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Preface

This is a Master thesis in mathematics at NTNU as part of the study program
Industrial Mathematics. It was carried out during the spring semester of 2019.

The thesis was written in cooperation with Future Well Control, and is intended
to be the foundation of one part of a larger system. This system is intended to
provide a detailed surveillance of pressure and temperature when drilling deep water
wells, in order to further ensure the safety of those working.

The readers of this project are assumed to have a basic background in mathe-
matics at university level. Some background in physics and numerical mathematics
would be helpful, as well as basic knowledge of deep water wells. A few figures have
been included to aid the understanding of the reader.

Trondheim, June 1, 2019

Rikke Mohn
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Abstract

Today’s methods of Early Kick Detection tools for drilling deep water wells are based
on flow-meters or active volume control. That is, they measure net gain or net loss
of circulation at any given point in time. They will therefore not necessarily detect
influx of formation fluids due to swap-out, or/and the gas consumption and volume
reduction from formed hydrates. This might again cause them to draw faulty conclu-
sions when abnormalities occur. Creation of hydrates is dependent on temperature
and pressure conditions, and the dissociation of hydrates is an endothermic reaction,
that is, the process releases energy. An accurate method for predicting the tem-
perature when drilling will therefore allow us to compare the predicted temperature
with the real time temperature, and so allow us to better predict why certain ab-
normalities occur, and react accordingly. This could possibly increase security at oil
platforms, and is indeed what motivated this thesis.

The temperature distribution has been approximated at several positions based
on equations developed using the necessary balance of energy. The system was split
into two parts, the slightly simpler system above the seabed, and the one below.
The energy balance equations have then been discretized, and approximated using
numerical mathematics. Specifically I used the Finite Difference Methods two point
Forward Euler and three point Central Differences in space, and two point Backward
Euler in time. A system of linear equations was then developed and solved using
LU -decomposition. That is, the matrix A in a system Ax = b, where X,B are
matrices and B is known, is factorized into a lower triangular matrix L, and an
upper triangular matrix U . Thus allowing us to solve two separate linear systems of
equations. The code was written in C++, and the method was chosen specifically
to allow for acceleration using parallel programming by use of a graphic processing
unit. Indeed, LU -reduction is often used in the context of parallel computing with
the purpose of comparing processing speeds for different computers.

Both the code for the system above the seabed and the system below the seabed
were developed. However, because of time constraint due to errors in the data and a
few errors in the original equations given to me, only the results of the upper system
has been included in this thesis. The upper system gives reasonable results that
stabilize after only half an hour, and so suggests that the method and code works.
There is however a discrepancy of negative temperatures at low altitudes that I have
not been able to explain.

The necessary processing speed for each iteration is ≤ 1 Hz for the program to be
useful in comparison with real time data. As of yet the upper part of the program
spends only 6 seconds per iteration, while the lower one spends 3 minutes, and so
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is by far the most time consuming part. Within the code the most time consuming
process is the decomposition of A into LU , and so the decomposition of the lower
matrix should be the focus of a future acceleration using parallel programming. If
necessary, the number of vertical nodes in the lower system will have to be reduced.
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Chapter 1

Introduction

Today’s surveillance of conditions in deep water wells are based mostly on volume
of drilling mud being pumped into the pipes versus the volume of formation and
drilling fluid returned. This method will not always give a complete picture of how
the drilling is going, and might result in the wrong reaction to certain abnormalities.

An accurate method for predicting the temperature when drilling deep oil wells
would allow us to compare the predicted temperature with the real time tempera-
ture, and so perhaps allow us to better predict why abnormalities occur, and react
accordingly. Thus such a method will be developed using Finite Difference Methods
on energy balancing equations developed at certain positions in the well. A tempera-
ture distribution model has already been developed by NTNU (Sevillano u. a., 2017),
but is too slow and owned by NTNU. The new code should therefore be optimized
with respect to coding speed and number of grid points. One possible aid to increase
the computing speed is by use of a graphic processing unit (GPU). The goal for this
research is to be able to achieve a computational speed for each time step which
is faster than the 1Hz, including time for data transfer from real-time sensors and
back to a human machine interface (HMI). Once optimized, the model should then
be compared with Drillbench. This work is too extensive for a Masters thesis, and
so this thesis should be considered as a basis for this work and as a resource for the
completion of these goals.
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Chapter 2

Background

An oil well is created by drilling a hole of diameter up to 1 m into the earth with a
rotating drill string on a drilling rig. When the hole has been drilled, a casing (section
of steel pipe), that is slightly smaller in diameter is placed in the hole. This process
is repeated with consequently deeper depths and smaller diameters. An example of
such a deep water well can be seen in Figure 2.1.

As can be seen from Figure 2.1, the bottom part of the well consists partly of an
open hole. To prevent formation fluids and gases from entering into the well bore, a
drilling fluid often referred to as drilling mud, provides hydrostatic pressure in the
well. The pressure p exerted by the mud is highly dependent on its density ρ, as
evident from the equation of hydrostatic pressure:

p = ρgh,

where g is the gravitational acceleration constant, and h the depth (White, 2008).
This drilling mud is a heavy, viscous fluid mixture that flows down through the center
of the well, known as the drill string, through the drill bit at the bottom of the well,
into the annulus that surrounds the drill string, and upward through the annulus to
the top of the well. The drilling mud thus carries drill cuttings to the surface, while
simultaneously lubricating and cooling the drill bit. The mud also suspends the drill
cutting while drilling is paused and when the drilling assembly is brought in and out
of the hole. The movement of the mud is demonstrated by the arrows in the center
of the figure.

In deep water wells the most common types of drilling muds are Water-Based
muds (WBM) and Oil-Based muds (OBM), where WBM is the most common of
the two. Each of these fluids are well suited for High Pressure High Temperature
purposes. WBM has a large potential for cooling down the wellbore during circu-
lation, while its relatively low thermal conductivity leaves the cement acting as an
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insulating layer against the formation. Additionally, the seawater surrounding the
Riser, as shown in Figure 2.1, will gradually remove heat from the drilling fluid, and
thus the temperature of the casing wall will be relatively low.

When drilling deep water wells one will drill through different materials, and so
naturally the pressure within the drilled rock may vary. If for instance one suddenly
drills into a large gas filled gap, the pressure could fall substantially, causing mud to
flow into the hole. This is referred to as lost circulation. If the opposite occurs, that
is, the pressure within the drilled rock is higher than the hydrostatic pressure from
the mud acting on the borehole or rock face, then the greater formation pressure has
a tendency to force formation fluid into the wellbore. This forced fluid flow is called
a Kick. To minimize both these occurrences one therefore often refers to a so called
Drilling Margin, which denotes the difference between the maximum pore pressure
and the minimum fracture pressure.

Current Early Kick detection (EKD) tools are based on flow-meters or active
volume control. That is, they measure net gain or net loss of circulation at any
given point in time. According to the article by Vavik (Vavik u. a., 2017), these
EKD tools do not sufficiently take into account cross flow, other forms of swap-out,
loss of drilling fluid, and the gas consumption and volume reduction from formed
hydrates. They will therefore not necessarily detect influx of formation fluids, thus
increasing the chance of faulty conclusions being drawn. In other words, influx of
hydrocarbon gas to the wellbore may occur without any observed gain at the surface
if one simultaneously has cross flow, hydrates forming, or partial or total loss of
circulation.

2.1 Hydrates

As mentioned above, according to the article by Vavik (Vavik u. a., 2017), one of the
dangers of only considering net gain and net circulation loss in deep water wells is
the undetected formation of gas hydrates.

Gas hydrates are crystalline components that occur when water forms a cage-like
structure around smaller guest molecules. These lattice structures are incredibly
strong, and so may allow a large number of guest molecules to be trapped in a small
volume high pressure environment inside the cage-like structure.

Gas hydrates may form when natural gas and the water typically in drilling mud
are mixed under high pressure p, and the mud has sufficiently low temperature T to
cool down the gas to below the temperature required to form hydrates.

