
Detecting Neuronal Activity with
Lasso Penalized Logistic
Regression

June 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Dag Johnsrud Kristiansen

2019
Dag Johnsrud Kristiansen

NT
NU

N
or

w
eg

ia
n 

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n 
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f M

at
he

m
at

ic
al

 S
ci

en
ce

s





Detecting Neuronal Activity with Lasso
Penalized Logistic Regression

Dag Johnsrud Kristiansen

Master of Science in Physics and Mathematics
Submission date: June 2019
Supervisor: Mette Langaas, IMF
Co-supervisor: Benjamin Adric Dunn, IMF

Norwegian University of Science and Technology
Department of Mathematical Sciences





Summary

The brain is the most complex organ in animals, constantly transferring signals
between its cellular components, also known as neurons. We will in this thesis
investigate how such information flows, and try to establish certain connections.
To investigate the matter, we fit a lasso penalized logistic regression model to re-
late the activity of one single neuron to all other neurons (that are included in the
data set). It is known that a neurons activity is both dependent on its own his-
toric activity – as well as the activity of other surrounding neurons. As such, our
regression model will relate the activity of one neuron to its previous activity, as
well as the previous activity of all nearby neurons using a special set of cosine
bases. To estimate the underlying networks, we use both regression parameters
regularized using different values for the hyperparameter, as well as family-wise
error-rate corrected p-values.

The analyses are based on data from an experiment with cellular recordings of
12 neurons, where the lasso penalized logistic regression was fit using each neuron
as response. We include theory on the formulation of a generalized linear model,
specifically focusing on binomial variables, and how to extend it to an additive
model. Regularization is also thoroughly explained, and how parameter estimates
in the lasso is performed, before presenting theory regarding multiple hypothesis
testing, focusing on the family-wise error rate and how this may be controlled at a
pre-specified level through multi-sample splitting.

i



ii



Preface

This thesis constitutes the course TMA4900: Master’s in Statistics, offered at
the Department of Mathematical Sciences at the Norwegian University of Science
and Technology (NTNU). This completes my degree from the study program Mas-
ter of Science in Applied Physics and Mathematics, where I specialized in Indus-
trial Mathematics. The work in this thesis was done through the spring semester
of 2019. In advance, a project thesis was also completed during the fall semester
of 2018, with focus of identifying neuronal connections. This gave a warm-up for
the work further carried out in this thesis, as I had already encountered some neu-
roscientific concepts. The topic of this thesis is to detect neuronal activity with a
lasso penalized logistic regression.

I would like to direct a huge thanks to my supervisor Mette Langaas at the
Department of Mathematical Sciences for her guidance, motivation and great help
during the process of writing this thesis – I am sure it would not be what it is
without you. I would also like to thank my co-supervisor Benjamin Adric Dunn to
happily answer all of the questions I had related to neuroscience. Lastly, I would
like to thank my parents for all the motivation and guidance they have given me
throughout my academic career. You always knew what to say to keep me going
when facing what seemed like an unattainable problem, and for that I am forever
grateful.

Dag Johnsrud Kristiansen
Trondheim, Norway
June, 2019

iii



iv



Table of Contents

Summary i

Preface iii

I Background and theory 1

1 Introduction 3

1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Neuroscience 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The nervous system . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Brain structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 The cellular components of the nervous system . . . . . . 7

2.4 Action potential and neuronal connections . . . . . . . . . . . . . 8

3 Regression 13

3.1 The GLM-framework . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Example: Poisson distribution . . . . . . . . . . . . . . . 15

3.1.2 Example: Exponential distribution . . . . . . . . . . . . . 15

v



3.2 Binary variables – logistic regression . . . . . . . . . . . . . . . . 15

3.2.1 The concept of odds . . . . . . . . . . . . . . . . . . . . 17

3.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Introducing the log-likelihood function . . . . . . . . . . 19

3.4 Additive models . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Basis functions . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.2 Cosine bases . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.1 Wald test . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Regularization 27

4.1 Restating the optimization problem . . . . . . . . . . . . . . . . . 27

4.2 The lasso estimator . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Lagrangian form – duality . . . . . . . . . . . . . . . . . 30

4.3 Variable selection property . . . . . . . . . . . . . . . . . . . . . 30

4.4 Karush-Kuhn-Tucker (KKT) conditions . . . . . . . . . . . . . . 32

4.5 Coordinate descent . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.1 Soft thresholding . . . . . . . . . . . . . . . . . . . . . . 33

4.5.2 Cyclical coordinate descent . . . . . . . . . . . . . . . . 34

4.6 Lasso regularized logistic regression . . . . . . . . . . . . . . . . 36

4.6.1 Cross-validation . . . . . . . . . . . . . . . . . . . . . . 37

5 Multiple hypothesis testing 39

5.1 Family-wise error rate (FWER) . . . . . . . . . . . . . . . . . . . 40

5.1.1 Bonferroni’s method . . . . . . . . . . . . . . . . . . . . 40

5.2 Multi-sample splitting . . . . . . . . . . . . . . . . . . . . . . . . 41

II Analysis 43

6 Data analysis 45

6.1 The dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vi



6.1.1 Experiment 589 . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Regression model . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3 A network of neurons . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3.1 Significant effects . . . . . . . . . . . . . . . . . . . . . . 53

6.3.2 Network of connections between the 12 neurons and MUA
from experiment 589 . . . . . . . . . . . . . . . . . . . . 55

7 Discussion and conclusion 61

7.1 Comparison with ground truth . . . . . . . . . . . . . . . . . . . 61

7.2 The effect of choosing λ . . . . . . . . . . . . . . . . . . . . . . 62

7.3 Change the multi-sample splitting algorithm . . . . . . . . . . . . 63

7.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography 67

Appendix A R code 69

A.1 Cosine bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.2 Model matrix and lasso penalized regression . . . . . . . . . . . . 71

A.3 Multi-sample splitting . . . . . . . . . . . . . . . . . . . . . . . . 76

vii



viii



Part I

Background and theory

1





Chapter 1
Introduction

We will begin this chapter with a problem description, explaining why the work in
this thesis is interesting, both from a statistical and neuroscientific point of view.

1.1 Problem description

In this project we focus on analyzing functional connectivity for neurons in the
brains of mice. Previous studies have shown that whenever one neuron is active, it
may alter the way surrounding neurons behave, either in an inhibitory (less active)
or excitatory (more active) manner. As such, we know that neurons communicate,
and we will through this thesis try to find which neurons communicate for a given
experiment. The main goal of our analysis is therefore to estimate the underlying
network of neurons for said experiment. This can be done by modelling the activity
of one neuron j using the remaining k 6= j neurons as explanatory variables in the
experiment, and systematically alternate the modelled focus neuron.

The modelling tool is statistical regression, more specifically a generalized lin-
ear model (GLM), including a lasso penalty to regularize coefficients. Following
the work of Pillow et al. (2008), this regression model will relate the activity of
neuron j to all neurons k 6= j using a special set of cosine bases. These were
developed as it is known that the activity of neuron j at time tb is dependent on
neuron j’s own past activity at time ta, with ta < tb. The regression models con-
sidered in this thesis will therefore relate activity of neuron j both with it’s own
historic activity, as well as the so called coupling effects of neurons k 6= j, as
the nearby neurons k 6= j at time ta may also affect the behaviour of neuron j at

3



time tb, also for ta < tb. With this is mind, we aim to fit lasso regularized logstic
regression models.

To assess our underlying network of neurons, we will search for significant
connections between neurons by introducing p-values. Statistically, this is inter-
esting as it is rather difficult to construct p-values from a lasso model, as the dis-
tribution of estimated parameters remain unknown. To counter this, we use the
concept of multi-sample splitting, which is proven by Dezeure et al. (2015) to
control the family-wise error-rate (FWER) at a pre-specified level.

1.2 Outline

The continuation of this thesis will include the following. In Chapter 2 we will
present key neuroscientific concepts, particularly how every neuron fires action
potentials which may be used to construct spike trains. Chapter 3 and 5 will intro-
duce theory regarding concepts that will be used in our analysis, including the gen-
eralized linear model, additive models and multiple hypothesis testing. In Chapter
4 we derive the lasso regularized logistic regression, before presenting our anal-
ysis in Chapter 6. Lastly, in Chapter 7 we present some discussion of the results
from our data analysis, and a sketch for how one could continue this work, before
concluding the thesis as a whole.

4



Chapter 2
Neuroscience

2.1 Introduction

This chapter will give a brief introduction to key concepts in neuroscience, specif-
ically regarding the nervous system and action potentials. In Section 2.2 we focus
on the nervous system as a whole, before continuing to gain insight in the general
structure of a brain and its cellular components in Section 2.3, specifically the neu-
ron. We end the chapter by explaining functions of the neuron, what it means for
the neuron to be active, and how it may communicate with nearby neurons.

2.2 The nervous system

Most animals have a nervous system that controls the body through a continuous
transmission of chemical and electrical signals between different parts of the body.
In vertebrates, this nervous system consists of two main components, namely the
Peripheral Nervous System (PNS) and the Central Nervous System (CNS). These
two may be seen as subdivisions of the nervous system, where the central ner-
vous system includes the brain and spinal cord, and the peripheral system contains
everything else, that is, nerves and ganglia.

Even though they both are part of the nervous system, their tasks differ greatly.
However, these two systems complement each other in a very organised and rigid
manner. The peripheral nervous system connects the central nervous system to
the organs and limbs of the body, while the central nervous system is the one to
process the given information, and coordinates how the animal should react upon

5



changes.

While both of these systems are of great relevance, there is no secret that there
is one part of the central nervous system that stands out – the brain. In neuro-
science, the brain is often the matter of discussion, and the data set on which we
will do our statistical analysis is the neuronal activity in the brain of mice. We will
now give a brief summary of how the brain is structured and what it consists of.

2.3 Brain structure

In most animals, the brain is the most complex organ that may be found in the
body. Furthermore, there are often similarities between brain structure among
different animals, for example between humans and rodents. As rodents are the
model organism for the experiment on which we are to do our statistical analysis,
an overview of the brain structure and its main components will be given.

For humans, it is common to divide the brain dependent on location and in
which order the part was developed. As such, one may speak of the forebrain
(telencephalon and diencephalon), the midbrain (mesencephalon) and the hind-
brain (metencephalon and myencephalon). A graphic view is seen in Figure 2.1.
The order from which these divisions arise is that the hindbrain is the first to de-

Figure (2.1) A visual representation of the three mentioned parts of the brain, where the
pink area represents the forebrain, the cyan area represents the midbrain and the purple
area represents the hindbrain.

Source: https://commons.wikimedia.org/wiki/File:Brain_Anatomy_-_
Mid-Fore-HindBrain.png , licensed under CC BY-SA 4.0

6

https://commons.wikimedia.org/wiki/File:Brain_Anatomy_-_Mid-Fore-HindBrain.png
https://commons.wikimedia.org/wiki/File:Brain_Anatomy_-_Mid-Fore-HindBrain.png


velop, followed by the midbrain and lastly the forebrain. To delve even further,
it should be mentioned that these are all successors from more primitive brain re-
gions, where the hindbrain forms from the rhombencephalon, and the forebrain
forms from the prosencephalon. The rhombencephalon (hindbrain) is what gives
rise to the adult cerebellum, pons and adult medulla, whereas the prosencephalon
(forebrain) is what gives rise to the rudiments of the cerebral cortex, hippocampus,
thalamus and the basal forebrain, among others. For even more information about
what these are and their function see Purves et al. (2018), Chapter 22.

There are often similarities when it comes to brains in different species, some
are more similar than others. When it comes to our model organism, it is known
that rodents in many ways are genetically similar to humans, though they also dif-
fer – both humans and rodents are mammals. What is very different is how our
model organism has whiskers, which are as important for them as eyes are for hu-
mans. This is one of the many things that make their brain different than the human
brain. Other than that, the shape is also different, mainly due to different shapes of
their head compared to human head – and the human brain is significantly larger.
Another curious difference is how the human brain is folded, whereas our model
organism’s brain is not. What the folding does for the human brain is to make a
greater surface than an unfolded one. A human brain will thus function at a higher
cognitive level than our model organism, both due to its size as well as the fold-
ing. A last interesting matter is how the brain develops in accordance with what
is distinctive for each species. For humans, as an example, one may observe the
language-part of the brain to be larger than most other animals, as we are depen-
dant on a well developed language system.

Rodents are often used as a model organism as it found that they are advanta-
geous over other model organisms. A few of the reasons why includes the fact that
their genome is closely related to the human one (approximately 99%), there has
been developed a decent molecular toolbox, and the fact that the animals require
little space makes the use of rodents very cost efficient.

2.3.1 The cellular components of the nervous system

As neurons and glial cells have been mentioned, a brief explanation of what these
are would be in order. Through the histological studies of Cajal, Golgi, and a host
of successors, a consensus that the cells of the nervous system can be divided into
two broad categories was made (Purves et al., 2018). These two types are com-
monly known as nerve cells (neurons) and supporting glial cells (neuroglia/glia).
These are the main components in which the different parts of the body communi-
cate with each other.

7



Nerve cells specialises in long-range communication using electrical signalling.
This is in contrast to the glial cells, as they support electrical signalling, rather than
generating them. Although this is an important function of the glial cells, perhaps
even more important is how the glial cells may contribute to repair nerves that
have been damaged. Known examples includes how glia can repair brain regions
by acting as stem cells.

2.4 Action potential and neuronal connections

The membrane potential is the electric potential which arises when ions of opposite
sign are separated across the plasma membrane, that is, the difference in electrical
charge between the inside and outside of the cell. This means that the membrane
potential equals the potential inside the cell minus the potential outside the cell.
Any neuron has what is called the resting potential or resting state, which is the
typical difference between the inner and outer of the cell. It has been found that
most neurons have a resting potential between -60mV and -70mV.

However, a neuron is not always at rest. Neurons may be stimulated, which
will give a change in the membrane potential. The stimuli provided are often
found to be signals from other neurons, and such signals may be either inhibitory
or excitatory. An inhibitory signal will decrease the membrane potential, and thus,
in some sense, prevent a neuron from firing as the threshold potential is never
reached. An excitatory signal does the exact opposite, and increases the membrane
potential, so that the neuron which receives the signal is more likely to reach the
threshold potential and fire. An action potential is therefore initiated when the
change in membrane potential becomes significant, and reaches what is called the
threshold potential. However, it is important to note that the action potential will
only initiate if the change in membrane potential is large enough, otherwise the
neuron will simply fall back to its resting potential.

