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Summary

In this thesis, we address the problem of analyzing data measured on a continuous
scale with a lower limit of detection and zero inflation, for univariate, bivariate, and
longitudinal data. We specify a censored two-part mixture model, as proposed by
Moulton and Halsey (1995). The model consists of one discrete part representing
the proportion of the sample with zero values, and one continuous part for the mag-
nitude of the response. This thesis provides a detailed evaluation using simulations
of the two-part model with interval censoring compared to its simpler variants, the
Tobit model and the uncensored two-part model, as well as naive substitution of
the censored observations with half the detection limit. We simulate data scenarios
with varying detection limits, parameter values, and proportions of zeroes. The
three simpler models resulted in misleading parameter estimates as their assump-
tions were violated, but also the censored two-part model was inappropriate in
some scenarios due to over-parameterization.

The four candidate models are applied to two datasets: (1) Borrelia antibody
concentrations in Sør-Trøndelag, and (2) data on cytokine concentrations in preg-
nant women with different autoimmune rheumatic diseases. The cluster structure
of the data due to repeated measurements in the latter application is accounted for
by including random effects in both parts of the model.

In the former application, the two-part model with interval censoring is demon-
strated to work well for estimating the prevalence of borrelia infections, but the
high amount of uncertainty due to a low number of uncensored observations makes
the simpler logistic regression more feasible in this particular case. In the sec-
ond application, three cytokines with different proportions of censored samples are
analyzed. For all three, the binary mixture models are found to be superior to
the one-part models. With the two-part models, significant differences in the time
profiles between the diagnostic groups were found in two of the cytokines.

In a search for multivariate methods for analysis of the cytokine data, we spec-
ified three bivariate models; A bivariate Tobit model, a two-part mixture model,
and a four-part mixture model. The two first-mentioned have shown promise in
other applications, but none of the models were suitable for the problem at hand.
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Sammendrag

I denne oppgaven tar vi opp problemet med å analysere data målt på en kontin-
uerlig skala med en nedre deteksjonsgrense og null-inflasjon, for univariate, bivari-
ate og longitudinelle data. Vi spesifiserer en sensurert binær blandingsmodell, som
foreslått av Moulton og Halsey (1995). Modellen består av en diskret del som rep-
resenterer andelen nuller i utvalget, og en kontinuerlig del for størrelsen på de pos-
itive responsene. Denne oppgaven gir en detaljert evaluering av den binære bland-
ingsmodellen med intervallsensurering, sammenlignet med dens enklere varianter,
Tobitmodellen og den usensurerte binære blandingsmodellen, samt å naivt bytte ut
de sensurerte observasjonene med halvparten av deteksjonsgrensen. Vi simulerer
data med varierende deteksjonsgrenser, parameterverdier og mengde nuller. De tre
enklere modellene gir misvisende resultater ettersom de underliggende antakelsene
brytes. Også den binære blandingsmodellen med intervallsensurering er upassende
i enkelte scenario grunnet overparametrisering.

De fire kandidatmodellene blir anvendt på to datasett: (1) Konsentrasjoner
av borrelioseantistoff i Sør-Trøndelag, og (2) data med cytokinkonsentrasjoner hos
gravide kvinner med ulike autoimmune revmatiske sykdommer. Klyngestrukturen i
de sistnevnte dataene grunnet repeterte målinger blir tatt hånd om ved å inkludere
tilfeldige effekter i begge delene av blandingsmodellen.

I den første anvendelsen viser den binære blandingsmodellen med intervallsen-
surering seg å fungere godt til å estimere prevalensen av borrelioseinfeksjoner, men
et lavt antall usensurerte observasjoner gjør at estimeringene blir svært usikre.
Derfor kan enkel logistisk regresjon sies å være mer praktisk. I den andre anven-
delsen ble tre cytokiner med ulik andel sensurerte observasjoner analysert. For alle
tre viste de binære blandingsmodellene seg å være overlegne endelsmodellene. Sig-
nifikante forskjeller i tidsprofilene mellom diagnosene ble funnet i to av cytokinene.

I søket etter multivariate metoder for å analysere cytokindataene, ble tre bi-
variate modeller undersøkt; En bivariat Tobitmodell, en binær blandingsmodell og
en firedels blandingsmodell. De to førstnevnte har vist lovende resultater i andre
anvendelser, men ingen av modellene var adekvate for de aktuelle dataene.
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1 | Introduction

It is a common phenomenon in medical research to come across data characterized
by a point mass at zero and a continuous distribution of positive responses. The
concentration of observations at zero could arise from several circumstances. Ex-
cluding the possibility that the point mass is caused by some technical error, the
observations in the point mass are typically either true zeroes or low values indis-
tinguishable from zero. A classic example of the former is data on the occurrence of
some phenomenon over a specific period of time, such as alcohol consumption (Liu
et al., 2016), symptom severity (Mahmud et al., 2010; Xing et al., 2017), and med-
ical expenditures (Smith et al., 2014). In these cases, the phenomenon in question
truly has not occurred for parts of the population, while the rest has a positive
score. Alternatively, the measurements are subject to a lower limit of detection
(LOD), and parts or all of the observations recorded as zero would be positive if
the measurements were more sensitive. This is typical for measurements of concen-
tration, such as viral loads (Dagne and Huang, 2015; Su and Luo, 2017), cytokine
levels (Bernhardt, 2018), and antibody concentrations (Moulton and Halsey, 1995).

In this thesis, the focus will primarily lie on the second category, where the true
values of the observations recorded as zero are not known, but they are determined
to be below a certain limit. This is motivated by two applications with data on
this form:

(1) Estimation of the prevalence of Lyme disease from borrelia antibody concen-
trations in blood sera.

(2) Comparison of cytokine levels in women with autoimmune rheumatic diseases
and healthy controls, during pregnancies.

The first application is conducted on a dataset with 981 measurements of antibody
concentrations in blood sera from former Sør-Trøndelag county that was collected
as part of a medical undergraduate research thesis by Holt and Eriksen (2018).
The concentrations were measured with Enzyme-Linked Immunosorbent Assays
(ELISA) and subject to a lower detection limit. The prevalence of Lyme disease
is increasing in many countries, including Norway (Jore et al., 2011). In order to
measure possible changes in the rate of borreliosis infections, it is of importance to
determine the present prevalence in the population, which is currently not known.

The second application is concerned with autoimmune rheumatic diseases. It
is well established that these diseases are affected differently by pregnancies. The
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Chapter 1. Introduction

reasons for this are not fully understood, but some of the findings have been linked
to changes in cytokine levels (Swain and Jena, 2016). It is therefore hypothesized
that cytokines may be used in targeted treatment of autoimmune rheumatic dis-
eases. For the purpose of examining this link, cytokine levels are measured in 75
pregnant women, 56 of which have an autoimmune rheumatic diagnosis, at different
time points before, during, and after pregnancy in a study conducted at NTNU.
The cytokine concentrations are measured with multiplex assays and subject to
lower detection limits.

There is a considerable amount of literature proposing different methods for
dealing with the problem of detection limits. Replacing the recorded zeroes with a
substitute value, such as half the detection limit, may work well when the propor-
tion of censored observations is low. For larger proportions, it is known to cause
bias in estimates and predictions (Hornung and Reed, 1990).

Tobin (1958) suggested assuming an underlying continuous distribution whose
values below the detection limit are considered unobserved. This model is shown
to work well when the proportion of censored observations is close to what is
expected from the distribution of the non-censored observations. This constraint
was relaxed by Cragg (1971), which proposed a two-part mixture model where the
probability of falling below the limit of detection and the magnitude of the non-
censored response are determined by two separate processes. Moulton and Halsey
(1995) expanded the model further by explicitly allowing for the probability that
some of the censored observations are the results of interval censoring from the
continuous distribution. Mixed effects were included in both model parts by Berk
and Lachenbruch (2002) to account for the correlation between measurements from
the same individual commonly present in longitudinal studies.

In the bivariate setting, Lyles et al. (2001) introduced a censored model, analo-
gous to the model by Tobin (1958) in the univariate setting, based on the assump-
tion that all the data has originated from a latent bivariate continuous distribution.
This model was generalized by Chu et al. (2005), which proposed adding a sub-
LOD component to relax the restrictions on the proportion of both variables falling
below the LOD.

We start this thesis by introducing some relevant background in Chapter 2 on
the prevalence of Lyme disease and the link between cytokines and autoimmune
rheumatic diseases in pregnancies. In this chapter, we also describe the technologies
used to conduct the measurements giving rise to the detection limits. Then, in
Chapter 3, the statistical methods used in the thesis are presented. First, we
specify the statistical models with expansions to longitudinal and bivariate data.
This is followed by methods for estimating the model parameters and evaluating
the model performance. Lastly, Monte Carlo simulation studies are introduced.

Chapter 4 and 5 are dedicated to the design and results of a simulation study
that examines the performance of a set of candidate models commonly used to
handle lower detection limits on data with various properties. The findings are
utilized in the analysis of the borrelia data in Chapter 6, and both longitudinal
and bivariate analysis of the cytokine data in Chapter 7. Finally, in Chapter 8 we
offer a conclusion and point out possible directions for further work on the topic.
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2 | Background

In this Chapter, we present some relevant background on the two applications
motivating this thesis, namely estimating the prevalence of Lyme borreliosis in
Sør-Trøndelag and the time profiles of cytokine levels in pregnant women with au-
toimmune rheumatic diseases. We also described the technologies used to conduct
the measurements to gain an understanding of why the data is subject to lower
detection limits.

2.1 Borrelia Antibody Concentration across Regions

2.1.1 Lyme Borreliosis and its Prevalence
Lyme borreliosis, also known as Lyme disease, is the most common tick-borne
disease in Europe and North-Amerika. It is caused by an infection of bacteria
from the group Borrelia burdorferi sensu lato, which consists of multiple species.
Hereafter this group will be referred to as B. burdorferi. The disease transmits to
humans or other animal hosts when unfed flat ticks attach to the skin of the host
and inject saliva during feeding. Usually, a feeding period of at least 36 hours is
needed for transmission to occur, but it can be more rapid (Stanek et al., 2012).

The most common manifestation of Lyme disease is erythema migrans, a red
rash at the site of the tick bite that eventually resolves, even without treatment.
The infection can, however, spread to other tissues and organs, and may cause more
severe reactions involving the skin, nervous system, joints, or heart. Since there
are currently no vaccines against B. burdorferi, the best way to prevent infection
is to avoid walking through vegetation with exposed skin and checking the skin for
ticks regularly.

The prevalence of Lyme disease is increasing in many countries, including Nor-
way. Jore et al. (2011) compared the then prevalence of ticks in Norway with
historical data from 1983 and 1943, and found clear evidence that ticks are now
present at higher altitudes and latitudes than before. The reasons for this are
debated, but many ascribe the shifts to climate changes. In order to measure pos-
sible changes in the rate of borreliosis infections, it is of importance to determine
the current prevalence in the population. Since only cases of disseminated Lyme
disease are reported, the exact prevalence in Norway is not currently known. Some
studies have estimated the prevalence in certain regions of Norway, but only one
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Chapter 2. Background

study known to us have included Sør-Trøndelag county. Vestrheim et al. (2016)
measured the concentration of Borrelia IgG antibodies in blood serum using two
different types of immuno assays, and found the prevalence in Sør Trøndelag to be
3.9%(95 % CI: 2.3%−6.4%) and 3.7%(95 % CI: 2.4%−5.7%). In this study, young
people were over-represented. Thus the results may be unreliable.

