(1) and
RW(2) of logit(NMR) simulated by a model with temporal effect AR(1), for scenarios S0, SWB and
SBH.
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Figure A.2: MAE of prediction error for models with temporal effect AR(1), AR(2), RW(1) and
RW(2) of NMR pr. 1000 live birth simulated by a model with temporal effect AR(1), for scenarios
S0, SWB and SBH.
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Figure A.3: MAE of prediction error for models with temporal effect AR(1), AR(2), RW(1) and
RW(2) of logit(U5MR) simulated by a model with temporal effect AR(1), for scenarios S0, SWB
and SBH.
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Figure A.4: MAE of prediction error for models with temporal effect AR(1), AR(2), RW(1) and
RW(2) of U5MR pr. 1000 live birth simulated by a model with temporal effect AR(1), for scenarios
S0, SWB and SBH.
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Figure A.5: RMSE of prediction error for models with with temporal effect AR(1), AR(2), RW(1)
and RW(2) of logit(NMR) simulated by a model with temporal effect AR(1), for scenarios S0, SWB
and SBH.
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Figure A.6: RMSE of prediction error for models with temporal effect AR(1), AR(2), RW(1) and
RW(2) of NMR pr. 1000 live birth simulated by a model with temporal effect AR(1), for scenarios
S0, SWB and SBH.
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Figure A.7: RMSE of prediction error for models with temporal effect AR(1), AR(2), RW(1) and
RW(2) of logit(U5MR) simulated by a model with temporal effect AR(1), for scenarios S0, SWB
and SBH.
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Figure A.8: RMSE of prediction error for models with temporal effect AR(1), AR(2), RW(1) and
RW(2) of U5MR pr. 1000 live birth simulated by a model with temporal effect AR(1), for scenarios
S0, SWB and SBH.
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Figure A.9: MAE of prediction error for models with temporal effect AR(1), AR(2), RW(1) and
RW(2) of logit(NMR) simulated by a model with temporal effect AR(2), for scenarios S0, SWB and
SBH.
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Figure A.10: MAE of prediction error for models with temporal effect AR(1), AR(2), RW(1) and
RW(2) of NMR pr. 1000 live birth simulated by a model with temporal effect AR(2), for scenarios
S0, SWB and SBH.
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Figure A.11: MAE of prediction error for models with temporal effect AR(1), AR(2), RW(1) and
RW(2) of logit(U5MR) simulated by a model with temporal effect AR(2), for scenarios S0, SWB
and SBH.
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Figure A.12: MAE of prediction error for models with temporal effect AR(1), AR(2), RW(1) and
RW(2) of U5MR pr. 1000 live birth simulated by a model with temporal effect AR(2), for scenarios
S0, SWB and SBH.
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Figure A.13: RMSE of prediction error for models with temporal effect AR(1), AR(2), RW(1) and
RW(2) of logit(NMR) simulated by a model with temporal effect AR(2), for scenarios S0, SWB and
SBH.
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Figure A.14: RMSE of prediction error for models with temporal effect AR(1), AR(2), RW(1) and
RW(2) of NMR pr. 1000 live birth simulated by a model with temporal effect AR(2), for scenarios
S0, SWB and SBH.
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Figure A.15: RMSE of prediction error for models with temporal effect AR(1), AR(2), RW(1) and
RW(2) of logit(U5MR) simulated by a model with temporal effect AR(2), for scenarios S0, SWB
and SBH.
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Figure A.16: RMSE of prediction error for models with temporal effect AR(1), AR(2), RW(1) and
RW(2) of U5MR pr. 1000 live birth simulated by a model with temporal effect AR(2), for scenarios
S0, SWB and SBH.)
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Appendix B
Cross Plots of Responses

In this appendix, cross plots of potential covariates explored in Chapter 6 are presented.
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Figure B.1: logit(NMR) plotted against possible covariates, for Kenya years 1980-2010.
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Figure B.2: logit(U5MR) plotted against possible covariates, for Kenya years 1980-2010.

108



●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

−4.5

−4.0

−3.5

−3.0

1.25 1.30 1.35 1.40 1.45
logit(NMR)

G
D

P
/P

O
P

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

−4.5

−4.0

−3.5

−3.0

1.08 1.09 1.10 1.11
logit(NMR)

lo
g(

G
D

P
)/

lo
g(

P
O

P
)

● ● ●KDHS03 KDHS08−09 KDHS14

Figure B.3: logit(NMR) plotted against ratio and ratio of log of GDP and POP, for Kenya years
1980-2010.
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Figure B.4: logit(U5MR) plotted against ratio and ratio of log of GDP and POP, for Kenya years
1980-2010.
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Appendix C
Estimated Coefficients, Chapter 5

In this appendix, the estimated coefficients estimated in Chapter 5 and their credible inter-
vals are presented. The coefficients of NMR models are presented in Table C.1 and U5MR
coefficients are presented in Table C.2.

