
June 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Anders Christansen Sørby

2019
Anders Christansen Sørby

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f M

at
he

m
at

ic
al

 S
ci

en
ce

s

Anders Christansen Sørby

Applied Physics and Mathematics
Submission date: June 2019
Supervisor: Bo Henry Lindqvist

Norwegian University of Science and Technology
Department of Mathematical Sciences

Til familie og venner

To my family and friends

Sammendrag

Når menneskehjernener prosesserer input fra sansene er de i stand til å unastrengt
forestille seg nye instanser og scenarioer fra bare en liten mengde inputopplevelse. Gener-
ative Adverseriale Nettverk (GAN) klarer til en viss grad å oppnå denne forstillingsevnen
for datasett. Vi utforsker denne teknikken og dens anvendelser innen bildeprosessering og
generering. Dette har anvendelsesområder som medisin, fysikk og kunstig intelligens.

For eksempel implementerer vi pix2pix algoritmen for å transformere satellittbilder
til kart. Denne algoritmen er anvendelsesuavhengig og kan takle særdeles forskjellige
problemer uten mye tilpasning. Dette viser at det er mulig å lage generaliserte metoder for
kompliserte domene til domene transformasjoner.

Hovedvekten i denne avhandlingen vil allikevel falle på den omfattende litteraturstu-
dien av GAN-varianter. Her vil vi dekke over forskjellige tapsfunksjoner for GAN, som
Wasserstein-metrikken, funksjonelle gradienter for fininstilling av GAN, måter å kon-
trollere generert output, som betinget GAN, Syklisk GAN og InfoGAN, og til slutt en
Bayesiansk utvidelse av GAN som bidrar med usikkerhet og inferens til GAN.

i

Summary

When human brains process input from the senses they are able to effortlessly imagine
new instances and scenarios from only a small amount of input experience. Generative
Adversarial Networks (GANs) manages to some extent to achieve this imagination ability
for datasets. We explore this technique and its applicability in image processing and gen-
eration. This has applications in areas like medicine, physics, and artificial intelligence.

For example we implement the pix2pix algorithm for transforming satellite images into
maps. This algorithm is application independent and can handle vastly different problems
without significant tweaking. This shows that it is possible to create generalized methods
to do complicated domain to domain transformations.

The main weight of this thesis will nonetheless fall on the extensive literature study
of GAN variants. Here we cover different loss functions for GANs, like the Wasserstein
metric, functional gradients for fine tuning GANs, ways of controlling the generated out-
put, like conditional GAN, CycleGAN, and InfoGAN, and finally a Bayesian extension of
GAN that provides uncertainty and inference to GANs.

ii

Preface

I would like to thank my family, supervisor and friends for discussing the topics of
my master thesis and supporting me in my process. The project started off on a vague
note with great ambitions. It ended with reality and time constraints finally putting a stop
to new diversions. It has been a pleasure and a pain to work on this and I suspect I have
learned a something about time management, my own limitations, and the enormous effort
that goes into world class research. This is in addition to all the technical knowledge and
insight gained from writing this thesis.

I believe there is a lot of potential for better writing in technical texts like mathematics
or computer science. Concepts are not best taught by just describing them precisely, but by
conveying intuition and using creative formulations. That way the reader not only obtains
the facts of the text, but learns to represent those structures in her brain. The analogue to
this in machine learning is that we often add noise in various contexts to avoid the model
to collapse or stagnate in a local optimum.

Although this thesis is not explicitly about artificial intelligence, the topic of deep
learning and generative adversarial networks is seen by many as a stepping stone to more
general artificial intelligence. I believe that the advent of increasingly sophisticated meth-
ods for processing and synthesising data will significantly alter the way we live, our soci-
ety, and the way we see the world. That is why I think it is necessary to keep in mind the
underlying philosophical ideas, societal norms, and psychological issues we are indirectly
imposing into the development of these methods and practical applications. Otherwise we
risk amplifying the destructive tendencies of human societies and individuals rather than
soothing them.

The last five years has been a journey of ups and downs, moments of inspiration and
distraction, and challenges and ease that has brought me to the point where I am today. It
is sometimes easy to forget that we are just one of many minds trying to live their lives
and achieve their potential. The distribution of the properties that leads to success in these
areas can never be fair and it is important to remember this initial game of chance while
keeping focus on our own agency. In the end the only real thing we have is the present.

During my studies in Trondheim I have met many interesting people that has taken
part in shaping me. With the knowledge, skills and experience I have now my attitude and
perception would have been so different if I started studying now. I especially enjoyed my
exchange to Tokyo University (東京大学) which has played a huge part in shaping my
academic interests. Without it my thesis would have been quite different.

iii

iv

Table of Contents

Sammendrag i

Summary ii

Preface iii

Table of Contents vi

List of Tables vii

List of Figures ix

Abbreviations x

1 Introduction 1
1.1 Research interest in GAN . 2
1.2 Deep neural networks . 3
1.3 Additional layer structures . 3

1.3.1 Convolutional layers . 4
1.3.2 Recurrent units . 5
1.3.3 Dropout . 5
1.3.4 Max pooling . 6
1.3.5 Batch normalization . 6

1.4 Training . 6

2 Generative adversarial networks 9
2.1 An intuitive description . 9
2.2 An example using MNIST . 10
2.3 Formal definition . 11
2.4 Basic theoretical results . 13
2.5 Difficulties with training GAN . 16

2.5.1 Mode collapse . 16

v

2.5.2 Vanishing gradient . 16
2.5.3 Failure to converge . 17

2.6 Applications . 17

3 Extensions and innovations 19
3.1 Performance metrics . 20

3.1.1 Inception score . 20
3.1.2 Fréchet Inception Distance . 21

3.2 Wasserstein GAN . 21
3.2.1 The Wasserstein metric . 21
3.2.2 Suitability as a loss function for GANs 23
3.2.3 Lipschitz constraint in Banach spaces 24

3.3 Gradient layer . 24
3.3.1 Algorithms . 26

3.4 Conditional GAN . 27
3.4.1 Image to image translation . 27

3.5 Cyclic GAN . 29
3.6 InfoGAN . 31
3.7 Bayesian GAN . 33

3.7.1 Unsupervised setting . 34
3.7.2 Semi supervised setting . 35
3.7.3 Sampling from the posterior with SGHMC 36

4 Experiments 39
4.1 Experimental framework . 39
4.2 Map generation from satellite images . 41

4.2.1 Dataset . 41
4.2.2 Implementation . 42
4.2.3 Results . 42

5 Further work and ideas 45
5.1 Using GAN to enhance and augment object detection 45
5.2 Octave convolution . 46
5.3 Describing machine learning with category theory 46
5.4 Overall impression of GAN . 46

6 Conclusion 47

Bibliography 47

Appendix 53
A Transfer learning . 53
B Information theory . 53

vi

List of Tables

3.1 Different varieties of GAN loss functions. BEGAN uses an autoencoder
as discriminator. AE stands for autoencoder. 19

3.2 Different varieties of GAN regularizers. For L1 and L2 we are in a super-
vised setting. 20

vii

viii

List of Figures

1.1 Cumulative number of unique named GAN variations published since its
release compiled by Gavranovi (2019). At the time of writing there are
502 named GANs in the GAN Zoo. 2

1.2 A visual representation of a one hidden layer fully connected neural net-
work without bias vectors. 4

1.3 An illustration of a 2D convolution layer operating on a matrix input. . . . 5
1.4 Visualization of dropout on three fully connected layers. 6

2.1 A basic setup for a generative adversarial model using the JS-loss. 13

3.1 A basic setup for a Wasserstein GAN including the alternative gradients. . 23
3.2 The UNet architecture from the original UNet paper on biomedical image

segmentation. 28
3.3 A 3D view of an UNet architecture. The numbers beneath each layer rep-

resents the number of filters in the convolution. 29
3.4 Visual representation of the X → Y → X cycle of the Cycle GAN. The

Y → X → Y cycle is analogous to this just with X and Y flipped. . . . 31
3.5 The basic setup of InfoGAN. 32

4.1 A sample from the training data. 42
4.2 After training for 1000 epochs the generator produced these results on the

validation dataset. The first two rows is the input. Row 3 and 4 is the
generated output. Row 5 and 6 is the ground truth map. 43

ix

Abbreviations

Symbol = definition
NN = Neural Network
GAN = Generative Adversarial Network
WGAN = Wasserstein GAN
BGAN = Bayesian GAN
NS GAN = Non Saturating GAN
JS GAN = Jensen-Shannon loss GAN
cGAN = Conditional GAN
AE = Auto Encoder
IS = Inception Score
FID = Fréchet Inception Distance

x

Chapter 1
Introduction

To tackle problems in the world learning is essential. Machine learning is the quest for au-
tomating this up until recently exclusive trait of sentient beings. We are going to consider
a specific class of learning algorithms to complete this task called Generative Adversarial
Networks (GAN). First we need to introduce some general classes for learning. Then we
are going to present deep learning before we can start with the main topic of this thesis in
chapter 2. This builds on some of the work in my project thesis, Sørby (2019).

Supervised learning is when you want to learn a task which you know the answer to.
Essentially you have a dataset for which you know what you want the output value to be.
For example you can have a dataset of pictures of dogs and cats. If you additionally know
for each instance which pictures are of dogs and which are of cats you have a labeled
dataset. This means that for each instance we can give a score of how well the algorithm
is working. The point of this is that after learning you can now label new unseen data.
However it is not necessary that an algorithm that can do well in training will be able to
label unseen data correctly; which is called generalization. There is essentially no learning
without generalization.

Usually you do not have a labeled dataset and labeling is a tedious and expensive task
that has to be done by humans. Unsupervised learning tackles the problem of extracting
useful information from an unlabeled dataset. This can be thought of as learning properties
of the distribution the dataset is drawn from. GAN provides a way to do unsupervised
learning by learning a distribution.

Then there is also a sort of intermediate version of learning which is called semi su-
pervised learning. Here only a small part of the data has labels, but we want to use all of
the data to train the model.

Understanding features in satellite images can be useful for many applications. For
example for examining the population of unmapped urban areas like slums. In section 4.2
we present a model which can automatically transform satellite images into maps.

This chapter serves as a reference chapter for many of the concepts used later in this
text. It will be necessary to understand the concepts presented in this chapter to fully
understand the rest of the text, but it can be safely reviewed later.

1

Chapter 1. Introduction

1.1 Research interest in GAN

Initially we will briefly discuss how the GAN community has developed over the years.
That includes what the current application areas are and what the ambitions for the future
are. We close it off with some predictions.

The research interest in GAN has had an exceptional growth the last few years. This
is probably caused by its impressive results and that it is seemingly a step towards more
general artificial intelligence. The cumulative number of published papers with a named
GAN variant can be seen in the graph in figure 1.1.

Figure 1.1: Cumulative number of unique named GAN variations published since its release com-
piled by Gavranovi (2019). At the time of writing there are 502 named GANs in the GAN Zoo.

There is an overwhelming amount of material being published about GAN. A big part
of this research is based around applying theory from several different areas of mathemat-
ics and statistics to improve the capabilities, stabilize training and widen the application
area. In chapter 3 we are going to explore several of these papers. However, those papers
represent only the tip of the iceberg.

In the survey by Hong et al. (2019) they give an overview of most of the GAN variants
available and their properties. This has been very useful for outlining this thesis.

GAN has wide ranging application areas and its results are quite impressive. The
development has gone very fast as well. In the original GAN paper they generate some
blurry faces, but in Karras et al. (2018), just 4 years later, they generate very realistic fake
human faces.

2

1.2 Deep neural networks

1.2 Deep neural networks
We will now give a short introduction to some of the basics of deep learning and neu-
ral networks. For a more complete reference we recommend the book Deep Learning by
Goodfellow et al. (2016). Deep learning is a machine learning subfield which is charac-
terized by the use of large models with many layers; hence the name deep. The intention
of this is to learn more complicated tasks like image or voice recognition. The quintessen-
tial model in deep learning is called a deep neural network (DNN), or just neural network
(NN), and is in some sense a chain of linear predictors connected by nonlinear functions.
It is essentially a way to parameterize functions.

Then we have some input x, which can be for example a color image in the shape of a
three-tensor or a text string in the shape of a vector (one-tensor). However there are very
many variations to this form and the following form is perhaps the simplest, namely the
fully connected NN, which can be seen in a graphical format in figure 1.2 as well as in
equation format

f(x) = µL(WL(·) + bL) ◦ . . . ◦ µ1(W1x+ b1). (1.1)

Here the network is represented as a chain of functions (which can also be thought and
referred to as links or layers)

f1(x) = µ1(W1x+ b1),

f`(x) = µ`(W`(f`−1(x)) + b`) for ` = 2, . . . , L (1.2)

where µ` is some nonlinear activation function working elementwise on input of any di-
mension and W` and b` are the weight matrices and bias vectors respectively. Examples
of common nonlinear activation functions are the rectifier ReLU(x) = max(x, 0) and
the sigmoid σ(x) = 1

1+e−x . For generality and convenience we are going to denote the
parameters (or simply the weights) as θ and θ` for all parameters or the parameters of a
specific layer respectively.