When gas hydrates are formed, they may stay stable in large parts of the wellbore
casing and the riser annulus, and so may be transported a long distance to the upper

3



part of the riser. If the hydrates melt deep down in the wellbore, then the high
pressure will ensure that the released gas only expands slightly. If the hydrates melt
in the upper part of the riser however, the cage-like structure will have prevented
the trapped gas from expanding as pressure falls, and so once released, the gas will
expand very rapidly. Dissociation of hydrates is an endothermic process, meaning
the process requires heat, and so the process is also dependent on how fast the
surrounding fluid or solid material is heated up again.

Another study by vavik (Vavik u. a., 2016), suggests that the temperature condi-
tions for forming hydrates are likely present in the well head, the Blow out preventer
(BOP) and the drilling riser, as well as deep down inside the wellbore casing, where
as mentioned above, the temperature will be relatively low. It also states that be-
cause gas hydrates consume gas when formed, the consumed gas will be replaced
with more gas from reservoirs or alternatively with drilling fluids. This phenomenon
may cause a reduction in casing shut-in pressure (CSIP), and so may mistakenly be
interpreted as loss in fluid. This may have safety implications.

2.2 Drilling Advanced Influx Detection

Drilling Advanced Influx Detection (DrillAidTM) is an early kick detection (EKD)
tool that detects an influx in a wellbore with pressure transmitters, arranged in a fixed
vertical distance h. These pressures can thus be used to calculate the density ρreal n
of a return flow, and compare it to a calculated expected density ρcalc n. Additionally,
the method predicts the probability of gas hydrates forming in the wellbore, wellhead
or riser annulus by measuring or calculating the temperatures in an annulus section.

In order to achieve this there is need for an accurate method for prediciting
how temperature distributions about the wellbore change with time. Specifically a
computer program that numerically calculates the expected temperature distribution
in a deep water well. One such model has already been developed by Sevillano
(Sevillano u. a., 2017). This model has been programmed using the programming
language Matlab, and is detailed as it has many nodes in the formation. It is however
quite slow, and so cannot be used directly. The model is intended to be used in
combination with real time data, that will be updated every second. That is, each
iteration should be faster than 1Hz, for it to be used as intended.
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Figure 2.1: Typical deep water well and casing program. Taken from (Vavik u. a., 2017).
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Chapter 3

Transient Temperature
Distribution

The current trend of drilling deeper and costlier wells requires an increasingly ac-
curate method of measuring the variables involved. This due to the increase in
probability for the occurrence in previously not accounted for factors, as stated by
Vavik (Vavik u. a., 2017). Among these variables is temperature. An accurate mean
of estimating the temperature distribution with time would in fact have many ap-
plications. Among these are cementing program design, Injection and production
operations, and well design in permafrost regions.

In order to develop a transient temperature distribution model, one can utilize
the energy balance equations for the system. To do so we consider the three regions
of the flow in the wellbore. In the first region the fluid enters the drill string with
a known temperature, and flows downwards through it. The temperature change
in this region is thus determined by the rate of thermal convection down the fluid
column, and the rate of convective heat transfer radially between the fluid, pipe
wall, and annulus. Thermal convection is in this case the transfer of heat cause
by the tendency of hotter and thus less dense material to rise, while colder, denser
materials sink due to gravity. In the second region, that is at the bottom of the
wellbore, the fluid flows from the drill string, through the drill bit, into the annulus.
Change in temperature in this region should be determined by vertical and radial
heat conduction within the pipe wall. In the last region the fluid flows back up,
through the annulus. In this region the temperature change is again dependent on
the rate of heat convection up the annulus and the radial convection between the
annulus fluid, the drill pipe wall, and the fluid within the drill pipe. Additionally it
will be dependent on the rate of radial convection through the formations Kays u. a.
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(2005).
Because transient heat transfer is considered, the time of circulation has an im-

portant effect on the temperature of the fluid, as has the heat generation within the
three flow regions due to frictional forces and the rotational energy of the drill string
and the drill bit.

Furthermore, before stating the energy balance equations, certain assumptions
has been made. Flow in the wellbore is assumed to be both fully developed and
to be turbulent in the drill pipe and drill bit, while laminar in the annulus. It
is assumed that both the radial temperature gradient and the heat generation by
viscous dissipation within the fluid may be neglected. It is also assumed that the
heat transfer within the drilling fluid is by axial convection, and that conduction
may be neglected everywhere except where the fluid is still. Lastly it is assumed
that properties such as density, thermal conductivity, and specific heat capacity are
independent of temperature. The thermal conductivity k is defined as the ability of
a material to transfer heat, and is in fact highly dependent on temperature. The
same applies to specific heat capacity cp which is the ability of formations to store
heat. For simplicity however, both of these variables are as stated assumed to be
constant. Other variables, such as the convection coefficient h and the energy source
term Q, are assumed to be constant within certain height intervals.

With these assumptions, then as stated in the article by Marshall and Bentsen
(Marshall und Bentsen, 1982), and as developed in the article by (Sevillano u. a.,
2017), we have seven equations to consider and discretize.

3.1 Energy Balancing Equations

The energy balances within the systems can be described by seven partial differential
equations. In these equations there are several constant and variables to be consid-
ered apart from the temperature T . Table 3.1 demonstrates an overview of each of
these and their units, and Table 3.2 explains the different subscripts. There are two
main areas in which I would like to estimate the temperature distribution; the riser
and the well, separated by a mud-line. This is illustrated in Figure 4.1. Additionally,
there will be an area right above the seabed, below the riser, where the Blowout Pre-
venter (BOP), Wellhead Housing, and Conductor Housing will be located. This area
might demand a separate system of equations as well, but primarily I will consider
two sets of equations, leading to two systems of equations. The first three equations
are identical for both systems, while the next equations are specific for each system.
I begin by presenting the first three equations.
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Variable Notation Unit
Gravitational acceleration g m s−2

Specific Heat Capacity cp J Kg−1 K−1

Thermal Conductivity k W m−1 K−1

Inclination angle α radians
Density ρ Kg m−3

Volumetric Flow Rate q m3 s −1

Radius r m
Convective Heat Transfer Coefficient h W m−2 K−1

Heat generated in a control volume by
the different energy sources present

Q W m−1

Time t s
Vertical Position z m

Table 3.1: List of variables with their respective units

Subscript Explanation
a Annulus A
ca Casing annulus
cw Casing wall
df Drilling fluid
ds Drill string
db Drill bit
rw Marine riser wall
rf Riser Floaters
i Inner
o Outer

j
jth well and riser system component, and
radial position of element in mesh grid

Table 3.2: List of subscripts and their meaning

Fluid inside the drill string
The center-most area of the well is the mud within the drill string. The first term
in this equation accounts for the fluid’s potential energy, where the inclination angle
α allows for the use of measured depth instead of true vertical depth. The second
term accounts for the fluid’s variation of enthalpy as it crosses the control volume

8



CV, while the third term describes the radial convective heat transfer between the
drill string wall and the fluid within. Lastly, the two right-hand terms represent the
accumulation of energy within the drill string and the energy source, respectively.

q ρdfdsg sinα+ρdfds q cpdf
∂T

∂z
+2π rdsihdsi (Tds − Tdfds) = ρdfdscpdfπr

2
dsi

∂T

∂t
−Qds (3.1)

This equation is based on the equation in both (Marshall und Bentsen, 1982) and
(Sevillano u. a., 2017), but there is a discrepancy. Since the latter is itself based on
the first, the author suspect an error has been transferred from one to the other.
That is, the first two terms should be positive, not negative as they are shown to be
in both these papers.