111



Model name Covariate AR(2) RW(1)
2 log(POP) -0.07 [-0.45, 0.25] -0.12 [-0.96, 0.38]
3 log(GDP1) -0.09 [-0.42, 0.21] -0.15 [-0.83, 0.32]
4 log(GDP2) -0.10 [-0.41, 0.19] -0.17 [-0.80, 0.25]

5 log(POP) 0.97 [-1.02, 2.76] 0.82 [-1.87, 2.37]
log(GDP1) -0.96 [-2.61, 0.84] -0.87 [-2.25, 1.29]

6 log(POP) 1.03 [-0.63, 2.56] 1.00 [-1.10, 2.32]
log(GDP2) -0.98 [-2.34, 0.47] -0.98 [-2.11, 0.61]

7 POP 0.00 [-0.02, 0.01] 0.00 [-0.03, 0.01]
8 GDP1 0.00 [-0.01, 0.01] 0.00 [-0.02, 0.01]
9 GDP2 0.00 [-0.01, 0.00] 0.00 [-0.02, 0.01]

10 POP 0.03 [-0.04, 0.09] 0.02 [-0.07, 0.08]
GDP1 -0.02 [-0.06, 0.02] -0.02 [-0.05, 0.04]

11 POP 0.03 [-0.02, 0.08] 0.03 [-0.04, 0.07]
GDP2 -0.02 [-0.05, 0.01] -0.02 [-0.05, 0.01]

12 t 0.00 [-0.01, 0.01] 0.00 [-0.03, 0.01]

13 t 0.01 [-0.11, 0.14] 0.01 [-0.12, 0.20]
log(POP) -0.50 [-5.08, 3.61] -0.51 [-6.96, 3.90]

14 t 0.03 [-0.03, 0.08] 0.03 [-0.05, 0.07]
log(GDP1) -1.06 [-2.72, 0.71] -0.92 [-2.30, 1.05]

15 t 0.04 [-0.01, 0.09] 0.04 [-0.02, 0.08]
log(GDP2) -1.22 [-2.72, 0.33] -1.17 [-2.35, 0.30]

16
t 0.03 [-0.09, 0.14] 0.02 [-0.10, 0.18]
log(POP) 0.17 [-3.94, 3.93] 0.11 [-6.41, 4.01]
log(GDP1) -1.04 [-2.83, 0.94] -0.88 [-2.36, 1.46]

17
t 0.04 [-0.07, 0.16] 0.03 [-0.06, 0.14]
log(POP) -0.19 [-3.89, 3.29] 0.05 [-3.87, 3.10]
log(GDP2) -1.21 [-2.75, 0.41] -1.18 [-2.34, 0.29]

18 t 0.06 [-0.11, 0.21] 0.08 [-0.08, 0.21]
POP -0.07 [-0.25, 0.13] -0.10 [-0.26, 0.09]

19 t 0.02 [-0.02, 0.06] 0.02 [-0.05, 0.05]
GDP1 -0.02 [-0.05, 0.02] -0.02 [-0.05, 0.03]

20 t 0.02 [-0.02, 0.05] 0.02 [-0.03, 0.05]
GDP2 -0.02 [-0.04, 0.01] -0.02 [-0.04, 0.01]

21
t 0.01 [-0.19, 0.20] 0.04 [-0.12, 0.21]
POP 0.01 [-0.28, 0.31] -0.03 [-0.28, 0.20]
GDP1 -0.02 [-0.07, 0.04] -0.02 [-0.05, 0.03]

22
t -0.09 [-0.36, 0.18] -0.04 [-0.27, 0.19]
POP 0.16 [-0.25, 0.57] 0.10 [-0.26, 0.43]
GDP2 -0.04 [-0.09, 0.02] -0.03 [-0.07, 0.02]

Table C.1: Coefficients and their 95% credible intervals for NMR, estimated using data from 1980-
2010. No coefficients are significantly different from zero.
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Model name Covariate AR(2) RW(1)
2 log(POP) -0.74 [-1.37, -0.11] -0.73 [-1.57, 0.11]
3 log(GDP1) -0.74 [-1.24, -0.26] -0.78 [-1.42, -0.14]
4 log(GDP2) -0.68 [-1.12, -0.23] -0.69 [-1.29, -0.07]