It is also possible to consider the neural network as a Directed Acyclic Graph (DAG)
which is graphically supported by figure 1.2. In this view each node represents one com-
ponent of the output from each layer and each edge or arrow represents multiplication with
a weight. All the edges meeting in a node is summed over and then put into the activation
function.

1.3 Additional layer structures
We can imagine replacing one of the layers with another structure that can take the same
input and give an output of correct dimension to the next layer. It may even take input
from other earlier layers like in residual nets or dense nets. There are many different
structures that can be introduced as a layer in a neural network. It is mostly limited by our
imagination. In fact the only constraints are that the layer at least preserves some of the
information of the input and that it is weakly differentiable.

We call the collection of all the layers and their configuration parameters the architec-
ture of the network. Different architectures are better at learning different tasks. There is

3

Chapter 1. Introduction

x1

x2

x3

x4

Output

Hidden
layer

Input
layer

Output
layer

Figure 1.2: A visual representation of a one hidden layer fully connected neural network without
bias vectors.

at the moment no theoretical basis for choosing the best architecture for a given task. The
practice is mostly based on intuition and experimental experience.

In the following section we are going to present some layer structures that we are going
to use in experiments or to explain the theory of different approaches.

1.3.1 Convolutional layers
One notable possibility for a layer is a convolutional layer. A convolutional layer can be
seen as a less connected layer than the fully connected layer where only the local rela-
tionships of the input are examined. The concept revolves around doing a convolution
operation with some kernel K (also called filters), which corresponds to the weights, for
some input x. For example we can consider a two-dimensional kernel, K ∈ RN×M ,
which normally means that the input only has one channel (like a black and white image).
An illustration of this can be seen in figure 1.3. This means that the kernel sweeps over
the input one neighborhood of size N ×M at a time. In the 2-dimensional case we call
the output matrix S and the equation of each element of S becomes

S = (K ∗X)(i, j) =

N∑
n

M∑
m

X(i− n, j −m)K(n,m). (1.3)

Then as usual we apply an activation function elementwise to produce the output f`(X) =
µ`(S). In this case the output is in the shape of a matrix (two-tensor) not a vector. For
three-tensor input (like a color image) the output will also be a three-tensor. To be able to
connect this to the next layer one can either flatten the tensor into a vector and possibly
lose structural information or keep the structure and let the next layer handle higher order
inputs. Also note that again we apply some nonlinear activation function µl. A NN con-
taining at least one convolutional layer is usually called a Convolutional Neural Network
(CNN).

4

1.3 Additional layer structures

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

X

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

S = X ∗K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 1.3: An illustration of a 2D convolution layer operating on a matrix input.

Additional configuration parameters include number of filters, padding, and strides.
Filters are the number of simultaneous kernels to be applied to the input and represent the
size of the output space. Padding means adding a boundary of zeros around the input when
performing the convolution. It is necessary when you want the output to have a specific
shape. For example if you want it to retain the original shape of the input you would add
extra zeros to the edges. Strides is the number of spaces between each place the filter is
applied.

1.3.2 Recurrent units

A NN where the output of a layer is sent back as input to an earlier layer and then iterated
arbitrarily many times is called a Recurrent Neural Network (RNN). This is necessary
when you want to produce sequences of arbitrary length as for example in text generation.
It can also be used to analyze time series data.

1.3.3 Dropout

Sometimes we want to introduce noise in the network to force it to be more robust. This
can be done by randomly turning off some nodes when forward propagating the network
which is called dropout (see figure 1.4); first introduced by Hinton et al. (2012). Note that
this only affects the training of the network and not when we are using it in practice.

This will force the network to not rely on a few nodes to to make use of all the nodes. It
is thought that this will prevent the network from relying on unreliable features in the data.
This can for example be a particular bias in the dataset. If you have two classes, say images
of Huskys and Retrivers, and all the images with Huskys has snow in the background then
it is much easier for the network to learn to simply detect the snow than actually recognise
the Husky features.

5

Chapter 1. Introduction

×

×

×

×

×

×

×

Figure 1.4: Visualization of dropout on three fully connected layers.

Later we will use dropout to introduce noise in the generator of a GAN.

1.3.4 Max pooling
It might not always be the best strategy to collect all the information from the previous
layers. Sometimes you would want to filter out the input with the presumed highest sig-
nificance. A max pooling layer is structurally quite similar to a convolutional layer. It
will scan over the input tensor and give a shrunken down output similar to a convolutional
layer, but instead of computing a weighted sum we simply take the maximum of each
neighbourhood.

1.3.5 Batch normalization
A problem with training neural networks is that due to the large datasets and computational
demands have to reduce the training updates to only smaller batches of data at a time. This
means that the distribution of outputs from a layer within a batch may vary a lot during
training. To ensure more stability during training it is possible to normalize the outputs
with a layer called batch normalization by Ioffe and Szegedy (2015). This subtracts the
mean and divides by the standard deviation for every output within the batch. Although
the reasons for the effectiveness of this technique is debated it has been empirically shown
to improve stability and performance of training.

1.4 Training
The network can be trained on a dataset {(xi, yi)}ni=1 (or rather a training set), where xi
are called samples and yi are called labels, such that f(xi) = yi for all i or some prob-
ability that the sample has a certain label. We can imagine that all samples are collected
from a greater sample space X and all labels from a greater label space Y , and there is a
probability distribution D over X × Y . Note that while in general the space of possible
NNs and X and Y is infinite we sometimes need to restrict ourselves to finite spaces when
doing analyzes.

6

1.4 Training

Additionally we have a separate test set {(xi, yi)}n+ntest
i=n+1 which we will use to verify

the generalization ability of the network. The setting where all the labels of the samples are
known is called supervised learning. Training or learning differs from normal optimization
in that we wish to optimize the performance on the test set indirectly by optimizing the
performance on the training set. We can not know anything about the generalization ability
of the network without a separate test set which has not been used in training. An important
note from this is that when we are learning we do not know the underlying distribution of
data.

For simplicity and notational convenience we will sometimes use slightly different
versions of the loss function. This will be indicated with different indexes on the function
or different arguments to the function. Remember that we denoted the parameters of the
network as θ. To train the network we first need to compute some loss functionL(θ, xi, yi),
which in this case applies to a single sample. This will give a score of the accuracy of the
network on a given sample. The training problem then becomes to minimize the loss

min
θ
L(θ, xi, yi) +R(θ) (1.4)

where R(θ) is some optional regularizer. Regularizers may force the model to generalize
better, but for the remainder of this chapter we are going to omit it for simplicity. A
popular choice for loss function is the cross entropy, which compares the entropy of two
probability distributions, and follows from the maximum likelihood principle. In this case
the empirical distribution from the training set and the prediction distribution from the
model is compared

L(θ) = −E(x,y)∼Ddata [log(pmodel(y|x))] . (1.5)

This way we reduce a machine learning problem to a normal optimization problem by
introducing the empirical distribution Ddata. There are however many other candidates for
loss functions.

Then to update the weights accordingly it is normal to use a variant of Stochastic
Gradient Descent (SGD) and backpropagation to compute the gradient for each layer.
The training set is split into smaller batches of size m that we can use to calculate an
approximation of the gradient; a stochastic gradient. The samples in each batch can be
drawn randomly to reduce bias from the ordering of the samples in the dataset. It requires
that the total loss over all training samples, Ltotal(θ, {xi}, {yi}), is an average over the loss
for each individual sample. This means that in general it follows the form

Ltotal(θ, {xi}, {yi}) =
1

m

∑
i

L(θ, xi, yi) (1.6)

θ ← θ − η∇θLtotal(θ, {xi}, {yi}) (1.7)

where the hyperparameter η is called the learning rate and m is called the batch size.
This is then performed iteratively over the entire training set, where one iteration over the
training set is called an epoch.

7

Chapter 1. Introduction

8

Chapter 2
Generative adversarial networks

When you have data, X , but no labels, Y , you can use unsupervised learning to extract
value from it. Unlabeled data is the default state of all data found in nature; it is not until
we want to extract some meaning or causal link from the data that we can associate labels
to that data. Adding those labels to a dataset often needs to be done by humans since
some of the point of machine learning is to automate difficult or tedious labeling tasks.
This is expensive and time consuming. There is however much useful information that can
be extracted from a dataset without having a specific prediction objective in mind. One
interesting property can be to be able to generate new samples from a dataset. Genera-
tive Adversarial Networks (GAN) first introduced by Goodfellow et al. (2014) makes it
possible to generate new samples similar to those found in a dataset.

It consists of two NNs, the generator G and the discriminator D and an adversarial
training structure. The intuitive interpretation is that they are adversaries in a game where
the generator tries to fool the discriminator and the discriminator tries to catch the genera-
tor.

2.1 An intuitive description
To give a more intuitive basis for understanding GAN consider the following story. The
generator is a con artist making fake Monet paintings. She wants to sell them at art gal-
leries, but she has to fool the art critic, the discriminator, to do so. The discriminator will
walk through the gallery and give a score to all the paintings of whether he thinks they are
real Monet paintings or created by a con artist. If they get a too low score no one will buy
them. The generator wants to earn as much money as possible, so she needs to improve
her skills so that she best can fool the discriminator.

Initially the generator does not know how to paint at all, let alone how to paint Monet
paintings. She has in fact never seen a Monet painting. Luckily the discriminator does
not know how to recognise Monet paintings either. So the generator produces a batch of
paintings with random strokes and content and sends them off to the gallery for judge-
ment. At the same time a batch of real Monet paintings arrive at the art gallery. Now the

9

Chapter 2. Generative adversarial networks

inexperienced discriminator has to walk around and give scores to all the paintings. When
he is finished he will give a report to his supervisor. The supervisor always knows which
paintings are real and fake. She will score the discriminators performance and send him a
report with all the errors he made on both the real and the fake images. The supervisor is
secretly friends with the generator as well and will give her a score and a report as well.
The discriminator and generator both read their reports and find ways to improve their
technique. Then the process is repeated. The generator makes a batch, the discriminator
will score them and they get a new report from the supervisor. Over time as this process is
repeated many times the discriminator and generator get better and better at their job each
time trying to outsmart the other.

In this story the supervisor is analogous with the loss function and her report with
backpropagating the gradient. This is something we will describe in further detail in the
following chapters.

2.2 An example using MNIST
As an example consider the MNIST dataset. It consists of 70 000 (28x28) back and white
images of handwritten digits (0 to 9). This has been used as a benchmarking dataset for
decades and is the go-to dataset when exploring a new method. Each digit is written in
its own way, but overall the digits define a sort of MNIST digit font. This is a qualitative
feature of the dataset. It does not contain every way of writing a digit which means that it
has a certain bias. How can we learn this qualitative feature of digits?

We can think of a digit as certain shape formed onto a sheet of paper. For example
consider the digit one. It can be written as simply a vertical line or more elaborately
with extra lines at the top and bottom. Manually designing a recognition algorithm for
recognising this digit is practically impossible - and futile. Humans nonetheless have little
difficulty learning to recognize this digit and then being able to write it themselves. This
new digit will not be a perfect copy of the original and it is not intended to be. Rather the
human has learned which features of the digit are important and which can be varied. It
must therefore have an internal notion of the distribution of these digits.

Now lets try to make our generator learn how to generate digits that are not exact
copies of any of the original digits in the dataset, but still would be recognized as digits
by a human. As in any learning algorithm we will start with some initial random weights,
then apply some input and compute the corresponding output. This output is then put into
a loss function. However we have no way of defining the loss function for whether an
output looks like a digit from MNIST. The closest thing to such a loss function would be a
human. However it would not be able to provide any meaningful gradient for the generator
to learn. The GAN solution is to learn the loss function as well.

In the context of the story in the previous section the discriminator needs to learn
how to detect real Monet paintings. Learning the loss function means learning a classifier
that can tell whether the generator is producing good digits or not. This classifier, the
discriminator, can be thought of as a loss function for the generator. As in human learning
we would want the discriminator to behave pedagogically. It should not only tell the
generator what is correct or wrong, but provide it with helpful feedback so that it can
improve. That means providing meaningful gradients for backpropagation. We shall see

10

2.3 Formal definition

in section 2.5 that this is not always the case and is actually a challenge when training
GANs in practice.

2.3 Formal definition
In the following formulation we will say that the discriminator takes in a sample and
gives out a guessed probability that it comes from the real dataset; essentially D : X →
[0, 1]. That means that if D(x) = 0 the discriminator is completely sure that x is fake. If
D(x) = 1 it is completely sure that x is real. We are going to denote the parameters of the
discriminator as θd when necessary.