Drill string wall
The natural next area to consider is the drill string itself. The first term of this
equation accounts for the vertical heat conduction in the drill string, while the two
center terms account for heat exchanged by convection with fluid flowing in its inte-
rior and on the surrounding annulus. Here π

(
r2
dso
− r2

dsi

)
is clearly the cross sectional

area of the drill string wall, where π has been cancelled out. Unlike the previous
equation, this equation has been divided by the cross sectional area. Like before,
the right-hand term below accounts for the accumulation of energy along the drill
string.

kds
∂2T

(∂z)2
+

2rdsihdsi
r2
dso
− r2

dsi

(Tdfds − Tds) +
2rdsohdso
r2
dso
− r2

dsi

(Tdfa − Tds) = ρdscpds
∂T

∂t
(3.2)

This equation is formulated differently in the two papers cited above. In the latter
the third term is negative, that is the temperature of flowing annulus is subtracted
from the temperature of the drill string wall. I disagree with this change because it
would lead to an addition of energy when the temperature in the drill string wall is
in fact higher than that in the flowing annulus. This is the opposite of one would
expect, as a lower temperature should subtract from the overall energy, not add to
it. This assumed error is repeated in the fourth term in the next equation, and so in
analogy with the argument above this term has again been left positive. That is, it
is like that of the paper from 1982 (Marshall und Bentsen, 1982).

The upward flow of fluid in the annulus
The next area is the flowing annulus, where the mud and drill cuttings are carried
up to the surface. Three of the left-hand terms are very similar to (3.1), while the
fourth term accounts for the radial convective heat transfer between the drilling fluid
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and either the riser, the casing, or the formation, depending on the vertical position
in the well. In the equation below, the subscript cw has been used, and so must be
changed for what applies. Energy accumulation and generation are again accounted
for by the two right-hand terms.

ρdf q cpdf
∂T

∂z
+ q ρdfg sinα + 2π rdsohdso (Tds − Tdfa)

+ 2π rcwi
hcwi

(Tcw − Tdfa) = πρdfcpdf
(
r2
cwi
− r2

dso

) ∂T
∂t
−Qa (3.3)

Comparing this equation with equation (3.1) further establishes that there is most
likely an error in the first equation. Otherwise the analogy between the two equations
would be illogical, as the first two terms of each equation would be of opposite signs.

Riser and Floaters
The next equations are specific for the system above the mud-line. Here we must
consider two sets of equations. The first applies to where the riser wall is in direct
contact with either the air or the sea. The riser will then exchange heat with the sea
or air through both natural and forced convection. The first term in this equation
describes the axial heat conduction in the riser wall, while the second and third term
account for the radial heat transfer by convection between the riser wall and the fluid
it is in contact with. The last term is as before.

krw
∂2T

(∂z)2
+

2rrwi
hrwi

r2
rwo
− r2

rwi

(Tdfa − Trw) +
2rrwohrwo

r2
rwo
− r2

rwi

(Tsea − Trw) = ρrwcprw
∂T

∂t
(3.4)

The variables in the second and third term have been mislabelled in Sevillano u. a.
(2017), and so should be as stated here, in analogy with the terms accounting for
radial heat transfer by convection in the previous equations. The temperature of
the sea or air is again assumed to be undisturbed by the well due to the constant
circulation of both.

When the riser wall is in contact with floaters the equation for the riser wall is
similar to the above, but the third term has been changed so to account for the heat
transfer by convection between the riser wall and the riser floaters.

1

r2
rwo
− r2

rwi

· 2krwkrf

krw ln
(

rrfo−rrfi
2rrwo

)
− krf ln

(
rrwo−rrwi

2rrwo

) (Trf − Trw)

+ krw
∂2T

(∂z)2
+

2rrwi
hrwi

r2
rwo
− r2

rwi

(Tdfa − Trw) = ρrwcprw
∂T

∂t
(3.5)
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The equation for the riser floaters is then

1

r2
rfo
− r2

rfi

· 2krwkrf

krw ln
(

rrfo−rrfi
2rrwo

)
− krf ln

(
rrwo−rrwi

2rrwo

) (Trw − Trf )

+ krf
∂2T

(∂z)2
+

2rrfohrfo
r2
rfo
− r2

rfi

(Tsea − Trf ) = ρrfcp rf
∂T

∂t
(3.6)

Casing string wall and subsequent layers
The next two equations describe the subsequent layers specific to the well, below
the mud-line. For the Casing string wall and the subsequent layers there are again
several scenarios depending on the vertical position in the well. An annulus filled
with mud can be represented by equation (3.3). A Casing string surrounded by two
annuli filled with mud can be described by equation (3.2). The next scenario occurs
once for each vertical position. That is, a casing string with an annulus filled with
mud on its left side, and an annulus with cement on its right side. This can be
represented by the equation described in equation (3.5). The subsequent layers can
then be represented by the following equation, where the two left-hand terms account
for the radial heat transfer by conduction.

1

r2
jo
− r2

ji

· 2 kj−1kj

kj−1 ln
(

rjo−rji
2r(j−1)o

)
− kj ln

(
r(j−1)o−r(j−1)i

2r(j−1)o )

) (Tj−1 − Tj)

+
1

r2
jo
− r2

ji

· 2 kjkj+1

kj ln
(

r(j+1)o−r(j+1)i

2rjo

)
− kj+1 ln

(
rjo−rji

rjo

) (Tj+1 − Tj)

+ kj
∂2T

(∂z)2
= ρjcpj

∂T

∂t
(3.7)

The second and fourth term in this equation has also been mislabelled in Sevil-
lano u. a. (2017), and so should again be as stated here, in analogy with previous
equations.
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Chapter 4

The Numerical Model

4.1 Discretization of The Energy Balancing Equa-

tions

I intend to numerically approximate the temperature distribution using the equations
above. To do so I discretize the temperatures and approximate the differential terms
in the equations using finite difference methods. A way of doing so is by Taylor
Series Methods. Its principle is to represent the solution of a differential equation
locally by a few terms of its Taylor series (Cheney und Kincaid, 2013). From Taylor’s
formula we have that the series expansion of a formula around a point x = a, where
x− a = ∆x is as follows

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f (3)(a)

3!
(x− a)3 + ...

f(a+ ∆x) = f(a) +
f ′(a)

1!
∆x+O

(
(∆x)2

)
,

(Suli und Mayers, 2011). Or rewritten as

f ′(a) =
f(a+ ∆x)− f(a)

∆x
+O (∆x) .

This is commonly referred to as Forward Euler, and is the most basic explicit method
for solving ordinary differential equations. Using the same method, but with x−a =
−∆x, we have the approximation commonly referred to as Backward Euler:

f ′(a) =
f(a−∆x)− f(a)

−∆x
+O (∆x) =

f(a)− f(a−∆x)

∆x
+O (∆x) ,

12



Combing the two series expansions above we see that

f(a+ ∆x) + f(a−∆x) = 2f(a) + f ′′(a)(∆x)2 +O
(
(∆x)3

)
and so

f ′′(a) =
f(a+ ∆x)− 2f(a) + f(a−∆x)

(∆x)2
+O (∆x) .

In other words we may approximate the first order partial derivatives by two-point
forward and backward difference approximations, while the second order derivatives
can be represented by three point central differences. In our case the partial deriva-
tives in time have been approximated by two-point backward difference approxima-
tions, while the partial derivatives in space have been approximated by two point
forward difference approximation and three point central differences (Thomas, 2013).
Inserting these approximations as well as the constants defined in table 4.1, leaves
the following seven equations.

Notation Expression
Al ρl cpl
Bl r2

lo
− r2

li
= r2

lo
− r2

(l−1)o

Dl
2 kl−1kl

kl−1 ln (rlm )+(kl−kl−1) ln (r(l−1)o )−kl ln (r(l−1)m )

El 2rlhl
Fl q ρl g sinα

Table 4.1: Constants defined in order to simplify the energy balance equations.