2.1.2 Enzyme-Linked Immunosorbent Assays (ELISA)

ELISA measures the concentration of substances, such as antibodies and proteins.
The analyte is added to a plastic well which is covered with a substance that the
analyte of interest binds to, such that the analyte is immobilized. This technology
makes it possible to wash the wells to remove unbound material without removing
the substance of interest (Crowther, 1995).

The sample is added to a dry well such that the analyte binds to the substance
covering the bottom. The unbound materials are removed through washing before
detection-antibodies bound to enzymes are added. They attach to the bounded
analyte, and again the residue is removed. Lastly, a substrate that reacts with
the enzymes in a color reaction is added. The color reaction may be chromogenic,
fluorescent, or chemiluminescent. The first mentioned results in visual color, while
the last two must be measured with specific instruments. Because the amount of
enzymes is directly linked to the quantity of the analyte, the resulting color intensity
corresponds to the initial concentration in the sample. A schematic representation
of the process is shown in Figure 2.1.

(a) (b) (c) (d)

Figure 2.1: Schematic representation of ELISA for measuring the concentration of an
antibody. (a) Plastic wells covered with analyte-specific antigens. (b) The sample is
added and the antibodies attach to the antigens. (c) ELISA-antibodies with enzymes are
added and attach to the antibodies of interest. (d) A substrate is added that reacts with
the enzymes and gives a color reaction. The resulting color intensity corresponds with
the concentration in the sample.

The limit of detection (LOD) is the lowest concentration that can be determined
to be significantly different from a blank, i.e. the lowest quantity of the substance
that can be distinguished from no substance (Fortunato, 2016). Typically, the LOD
is set to two standard deviations above the mean of the blanks, based on multiple
measurements of the color intensity of blanks.
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2.2 Cytokine Concentrations during Pregnancies

2.2 Cytokine Concentrations during Pregnancies

2.2.1 Autoimmune Rheumatic Diseases and Pregnancy

Some autoimmune rheumatic diseases are known to be affected by pregnancies.
Among these are systemic lupus erythematosus (SLE) and rheumatoid arthritis
(RA), including seronegative rheumatoid arthritis (SN-RA).

SLE is characterized by reoccurring inflammations in connective tissue. In par-
ticular, patients with SLE are prone to kidney failure. The disease is predominantly
seen in females, which typically have a first onset between puberty and menopause
(Mok and Lau, 2003). Rheumatoid arthritis is characterized by inflammation and
swelling in the joints of fingers and toes. If left untreated, the disease can cause bone
deformation and destruction (McInnes and Schett, 2011). Patients with seroposi-
tive RA has a presence of autoantibodies in the blood serum, that is not found in
patients with SN-RA. The two groups are often treated as one, but recent studies
have suggested that the seronegative status is associated with a different prognosis
of the disease (Ajeganova and Huizinga, 2015).

Numerous studies have shown a higher risk of flare in SLE patients during preg-
nancy, compared to non-pregnant SLE-patients. This coincides with an increased
rate of premature delivery and fetal loss (Gordon, 2004). On the other hand,
approximately 75% of patients with RA experience some degree of improvement
during pregnancy. Over 50% improve as early as the first trimester. Some studies
have indicated that the probability of improvement is even greater among patients
with SN-RA. Only a quarter show no improvement or worsening during the course
of the pregnancy. However, most patients who improve, relapse postpartum (after
birth) (Swain and Jena, 2016).

Cytokines are small proteins that have specific effects on the interaction and
communication between cells (Zhang and An, 2007). There are many types of
cytokines, and they play a vital role in the outcome of a pregnancy. Studies of
pregnant women with RA and SLE have shown some significant differences in
cytokine expressions compared to healthy women. This has been linked to activity
in the underlying disease. Because of this, it is hypothesized that cytokines can
be used in targeted treatment of autoimmune rheumatic diseases (Østensen et al.,
2006).

2.2.2 Multiplex Assays

Multiplex assays make use of magnetic beads to measure multiple analytes simulta-
neously (Gupta et al., 2014). Each bead is given a unique color through mixtures
of red and infrared color and is coated with antibodies to target a specific cy-
tokine. When a sample is added to the mixture of color-coded beads, the cytokines
are captured by the antibodies. After a series of washes in order to remove un-
bound materials, detection antibodies are added. These antibodies attach to the
bounded cytokines and form an antibody sandwich around the analytes. Lastly,
streptavidin-phycoerythrin (SA-PE) is added and binds to the detection antibodies.
A schematic representation is given in Figure 2.2.

5



Chapter 2. Background

(a) (b) (c) (d)

Figure 2.2: Schematic representation of a multiplex assay. (a) Uniquely colored beads
coated with different analyte-specific antibodies. (b) The sample is added and the cy-
tokines attach to the antibodies. (c) Detection antibodies are added and form a sandwich
of antibodies around the cytokines. (d) SA-PE is added and binds to the detection anti-
bodies. The figure is inspired by Bio-Rad Laboratories, Inc. (nd).

The mixture is analyzed in an instrument with two lasers. One detects the color
of the bead, and thus which cytokine is analyzed. The other laser measures the
fluorescence of the SA-PE, which in turn is used to determine the concentration
of the cytokine. The concentration is determined from the fluorescence intensity
through standard curves, which are calculated for each cytokine by a set of standard
samples with known concentrations. An example of a standard curve is provided
in Figure 2.3.

TNF alfa (45)
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Figure 2.3: Example of standard curve for TNF-α. Each point represents a measurement
whit known concentration, and the curve is obtained with logistic interpolation.

The measurements are subject to a lower limit of detection. The limit of de-
tection (LOD) is determined by adding two standard deviations to the average of
the median fluorescence intensity for ten replicates of the standard curve blank
(Gupta et al., 2010). This means that observations that are recorded as below the
LOD are considered to not be significantly different from zero. In addition, some
of the lower concentrations are extrapolated from the standard curve, and thus are
subject to greater uncertainty.
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3 | Statistical Methods

In this Chapter, statistical methods for modeling and model evaluation of data
subject to a lower limit of detection. First, statistical models for data subject to a
detection limit are specified in Section 3.1, followed by expansions to longitudinal
data in Section 3.2 and to bivariate data in Section 3.3. In Section 3.4, methods
for estimating the model parameters in a frequentist framework are presented, and
in Section 3.5 methods for evaluating the performance of the models are described.
Lastly, Monte Carlo simulation studies are introduced in Section 3.6.

3.1 Statistical Models for Data Subject to a Lower
Limit of Detection

The semicontinuous data considered in this thesis is characterized by a point mass
at zero and a continuous distribution above a detection limit. There exists a wide
variety of methods for modeling data on this form, some of which will be presented
in this section. Two of the specified models are binary mixture models with one
continuous and one discrete part. We finish off with presenting an alternative
way of parameterizing these two-part models and a discussion of some common
choices of link functions for the discrete part and continuous distributions for the
continuous part.

3.1.1 Tobit Models

The Tobit model (Tobin, 1958) treats the observations below the LOD as latent
continuous observations that have been left-censored. This can be formulated as

yi =

{
0, y∗i ≤ T
y∗i , y∗i > T

,

where T is the LOD, and yi is the observed concentration. The latent value y∗i
comes from a continuous parametric distribution f(y∗) with positive support. This
model assumes that all observations come from the same underlying distribution.

7



Chapter 3. Statistical Methods

Let Ii indicate whether observation yi is censored, i.e.

Ii(yi) =

{
1, yi = 0

0, yi > T
. (3.1)

The density of the observed value yi can be written as

g(yi) = F (T )Iif(yi)
(Ii−1), (3.2)

where f(·) is the continuous distribution of the latent variable with corresponding
cumulative density function F (·). Thus, the probability of observing a zero is given
by

P (Yi = 0) = F (T ).

A conceptual illustration of the latent and observed distribution is provided in
Figure 3.1.

Latent

D
en

si
ty

y*
T

Observed

D
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Figure 3.1: Conceptual illustration of the assumed latent distribution of y∗i and the
resulting observed values yi under the Tobit model. The latent distribution is continuous,
whereas the observed values follow a left truncated continuous distribution and a point
mass at zero with weight F (T ).

The Lognormal Tobit Model

A typical choice for the latent distribution is a the lognormal distribution,

f(y) =
1

y
√

2πσ2
e−

(ln(y)−µ)2

2σ2 (3.3)

Covariates can be introduced to the mean of the distribution by letting

µi = z′iγ, (3.4)

where zi is a vector of covariates and γ is a vector of the corresponding fixed effects.

8



3.1 Statistical Models for Data Subject to a Lower Limit of Detection

In this case the mean of the response Yi is given by

E(Yi) = P (Yi > 0)E[Yi|Yi > 0] = P (Yi > 0)E[Yi|Yi > T ]

= (1− F (T ;µi, σ))E[Yi|Yi > T ]

=

[
1−Φ

(
ln(T )− z′iγ

σ
− σ

)]
ez
′
iγ+σ

2/2.

3.1.2 Two-Part Models
The Tobit model is shown to work well when the proportion of censored observa-
tions is close to what is expected from the continuous distribution. This constraint
can be relaxed by assuming that the discrete and continuous data arises from two
distinct stochastic processes, which is commonly done by introducing a point mass
distribution below the LOD (Cragg, 1971). The resulting model is a binary mix-
ture model with one continuous part representing the positive responses, and one
discrete part representing the zeroes. The density can be expressed as

g(yi) = πIii [(1− πi)f(yi)]
(1−Ii) (3.5)

where
πi = P (Yi = 0)

denotes the probability of observing Yi = 0, f(·) is the probability density function
of the continuous data, and Ii is the indicator variable defined in (3.1). A conceptual
illustration is provided in Figure 3.2.

Observed

D
en

si
ty

y

Figure 3.2: Conceptual illustration of the assumed distribution of y in the two-part
model.

The Probit/Lognormal Mixture Model

A typical choice for the continuous part f(yi) is the lognormal distribution (3.3). In
order to introduce covariates to the probability πi a link function must be utilized.
Here we will use the probit-link such that

πi = Φ(x′iβ).

9



Chapter 3. Statistical Methods

The continuous distribution is assumed to be lognormal with

µi = z′iγ.