The generator on the other hand takes noise, z ∼ Dz , for example Dz = N (0, σ2I),
as input and produces samples as output, G : Dz → X . The noise gives randomness to
the otherwise deterministic function G. We call the input vector z a latent vector. There
are many ways to design this latent vector space which we will discuss later. As with the
discriminator we denote the parameters of the generator as θg when necessary. For ease of
notation we are going to use just θ when we are referring to the parameters of the entire
model.

First we will consider how to tell if the generator is doing a good job. We want the
generator to try to fool the discriminator as often as possible. What we could do is simply
maximize the probability, D(G(z)), that the discriminator guesses that generated samples
are from the real distribution. This is equivalent to minimizing 1−D(G(z)) which will be
convenient later. Then on the other hand we want the discriminator to classify generated
samples as fake which means maximizing 1 − D(G(z)). Applying expectation to this
allows us to define a generator objective

min
G

max
D

Ez∼Dz
[1−D(G(z))]. (2.1)

This formulation has a number of problems, but we are going to see a variant of this
in section 3.2. For example the output ranges only from 0 to 1 which is not beneficial
for optimization. A typical statistical approach would be to take the logarithm of the
probability and mirrors the log likelihood formulation from statistics. Then the output will
now range over (−∞, 0]. An information theoretic way to see this is that we are trying to
fit a distribution to our data and according to the maximum entropy principle we should
choose the distribution with the highest entropy. In conclusion we now have the complete
objective for the generator

Lg(G,D) = Ez∼Dz [log(1−D(G(z)))] (2.2)

which the generator needs to minimize

min
G
Lg(G,D). (2.3)

As you may note we have not yet included the dataset in the formulation which will be
essential. It is enough to train the generator to fool the discriminator and the discriminator
to identify the generator’s mistakes if the discriminator already has a good intuition of
how samples from the dataset look like. We could for example train the discriminator

11

Chapter 2. Generative adversarial networks

beforehand to identify the samples from the dataset. However we do not have any good
counter examples to the samples of the dataset.

Let’s say you had a perfect discriminator before starting to train the generator. There
is no reason to expect that this is the best way to train the generator. Rather we let the
discriminator and generator be equally bad at the start of training and then as training
progresses it will be better at detecting. What the optimal discriminator generator rela-
tionship during training is not known. We let the discriminator learn to detect samples
from the dataset alongside trying to catch the generated samples. We can formulate the
discriminator’s objective as

Ld(G,D) = Ex∼Ddata [logD(x)] + Ez∼Dz [log(1−D(G(z)))]. (2.4)

which is going to be maximized

max
D
Ld(G,D). (2.5)

We may for example choose to learn the generator’s objective (2.2) or the discrimina-
tor’s objective (2.4) more often than the other. It is not know which strategy is best, but
experimental experience and some intuition tells us that equal amount of learning updates
seems best.

These two objectives combines into the following loss function

LJS(D,G) = Ex∼Ddata [logD(x)] + Ez∼Dz
[log(1−D(G(z)))]. (2.6)

This particular choice of GAN loss is sufficient. As we shall see later maximizing this over
D is equivalent to approximating the Jensen-Shannon divergence between the induced dis-
tribution of the dataset and the generator. There are many alternatives to this formulation
however that might solve issues during training. One of them is the Wasserstein metric
which we will discuss in section 3.2.

The formulation we have constructed so far is equivalent to playing a zero sum mini-
max game (see Maschler et al. (2018)) with the formulation

min
G

max
D
LJS(G,D). (2.7)

Here LJS(G,D) can be interpreted as the joint loss function for the generator and the
discriminator. However not all formulations of GAN are minimax games.

Note that it is also possible to add a regularizer Rθ to the formulation (2.7). This is
some form of restriction on the parameters to ensure that the result has some properties we
want. We are going to see examples of this in table 3.2, section 3.2 and section 3.6.

This is very useful because the generator learns the distribution of the data. It es-
sentially learns to sample new versions of the data making it possible to use much fewer
examples in training. For example given a dataset of images the generator can generate
new images similar to the data. This also means that the model is not dependent on having
labeled examples; it can do unsupervised learning.

We have defined how the GAN works in terms of loss functions and optimization. In
order to learn a specific task it is necessary to choose appropriate architectures for the
generator and discriminator. To train a GAN we can compute gradients and update the

12

2.4 Basic theoretical results

Generator G(z)Noise z ∼ Dz

Dataset Ddata

Discriminator D(x) Loss DJS(Dg ‖Ddata)

∇θd 1
m

∑m
i=1 [log (D (xi)) + log (1−D (G (zi)))]

∇θg 1
m

∑m
i=1 log (1−D (G (zi)))

Figure 2.1: A basic setup for a generative adversarial model using the JS-loss.

parameters with backpropagation. There are several algorithms for updating the parame-
ters like SGD or Adam. For generality we are going to denote this update step as A(θ, v)
where θ are the parameters and v is a gradient. For example the SGD update step is

A(θ, v) = θ − v (2.8)

where v is a stochastic gradient.
In algorithm 1 we outline the normal training steps for updating the generator and

discriminator. Note that we can configure the discriminator to be updated more often than
the generator. We also visualize the training in figure 2.1. Full lines indicate inputs and
outputs and dashed lines indicates backpropagating gradients.

2.4 Basic theoretical results

In this section we will present the theoretical results given in the original paper. Note
that these results are placed in an idealized setting and assumes no limitations on the
representability of NNs. We will use concepts from information theory in some results.
There is a reference for this in appendix B.

The generator defines implicitly a distribution Dg of generated samples G(z) = x̃ ∼
Dg where z ∼ Dz . Dg represents a probability density function for the random variable,
x̃, of samples produced by G.

Let Ddata(x) be the probability density function induced by the dataset. This distri-
bution represents the larger idea of the data. It fills in the gaps between samples of the
dataset. In the case of MNIST we would assume that this is the distribution of digits, but
this is not obvious. With the metric used we are implicitly choosing an approximation to
the maximum entropy principle. It will be the distribution representing the data that has
the least amount of prior hypotheses.

The optimal discriminator for a fixed generator can be found by considering the inte-

13

Chapter 2. Generative adversarial networks

Data: The learning rate η, the dimensionality nz of the latent noise Dz , initial
weights and architecture for G and D, the number of epochs nepochs and
batches per epoch nbatches, the number steps for training the discriminator for
every update of the generator ndisc, and the batch size m.

for nepochs · nbatches iterations do
First train the discriminator.
for ndisc iterations do

Sample m noise samples {zi}m ∼ Dz .
Sample m data samples {xi}m.
Update the discriminator by backpropagating the gradient
Note that since we are maximizing we need to change the sign of the

gradient
v ← −∇θd [Ld(G,D) +Rθ]
θd ← A(θd, v).

end
Then train the generator.
Sample m noise samples {zi}m ∼ Dz .
Update the generator by backpropagating the gradient
v ← ∇θg [Lg(G,D) +Rθ]
θg ← A(θd, v).

end
Algorithm 1: General algorithm for training GANs. We use general loss functions Ld
for the discriminator and Lg for the generator. We include a regularizer Rθ for compati-
bility with some methods.

14

2.4 Basic theoretical results

gral version of (2.6) with appropriate measures

LJS(G,D) =

∫
log(D(x))Ddata(x)dx+

∫
log(1−D(G(z)))Dz(z)dz (2.9)

=

∫
log(D(x))Ddata(x) + log(1−D(x))Dg(x)dx.

The inside of this integral is a function of the form y → α log(y) + β log(1 − y) with
respect to D where y ∈ [0, 1]. This obtains its maximum at α

α+β which means that the
optimal discriminator for this formulation is

D∗G(x) =
Ddata(x)

Ddata(x) +Dg(x)
. (2.10)

This is essentially the distribution where the discriminator is most likely to classify a given
sample correctly. To calculate this value the discriminator needs to have knowledge about
both the distribution of the dataset and the generator. Using this discriminator does not
necessarily provide a good training update to the generator.

We also know what the optimal end state of the game is. Putting the optimal discrimi-
nator into the game of (2.7) yields

C(G) = max
D
LJS(G,D)

= Ex∼Ddata

[
log

Ddata(x)

Ddata(x) +Dg(x)

]
+ Ex∼Dg

[
log

Dg(x)

Ddata(x) +Dg(x)

]
(2.11)

= DKL(Dg(x)‖Ddata(x) +Dg(x)) +DKL(Ddata(x)‖Ddata(x) +Dg(x)).

Note that the final line of the above expression is very close to the definition of the Jensen-
Shannon divergence. If we add 2 log 2 we get exactly the formulation in (6). This is
possible because of logarithm rules and that the expectation of a constant is the same
constant. This means that we can write

C(G) = − log 4 +DJS(Dg ‖Ddata). (2.12)

Since the JS divergence is always positive this function has a global optimum when Dg =
Ddata which is C∗ = − log 4. This means that the generator has learned to perfectly
represent the data distribution.

In terms of game theory the global optimum is called the Nash equilibrium. This is
when there is no benefit for either party of the game to change strategy. At this point the
discriminator will be no better than a random guess i.e. D∗G(x) = 1

2 .
At last we also know that the training algorithm will converge in an idealized setting.

This is possible to show if we consider updates on the distribution Dg itself and always
let the discriminator converge to the optimal form. If LJS(G,D) = U(Dg, D) then U is
convex in Dg . Then by considering the subderivatives of U with regards to each argument
separately, we can apply gradient descent to Dg with an optimal D. This is known to
converge with sufficiently small steps. As stated before these results do not hold in practice
because of limitations in the NNs representability.

15

Chapter 2. Generative adversarial networks

Two natural questions to ask remain. Is the distribution we induce from the dataset
really the same as the idea we wanted to represent with the dataset? For example given
a dataset of faces, like CelebA, it is not obvious what kind of general idea we want to
represent with this dataset. Is it a special kind of faces that are represented by this dataset
or is it all possible human faces? The extension of the datasetDdata is in reality induced by
the architecture and training of the discriminator. The discriminator determines the rule
for what looking like data from the dataset means and thereby implicitly defining what
Ddata is. It is therefore important to keep in mind that this might not be the distribution we
intended.

Secondly and related is the question whether the generator is fully capturing the dis-
tribution or just a smaller mode. In an ideal setting the generator has an infinite repre-
sentability and can approximate any data with arbitrarily small details. In practice this is
far from the truth and if the generator has too many parameters there is a risk it might just
memorize the dataset more or less exactly. This would for most loss functions mean that
the GAN has converged, but it results in a useless generator. It is therefore necessary that
learning to generate new samples is easier than to remember the dataset in the context of a
learning algorithm.

2.5 Difficulties with training GAN
As discussed previously the GAN has a global optimum when the distribution induced by
the generator is the same as the distribution induced by the dataset. However in practice
there are a number of things that can go wrong and hinder the GAN to reach the global op-
timum. This is mostly related to the discriminator and generator reaching a local optimum.
There are some specific named problems that are worth mentioning.

2.5.1 Mode collapse
If the generator starts to produce samples from only one class, for example just eights
in the case of the MNIST dataset, we call this mode collapse. This can happen if it is a
much easier task for the generator to learn to generate only one type of examples than to
generate all kinds. This is essentially a local minima in the game between the generator and
discriminator. The discriminator will give a high score to the generator because it produces
high quality eights (samples of one kind). The generator will not have an incentive to
generate samples of a different kind because these will be of a poorer quality and not
give a good score in the discriminator. This is not the behavior we want the generator to
exhibit, but it might be easier to achieve than to actually learn the distribution. We need to
configure the loss function and hyperparameters such that this is discouraged.

2.5.2 Vanishing gradient
The gradient might be really small and not update the weights significantly. This usually
means that our training method has reached a local minimum or is in an area where there
is only a tiny gradient. The cause of this might be that the generator or discriminator
lacks the representability to produce better samples. Another possible cause could be

16

2.6 Applications

if the generator or discriminator is much better than their opponent. For example the
discriminator might be nearly perfectly classifying the presented samples, but in such a
way that the gradient is small.

2.5.3 Failure to converge

The parameters of the GAN might start to oscillate, get really large or small, or generally
fail to converge. This is a known problem from normal optimization and might be caused
by gradients growing towards infinity or start to oscillate.

There is little real guarantee that GAN training will converge with standard training
updates like Stochastic Gradient Descent. This is because the typical training updates for
the generator and discriminator might not actually bring the entire GAN game towards
convergence. For example imagine that the discriminator and generator are trained with
strategies that are directly opposite. The discriminator might be adjusted for the exact
strategy the generator is applying leading them to cancel out each others improvement. If
this is in addition not bringing the overall game closer to convergence they might be stuck
in a loop. A simple example of this is for example if one agent, like the discriminator,
is minimizing xy with gradient descent and the other is minimizing −xy with gradient
descent. This will only lead to oscillation and never hit the global optimum at (x, y) =
(0, 0).