Fluid inside the drill string

q Adf

T n
k+1, 1 − T n

k, 1

∆zk
+ π Edsi

(
T n
k, 2 − T n

k, 1

)
= πr2

dsi
Adf

T n
k, 1 − T n−1

k, 1

∆t
−Qds − F

Drill string wall

kds
T n
k−1, 2 − 2T n

k, 2 + T n
k+1, 2

(∆zk)2
+
Edsi

Bds

(
T n
k, 1 − T n

k, 2

)
+
Edso

Bds

(
T n
k, 3 − T n

k, 2

)
= Ads

T n
k, 2 − T n−1

k, 2

∆t

The upward flow of fluid in the annulus

q Adf

T n
k+1, 3 − T n

k, 3

∆zk
+ π Edso

(
T n
k, 2 − T n

k, 3

)
+ π Ecwi

(
T n
k, 4 − T n

k, 3

)
= πAdfBa

T n
k, 3 − T n−1

k, 3

∆t
−Qa − F

13



Riser wall in direct contact with water

krw
T n
k−1, 4 − 2T n

k, 4 + T n
k+1, 4

(∆zk)2
+
Erwi

Brw

(
T n
k, 3 − T n

k, 4

)
+
Erwo

Brw

(
Tsea − T n

k, 4

)
= Arw

T n
k, 4 − T n−1

k, 4

∆t

Riser wall with floaters

Drf

Brw

(
T n
k, 5 − T n

k, 4

)
+krw

T n
k−1, 4 − 2T n

k, 4 + T n
k+1, 4

(∆zk)2
+
Erwi

Brw

(
T n
k, 3 − T n

k, 4

)
= Arw

T n
k, 4 − T n−1

k, 4

∆t

Floaters

Drf

Brf

(
T n
k, 4 − T n

k, 5

)
+krf

T n
k−1, 5 − 2T n

k, 5 + T n
k+1, 5

(∆zk)2
+
Erfo

Brf

(
Tsea − T n

k, 5

)
= Arf

T n
k, 5 − T n−1

k, 5

∆t

Casing string wall and subsequent layers

kj
T n
k−1, j − 2T n

k, j + T n
k+1, j

(∆zk)2
+
Dj

Bj

(
T n
k, j−1 − T n

k, j

)
+
Dj+1

Bj

(
T n
k, j+1 − T n

k, j

)
= Aj

T n
k, j − T n−1

k, j

∆t

Using these discretized equations, we may define two systems of linear equations
to be solved for each time step. To better visualize how these matrices would look
like we rewrite our equations as follows.
Fluid inside the drill string

[π∆t∆zk Edsi + q∆t Adf + π∆zk r
2
dsi
Adf ]T

n
k, 1 − [π∆t∆zk Edsi]T

n
k, 2

− [q∆t Adf ]T
n
k+1, 1 = [π∆zk r

2
dsi
Adf ]T

n−1
k, 1 + ∆t∆zk (Qds + F )

Drill string wall

[kds∆t Bds]T
n
k−1, 2 + [∆t (∆zk)2Edsi]T

n
k, 1

− [∆t (∆zk)2Edsi + (∆zk)2AdsBds + ∆t (∆zk)2Edso + 2∆t kdsBds]T
n
k, 2

+ [∆t (∆zk)2Edso]T
n
k, 3 + [∆t kdsBds]T

n
k+1, 2 = − [(∆zk)2AdsBds]T

n−1
k, 2

The upward flow of fluid in the annulus

[π∆t∆zk Edso]T
n
k, 2 − [π∆t∆zk Edso + q∆t Adf + π∆t∆zk Ecwi

+ π∆zk AdfBa]T
n
k, 3

+ [π∆t∆zk Ecwi
]T n

k, 4 + [q∆t Adf ]T
n
k+1, 3 = − [π∆zk AdfBa]T

n−1
k, 3 − ∆t∆zk (Qa + F )
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Riser wall in direct contact with water

[∆tkrwBrw]T n
k−1, 4 + [∆t(∆zk)2Erwi

]T n
k, 3

− [(∆zk)2ArwBrw + 2∆tkrwBrw + ∆t(∆zk)2Erwi
+ ∆t(∆zk)2Erwo]T

n
k, 4

+ [∆tkrwBrw]T n
k+1, 4 = − [(∆zk)2ArwBrw]T n−1

k, 4 − ∆t(∆zk)2ErwoTsea

Riser wall in contact with floaters

[∆tkrwBrw]T n
k−1, 4 + [∆t(∆zk)2Erwi

]T n
k, 3

− [∆t(∆zk)2Drf + 2∆tkrwBrw + ∆t(∆zk)2Erwi
+ (∆zk)2ArwBrw]T n

k, 4

+ [∆t(∆zk)2Drf ]T
n
k, 5 + [∆tkrwBrw]T n

k+1, 4 = − [(∆zk)2ArwBrw]T n−1
k, 4

Floaters

[∆tkrfBrf ]T
n
k−1, 5 + [∆t(∆zk)2Drf ]T

n
k, 4

− [∆t(∆zk)2Drf + 2∆tkrfBrf + ∆t(∆zk)2Erfo + (∆zk)2ArfBrf ]T
n
k, 5

+ [∆tkrfBrf ]T
n
k+1, 5 = − [(∆zk)2ArfBrf ]T

n−1
k, 5 − ∆t(∆zk)2ErfoTsea

Casing string wall and subsequent layers

[kj∆tBj]T
n
k−1, j + [Dj∆t(∆zk)2]T n

k, j−1

− [2kj∆tBj +Dj∆t(∆zk)2 +Dj+1∆t(∆zk)2 + (∆zk)2AjBj]T
n
k, j

[Dj+1∆t(∆zk)2]T n
k, j+1 + [kj∆tBj]T

n
k+1, j = − [(∆zk)2AjBj]T

n−1
k, j

A representation of how the nodes in these discretized equations are placed in our
system is presented later, in Figure 5.1 and 5.2. Generally, these equations allow us
to form a matrix system, which again allows us to solve the equations simultaneously.
This system would look as follows

AsT
n
s = B′s Tn−1

s + Fs,

where s = 1, 2 for the upper and lower system respectively.
It is evident that the equations cannot be applied at the boundaries without

further consideration, because it requires us to know the temperatures beyond the
borders. Before applying this system of linear equations we must therefore consider
our boundary and initial conditions.
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Figure 4.1: Auxiliary sketch of the discretized heat transfer problem and boundary condi-
tions. Taken from (Sevillano u. a., 2017)
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4.2 Boundary And Initial Conditions

To implement this system, certain assumptions must be made. For initial conditions
it has been assumed that the system has been still for long enough that the well has
the same temperature as its surrounding formation or sea, depending on its location.
We also assume that there is no heat exchange across the innermost area, so that
viewing this system from the center outwards is valid. Additionally, we assume
that no heat exchange takes place across the outermost radius, that is r = rmax. In
reality this is simply saying that the node of the sea, and the node of the furthermost
formation considered is assumed constant. In mathematical terms these conditions
can be expressed as follows

∂T

∂r

∣∣∣∣
r=0,max

= 0.

For further discussion we begin by considering the boundary conditions of our
system above the seabed.

4.2.1 Above The Seabed

For the top of the system we have two assumed conditions. The first is that the inlet
temperature is fixed and given, that is

T0, 1 = Tinlet. (4.1)

From this condition it immediately follows that ∂T0, 1/∂t = 0. The other assumption
we make is that no heat exchange takes place across the uppermost surface of the
system. In other words,

∂T

∂z

∣∣∣∣
z=2820

= 0. (4.2)

Evident from the matrix system above, there are a few temperatures at the top
and bottom of the system that need to be evaluated before the iteration. For the top
of the system these temperatures are T n

0, 2 and T n
0, 4. At the top of the system there

is an air gap next to the riser wall, and no floaters. Thus we consider the first four
energy balance equations where Tsea is replaced by Tair. Inserting conditions (4.1)
and (4.2) into the discretized version of equation (3.1) for k = 0 (z = 2820m), we get

2π rdsihdsi (Tinlet − T0, 2) = Qds − q ρdfdsg sinα.