The action potential is a primary electrical signal generated by excitable cells,
and is important for neurons in the sense that they need fast and reliable signalling.
It should also be mentioned that action potentials are important for muscle fibres as
they initiate muscle fibre contraction. Briefly summarized, the action potential may
thus be described as a transient change in the membrane potential from negative to
positive. The nomenclature of an action potential may be seen in Figure 2.2.

It is action potentials like these that may give rise to what is known as spike
trains. A spike train is a sequence of recorded times for when a neuron fired using
an action potential. For this thesis, we will use a discretization of time, and spike
trains will therefore be represented using 0/1-vectors. Such a vector will therefore,

8



Action
potential

V
ol

ta
g
e 

(m
V
)

D
ep

ol
ar

iz
at

io
n R

ep
olarization

Threshold

Stimulus

Failed
initiations

Resting state

Refractory
period

+40

0

-55

-70

0 1 2 3 4 5
Time (ms)

Figure (2.2) An illustrative figure of the different stages of a membrane potential, which
(if it reaches the threshold) ultimately leads to an action potential (peak). The vertical axis
shows the value of the membrane potential.

Source: https://commons.wikimedia.org/wiki/File:Action_potential.svg
, licensed under CC BY-SA 3.0

as an example, be of the form [0 0 0 1 0 1 0 0 0 0 0 1]. Each number represents
a time-stamp in milliseconds, and as this vector contains 12 numbers, this vector
represents the neuronal activity for a neuron during 12 consecutive milliseconds.
Examples of different spike trains and their respective 0/1-vectors may be seen in
Figure 2.3.

As neurons exchange signals, there exists connections between neurons, and
that these connections may reveal how information flows. As an example, consider
two neurons, say n1 and n2. These may signal to one another using different forms
of connectivity. If n1 is to send a signal to n2, it is not always the case that n1’s
signal travels directly from its axon to neuron n2’s dendrite. It is often the case
that the signal n1 emits travels through a handful of other neurons before arriving
at neuron n2. The different forms of connectivity are therefore often represented
using the terms common connection, direct connection and indirect connection,
and the use of these thus say something about the time it takes from when a signal
is sent to when it is received. This time is often called the time lag. A conceptual
plot of the connectivity effect may be seen in Figure 2.4.

9

https://commons.wikimedia.org/wiki/File:Action_potential.svg


Neuron 1

Neuron 2
.
.
.

Neuron N

01001010000000100000000000000101010000010000000000100000100

00000000100000000000000000000000100000000000000000000001000

010100010100000100000100000001010000100000001000001000000010

Figure (2.3) Three realisations of what a spike train could look like. The horizontal axis
represents time, and the vertical lines represents at which times a neuron was active, that
is, when a neuron spiked. For each neuron we have also included how the 0/1 vector would
be for each neuron.

common connection We refer to a common connection if the time lag is in
the interval from 0 to 3 ms. This means that the almost simultaneous firing
of two neurons, say n1 and n2, may be explained by a third neuron, n3,
which made them both fire at almost the same time.

direct connection We refer to a direct connection if the time lag is in the
time interval from 3 ms to 15 ms. This may be understood as direct path
between two neurons, say n1 and n2. The signal that originated in neuron
n1 thus directly travelled to neuron n2.

indirect connection We refer to a indirect connection if the time lag is in
the interval from 15ms to 100 ms. This is commonly understood as a signal
that may originate in neuron n1, and travels through one ore more neurons,
before arriving in neuron n2. Notation was based on Fawad (2017), page 4
and 5.

10



Directed connec�on from neuron A to neuron B

3

15

lag (ms)

Firing rate

for neuron B Common

Direct

Indirect

Figure (2.4) A conceptual plot of a so-called connectivity effect. The effect in the in-
tervals 0 ms to 3 ms, 3 to 15 ms and 15 to 100ms is attributed to a common, direct and
indirect connection from neuron A to neuron B, respectively. The y-axis is the so called
firing rate of neuron B, which represents how often neuron B fires. The baseline represents
neuron B’s average background firing rate. The x-axis is the time since neuron A fired.
The image is based on the one found on page 5 in Fawad (2017).

11



12



Chapter 3
Regression

In this chapter we introduce the generalized linear model (GLM) and it’s frame-
work, and how it is shaped in the case of a binary variable. This forms the logistic
regression, and we continue to explain the concept of odds, and how one could
interpret changes of the parameters in such a model. We also introduce additive
models and basis functions, which is used by Pillow et al. (2008) to create the
cosine bases. We end the chapter with theory of general hypothesis testing.

3.1 The GLM-framework

A generalized linear model (GLM) is an expansion of the ordinary linear regres-
sion, allowing the response variables to follow distributions other than the normal
distribution. In general, the GLM generalizes the linear regression using three
elements,

1. a random component, meaning a response variable with a probability distri-
bution originating from the exponential family,

2. a systematic component, meaning a linear predictor η, and

3. a link function g which allows the mean of the probability distribution to be
connected to the linear predictor. An alternative approach includes using a
response function h, where g = h−1.

By using these elements, we can build a unified framework where the maximum
likelihood estimation can be written on a generalized form.

13



In linear regression, we observe n outcomes of a random response variable Yi,
denoted y = (y1, y2, . . . , yn). By assuming Yi has a probability function following
the form of a univariate exponential family,

Yi ∼ fYi(yi; θi, φ),

the probability distribution function can be expressed as (McCullagh and Nelder,
1989, p. 28)

fYi(yi; θi, φ) = exp

(
yiθi − b(θ)
a(φ)

+ c(yi, φ)

)
, (3.1)

where a(φ), b(θi) and c(yi, φ) are known functions. In most cases, θi and φ can
be considered as the location and scale parameters of the family. Specifically, θi
is called the canonical parameter, and is what is of interest to us, whereas φ is
called the nuisance parameter. Furthermore, it can be shown that there exists a link
between the mean and variance of the distribution and the known functions a and
b,

µi = E(Yi) = b′(θi)

Var(Yi) = b′′(θi)a(φ).
(3.2)

The linear predictor can be expressed as

η = Xβ, (3.3)

where η = (η1, η2, . . . , ηn)T , β is a p × 1 vector of unknown parameters, and X
is an n × p design matrix with rows xTi , and p = k + 1. p is thus comprised of
k predictors and one intercept term. In multiple linear regression there exists two
ways for estimating the unknown parameters β; maximum likelihood and least
squares. In a normal linear regression model, these will give the same estimate for
β, but for non-normal responses, the maximum likelihood estimation (MLE) is the
favorable option.

At last, the link function g links the random and systematic component,

ηi = g(µi). (3.4)

When using a distribution function having canonical parameter θi, the canonical
link function is the function expressing θi in terms of µi, that is,

θi = g(µi). (3.5)

While other choices for the link function exists, the canonical is preferred because
then some of the results for the GLM are simplified, and the log-likelihood is
concave.

14



3.1.1 Example: Poisson distribution

Consider the case where the random variable follows a Poisson process, with the
following probability mass function

f(yi;µi) =
exp(−µi)µyii

yi!
,

for µi > 0 and yi = 0, 1, 2, . . . . When rewritten to the form

f(yi;µi) = exp {yi logµi − µi − log(yi!)} ,

one may observe that θi = logµi, b(θi) = exp(θi) and φ = 1, as well as the
normalizing function c(yi, φ) = 1/(log(y!)). As such, we may then conclude that
the Poisson distribution is an exponential family.

3.1.2 Example: Exponential distribution

Assume Y1, Y2, . . . , Yn are independent, random variables following an exponen-
tial distribution, with probability density function

f(yi;αi) = αi exp(−αiyi),

for yi > 0, αi > 0 and i = 1, 2, . . . , n. When rewritten, it takes the form

f(yi;αi) = exp
(
θiyi − ln(−1/θi)

)
,

and we observe that φ = 1, c(yi, φ) = 0, θi = −αi and b(θi) = − ln(αi) =
− ln(−θi). As such, we conclude that the exponential distribution is an exponen-
tial family.

3.2 Binary variables – logistic regression

Consider a binary random variable (Dobson and Barnett, 2008, p. 123),

Z =

{
1, if the outcome is a success,
0, if the outcome is a failure,

with probabilities P (Z = 1) = π and P (Z = 0) = 1 − π, which is the same as
the Bernoulli distribution, B(π). In the case where we have m such independent
random variables, Z1, Z2, . . . , Zm, and we assume all πl equal, we may define

Y =
m∑
l=1

Zl,

15



where Y represents the number of successes in m trials. The random variable
Y will thus have a binomial distribution, Y ∼ Bin(m,π), with probability mass
function

P (Y = y) =

(
m

y

)
πy(1− π)m−y, y = 0, 1, . . . ,m.

Let us now consider the case of n such independent random variables, Y1, Y2, . . . , Yn.
These are now distributed according to the binomial distribution, with parameters
ni and πi, Yi ∼ Bin(ni, πi). The distribution may then be rewritten on exponential
form,

fYi(yi : θi, φ) =

(
ni
yi

)
πi
yi(1− πi)ni−yi

= exp

[
yi log

(
πi

1− πi

)
+ ni log(1− πi) + log

(
ni
yi

)]
.

(3.6)

By carefully comparing expression (3.1) and (3.6), one may observe that

θi = log

(
πi

1− πi

)
a(φ) = φ = 1, and

b(θi) = ni(θi + log(1 + exp(−θi))),

where we have used that
πi =

1

1 + exp(−θi)
. (3.7)

Using the equations in (3.2), we may thus find the corresponding mean and vari-
ance,

µi = E(Yi) = b′(θi) =
ni

1 + exp(−θi)
= niπi

Var(Yi) = b′′(θi) =
ni

(1 + exp(−θi))2
= niπi(1− πi).

As may be observed from the expected value, we have a term ni included, along-
side the probability πi. To make use of the result from Equation (3.5) to find the
canonical link function, we thus have to get rid of the extra term. According to
Fahrmeir et al. (2013, p. 277), the original distribution may be divided by ni,
which results in a scaled binomial distribution,

Ȳi =
Yi
ni
∼ Bin(ni, πi)

ni
.

16



While this distribution no longer follows the form of an exponential family, the
desired expected value is obtained,

µ̄i = E(Ȳi) = πi.

Using the new, scaled binomial distribution, we may use the results of Equation
(3.5), and the canonical link function becomes

g(µi) = log

(
πi

1− πi

)
,

which is referred to as the logit-function. By combining Equation (3.3) and (3.4),
the regression model for binary data becomes

logit(πi) = ηi = xTi β.

3.2.1 The concept of odds

It is common to use the odds ratio for interpretation of the logit model. This
comes from a non-linear change in the probability πi when the value for a covariate
changes from xi1 to xi1 + 1.

As such, we introduce the concept of odds. The odds ratio is defined

P (Yi = 1)

P (Yi = 0)
=

πi
1− πi

,

and represents a multiplicative model following

πi
1− πi

=
P (Yi = 1)

P (Yi = 0)
=

exp(ηi)
1+exp(ηi)

1− exp(ηi)
1+exp(ηi)

= exp(ηi) = exp(β0 + β1xi1 + · · ·+ βkxik)

= exp(β0) · exp(β1xi1) . . . exp(βkxik),

when considering a logit-model of the form

log

(
πi

1− πi

)
= β0 + β1xi1 + · · ·+ βkxik.

Consider the case where the covariate xi1 is increased by one, and all other covari-
ates are kept fixed. In such a case, the odds is multiplied by exp(β1),

P (Yi = 1|xi1 + 1)

P (Yi = 0|xi1 + 1)
= exp(β0) · exp(β1(xi1 + 1)) · · · exp(βkxik)

= exp(β0) · exp(β1xi1) exp(β1) · · · exp(βkxik)

=
P (Yi = 1|xi1)
P (Yi = 0|xi1)

· exp(β1).

17



As such, whenever a covariate, say xi1, increases by one, we have three cases for
a change in the odds dependent on the value for β1. These are

• A decrease in the odds when β1 < 0, because exp(β1) < 1,

• No change in the odds when β1 = 0, because exp(β1) = 1 and

• An increase in the odds when β1 > 0, because exp(β1) > 1.

While the odds is the general ratio used to interpret logit models, it is possible
to make a connection to the probability π, as it will behave similarly. In short, when
the odds increase, the probability π will also increase, and if the odds decrease,
the probability will decrease. However, the amount of change in the probability
remains unknown. This may be visualised.

Consider a linear predictor ηi = β0+β1xi1. If the covariate xi1 is increased by
one, as explained above, the odds will be multiplied by exp(β1), and thus increase
if β1 > 0, or decrease if β1 < 0. The linear predictor will change to

ηi = β0 + β1(xi1 + 1) = β0 + β1xi1 + β1.

This means that the term β1 will be added to the linear predictor, which will either
increase or decrease dependent on the value of β1. If one continues to plot the link
function against the probability, an interesting result is found. The function turns
out to be a strictly increasing function, meaning that when a value is added to ηi,
the value for πi must increase, and if the value for ηi decreases, so will the value
for πi. This is represented in Figure 3.1. This means that when the odds increases
the probability will follow and also increase, whereas when the odds decreases,
the probability will decrease. The change in probability is however dependent on
where one would be on the appurtenant curve.

3.3 Parameter estimation

As mentioned, the linear predictor from Equation (3.3) contains unknown param-
eters β. These may be estimated by maximizing the distributions corresponding
likelihood function, where the obtained estimates are called maximum likelihood
estimates (in short: MLEs), and are generally denoted β̂.

18



η i
=

0

η i
=

0 
+

 β
1

=
1

η i
=

0 
+

 β
1

=
−

1
Original probability

New probability, xi1 = xi1 + 1

New probability, xi1 = xi1 − 1

0.00

0.25

0.50

0.75

1.00

−2.5 0.0 2.5
ηi

π i
Example with β0 = − 60.7 and β1 = 34.3

Figure (3.1) The link function plotted against the probability using an example with
parameters β0 = −60.7 and β1 = 34.3. The original values for η and π are included
(ηi = 0, πi = 0.5), as well as the cases in which the odds increase (xi1 → xi1 + 1, β1 >
0, ηi = 1, πi = 0.729), and decrease (xi1 → xi1 − 1, β1 < 0, ηi = −1, πi = 0.27).