2.6 Applications

In this section we are going to give a short introduction of the utility of GANs. The most
useful consequence of training a GAN is that we obtain a generator for a distribution
based on our dataset. This means that we can generate new unseen samples from the
dataset. To effectively train NNs with supervised learning it is required to have large
labeled datasets. This is usually not available. GANs can therefore be used as a dataset
augmentation method. For example when training NNs on image classification it is usual
to augment the dataset by adding translated, scaled or somewhat distorted versions of the
original images to the dataset. This makes the NN more robust for these kinds of small
changes in the input. Adding GAN generated images would allow for even more variations
in the original samples.

There are several ways to configure GAN to do variants of supervised learning. This
can involve turning the discriminator into a classifier as well. In this scenario the discrim-
inator not only classifies whether samples are generated or not, but also assigns them a
label. A special label is then given to samples that are considered to be generated. This
means that GAN can be used in normal supervised settings as well. It may even generalize
better since the classifier, the discriminator, is also trained on all the generated samples.
This means that we may require fewer training samples to succeed.

Another related application is in semi supervised learning. We can not compute a su-
pervised loss for these samples since we do not have the correct label for these samples. To
use the supervised learning framework we can rather estimate the labels of those samples.
We are going to see an example of this in section 3.7.2.

17

Chapter 2. Generative adversarial networks

As we shall see in section 3.4 we can extend the GAN definition to let the generator
also take data as input. This can for example be pictures that we want to convert to a
different format or style. We can also use it to remove noise from an input signal or
increase the resolution of images.

18

Chapter 3
Extensions and innovations

In this chapter we want to discuss some of the properties and possibilities with adversarial
training of generative models found in published papers. Many of these techniques are
orthogonal in the sense that they can be combined without interfering with each other.

We are going to present several improvements and variations to GAN. We are going to
look at a different loss function for GAN in the Wasserstein GAN section 3.2. Then we are
going to consider several ways of regularizing a GAN to achieve different behaviour. This
is necessary for Wasserstein GAN and InfoGAN. Then we are going to consider a more
application oriented path with conditional GAN in section 3.4, Image to image GAN in
section 3.4.1, and Cyclic GAN in section 3.5. All of these represents an extension to the
original to increase the control and utility of GANs. Bayesian GAN in section 3.7 provides
inference and robustness by not restricting itself to a single point in the parameter space,
but rather a distribution of parameters. The gradient layer method in section 3.3 provides
a way to fine tune outputs with functional gradients.

Thorough theoretical investigation is necessary to improve training of GANs as well
as developing new techniques. In the paper by Arjovsky and Bottou (2017) they establish
some deeper theoretical results for GANs.

Somewhat related to GAN is the Auto Encoder (AE). It learns to break down a sample,
like an image, into a lower dimensional representation. Then it has to recreate it from that
lower dimensional representation. It is analogous with compression.

Name Discriminator Objective Generator Objective

JS GAN LGAN
d = −Ex∼Ddata [logD(x)]− Ez∼Dz [log(1−D(G(z))] LGAN

g = Ez∼Dz [log(1−D(G(z))]

NS GAN LNSGAN
d = −Ex∼Ddata [logD(x)]− Ez∼Dz

[log(1−D(G(z))] LNSGAN
g = −Ez∼Dz

[log(1−D(G(z))]

LS GAN LLSGAN
d = −Ex∼Ddata [(D(x)− 1)2]− Ez∼Dz

[(1−D(G(z))2] LLSGAN
g = −Ez∼Dz

[(1−D(G(z))2]

WGAN LWGAN
d = Ex∼Ddata [D(x)]− Ez∼Dz [D(G(z))] LWGAN

g = −Ez∼Dz [D(G(z))]

BEGAN LBEGAN
d = Ex∼Ddata [‖x− AE(x)‖1]− kt Ez∼Dz [‖G(z)− AE(G(z))‖1] LBEGAN

g = Ez∼Dz [‖G(z)− AE(G(z))‖1]

Table 3.1: Different varieties of GAN loss functions. BEGAN uses an autoencoder as discriminator.
AE stands for autoencoder.

19

Chapter 3. Extensions and innovations

There are numerous GAN loss functions. We include a limited overview compiled by
Lucic et al. (2017) in table 3.1. The Non Saturating GAN (NS GAN) is similar to the JS
GAN, but the generator tries to maximize its objective not minimize. It is therefore not a
minimax game. To signify this difference JS GAN is also referred to as MM (MiniMax)
GAN. BEGAN uses an autoencoder as a discriminator which tries to compress and recon-
struct the input. We therefore need to compare the reconstructed output with the input.

Just as important is different ways of regularizing GANs which can be seen in table
3.2. This includes techniques for doing supervised learning where we need to compare
generated outputs to ground truths. In that case we can calculate pixelwise distance using
absolute (L1) or squared (L2) distances.

Name Discriminator Objective

L1 E(x,y)∼Ddata,z∼Dz
[‖y −G(x, z)‖1]

L2 E(x,y)∼Ddata,z∼Dz
[‖y −G(x, z)‖2]

WGAN-GP Ex̃∼Dg,x∼Ddata [(‖∇D(αx+ (1− α)x̃)‖2 − 1)2]

DRAGAN Ex̃∼Ddata +N (0,c)[(‖∇D(x̃)‖2 − 1)2]

InfoGAN Ex∼Ddata,c′∼p(c)[logQ(c′|x)] +H(c)

Table 3.2: Different varieties of GAN regularizers. For L1 and L2 we are in a supervised setting.

3.1 Performance metrics

You cannot trust the value of the loss function to determine if the generator has produced
good samples or not. As we have seen many things can go wrong while training that can
make it look like the training is going well, while in fact the samples produced are of
poor quality. It is often necessary for manual inspection of generated samples to conclude
whether the generator is behaving as desired or not. This is however tedious and subjective.
It is much more convenient to have a numerical value. There has therefore been suggested
several metrics for computing a GAN score. The two most common are the Inception
Score (IS) by Salimans et al. (2016) and the Fréchet Inception Distance (FID) by Heusel
et al. (2017).

3.1.1 Inception score

This score was developed with two considerations in mind. The conditional label distri-
bution of samples containing meaningful objects should have low entropy. The second
consideration was that the variability of the samples should be high.

To calculate the distribution of labels of generated data, p(y), and labels conditioned
on generated data, p(y|x), we employ Inception Net trained on the Image Net dataset. In
the case where you want to compare methods in a domain which is not like Image Net you
could use another dataset. The inception score is then given by

20

3.2 Wasserstein GAN

IS(G) = exp(Ex∼Dg [DKL(p(y|x)‖p(y))]). (3.1)

This is however not a metric. It has been shown that this score correlates well with
human evaluations.

3.1.2 Fréchet Inception Distance
The Fréchet Inception Distance (FID) embeds generated samples into the feature space
given by a layer of Inception Net. It considers the feature space as a multivariate Gaussian
distribution. We can then compute the mean and covariance of the distributions generated
by the dataset and the generator. The FID is then simply a comparison between these two
distributions given by the Fréchet distance as follows

FID(x, g) = ‖µx − µg‖22 + tr
(

Σx + Σg − 2(ΣxΣg)
1
2

)
. (3.2)

The FID can also detect intra-class mode dropping. This is when the generator pro-
duces only a few types of each class. This could give a good IS, but gives a bad FID.

A problem with both of these scores is that they do not account for overfitting the data.
A GAN that memorizes the training data, but can not produce any new samples would
receive perfect score from both of these methods.

3.2 Wasserstein GAN
Using a different metric may solve many of the difficulties with training GANs. In this
section we are going to construct the Wasserstein metric and demonstrate its useful prop-
erties as a loss function when training GANs. To do this rigorously and general we need
to introduce some concepts from topology and optimal transport. Defining every concept
thoroughly is however outside the scope of this text. For a more complete reference the
book Optimal transport: old and new by Villani (2008) is a good option.

3.2.1 The Wasserstein metric
First there is the Borel set which is any set that can be constructed by taking countable
unions, intersections or set difference of open sets in a topological space. Combined these
sets form the Borel σ-algebra which is the smallest algebra containing all the open sets of
a topological space.

Given a metric space (Ω, dΩ) where dΩ(x, y) is a metric and Ω is such that all prob-
ability measures are Radon measures. A Radon measure is a general measure with the
following properties.

Definition 3.2.1. Let m be a measure on a σ-algebra of Borel sets of a Hausdorff topo-
logical space X . A measure m is inner regular if for every open set U ⊂ Ω

m(U) = sup
Compact subsetK of U

m(K)

21

Chapter 3. Extensions and innovations

the supremum of every compact subset of U . It is outer regular if for any Borel set B,

m(B) = inf
Open set U containingB

m(U)

the infimum of m(U) over all open sets containing B. It is locally finite if every point of Ω
has a neighbourhood U where m(U) is finite. Then m is called a Radon measure if it is
both inner regular, outer regular, and locally finite.

The Wasserstein distance between two Radon probability measures, µ and ν, is in
general

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
M×M

dΩ(x, y)p dγ(x, y)

)1/p

(3.3)

where Γ(µ, ν) is the set of all joint probability measures where the marginals are µ and ν
respectively. It can be shown that this satisfies all the axioms for a metric and therefore
defines a metric space.

This can be reformulated using expected value, and setting p = 1, to the earth mover
(EM), or Wasserstein-1, metric. The name earth mover comes from the intuition that we
are measuring the minimal work of shuffling one pile of probability to another. Work in
this context being the mass and distance each piece of earth needs to be moved. Let pg
and pr be two arbitrary probability density functions defined on Ω. Then we can consider
the earth mover metric

W (pg, pr) = inf
D∈Π(pr,pg)

E(x,y)∼D [dΩ(x, y)] (3.4)

where Π(pr, pg) is the set of all joint probabilities that has pr and pg as marginal distribu-
tions respectively. By using the Kantrovich-Rubinstein duality we can get an even simpler
formulation

W (pg, pr) = sup
‖f‖L≤1

(
Ex∼pg [f(x)]− Ex∼pr [f(x)]

)
(3.5)

where ‖f‖L ≤ 1 means that f must be 1-Lipschitz; essentially ‖f(x1) − f(x2)‖ ≤
‖x1 − x2‖ for any x1, x2. This constraint is a challenge to enforce. It can be solved by
using clipping on the weights.

In practice we need to approximate this formulation by maximizing and averaging. We
also restrict our search to some space of parameterized functions fθ like neural networks
with some predetermined architecture. We sample m samples from each of the distribu-
tions {xi} ∼ pr and {x̃i} ∼ pg

W̃ (pg, pr) = max
θ

(
1

m

m∑
i=1

fθ(xi)−
1

m

m∑
i=1

fθ(x̃i)

)
(3.6)

and fθ needing to be Lipschitz constrained. As in the case of the JS-loss GAN (2.6) we
can use the discriminator of a GAN to approximate this distance between the distribution
of the dataset Ddata and the distribution of the generator Dg .

This metric induces a weaker topology on the space of probability distributions than
for example the Kullback-Leibler divergence or Jensen-Shannon divergence. This en-
sures that given a locally Lipschitz continuous mapping fθ (for example a NN) W (pr, pθ)

22

3.2 Wasserstein GAN

is continuous everywhere and differentiable almost everywhere. This gives rise to the
Wasserstein GAN (WGAN). It tackles the problem that training GANs can be difficult
because of failure to converge and local minima.

In the original GAN the Jensen-Shannon (JS) divergence (6) was implicitly used as a
loss. This metric turns out to produce troublesome gradients in many cases. The Wasser-
stein metric on the other hand has a gradient defined almost everywhere.

3.2.2 Suitability as a loss function for GANs
This is the basis for the Wassersten GAN (WGAN) by Arjovsky et al. (2017) the setup
of which can be seen in figure 3.1. The main point about Wasserstein GAN is that it will
reduce the risk of mode collapse.

Generator G(z)
Noise z ∼ Dz
or data (image)

or a code c ∼ p(c)

Dataset Ddata

Discriminator D(x) Loss W̃ (Dg,Ddata)

∇θd
[

1
m

∑m
i=1D (xi)− 1

m

∑m
i=1D (G (zi))

]

−∇θg 1
m

∑m
i=1D (G (zi))

Figure 3.1: A basic setup for a Wasserstein GAN including the alternative gradients.

Enforcement of the Lipschitz constraint is not straight forward. Initially it was en-
forced by weight clipping. Weight clipping is a simple technique to keep the weights of
the network from growing to much. It works by choosing a hyperparameter c that will set
an absolute upper bound for each individual weight

clip(w; c) = sign(w) min(c, |w|). (3.7)

Later works by Gulrajani et al. (2017) and Adler and Lunz (2018) introduce a better
alternative called Gradient Penalty (WGAN-GP). This works by constraining the gradient
of the discriminator with respect to the generated input to be close to 1. Then this can be
converted into a regularizer like so

min
G

max
D

{
Ex∼Ddata [D(x)]− Ez∼Dz

[D(G(z))] + λ(‖∇ξD(ξ)‖2 − 1)2
}

(3.8)

where ξ = εx+ (1− ε)x̃ is a combination of samples from the generator x̃ and the dataset
x for some hyperparameter ε ∈ [0, 1]. This is a restriction on how the discriminator can
interpret samples given by the generator. For example we want the discriminator to use

23

Chapter 3. Extensions and innovations

visual features in an image to detect whether it is generated or not. We do not want it to
focus on things like invisible noise or small perturbations.