Here xi and zi are sets of (possibly distinct) covariates, and β and γ are vectors
of fixed effects. In this parametrization γj is the effect of zij conditional on having
a positive response whereas βj is the effect on the probability of being positive.
Thus, the marginal mean of Yi is

E(Yi) = (1− πi)E(Yi|Yi > 0) = (1−Φ(x′iβ))e(z
′
iγ+σ

2/2). (3.6)

3.1.3 Two-Part Models with Interval Censoring
In the previously specified two-part model there is no latent distribution, hence f(·)
models observed distribution of the positive responses. When the measurements
are subject to a detection limit, the distribution of the positive responses becomes
truncated. Thus, fitting a log-normal distribution to the positive responses will not
be appropriate. Moulton and Halsey (1995) explicitly allowed for interval censoring
of the continuous distribution on the interval [0, T ] by expanding the model to

g(yi) = [πi + (1− πi)F (T )]Ii [(1− πi)f(yi)]
(1−Ii), (3.7)

where F (·) is the cumulative density function corresponding to f(·). This model
distinguishes between a population whose responses follows the distribution f(·),
which might result in responses below the LOD, and a separate sub-LOD popula-
tion regarded as true zeroes. The interpretation of πi changes from the probability
of falling below the LOD to the probability of belonging to the sub-LOD popula-
tion. Now there are two possible reasons for observing yi = 0. Either yi belongs
to the sub-LOD population such that y∗i = 0, which has probability πi, or it is a
censored realization from the continuous distribution y∗i < T , which has probabil-
ity (1− πi)F (T ). An illustration of the assumed latent distribution of y∗ and the
resulting observed distribution of y is provided in Figure 3.3.

The two-part model with interval censoring has the two-part model (without
interval censoring) defined in (3.5) as its latent distribution. Thus, they are equiv-
alent when there is no detection limit (T = 0) and are expected to behave similarly
when the LOD is small. Furthermore, it contains the Tobit model as a special case
when πi = 0.

The Probit/Lognormal Mixture Model

Covariates may be introduced in the same manner as in the two-part model:

πi = Φ(x′iβ),

µi = z′iγ,
(3.8)

where xi and zi are sets of (possibly distinct) covariates, and β and γ are vectors
of fixed effects.

10
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Figure 3.3: Conceptual illustration of the assumed latent distribution of y∗i and the
resulting observed values yi under the two-part model with interval censoring. The latent
distribution is a mixture of a point mass distribution at zero with weight πi and a contin-
uous distribution f(y∗). The observed distribution is a mixture of point mass distribution
with weight πi + (1− πi)F (T ) and a truncated continuous distribution (1− πi)f(y

∗) on
y > T .

Calculating the marginal mean of the observed response Yi is similar as for the
Tobit model. In this case the probability of a positive response is P (Yi > 0) =
(1− πi)(1− F (T )), which gives

E(Yi) = P (Yi = 0)E(Yi|Yi = 0) + P (Yi > 0)E(Yi|Yi > 0)

= (1− πi)(1− F (T ))E(Yi|Yi > T )

= (1−Φ(x′iβ))

[
1−Φ

(
ln(T )− z′iγ

σ
− σ

)]
ez
′
iγ+σ

2/2.

(3.9)

3.1.4 Substitute Model
The most naive approach to modeling left-censored data due to a limit of detec-
tion, is to replace the censored observations with a substitute value. Common
choices are T/2 and T/

√
2. The former implicitly assumes that the data below

the LOD follows a uniform distribution, while the latter implicitly assumes a tri-
angular shape. Hornung and Reed (1990) showed that T/

√
2 is superior to T/2 for

estimating the geometric mean and standard deviation of a lognormal distribution,
unless the LOD greatly surpasses the mode of the distribution. For larger propor-
tions of zeroes, both of these methods are known to produce bias in estimates and
predictions.

Let yi be the observed data and S ∈ (0, T ] be the chosen substitute value, such
that the transformed data ỹi is obtained by letting

ỹi =

{
S, yi = 0

yi, yi > T
,

Now, the transformed data ỹi is assumed to follow a continuous distribution f(·)
with positive support. Alternatively, the probability density can be formulated in
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terms of the original data, in which case

g(yi) = f(S)Iif(yi)
(1−Ii) = f(ỹi), (3.10)

where Ii is the indicator function defined in (3.1).

Lognormal Distribution

After the substitution is performed a linear model is fitted to the log-transformed
data without distinguishing between the censored and non-censored observations,
such that

ln(Yi) = z′iγ + εi, εi ∼ N (0, σ).

The marginal mean is given by

E(Yi) = exp(z′iγ + σ2/2). (3.11)

This model is equivalent to the Tobit model when there is no LOD (T = 0). Thus,
they are expected to behave similarly when the LOD is low.

3.1.5 Marginalized Parameterization

The covariates γ in the continuous part of previously specified two-part models
must be interpreted conditionally on having observed a positive response. This
makes it complicated to interpret the overall effect of a covariate on the marginal
mean. For instance, one covariate might increase the probability of observing a
positive response, while simultaneously decreasing the expected positive response.
In such cases it is unclear how the marginal mean is affected by said covariate.
As demonstrated, it is possible to find an expression for the marginal mean E(Yi)
by removing the conditioning on Yi > 0 and transforming back from ln(y)-space
to y-space. The resulting marginal effects are however dependent on the values
of the remaining covariates and confidence intervals are not easily obtained. For
instance, assuming z′i = x′i the multiplicative marginal effect of the jth covariate
on the mean with the standard two-part model (3.6) is given by

E(Yi|xij = x+ 1,xi,−j)
E(Yi|xij = x,xi,−j)

=
1−Φ(xi,−jβ−j + βj · (x+ 1))

1−Φ(xi,−jβ−j + βj · x)
exp(xijγj). (3.12)

Unless βj = 0, all fixed effects xi must be specified in order to determine the effect
of xij . This is also the case for the standard two-part model with interval censoring
(3.9). In applications where the marginal effects are of interest, this might be a
substantial drawback.

Smith et al. (2014) proposed a "marginalized" two-part (MTP) model which is
parameterized in terms of the marginal mean, thus giving more interpretable effect
estimates. The model is written on the same form as the standard two part model,

g(yi) = πIii [(1− πi)f(yi|yi > 0)](Ii−1)

12



3.1 Statistical Models for Data Subject to a Lower Limit of Detection

where πi = P (Yi = 0) denotes the probability of yi belonging to the point mass
and f(·) is the continuous distribution of the positive responses.

The MTP model differs from the conventional two-part model in how covariates
are introduced to the continuous part. In the MTP model they are parametrized
in terms of the marginal mean, i.e.

E(Yi) = exp(z′iγ). (3.13)

The Probit/Lognormal Mixture

As in the standard two part model, covariates are included to the point mass by

πi = Φ(x′iβ). (3.14)

When using the lognormal distribution for the continuous part we know that the
marginal mean is given by

E(Yi) = (1− πi) exp(µi + σ2/2).

Equating this with (3.13) and solving for µi gives

µi = z′iγ − σ2/2− ln(1− πi)

as the resulting parameter of the lognormal distribution.
For simplicity, assume z′i = x′i. From (3.13), the marginal effect of xij in the

MTP model is simply given by

E(Yi|xij = x+ 1,xi,−j)
E(Yi|xij = x,xi,−j)

= exp(γj).

This is the same as in the substitute model (3.11), which makes the parameters
in γ directly comparable across the two models. Unlike for the standard two part
models, a confidence interval for the marginal effect can easily be obtained by
plugging in the confidence limits of γj .

3.1.6 Choice of Continuous Distribution and Link Function
So far the models have been presented using a lognormal distribution for the contin-
uous distributions, and a probit-link for the discrete parts of the two-part models.
There are however countless other options, a few of which will be discussed here.

Link Functions

A link function defines the relationship between the linear predictor x′iβ and the
mean of the distribution. The discrete part of the two-part models represents a
Bernoulli process where each observation yi has a probability πi of being a true
zero. In order to introduce covariates to this probability, we need a link function
that maps to [0, 1]. Two common choices are the logit link

πi =
ex
′
iβ

1 + ex
′
iβ
,

13
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and the probit link
πi = Φ(x′iβ).

Chambers and Cox (1967) studied the differences between these two link functions.
The functions are close to indistinguishable, but the logit link has slightly heavier
tails. They find that it is only possible to discriminate between the link functions
with large sample sizes and certain patterns in the data. Therefore, it is commonly
advised that the choice of link function is largely a matter of taste (Hahn and
Soyer, 2005).

Continuous Distributions

The lognormal distribution (3.3) is a popular choice for the continuous part of the
distribution, but it may not be suitable in all situations. For instance, it assumes a
symmetric distribution of the log-transformed data, which is not always the case.
Such cases raise the need for a more flexible alternative for the continuous part.
This was the motivation behind the probit/log-skew-normal mixture introduced by
Chai and Bailey (2008).

The skew-normal distribution is a class of distributions that contains the normal
distribution as a special case. Using the same parametrization as Chai and Bailey
(2008) a variable X is said to have a skew-normal distribution if its probability
density function is

f(x|µ, σ, δ) =
2√

σ2 + δ2
φ

(
x− µ√
σ2 + δ2

)
Φ

(
δ

σ

x− µ√
σ2 + δ2

)
. (3.15)

The corresponding cumulative density function can be expressed as

F (x|µ, σ, δ) = Φ

(
x− µ√
σ2 + δ2

)
− 2T

(
x− µ√
σ2 + δ2

,
δ

σ

)
, (3.16)

where T (·, ·) is the Owen’s T-function

T (h, a) =
1

2π

∫ a

0

e−
1
2h

2(1+x2)

1 + x2
dx.

The parameter δ is called the skew-parameter, as it defines the degree of skewness
in the distribution. Note that δ = 0 gives Φ

(
δ
σ

x−µ√
σ2+δ2

)
= 1

2 and T
(

x−µ√
σ2+δ2

, δσ
)

=

0, which is equivalent to the normal distribution with mean µ and variance σ2.
Furthermore, δ > 0 gives a distribution that is skewed to the left, and δ < 0 gives a
right-skewed distribution. The effects of the skewness parameter are demonstrated
in Figure 3.4.

The mean and variance of X is given by

E(X) = µ+ δ

√
2

π
,

Var(X) = σ2 + δ2
(

1− 2

π

)
.

(3.17)
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Figure 3.4: The probability density function f(x|µ, σ, δ) and cumulative density function
F (x|µ, σ, δ) of the skew-normal distribution for σ = 1, µ = 0 and different values of δ.

From these expressions it becomes clear that the mean increases and the variance
grows as the magnitude of the skew-parameter δ increases. For future reference we
write X ∼ SN(µ, σ, δ).

A variable X is said to be log-skew-normal distributed if ln(X) ∼ SN(µ, σ, δ)
follows a skew-normal distribution. The moment generating function of the skew-
normal distribution is given byMX(t) = E(etX) = 2eµt+

√
σ2+δ2t2/2Φ(δt). This can

be used to derive the mean and variance of a log-skew-normal distributed variable,
by

E(X) = E(elnX) = MlnX(1) = 2eµ+(σ2+δ2)/2Φ(δ),

Var(X) = E(X2)− E(X)2 = MlnX(2)−MlnX(1)2

= 2e2µ+σ
2+δ2 [eσ

2+δ2Φ(2δ)− 2Φ(δ)2].