3.3.1 Introducing the log-likelihood function

For an exponential family of the form as expressed in Equation (3.1), the log-
likelihood function for a single observation yi is defined

logLi(θi, φ; yi) = log fYi(yi; θi, φ)

=
θiyi − b(θi)

a(φ)
+ c(yi, φ).

(3.8)

When considering a set of independent observations y = (y1, . . . , yn)T , the log-
likelihood takes the form

logL(θ, φ;y) =

n∑
i=1

logLi(yi; θi, φ). (3.9)

19



The fact that Equations (3.8) and (3.9) are functions of β is however not apparent.
This result comes from the fact that there exists a connection between θi and µi, as
expressed in (3.2). Furthermore, (3.3) links the linear predictor ηi and the unknown
parameters β.

Finally, a formal definition of the MLE β̂ may be expressed using the notation
from Dobson and Barnett (2008, p. 12). By letting Ω denote the set of all possible
values of the parameter vector β; Ω is called the parameter space. The maximum
likelihood estimator of β is the value β which maximizes the likelihood function,
that is,

L(β̂;y) ≥ L(β;y) for all β in Ω.

3.4 Additive models

As an extension to the linear predictor, we will now present additive models, as it is
not always the case that the effects of predictors are linear. As such, these models
are needed when a straight line is not an accurate description for the regression.

As mentioned, the linear predictor is linear in the coefficients β, which will be
the case for everything we are to consider,

ηi = xTi β = β0 + β1xi1 + β2xi2 + · · ·.

This model has assumed that the expected response is a linear combination of some
explanatory variables. However, the model may be extended to include higher
order polynomial terms, for example the square of an explanatory variable, as
linear effects are not always representable for realistic data. An additive model
may therefore be introduced according to the notation of Hastie et al. (2009, p.
295),

ηi = β0 + f1(x1) + f2(x2) + · · ·+ fk(xk),

where x1, . . . , xk is the predictors and the functions f1(), . . . , fk() are unspeci-
fied smooth functions. While it is possible to let the data model the shape of the
functions in a flexible manner, we will in this thesis limit ourselves to consider
predefined functions.

3.4.1 Basis functions

Once again, by letting x1, . . . , xk be our predictors, the additive model takes the
form

ηi = β0 +
k∑
j=1

fi(xi).

20



Each of the functions fj can furthermore be represented by Mj basis functions
(Hastie et al., 2009, p. 139),

fj(Xj) =
M∑
m=1

βjmhjm(xj),

where now hjm : R→ R represents them’th transformation of xj . This is a rather
elegant solution, as there are already existing examples of the basis functions hjm.
These includes

• hjm(xj) = xj , Mj = 1. This will simply recover our original linear model.

• hjm(xj) = log(xj) or hjm(xj) =
√
xj . These are nonlinear transforma-

tions of a single input.

• hjm(xj) = x2j . Such polynomial terms may be used to achieve higher order
Taylor expansions.

• hjm(xj) = I(Lm < xj < Um). These are basis functions dividing the
range of xj into non-overlapping regions, so that the resulting model has a
piecewise constant contribution from xj .

3.4.2 Cosine bases

As we will perform our analysis on a dataset from neuroscience, we will continue
to present the cosine basis functions. These basis functions are used to model
history effects and coupling effects – as we need to both look at what have already
happened as well as we consider how the spiking behaviour of other neurons affect
the neuron being modelled.

Starting off we present the necessary notation. Consider we are observing
neurons for a time interval of length [0, T ). The observed time interval could then
be divided into n different bins, where each bin would have length ∆t = T/n.
Furthermore, we introduce a count process N(t), which would count the amount
of spikes that had occurred up to some time t. With this notation, we would the
be able to count the number of spikes that had occurred in one specific bin, by
looking at the difference of our counting process from the start till the end of the
bin, ∆Ni = N(ti) − N(ti−1), where ti = ∆t · i. Furthermore, we let yj =
(y1j , y2j , . . . , ynj)

T denote the observations in the n bins. Now, consider a linear
predictor for the j’th neuron in bin ti. We will consider two choices of L, for the
history effects (j = k) and coupling effects (j 6= k) respectively. As such, the

21



linear predictor takes the form

ηj(ti) = α0j +

N∑
k=1

M∑
m=1

10∑
l=1

αjklbl(ti)yk(ti − tm), j = k, (3.10)

ηj(ti) = α0j +
N∑
k=1

M∑
m=1

4∑
l=1

αjklbl(ti)yk(ti − tm), j 6= k (3.11)

Here,N denotes the total number of neurons, whilstM ≥ 1 represents the number
of bins. Specifically, M represents how many steps we will go backwards in time,
and we will in this thesis let M = 161, and thus only consider the former 161
ms. The α’s represents the effect of any connection from neuron k 6= j on neuron
j, with α0j as the background firing probability of neuron j (Fawad, 2017, p.
51). To separate the coupling effects αjk from time window and resolution, we
introduced a set of basis functions bl(ti), which denotes the l’th basis function
which is evaluated at time ti. These are our cosine basis functions.

Pillow bases

The basis functions bl(ti) from equations (3.10) and (3.11) are basis functions
developed by Pillow et al. (2008, Methods), and are defined

bl(t) =

{
1
2 cos(a log(t+ c)− φl) + 1

2 , if a log(t+ c) ∈ [φl − π, φl + π]

0, otherwise.
(3.12)

In reality, these are raised cosine ”bumps”, where a and c are set constants, t rep-
resents the time after a spiking event, and the φl’s can be seen as the placement
of each bump. Furthermore, we will in this thesis work with Lhist = 10 (j = k
in Equation (3.10)) and Lconnect = 4 (j 6= k in Equation (3.11)), representing the
cosine bases for history effects and coupling effects respectively. The bases are
visually represented in the top of Figure 3.2. The bottom row shows an orthogo-
nalized version of the bases, and we will use the orthogonal version.

3.5 Hypothesis testing

A hypothesis test is a statistical method for testing an assumption or declaration
of properties based on one or more populations, where conclusions are generally
drawn from a random sample from the population. To be able to perform such a
hypothesis test, one has to state two hypotheses, the null hypothesis, often denoted

22



0 50 100 150

0.
0

0.
4

0.
8

History

lag (ms)

0 50 100 150

0.
0

0.
4

0.
8

Coupling

lag (ms)

0 50 100 150

−
0.

15
0.

05

History orthogonal

lag (ms)

0 50 100 150

−
0.

2
0.

0
0.

2

Coupling orthogonal

lag (ms)

Figure (3.2) Pillow bases for history and coupling effects. Top row are the original
bases, and the bottom row is the corresponding orthogonal bases.

H0, and the alternative hypothesis, denoted H1. With the hypotheses formulated,
a statistician would then move forth and look at H0, to examine whether we have
the foundation to reject it or not. What is important to note is that the null- and
alternative hypothesis has to be complementary.

When performing such a test, one needs a criterion to decide when to reject
the null hypothesis or not. To do this we introduce a test statistic, which is a
quantity derived from the sample. An important property of the test statistic is that
it allows for the p-value to be calculated as it has a sampling distribution under
the null hypothesis, which may be calculated either exactly, approximately or by
simulation. The use of such a test statistic may thus guide us towards a decision
to reject or not reject the null hypothesis and the test is now based on the chosen
statistic. However, at times the result may be flawed, as such a hypothesis test

23



is rarely free of error. There exists two errors one could make when performing
a hypothesis test, namely Type I error and Type II error. Briefly summarised, a
type I error occurs when one rejects H0 even though it is the truth, and a type II
error occurs when one does not reject H0 even though it is wrong.

We will in this section introduce a frequently used test statistic for assessing
the significance of regression parameters.

3.5.1 Wald test

Consider you are to test a hypothesis of the form

H0 : β = β0 vs. H1 : β 6= β0,

for a parameter vector β of dimension p × 1, and some fixed p × 1 values repre-
sented by β0. Such hypotheses can be tested using the Wald test statistic, defined
as

W = (β̂ − β0)T Ĉov(β̂)−1(β̂ − β0) (3.13)

based on notation from Dobson and Barnett (2008, p. 85). In (3.13), Ĉov(β̂)
represents the estimated p×p variance-covariance matrix of estimated parameters.
For large sample data, the asymptotic distribution of the Wald statistic is found to
approximately follow a chi-squared distribution,

W ∼ χ2(p),

where p represents the number of degrees of freedom. This comes from the fact
that the maximum likelihood estimator β̂ approximately follows a normal distri-
bution for large samples (Fahrmeir et al., 2013),

β̂ ≈ Np

(
β, I−1(β)

)
,

where the mean equals the true parameter value, and the variance-covariance ma-
trix is given by the inverse of the information matrix, defined by

I(β) = XTW(β)X. (3.14)

In (3.14), W is the N ×N matrix with diagonal elements,

wii =
1

Var(Yi)

(
∂µi
∂ηi

)2

,

24



with ∂µi/∂ηi evaluated at β. Knowing this, the variance-covariance matrix may
be approximately estimated using (3.14), as any consistent estimator may be used
without changing the asymptotic distribution of the chi-square distribution,

Cov
∧

(β̂) = I−1(β̂) = (XT ŴX)−1.

The Wald test statistic now becomes, according to a GLM framework,

W = (β̂ − β0)
TXT ŴX(β̂ − β0). (3.15)

We may thus use the Wald test statistic (3.15) to test the significance of different
parameters, for example to test the significance of β̂j for the hypothesisH0 : βj =
0 vs. H1 : βj 6= 0. Whenever the parameter to be tested is a scalar, a common
approach is to take the square root of the test statistic (Dobson and Barnett, 2008,
p. 78),

z =
β̂j√

Var(β̂j)
.

The z−statistic is known to follow a standard normal distribution when the data
sample is large.

25



26



Chapter 4
Regularization

In this chapter the GLM framework is extended to include a parameter for pe-
nalization, regularizing the logistic regression. Specifically, the lasso estimator is
introduced, and we continue to discuss certain properties of the lasso, and the re-
quirements for being able to solve such an optimization problem, including the
Karush-Kuhn-Tucker conditions. We end by presenting solutions for the lasso
problem.

4.1 Restating the optimization problem

One way of fitting a generalized linear model is based on utilizing the log-likelihood
function, and maximize it. Mathematically, this is formulated

β̂ = maximize
β

logL(β;y),

where β = (β0, β1, . . . , βp)
T and y = (y1, . . . , yN )T . Equivalently, based on the

theory of Hastie et al. (2015, p. 30), one may minimize the negative log-likelihood.
We will in addition add a penalty term to the negative log-likelihood,

β̂(λ) = minimize
β

{
− 1

N
L(β;y) + λ ‖β‖v

}
. (4.1)

In (4.1), λ ≥ 0 represents the regularization parameter, and ‖·‖v is the lv-norm,

‖β‖v =

p∑
j=1

|βj |v,

27



where v ≥ 0 is any real number. The reasoning for the scaling parameter N
equal to the sample size, is due the fact that it makes λ values comparable for
different sample sizes (Hastie et al., 2015, p. 9). As we typically do not penalize
the intercept β0, expression (4.1) may be restated as

β̂(λ) = minimize
β

{
− 1

N
logL(β0,β;y) + λ ‖β‖v

}
, (4.2)

where now β0 represents the intercept, while β includes the remaining p parame-
ters, that is β = (β1, . . . , βp).

4.2 The lasso estimator

In (3.3), we saw that it was common to state the regression problem as approxi-
mating the response variable using a linear combination of the predictors. When
estimating the regression weights β = (β1, . . . , βp), a common approach is using
the negative log likelihood.

However, there are alternative methods that could be considered as better, as of
two reasons. First of all, one may discuss the prediction accuracy of the maximum
likelihood estimation. Generally, this method is known to have low bias and large
variance. As such, we could improve the prediction accuracy by either shrinking
the regression coefficients, or even let some of them be set equal zero. This would
mean that the bias would be increased, while the variance would decrease. Such
a method may be better overall. Secondly, we may shed light on interpretation. If
there are many predictors included in the model, there would often exist a subset of
these predictors exhibiting the strongest effects, which we would like to identify.
As such, we now introduce the lasso estimator.

In the lasso, model parameters are constrained using the `1-norm, that is, when
v = 1 in (4.2). As the statistical properties of the lasso are more easily developed
in the context of the usual linear regression model, we furthermore let the likeli-
hood in (4.2) be from the normal distribution. As such, consider N independent
observations y = (y1, . . . , yN ), with yi being a realization of a random variable
Yi ∼ N (µi, σ

2). The log-likelihood follows to be

logL(β0,β, σ
2;y) = −N

2
log(2πσ2)− 1

2

N∑
i=1

(yi − β0 − xTi β)2/σ2.

By substituting this expression into (4.2), and consider σ2 to be fixed, the lasso es-
timator finds the solution (β̂0, β̂) to the optimization problem (Hastie et al., 2015,

28



p. 8)

minimize
β0,β

 1

2N

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2


subject to

p∑
j=1

|βj | ≤ t,

(4.3)

where the expression to be minimized is called the objective function, and the
constraint is called the constraint function. The optimization problem may also be
written using matrix notation,

minimize
β0,β

{
1

2N

∥∥y − β01−XTβ
∥∥2
2

}
subject to ‖β‖1 ≤ t.

(4.4)

The matrix notation is introduced by letting y = (y1, . . . , yN ) be a N -vector of
responses, 1 is simply a column vector of N ones, X is the N × p matrix where
the i’th row contains xTi ∈ Rp, and ‖·‖2 is the Euclidean norm on vectors.

By inspecting (4.3), it is easy to observe that a constraint term is introduced.
This constraint is favorable as it shrinks some coefficients to zero. More specifi-
cally, the bound t acts as a kind of budget. It sets a limit for how much the absolute
value of every parameter estimate may sum to, and thus shrinks some parameters
to avoid the sum exceeding the limit. Whenever a parameter estimate is shrunk,
this corresponds to a more constrained model, and we must therefore carefully
pick a value for the budget t. Cross-validation is a frequently used method to find
an optimal value for t.