Actually it appears that the form of the loss might not be so important as enforcing
the Lipschitz constraint. In a paper by Qin et al. (2018) they argue that all loss functions
perform rather similarly when joined with Lipschitz regularization.

3.2.3 Lipschitz constraint in Banach spaces

It is possible to generalize this penalty to use an arbitrary norm. That is what Adler and
Lunz (2018) did which they called Banach Wasserstein GAN. They extend the formulation
so that one can choose the norm best suited for the application. A Banach space is a
complete normed space - a space where Cauchy sequences converge. Say we want the
generated samples from a domain Ω to be extra penalized on the edges of the image. We
consider the space of possible discriminators D : X → R.

One benefit with this generalization is the ability to enforce that functions are from
Sobolev spaces. These are spaces where solutions to partial differential equations are
found. For example the space Wk,p(Ω) is of weak differentiable and Lebesgue integrable
functions of order k and p respectively. They have the general norm for a vector x

‖x‖Wk,p
=

(∫
Ω

(
F−1

[
(1 + |ξ|2)k/2Fx

]
(t)
)p
dt

) 1
p

(3.9)

where F is the Fourier transform. It extracts the frequencies from any Lebesgue integrable
function Ff(x) =

∫
Rn f(x)e2π〈x,ξ〉idx = f̂(ξ). In the Fourier space multiplying with the

identity function ξ is the same as calculating a weak gradient in the original function space.
For example the space W1,2 will have the norm

‖x‖W1,2
=

(∫
Ω

(
f(t)2 + |∇f(t)|2

)p
dt

) 1
2

. (3.10)

In this space there is put more emphasis on the edges. Since when ‖x1 − x2‖W1,2
is small

the absolute value of their derivative is also close which means that they both have the
same kind of change in the function at that point which means that edges are preserved.

3.3 Gradient layer

There is also a paper by Nitanda and Suzuki (2018) where they use functional gradients
to improve the training of WGANs. Essentially they note that the generator may have too
little representative power and expands the problem to infinite dimensional spaces. This is
realized as a gradient layer that through functional gradient descent minimizes the loss in
the forward propagation of the network.

Let G = G2 ◦ G1 be a generator NN and D be a discriminator NN. We split the
generator at an arbitrary layer into a left G1 and right G2 part consistent with how we
usually draw a network. The parameters of each part is denoted θg1 and θg2 respectively.

24

3.3 Gradient layer

For regularization we use Rd to denote a gradient penalty regularizer like in (3.8). We
denote the optimal discriminator for a fixed generator with parameters

θ∗d = arg max
θd

Ez∼Dz [−D(G(z; θg); θd)]− λRd (3.11)

as D(x; θ∗d). It is possible to define this for more general losses as well. Correspondingly
we denote the loss for a varying generator as

Ld(G) = max
θd

Ez∼Dz [−D(G(z; θg); θd)]− λRd. (3.12)

Note that this is the generators objective in the Wasserstein GAN definition.
We want to create a layer, φ, in the generator that minimizes the loss the same way as

a training update will
Ld(G2 ◦ φ ◦G1) ≤ Ld(G). (3.13)

We are considering an infinite dimensional optimization problem over the space L2(Dg)
of square integrable functions with the measure induced by Dg . Also including the inner
product 〈·, ·〉L2(Dg) which is the expectation of the inner product of two functions. This is
realized for functions φ1, φ2 ∈ L2(Dg) as follows

〈φ1, φ2〉L2(Dg) = Ex∼Dg

[
φ1(x)Tφ2(x)

]
. (3.14)

Then we want to find an intermediate function φ that minimizes the loss; essentially

φ = arg min
φ′

Ld(G2 ◦ φ′ ◦G1) (3.15)

The procedure of finding φ defines the gradient layer.
Let L(φ) = Ld(G2 ◦ φ ◦ G1) for ease of notation in this section. What we can do

to optimize the training loss in a functional manner is to perform gradient descent in a
compositional manner. One application of the layer will transform an input into the next
step of gradient descent

φη(x; θd) = x+ η∇θdD(G2(x; θg2); θd) (3.16)

where η is the hyperparameter for learning rate. We can then apply several of these func-
tions in sequence to reach the optimum of the loss function. Note that it is dependent on
the parameters of the discriminator and the generator. In this context ∇θd represents a
functional derivative which in this case is the normal derivative. This will improve the loss
further and hence the quality of the samples.

Ideally we could compute the gradient using a functional derivative of the loss function.
This is achieved by perturbing the input function φ with some arbitrary function v times a
small constant t. The change caused by that small perturbation is our derivative. This can
be stated using the envelope theorem and Lebesgues convergence theorem as follows

d

dt
L(φ+ tv)

∣∣∣
t=0

= −Ex̃∼Dg

[
∇xD(x; θ∗d)

∣∣∣T
x=φ(x̃)

v(x̃)

]
. (3.17)

The envelope theorem introduced by Milgrom and Segal (2002) connects the parameteri-
zation of an objective function with the optimal point of the objective function.

25

Chapter 3. Extensions and innovations

3.3.1 Algorithms

The paper presents several algorithms for computing parts of the gradient layer. They are
however memory intensive since they require to save all the parameters of the discrimina-
tor in each step. We denote as before byA(θd, φ) one step of a gradient based optimization
method like SGD, Adam or RMSprop.

Data: Batch size m, the number of iterations T , the initial parameters θ(0)
d of the

discriminator, the number of iterations T0 for the discriminator, the
regularization parameter λ, and the learning rate η.

for k = 0 to T − 1 do
θd ← θ

(k)
d

for k0 = 0 to T0 − 1 do
Take m random samples from the dataset {xi}mi=1,
from the generator {x̃i}mi=1 ∼ Dg ,
and from the uniform distribution {εi} ∼ U [0, 1]m.
{x̃i}mi=1 ← {φη(· · ·φη(φη(x̃i; θ

(k)
d); θ

(k−1)
d) · · · ; θ

(1)
d)}

{ξi}mi=1 ← {εixi + (1− εi)x̃i}mi=1

v ← ∇θd 1
m

∑m
i=1[D(x̃i; θd)−D(xi; θd) + λRd(ξi)]

θd ← A(θd, v)
end
θ

(k+1)
d ← θd

end
Result: θ(1)

d , . . . , θ
(T)
d

Algorithm 2: Fine tuning the generator and discriminator. We restrict ourselves to the
Wasserstein loss in this context although it is possible to do it for more general loss
functions.

With algorithm 2 we can fine tune the result from the generator by repeatedly apply-
ing the gradient layer. This will solve some of the problem caused by the generator not
having infinitely many parameters. The result from this algorithm is a list of T updated
discriminators.

What we are basically doing in the algorithm is improving the output of the generator
with an ensamble of functional discriminator gradients. So why do we not just update
the parameters like in a normal setting. The point is that these functional gradients should
much better represents the underlying continuous data structure. A reference for functional
calculus and functional gradients is given by Luenberger (2010).

This algorithm serves as an approximation to the more ideal functional gradient de-
scent in algorithm 3. Here we are constructing new functions in each step of the algorithm
by using composition. Essentially instead of updating the weights we preserve the weights
from each iteration making them a part of the new function. This is memory intensive so

26

3.4 Conditional GAN

in practice it could be useful to only preserve a small portion of the weights.
Data: The initial generator G and the learning rate η.
φ0 ← G
for k = 0 to T − 1 do

φk+1 ← φk − η∇φL(φk)
end
Result: φT

Algorithm 3: Functional gradient descent for finding the optimal generator.
The method shows promising results in experiments. It managed to learn toy datasets

of Gaussian noise with only 100 iterations. In contrast JS-GAN and WGAN fail to learn
these kinds of simple problems. In the paper they also train a WGAN-GP on the Cifar-10
and STL-10 datasets and then apply algorithm 2. It manages to improve the inception
score with several points after only 20 to 30 iterations.

3.4 Conditional GAN

For many cases when you want to use GAN to not only generate new random samples
from a distribution induced by a dataset, but learn a mapping from one kind of samples to
another. An example of this is to learn a mapping from sketches to images and vice versa.
This is the objective in the papers Mirza and Osindero (2014) and Isola et al. (2017) where
they establish the conditional GAN (cGAN).

Given a labeled dataset {(x, y)} of for example two kinds of images we want to find
the relationship between them. We can also consider this as a pair of data that we want to
find the relationship between. If we want to learn how to transform one kind into another
i.e. learn a function G(x) ≈ y we can think of this as learning a conditional distribution
p(y|x). The intuitive interpretation of this is that we want to generate samples which are
related to the data we are conditioning on.

This a sort of supervised method for GAN. We gain control over the output by restrict-
ing some of the input to be data we want. What we are essentially doing is that we replace
some of the noise input with data x.

There are several ways to construct a GAN that can relate pairs of data. This has a
close connection to supervised and semi supervised learning. In both cases you want to
learn a function that connects two different spaces f : X → Y . Usually those two spaces
are of different size. For example in image classification you connect several instances of
images to a specific class label.

3.4.1 Image to image translation

In the paper Isola et al. (2017) they present an algorithm called pix2pix which can trans-
form one image into a different kind of image. For example turning a satellite image into
a map or vice versa. It is an extension of conditional GAN described earlier.

In earlier work image to image translation has been subject to application specific con-
struction. Pix2pix on the other hand is intended to be a simpler and more general frame-
work for this. There is an improvement to this as well in section 3.5 called CycleGAN.

27

Chapter 3. Extensions and innovations

One important concept in this implementation is the convolutional PatchGAN discrim-
inator. In this formulation the discriminator scans over an input image in small patches
just like a convolutional layer. That way the discriminator is more locally dependent than
if it were to consider the entire picture at once. It only cares about structures within the
patches. That means that pixels that are further apart than the size of the patch are assumed
independent. This means we are effectively modeling the image as a Markov random field.

We are modeling the texture of the input by only considering small neighbourhoods
of pixels. That way transformations in one area of the output should be consistent with
transformations in another area of the output. This is a property we want when converting
between for example drawings and images like maps and satellite images. In a map there
is roughly always the same rule for converting a satellite image into representations inde-
pendent of the overall position in the map. A road is always a road and a pond is always a
pond.

The generator is based on a convolutional neural network architecture called UNet
from Ronneberger et al. (2015). It was initially designed for image segmentation for
biomedical images. This was for example detecting cells in microscope images and then
returning the area where the cells are located. The architecture of UNet consists of con-
necting blocks of convolutional layers with dropout and batch normalization. The original
architecture can be seen in figure 3.2. The name comes from the U-shape it makes when
presented as in the figure. UNet has become the state-of-the-art in many applications of
deep learning.

Figure 3.2: The UNet architecture from the original UNet paper on biomedical image segmentation.

A different view of the UNet architecture can be seen in figure 3.3. An important

28

3.5 Cyclic GAN

feature of this architecture is the skip connections. That is output from a layer which is
preserved and concatenated or added with the output from a later layer in addition to being
passed to the next layer. This opens for the possibility that important information can
travel between layers.

It follows an encoder decoder structure; much like an autoencoder. The input is en-
coded into a low dimensional representation and then rebuilt into a full size image again.

6464

I

128 128

I/
2
256 256

I/
4512 512

I/
8

1024 1024
I/
16

Bottleneck Conv

512 512 512 512

I/
8

256 256 256 256

I/
4

128 128 128 128

I/
2

64 64 64 64

I

Softmax

Figure 3.3: A 3D view of an UNet architecture. The numbers beneath each layer represents the
number of filters in the convolution.

It is not enough to just use the regular discriminator loss for the generator in this setting.
We also need to penalize the generator to produce images that are similar to the ground
truth input. That is why we are using an additional L1 loss

LL1(G) = E(x,y)∼Ddata,z∼Dz
[‖y −G(x, z)‖1]. (3.18)

The L1 regularization enforces sharp edges while L2 regularization would result in blurry
outputs. Combining the conditional image input x and the noise z is not straight forward.
In practice we could omit the noise and instead provide noise by using dropout layers.
This was sufficient for this method and reduced some of the implementation complexity.

The complete formulation for a general loss is

min
G

max
D
L(G,D) + λLL1(G) (3.19)

where λ is a hyperparameter. The architecture of this method is probably more determining
of the result than the loss.