There are countless other possible methods for dealing with non-symmetric log-
transformed data, such as using skewed distributions like the gamma distribution,
and ad hoc transformations of the data to obtain symmetry. The advantages of the
log-skew-normal distribution include that it eliminates the need for transforming
the data and that the interpretations of the regression coefficients (except the
intercept) are the same as for the lognormal distribution (Chai and Bailey, 2008).
Other studied alternatives to the lognormal distribution in the specified two-part
models include the log-gamma (Moulton and Halsey, 1996), log-skew-T (Dagne,
2017; Xing et al., 2017), and generalized gamma (Liu et al., 2016; Jaffa et al.,
2018) distributions.

3.2 Expansions to Longitudinal Data

Let yi = (yi1, ..., yini)
′ be the vector consisting of the ni observations of individual

i, such that yij is obtained at time point tij with associated indicator variable Iij
as defined in (3.1). When there are multiple observations from the same individual
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measured at different time points it is no longer reasonable to assume independence.
The correlation between measurements from the same individual can be accounted
for by introducing random effects to the model. In order to calculate the liklelihood
of yi the random effects must be integrated out, giving marginalized likelihoods.
In general the marginal likelihood of the observations yi from the ith individual is
on the form

Li =

∫ ( ni∏
i=1

g(yij |θ, τi)
)
fτ (τ i|Σ) dτi, (3.18)

where g(·) is the density of yij , ni is the number of observations from the individual,
θ is the parameters of g(·), and fτ (τ i|Σ) is the probability density function of the
random effects τ i. The parameterizations and resulting marginal likelihoods are
presented below.

One-Part Models

In the Tobit-models and the substitute models a single random effect can be intro-
duced to (3.4) by letting

µij = z′ijγ + τi,

where τi ∼ N (0, s) is normally distributed with variance s.
For the Tobit model the marginal likelihood can be found by plugging the

probability density function (3.2) into the general form (3.18), which gives

Li(=
∫ ( ni∏

i=1

F (T |θ, τi)Iijf(yij |θ, τi)(1−Iij)
)
fτ (τi|s) dτi, (3.19)

where θ is the parameters of f(·), including γ. The probability density of the
substitute model is defined in equation (3.10), and gives the marginal density

Li =

∫ ( ni∏
i=1

f(S|θ, τi)Iijf(yij |θ, τi)(1−Iij)
)
fτ (τi|s) dτi, (3.20)

where S ∈ (0, T ] is the chosen substitute value.

Standard Two-Part Models

In the standard two-part models, both with and without interval censoring, random
effects can be introduced to both parts of the model. This is demonstrated by
Mahmud et al. (2010) for the standard two-part model and Berk and Lachenbruch
(2002) for the standard two-part model with interval censoring. The random effects
are introduced to (3.8) by letting

µij = z′ijγ + τ1i,

πij = Φ(x′ijβ + τ2i),
(3.21)
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where τ1i and τ2i are random effects. They are assumed to be bivariate normally
distributed with mean zero, i.e. τ i = (τ1i, τ2i) ∼ N2(0,Σ). Let the (2× 2) covari-
ance matrix be

Σ =

[
s11 s12
s12 s22

]
. (3.22)

Here s11 and s22 are the variances of the random effects, and s12 is their covariance.
As before, the marginal likelihoods are found by inserting the probability density

functions into the general marginal likelihood in (3.18). The standard two-part
model without interval censoring defined by the probability density (3.5) gives the
marginal likelihood

Li =

∫ ( ni∏
j=1

π
Iij
ij {(1− πij)f(yij |θ, τi)}(1−Iij)

)
fτ (τ i|Σ) dτ i, (3.23)

where πij is defined in (3.21), f(·) is the assumed continuous density of the positive
observations, and fτ (·) is the bivariate normal denstiy of the random effects τ with
mean zero and covariance Σ.

Likewise, the marginal likelihood of yi under the standard two-part model with
interval censoring defined in (3.7) is given by

Li =

∫ ( ni∏
j=1

{πij + (1−πij)F (T |θij)}Iij{(1−πij)f(yij |θ, τ i)}(1−Iij)
)
fτ (τ |Σ) dτ ,

(3.24)
where πij is defined in (3.21), f(·) is the assumed distribution of the continuous
part of the latent distribution with corresponding cumulative density function F (·),
and fτ (·) is the bivariate normal density of the random effects τ with mean zero
and covariance Σ.

Marginalized Two-Part Models

The marginalized two-part model is expanded to lognitudinal data by Jaffa et al.
(2018). Random effects are introduced to both model parts (3.13) and (3.14) by
letting

E(Yi) = exp(z′ijγ + τ1i),

πij = Φ(x′ijβ + τ2i),

where τ1i and τ2i are bivariate normally distributed with mean zero and covariance
matrix Σ as in (3.22). As the marginalized two-part model assumes the same
distribution as the standard two-part model, the marginal likelihood is as in (3.23).

3.2.1 Including Time in the Models
With longitudinal data it is often of interest to include time in the model in order
to study how the passage of time affects the response. The time parameter tij can
be included as a covariate in both γ and β in countless ways. Among the common
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alternatives are including tij as a categorical covariate (Berk and Lachenbruch,
2002), a linear covariate (Su and Luo, 2017) and a quadratic covariate (Mahmud
et al., 2010; Dagne, 2016). The first mentioned has the advantage of making no
assumptions about the relationship between the response and the passage of time.
This comes at the cost of many additional parameters if the number of time points is
high. Assuming a linear or quadratic relationship gives fewer additional parameters,
but also less flexibility.

Another important consideration is whether the mixing probability π should
depend only on the individual (Dagne, 2016), or if it may vary with time as well
(Dagne, 2017; Berk and Lachenbruch, 2002; Mahmud et al., 2010). In the model
without interval censoring described by likelihood (3.5), πij is the probability of
falling below the LOD. As the mean µij of the continuous distribution is assumed
to depend on time, the proportion falling below the LOD will also change. Hence,
the only reasonable choice for this model is to let πij depend on time. This is not
as straightforward for the model with interval censoring described by likelihood
function (3.7). Here, πij is the probability of belonging to a separate sub-LOD
population. This probability might be constant over time, even if the mean µij of
the continuous part changes.

3.2.2 Prediction

There are two approaches to prediction for mixed effect models. Say we want to
estimate the probability πij of an observation belonging to the discrete part. The
population averaged probability can be found by integrating out the random effects.
It is given by

π̂ij =

∫
Φ(x′ijβ̂ + τ2i)

1
√
s22

φ
( τ2i√

s22

)
dτ2i,

where 1√
s22
φ( τ2i√

s22
) is the assumed marginal distribution of τ2i. This is an esti-

mate of the overall probability in the population, and can be used to estimate the
outcome for new unobserved individuals.

Subject specific prediction refers to estimating πij conditioned on the random
effect, i.e.

π̂ij |τ2i = Φ(x′ijβ̂ + τ2i).

This can be used to predict the outcome for a previously measured individual with
estimated random effect τ2i. For example, if an individual has missing data for one
or more time points the outcome at these time points can be predicted conditioned
on the individuals random effect. The random effects τ i are unobserved latent
variables that can be estimated by the empirical Bayes estimator (Pinheiro and
Bates, 1995). The rationale is to use the parameter estimates θ̂ and the observed
data to calculate the posterior mode of random effects, i.e.

τ̂ i = arg max
τ i

{
f(τ i|yi,xi, θ̂, Σ̂)

}
= arg max

τ i

{
f(yi|xi, θ̂, τ i)f(τ i|Σ̂)

}
.
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Here f(yi|xi, θ̂, τ i) is the subject specific likelihood of the observations yi condi-
tioned on the random effects, and f(τ i|Σ̂) is the bivariate normal prior distribution
of the random effects.

If the predictor is a linear function of the random effects, the population av-
eraged probability is equivalent to plugging in the expected value of the random
effect. For the continuous part of the model we have

µ̂ij =

∫
(z′ij γ̂ + τ1i)

1
√
s11

φ
( τ1i√

s11

)
dτ1i = z′ij γ̂,

which is equivalent to plugging in τ1i = 0. Thus, the marginal means can be read
directly from the estimated parameters.

3.3 Expansions to Bivariate Data

Let yi = (y1i, y2i)
′ be a pair of two observations from individual i that both are

subject to a lower limit of detection, denoted as T1 and T2, respectively. The
two observations may for instance represent measurements conducted with two
different methods, measurements at two different time points, or measurements of
two different phenomenons assumed to be related. If a non-negligible amount of
observations falls below the detection limit naive methods, such as replacing the
censored observations with a fraction of the detection limit, will in general produce
bias (Chu et al., 2008). This has motivated the use of censored bivariate models to
estimate the correlation. The bivariate models also have other applications, such as
estimating the ratio between the means of the two measurements (Andersen et al.,
2013).

As in the univariate case, we define a latent variable y∗i = (y∗1i, y
∗
2i)
′ such that

y1i =

{
0, y∗1i ≤ T1
y∗1i, y∗1i > T1

,

and equivalently for y2i.

3.3.1 Tobit Models

Lyles et al. (2001) proposed a bivariate model based on the assumption that all
the observed pairs arises from the same underlying distribution f(y∗i ) with support
on R2

+ = (0,∞) × (0,∞). One or both of the variables may be censored due to
lower limits of detection, and are therefore recorded as zero. This is analogous to
the Tobit model in the univariate setting. A conceptual illustration is provided in
Figure 3.5.

There are four possible types of observed pairs, which corresponds to the four
regions separated by the LODs in Figure 3.5: (1) Both y∗1i and y∗2i are observed,
(2) y∗1i is observed and y∗2i ≤ T2, (3) y∗1i ≤ T1 and and y∗2i is observed, and (4) both
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Figure 3.5: Conceptual illustration of the assumed distribution of y∗
i with the bivariate

Tobit model.

y∗1i ≤ T1 and y∗2i ≤ T2. The four types of pairs has the following contributions to
the likelihood:

(1) : Li = f(y∗1i, y
∗
2i)

(2) : Li = P (Y ∗2i ≤ T2|Y ∗1i = y∗1i) · f(y1i)

(3) : Li = P (Y ∗1i ≤ T1|Y ∗2i = y∗2i) · f(y∗2i)

(4) : Li = P (Y ∗1i ≤ T1, Y ∗2i ≤ T2)

(3.25)

In pairs of type (1) the true value of both y∗1i and y∗2i is observed, so the contribution
is simply their joint probability density f(y∗1i, y

∗
2i). When one of the observations is

censored, as in pair (2) and (3), the contribution can be expressed as the probability
of falling below the LOD for the censored observation conditioned on the non-
censored observation, times the marginal probability density of the non-censored
observation. In the last case, when both observations are censored, the contribution
is the joint probability of falling below the LOD.