Another key feature of the lasso is that it is common to make the predictors
involved standardized,

1

N

N∑
i=1

xij = 0, and
1

N

N∑
i=1

x2ij = 1. (4.5)

When standardized, one avoids any problems regarding the units (e.g., Celsius vs.
Fahrenheit). However, if the features are already measured using the same units,
standardization is not common practice. Furthermore, the outcome values are often
also centered,

1

N

N∑
i=1

yi = 0, (4.6)

as this results in us being able to omit the intercept term β0 in the regression.

29



The optimization problem (4.3) is known to be a convex problem. According
to Boyd and Vandenberghe (2009, p. 7), a convex optimization problem is one in
which the objective and constraint functions are convex, which means they satisfy
the inequality

fi(αx+ βy) ≤ αfi(x) + βfi(y),

for all x, y ∈ Rn and all α, β ∈ R with α+β = 1, α ≥ 0, β ≥ 0. In the case of a
convex objective function and a convex feasible region, there could only exist one
optimal solution, that is, one globally optimal solution. Convexity thus simplifies
calculation.

4.2.1 Lagrangian form – duality

We will now state the lasso problem on a different form, often referred to as the
Lagrangian form. For this, we need to define the Lagrangian, L, associated with
(4.4),

L(β, λ) =
1

2N
‖y −Xβ‖22 + λ ‖β‖1 .

The parameter λ is often referred to as the Lagrange multiplier associated with the
inequality constraint, and is our regularization parameter. Using the Lagrangian
L(β, λ), we may now introduce the optimization problem on its Lagrangian dual
form, which is based on the theory of taking the constraints into account by aug-
menting the objective function with a weighted sum of the constraint functions
(Boyd and Vandenberghe, 2009, p. 215),

minimize
β∈Rp

{
1

2N
‖y −Xβ‖22 + λ ‖β‖1

}
, (4.7)

The reason why duality is interesting, is the fact that the solutions of the dual
problem provides a lower bound on the optimal value of the solution of the primal
problem. As such, there is a correspondence between the primal (original) prob-
lem, and its dual formulation. Furthermore, the solution of the primal and dual
problem need not be equal. There might be a difference between the solutions,
which is commonly referred to as the duality gap.

4.3 Variable selection property

An important aspect of the lasso estimator is the variable selection property. What
is meant by this is that the lasso will shrink some parameters towards zero as the
value for λ increases – the higher the λ the more parameters will be shrunk to zero.

30



As such, the lasso estimator performs model selection by default, and the resulting
model will emphasize the parameters that matter the most for the response, leaving
the unimportant parameters out of the regression. This is due to the geometry of
the `1 constraint, and we will continue to give some insight in why this is the case.

To make the illustration easier, we start by considering the ridge regression,
which takes the form,

minimize
β0,β

{
1

2N
‖y −Xβ‖22

}
subject to ‖β‖2 ≤ t

2.

(4.8)

As one may observe, (4.8) is almost identical to the problem of the lasso as stated in
(4.4), with one slight twist as the constraints differ. Specifically, the ridge makes
use of the `2 norm, whereas the lasso makes use of the `1 norm. As such, if
p = 2, then the constraint regions will differ, as the ridge constraint makes a circle
(β21 + β22 ≤ t2), while the lasso makes a diamond (|β1| + |β2| ≤ t). The con-
straint regions are visually represented as the blue areas in Figure 4.1 for a linear
model including two parameters (β = (β1, β2)), and the red ellipses represent the
contours of the scaled negative log-likelihood. Notice that the solution of either

β1

β2

β1

β2

β β

Figure (4.1) The figure is inspired from Figure 2.2 in Hastie et al. (2015, p. 11). The
Lasso constraint is visualized to the left (diamond), whereas the Ridge constraint is visu-
alized to the right (circle).

optimization problem (4.4) or (4.8) would be the first place where the contours of
the scaled negative log-likelihood meet with the constraint area.

From Figure 4.1 we can observe that it is the geometry of the constraint that
impacts the parameter estimate. As the lasso constraint has corners, it is much

31



more likely for the scaled negative log-likelihood estimates to be zero for the lasso
than for ridge. This is due to the fact that a parameter βj would be zero if the
solution occurs at a corner. Furthermore, if one would choose to include more than
parameters, the diamond would evolve into a rhomboid (Hastie et al., 2015, p. 12),
which has more corners, edges and faces, and there are several more opportunities
for the parameter estimates to become zero. The lasso is therefore known to give
sparse solutions.

4.4 Karush-Kuhn-Tucker (KKT) conditions

For any optimization problem with differentiable objective and constraint func-
tions, theory has shown that any pair of primal and dual optimal points must sat-
isfy the Karush-Kuhn-Tucker conditions. Specifically, if looking at a optimization
problem

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m (inequality constraints)

hi(x) = 0, i = 1, . . . , p, (equality constraints)

the Lagrangian L would be defined

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x).

By letting x∗ and (λ∗, ν∗) be any primal and dual optimal points with zero duality
gap, and due to the fact that x∗ minimizes L(x, λ∗, ν∗) over x, it follows that the
gradient must vanish at x∗,

∇f0(x∗) +

m∑
i=1

λ∗i∇fi(x∗) +

p∑
i=1

ν∗i∇hi(x∗) = 0.

The resulting Karush-Kuhn-Tucker conditions may thus be defined (Boyd and
Vandenberghe, 2009, p. 243),

fi(x
∗) ≤ 0, i = 1, . . . ,m

hi(x
∗) = 0, i = 1, . . . , p

λ∗i ≥ 0, i = 1, . . . ,m

λ∗i fi(x
∗) = 0, i = 1, . . . ,m

∇f0(x∗) +

m∑
i=1

λ∗i∇fi(x∗) +

p∑
i=1

ν∗i∇hi(x∗) = 0.

32



By applying this theory on the optimization problem (4.7), the resulting KKT con-
ditions is found to be (Hastie et al., 2015, p. 9)

− 1

N
〈xj ,y −Xβ 〉 + λsj = 0, j = 1, . . . , p. (4.9)

In this expression, sj represents an unknown quantity, which is equal to sign(βj)
whenever βj 6= 0, or some value in [−1, 1] otherwise.

However, as our primal problem was found to be convex, the KKT conditions
changes from being a necessity for an optimal solution to be a sufficient set of
conditions for an optimal solution. In other words, when solving the dual problem
for a convex primal problem, the solution found will be equal, i.e. there will a zero
duality gap between the two solutions.

We have thus introduced the lasso estimator, and presented related properties
like its convexity and interpretation. Furthermore we introduced the dual problem,
which may seem rather strange at first sight. However, it turns out that the dual
formulation of the lasso estimator is perfect for the formulation of an algorithm
able to solve the problem, namely coordinate descent. This algorithm is based on
usage of the Lagrangian.

4.5 Coordinate descent

The lasso problem is often referred to as what we call a convex program, specifi-
cally a quadratic program (QP), meaning the optimization problem revolves around
minimizing or maximizing a quadratic function of several variables. These are
common problems, and as such, there exists many efficient algorithms to solve
these problems. However, there is one particularly effective algorithm which gives
insight in how the lasso works, and is based on the Lagrangian formulation of the
dual problem in (4.7), and can be reformulated as

minimize
β∈Rp

 1

2N

N∑
i=1

(yi −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj |

 .

We continue to assume the both yi’s and xij’s to have been standardized, as ex-
plained in (4.5) and (4.6), meaning we once again can omit the intercept term β0.

4.5.1 Soft thresholding

Starting off, we consider the case of a single covariate (j = 1) in the linear regres-
sion model, based on samples {(xi, yi)}Ni=1. In such a case, the lasso estimator

33



becomes available in closed form by evaluating the KKT-conditions (4.9),

− 1

N
〈y,x〉+ β̂

1

N

N∑
i=1

x2i + λŝ1 = 0,

where

〈y,x〉 =

N∑
i=1

yixi.

In such a case, the solution may be written as (Hastie et al., 2015, p.15),

β̂ =


1
N 〈y,x〉 − λ if 1

N 〈y,x〉 > λ,
1
N 〈y,x〉+ λ if 1

N 〈y,x〉 < −λ
0 if 1

N |〈y,x〉| ≤ λ,

or equivalently,

β̂ = Sλ
(

1

N
〈x,y〉

)
. (4.10)

Here,

Sλ(x) = sign(x)(|x| − λ)+

is called the soft-thresholding operator, which translates its argument towards zero
by the amount λ, and sets it exactly equal to zero whenever the absolute value
of the argument is smaller than λ, |x| ≤ λ. Notice that the argument to the soft
thresholding operator in (4.10) is the ordinary least squares (OLS) solution (Hastie
et al., 2015, p. 15), meaning the lasso estimator for a single covariate in a linear
model is the shrunken equivalent version of the OLS estimate.

4.5.2 Cyclical coordinate descent

Continuing the case of one covariate, we will now present the case of several co-
variates, that is, a problem of the form as in (4.7). The general idea is to update,
or cycle, through the covariates, keeping all covariates fixed except the one that is
to be updated. Specifically, if considering to update the j’th covariate, one would
perform the univariate optimization (Hastie et al., 2015, p. 110),

βt+1
j = minimize

βj
h(βt1, . . . , β

t
j−1, βj , β

t
j+1, . . . , β

t
p),

34



where βt+1
k = βtk for k 6= j. The function h is a general multivariate objective

function. This algorithm will converge as a result of a type of separability condi-
tion (Hastie et al., 2015, p. 110),

h(β) = f(β) +

p∑
j=1

gj(βj),

where f : Rp → R is a convex, differentiable function, whereas gj : Rp → R is
a convex, though not necessarily differentiable, function. This applies to the lasso
in (4.7), as we identify the functions to be

f(β) =
1

N
‖y −Xβ‖22 and gj(βj) = λ|βj |.

Once again considering the KKT conditions for the lasso as presented in (4.9),
when evaluated at β̂, this becomes

− 1

N

N∑
i=1

(yi −
p∑
k 6=j

xikβ̂k − xij β̂j)xij + λsj = 0 for j = 1, . . . , p.

From this we may define the partial residuals r(j)i = yi−
∑p

k 6=j xikβ̂k, and rewrite
the expression as

− 1

N

N∑
i=1

r
(j)
i xij + β̂j

1

N

N∑
i=1

x2ij + λsj = 0 for j = 1, . . . , p.

When comparing to the soft-threshold expression (4.10), and also assuming cen-
tering and standardization, the j’th parameter estimate could then be updated using
(Hastie et al., 2015, p. 112)

β̂j = Sλ
(

1

N
〈r(j),xj〉

)
. (4.11)

Furthermore, by noticing that r(j) = r + xj β̂j , where r = y −Xβ̂ are the full
residuals, the expression may be more compactly written (Hastie et al., 2015, p.
16)

β̂
(t+1)
j ← Sλ

(
β̂tj +

1

N
〈rt,xj〉

)
,

where, t denotes the iteration.

35



Orthogonal predictors

In the case of orthogonal predictors, the coordinate descent scheme becomes par-
ticularly easy as the inner product will always equal zero between different predic-
tors, that is,

1

N
〈xj , xk〉 = 0, for each j 6= k.

In such a case, the update (4.11) simplifies dramatically, as β̂j simply turns into
the soft-thresholded version of the univariate least-squares estimate of y regressed
against xj (Hastie et al., 2015, p. 17), all because

1

N
〈xj , r(j)〉 =

1

N
〈xj , y〉.

The reason of this being of interest to us is that when we have such an orthogonal
design, we will have an explicit closed form solution for the lasso, and we may
thus solve the optimization problem without iterations. In practice, this would
mean that if we were to only consider the history effects, this result would apply
and we would have a closed form solution.

4.6 Lasso regularized logistic regression

As in Section 3.2, we now consider n independent observations Y1, Y2, . . . , Yn,
originating from the binomial distribution, Yi ∼ Bin(ni, πi), where we will only
consider the case when ni = 1. In the case when ni = 1, this reduces to the
Bernoulli distribution, Yi ∼ B(πi), and we find the log-likelihood for our logistic
regression to be

logL(β0,β;y) =
N∑
i=1

(yi log(πi) + (1− yi) log(1− πi)).

Relating this to the lasso estimator, we substitute the expression into (4.1), let
v = 1, and thus find

β̂(λ) = minimizeβ0,β
{
− 1
n

∑n
i=1

(
yi(β0 + xTi β)− log(1 + exp(β0 + xTi β))

)
+ λ ‖β‖1

}
.

(4.12)
We have used the probability πi = exp(β0 + xiβ)/(1 + exp(β0 + xiβ) from
(3.7). To solve (4.12), we introduce the glmnet package. This R-package is
specifically made for fitting a GLM with lasso or elastic net regularization. What
the package does it to alter the optimization problem (4.12), and turn it into an
equivalent form based on penalized maximum likelihood, specifically, a weighted

36



form of (4.7). On this form, the optimization problem can be solved using regular
cyclical coordinate descent.

To delve even further, we aim at understanding how this maximization process
takes place. Consider (β̃0, β̃) to be our current parameter estimates. We may form
a second order Taylor expansion approximating the log-likelihood part of (4.12)
around the current parameter estimates, giving (Hastie et al., 2015, p. 116)

logLQ(β0,β) = − 1

2n

n∑
i=1

wi(zi − β0 − xTi β)2 + C(β̃0, β̃)2.

C represents a constant function which is independent of both (β0,β), while wi
represents the weights,

wi = π̃i(1− π̃i),

and zi represents the working response,

zi = β̃0 + xTi β̃ +
yi − π̃i

π̃i(1− π̃i)
.

Even though it is possible to apply coordinate descent directly (4.12), it has been
proven that a favourable option is to apply coordinate descent on the quadratic
approximation, which results in a nested algorithm (Hastie et al., 2015, p. 116).
Specifically, we now aim to solve the optimization problem

β̂ = minimize
β0,β

{
− 1

2n
logLQ(β0,β) + λ ‖β‖1

}
. (4.13)

The solution procedure is nested in the sense that it is comprised of three loops,
that is, an outer loop, a middle loop and an inner loop.

• In the outer loop, λ is decremented.

• In the middle loop, the quadratic approximation LQ is updated using the
current parameter estimates (β0,β).

• In the inner loop, coordinate descent is used on the penalized weighted prob-
lem (4.13).

4.6.1 Cross-validation

We require an explicit value for our regularization parameter λ to solve the opti-
mization problem (4.13). Specifically, as we calculate our parameter estimates β̂

37



based on different values of λ, we need a method to compare the estimates and
select a value for the hyperparameter λ.