3.5 Cyclic GAN
We have seen that we can use GAN to learn to map images from one domain to another
with conditional GAN. This can of course be done for the opposite direction as well. These
are essentially inverse problems; mapping satellite images to maps and mapping maps to
satellite images. This leads to the question of whether there is something that can be earned
by jointly training these mappings. We can transform an image to a target domain and then

29

Chapter 3. Extensions and innovations

back to the original domain. Essentially we would want to minimize the features lost in the
transformation. That is what Zhu et al. (2017) did when they created the CycleGAN. This
can be seen as a natural extension of the conditional GAN. We are connecting a cGAN
with its inverse formulation and thereby strengthening the relationship between input and
output.

Lets say you have two domains, X and Y , which can be considered random variables.
These can for example be satellite images and maps. In some sense it is the same infor-
mation represented in a different format or style. Now we want to train two generators on
mapping between the domains GXY : X → Y and GY X : Y → X . We can do this by
training two discriminators for each domain DX and DY and using them to calculate a
loss. Then in addition we can apply the generators in sequence and compare the result to
the original input for each domain GXY (GY X(y)) ≈ y and GY X(GXY (x)) ≈ x. We can
train the generators to minimize the loss from each discriminator as well as minimizing
the lost information when applying the generators in sequence. This can all be combined
to a new joint loss function for both generators and discriminators

L(GXY , GY X , DX , DY) = LGAN(GXY , DY) (3.20)
+ LGAN(GY X , DX)

+ λ(Lcycle(GXY , GY X)

+ Lcycle(GY X , GXY)).

Here LGAN is some of the normal GAN objectives discussed earlier. It can be any of the
many choices of GAN loss functions. The cyclic loss Lcycle(GXY , GY X) tries to measure
how much information is lost in a cycle of generators. In the original paper they simply
compare the original data to the data returned from the cycle like so

Lcycle(GXY , GY X) = EY [‖GXY (GY X(Y))− Y ‖1]. (3.21)

The generator is however not supposed to be a deterministic mapping from one input to an
output, but rather represents all the possible mappings when conditioned on a particular
input and then sample from that distribution.

30

3.6 InfoGAN

xreal yfake
GXY (x)

xrec
GY X(y)Dataset

(type X)

y LGAN(GXY , DY)
DY (y)

Discriminator
(type Y)

yreal
Dataset
(type Y)

Lcycle(GXY , GY X)

Figure 3.4: Visual representation of the X → Y → X cycle of the Cycle GAN. The Y → X → Y
cycle is analogous to this just with X and Y flipped.

The combined loss from (3.20) consists of two normal GAN losses and two cycle
losses. Each of these are providing updates to the generators and discriminators involved
in the definition. In the original paper they experimented with using only some of the
losses. This showed that using all the losses gave the best performance. The resulting
formulation is

min
GXY ,GY X

max
DX ,DY

L(GXY , GY X , DX , DY). (3.22)

This method shows improved performance over pix2pix. Since it does not require
paired data from each domain it is also more applicable.

3.6 InfoGAN
In the paper Chen et al. (2016) they develop an interpretable representation learning al-
gorithm by combining information theory and GAN. We have included a reference to
information theory in appendix B. For example the entropyH(X) and mutual information
I(X;Y) are essential to the formulation of InfoGAN.

This construction makes the GAN learn a code for features by regularizing with the
mutual information of the code and the generated sample. This requires to sample from
the posterior distribution of the code which is unknown. We can instead approximate this
distribution by updating it sequentially.

Let c ∼ p(c) be a random variable representing the distribution of the code we want to
learn and z ∼ Dz be the usual random variable for noise. The modified objective function
(2.7) of the GAN, including the mutual information regularization term is of the form

LI(G,D) = L(G,D)− λI(c;G(z, c)). (3.23)

However calculating the mutual information explicitly is not possible since we don’t
know the posterior distribution P (c|x). What we can do instead is approximate it with

31

Chapter 3. Extensions and innovations

another distribution Q(c|x) as follows

I(c; g(z, c)) = H(c)−H(c|G(z, c))

= Ex[Ec′ [logP (c′|x)]] +H(c)

= Ex[DKL(P‖Q) + Ec′ [logQ(c′|x)]] +H(c) (3.24)
≥ Ex[Ec′ [logQ(c′|x)]] +H(c) = LI(Q,G) (3.25)

The last inequality is because the Kullback-Leibler divergence is always positive. In (3.24)
the inequality will approach equality as Ex[DKL(P‖Q)]→ 0 the approximated posterior
Q(·|x) will approach the true posterior. This means that the approximated mutual infor-
mation will equal the maximal mutual information LI(G,Q) = H(c) = I(c;G(z, c)).
This gives us a new objective function

LI(G,D,Q) = L(G,D)− λLI(Q,G). (3.26)

Which leads to the following extended GAN formulation

min
G,Q

max
D
LI(G,D,Q). (3.27)

This means that when updating the generator in training we also need to update the auxil-
iary distribution Q.

This technique is known as Variational Information Maximization first introduced by
Barber and Agakov (2003). This is in many ways analogous to the Expectation Maxi-
mization (EM) algorithm. We can approximate LI(Q,G) with Monte Carlo simulation
and choosing an appropriate family of distributions for Q(c|x). Since it is a highly com-
plex distribution it is natural to parameterize it as a neural network. In the original paper
they simply connect a new fully connected layer to the end of the convolutional layers of
the discriminator.

Generator G(z, c)
Noise z ∼ Dz
or data (image)

and a code c ∼ p(c)

Dataset Ddata

Discriminator D(x)

Posterior Q(c|x)

Loss L(G,D)− λLI(Q,G)

∇θdL(G,D)

−∇θg [L(G,D)− λLI(Q,G)]

Figure 3.5: The basic setup of InfoGAN.

The result of this is that, when converged, the code c will have taken a natural role for
representing the different varieties of samples produced by the generator. For example it

32

3.7 Bayesian GAN

was trained on the MNIST dataset with c as a vector of one categorical component and
two continuous components. A categorical distribution c ∼ Cat(K) = {k1, . . . , kK}
is a discrete uniform distribution i.e. P (c = ki) = 1

K for all i. The categorical code
c1 ∼ Cat(K = 10) learned to represent the different digits. This is quite nice because
the GAN was not supervised and had no knowledge of the labels. It learned to distinguish
between the different digit classes as a consequence of maximizing the information content
in the latent code. This means that the generator has learned to recognize the distinction
between the digits and we can now explicitly tell it to generate a specific digit.

For a normal GAN there is no way of knowing what the properties of a sample will be
given the input noise. However it is very desirable to be able to control what the output of
the generator will be.

Another benefit of this extension is that it actually improves convergence in training
based on empirical results. It can also be applied to most GAN architectures. However it is
not so easy to apply it to a conditional GAN. In that context we already have a controlled
input into the generator. For the code to become meaningful there needs to be a natural
property that it can describe. It would be interesting to see what will happen if we try
to model more complex relationships between components of the code and the generated
samples.

3.7 Bayesian GAN

We are going to present and discuss the method in the paper by Saatci and Wilson (2017)
where they introduce Bayesian inference to GANs. This not only gives a better explain-
ability of the performance of GAN, but also improves it to a state-of-the-art level. In this
section we are sometimes going to refer to the parameters of the generator and discrimi-
nator as a particular realization of the respective network. We also refer to the probability
densities p for some distribution as simply the probability for simplicity.

We extend the definition of GAN to include a distribution of parameters, θg and θd,
which is a distribution of all possible GANs with some predetermined architecture. This
new model is called Bayesian GAN (BGAN). It provides a natural uncertainty estimation
of the output which gives us more ability to asses the quality of the GAN. Further it relaxes
some of the issues with GAN training, like mode collapse, since we are always considering
an ensemble of generators and discriminators.

In a recent paper by He et al. (2018) they present an improvement on the BGAN and
provide theoretical guarantees for convergence. The method is called Probabilistic GAN
(ProbGAN) and can more robustly incorporate the loss functions in table 3.1. Both of
these methods provide a probabilistic formulation for GANs.

To introduce distributions over the parameters we need some way of approximating
the posteriors over the discriminator and the generator. Given a particular discriminator θd
we want to know what the distribution of good generators θg is. This can be considered a
posterior of generators over discriminators p(θg|θd). That way we can consider a GAN in
the context of Bayes rule

p(θg|θd) =
p(θd|θg)p(θg)

p(θd)
. (3.28)

33

Chapter 3. Extensions and innovations

The data and hyperparameters are implicitly embedded in this formulation since it is part
of defining the relationship between the discriminator and the generator. Note that we have
not yet introduced the dataset as a component. The dataset partly defines the distribution
of discriminators and then by extension the generators.

We can evaluate the network by sampling from the distribution of parameters and then
evaluating it as normal function. Essentially the parameters of the generator are not a fixed
point, but rather many possible generators where the probability mass is located around
the configuration which at a particular point in training seems to be the best generators.

In the normal GAN setting we are always implicitly conditioning the training updates
on the particular realization of the noise. Different samples of noise produce different gen-
erated samples which result in different training updates in result. Normally we produce so
many samples at the same time that it should even out, but there is perhaps a performance
gain from marginalizing over the noise.

In reality we need to restrict ourselves to a mini-batch of samples from the dataset and
the generator. We take mg samples from the generator and md samples from the dataset.
However in most scenarios we would take the same amount of samples from the dataset
and the generator mg = md = m, but we will keep the indexes for generality. There
are also two different approaches to defining the posteriors in the paper; an unsupervised
formulation and a semi supervised formulation.

3.7.1 Unsupervised setting
We have a prior for the distribution of generators p(θg|αg) where αg is a hyperparameter.
The posterior for the generator can be estimated by considering the posterior conditional
on the discriminator

p(θg|z, θd) ∝

(
mg∏
i=1

D(G(zi; θg); θd)

)
p(θg|αg). (3.29)

We draw noise samples z = {zi}
mg

i=0 for the generator and use them to compute samples
G(zi; θg).

The discriminator also needs to consider the distribution of data x

p(θd|z, x, θg) ∝
md∏
i=1

D(xi; θd)×
mg∏
i=1

(1−D(G(zi; θg); θd))× p(θd|αd). (3.30)

Here αd is a hyperparameter for the prior distribution of discriminators p(θd|αd). Note
that this needs to be scaled appropriately to the size of the batch of data we are computing
over.

We do not want the posterior to be dependent on the noise. To remove this we can
marginalize over the noise using Monte Carlo

p(θg|θd) =

∫
p(θg, z|θd)dz =

∫
p(θg|z, θd)dz ≈

1

Jg

Jg∑
j=1

p(θg|zj , θd) (3.31)

where we sample Jg noise samples zj ∼ Dz . This gives us an estimate of the gen-
erators posterior and we can do the same procedure for the discriminator p(θd|θg) ≈

34

3.7 Bayesian GAN

1
Jd

∑Jd
j=1 p(θd|zj , x, θg). Note that the index of the noise in this context represents an

entire batch of noise suitable to be put into (3.29) or (3.30).

3.7.2 Semi supervised setting

Then on the other hand we can formulate the posteriors in a semi supervised setting for
K-class classification. Here we have n unlabeled samples {xi}ni=1 and a typically much
smaller set x(s)×y(s) = {(x(s)

i , y
(s)
i)}ns

i=1 of ns labeled samples. In this context we extend
the definition of the discriminator to include classification of samples. The discriminator
now gives out a K + 1 sized vector of the probability of belonging to one of the K classes
or being generated by the generator. We denote the probability that a sample xi is from
a class y given by the discriminator as D(xi → y; θd). The class y = 0 means that the
sample is generated. For the generators posterior we want the samples to be classified as
anyone of the K classes. We therefore need to sum over all the nonzero classes which
gives

p(θg|z, θd) ∝

(
mg∏
i=1

K∑
y=1

D(G(zi; θg)→ y; θd)

)
p(θg|αg). (3.32)

The generator wants the discriminator to classify its samples as any of the available. Note
that it is enough that the discriminator is confused about which class generated samples
are from, as long they are not classified as generated. This is a behavior we do not want,
but the discriminator should be able to correct this by being better at classification.

We could also potentially extend this to a formulation similar to cGAN. By explicitly
telling the generator which class to produce and the discriminator which class to detect we
can have a Bayesian cGAN as well.

The discriminator needs to learn to correctly classify the labeled data hence the last line
of the following formulation. It also needs to detect the generated samples and determine
som nonzero label for the unlabeled data samples. Given the distribution of data x and
the labeled samples x(s) × y(s) we can formulate the semi supervised posterior for the
discriminator

p(θd|z, x, x(s), y(s), θg) ∝
md∏
i=1

K∑
y=1

D(xi → y; θd)

×
mg∏
i=1

D(G(zi; θg)→ 0; θd)

×
ns∏
i=1

D(x
(s)
i → y

(s)
i ; θd)× p(θd|αd). (3.33)

We always include the entire labeled dataset in this formulation. This is because it is
usually smaller than the unlabeled set and is essential for defining the relationship between
the data and the labels.