The Lognormal Bivariate Tobit Model

The bivariate lognormal model has five parameters θ = (µ1, µ2, σ
2
1 , σ

2
2 , ρ). Y =

(Y1, Y2)′ is said to follow a bivariate lognormal distribution if

ln(Y) ∼ N2

((
µ1

µ2

)
,

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

))
.
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3.3 Expansions to Bivariate Data

With this distribution the likelihoods in (3.25) can be expressed as follows:

(1) : Li =
1

σ2σ1|2
φ

(
ln(y1i)− µ1|y2i

σ1|2

)
φ

(
ln(y2i)− µ2

σ2

)
(2) : Li =

1

σ1
φ

(
ln(y1i)− µ1

σ1

)
Φ

(
ln(T2)− µ2|y1i

σ2|1

)
(3) : Li =

1

σ2
Φ

(
ln(T1)− µ1|y2i

σ1|2

)
φ

(
ln(y2i)− µ2

σ2

)
(4) : Li =

∫ T1

0

1

σ1
φ

(
ln(z)− µ1

σ1

)
Φ

(
ln(T2)− µ2|z

σ2|1

)
dz

(3.26)

Here σ2
1|2 = σ2

1(1−ρ2) and µ1|y2i = µ1+(ρσ1/σ2)(ln(y2i)−µ2), and vice versa. The
contribution from pairs of type (4) is found by calculating the joint probability by
conditioning on the observation of y1i and integrating over all the possible values
of y1i, i.e. P (Y ∗1i ≤ T1, Y ∗2i ≤ T2) =

∫ T1

0
P (Y ∗2i ≤ T2|Y ∗1i = z) · fY ∗1i(z) dz.

As demonstrated by e.g Andersen et al. (2013), covariates may be introduced
to both µ1 and µ2 by

µ1i = x′iγ1,

µ2i = x′iγ2,

where xi is a set of covariates with corresponding fixed effects in γ1 and γ2 for the
two model parameters.

3.3.2 Two-Part Models
The bivariate Tobit model has the same restriction as in the univariate case, namely
that the number of censored observations must correspond to the distribution of
the non-censored observations. This restriction was relaxed by Chu et al. (2005),
which proposed two-part mixture model for data where the south-west tail of the
observed distribution is incompatible with the high amount of censored observa-
tions. The mixture consists of two components, one lower component denoted
fL(y) corresponding to the low-rosponders and one higher component fH(y) cor-
responding to individuals with higher responses. Let πi be the probability that yi
is from the lower component. Then the latent mixture density is given by

f(y) = πifL(y) + (1− πi)fH(y).

Furthermore, we assume that the lower component fL(y) is entirely located on the
domain [0, T1]× [0, T2] below the detection limits. Thus, its shape is irrelevant, and
it can be thought of as a point mass at (0, 0). This is analogous to the two-part
model with interval censoring in the univariate setting. A conceptual illustration
is provided in Figure 3.6. Again, there are four possible types of observed pairs,
which corresponds to the four sections in Figure 3.6 separated by the LODs. Their
contributions to the likelihood are described in (3.25).
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y*1

y*
2

T1

T
2

Figure 3.6: Conceptual illustration of the assumed distribution of y∗
i with the bivariate

two-part model.

In this model it is assumed that both measurements are low responses simul-
taneously. Thus, observed pairs where one of the measurements are censored have
to come from the higher distribution, meaning that the amount of half-observed
pairs must correspond to the shape of the observed higher distribution. This is a
logical assumption in many cases, for instance if y1i and y2i are two measurements
of the same phenomenon, either with two different methods or at two different time
points. Then a low response of y1i can be assumed to be accompanied by a low
response of y2i, and vice versa. If on the other hand y1i and y2i are measurements
of two distinct phenomenons, it may not be reasonable to assume that both are
always low-responders simultaneously.

The Lognormal Bivariate Two-Part Model

If the bivariate lognormal distribution is used for the higher component fH(y) and
the lower component fL(y) is assumed to fall within the domain [0, T1] × [0, T2],
the likelihoods in (3.25) can be expressed as follows:

(1) : Li =
1− πi
σ2σ1|2

φ

(
ln(y1i)− µ1|y2i

σ1|2

)
φ

(
ln(y2i)− µ2

σ2

)
(2) : Li =

1− πi
σ1

φ

(
ln(y1i)− µ1

σ1

)
Φ

(
ln(T2)− µ2|y1i

σ2|1

)
(3) : Li =

1− πi
σ2

Φ

(
ln(T1)− µ1|y2i

σ1|2

)
φ

(
ln(y2i)− µ2

σ2

)
(4) : Li = πi + (1− πi)

∫ T1

0

1

σ1
φ

(
ln(z)− µ1

σ1

)
Φ

(
ln(T2)− µ2|z

σ2

)
dz

(3.27)
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3.3 Expansions to Bivariate Data

Here σ2
1|2 = σ2

1(1 − ρ2) and µ1|y2i = µ1 + (ρσ1/σ2)(ln(y2i) − µ2), and vice versa.
Thus, there are five parameters toestimate, θ = (π, µ1, µ2, σ

2
1 , σ

2
2 , ρ). There are no

parameters for the lower component, apart from the mixing probability π, since
the only observable information about this component is its relative weight. As in
the univariate setting, covariates can be introduced to the πi by utilizing e.g. the
probit link function. Thus, covariates can be introduced to the model by letting

µ1i = x′iγ1,

µ2i = x′iγ2,

πi = Φ(x′iβ).

3.3.3 Four-Part Models
The described two-part model is only suitable when the two measurements y1i and
y2i are always low-responders simultaneously. This is not always the case. For
instance the amount of excess zeroes in y1i may be different from the amount of
excess zeroes in y2i. We propose a four-part mixture model where the amount of
excess zeroes in each variable is determined by distinct processes. The mixture
consists of a higher component fH(y), and three lower components denoted fL(y),
fL1(y) and fL2(y). As in the two-part model, fL(y) represents the low-responders
in both variables. The lower component fL1

(y) corresponds to the low-responders
in y2i and high-responders in y1i, and fL2

(y) corresponds to the low-responders
in y1i and high-responders in y2i. Let π, π1 and π2 be the mixing probabilities of
fL(y), fL1

(y) and fL2
(y), respectively. Then the latent mixture density is given

by

f(y) = π1ifL1(y) + π2ifL2(y) + πifL(y) + (1− π1i − π2i − π3i)fH(y).

A conceptual illustration of the model is provided in Figure 3.7. Furthermore,
we assume that the lower components are located entirely below the LOD of the
variable it is a low-responder in. In other words, the domain of fL1

(y) is assumed
to be within [0,∞)× [0, T2], the domain of fL2(y) is assumed to be within [0, T1]×
[0,∞), and the domain of fL(y) is assumed to be within [0, T1]× [0, T2].

If the two variables are independent, the censored variables in y2i have the same
marginal distribution in y1i as the uncensored variables in y2i. Thus, fL1

(y) and
fL2

(y) have the same marginal distributions as fH(y). In this case, the marginal
distributions of each of the variables are two-part models with interval censoring.

The Lognormal Bivariate Four-Part Model

Only the mixing probability π is observable for the component fL(y) contained
below both the LODs, thus it contributes with only one parameter. For the
two half-censored components we observe the marginal distribution of the non-
censored component as well as their relative weight. If the marginal distribu-
tions are assumed to be lognormal they contribute with two parameters each.
We denote the parameters of fL1(y) as µL1 and σL1 , and likewise the param-
eters of fL2

(y) as µL2
and σL2

. This gives a total of twelve parameters, θ =
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Figure 3.7: Conceptual illustration of the assumed distribution of y∗
i with the bivariate

four-part model.

(π1, π2, π, µ1, µ2, σ1, σ2, ρ, µL1 , σL1 , µL2 , σL2). The contributions to the likelihood
for each of the four possible types of observed pairs is given by

(1) : Li =
1− π1i − π2i − πi

σ2σ1|2
φ

(
ln(y1i)− µ1|y2i

σ1|2

)
φ

(
ln(y2i)− µ2

σ2

)
(2) : Li =

π1i
σL1

φ

(
ln(y1i)− µL1

σL1

)
+

1− π1i − π2i − πi
σ1

φ

(
ln(y1i)− µ1

σ1

)
Φ

(
ln(T2)− µ2|y1i

σ2|1

)
(3) : Li =

π2i
σL2

φ

(
ln(y2i)− µL2

σL2

)
+

1− π1i − π2i − πi
σ2

Φ

(
ln(T1)− µ1|y2i

σ1|2

)
φ

(
ln(y2i)− µ2

σ2

)
(4) : Li = πi + π1iΦ

(
ln(T1)− µL1

σL1

)
+ π2iΦ

(
ln(T2)− µL2

σL2

)
+(1− π1i − π2i − πi)

∫ T1

0

1

σ1
φ

(
ln(z)− µ1

σ1

)
Φ

(
ln(T2)− µ2|z

σ2

)
dz

As before, the fully observed pairs of type (1) comes from the high component
fH(y). The half-observed pairs of type (2) and (3) may come from the high com-
ponent or the respective low-component representing low-responders in one of the
variables. The fully censored pairs of type (4) may come from any of the four model
parts.

There are many possible ways of simplifying this model. For instance if the
low-responders in y2i is assumed to follow the same marginal distribution in y1i as
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3.4 Model Estimation

the high-responders one can set µL1 = µ1 and σL1 = σ1. The same can be done
to eliminate µL2 and σL2 from the model. Under these assumptions there are only
eight parameters to estimate, θ = (π1, π2, π3, µ1, µ2, σ1, σ2, ρ).

3.4 Model Estimation

In this section we present methods for estimating the parameters of the models
with random effects specified in Section 3.2. The same methods can however be
utilized when random effects are not included in the model and for the bivariate
models in Section 3.3. In these cases the numerical integration is not needed. The
methods presented are based on a frequentist approach.

Let θ be the parameters of the model used, and x be all the observed data. In
the frequentist approach the likelihood to be maximized is

L(θ|x) =
∏
i

Li(θ|x), (3.28)

with Li as in defined in Section 3.2 for the different models. The general form of
the likeihoods is provided in (3.18),

Li =

∫ ( ni∏
i=1

g(yij |θ, τi)
)
fτ (τ i|Σ) dτi,

where g(·) is the density of yij , ni is the number of observations from the individual,
θ is the parameters of g(·), and fτ (τ i|Σ) is the probability density function of the
random effects τ i.

The theory in this section is mainly obtained from the book by Casella and
Berger (2002).

3.4.1 Numerical Methods
There are two numerical challenges with the frequentist approach. Firstly, the
integral in the marginal likelihoods (3.18) can not be solved analytically. Secondly,
the likelihood function must be maximized. We will continue to describe methods
for solving these problems.

Numerical Integration by Adaptive Gaussian Quadrature

A numerical integration method that is shown to work well with moderate cluster
sizes is Gaussian quadrature (Rabe-Hesketh et al., 2005). In this method the
area under the curve is approximated by summing over split areas. The areas are
represented by quadrature points with corresponding weights, and the accuracy
depends on the number of quadrature points.