In order to find the optimal value for λ, we thus introduce the concept of K-
fold cross-validation. This process revolves around partitioning the data into K
groups, or folds, where K > 1. A typical choice would be to let K = 10. Starting
off, one would choose one of the folds to equal what is called the test set, while
the remaining K − 1 folds make the training set. Furthermore, one would fit the
model on the training set, for a range of different λ values, and continue to use
each fitted model to predict the responses in the test set, while the prediction error
is also being recorded. This process is repeated K times, such that each of the
folds will at one point have made the test set.

When cross-validation is finished, there are often two values for λ that are
saved. These differs in the amount of penalization added to the model, and thus the
amount of shrinking that is added to the parameter estimates. They are commonly
referred to as λmin and λ1se. λmin is the value for λ that gives minimum mean cross-
validated error, whereas λ1se gives the most regularized model such that error is
within one standard unit of the minimum mean cross-validation error. What this
means is that when fitting a lasso regression, more coefficients are likely to be
shrunk to zero when using the λ1se choice than when using λmin. Furthermore, we
will in this thesis use the binomial deviance as error measure.

38



Chapter 5
Multiple hypothesis testing

We will perform multiple hypotheses tests. As such, the question of choosing the
cut-off value for the p-value arises, which is important, as the probability for type
I error becomes enlarged in multiple hypothesis testing. We will in this section
present an associated correction method used when performing multiple hypothe-
sis testing.

We test m different null hypothesis H = {H1, . . . ,Hm}. Let m0 denote the
number of true null hypotheses, T ⊆ H, andm−m0 the number of false hypothe-
ses, F = H/T . Our aim is to infer a subset of hypothesis, R ⊆ H, which is as
close to F as possible. By assuming each and every one of the hypotheses Hj has
a corresponding p-value pj , we may defineR = {Hj : pj ≤ αloc}, where αloc is a
local threshold parameter, that we choose ourselves. This means that R is a set of
our rejected null hypotheses, where each is rejected at significance level αloc. The
notation is summarised in Table 5.1. Notice that the only observable values from
this table are m and R = |R|. Now, we focus on V = |R∩T |, the hypothesis that
were falsely rejected, often referred to as false positive findings.

Not reject H0 Reject H0 Total
H0 true m0 − V V m0

H0 false m1 − (R− V ) R− V m1

Total m−R R m

Table (5.1) Table for multiple hypothesis testing. Only the number of rejected hypothe-
sisR and the total number of hypothesism are observed (Benjamini and Hochberg, 1995).

39



5.1 Family-wise error rate (FWER)

There exists multiple generalisations of the concept of type I error. One of these is
the Family-wise error rate, which is defined as the probability of obtaining at least
one type I error (Goemann and Solari, 2014),

FWER = P (V > 0),

where V = |R ∩ T | is the number of type I errors, as seen in Table 5.1.

When testing multiple hypotheses, one have to use a collection of test statis-
tics, T1, . . . , Tm. These will produce each of their respective p-value, p1, . . . , pm,
which we refer to as raw p-values.

5.1.1 Bonferroni’s method

The method of Bonferroni controls the family-wise error rate at a level α by reject-
ing a hypothesis if its respective raw p-value is smaller than αloc = α/m. To prove
that this actually controls the FWER, start by denoting the p-values of m0 true hy-
potheses w1, . . . , wm0 , so that the event of a type I error becomes wi ≤ α/m. This
yields

FWER = P

(
m0⋃
i=1

wi ≤ α/m

)

≤
m0∑
i=1

P (wi ≤ α/m)

≤ m0
α

m
≤ α.

(5.1)

What is nice about the Bonferroni method is that does not make any assumption
when it comes to the dependency structures.

Furthermore, equation 5.1 illustrates how the Bonferroni method is said to be
conservative, that is, the rejection criterion is strict, as αloc = α/m is smaller than
what it actually needs to be. A last comment about the Bonferroni method is how
it may be used to construct what is called adjusted p-values, using

p̃j = min(pj ·m, 1).

40



5.2 Multi-sample splitting

Multi-sample splitting is a method for attaining p-values for data in a possible high-
dimensional setting. Consider a the lasso as stated in (4.2), with a n × p design
matrix X , n × 1 response vector Y and p × 1 parameter vector β. For multi-
sample splitting, the general idea is to derive the p-values by splitting the sample
set, denoted I = {1, . . . , n}, into two equal sets, denoted I1 and I2. Specifically,
Ir ⊂ {1, . . . , n}(r = 1, 2) with |I1| = bn/2c and |I2| = n − bn/2c where
I1 ∩ I2 = ∅ and I1 ∪ I2 = {1, . . . , n} (Dezeure et al., 2015, p. 535). Note that b
c represents the floor function of the given argument.

With such a split, it is then possible to use half of the sample set for variable
selection, and the remaining set for statistical inference, only including the param-
eters that was deemed non-zero from the variable selection in the inference. The
multi-sample splitting thus avoids using the problem of using data twice, both for
variable selection and inference.

As an illustration, consider the set

Ŝ(I1) ∈ {1, . . . , p}

as the variables from I1 whose parameter estimate is different to zero after per-
forming variable selection, for example using the lasso. According to the multi-
sample splitting methodology, one would continue to use the second half of the
sample I2 to construct p-values based on the selected variables from Ŝ(I1). In
the case where |Ŝ(I1)| ≤ n/2 ≤ |I2|, which often occurs for the lasso, full rank

(|Ŝ(I1)|) is implicitly assumed for the matrix X(Ŝ(I1))
I2

, where the subscript de-
notes the sample half and the superscript denotes the selected variables from the
variable selection performed on I1. One may then continue to perform ordinary

GLM (3.3) on the set I2, using YI2 as response vector and X(Ŝ(I1))
I2

as model ma-
trix. Such a procedure thus yields p-values using Wald-statistics for the parameters
β̂Ŝ(I1)

= {βj ; j ∈ Ŝ(I1)}, with the raw p-values defined as (Dezeure et al., 2015,
p. 535)

Praw,j =

{
Pt−test,j based on GLM fit with YI2 ,X

(Ŝ(I1))
I2

, if j ∈ Ŝ(I1),

1, otherwise,

which again means that we may continue to perform an ordinary GLM (3.3) on the
set I2. In the case of normality, the common approach is to use the t-statistic. For

our matrixX(Ŝ(I1))
I2

, the subscript denotes the sample half whereas the superscript
denotes the selected variables from the variable selection performed on I1. A key

41



feature of the multi-sample splitting is its extension to also correct for multiple
testing.

One way performing such multiple testing is to control the family-wise error
rate by naively applying a Bonferroni correction over the p tests. However, accord-
ing Dezeure et al. (2015, p. 535), this is not necessary as we only need to control
over the considered |Ŝ(I1)| tests in I2. With this in mind, we can introduce the
Bonferroni corrected p-value for H0,j ,

pcorr,j = min(Praw,j · |Ŝ(I1)|, 1).

There is however a known problem occurring when performing the split of the
entire sample, as p-values tend to not be reproducible. The reason why is simply
that different sample splits lead to very different p-values. To address this problem,
it is common to run the sample splitting methodB times, for any largeB. By doing
this, a collection of p-values is obtained for every hypothesis H0,j (j = 1, . . . , p),

p
(1)
corr,j , . . . , p

(B)
corr,j (j = 1, . . . , p).

With a collection of p-values for every hypothesis, the next goal would be to do an
aggregation of these to obtain a single p-value for every hypothesis. By realizing
that there is now a dependence among {P (b)

corr,j ; b = 1, . . . , B} as all half samples
origin from the same full sample, it is important to not naively aggregate the values.
According to Dezeure et al. (2015, p. 536), an appropriate solution is to use an
empirical γ-quantile,

Qj(γ) = min(emp.γ-quantile{Pcorr,j/γ; b = 1, . . . , B}, 1),

where 0 < γ < 1. A common approach is to do a search to find the best γ-quantile
in range (γmin, 1) (for example γmin = 0.05), which gives the aggregated p-value

Pj = min

(
(1− log(γmin)) inf

γ∈(γmin,1)
Qj(γ), 1

)
. (5.2)

In this expression, the term (1− log(γmin)) acts as a penalty for searching for the
best γ ∈ (γmin, 1).

The approach in (5.2) is therefore favorable as it leaves us p-values that are
approximately reproducible.

42



Part II

Analysis

43





Chapter 6
Data analysis

In this chapter we present the main results of our analyses, focusing on one exper-
iment from English et al. (2017). We will do an in-depth analysis of one neuron
in said experiment, presenting and explaining graphs and figures. Our main goal
is to find the underlying network of neurons which is believed to exist in the brain
of the mouse. We start by introducing the dataset, followed by an explanation of
the regression model, before ending with presenting and assessing the network of
neurons found.

6.1 The dataset

The complete dataset is presented in an article explaining the phenomenon of Pyra-
midal Cell-Interneuron Circuit Architecture and Dynamics in Hippocampal Net-
works (English et al., 2017). Specifically, we downloaded the data from McKenzie
(2016), focusing on a single experiment containing 12 neurons (2 through 13), de-
noted by experiment ID 589 on the Buzakilab website. In addition, there were a
lot of activity from unclassified fictive neurons included in the data, denoted as
neuron 0.

The data was recorded by placing what is called a shank in the head of the
mouse. This device would then be used to record all neuronal activity of nearby
neurons. Furthermore, they inserted a glass pipette directly into one specific neu-
ron, which became stimulated in intervals.

45



6.1.1 Experiment 589

As mentioned, we are focusing primarily on analyzing one experiment, specif-
ically named experiment 589, consisting of the activity measurement of twelve
neurons and one unclassified fictive neuron. As time is limited, we will only per-
form in-depth analysis of neuron 12 in the experiment, and briefly present the
overall results of other neurons.

Experiment 589 was originally a stimulation experiment, and we have decided
to exclude certain parts of the data on which the stimulation was performed, and
only focus on the spontaneous parts of the data. In short, the data comprised of
three parts, visually represented in Figure 6.1. The first part only contains the

Only neuron 0,
we remove this
part of the
experiment

Experiment 589: A timeline

t=0 t = 712.1 t = 2130.7

Spontaneous recording,
this is the part of the
data we will focus our
analysis

Start of stimulation,
this part of the data is 
not of interest for us
in this thesis

t (s)

Figure (6.1) The green area between timestamps t = 712.1 and t = 2130.7 is what we
define as the spontaneous part of the recording, on which we will perform our analysis.

firing of neuron 0, and is probably a result of tuning the shank to function properly
before starting the actual recording, so that each firing neuron was simply labelled
as zero. The second part is the spontaneous part of the experiment, and is the
part of the data on which we will perform our analysis. The third part includes
the stimulation, and will not be analyzed in this thesis. As can be seen from the
figure, the length of the spontaneous interval is approximately 1400 seconds, or
1.4 million milliseconds. To shorten computational time, we have decided to only
look at the first 1000 seconds of the spontaneous interval, or equivalently, the first
1 million milliseconds.

For most neural analyses regarding spike trains, raster plots are commonly
introduced to show the activity of included neurons during some time period. In
such a plot, the activity of each neuron is graphically represented as time passes by
drawing a vertical line every time a neuron had an action potential, that is, spiked.
As most neurons in Experiment 589 frequently fire, the raster plot has been divided
into subplots 6, which together cover the entirety of the 1000 second interval. The
raster plots in Figure 6.2 may thus gives us some information regarding the firing
pattern of each neuron in the experiment. First of all one may notice that neuron

46



0 50 100 150

2
4

6
8

10
12

Activity of neurons in experiment 589

Session time (s)

N
eu

ro
n

200 250 300

2
4

6
8

10
12

Activity of neurons in experiment 589

Session time (s)
N

eu
ro

n

350 400 450 500

2
4

6
8

10
12

Activity of neurons in experiment 589

Session time (s)

N
eu

ro
n

500 550 600 650

2
4

6
8

10
12

Activity of neurons in experiment 589

Session time (s)

N
eu

ro
n

700 750 800

2
4

6
8

10
12

Activity of neurons in experiment 589

Session time (s)

N
eu

ro
n

850 900 950 1000

2
4

6
8

10
12

Activity of neurons in experiment 589

Session time (s)

N
eu

ro
n

Figure (6.2) Raster plots of the activity of neurons for experiment with ID 589. For each
neuron, a vertical line has been drawn at time t if the neuron spiked. The timeline has been
divided into six parts to make it easier to observe firing patterns.

47



2, 3, 5, 8, 9 and 12 stay rather active throughout the whole interval. Furthermore,
some neurons, like 4, 6, 7 have a change in spiking during the period, either from
being very active to rather inactive (neuron 4), or from being almost inactive to
very active (neuron 6). What should also be mentioned is that such recordings of
neurons are very tricky to perform. As such, in most cases, signal contamination is
entirely possible, or even likely. This could result in some neurons to be recorded
twice, and to be labelled as different neurons. This could be the case if different
neurons express a somewhat similar firing rate. In our experiment, an example may
be neuron 2 and 9. However, this may only be speculation and is not something
we will try to address or correct in this thesis.

48



6.2 Regression model

We now fit a lasso regularized regression model (4.12), with history and coupling
effects in the linear predictors as presented in Equations (3.10) and (3.11). Specif-
ically, we fit the model to observations from experiment 589, using neuron 12 as
response, and the remaining neurons 2 − 11 and 13 to evaluate coupling effects
as covariates using the cosine bases. Multi unit activity was also included in the
model, and is explained below.

The history effect was modelled at time t1 by multiplying the 161 historic
entries of the response vectors spike train (at times t1−1, t1−2, . . . , t1−161) with
161 predefined fixed points on each of the respective cosine bases (L = 10),
before summing all 161 products together to find one value. This would be one of
the 1 million entries in one column of the design matrix. The concept is illustrated
in Figure 6.3.

Spike train:

Predefined points
on a cosine bases:

[1       0       0      1       0  . . . . . . .  1]

[0.95  0.80  0.65  0.50   0.35 . . . . . -0.25]

[0.95   0      0     0.5     0     . . . . .  -0.25]
Resulting vector
after multiplication:

One entry in
the design matrix: 2.65 = 0.95 + 0 + 0 + 0.5 + . . . . . + (-0.25)

(Multiplication)

Figure (6.3) An example of how one entry of the design matrix is calculated for either
history or coupling effects. The spike vector is multiplied by the predefined points on an
appurtenant cosine basis, before the resulting vector is summed to end with one value in
to the design matrix.