And so we may already write that

T0, 2 =
q ρdfdsg sinα−Qds

2π rdsihdsi
+ Tinlet. (4.3)
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In other words, T0, 2 is constant, and so ∂T0, 2/∂t = 0. Applying this and condition
(4.1) to equation (3.2) gives

2rdsihdsi
r2
dso
− r2

dsi

(Tinlet − T0, 2) +
2rdsohdso
r2
dso
− r2

dsi

(T0, 2 − T0, 3) = 0.

And so using (4.3), we may again define

T0, 3 =
Qds − q ρdfdsg sinα

2π

(
1

rdsohdso
− 1

rdsihdsi

)
+ Tinlet. (4.4)

In analogy with what our previous steps, we may write (3.3) as follows:

2π rdsohdso (T0, 2 − T0, 3) + 2π rrwi
hrwi

(T0, 3 − T0, 4) = −Qa − q ρdfg sinα,

and so inserting (4.3) and (4.4),

T0, 4 =
Qds − q ρdfdsg sinα

2π

(
1

rdsohdso
− 1

rdsihdsi
− 1

rrwi
hrwi

)
+
Qa + q ρdfg sinα

2πrrwi
hrwi

+ Tinlet (4.5)

We have found the two needed constant temperatures for the top of the system.
The next altitude to be considered is the intersection between our upper system

of 5 nodes, and our lower of 16. To avoid dependency on the lower system we choose
to replace the two-point forward Euler applied on equation (3.1) and (3.3) with two
point Backward Euler. In other words we write

∂T n
k, j

∂z
=
T n
k, j − T n

k−1, j

∆z
, k = first node over seabed.

In equation (3.2) we have approximated ∂2T n
k, j/(∂z)2 using the central differences

method, a method found by first applying forward difference, then backward differ-
ence. In this instance we choose to apply backward difference twice, and so yield

∂2T n
k, j

(∂z)2
=
T n
k, j − 2T n

k−1, j − T n
k−2, j

(∆z)2
, k = first node over seabed.

For the bottom-most altitude of the upper system we now have the following
equations:
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Fluid inside the drill string

[q∆t Adf ]T n
k−1, 1 +

[
π∆t∆zk Edsi − q∆t Adf + π∆zk r

2
dsi
Adf

]
T n
k, 1

− [π∆t∆zk Edsi ]T
n
k, 2 =

[
π∆zk r

2
dsi
Adf

]
T n−1
k, 1 + ∆t∆zk (Qds + F )

Drill string wall

[∆t kdsBds]T
n
k−2, 2 − [2kds∆t Bds]T

n
k−1, 2 +

[
∆t (∆zk)2Edsi

]
T n
k, 1

−
[
∆t (∆zk)2Edsi + (∆zk)2AdsBds + ∆t (∆zk)2Edso −∆t kdsBds

]
T n
k, 2

+
[
∆t (∆zk)2Edso

]
T n
k, 3 = −

[
(∆zk)2AdsBds

]
T n−1
k, 2

The upward flow of fluid in the annulus

− [q∆t Adf ]T n
k−1, 3 + [π∆t∆zk Edso ]T

n
k, 2

− [π∆t∆zk Edso − q∆t Adf + π∆t∆zk Ecwi
+ π∆zk AdfBa]T

n
k, 3

+ [π∆t∆zk Ecwi
]T n

k, 4 = − [π∆zk AdfBa]T
n−1
k, 3 −∆t∆zk (Qa − F )

Riser in direct contact with water

[∆tkrwBrw]T n
k−2, 4 +

[
∆t(∆zk)2Erwi

]
T n
k, 3

−
[
(∆zk)2ArwBrw −∆tkrwBrw + ∆t(∆zk)2Erwi

+ ∆t(∆zk)2Erwo

]
T n
k, 4

− [2∆tkrwBrw]T n
k−1, 4 = −

[
(∆zk)2ArwBrw

]
T n−1
k, 4 −∆t(∆zk)2ErwoTsea

We have now sufficiently considered all boundary and initial conditions for the
upper system.

4.2.2 Below The Seabed

For the bottom of the system we again make two assumptions. The first is that the
temperature of the flowing fluids and the drill string are equalized at the drill bit
(z = zbot) during circulation. Thus

TK, 1 = TK, 2 = TK, 3

where K is the bottom most node.
The other assumption is that unlike the top of the system, heat exchange does

take place across the bottom/lowermost part of the system. However, temperature
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variations of formation elements below the drill bit are not computed, and so the
temperature of the formations below the drill bit are assumed constant.

At the bottom of the system the first three nodes are as for the rest of the system
the drilling fluid, the drill collar, and the flowing annulus. Applying the stated
boundary conditions to the first of these three equations yields the following.
Fluid inside the drill string

q Adf

T n
k+1, 1 − T n

k, 1

∆zk
= πr2

dsi
Adf

T n
k, 1 − T n−1

k, 1

∆t
−Qds − F

and so

(∆t q Adf +∆zk πr
2
dsi
Adf )T n

bot, 1 = ∆zk πr
2
dsi
AdfT

n−1
bot, 1 +∆t (∆zk(Qdb+F )+q AdfT

n
form.)

Since T1, bot = T2, bot = T3, bot, this equation can be applied to all three nodes. For
the remaining bottom nodes there is simply Limestone at the bottom. Thus we have
one node represented by equation (3.5), and the remaining nodes by (3.7). A sketch
of the discretized temperatures and boundary conditions can be seen can be seen in
Figure 4.1.

When the bottom system is calculated it is assumed that the upper system has
already been calculated, and so the lower system may depend on the temperatures
of this system. The bottom system is expected to be the most time consuming as
it has 16 horizontal nodes vs the 5 horizontal nodes for the upper system. There
should therefore not be a substantial delay by calculating one system at a time. If
however the reader would prefer to calculate the temperature distribution of the two
systems simultaneously there are two ways of doing so The first is to simply use the
values of one time-step earlier. The other is to rather than use the central differences
method for the double derivatives in space at the top, to apply forward difference
twice. And so the temperatures of the first node below the seabed will no longer be
dependent on the Temperatures at the node above.

All boundary conditions have now been sufficiently considered, and we may pro-
ceed with the system of linear equations.

4.3 System of Linear Equations

Before considering our actual system of equations, we consider a simplified version,
so to better visualize the numeric system. That is, we set all variables as listed in
Table 4.1 as well as q and π equal to 1. That leaves us with the following equations.
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Fluid inside the drill string

(∆t∆zk + ∆t+ ∆zk)T n
k, 1 − ∆t∆zkT

n
k, 2 − ∆t T n

k+1, 1 = ∆zkT
n−1
k, 1 + 2∆t∆zk

Drill string wall

∆t T n
k−1, 2 + ∆t (∆zk)2T n

k, 1 −
[
2∆t (∆zk)2 + (∆zk)2 + 2∆t

]
T n
k, 2

+ ∆t (∆zk)2T n
k, 3 + ∆t T n

k+1, 2 = −(∆zk)2T n−1
k, 2

The upward flow of fluid in the annulus

∆t∆zkT
n
k, 2 − [2∆t∆zk + ∆t+ ∆zk]T n

k, 3

+ ∆t∆zkT
n
k, 4 + ∆t T n

k+1, 3 = −∆zkT
n−1
k, 3 − 2∆t∆zk

Riser wall in direct contact with water

∆tT n
k−1, 4 + ∆t(∆zk)2T n

k, 3 −
[
(∆zk)2 + 2∆t+ 2∆t(∆zk)2

]
T n
k, 4

+ ∆t T n
k+1, 4 = −(∆zk)2T n−1

k, 4 −∆t(∆zk)2Tsea

Riser wall in contact with floaters

∆t T n
k−1, 4 + ∆t(∆zk)2T n

k, 3 −
[
2∆t(∆zk)2 + 2∆t+ (∆zk)2

]
T n
k, 4

+ ∆t(∆zk)2T n
k, 5 + ∆t T n

k+1, 4 = −(∆zk)2T n−1
k, 4

Floaters

∆t T n
k−1, 5 + ∆t(∆zk)2T n

k, 4 −
[
2∆t(∆zk)2 + 2∆t+ (∆zk)2

]
T n
k, 5

+ ∆t T n
k+1, 5 = −(∆zk)2T n−1

k, 5 −∆t(∆zk)2Tsea

Casing string wall and subsequent layers

∆t T n
k−1, j + ∆t(∆zk)2T n

k, j−1 −
[
∆t+ 2∆t(∆zk)2 + (∆zk)2

]
T n
k, j

+ ∆t(∆zk)2T n
k, j+1 + ∆t T n

k+1, j = −(∆zk)2T n−1
k, j
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Or rather:

Fluid inside the drill string, the drill string wall, and the upward flow of fluid in the
annulus(

1 + 1
∆t

+ 1
∆zk

)
T n
k, 1 − T n

k, 2 −
(

1
∆zk

)
T n
k+1, 1 =

(
1

∆t

)
T n−1
k, 1 + 2

(
1

∆z2k

)
T n
k−1, 2 + T n

k, 1 −
(

2 + 2
∆z2k

+ 1
∆t

)
T n
k, 2 + T n

k, 3 +
(

1
∆z2k

)
T n
k+1, 2 = −

(
1

∆t

)
T n−1
k, 2

T n
k, 2 −

(
2 + 1

∆t
+ 1

∆zk

)
T n
k, 3 + T n

k, 4 +
(

1
∆zk

)
T n
k+1, 3 = −

(
1

∆t

)
T n−1
k, 3 − 2

Riser wall in direct contact with water, the riser wall in contact with floaters, and
the floaters(

1
∆z2k

)
T n
k−1, 4 + T n

k, 3 −
(

1
∆t

+ 2
∆z2k

+ 2
)
T n
k, 4 +

(
1

∆z2k

)
T n
k+1, 4 = −

(
1

∆t

)
T n−1
k, 4 − Tsea

(
1

∆z2k

)
T n
k−1, 4 + T n

k, 3 −
(

2 + 2
∆z2k

+ 1
∆t

)
T n
k, 4 + T n

k, 5 +
(

1
∆z2k

)
T n
k+1, 4 = −

(
1

∆t

)
T n−1
k, 4

(
1

∆z2k

)
T n
k−1, 5 + T n

k, 4 −
(

2 + 2
∆z2k

+ 1
∆t

)
T n
k, 5 +

(
1

∆z2k

)
T n
k+1, 5 = −

(
1

∆t

)
T n−1
k, 5 − Tsea

Casing string wall and subsequent layers(
1

∆z2k

)
T n
k−1, j+T

n
k, j−1−

(
1

∆z2k
+ 2 + 1

∆t

)
T n
k, j+T

n
k, j+1+

(
1

∆z2k

)
T n
k+1, j = −

(
1

∆t

)
T n−1
k, j

This system would give the following matrices for a system of equations AsT
n
s =

B′s Tn−1
s +Fs, where s = 1, 2 for the upper and lower system respectively. We denote

the subscript Ks to mean the bottom most node for each system, respectively. The
matrices As are too large to include in the paper, but the other vectors have been
included below. They are dependent on the altitude, and so the vectors below are
merely examples.

Tn
s =



τns,1
τns,2
τns,3
...

τns,Ks−1

τns,Ks


, τn1,k =


T n
k, 1

T n
K1, 2

T n
K1, 3

T n
K1, 4

T n
K1, 5

 , τn2,k =


T n
k, 1

T n
K1, 2

T n
K1, 3

T n
K1, 15

T n
K1, 16
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B1 =



b1,1

b1,1
...
b1,1

b1,2

b1,2

b1,2
...
b1,2

b1,1
...
b1,1



,

b1,1 =


1/∆t
−1/∆t
−1/∆t
−1/∆t

1

,

b1,2 =


1/∆t
−1/∆t
−1/∆t
−1/∆t
−1/∆t

,

F1 =



2
−T0,2/(∆zk)2

−2
−Tsea − T0,4/(∆zk)2

0
f1,1

...
f1,1

f1,2
...
f1,2

f1,1
...
f1,1



,

f1,1 =


2
0
−2
−Tsea

0

,

f1,2 =


2
0
−2
0
−Tsea

,

B2 =



b2

b2
...
b2

b2

1/∆t
1/∆t
1/∆t
−1/∆t
−1/∆t

...
−1/∆t



, b2 =



1/∆t
−1/∆t
−1/∆t
−1/∆t

...
−1/∆t
−1/∆t


, F2 =



f2

f2
...
f2

f2

2 + Tform./∆z
2 + Tform./∆z
2 + Tform./∆z

0
0
...
0

−Tform./(∆zk)2



, f2 =



2
0
−2
0
0
...
0

−Tform./(∆zk)2


.

where b2, f2,1, and f2,2 have lengths equal to 16. The left subscripts k = 1, 2, ..., Ks

of Tj, k are defined by the row number, and the right subscripts j = 1, 2, ..., Js, where
J1 = 5, J2 = 16, are defined by the columns.

We thus have a simplified system of linear equations similar to that of our actual
system. The matrices for the actual system will look very similar, but are too large
to include here. We thus proceed to consider how to solve such a system, and this
system in particular.
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Chapter 5

Developing a Program in C++

5.1 LU-Reduction

One of the most efficient and well used methods for solving matrix equations is LU-
decomposition, and the algorithm for this decomposition is called LU-Reduction. It
is often used in the context of parallel computing with the purpose of comparing
processing speeds for different computers. The method of LU decomposition is a
matrix version of Gaussian elimination, and is itself one of the most practical and
most efficient ways of solving a system of linear equations. The requirement of
this method is that the coefficient matrix A is square, and so it may be applied on
our system. The method of LU decomposition consists of factorizing the coefficient
matrix A into a lower triangular matrix L and an upper triangular matrix U , such
that

Ax = b =⇒ LUx = b =⇒ L (Ux) = b.

Thus we may solve two simpler systems of equations, Ly = b and Ux = y, rather
than solving the original one in one go. To find the matrices L, U we have to solve
the matrix equation A = LU,

a1, 1 a1, 2 . . . a1, n

a2, 1 a2, 2 . . . an−1, n
...

...
. . .

...
an, 1 an, 2 . . . an, n

 =


1 0 . . . 0

l2, 1 1
. . .

...
...

. . . . . . 0
ln, 1 . . . ln, n−1 1



u1, 1 u1, 2 . . . u1, n

0 u2, 2 . . . u2, n
...

. . . . . .
...

0 . . . 0 un, n

 .
Immediately from this it is evident that the top row of the matrix U is identical

to the top row of the coefficient matrix A. For the first of A we first have that

a2, 1 = l2, 1u1, 1 =⇒ l2, 1 = a2, 1/a1, 1.
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In fact, this equation can be extended for all lk,1:

ak, 1 = lk, 1u1, 1 =⇒ lk, 1 = ak, 1/a1, 1.

From simple analysis we also see that for the jth column of row 2 we have

a2, j = l2, 1u1, j + u2, j =⇒ u2, j = a2, j − l2, 1u1, j.

Clearly there is a pattern to these equations, and so both the latter equations can be
extended to account for all columns j, and all rows k, respectively. In other words
we can achieve a general formula for the elements lk, j and uk, j as follows.

ak, j = lk, juj, j +

j−1∑
i=1

lk, iui, j =⇒ lk, j =
1

uj, j

(
ak, j −

j−1∑
i=1

lk, iui, j

)
for j < k.

ak, j = uk, j +
k−1∑
i=1

lk, iui, j =⇒ uk, j = ak, j −
k−1∑
i=1

lk, iui, j for j ≥ k,

Once the matrices U and L have been found, the outer matrix equation consist
of a number of linear equations,

y1 = b1,
l2, 1y1 + y2 = b2,
l3, 1y1 + l3, 2y2 + y3 = b3,

...
. . .