First, we substitute the integration variable τ i with vi, which is obtained by

τ i = Qvi,
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where Q is the Cholesky decomposition of Σ. Since the covariance matrix Σ is
symmetric and positive definite we have Σ = QQ∗, where Q is lower triangular.
The resulting integration variables vi = (vi1, vi2) are independent standard normal
variables. Thus, the integral can be expressed as

Li =

∫
φ(vi2)

∫
φ(vi1)

ni∏
j=1

g(yij |θ,vi) dvi1dvi2

=

∫
1√
2π
e−

1
2v

2
i2

∫
1√
2π
e−

1
2 v

2
i1

ni∏
j=1

g(yij |θ,vi) dvi1dvi2,

where φ(·) is the standard normal probability density. We now have two nested
integrals on the form

∫
e−x

2

f(x) dx. The Gauss-Hermite quadrature for integrals
on this form is given by

Li ≈
R2∑
r2=1

pr2

R1∑
r1=1

pr1

ni∏
j=1

g(yij |θ, ar1 , ar2)

=

R∑
r=1

w(ar)
ni∏
j=1

g(yij |θ,ar),

where ar are locations centered around zero and w(ar) are the associated weights
of R-point Gaussian quadrature. The total number of quadrature points is R =
R1 · R2. Thus, the number of quadrature points increases exponentially with the
number of random effects.

This method can be substantially improved by using adaptive quadrature. The
rationale behind this method is to take the form of the integrand into account.
Instead of using preset quadrature points ar centered around zero the algorithm
finds quadrature points centered at the approximate mode of the integrand. Conse-
quently, the adaptive method can use fewer quadrature points to achieve the same
level of precision.

Maximum Likelihood Estimation by Quasi-Newton Optimization

The maximum likelihood estimator θ̂ of the parameters θ is defined by

θ̂ = arg max
θ∈Θ
L(θ|y),

where Θ is the parameter space of θ. This is equivalent to finding the roots of the
gradient vector of the log-likelihood, i.e. solving

g(θ̂|y) = ∇ lnL(θ̂|y) = 0.

A popular class of methods for numerical root-finding is the Quasi-Newton algo-
rithms (Gould et al., 2006). These are based on the Newton-Raphson algorithm.
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3.4 Model Estimation

Starting from an initial position θ0 the Newton-Raphson algorithm calculates new
positions as

θi+1 = θi + s[−H(θi)]
−1g(θi|y),

where s is the step size and H(θi) is the matrix of second derivatives, known as
the Hessian. This is repeated until a convergence criterion is reached. The default
step size is s = 1, but there exists methods for adaptive step size calculation which
gives higher efficiency.

For larger problems it can be very computationally expensive to calculate the
Hessian. This is avoided in Quasi-Newton methods by iteratively estimating H(θi)
at every step. There are many methods for doing this. Popular choices are the Davi-
don–Fletcher–Powell (DFP) forumla and the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) formula. Let Ai be the estimate of the Hessian at step i such that

θi+1 = θi + [−Ai]−1g(θi|y).

Both DFP and BFGS calculate Ai+1 such that

(θi+1 − θi) = Ai+1(g(θi+1|y)− g(θi|y)).

When convergence is reached, the resulting matrix An can be used as an estimate
of the Hessian at the maximum.

3.4.2 Estimation of Standard Errors
The Hessian of the log-likelihood function is the matrix consisting of the partial
second derivatives, defined as

H(θ) =
∂2

∂θ∂θ′
logL(θ|y).

The Fisher information matrix is defined as

I(θ) = −E[H(θ)|θ]

It can be estimated by inserting the maximum likelihood estimate θ̂ of θ, which
gives

I(θ̂) = −H(θ̂) = − ∂2

∂θ∂θ′
logL(θ̂|y).

In Quasi-Newton optimization, H(θ̂) is estimated numerically along with maximiz-
ing the likelihood, as described above. By the Cramer-Rao bound we have

Cov(θ̂) ≥ [I(θ̂)]−1.

Thus, the inverse Fisher information matrix C(θ̂) = [I(θ̂)]−1 can be used as an
estimate of the covariance matrix. Consequently, the estimated standard error of
each estimated parameter θ̂k is the square root of the diagnoal elements of the
inverse Fisher information matrix,

ŜE(θ̂k) =

√
C(θ̂)kk,

where Ckk(θ̂) denotes the kth diagnoal element of C(θ̂) = [I(θ̂)]−1.
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Test for Fixed Effects

A common way to test the significance of the estimated parameters is to utilize the
property that the test statistic

Tk =
θ̂k − θk
ŜE(θ̂k)

is approximately Student’s t-distributed with ν degrees of freedom. It is however
not straight forward to calculate the degrees of freedom when random effects are
present. Satterthwaite (1946) developed a popular method for approximating ν,
but it is not well defined for non-linear models (Molenberghs and Verbeke, 2004).
One possible work around is to resort to a Wald-test on the basis that the Student’s
t-distribution is asymptotically normal as ν →∞, i.e.

θ̂k − θk
ŜE(θ̂k)

≈ N (0, 1).

In this case (1− α)100% confidence intervals are given by

θk = θ̂k ± zα/2ŜE(θ̂k).

Note that this will give anti-conservative results, as the Student’s t-distribution
have heavier tails than the normal distribution.

Another possibility is to test the significance of θk with a likelihood ratio test.
This method is described in the following section.

3.4.3 Likelihood Ratio Tests
Consider the hypotheses

H0 : θ ∈ Θ0, H1 : θ ∈ Θc
0.

A likelihood ratio test is a test on the statistic

λ(x) =
supΘ0

L(θ|x)

supΘ L(θ|x)

with rejection region on the form {x : λ(x) ≤ c}. Here Θ0 is a subset of the
parameter space Θ, and Θc

0 = Θ \Θ0 is its complement. Thus, the numerator of
λ(x) is the maximum likelihood under the restriction θ ∈ Θ0 and the denominator
is the maximum likelihood without the restriction. Because Θ0 is a subset of Θ we
have λ(x) ∈ [0, 1]. If the ratio of the likelihoods is sufficiently small we reject H0 in
favor of H1, and conclude that removing the restriction θ ∈ Θ0 gives a significant
improvement in the likelihood.

A level α test is obtained by choosing c such that the probability of observing
λ(X) ≤ c equals α under H0. This probability can be estimated by utilizing the
asymptotic property

−2 log(λ(X)) ∼ χ2
ν
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when the sample size n→∞. Assuming that Θ0 is in the interior of Θ, the degrees
of freedom ν is the difference in the number of free parameters when θ ∈ Θ and
under the restriction θ ∈ Θ0. This test statistic can be computed directly from
the log-likelihoods of the models, as

−2 log(λ(X)) = −2(logL(θ̂0|x)− logL(θ̂|x)).

Test for Fixed Effects

The significance of fixed effects in the model can be tested by considering the
hypotheses

H0 : θk = 0, H1 : θk 6= 0,

where θk is a vector of parameters corresponding to the fixed effects, possibly of
length one. The test statistic will be asymptotically chi-squared distributed with
degrees of freedom equal to the number of parameters in θk.

Test for Random Effects

Recall that the two-part models include two random effects τ i = (τi1, τi2) ∼
N2(0,Σ) with

Σ =

[
s11 s12
s12 s22

]
.

Testing the significance of random effects can be done by performing likelihood
ratio tests on the elements of the covariance matrix Σ (Baey et al., 2017). Testing
for the presence of the random effect τi1 can be done by letting

Θ0 = {θ|β ∈ Rq,γ ∈ Rp, σ ∈ R+, δ ∈ R, s11 = 0, s12 = 0, s22 ∈ R+},
Θ = {θ|β ∈ Rq,γ ∈ Rp, σ ∈ R+, δ ∈ R,Σ ∈ S2+},

where S2+ is the set of all symmetric, positive semi-definite (2 × 2) matrices. The
same setup can be used for testing the significance of τi2 by switching s11 with s22
in the definition of Θ0.

Since Θ0 lies on the boundary of Θ, the asymptotic property used in the previ-
ous section does not hold. It can however be proved that the limiting distribution
of −2 log(λ(X)) is the distribution 1

2 (χ2
0 + χ2

1) when the random effects are inde-
pendent (i.e. s12 = 0), and the distribution 1

2 (χ2
1 + χ2

2) when the random effects
are correlated (i.e. s12 6= 0) (Baey et al., 2017). Testing for a random effect in the
one-part models is equivalent to the case where the random effects are uncorre-
lated. The cumulative density function of a distribution on the form 1

2 (χ2
k−1 +χ2

k)
can be expressed as

P ( 1
2 (χ2

k−1 + χ2
k) ≤ x) = 1

2 (P (χ2
k−1) ≤ x) + P (χ2

k) ≤ x)).

Thus, the p-value of the likelihood ratio test can by found by taking the average
of the p-values provided by the two distributions in the mixture (Goldman and
Whelan, 2000).
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Test for the Discrete Part

The Tobit model (3.2) can be viewed as a special case of the two-part model
with interval censoring (3.7) where the probability πi of true zeroes is set to zero.
Therefore, the significance of the discrete part can be tested with a likelihood ratio
test (Berk and Lachenbruch, 2002). The difference in the number of parameters is
the number of parameters q in β plus the variance s22 and covariance s12 of the
random effect τi2. This can be formulated as

Θ0 = {θ|β0 = −∞, βi>0 = 0,γ ∈ Rp, σ ∈ R+, s11 ∈ R+, s12 = 0, s22 = 0},
Θ = {θ|β ∈ Rq,γ ∈ Rp, σ ∈ R+,Σ ∈ S2+},

where S2+ is the set of all symmetric, positive semi-definite (2 × 2) matrices. Two
of the restrictions in Θ0 are on the boundary of the parameter space, β0 = −∞
and s22 = 0. This scenario is studied by Self and Liang (1987). The resulting
asymptotic distribution is a mixture of χ2

q+2, χ2
q+1 and χ2

q, where q is the number
of parameters in β. More degrees of freedom gives more conservative p-values.
Therefore, the resulting p-value from assuming a χ2

q+2 distribution can be used as
an upper bound for the true p-value, and likewise the p-value based on q degrees
of freedom gives a lower bound. Alternatively, a model selection criterion could be
used. This option will be discussed in Section 3.5.1.

3.5 Model Evaluation

Here we present two frameworks for evaluating the performance of statistical mod-
els. The model selection criteria evaluate the model fit based on the resulting
likelihood of the data. This is akin to likelihood ratio tests, but does not require
the candidate models to be nested. Scoring rules evaluate the predictive power of
the models by assigning a numerical score to predictive distributions based on the
true outcome.

3.5.1 Model Selection Criteria
The problem of model selection can be seen as a trade-off between complexity and
model fit (Vrieze, 2012). Increased complexity will lead to a better fit to the data,
reflected in a higher likelihood. But, it also increases the chance of overfitting.
Two common model selection criteria that address this trade-off are the Akaike
information criterion (AIC) and the Bayesian information criterion (BIC). Both can
be expressed in terms of the log-likelihood and a penalty for increased complexity,

AIC = −2`(θ̂) + 2k,

BIC = −2`(θ̂) + log(n)k,
(3.29)

where `(·) is the log-likelihood, θ̂ is the maximum likelihood estimate of the model
parameters, k is the number of model parameters and n is the number of observa-
tions in the dataset.
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3.5 Model Evaluation

Even though the formulas for the AIC and BIC are strikingly similar, they are
derived on very different grounds. The AIC is founded on information theory. The
idea is to estimate how much information is lost by representing the true underlying
process with the candidate model. Of course, the true distribution is not known, so
we can not know for sure which candidate model has the lowest information loss,
but the difference in the AIC can be used as an estimate of the relative information
loss. The candidate model with the lowest AIC has the lowest expected information
loss when used to represent the true process (Vrieze, 2012).