5 log(POP) 1.01 [-1.05, 2.94] 0.86 [-1.11, 2.64]
log(GDP1) -1.62 [-3.37, 0.21] -1.45 [-2.96, 0.20]

6 log(POP) 0.64 [-1.46, 2.49] 0.47 [-1.62, 2.33]
log(GDP2) -1.21 [-2.79, 0.55] -1.04 [-2.51, 0.62]

7 POP -0.03 [-0.05, -0.01] -0.03 [-0.06, 0.00]
8 GDP1 -0.02 [-0.03, -0.01] -0.02 [-0.04, -0.01]
9 GDP2 -0.02 [-0.03, -0.01] -0.02 [-0.03, 0.00]

10 POP 0.04 [-0.02, 0.09] 0.03 [-0.03, 0.09]
GDP1 -0.04 [-0.08, 0.00] -0.04 [-0.07, 0.00]

11 POP 0.00 [-0.07, 0.06] 0.00 [-0.08, 0.06]
GDP2 -0.02 [-0.05, 0.02] -0.01 [-0.05, 0.03]

12 t -0.02 [-0.04, -0.01] -0.02 [-0.05, 0.00]

13 t -0.09 [-0.22, 0.07] -0.07 [-0.22, 0.10]
log(POP) 2.15 [-3.17, 6.72] 1.54 [-3.96, 6.66]

14 t 0.01 [-0.05, 0.07] 0.01 [-0.04, 0.07]
log(GDP1) -1.04 [-2.82, 0.79] -1.09 [-2.64, 0.51]

15 t 0.01 [-0.06, 0.07] 0.00 [-0.06, 0.07]
log(GDP2) -0.84 [-2.60, 1.02] -0.80 [-2.39, 0.91]

16
t -0.09 [-0.18, 0.04] -0.08 [-0.18, 0.06]
log(POP) 3.99 [-0.98, 7.25] 3.74 [-1.42, 7.22]
log(GDP1) -1.65 [-3.02, 0.02] -1.60 [-2.81, -0.01]

17
t -0.06 [-0.20, 0.09] -0.05 [-0.20, 0.11]
log(POP) 2.59 [-2.79, 6.64] 2.07 [-3.36, 6.67]
log(GDP2) -1.00 [-2.57, 0.83] -0.92 [-2.42, 0.81]

18 t 0.10 [-0.09, 0.26] 0.08 [-0.12, 0.26]
POP -0.15 [-0.34, 0.08] -0.12 [-0.34, 0.12]

19 t 0.03 [-0.02, 0.06] 0.02 [-0.02, 0.06]
GDP1 -0.04 [-0.07, -0.01] -0.04 [-0.06, 0.00]

20 t 0.00 [-0.04, 0.04] 0.00 [-0.05, 0.04]
GDP2 -0.02 [-0.05, 0.01] -0.02 [-0.04, 0.02]

21
t 0.04 [-0.14, 0.20] 0.03 [-0.16, 0.20]
POP -0.02 [-0.25, 0.23] -0.01 [-0.25, 0.24]
GDP1 -0.04 [-0.08, 0.01] -0.04 [-0.07, 0.01]

22
t 0.07 [-0.22, 0.37] 0.06 [-0.24, 0.36]
POP -0.11 [-0.55, 0.33] -0.09 [-0.53, 0.34]
GDP2 -0.01 [-0.06, 0.06] 0.00 [-0.06, 0.06]