...
lm, 1y1 + . . . + lm,m−1ym−1 + ym = bm,

such that

yk = bk −
k−1∑
i=1

lk, iyi.

For the inner matrix equation the resulting linear equations are very similar, but
opposite, since U is an upper triangle matrix.

u1, 1x1 + u1, 2x2 + . . . + u1,mxm = y1,
+ u2, 2x2 + . . . + u2,mxm = y2,

. . .
...

...
um−1,m−1xm−1 + um−1,mxm = ym−1,

um,mxm = ym,
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such that

xk =
1

uk, k

(
yk −

m∑
i=k+1

uk, ixi

)
.

(Suli und Mayers, 2011).For this inner equation the elements in x must clearly be
iterated beginning with the lower-most element, that is k = m.

We may now proceed to solve our liner system of equations using this method,
but must first elect the number and placement of the nodes.

5.2 Election of Nodes

The system for which the temperature distribution is to be estimated is as presented
in Figure 5.1. To simplify the discretizing of the upper system there is simply one
horizontal node in the center of each area. Therefore, since the temperature of the
sea and air is assumed to be constant, there are only five horizontal nodes to be
considered. For the lower system there are at most 11 areas to be considered, as
well as the rock. Unlike the upper system however, there is no circulation in the
rock. Hence the temperature of the rock close to the drill will likely be affected. To
account for this there are 16 nodes in total, that is, a minimum of 5 nodes in the
rock area. The placement of the nodes have been chosen to imitate those chosen in
Sevillano u. a. (2017), including the placement of where the temperature is assumed
constant. That is, at 5.727m from the center of the drill.

The vertical nodes have been chosen based on maximum detail, while limiting
time use. For the upper system nodes are first placed mostly with a distance of 20m.
Between 19 and 12m a distance of 1m has been used, as this is close to the BOP, as
shown in Figure 5.2. From the top of the BOP and downwards a distance of 0.2m is
used until the height of 0.2m. This is because, as can be seen from the sketch, there
are many variations of widths for both node 3 and node 4 in this area.

For the lower system there is clearly more variation, as there is a shift from mud
to cement to rock for each pipe. This can again be visualized in the sketch in Figure
5.1. Again the placement of the nodes have been chosen to imitate those chosen by
Sevillano u. a. (2017).
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Figure 5.1: Sketch of deep oil well with horizontal nodes.
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5.3 Extract From Programming

To better visualize the code built in this thesis, four extracts of the code has been
added below. Two headers and one source file.

Z:\Master\Header.h 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25

26
27
28
29

30
31
32
33

34

35
36
37
38

39
40
41
42
43
44
45
46
47

#ifndef Header
#define Header
#define _USE_MATH_DEFINES

#include <iostream>
#include <vector>
#include <map>
#include <math.h>
#include <string>
#include <cstdlib>
#include <iomanip>
#include <ctime>
#include <sstream>

using namespace std;

//***ASSIGNING VALUES TO VARIABLES***

//Outer radii r, [r] = m
//r-Keys 5 nodes: "upper", "BOP", "wellheadHouse", "conductorHouse", 
"casing".

//r-Keys 16 nodes: "lower", "bottom".
void setOuterRadii(map<string, vector<double>> &rad); 

//Density rho, [rho] = kg / m^3
//rho-Keys: "1", "mud", "collar", "drillstring", "steel", "cement", 
"floater", "sea", "shale", "salt", "limestone".

void setDensity(map<string, double> &dens);

//Conductivity k, [k] = W / m K
//k-Key: "mud", "steel", "cement", "floater", "sea", "shale", "salt", 
"limestone".

void setConductivity(map<string, double> &cond);

//Specific Heat Capacity Cp, [Cp] = J / Kg K
//Cp-Keys: "1", "mud", "collar", "drillstring", "steel", "cement", 
"floater", "sea", "shale", "salt", "limestone".

// (1 refers to the first horizontal node. That is, the fluid inside the 
drillstring.)

void setHeatCapacity(map<string, double> &cap); 

//Convection Coefficients h, [h] = W K / m ^ 2
//h-Key 5 heights: "drillstringInner", "drillstringOuter", "wallInner", 
"wallOuter"

void setConvCoeff(map<string, vector<double> > &conv);

//Energy Source Term Q, [Q] = W/m
//Q-Keys: "insideDrillstring"(5), "flowingAnnulus"(5), "drillBit".
void setEnergySource(map<string, vector<double>> &energySource); 

//***ASSIGNING INITIAL VALUE OF THE FORMATION AND SEA***
void setSeaTemp();

Figure 5.3: The header for assigning variables and initial temperatures
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Z:\Master\Matrix.cpp 1
1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

#include "stdafx.h"
#include "Header.h"
#include "Matrix.h"

//#include <bits/stdc++.h>

Matrix::Matrix(int N) : Matrix(N, N, 1) {}
Matrix::Matrix(int colrows, int timeJump) : Matrix(colrows, colrows, 
timeJump) {}

Matrix::Matrix(int columns, int rows, int timeJump) : COLUMNS(columns), 
ROWS(rows), SIZE(columns*rows), timeStep(timeJump) {

 mat = new double[columns*rows]{};
 //setConstants();
}
Matrix::~Matrix() {
 invalidate();
}

bool Matrix::isValid() const {
 return mat != nullptr;
}
void Matrix::invalidate() {
 delete[] mat;
 mat = nullptr;
}

int Matrix::getRows() const {
 return this->ROWS;
}
int Matrix::getColumns() const {
 return this->COLUMNS;
}
int Matrix::getSize() const {
 return this->SIZE;
}
int Matrix::getTimeStep() const {
 return this->timeStep;
}
int Matrix::getPosition(int row, int column) const {
 return (COLUMNS)*(row)+column;
}
double Matrix::getValue(int row, int column) const {
 int pos = getPosition(row, column);
 return this->mat[pos];
}
double Matrix::getValue(int row) const {
 return this->mat[row];
}

double Matrix::getA(string key) {
 return density[key] * specificHeat[key];
}

Figure 5.4: A small part of the Matrix Source code
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Figure 5.5: The LU-reduction within the Matrix class
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Z:\Master\UpperMatrix.h 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35

#ifndef UPPMAT
#define UPPMAT

#include "Matrix.h"
class UpperMatrix :
 public Matrix
{
private:
 //The variables A, B, D, E as listed in Figure 4.1 in the thesis.
 vector<double> A;
 vector<double> B;
 double D;
 double E_1; //Dillstring inner
 vector<double> E_2; //Drillstring outer
 vector<double> E_3; //Casing wall/Riser wall inner

 //Energy Source Term Q, [Q] = W/m
 double Q_ds; //Drillstring
 vector<double> Q_a; //Annulus

 vector<double> r; //Outer radii

 //Conductivity k, [k] = W / m K
 double ksteel;
 double kfloat;

public:
 UpperMatrix(int timeJump);

 void setConstants(); //Uses the functions from Header.
 void allocateMatrixConstants(int timeJump); //Allocats the constants in

 the Upper Matrix
};
#endif

Figure 5.6: The header for the upper matrix
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Chapter 6

Results

6.1 Input Data

height
Convection Coefficient Energy Source Term

h Q
z [W m−2 K−1] [W m−1]

[m]
Inner wall, Outer wall, Casing String/ Inside

Annulus
Drillstring Drillstring Riser Wall Drillstring

[12.79, 2820]

7979.3

1522.4 400.6

2.63

7.70
[4.1,10.98] 1253.8 245.0 3.98
[3.1,4] 1556.4 424.2 8.35
[-3436,3] 2362.3 1333.4 64.97
[-3810,-3444] 14 234.9 1591.0 1212.4 14.50 159.58

Table 6.1: Height dependent variables

As mentioned there are a number of variables that must be defined in order to get
temperature outputs. All these variables have been received from Lucas Sevillano,
one of the authors of (Sevillano u. a., 2017), thus allowing an easier comparison of
data. These variables have been presented in table 6.1 and table 6.2, so to allow the
reader the opportunity to reproduce the results. The division of altitudes are also
identical to those of Sevillano.