The BIC is founded on Bayesian statistical analysis. From Bayes’ theorem the
probability of modelM being true after having observed the data x is

P (M|x) ∝ P (x|M)P (M),

where
P (x|M) =

∫
ΘM

P (x|M,θ)P (θ|M)dθ

is often called the evidence for model M provided by the data x. By Laplace
approximation of the integral around θ̂ and by omitting the terms that do not
depend on n, it can be shown that P (x|M) ≈ e`(θ̂)n−k/2 for large n. Thus, when
using a flat prior forM the probability becomes

P (M|x) ≈ C · e`(θ̂)n−k/2 ∝ e−BIC/2,

where C is a proportionality constant (Wit et al., 2012). Thus, the model with the
lowest BIC is the model with the highest posterior probability of being true.

Consistency vs. Efficiency

The greatest advantage of the BIC is that it is consistent, meaning that it will
always select the true model when the sample size grows to infinity. This does
not hold for the AIC, which has a much smaller penalty for increased complexity,
and therefore has a non-zero probability of choosing an overparameterized variant
of the true model. The consistency property is however only beneficial if the true
model is known to be among the candidate models. In practice, this is rarely the
case, and it is impossible to select the true model. In these cases, minimization
of a loss function, such as mean squared error (MSE) of predictions, is of interest.
The AIC is asymptotically efficient in prediction MSE when the true model is
not in the candidate set, meaning that the prediction MSE is minimized given
the candidate models. This is not a property of the BIC. Therefore, the AIC is
preferable when the candidate models are assumed to be over-simplifications of the
true model (Vrieze, 2012).

Comparison to Likelihood Ratio Tests

When two candidate models are nested, a likelihood ratio test (LRT) can be used
to choose between the two. H0 is that the least complex model is true, and H1

is that the more generalized variant is true. H0 is rejected in favour of the more
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complex model if the difference in log-likelihoods is larger than some critical value
depending on the difference in complexity. This is analogous to using the AIC or
the BIC.

Assume we compare two modelsM1 andM2, whereM2 has one more param-
eter thanM1. Using a significance level of α = 0.05,M2 will be preferred by the
LRT if

−2(`(θ̂)M1
− `(θ̂)M2

) > 3.84.

If the AIC was used,M2 would be preferred if AICM2
< AICM1

, i.e.

−2(`(θ̂)M1 − `(θ̂)M2) > 2.

This corresponds to a significance level of 0.16 in the likelihood ratio test. Thus,
the AIC is far less conservative than the LRT.

Now, suppose the sample size of the study was n = 100. The BIC would favour
M2 if

−2(`(θ̂)M1
− `(θ̂)M2

) > 4.61,

corresponding to a significance level of 0.03. Furthermore, n = 1000 would cor-
respond to a significance level of 0.009 and n = 10000 would correspond to a
significance level of 0.002. The BIC becomes more conservative then the LRT
already at n = 47.

This example illustrates the importance of being aware of the different be-
haviour of the three methods. Each of them are suitable for different goals. The
LRT answers whether the more complex model gives a significantly better model
fit. The AIC attempts to answer if higher complexity is beneficial for prediction
purposes. The BIC attempts to find the true model among the candidates.

3.5.2 Prediction and Scoring Rules

Assume we have fitted a model with distribution g(yi|xi) to a dataset. Let x0 be
a new sample. In many cases, it can be of interest to predict its corresponding
response y0. One possibility is to report a point estimate ŷ0, which typically is
the mean, mode or median of g(y|x0). The performance of the prediction can be
reported as the absolute or squared value of the difference ŷ0 − y0. This makes it
possible to compare how close ŷ0 falls to y0 for different models, but it does not
say anything about how well the models reflect the truth.

Another possible approach is probabilistic prediction, where the entire distribu-
tion g(y|x0) represents our predictive distribution of y0. This means that we expect
y0 to follow this distribution. A good predictive distribution is both calibrated and
sharp (Gneiting and Raftery, 2007). Calibration refers to the consistency between
the predictive distribution and the observed value. A predictor is said to be cali-
brated if the observed values follow the predictive distribution. Sharpness refers to
the concentration of the predictive distributions and reflects the confidence of the
predictor. Calibration is obtained by choosing the right model for the data, while
sharpness can be improved by gathering more information (e.g. including more rel-
evant covariates). Gneiting and Raftery (2007) argue that the goal of prediction is
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to maximize the sharpness subject to calibration, i.e. having the sharpest possible
predictive distributions while being calibrated.

Let G(y|x) be the cumulative density function corresponding to g(y|x). Scoring
rules assign numerical scores to the predictive cumulative distribution G(y|x0)
based on the true outcome y0. This makes it possible to compare how well different
predictive distributions perform with regard to both sharpness and calibration. We
use the notation s(G, y) for the score that is assigned to the predictive distribution
G when y is the true outcome. The scores are negatively oriented, meaning that
smaller is better. A scoring rule is said to be proper when the expected value of
s(G, y) for an observation y ∼ F is minimized when G = F .

A popular choice in cases where the response y is continuous is the continuous
ranked probability score (CRPS) (Gneiting and Raftery, 2007). It is defined in
terms of the cumulative density G and observation y as

CRPS(G, y) =

∫ ∞
−∞

(G(z)− 1(z ≥ y))2 dz, (3.30)

where 1(·) is the indicator function. An illustration of how the score is calculated
is provided in Figure 3.8. This scoring rule is proper and provides a direct way to
compare different probabilistic predictions using only a single metric. It reaches
its theoretical minimum of zero if G(z) = 1(z ≥ y), meaning that the response is
predicted to equal y with no uncertainty. Illustrations of the resulting shape of the
CRPS for different predictive distributions is shown in Figure 3.9.
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Figure 3.8: Illustration of how the CRPS is calculated based on the predictive dis-
tribution g(z) and the observed value y. (a) The predictive distribution g(z) and the
observed value y. (b) The cumulative predictive distribution G(z) and the indicator func-
tion 1(z ≥ y). The difference between the two functions is illustrated by the shaded area.
(c) The integrand of the CRPS, (G(z) − 1(z ≥ y))2. The shaded area is the resulting
CRPS.

3.6 Monte Carlo Simulation Studies

The term Monte Carlo is used to denote methods that rely on repeated random
sampling to generate numerical results (Thomopoulos, 2012). There is a wide va-
riety of Monte Carlo methods with countless important applications, such as esti-
mating the posterior distribution in Bayesian analysis trough Markov Chain Monte
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Lognormal

CRPS

Two−part 
 w/o Interval Censoring

Two−part 
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Figure 3.9: Illustration of the shape of the CRPS(G,y) for different predictive distribu-
tions.

Carlo (MCMC) methods and bootstrap resampling inferential methods (Boos and
Stefanski, 2013).

Monte Carlo simulation studies, often referred to as Monte Carlo studies or
just simulation studies, is an important application of Monte Carlo techniques for
the purpose of studying how certain statistics depend on different factors. We
will continue to use the term ’simulation studies’. The rationale behind simulation
studies is to generate a large number of datasets mimicking a true population
in order to perform empirical estimation of the sample distributions of various
estimators of interest. Since the true distribution of the generated datasets is
known, it is possible to evaluate the accuracy of the estimators. This is particularly
useful in cases where it is unfeasible to derive the distribution of the estimators
analytically (Burton et al., 2006). There are many ways of using simulation studies,
including checking that the code operates as expected, evaluating new statistical
methods to see if it works for the scenarios it is designed for, and comparative
evaluation of statistical methods (Morris et al., 2017).

Simulation studies rely on large sample theorems (Boos and Stefanski, 2013),
which in short state that the sample mean and variance of independent identically
distributed variables converge to the true mean and variance as the number of
samples goes to infinity. Thus, it is possible to estimate the average performance
of an inference method by simulating independently generated datasets and taking
the average of the performances to estimate the true mean. Likewise, the sample
variance can be used to estimate the true variance of the performance.

We will continue to cover some fundamental large sample theory before we go
into how to perform simulation studies.

Large Sample Theory

This section is based on the book by Boos and Stefanski (2013).
Let X1, ..., Xn be a sequence of independent identically distributed random

variables with mean µ = E(Xi) and variance σ2 = Var(Xi). The Laws of Large
Numbers guarantee that the sample mean X̄ is close to the mean µ when n is large.
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There are two forms of the law. The Strong Law of Large Numbers states that

P
(

lim
n→∞

|X̄ − µ| < ε, for every ε > 0
)

= 1,

which means that the events in which X̄ does not approach µ has probability zero.
This is known as almost sure convergence.

The Weak Law of Large Numbers states that

lim
n→∞

P
(
|X̄ − µ| < ε

)
= 1, for every ε > 0.

This means that the probability of the sample mean X̄ being far away from the
expected value µ becomes smaller and smaller as n increases, also known as con-
vergence in probability. Clearly, the strong law implies the weak law, but not the
converse.

Furthermore, the Central Limit Theorem describes the limiting behaviour of X̄
when n tends to infinity. The theorem states that

lim
n→∞

P

(
X̄ − µ
σ/
√
n
≤ t
)

= Φ(t),

where Φ(t) is the standard normal cumulative distribution function. In other
words, the asymptotic distribution of X̄ is a normal distribution with the true
average µ as mean and variance σ2/n.

The Laws of Large Numbers and the Central Limit Theorem also applies to
statistics that are asymptotically equivalent to averages. This includes functions
of averages and statistics that are implicitly defined by averages.

Pseudo-Random Numbers

It is stated above that simulation studies are based on random sampling, but in
practice we only have access to pseudo-random number generators. The term
pseudo-random is used because the number generating mechanisms are fully de-
terministic, and can only generate numbers with similar behavior as truly random
numbers (Gamerman and Lopes, 2006). Large sample theorems, such as the weak
and strong laws of large numbers and the central limit theorem, in general, applies
to pseudo-random numbers. Therefore, pseudo-random numbers are adequate for
simulation studies (Boos and Stefanski, 2013).

While the applicability of pseudo-random numbers may be questioned in certain
cases, Morris et al. (2017) argues that there are several advantages to using deter-
ministic number generators in simulation studies. Most importantly, it is possible
to pick a starting state for the random number generator such that the simulation
can be re-run under that state. In many cases, this makes debugging and analysis
easier, and it becomes possible for other researchers to get an exact reproduction
of the results.
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Study Design

Just like any other experiment, simulation studies require careful planning and
analysis. Boos and Stefanski (2013) argue that simulation studies should be held to
the same standard as other studies regarding, among other things, reproducibility
and transparency. The tutorial on simulation studies by Morris et al. (2017) is the
basis for this section. Some relevant notation is described in Table 3.1.