Coupling effects were modelled in the same way for the respective neighbour-
ing neurons, with the use of coupling cosine bases (L = 4). The multi unit activity
is modelling the fictive neuron 0, and is included by summing up the number of
occurrences of neuron 0 in one bin of 1ms length, which is done for every mil-
lisecond of the 1 million milliseconds on which we perform our analysis. The sum
of the occurrence of neuron 0 in one such bin of length 1ms would then be one
entry of the MUA column of the design matrix. The frequency of neuron 0 in each
bin varied, ranging from 1 to 33 occurrences. A barplot is included to show the
distribution of occurrences per bin, presented in Figure 6.4. Observing that a log10

49



scale is used on the y-axis, we see that 1 occurrence of neuron 0 in per bin was by
far the most frequent event.

1 3 5 7 9 13 17 20 26 33

Barplot representing the firing rate of neuron 0

How many firings in one bin of 1ms length

T
he

 lo
g 1

0 
of

 th
e 

nu
m

be
r 

of
 ti

m
es

 s
ai

d 
fir

in
gs

 h
ap

pe
ne

d

0
2

4
6

8
10

Figure (6.4) A barplot showing the frequency of how many times neuron 0 fired inside
a bin of length 1 ms, using a log10 scale.

Knowing that our regression model includes history and coupling effects, as
well as the multi unit activity, a conceptual plot of our lasso regularized logistic
regression is presented in Figure 6.5.

We thus ended up with a model containing 56 parameters. This comes from
the fact that the model includes an intercept, 10 history effects, 4 × c coupling
effects (where c = the number of neighbouring neurons to the response neuron,
excluding 0), and 1 for the MUA activity. This adds up to 1+10+11×4+1 = 56
parameters. Related to the fitting of the models, two plots may be presented. The
first on is the coefficient path, as seen in Figure 6.6, and the second is the 10-fold
cross-validation curve as seen in Figure 6.7. From the 10-fold cross-validation
plot, it may be observed that the model with the lowest binomial deviance (line to
the left in Figure 6.7), at λmin = 6.64 × 10−5, resulting in 44 non-zero parameter
estimates.

From observing both Figures 6.6 and 6.7 it is seen that there is a large dif-

50



η

History 
effects

Coupling
effects

Multi
unit
activity

Lasso-
regularized
regression

1
1+exp(-η)

Figure (6.5) A conceptual plot showing how our model consists of history effects, cou-
pling effects and multi unit activity.

−10 −9 −8 −7 −6 −5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Log Lambda

C
oe

ffi
ci

en
ts

49 36 30 17 6 1

Figure (6.6) The lasso coefficient path for the full regression model fitted to observations
for neuron 12 in experiment 589. The upper horizontal axis shows the number of nonzero
coefficients included in the model. The two vertical lines represent the values for λmin and
λ1se, from left to right, respectively.

ference when it comes to nonzero parameters dependent on whether we used the
minimal lambda or the one at 1 standard deviation to regularize coefficients. As
mentioned, choosing λmin will result in 44 coefficients being nonzero, while the
choice of λ1se will result in only 16 coefficient being nonzero. We thus have two

51



−9 −8 −7 −6 −5

0.
10

2
0.

10
4

0.
10

6
0.

10
8

0.
11

0

log(Lambda)

B
in

om
ia

l D
ev

ia
nc

e

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●

45 44 36 34 33 29 28 20 13 10 7 5 2 1 1

Figure (6.7) The 10-fold cross-validation binomial deviance plot for the full regression
model fitted to observations for neuron 12 in experiment 589. Also here, the upper hori-
zontal axis represents the number of nonzero coefficients included in the model. The two
vertical lines represent the values for λmin and λ1se, from left to right, respectively.

possible choices to estimate our parameters based on either λ’s, which again may
be used to calculate two different FWER adjusted p-values.

6.3 A network of neurons

We will in this section try to estimate the true underlying network of neurons found
in experiment 589, based on the significance of history and coupling effects. Recall
from Section 3.4.2 if there is a connection from neuron k to j, it will be represented
by α̂jkl = (α̂j,k,1, α̂j,k,2, . . . , α̂j,k,L), where L = 4 for coupling effects, and L =
10 for history effects. We have decided to consider that the connection αj,k is
significant as long as one of its elements are significant. For each αj,k, a test of
significance was performed by calculating the FWER adjusted p-values and using
cut-off level 0.05. As such, the adjusted p-values were obtained based on the multi-
sample splitting procedure as explained in Section 5.2, using the multi.split
function in R from the hdi-package, where B = 50 splits was performed for each
neuron included as response.

52



6.3.1 Significant effects

Once again consider the regression model fitted for neuron 12 from experiment
589. In Table 6.1 we have summarized the parameter estimates for history and
connectivity effects, as well as the corresponding FWER adjusted p-values using
both λ’s to regularize coefficients. Calculation time to perform the multi-splitting
took several hours for neuron 12 (approximately 6 hours), running on a compu-
tational server with 28 intel CPU’s (2 × 14-core Xeon 2.6 GHz), with a memory
of 768 GB. The computational time was approximately the same for every other
neuron included in our analysis.

Neuron (k) Basis (l) α̂j,k,l based on FWER adjusted p-value based on

λmin λ1se λmin λ1se

12 1 -1.15 -1.49 7.91× 10−117 1.18× 10−97

2 0.03 - 1 1

3 -1.39 -1.15 3.55× 10−40 1.77× 10−33

4 -0.13 - 1 1

5 -0.94 -0.78 5.19× 10−23 1.73× 10−23

6 -0.88 -0.60 2.45× 10−23 7.14× 10−21

7 -1.02 -0.72 2.92× 10−23 6.06× 10−23

8 -0.73 -0.39 1.35× 10−13 2.25× 10−13

9 0.92 0.60 1.69× 10−20 1.55× 10−18

10 -0.64 -0.28 2.46× 10−9 3.71× 10−9

0 MUA 0.35 0.26 4.93× 10−35 1.78× 10−40

2 1 -0.17 -0.13 3.39× 10−7 3.22× 10−5

2 -0.23 - 1 1
3 -0.20 -0.02 1 1
4 -0.25 - 1 1

3 1 -0.28 -0.22 2.58× 10−11 9.11× 10−9

2 -0.07 - 1 1
3 -0.15 - 1 1
4 -0.21 - 1 1

4 1 - - 1 1
2 - - 1 1
3 0.01 - 1 1
4 - - 1 1

5 1 -1.16 -0.87 7.26× 10−35 2.17× 10−36

53



2 -0.002 - 1
3 -0.35 -0.01 1 1
4 -0.20 - 1 1

6 1 0.11 - 1 1
2 - - 1 1
3 0.02 - 1 1
4 0.03 - 1 1

7 1 1.12 1 1
2 - - 1 1
3 - - 1 1
4 0.11 - 1 1

8 1 -0.47 -0.23 3.07× 10−9 6.23× 10−9

2 - - 1 1
3 -0.24 - 1 1
4 -0.30 - 1 1

9 1 -0.15 - 1 1
2 - - 1 1
3 -0.06 - 1 1
4 -0.18 - 1 1

10 1 -0.19 - 1 1
2 -0.08 - 1 1
3 -0.28 - 1 1
4 -0.26 - 1 1

11 1 0.33 - 1 1
2 - - 1 1
3 - - 1 1
4 -0.10 - 1 1

13 1 -0.06 - 1 1
2 - - 1 1
3 0.16 - 1 1
4 0.09 - 1 1

Table (6.1) Parameter estimates of neuron 12 in experiment 589, also including the ad-
justed p-values with respect to the FWER as explained in Section 5.1, using both λmin and
λ1se to regularize coefficients. The parameter estimates were obtained from the penalized
logistic regression model (lasso) as explained in (4.12) using linear predictors as in Equa-
tions (3.10) and (3.11). The adjusted p-values were constructed based on theory explained
in Section 5.2, using this inbuilt function multi.split from the hdi-package, using
B = 50 iterations. We have also highlighted the p-values that are below the cut-off level
0.05 using a gray background.

54



6.3.2 Network of connections between the 12 neurons and MUA from
experiment 589

Based on our findings, we will now present three possible networks of neurons,
each based on different estimates found during our analysis. The three networks
are based on

1. FWER adjusted p-values using λmin for regularization.

2. parameter estimates using λmin for regularization,

3. parameter estimates using λ1se for regularization, and

While all neurons are included in the last two networks, we have excluded neuron 7
from the network based on FWER adjusted p-values due to convergence problems
for the multi-sample splitting algorithm.

Figure 6.8 represents the estimated network of neurons based on the FWER
adjusted p-values from the multi-sample splitting algorithm with data from exper-
iment 589. In this plot, a line is drawn for every pair of neurons communicating,
pointing towards the neuron being affected. As an example, as there is a line going
out from neuron 6 and into neuron 9, this means that neuron 6 affects the firing rate
of neuron 9 in some sense. One may also observe that every neuron has a signifi-
cant history effect, represented as arrows originating from itself. This is probably
due to the fact that every neuron has a refractory period, as presented in Figure
2.2. What this means is that a neuron is less likely to fire if it already fired not too
long ago. Each of these lines from neuron k to neuron j is evaluated as significant
coupling effects αjkl using the FWER adjusted p-values and a cut-off at 0.05.

It should also be mentioned that many of calculations are required for one
such representation of a full network as seen in Figure 6.8. The entire regression
model has to be fitted P times, independently, with P representing the number of
neurons included in the model. As such, for the network in Figure 6.8, we ran the
full regression model twelve times. This is a result of the experiment containing
twelve neurons (2-13), where the regression model is fitted using observations
from the j’th neuron, yj as response variable, and the remaining k 6= j neurons as
covariates, for j = 1, . . . , P . Furthermore, each regression was used to perform
the multi-sample splitting algorithm using B = 50 to obtain the FWER corrected
p-values.

Figure 6.9 represents the estimated network of neurons based on parameter
estimates regularized using λ1se, with data from experiment 589. As in Figure
6.8, also here a line is drawn for every pair of neurons communicating, pointing

55



towards the neuron being affected. A line is drawn in every case at least one of
the history or coupling effects have a parameter estimate not shrunk to zero. To
relate this to Table 6.1, every arrow going into neuron 12 in the network comes
from other neurons which have at least one nonzero parameter estimate, as seen
in the fourth column of the table. Observing the table, we see that neuron 12 has
nonzero parameter estimates for history effects, as well as neuron 2, 3, 5, 8, and the
multi unit activity. This is reflected in Figure 6.9, as we see the neurons mentioned
above have arrows going into neuron 12, as well as the history effect and the multi
unit activity.

Finally, Figure 6.10 represents the estimated network of neurons based on pa-
rameter estimates regularized using λmin. Lines are drawn between neurons as
described in the paragraph above, and once again relating the figure to Table 6.1,
we see in column 3 that every single neuron, including history effects and MUA
have at least one nonzero parameter. This makes Figure 6.10 a full network, con-
taining every possible connection that may occur.

Inhibitory and excitatory connections

Using Table 6.1, we may say something of the type of connections found specifi-
cally for neuron 12. Starting off, we observe that the parameter estimates are pre-
dominantly negative. Looking at the history effect parameters alone, we observe
8/10 and 6/7 negative estimates for λmin and λ1se, respectively. Based on this, we
believe the history effect for neuron 12 to be inhibitory, meaning that historic firing
of neuron 12 will decrease the chance of neuron 12 firing again. This agrees well
with theory explained in Chapter 2, that every neuron has a refractory period after
firing. Continuing in this manner, we believe that neuron 2, 3, 5, 8, 9 and 10 also
affects neuron 12 in an inhibitory manner, as the respective parameter estimates
are also predominantly negative. Furthermore, we believe neurons 6, 7, 11 and 13
affect neuron 12 in an excitatory manner, as their parameter estimates are predom-
inantly positive. Relating this to theory from Chapter 2, this means that whenever
one of these neurons fire, neuron 12 is more likely to follow and fire itself.

56



2

5

8
9

10

12

MUA

3

6
4

13

Network based on FWER adjusted p−values

Figure (6.8) Estimated network of the twelve neurons (2-13), as well as the multi unit
activity, for experiment 589. In this network, a directed arrow is drawn from one neuron
m to another neuron n based on the significance of corresponding FWER adjusted p-value
tested at 5% significance level, using λmin to regularize coefficients.

57



2

9

10

12
MUA

3

6

4

5

7
8

11

13

Network based on parameter estimates using λ1se

Figure (6.9) Estimated network of the twelve neurons (2-13), as well as the multi unit
activity, for experiment 589. In this network, a directed arrow is drawn from one neuron
m to another neuron n based on the nonzero parameter estimates using λ1se to regularize
the parameters.

58



2

3

4

5
6

7

8

9

10

11
12

13

MUA

Network based on parameter estimates using λmin

Figure (6.10) Estimated network of the twelve neurons (2-13), as well as the multi unit
activity, for experiment 589. In this network, a directed arrow is drawn from one neuron
m to another neuron n based on the nonzero parameter estimates using λmin to regularize
the parameters.

59



60



Chapter 7
Discussion and conclusion

In this chapter we start by discussing some aspects of what could be done dif-
ferently in this thesis. We give a comparison of the original ”ground truth” as
developed by English et al. (2017), before discussing which of the λ’s are most
consistent and how an alteration of the multi-sample splitting algorithm could po-
tentially benefit us. We proceed to elaborate on how one could continue the work
started in this thesis, before presenting a conclusion.

7.1 Comparison with ground truth

What have yet to be mentioned is that English et al. (2017) also performed their
own analysis of the dataset. We started this thesis with the aim of creating our own
model to detect neuronal connections, and to continue by comparing our findings
with their so called ”ground truth”. However, as we delved into the subject we
quickly realized that we went in a whole other direction than how the data was
originally analyzed, and thus excluded a comparison in our analysis. This is mainly
due to two problems.

First of all, the dataset comprised of several different types of neurons, includ-
ing what is known as pyramidal cells and interneurons. When originally analyzed,
they classified each neuron in the experiment, and continued to only search for
connections between interneurons and pyramidal cells, thus excluding some neu-
rons in every experiment they analyzed. Identifying neurons to be of a specific
type is both out of our scope, as well as it would give us no further statistical in-
sight. As such, we chose to analyse the dataset as a whole, including every neuron

61



from the original dataset.