The temperature of the mud, before entered into the pipe is set to 20°C =
293.15K, and so inserting the variables into equations (4.3) and (4.5), we have the
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Density ρ Specific Heat Capacity cp Conductivity k
[kg m−3] [m2K−1s−2] [kg m K−1 s−3]

Mud In Drill string 1 200 1 600 1.750
Drill wall 7 800 400 43.750
Riser Floater 2 700 900 13.750
Mud 1 350 1 600 1.750
Cement 1 917 2 000 0.700
Steel 7 700 400 43.750
Sea 1 070 3 988 0.575

Rock
Shale 2 057 2 151 1.9
Salt 2 160 920 4.5
Limestone 2 700 851 2.2

Table 6.2: Height independent variables

Energy Source term at drill bit Qdb 150151
[W]

Gravity g
9.81

[m s−2]
Mass flow q

0.0473
[m3s−1]

following temperatures at the top of the system, z = 0.

Tinlet = 293.15K (6.1)

T2,0 =
9.81 · 1200 · 0.0473− 2.63

2π · 0.112 · 7979.3
K + 293.15K = 293.25K (6.2)

T4, 0 =
2.63− 0.0473 · 1200 · 9.81

2π

(
1

0.127 · 1522.4
− 1

0.112 · 7979.3
− 1

0.501 · 400.6

)
K

+
7.70 + 0.0473 · 1350 · 9.81

2π · 0.501 · 400.6
K + 293.15K

= 293.73K

The initial temperatures for the entire system is assumed to be equal to that of the
formation and the sea. That is, it is as presented in Figure 6.1.
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Figure 6.1: Undisturbed temperatures. Sea temperatures have been taken from (Bergman,
1011), while the formation temperature is from(Vavik u. a., 2017)

Natural convection occurs where the nodes are in direct contact with water, due
to oceanic circulation (Kays u. a., 2005). These values were calculated and given to
me along with the rest of the initial data, but as will be explained in the next section,
after much trial and error I opted not to use the calculated natural convection. Hence
this concludes our initial data.

6.2 Above Seabed

The code for solving our system of linear system of equations for specific input data
was built based on the equations and nodes as explained above. However, when first
attempting to run this part of the code it returned impossible temperatures after
only a few iterations. That is, it resulted in positive and negative temperatures to
the power of six. In addition, each node had temperatures of opposite sign to those
next to it. To simplify and better analyze a possible mistake in the coding, the BOP,
wellhead housing and conductor housing presented in Figure 5.2 were removed. This
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did not significantly improve the results.
After some analysis it was clear that the temperatures reached this altitude at

the outer nodes after only one iteration, which suggested the mistake was in the
outer nodes. The forced convection for the nodes in direct contact with water, and
affected by the current of the water, was calculated and supplied to me. I thus opted
to not use these data. That is, both the floaters and the riser were assumed to be
the temperature of the water at that altitude. This immediately gave much more
sensible results, that is, temperatures in the hundreds.

There was another discrepancy. The temperatures of the innermost nodes were
significantly negative. After going back to the original equations I realized there
were differences between the equations as stated by (Sevillano u. a., 2017) and that
of (Marshall und Bentsen, 1982), and that I in fact disagreed with the first equation.
Then, after further trial and error, a few adjustments were made to the original
equations, that is, those explained in chapter 3. This, at last, resulted in the data
as presented in Figure 6.2 - 6.7.
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Figure 6.2: Temperature distribution above seabed after half a minute.

From Figure 6.6 and Figure 6.7 it is evident that above the seabed the temper-
atures stabilize after only 30 minutes of drilling. The distribution of these tempera-
tures are as expected, and can be compared to those of (Vavik u. a., 2017). However,
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Figure 6.3: Temperature distribution above seabed after two minutes.
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Figure 6.4: Temperature distribution above seabed after five minutes.
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Figure 6.5: Temperature distribution above seabed after 15 minutes.
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Figure 6.6: Temperature distribution above seabed after 30 minutes.
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Figure 6.7: Temperature distribution above seabed after four hours.

it does have a significant discrepancy at low altitudes. After only half a minute this
discrepancy is evident. I have attempted to find out why this occurs, but have not
been able to fix it. Since the riser is assumed to have the temperature of water, the
same sets of equations are used at lower altitudes as those higher up. Thus it seems
unlikely that there is a mistake in the equations. If however, there is a mistake in
the equations, it could lie in the sign of the first term. This term will give a negative
addition to the temperature of the fluid inside the drill string. It is also divided by
∆zk, and so it would naturally have a higher value when ∆zk is smaller. Which is
indeed what happens closer to the seabed. However, when attempting to change this
in the code, the resulting temperatures are again impossible.

Another possible explanation is that the method simply does not work for low
values of ∆zk compared with the value of ∆t = 0. If we assume the method and
the supplied data are all correct, then the mistake must lie in the code. The LU-
decomposition was tested on several known systems of equations, and so is known to
be correct. Additionally it is not likely to give such a nice curve if the calculations are
all together wrong. Another option is therefore that there is an error when assigning
values to the matrix A. I have, however, not been able to find such an error.

For the linear system of equations above the seabed only 5 nodes have been used,
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and so has a much lower computation time than that of the lower system. Despite
setting both the riser and the floaters equal to the sea temperature, I kept the nodes
in the programming. This system spends only 6 seconds per iteration, with the
time step set equal to 1s. Thus it is quite fast, and should easily be fast enough by
applying parallel programming. In fact, applying parallel programming will likely
make it so fast, that it its processing time is practically insignificant compared to
that of the lower system.

6.3 Below Seabed

The numerical system for the calculations of the temperatures below the seabed is
much more time demanding than that of the upper system, as there are 16 nodes
to consider. As of yet the program for the system below the seabed uses 3 minutes
and 24 seconds. And so it is clearly the most time consuming part of the code, and
should be prioritized if accelerating it.
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Chapter 7

Conclusion

Both the code for the system above the seabed and the system below the seabed
were developed, but due to time constraint only the results of the upper one has
been included in this thesis. The results of the upper system gives reasonable results
that stabilize after only half an hour, and so suggests that the method and code
works. There is however a discrepancy of negative temperatures at low altitudes
that I have not been able to explain.

The necessary processing speed for each iteration is ≤ 1 Hz for the program
to be useful in comparison with real time data. As of yet the upper part of the
program spends only 6 seconds per iteration, while the lower one spends 3 minutes
and 24 seconds, and so is by far the most time consuming part. Within the code
the most time consuming process is the decomposition of A into LU , and so the
decomposition of the lower matrix should be the focus of a future acceleration using
parallel computing.

This thesis should be considered a basis for the development of this program and
as a resource for the completion of the above-mentioned goals. The thesis shows that
the method developed could be of use, and a processing speed of 3 minutes and 30
seconds suggests that 1 Hz per iteration is indeed an achievable goal once accelerated
using parallel computing.
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Chapter 8

Further research

8.1 Graphic Processing Unit (GPU)

It was originally my intention to attempt to accelerate the processing speed of the
program by applying parallel computing using the programming language CUDA.
Normally program are made in a simple serial fashion, as is the program I have made.
Parallel computing however, consists of splitting your code into blocks of work so
that you may send each block to a different processor, and so the computations
can happen simultaneously (Cook, 2013). There are several ways of doing this, and
LU-reduction is in fact highly suited for parallel programming.

In the calculations the decomposition of the matrix A into two triangular matrices
L and U was by far the most time consuming part. Accelerating this part using
parallel programming would therefore be quite advantageous.

8.2 Development of Horizontal Nodes

I have no particular background in the physics of oil wells, or indeed of petroleum in
general. Spending my time attempting to recalculate the natural convection variables
used in the coding would therefore be an inefficient use of my time. Therefore, as
explained, I opted to simplify the system and so not be dependent on this data. It
is however my recommendation that this is done in further research.
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