Table C.2: Coefficients and their 95% credible intervals for U5MR, estimated using data from
1980-2010. The green coefficients are significantly different from zero.
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Appendix D
Additional Plots Section 6.1
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Figure D.1: logit(NMR) and NMR for Kenya fitted using model 14M with temporal effect AR(2).
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Figure D.2: logit(NMR) and NMR fitted using model15M with temporal effect AR(2).
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Figure D.3: logit(U5MR) and U5MR for Kenya fitted using model 8M with temporal effect RW(1).
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Figure D.4: logit(U5MR) and U5MR for Kenya fitted using model 9M with temporal effect RW(1).
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Appendix E
Additional Plots Section 6.2
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Figure E.1: logit(NMR) and NMR per 1000 live birth for Kenya. Model 12 with temporal effect
AR(2), trained using data from KDHS03 and KDHS08-09 from 1980-2008.
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Figure E.2: logit(NMR) and NMR per 1000 live birth for Kenya. Model 12M with temporal effect
AR(2), trained using data from KDHS03, KDHS08-09, UDHS06, UDHS11, UDHS16, TDHS05,
TDHS10 and TDHS16, from 1980-2013.
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Figure E.3: logit(NMR) and NMR per 1000 live birth for Kenya. Model 14 with temporal ef-
fect AR(2), trained using data from KDHS03 and KDHS08-09 from 1980-2008 and log(GDP1) as
covariate.
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Figure E.4: logit(NMR) and NMR per 1000 live birth for Kenya. Model 14M with temporal effect
AR(2), trained using data from KDHS03, KDHS08-09, UDHS06, UDHS11, UDHS16, TDHS05,
TDHS10 and TDHS16, from 1980-2013 and log(GDP1) as covariate.
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Figure E.5: logit(NMR) and NMR per 1000 live birth for Kenya. Model 15 with temporal ef-
fect AR(2), trained using data from KDHS03 and KDHS08-09 from 1980-2008 and log(GDP2) as
covariate.
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Figure E.6: logit(NMR) and NMR per 1000 live birth for Kenya. Model 15M with temporal effect
AR(2), trained using data from KDHS03, KDHS08-09, UDHS06, UDHS11, UDHS16, TDHS05,
TDHS10 and TDHS16, from 1980-2013 and log(GDP2) as covariate.
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Figure E.7: logit(U5MR) and U5MR per 1000 live birth for Kenya. Model 12, trained using data
from KDHS03 and KDHS08-09 from 1980-2008.
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Figure E.8: logit(U5MR) and U5MR per 1000 live birth for Kenya. Model 12M with tempo-
ral effect RW(1), trained using data from KDHS03, KDHS08-09, UDHS06, UDHS11, UDHS16,
TDHS05, TDHS10 and TDHS16, from 1980-2013.
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Figure E.9: logit(U5MR) and U5MR per 1000 live birth for Kenya. Model 8 with temporal effect
RW(1), trained using data from KDHS03 and KDHS08-09 from 1980-2008 and GDP1 as covariate.
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Figure E.10: logit(U5MR) and U5MR per 1000 live birth for Kenya. Model 8M with tempo-
ral effect RW(1), trained using data from KDHS03, KDHS08-09, UDHS06, UDHS11, UDHS16,
TDHS05, TDHS10 and TDHS16, from 1980-2013 and GDP1 as covariate.
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Figure E.11: logit(U5MR) and U5MR per 1000 live birth for Kenya. Model 9 with temporal effect
RW(1), trained using data from KDHS03 and KDHS08-09 from 1980-2008 and GDP1 as covariate.
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Figure E.12: logit(U5MR) and U5MR per 1000 live birth for Kenya. Model 9M with tempo-
ral effect RW(1), trained using data from KDHS03, KDHS08-09, UDHS06, UDHS11, UDHS16,
TDHS05, TDHS10 and TDHS16, from 1980-2013 and GDP1 as covariate.

125



H
edda H

ognedatter B
jørnebye Vik

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 In
fo

rm
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f M

at
he

m
at

ic
al

 S
ci

en
ce

sForecasting C
hild M

ortality w
hile A

ccounting for C
om

plex Survey D
esigns

M
as

te
r’

s 
th

es
is

Hedda Hognedatter Bjørnebye Vik

Forecasting Child Mortality while
Accounting for Complex Survey
Designs

Master’s thesis in Applied Pysics and Mathematics
Supervisor: Geir-Arne Fuglestad

June 2019


	Summary
	Sammendrag
	Preface
	Table of Contents
	Introduction
	State of the art
	Approach
	Child mortality in Kenya

	Background Theory
	Complex survey methodology
	Temporal modeling
	Bayesian hierarchical models
	Bayesian inference
	Multivariate temporal models
	Model assessment and scoring rules

	Methods
	Producing yearly design-based mortality rate estimates
	Estimating models using inla()
	Extracting posterior inference
	Including covariates

	Simulation Study
	Details of the simulation study
	Autoregressive process of order 1
	Autoregressive process of order 2
	Discussion

	Univariate Modeling of Child Mortality Rates in Kenya
	Model selection
	Estimation and forecasting

	Joint Modeling of Child Mortality
	Effect of borrowing strength from neighboring countries on forecast
	Effect of borrowing strength from neighboring countries on estimation

	 Discussion
	Bibliography
	Additional Simulation Results
	Cross Plots of Responses
	Estimated Coefficients, Chapter 5
	Additional Plots Section 6.1
	Additional Plots Section 6.2