Furthermore, while both analyzing the spontaneous and stimulated part of the
experiment, they delved into analyzing the stimulation part of experiment. During
stimulation, a single neuron was stimulated, while English et al. (2017) looked
at surrounding neurons to see how their behavioural firing pattern changed as the
neuron was stimulated. What they found from this stimulation experiment was that
neuron 13 was connected to neuron 12 for the experiment. As can be seen from
our suggestions for networks in Figures 6.8, 6.9 and 6.10, we have no connection
between neuron 13 and 12 for the two first figures, only including a connection for
the full network as in the latter figure.

There might be several reasons to why we have not found the same connection
between these two neurons. First of all, it might be a result of English et al. (2017)
specifically searching for connections between some of the neurons in the dataset
(specifically pyramidal-interneuron pairs), while we look at the entire experiment
as a whole, treating every equally. This may affect some of the parameter esti-
mates, and our model would likely change if we were to exclude certain neurons
from the regression model. Furthermore, we have learned that when a neuron is
stimulated, it may change the behavioural pattern for the stimulated neuron per-
manently. Specifically, as we chose to look at the spontaneous part of the dataset
where no stimulation was applied to neuron 13, it may just be that this neuron had
a completely different firing pattern in prior of the stimulation. Relating this to
Figure 6.2, which is of the spontaneous period of the interval, we observe neuron
13 to be very inactive. Once the stimulation started, we believe that it caused a sig-
nificant increase in the number of firings for said neuron, and that new connections
could form between the neurons.

7.2 The effect of choosing λ

Another matter we would like to discuss is which of the λ’s used to penalize co-
efficients that works best for our regression model. As explained in Section 4.6.1,
λmin gives the minimum mean cross-validated error, whereas λ1se gives the most
regularized model such that the error is within one standard unit of the minimum
mean cross-validation error. As can be seen from Table 6.1, the resulting model
contained 44 parameter estimates using λmin, but only 16 parameters when using
λ1se. As such, the resulting networks varied greatly based on nonzero parameters
as presented in Figures 6.9 and 6.10. One may thus discuss if choosing either of
the λ’s over the other is a better representation of the actual underlying network.

When addressing this matter, we chose to mainly base our discussion on the re-

62



sulting FWER adjusted p-values from the multi-sample splitting algorithm. What
was observed was that the nonzero parameter estimates found regularizing using
λ1se was very consistent with the resulting significant p-values from the multi-
sample splitting algorithm, both when λmin and λ1se was used. This may also be
seen from the resulting networks of neurons as seen in Figure 6.8 and 6.9. Even
though we should be careful to interpret anything as the ”truth” itself in such neu-
roscientific matters, the consistency among the two models indicates that this is
somewhat closer to the actual underlying network than what is presented from the
full network in Figure 6.10. As such, we believe that Figures 6.8 and 6.9 are closest
to the true underlying network, and therefore conclude that in our case, the usage
of λ1se is superior over λmin for estimating the network of neurons. However, for
the network based on FWER adjusted p-values, there would be no difference on
whether we were to use λmin or λ1se to regularize coefficients.

7.3 Change the multi-sample splitting algorithm

We also thought of another aspect that could change the format of the underlying
network based on the FWER corrected p-values. The multi-sample splitting algo-
rithm divides the dataset into two bins each containing 50% of the data by default.
It continues to perform the lasso penalized regression on one half of the dataset to
obtain parameter estimates, before using the nonzero parameters on the other half
to run a GLM and obtain p-values. This is repeated B times, before the resulting
p-values from each parameters are aggregated to construct the FWER adjusted p-
values. While it in general was no problem performing the multi-splitting, this was
not the case when neuron 13 was used as response. The multi-sample splitting al-
gorithm chose empty models for each split B, and the resulting corrected p-values
were all equal to 1 for this neuron. What could help in this matter would be to
alter the division of the dataset into bins of an unequal size, for example 70% of
the data being used for the lasso regression, whereas only 30% could be used for
construction of p-values. In addition to helping construct p-values for neuron 13,
this could possibly also change the resulting corrected p-values for other neurons,
resulting in a new, maybe better, representation of a network. As a final note, in-
creasing B to a value larger than 50 could also improve the network, but was not
done in this thesis as B = 50 already required days of computational time on a
supercomputer.

63



7.4 Future work

Expanding the model

If one were to continue the work in this thesis, our first suggestion would be to ex-
pand the model. First of all, the one could try to include the neuroscientific concept
of theta modulation to improve the model even further, specifically hippocampal
theta modulation. Theta modulation, or theta waves, is a neural oscillatory pattern.
It have been found that neurons in the hippocampus (part of the brain) react to
such oscillations. Including such modulation in the regression model would prob-
ably result in a better model, although it would require very specific knowledge
regarding the subjects of both neuroscience and statistics.

Furthermore, another aspect that could be introduced to the model is ripple
modulation, as the original data also includes times of ripple events. Ripple events
are also a neuroscientific concept in which neurons are excessively active, meaning
that neurons fire more than usual. We believe that a model including both theta-
and ripple modulation as covariates would better represent the actual underlying
network. Both of these suggestions are motivated by English et al. (2017).

Only include PYR-INT pairs

As was originally done by English et al. (2017), the model could possibly be fur-
ther improved by only including Pyramidal-Interneuron (PYR-INT) pairs in the
regression model. When including every single neuron, our model may explain ef-
fects that are not wished to be included in the model. While we could say nothing
of whether the resulting network from such a model would model the true under-
lying network any better than what our models do, it would be interesting to see a
comparison between the two.

Lag and number of history and coupling bases

Lastly, we would like to address the matter of time lag and the different bases used.
In this thesis, we have operated with a time lag window of 161ms, meaning that
we at most consider what happened the previous 161ms milliseconds. However,
if looking back at Figure 2.4, most forms of connections happen in the 0-100ms
interval, which means that this may be a better interval to model the coupling ef-
fects. To do this one would place the cosine bases so they cover these intervals.
The cosine bases could further be experimented with by changing the constants a
and c in Equation (3.12), and also by changing the placement of the cosine bases,

64



as decided by the φl-parameter. This is because the values used in our thesis was
directly matched from Pillow et al. (2008). Custom-fitting these parameters may
therefore lead to a network representing the common, direct and indirect connec-
tions more accurately. We also matched the number of cosine bases directly from
Pillow et al. (2008), with Lhist = 10 and Lconn = 4. The number of each could be
experimented with, to also see how the resulting networks differs.

7.5 Conclusion

In this thesis, we considered the spontaneous part of a stimulation experiment
where originally a neuron was stimulated. We implemented a lasso penalized re-
gression model based on each neurons spike train, using the spike train itself as
response variable, with history effects, coupling effects and multi unit activity as
covariates. Based on on this model, we constructed three networks of neurons.
Two of these were based on parameter estimates found using λmin, λ1se, whereas
the third was based on the FWER corrected p-values when λ1se was used in the
multi-sample splitting. These networks show how recorded neurons relate to each
other, and thus how information flow between them. Our model works well for
active neurons, though it ran into minor problems performing the multi splitting
for somewhat inactive neurons.

65



66



Bibliography

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: A prac-
tical and powerful approach to multiple testing. Journal of the Royal Statistical
Society. Series B (Methodological) 57 (1), 289–300.

Boyd, S., Vandenberghe, L., 2009. Convex Optimization. Cambridge University
Press.

Dezeure, R., Bühlmann, P., Meier, L., Meinshausen, N., 2015. High-dimensional
inference: Confidence intervals, p-values and R-software hdi. Statistical Science
30 (4), 533–558.

Dobson, A. J., Barnett, A. G., 2008. An Introduction To Generalized Linear Mod-
els, 3rd Edition. Chapman & Hall / CRC Press.

English, D. F., McKenzie, S., Evans, T., Kim, K., Yoon, E., Buzsáki, G., 2017.
Pyramidal cell-interneuron circuit architecture and dynamics in hippocampal
networks. Neuron 96 (2), 505–520.

Fahrmeir, L., Kneib, T., Lang, S., Marx, B., 2013. Regression – Models, methods
and applications. Springer.

Fawad, H., 2017. Modelling neuronal activity using lasso regularized logistic
regression. Master’s thesis, Norwegian University of Science and Technology.
URL https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/
handle/11250/2448349/17291_FULLTEXT.pdf?sequence=1&
isAllowed=y

Goemann, J. J., Solari, A., 2014. Multiple hypothesis testing in genomics. Statis-
tics in Medicine 33 (11).

67

https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2448349/17291_FULLTEXT.pdf?sequence=1&isAllowed=y
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2448349/17291_FULLTEXT.pdf?sequence=1&isAllowed=y
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2448349/17291_FULLTEXT.pdf?sequence=1&isAllowed=y


Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning;
Data mining, inference, and prediction, 2nd Edition. Springer.

Hastie, T., Tibshirani, R., Wainwright, M., 2015. Statistical Learning with Spar-
sity: The Lasso and Generalizations. Monographs on Statistics and Applied
Probability. Chapman & Hall / CRC Press.

McCullagh, P., Nelder, J. A., 1989. Generalized Linear Models, 2nd Edition. Chap-
man & Hall.

McKenzie, S., 2016. Buzsaki lab webshare.
URL https://buzsakilab.nyumc.org/datasets/McKenzieS/
JS13/20161005_161005_110726/

Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J.,
Simoncelli, E. P., 2008. Spatio-temporal correlations and visual signalling in a
complete neuronal population. Nature 545 (7206), 995–999.

Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., Lamantia, A.-S., White,
L. E., 2018. Neuroscience; International Fifth Edition. Oxford University Press.

68

https://buzsakilab.nyumc.org/datasets/McKenzieS/JS13/20161005_161005_110726/
https://buzsakilab.nyumc.org/datasets/McKenzieS/JS13/20161005_161005_110726/


Appendix A
R code

A.1 Cosine bases

1 l i b r a r y ( pracma )
2

3 g e t B a s i s = f u n c t i o n ( nBases , b i n S i z e ) {
4 b = b i n S i z e ∗ nBases
5 peaks = c ( b i n S i z e , b i n S i z e ∗10∗ nBases )
6

7

8 # n o n l i n e a r i t y f o r s t r e t c h i n g x a x i s ( and i t s i n v e r s e )
9 n l i n = f u n c t i o n ( x ) { l o g ( x+1e−20)}

10 i n v n l = f u n c t i o n ( x ) {exp ( x )−1e−20}
11

12

13 # G e n e r a t e b a s i s o f r a i s e d c o s i n e s
14 y ra ng e = n l i n ( peaks +b )
15 db = d i f f ( y r a ng e ) / ( nBases−1)
16 c e n t e r s = seq ( y r an g e [ 1 ] , y r an g e [ 2 ] , db )
17 maxt = i n v n l ( y r an g e [ 2 ] + 2 ∗db )−b # o r i g i n a l l y db
18 i h t = seq ( b i n S i z e , maxt , b i n S i z e )
19 n t = l e n g t h ( i h t )
20

21

22 r a i s e d C o s i n e B a s i s = f u n c t i o n ( x , c , dc ) {
23 ( cos ( max(−pi , min ( pi , ( x−c ) ∗ p i / dc / 2 ) ) ) +1) / 2
24 }
25

26 i h b a s i s = m a t r i x (NA, nrow = nt , n c o l = nBases )
27 f o r ( i i n seq ( 1 , n t ) ) {
28 f o r ( j i n seq ( 1 , l e n g t h ( c e n t e r s ) ) ) {

69



29 i h b a s i s [ i , j ] = r a i s e d C o s i n e B a s i s ( n l i n ( i h t +b ) [ i ] , c e n t e r s [ j ] ,
db )

30 }
31 }
32

33 l a g s = i n v n l ( c e n t e r s )−b
34

35 l i b r a r y ( pracma )
36 i h b a s = o r t h ( i h b a s i s )
37

38 r e t u r n ( l i s t ( bas = i h b a s i s , bas o r t h = i h b a s , l a g s = l a g s , t a u N =
maxt ) )

39 }
40

41

42 # Using t h e g e t B a s i s f u n c t i o n t o c r e a t e s a i d b a s e s f o r b i n s i z e
0 .001

43 b i n S i z e <− 0 .001
44 nBases h i s t o r y <− 10
45 nBases c o u p l i n g <− 4
46

47 h i s t B a s e s <− g e t B a s i s ( nBases h i s t o r y , b i n S i z e )
48 c o u p l i n g B a s e s <− g e t B a s i s ( nBases c o u p l i n g , b i n S i z e )
49

50 h i s t B a s e s C o r r <− h i s t B a s e s $ bas o r t h [ 1 : 1 6 1 , ]
51 c o u p l i n g B a s e s C o r r <− c o u p l i n g B a s e s $ bas o r t h [ 1 : 1 6 1 , ]
52

53 dpu t ( h i s t B a s e s C o r r , p a s t e ( ” h i s t o r y B a s e s . dd ” ) )
54 dpu t ( c o u p l i n g B a s e s C o r r , p a s t e ( ” c o u p l i n g B a s e s . dd ” ) )

70



A.2 Model matrix and lasso penalized regression

1 # i n s t a l l . p a c k a g e s ( ” g lmne t ” )
2 l i b r a r y ( g lmne t )
3

4

5 # ############ A l l p a r a m e t e r s t h a t may be a d j u s t e d
####################

6 l e n g t h P e r i o d <− 1000000 # l e n g t h i n ms of t ime we a r e t o a n a l y z e
7 c u r r e n t E x p e r i m e n t <− 589
8 # #######################################################
9

10

11

12 c l u <− r e a d . de l im ( ” Exper imen t2 c l u ” ) # Neurons
13 r e s <− r e a d . de l im ( ” Exper imen t2 r e s ” ) # Timestamps
14

15 res InMs <− r e s / 20 # O r i g i n a l l y i n Hz
16 s t a r t T i m e <− 712098
17

18

19 t i m e S t i m S t a r t <− 2130 .7 ∗1000 # f o r ms
20 t imeSt imEnd <− 2804 .5 ∗1000 # f o r ms
21