These semi supervised posteriors can be marginalized in a similar manner to the unsu-
pervised setting in (3.31).

35

Chapter 3. Extensions and innovations

3.7.3 Sampling from the posterior with SGHMC
Training a probabilistic version of GAN requires a different view of the training algorithm.
Rather than just updating the weights with SGD and backpropagation we have many differ-
ent realizations of the generator and discriminator. Each of these realizations are points in
a distribution we are trying to learn. We can therefore say that the parameters of generator
and discriminator are samples.

In each iteration we need to calculate a loss for all the parameter samples and then
update the parameters. This update needs to be noisy so the parameter samples do not
collapse into a single point. To sample from the posterior we use Stochastic Gradient
Hamiltonian Monte Carlo (SGHMC) developed by Chen et al. (2014) which can be seen
in algorithm 4. This is convenient since it resembles momentum based SGD. To represent
the posteriors we collect and update a set of approximate samples from the posterior for the
generator and the discriminator. We marginalize the noise as in (3.31). For every Monte
Carlo simulation for marginalizing the noise we do S SGHMC updates to the parameters.

It is possible to approximate the distribution function of generator and discriminator
parameters with Gaussian Mixture Approximation (GMA). This is necessary for certain
kinds of sampling methods.

Experimental results show that BGAN outperforms both a supervised convolutional
neural network and convolutional variants of JS GAN and WGAN on a semi supervised
learning task in datasets MNIST, Cifar-10, SVHN, and CelebA.

36

3.7 Bayesian GAN

Data: A friction term α, learning rate η, number of Monte Carlo (MC) samples
from the discriminator Jd and the generator Jg , and S SGHMC samples.

We represent the posteriors as samples from the previous iteration
{θj,sg }

Jg,S
j=1,s=1 and {θj,sd }

Jd,S
j=1,s=1.

First update the generators posterior samples.
for j = 1 to Jg do

Sample noise {zi}
Jg
i=1 ∼ Dz for Jg MC samples times mg mini-batch size.

Update the posterior samples of the generator p(θg|θd) with SGHMC.
for s = 1 to S do

ε ∼ N (0, 2αηI).
v ← (1− α)v + η

(∑Jg
i=0

∑Jd
k=0∇θg log p(θg|zi, θk,sd)

)
+ ε .

θj,sg ← θj,sg + v.
Update the posterior samples with θj,sg .

end
end
Then update the discriminators posterior samples.
for j = 1 to Jd do

Sample noise {zi}Jdi=1 ∼ Dz for Jd MC samples times md mini-batch size.
Sample mini-batch of md data samples denoted as x.
Update the posterior samples of the generator p(θd|θg) with SGHMC.
for s = 1 to S do

ε ∼ N (0, 2αηI).
v ← (1− α)v + η

(∑Jd
i=0

∑Jg
k=0∇θd log p(θd|zi, x, θk,sg)

)
+ ε .

θj,sd ← θj,sd + v.
Update the posterior samples with θj,sd .

end
end
Result: Posterior samples {θj,sg }

Jg,S
j=1,s=1 and {θj,sd }

Jd,S
j=1,s=1.

Algorithm 4: One iteration for sampling the Bayesian GAN. When we update the
weights we are in reality performing backpropagation. In the semi supervised setting
we also need to include the labeled dataset for estimating the posterior.

37

Chapter 3. Extensions and innovations

38

Chapter 4
Experiments

In this section we are going to present our attempts and results of implementing different
GAN varieties and a framework for doing experiemtents.

We implemented the pix2pix algorithm as described in section 3.4.1 and built a frame-
work for doing experiments. More specifically we reproduced the original problem of
converting satellite images to maps. This was also intended to investigate applications of
this technique.

We also implemented a Wasserstein GAN and tried to train it on the MNIST and Ci-
far10 datasets. Interestingly to implement the Wasserstein metric we could formulate it
as a supervised loss where the labels were either 1 or −1 if samples came from either
the dataset or the generator respectively. The discriminator was configured to output both
positive or negative numbers. We drew m, the batch size, samples from the dataset and
labeled them as 1 for training the discriminator. Similarly we drewm samples from gener-
ator and labeled them as−1. Then to compute the loss we simply multiply the output from
the discriminator with the label and take the mean. That way we obtain the formulation as
in (3.6).

This was however not successful as the model, with some initial hyperparameters, did
not converge after over 100 000 epochs. We then decided that it was not worth the time
and effort to correct the hyper parameters and finish training the model. The Wasserstein
GAN implementation is therefore not essential to this thesis.

4.1 Experimental framework

We developed a framework for easy implementation, organization and execution of ex-
periments with deep learning. It revolves around defining an object that contains all the
relevant information for a particular model and then connecting it to other relevant objects
and tasks. We will refer to this as the model framework, or just model, as they are in-
tended to be interchangeable. First we are going to discuss what we think are some of the
properties of an ideal deep learning framework.

39

Chapter 4. Experiments

Doing experiments in deep learning has some challenging technical demands. We need
a flexible system that we can easily adapt to new scenarios and connect with previously im-
plemented methods. For example there should be a standard framework for downloading,
processing, and loading datasets. This minimizes the coding effort when using different
datasets.

In general there is a trade-off between framework flexibility and ease of use. For
example if you have a minimal framework you need to implement everything for each
case. More ideally you would only need to implement the thing that is different in that
case. This trade-off is at its optimum when the framework makes only the necessary
assumptions about its usage. There are different philosophies for how to resolve this issue.
For example with functional programming there is ideally no internal state and functions
are therefore always predictable. However there are sometimes performance gains when
allowing for deletion and states. This can often be circumvented with clever functional
programming.

All normal functionality that you would expect should be easily available. This in-
cludes common model architectures and training algorithms. However the scope of an
experimental framework extends beyond implementing the model. It also requires han-
dling data and deploying variations of experiments. This is something you would usually
implement yourself as you would want it tailored for your specific use.

Just as important is the performance when the system is implemented. Deep learning
deals with huge datasets and often billions of parameters. This leads to huge memory
and computational demands. The community has therefore chosen to create frameworks
that first describe computation in abstract terms and then execute the computation in an
optimized environment. This optimized environment may be a computational server with
GPUs and large storage capacity.

Every experiment is started from the same entry point given some input configuration
files or command line arguments. This input describes which model to be used, which
action to be performed, various configuration options and the hyper parameters of the
model. This is very convenient since varying the parameters, running several instances in
parallel, and keeping track of the experimental history requires little effort.

For example in order to train a model we would use the train model action. Then
it would load the model framework specified by the model parameter. The framework
specifies which dataset to be loaded and builds a model in some underlying framework
like Keras or Chainer. This is only from instantiating the model framework.

The next step is then to perform the specified action on the model. Since all models are
defined in the same general abstract framework, we should be able to apply general func-
tions to them. This enables us to use many different frameworks for defining computation,
model architecture, and training algorithms.

The results are also organized in a structured manner. All results are collected in a
results folder. At the top level it is organised by the name of the model that is being
experimented on. Then it is possible to name specific experimental configurations so that
all the results with that name are put in a named folder. Saved models, plots, images, and
other related data are stored together in that folder or sub folders.

Datasets are kept in a separate data directory. The framework is configured to automat-
ically download, extract, and load specified datasets from that folder. This makes it very

40

4.2 Map generation from satellite images

easy to transfer code to a server or to a new computer. No manual action is needed when
running the code. This represents a core philosophy of this framework. When the code is
configured correctly there should be no manual action necessary to get it running. It means
that when starting from scratch on a new computer, and issuing the same command, the
result will be the same as on a computer where experiments has already been run.

All the code and configuration files is available at:
https://github.com/Anderssorby/odin.

4.2 Map generation from satellite images

Here we train a conditional GAN on a dataset of satellite images and maps. We wanted to
do this to investigate if this was possible to apply this for creating maps of places without
maps. For example organizations like OpenStreetMap are using a big network of human
volunteers to map unmapped urban areas. It is often in the context of supporting orga-
nizations providing humanitarian aid. We made some effort to contact the Humanitarian
OpenStreetMap Team (HOT) and Missing Maps to see if there was any potential for col-
laboration and application of this technique. This was however not so useful for their
particular application. A more suiting technique would be some kind of object detection
or object segmentation.

We note that the results from this experiment can be scaled to images of higher reso-
lution by progressive growing of GANs. This means starting by producing low resolution
versions of the desired images of the dataset. When a sufficient performance level is
reached, we can add a new layer of higher dimension to the generator and train on higher
resolution images. We do this procedure for many levels of resolution. This can in the end
result in stunningly realistic images.

4.2.1 Dataset

We obtained one of the original datasets collected for the paper by Isola et al. (2017). It
consists of square image tiles from Google Maps. Each tile is in both satellite and map
format. The dataset consisted of only 1095 training sample pairs and 1097 validation sam-
ple pairs. Each image is then processed to have the desired 256 by 256 pixels resolution.
This was to speed up training time and reduce memory usage when experimenting.

The maps are for the most part from urban areas with straight streets and sometimes
parks or water. A sample from the training set of both the map representation and satellite
representation of the same square can be seen in figure 4.1.

For efficiency all of the training and validation samples were processed into tensor
format and collected in a HDF5 file. This reduced the loading time when starting a new
process.

41

https://github.com/Anderssorby/odin

Chapter 4. Experiments

Figure 4.1: A sample from the training data.

4.2.2 Implementation
Initially we based our model on an unofficial open source implementation found on Github.
This was in part to speed up the implementation. The final implementation however con-
tains none of the original code and resembles it only in the resulting structure.

We built this into our experimental framework. It constructs a variant of the architec-
ture described in section 3.4.1. This allows us to combine it with other general functions
for importing datasets, testing, saving and loading the weights and architecture during and
after training. Especially for GAN training we had a function for producing visual results
from the generator at some intervals of epochs. This allowed us to monitor the progress of
the training outside of looking at the loss.

We chose to focus on transforming the satellite images into maps as this seems to be
more applicable. It is possible to reverse the problem and transform maps into satellite
images. That is something they did in the original pix2pix paper. We considered imple-
menting a CycleGAN as in section 3.5 which promises even better results. This is because
it learns both the problem and the inverse problem. This allows for an additional cycle loss
to determine how well it can restore satellite images that have been transformed into maps
and back into its original form.

4.2.3 Results
The experiments were memory and computationally intensive and were run on a comput-
ing server with GPUs. In practice, to obtain good results with GAN, it usually requires
manual tweaking and incremental development. We did not try to improve our results
beyond showing that the method works to a convincing level.

We ran the training for up to 6000 epochs but there was little visual improvement after
1000 epochs. The generator and discriminator objective loss was also rather stable at that
point. Therefore we present the results from the weights at that point. Evaluation on 12

42

4.2 Map generation from satellite images

Figure 4.2: After training for 1000 epochs the generator produced these results on the validation
dataset. The first two rows is the input. Row 3 and 4 is the generated output. Row 5 and 6 is the
ground truth map.

43

Chapter 4. Experiments

samples from the validation set including input, output, and the ground truth can be seen
in figure 4.2.

As you may observe in the figure the generator manages to capture the straight edges
of streets. They end up being more squiggly and diffuse than in the ground truth maps.
This could perhaps be enforced by having some sort of regularization like in a Banach
WGAN. Information that is not explicitly present in the picture, like arrows indicating the
direction of traffic flow, is not presented. This is probably due to the low resolution of the
images as they are successful with this in the original paper.

It is hard to tell how well the generator has understood the features of the input images
and how much is just memorizing earlier samples.

The generator has trouble distinguishing things like highways and wide streets. This is
fair as there is generally no clear way for humans to distinguish them either in the context
of producing a map. Areas with vegetation like forests or parks are also difficult to capture
as some areas are made green and some are kept grey.

An input it fails a lot on is the one in row 2 column 4. Here we have something that
looks like a sports arena and some nonstandard buildings. It is possible that further training
and scaling up to higher resolutions would resolve this issue.

Still we deem these results quite impressive as they only a few years ago would have
been considered almost impossible. Popular research papers about GAN usually have
very high quality experimental results. These researchers usually have large computational
resources and an experienced engineering team for support. This does not diminish their
achievements, but research in deep learning has a tendency to require more and more
resources and technical experience. This might be unfortunate for a fair and open research
community in the years to come.

44

Chapter 5
Further work and ideas

In this section we will review the theory and applications presented so far. Then we will
present some ideas for further application and innovation with regards to GAN or general
machine learning. The development of GAN is far from over and it might be a stepping
stone to even more advanced and applicable models in the future.

With regards to image processing and generation GAN has shown its strength. This is
the application area where the results are easiest to judge.