22

23 # A l l n e u r o n a l a c t i v i t y b e f o r e s t i m u l a t i o n
24 resNew <− res InMs [ resInMs<t i m e S t i m S t a r t ]
25 # A l l r e s p e c t i v e t i m e s f o r n e u r o n a l a c t i v i t y b e f o r e s t i m u l a t i o n
26 cluNew <− c l u [ resInMs<t i m e S t i m S t a r t ]
27

28

29 #Removing a l l ze ro ’ s a t t h e s t a r t
30 c l u F i x <− cluNew [ min ( which ( cluNew ! = 0 ) ) : l e n g t h ( resNew ) ]
31 #Removing a l l ze ro ’ s a t t h e s t a r t
32 r e s F i x <− resNew [ min ( which ( cluNew ! = 0 ) ) : l e n g t h ( resNew ) ]
33

34 # Note : t h e f i r s t e n t r y o f r e s F i x i s 712099 found on row A90912 i n
t h e o r i g i n a l f i l e

35

36

37

38 # #######################################################
39

40

41

42 sp ikeMat <− m a t r i x ( 0 , n c o l = l e n g t h P e r i o d , nrow = 13) #nrow
i t e r a t e s a l l n e u r o n s ( 0 , 2−13 i n e x p e r i m e n t 589)

43

44

71



45 #We now have t o f i l l i n t h e s p i k e s from resNew i n sp ikeMat a t t h e
c o r r e c t p l a c e s

46 i <− 1 # i n i t i a t i n g w h i l e loop
47 w h i l e ( round ( r e s F i x [ i ] )−s t a r t T i m e <= l e n g t h P e r i o d ) { # c o n t i n u e t i l l

you r e a c h d e s i r e d l e n g t h P e r i o d
48 i f ( c l u F i x [ i ] ! = 0 ) { # I f t h e r e i s a s p i k e , p u t a s s i g n a t c o r r e c t

p l a c e i n sp ikeMat
49 whichNeuron <− c l u F i x [ i ]
50 sp ikeMat [ ( whichNeuron ) , ( round ( r e s F i x [ i ] )−s t a r t T i m e ) ] <− 1
51 i <− i +1
52 } e l s e i f ( c l u F i x [ i ] == 0) { #Add 0 i n sp ikeMat
53 sp ikeMat [ 1 , ( round ( r e s F i x [ i ] )−s t a r t T i m e ) ] <− ( sp ikeMat [ 1 , ( round

( r e s F i x [ i ] )−s t a r t T i m e ) ] ) + 1
54 i <− i +1
55 }
56 }
57 p r i n t ( ” done w h i l e loop ” )
58

59

60

61 # ######### R e t r i e v i n g p r e v i o u s l y c a l c u l a t e d b a s e s ##########
62 h i s t o r y B a s e s <− d g e t ( ” h i s t o r y B a s e s . dd ” )
63 c o u p l i n g B a s e s <− d g e t ( ” c o u p l i n g B a s e s . dd ” )
64

65 r e sponseGone <− 161
66 # Rever sed o f t h e b a s e s as we a r e t o go back i n t ime
67 r e v H i s t <− a p p l y ( t ( h i s t o r y B a s e s ) , 1 , r e v )
68 revCoup <− a p p l y ( t ( c o u p l i n g B a s e s ) , 1 , r e v )
69

70

71 ### Loop i t e r a t i n g t h r o u g h a l l n e u r o n s f o r g i v e n e x p e r i m e n t ###
72 whichNeurons <− c ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 ) # For e x p e r i m e n t 589
73

74 i t e r a t i o n <− 1
75 f o r ( i i n whichNeurons ) {
76

77 p r i n t ( ” ###################### Working on neuron
#################### ” )

78 p r i n t ( i )
79

80

81 focusNeuron <− whichNeurons [ i t e r a t i o n ] #The neuron we a r e
t e s t i n g

82 i t e r a t i o n <− i t e r a t i o n + 1
83

84 colNumb <− 10+(4∗ ( dim ( sp ikeMat ) [1]−2) ) +1 #10 h i s t o y + 4∗
ne ighbourNeuron n o t 0 + 1 f o r 0− s p i k e s

85 n e i g h b o u r N e u r o n s <− ( 1 : dim ( sp ikeMat ) [ 1 ] ) [−1][−( focusNeuron −1) ] #
N e i g h b o u r i n g n e u r o n s t o a n a l y z e d neuron

72



86

87

88 t h i s Y <− sp ikeMat [ focusNeuron , ( r e sponseGone +1) : l e n g t h P e r i o d ]
89

90

91 # Components t h a t a r e t o be p a r t o f t h e d e s i g n ma t r i x ,
p r e a l l o c a t i n g

92 t h i s X c <− m a t r i x ( 0 , nrow = ( l e n g t h P e r i o d−r e sponseGone ) , n c o l =
(4 ∗ ( dim ( sp ikeMat ) [1]−2) ) ) # Coupl ing , 4∗# ne ighbour , n o t 0

93 t h i s X h <− m a t r i x ( 0 , nrow = ( l e n g t h P e r i o d−r e sponseGone ) , n c o l =
10) # H i s t o r y

94 thisXMUA <− m a t r i x ( 0 , nrow = ( l e n g t h P e r i o d−r e sponseGone ) , n c o l =
1) #MUA

95 p r i n t ( ” done p r e a l l o c a t i n g ” )
96

97

98

99 # H i s t o r y e f f e c t s
100 a l l Y <− sp ikeMat [ focusNeuron , 1 : l e n g t h P e r i o d ]
101 f o r ( i i n 1 : ( l e n g t h P e r i o d−r e sponseGone ) ) {
102 t h i s X h [ nrow <− i , ] <− m a t r i x ( a l l Y [ ( responseGone + i −1) : i ] , nrow

= 1)%∗%r e v H i s t
103 }
104 p r i n t ( ” done h i s t o r y ” )
105

106

107

108 # Coup l ing e f f e c t s
109 c o u n t e r <− 1
110 f o r ( k i n n e i g h b o u r N e u r o n s ) {
111 a l l Y <− sp ikeMat [ k , 1 : l e n g t h P e r i o d ]
112 f o r ( i i n 1 : ( l e n g t h P e r i o d−r e sponseGone ) ) {
113 t h i s X c [ nrow <− i , n c o l <− (1+4∗ ( c o u n t e r −1) ) : ( 4 ∗ c o u n t e r ) ] <−

m a t r i x ( a l l Y [ ( responseGone + i −1) : i ] , nrow = 1)%∗%revCoup
114 }
115 c o u n t e r <− c o u n t e r + 1
116 }
117 p r i n t ( ” done c o u p l i n g ” )
118

119

120

121 #MUA
122 thisXMUA [ , n c o l <− 1] <− sp ikeMat [ 1 , ( r e sponseGone +1) :

l e n g t h P e r i o d ]
123 p r i n t ( ” done MUA” )
124

125

126

127 #Combine , f i r s t 10 c o l s i s h i s t o r y , r e s t e x c e p t l a s t i s c o u p l i n g

73



, l a s t i s MUA
128 t h i s X <− c b i n d ( th i sXh , th i sXc , thisXMUA ) # f i r s t 10 c o l s i s

h i s t o r y , t h e n a l l e x c e p t l a s t c o u p l i n g , l a s t MUA
129 p r i n t ( ” done combin ing ” )
130

131

132

133 # S e t t i n g column names
134 colNames <− c ( p a s t e ( ”H” , 1 : 1 0 , sep = ” . ” ) , p a s t e ( ”C” , r e p (

ne ighbourNeurons , each = 4) , 1 : 4 , sep = ” . ” ) , ”MUA” )
135 co lnames ( t h i s X ) = colNames
136

137 t i m e S e t <− 1 : ( l e n g t h P e r i o d−r e sponseGone )
138 x <− t h i s X [ t i m e S e t , ]
139 dpu t ( x , p a s t e ( ” des ignMatExp ” , c u r r e n t E x p e r i m e n t , ” Neuron ” ,

focusNeuron , ” . dd ” , sep = ” ” ) )
140 y <− t h i s Y [ t i m e S e t ]
141 dpu t ( y , p a s t e ( ” responseVecExp ” , c u r r e n t E x p e r i m e n t , ” Neuron ” ,

focusNeuron , ” . dd ” , sep = ” ” ) )
142 # Note : I t might be c l e v e r t o n o t save a l l x and y as t h e x−m a t r i x

i s a r a t h e r l a r g e f i l e ! ( most d e s i g n m a t r i c e s were
a p p r o x i m a t e l y 0 . 6GB)

143

144

145

146 # ############# F i t t i n g models ###############
147

148 # Redundant
149 f i t <− glm ( y ˜ x , f a m i l y = b i n o m i a l )
150 p r i n t ( ” done f i t ” )
151 p r i n t ( summary ( f i t ) )
152 dpu t ( summary ( f i t ) $ c o e f f i c i e n t s , p a s t e ( ” glmCoeffsExp ” ,

c u r r e n t E x p e r i m e n t , ” Neuron ” , focusNeuron , ” . dd ” , sep = ” ” ) )
153

154

155 #### Th i s i s t h e l a s s o p e n a l i z e d model g i v i n g our c o e f f i c i e n t s
####

156 f i tNew <− cv . g lmne t ( x , y , f a m i l y = ” b i n o m i a l ” , a l p h a = 1)
157 pdf ( p a s t e ( ” binDevExp ” , c u r r e n t E x p e r i m e n t , ” Neuron ” , focusNeuron ,

sep = ” ” ) ) # P l a c e t h e p l o t a s pdf i n a f i l e
158 p l o t ( f i tNew )
159 dev . o f f ( )
160 p r i n t ( f i tNew $ lambda . min )
161 dpu t ( c o e f ( f i tNew , s = ” lambda . min ” ) , p a s t e ( ” cv . g lmne tCoe f f sExp ” ,

c u r r e n t E x p e r i m e n t , ” Neuron ” , focusNeuron , ” . dd ” , sep = ” ” ) )
162 p r i n t ( c o e f ( f i tNew ) )
163 p r i n t ( ” done f i tNew ” )
164

165

74



166

167 # newFi t <− g lmne t ( t h i s X [ t i m e S e t , ] , t h i s Y [ t i m e S e t ] , f a m i l y = ”
b i n o m i a l ” , a l p h a = 1)

168 pdf ( p a s t e ( ” s h r i n k E x p ” , c u r r e n t E x p e r i m e n t , ” Neuron ” , focusNeuron ,
sep = ” ” ) )

169 p l o t ( f i tNew $ glmne t . f i t , xva r = ” lambda ” )
170 a b l i n e ( v= l o g ( f i tNew $ lambda . 1 se ) )
171 a b l i n e ( v= l o g ( f i tNew $ lambda . min ) )
172 dev . o f f ( )
173 p r i n t ( ” done newFi t ” )
174

175

176

177 f i t 1 s e <− g lmne t ( x , y , f a m i l y = ” b i n o m i a l ” , a l p h a = 1 , lambda =
f i tNew $ lambda . 1 se )

178 c o e f ( f i t 1 s e )
179 dpu t ( c o e f ( f i t 1 s e ) , p a s t e ( ” g lmne tCoef f sExp ” , c u r r e n t E x p e r i m e n t , ”

Neuron ” , focusNeuron , ” . dd ” , sep = ” ” ) )
180 p r i n t ( ” done f i t 1 s e ” )
181

182 }

75



A.3 Multi-sample splitting

1 # i n s t a l l . p a c k a g e s ( ” h d i ” )
2 # i n s t a l l . p a c k a g e s ( ” g lmne t ” )
3 l i b r a r y ( h d i )
4 l i b r a r y ( g lmne t )
5

6

7 # ####### What a r e we c u r r e n t l y a n a l y z i n g #############
8 c u r r e n t E x p e r i m e n t <− 589
9 chosenB <− 500

10 # ###################################################
11

12

13 whichNeurons <− c ( 1 2 , 7 , 8 , 9 , 1 0 ) # For e x p e r i m e n t 589 , c
( 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 )

14 i t e r a t i o n <− 1
15

16

17 f o r ( k i n whichNeurons ) {
18

19 focusNeuron <− whichNeurons [ i t e r a t i o n ]
20 i t e r a t i o n <− i t e r a t i o n +1
21

22 b i n S i z e <− 0 .001
23

24 x <− d g e t ( p a s t e ( ” des ignMatExp ” , c u r r e n t E x p e r i m e n t , ” Neuron ” ,
focusNeuron , ” . dd ” , sep = ” ” ) )

25 y <− d g e t ( p a s t e ( ” responseVecExp ” , c u r r e n t E x p e r i m e n t , ” Neuron ” ,
focusNeuron , ” . dd ” , sep = ” ” ) )

26

27

28 #### F u n c t i o n f o r minimum ####
29 l a s s o . cv . min <− f u n c t i o n ( x , y , n f o l d s = 10 , g rouped = nrow ( x ) >

3 ∗ n f o l d s , . . . )
30 {
31 f i t . cv <− cv . g lmne t ( x , y , n f o l d s = n f o l d s , g rouped = grouped ,

. . . )
32 s e l <− p r e d i c t ( f i t . cv , t y p e = ” nonze ro ” , s = f i t . cv $ lambda . min

)
33 s e l [ [ 1 ] ]
34 }
35

36

37 # ##### P e r f o r m i n g t h e m u l t i S p l i t #####
38 m u l t i S p l i t <− m u l t i . s p l i t ( x , y , B = chosenB , c i = FALSE ,

c l a s s i c a l . f i t = glm . pva l , model . s e l e c t o r = l a s s o . cv , a r g s .
model . s e l e c t o r = l i s t ( f a m i l y = ” b i n o m i a l ” ) , v e r b o s e = TRUE)

39

76



40 ## Sav ing t h e i n t e r e s t i n g p a r t s o f t h e m u l t i s p l i t ( p v a l ) ##
41 dpu t ( m u l t i S p l i t , p a s t e ( ” m u l t S p l i t E x p ” , c u r r e n t E x p e r i m e n t , ”

Neuron ” , focusNeuron , ” . dd ” , sep = ” ” ) )
42 dpu t ( m u l t i S p l i t $ p v a l . c o r r , p a s t e ( ” m u l t S p l i t P v a l C o r r E x p ” ,

c u r r e n t E x p e r i m e n t , ” Neuron ” , focusNeuron , ” P v a l C o r r ” , ” . dd ” ,
sep = ” ” ) )

43 }

77