5.1 Using GAN to enhance and augment object detection

Object detection is an application of machine learning that is attracting more and more
interest. It has applications in medicine, industry and scanning through satellite images.
There are several variants of the problem with varying degree of difficulty. It can be the
task of detecting a single type of object like cars in a parking lot seen from above. The
task is then to draw boxes around each car and then present all of the boxes. The result of
this can for example be used to count the number of cars in a parking lot. This is a much
more difficult problem than simply classifying whether a picture is of a car or not.

Further on the problem can be extended by introducing more classes of objects to
detect. The task then extends to not only draw boxes around the objects of interest, but
also classifying each object. For objects of more complicated geometry like lakes it can
be useful to sketch the area as a geometric figure. This is called image segmentation.

In the paper by Nogues et al. (2018) they use GAN to extend a synthetic training set
and make it look like real data. The task was to design an object detection algorithm for
inspecting electric components on an assembly line. They employ a CycleGAN to convert
images produced by a physics simulation engine into real world images. The actual object
detection is also implemented into this algorithm with a Mask-RCNN.

We had ambitions of implementing a method similar to this, but lacked the time to do
so. It would be a fully GAN enabled system where even the object detection was subject
to adversarial training.

45

Chapter 5. Further work and ideas

5.2 Octave convolution
For image analysis the conventional convolution has a lot of spatial redundancy. Octave
convolution factorizes the input into high and low frequency separated by an octave and
computes the convolution over these two frequencies while passing information between
them. This is especially relevant for analyzing natural images. It is orthogonal to other
convolution methods that suggest better topologies or reduce redundancy.

This technique is from a recent paper by Chen et al. (2019). It gives higher performance
while reducing the computational cost of training. It is therefore ideal for designing the
next generation of image processing systems.

5.3 Describing machine learning with category theory
Category theory is a mathematical framework for describing mathematical concepts in an
intuitive and relationship oriented way. It can be used as a foundation for all of mathemat-
ics and has shown great ability to connect different theories of mathematics with similar
language. Category theory is not intended to impose a specific view on concepts, but rather
provide a general language that unifies different theories. A reference for category theory
can be found in the book Categories for the Working Mathematician by MacLane (1971).

In the paper by Fong et al. (2017) they describe backpropagation in a category theoreti-
cal framework. This provides some intriguing insights into the mechanics of this algorithm
and may lead to whole new ways of considering neural networks. Although it is important
not to fixate too much on the theoretical aspects and not consider the applicational aspects
of machine learning.

5.4 Overall impression of GAN
GAN has been described as the most interesting innovation in machine learning in the last
decade. It has given us a general framework for learning different tasks of high complexity.

Generative methods like this might be essential for developing machine learning meth-
ods further as the domains and tasks become more and more complex. This is because
complicated tasks and large models need increasing amounts of data to be able to compute
good training updates and gradients. Generative methods, gradient learning methods, and
functional gradients all provide opportunities for computing better learning updates with
less data.

In addition the theoretical analysis of deep learning methods will be necessary to un-
derstand and guarantee the safety, security, and stability of these methods as they are
applied in increasingly sensitive areas. Failure to understand the inner workings of the
method may result in accidents and undesired outcomes. Therefore governments and or-
ganizations should also fund research for theoretical foundations of these methods; not
only exciting applications.

46

Chapter 6
Conclusion

We have presented some of the the theory and ongoing research regarding generative ad-
versarial networks. This has been a wide ranging and extensive study which shows the
amount of challenges and opportunities given by GAN.

We have conducted experiments to demonstrate the power and potential applicability
of GANs. There were however many experiments that we did not have the time to con-
duct. Training GAN is not straight forward even with many modern libraries and publicly
available open source implementations of most papers about GAN. There is no free lunch
in machine learning and it will always be necessary to understand the technique deeply to
be able to master it.

The map generation experiment demonstrates that even complicated data relationships
can be modeled with a GAN. Although this particular implementation is not suitable for
any practical application. To actually be able to use such an automated technique to draw
maps we would need to produce vector map data not images of maps. The map data needs
to be scale invariant, contain information about what the objects in the map are, and have a
clear definition of the boundaries of different objects. That is why we also investigated the
possibility of using GAN for object detection which could be used to produce map data.
There was however not enough time do start doing experiments on this.

47

48

Bibliography

Adler, J., Lunz, S., 2018. Banach wasserstein gan. In: Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (Eds.), Advances in Neural Information
Processing Systems 31. Curran Associates, Inc., pp. 6754–6763.
URL http://papers.nips.cc/paper/7909-banach-wasserstein-
gan.pdf

Arjovsky, M., Bottou, L., 2017. Towards principled methods for training generative adver-
sarial networks. CoRR abs/1701.04862.

Arjovsky, M., Chintala, S., Bottou, L., 2017. Wasserstein gan. arXiv preprint
arXiv:1701.07875.

Barber, D., Agakov, F. V., 2003. The IM Algorithm: A Variational Approach to Informa-
tion Maximization.

Chen, T., Fox, E. B., Guestrin, C., Feb 2014. Stochastic Gradient Hamiltonian Monte
Carlo. arXiv e-prints, arXiv:1402.4102.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P., 2016. Infogan:
Interpretable representation learning by information maximizing generative adversarial
nets. CoRR abs/1606.03657.
URL http://arxiv.org/abs/1606.03657

Chen, Y., Fan, H., Xu, B., Yan, Z., Kalantidis, Y., Rohrbach, M., Yan, S., Feng, J., 2019.
Drop an octave: Reducing spatial redundancy in convolutional neural networks with
octave convolution.

Cover, T. M., Thomas, J. A., 2006. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, New York, NY, USA.

Fong, B., Spivak, D. I., Tuyéras, R., Nov 2017. Backprop as Functor: A compositional
perspective on supervised learning. arXiv e-prints, arXiv:1711.10455.

Gavranovi, B., 2019. Graph from The GAN Zoo.
URL https://github.com/hindupuravinash/the-gan-zoo

49

http://papers.nips.cc/paper/7909-banach-wasserstein-gan.pdf
http://papers.nips.cc/paper/7909-banach-wasserstein-gan.pdf
http://arxiv.org/abs/1606.03657
https://github.com/hindupuravinash/the-gan-zoo

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press, http://
www.deeplearningbook.org.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y., 2014. Generative adversarial nets. In: Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N. D., Weinberger, K. Q. (Eds.), Advances in
Neural Information Processing Systems 27. Curran Associates, Inc., p. 2672–2680.
URL http://papers.nips.cc/paper/5423-generative-
adversarial-nets.pdf

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A. C., 2017. Improved
training of wasserstein gans. In: Advances in Neural Information Processing Systems.
pp. 5767–5777.

He, H., Wang, H., Lee, G.-H., Tian, Y., 2018. ProbGAN: Towards Probabilistic GAN with
Theoretical Guarantees.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S., 2017. Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In: Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R.
(Eds.), Advances in Neural Information Processing Systems 30. Curran Associates,
Inc., pp. 6626–6637.
URL http://papers.nips.cc/paper/7240-gans-trained-by-
a-two-time-scale-update-rule-converge-to-a-local-nash-
equilibrium.pdf

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. R., 2012.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580.

Hong, Y., Hwang, U., Yoo, J., Yoon, S., Feb 2019. How generative adversarial networks
and their variants work. ACM Computing Surveys 52 (1), 1–43.
URL http://dx.doi.org/10.1145/3301282

Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by
reducing internal covariate shift.

Isola, P., Zhu, J.-Y., Zhou, T., Efros, A. A., 2017. Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 1125–1134.

Karras, T., Laine, S., Aila, T., 2018. A style-based generator architecture for generative
adversarial networks.

Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O., Nov 2017. Are GANs
Created Equal? A Large-Scale Study. arXiv e-prints, arXiv:1711.10337.

Luenberger, D. G., 2010. Optimization by vector space methods. Wiley.

50

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium.pdf
http://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium.pdf
http://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium.pdf
http://dx.doi.org/10.1145/3301282

MacLane, S., 1971. Categories for the Working Mathematician. Springer-Verlag, New
York, graduate Texts in Mathematics, Vol. 5.

Maschler, M., Solan, E., Hellman, Z., Borns, M., Zamir, S., 2018. Game theory. Cam-
bridge University Press.

Milgrom, P., Segal, I., 2002. ENVELOPE THEOREMS FOR ARBITRARY CHOICE
SETS.

Mirza, M., Osindero, S., 2014. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784.

Nitanda, A., Suzuki, T., 2018. Gradient Layer: Enhancing the Convergence of Adversarial
Training for Generative Models.

Nogues, F. C., Huie, A., Dasgupta, S., 2018. Object detection using domain randomization
and generative adversarial refinement of synthetic images.

Qin, Y., Mitra, N., Wonka, P., 2018. How does lipschitz regularization influence gan train-
ing?

Ronneberger, O., P.Fischer, Brox, T., 2015. U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical Image Computing and Computer-Assisted
Intervention (MICCAI). Vol. 9351 of LNCS. Springer, pp. 234–241, (available on
arXiv:1505.04597 [cs.CV]).
URL http://lmb.informatik.uni-freiburg.de/Publications/
2015/RFB15a

Saatci, Y., Wilson, A. G., 2017. Bayesian gan. In: Advances in neural information pro-
cessing systems. pp. 3622–3631.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X., 2016.
Improved techniques for training gans. In: Advances in neural information processing
systems. pp. 2234–2242.

Sørby, A. C., 2019. On methods for analyzing and improving deep learning.

Villani, C., 2008. Optimal Transport: Old and New. Grundlehren der mathematischen
Wissenschaften. Springer Berlin Heidelberg.
URL https://books.google.no/books?id=hV8o5R7_5tkC

Zhu, J.-Y., Park, T., Isola, P., Efros, A. A., 2017. Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks.

51

http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
https://books.google.no/books?id=hV8o5R7_5tkC

52

Appendix

A Transfer learning

Transfer learning is about training on a task that is somewhat similar to the original task
and then using the information obtained in that task to solve a more difficult task. This is
for example useful if you have too little data to properly learn a task.

A task is defined as a supervised learning problem, T = (X,Y), where the point is to
learn a function, f , such that f(X) ≈ Y . Here X and Y are random variables, but we can
also consider them as datasets. Usually you would minimize a loss function, L(f,X, Y),
which is a measure of how close the function is to the appropriate form. However this is
very dependent on the amount and quality of the data you have.

If you have a task T 1 that is easy to learn and another task T 2 that is difficult then
transfer learning can leverage T 1 to improve T 2.

We are assuming that the data comes from a distribution which is similar to the one of
the initial task. That way only small adjustments are needed to convert the problem into
the domain we want to learn.

With neural networks transfer learning usually consists of training a network on a
supervised task where we already have a good labeled dataset. After training we can reuse
those weights in a new neural network. We keep the old layers and attach new layers that
are going to tackle the specifics of the new task. We do not update the weights of the old
layers during training to prevent them from being destroyed from noisy training. This is
called freezing. When the model starts to perform well we can start to update these layers
as well to fine tune the model.

B Information theory

In this section we introduce basic concepts from information theory which we will need
to explain the theory. Information theory is a theoretical framework for understanding
information content and processing in a system mostly relying on the concept of entropy.
A general reference to the subject is the book Elements of information theory by Cover
and Thomas (2006). Entropy is a measure of the information content in a random variable
or similarly its distribution, say X ∼ P (x), and can be related to the expected number of
bits it would require to represent it

H(X) = −EX [log(P (X))] ≥ 0. (1)

53

Entropy can be considered as an alternative view of probability which ranges from 0 to∞.
As with probability there is a conditional entropy

H(X|Y) = −EX [log(P (X|Y))|Y]. (2)

Then there is the cross entropy where we examine the description of one random variable
over the distribution of another

H(X,Y) = −EX [log(P (Y))]. (3)

Mutual information is a measure of the information a given random X ∼ P variable
has about another variable Y ∼ Q.

I(X;Y) = H(X)−H(X|Y) (4)

We have the Kullback-Leibler (KL) divergence also called the relative entropy where

DKL(P‖Q) = H(P,Q)−H(P) = EX∼P
[
log

(
P (X)

Q(X)

)]
≥ 0 (5)

which measures the difference of a distribution Q to a reference distribution P . As you
may note the KL-divergence is not symmetrical. There are several ways to make this
divergence symmetrical and one of them is the Jensen-Shannon (JS) divergence. It sums
over the KL-divergence for each distribution to a mean distribution

DJS(P‖Q) =
1

2
DKL(P‖M) +

1

2
DKL(Q‖M). (6)

The mean distribution is defined as M(X) = P (X)+Q(X)
2 .

Note that the JS-divergence and KL-divergence is a special case of the f -divergence

Df (P‖Q) =

∫
f

(
p(x)

q(x)

)
q(x)dx (7)

where p and q are the probability densities of P and Q respectively. The function f can be
any convex function where f(1) = 0. The JS and KL-divergence corresponds to a choice
of f . For KL-divergence f(t) = t log t and JS-divergence f(t) = t log t−(t+1) log(t+1).

54