Table 3.1: Description of notation.

θ The true value of the estimand
θ̂i The estimate of θ from the ith simulation

nobs Sample size of a simulated dataset
nsim Number of simulated datasets

Var(θ̂) The empirical long-run variance of θ̂
V̂ar(θ̂i) The estimate of Var(θ̂) from the ith simulation

In simulation studies a large number nsim of pseudo-random datasets {Xi,1, ..., Xi,nobs}
are generated in order to calculate a set of statistics θ̂1, ..., θ̂nsim . This is used to
investigate the properties of the sampling distribution of the estimator θ̂. Morris
et al. (2017) lists five important parts of planning a simulation study; Aims, data-
generating mechanisms, methods, estimands, and performance measures. They are
briefly described below:

(1) Aim: The aim of the study must be formulated based on what one wants
to learn. Typical properties to investigate are bias, coverage, power, and
variance.

(2) Data-generating mechanism: How the random datasets are going to be
generated. In most cases this is done by random sampling from parametric
distributions, but there are other possibilities such as repeated sampling from
a specific dataset. The choice will depend on the aims of the study. It might
produce realistic data for the sake of being relevant, or completely unrealistic
data in order to stretch to a breaking point. Several methods may be used
in order to cover different scenarios.

(3) Methods: Decide which methods/models for analysis to investigate. This
requires knowledge of previous work on the area in order to include serious
contenders.

(4) Estimands: Decide which estimands θ to investigate. This is chosen based
on what the aims of the analysis are. When fitting a model this may be a
specific regression parameter β if the aim is inference, or the fitted values
E(Y ) if the aim is prediction.

(5) Performance measures: The performance measures are numerical quanti-
ties used to assess the performance of the methods. The choice depends on
the target of the study. If the target is estimation, the performance measure

36



3.6 Monte Carlo Simulation Studies

may be bias, mean squared error or coverage. If the target is testing, a typical
performance measure is power.

Performance Measures and the MCSE

The Monte Carlo standard error (MCSE) denotes the uncertainty in the estimates
due to using a finite number of simulations nsim. Morris et al. (2017) stresses
the importance of calculating and reporting this error, as no estimate should be
reported without its corresponding uncertainty. Some examples of performance
measures and their corresponding Monte Carlo standard errors are provided in
this Table 3.2.

Table 3.2: Common performance measures and their corresponding Monte Carlo stan-
dard errors.

Performance
Measure Formula Monte Carlo SE

Bias
1

nsim

nsim∑
i=1

(θ̂i − θ)

√√√√ 1

nsim(nsim − 1)

nsim∑
i=1

(θ̂i − θ)2

Model SE

√√√√ 1

nsim

nsim∑
i=1

V̂ar(θ̂i)

√√√√ Var[V̂ar(θ̂i)]

4nsim( ̂Model SE)2

Empirical SE

√√√√ 1

nsim − 1

nsim∑
i=1

(θ̂i − θ̄)2
Empirical SE√

2(nsim − 1)

RelErrorSE 100

(
ModSE
EmpSE

− 1

)
100

(
ModSE
EmpSE

)√√√√ Var[V̂ar(θ̂i)]

4nsim(M̂odSE)2
+

1

2(nsim − 1)

Coverage
1

nsim

nsim∑
i=1

1(θ̂low,i ≤ θ ≤ θ̂upp,i)

√
Coverage× (1 − Coverage)

nsim

Power
1

nsim

nsim∑
i=1

1(pi ≤ α)

√
Power× (1 − Power)

nsim

The bias is the average deviation of the estimators from the true value. The
optimal bias is zero, which means that the expected value of the estimator θ̂i
equals the true parameter θ. However, one can often tolerate slight biases because
of other desirable qualities, such as better error prediction. The model SE denotes
the mean of the estimated standard errors, and quantifies the level of confidence
in the parameter estimate θ̂i. The true observed standard error of θ̂i is called the
empirical SE, which is the observed variation in θ̂i. In order to assess whether the
model SE correctly estimates the variance in θ̂i, the relative percentage error can
be computed, here denoted as RelErrorSE.

A useful way to assess the joint performance of the estimator θ̂ and its estimated
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standard error ŜE(θ̂), is the proportion of confidence intervals that contains the true
value, called the coverage. A Wald-type confidence interval is given by

[θ̂low,i, θ̂upp,i] = [θ̂i − zα/2ŜE(θ̂i), θ̂i + zα/2ŜE(θ̂i)],

where α is the level of significance and zα/2 is the critical value of the standard
normal distribution. The coverage is an estimate of the probability that this interval
contains the true value. If all assumptions hold this probability is 100(1 − α)%.
Under-coverage may happen due to bias in the estimates and/or under-estimation
of the standard error. Over-coverage is a result of over-estimation of the standard
error.

The best models in terms of coverage are models that give unbiased estimates
with correctly estimated standard errors. The size of the standard error is irrele-
vant, as long as it correctly reflects the confidence in the corresponding estimate.
A small standard error is however beneficial if one wants to target a hypothesis
test. A Wald-type p-value from testing the significance of θ̂i is given by

pi = 2

(
1−Φ

( |θ̂i|
ŜE(θ̂i)

))
.

The power of a model is the proportion of hypothesis tests that concludes that θ̂i
is significantly different from zero. All other things being equal, a greater power is
better. However, the power must be seen in context with the other performance
measures. If a higher power is the result of biased estimates or under-estimation
of the standard error, it does not make the model better.

Simulation Sample Size

Morris et al. (2017) state that the simulation sample size nsim should be cho-
sen based on the resulting Monte Carlo SE. This can be done by performing a
preliminary simulation study with low nsim in order to get an estimate of the
performance measure, and then solving the MCSE for nsim. For instance, if
our key performance measure is bias, and our preliminary analysis shows that
Var(θ̂) = 1

nsim

∑nsim
i=1 (θ̂i − θ)2 < 0.04, the number of simulations needed to get an

MCSE of at most 0.005 is

nsim =
Var(θ̂)
MCSE2 >

0.04

0.0052
= 1600.

Similar computations can be done for any performance measure of interest.

Analyzing the Results

There are several possible choices of software packages for performing simulation
studies. According to a review of simulation studies in Statistics in Medicine per-
formed by Morris et al. (2017) the most common choices are R and SAS. In this
thesis R will be used. Guides for performing simulation studies in R are provided

38



3.6 Monte Carlo Simulation Studies

by e.g. Hallgren (2013) and Abonazel (2018). There are multiple add-on packages
in R for performing different types of simulation studies. In particular the package
rsimsum (Gasparini, 2018), which is modeled upon the command simsum (White,
2010) in Stata, is useful for summarizing the results of a simulation study and
calculating performance measures and their corresponding Monte Carlo standard
errors.
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4 | Design of Simulation Study

4.1 Models

In this simulation study, we will compare the performance of four different models.
An overview of the models and their parameters is provided in Table 4.1. The
binary mixture model defined in (3.5) is included, as well as the variant with
interval censoring defined in (3.7). They are hereafter denoted as respectively the
TP model and the TPIC model for brevity. The TP model models the observed
data directly, while the TPIC model models a latent variable that is assumed to
be left-censored on [0, T ]. Two one-part models are also included in the study,
the Tobit model described in equation (3.2) and the substitute value approach
described in Section 3.1.4 with substitute value T/2. Both of these models assume
that all the observations arise from a single process, but they handle the zeroes
very differently. The Tobit model handles the zeroes by assuming that they are
left-censored observations from a latent distribution, and can therefore be viewed
as a one-part variant of the TPIC model. The substitute model sets all the zeroes
to the value T/2 and fits a continuous distribution to the observed data.

Table 4.1: An overview of the methods considered in the simulation study.

Model Parameters
Abbrivation Full Name Discrete Part Continuous Part
TP Two-Part Model β γ, σ (conditional)
TPIC Two-Part Model w/ Interval Censoring β γ, σ (conditional)
Tobit Tobit Model — γ, σ (marginal)
Substitute Substitute Model (S = T/2) — γ, σ (marginal)

Because the models are based on different assumptions, their parameters have
quite different interpretations. One important distinction is that the parameters in
the continuous part the two-part models must be interpreted conditional on having
observed a positive response, whereas the one-part models are parameterized in
terms of the marginal means. Therefore, the parameters are not directly compa-
rable across the models. In order to determine whether the estimated parameters
of the one-part models are correct, they must be compared to the true marginal
effects of the covariates in the data.
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4.2 Simulated Datasets

All simulated data is generated from a standard two-part model with interval cen-
soring. The continuous part is set to be lognormal, such that

ln(Y ∗i )|Y ∗i > 0 = x′iγ + εi, εi ∼ N (0, σ).

A limit of detection is introduced such that the observed data is

Yi =

{
0, Y ∗i ≤ T
Y ∗i , Y ∗i > T

.

The discrete part is modelled with the same covariates,

πi = P (Y ∗i = 0) = Φ(x′iβ).

The total amount of zeroes in the data is determined by both T and πi:

P (Yi = 0) = P (Y ∗i = 0) + P (Y ∗i > 0)P (Y ∗i < T |Y ∗i > 0)

= πi + (1− πi)Φ
( ln(T )− x′iγ

σ

)
.

In this model the expected value of the observation is

E(Yi|xi) = P (Yi > T |xi)E(Yi|Yi > T,xi)

= (1−Φ(x′iβ))

[
1−Φ

(
ln(T )− x′iγ

σ
− σ

)]
ex
′
iβ+σ2/2

= (1−Φ(x′iβ))(1−Φ(Zx − σ))ex
′
iβ+σ2/2,

where Zx =
ln(T )−x′iγ

σ . In general, it is not possible to calculate the marginal effect
of one covariate on the expected value, as it depends on the values of the other
covariates.

The main part of the analysis will be conducted on simulated datasets with
only one binary covariate, where the covariate shifts the expected value in the
same direction in both model parts. In practice, this means that the signs of
the associated parameters in γ and β are opposites. This is arguably the most
intuitive, as an increased mean in the continuous part coincides with a reduced
probability of being a true zero from the discrete component, and vice versa. This
is a simple setup which makes it easy to interpret the result, and since it has only
one covariate it is possible to compute the marginal effect of the covariate in order
to accurately assess the performance of the one-part models. As a supplement, we
will also simulate datasets where the effect of the binary covariate is in the opposite
direction in each model part, in order to see how this affects the conclusions. Lastly,
we will simulate datasets with multiple covariates to assess whether the results hold
when more covariates are introduced. An overview of the three setups is provided
in Table 4.2.
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Table 4.2: Overview of simulated datasets. Four different values are used for T and β0,
labeled 1 - 4 in the table. The values are varied in a full factorial experiment, giving a
total of 16 scenarios for each setup.

Parameter
T β0 β1 β2 β3 γ0 γ1 γ2 γ3 σ nobs

Setup 1 2 3 4 1 2 3 4
1 0.5 1 2 3 -1.2 -0.7 -0.5 -0.2 -0.2 — — 1 0.2 — — 0.7 300
2 0.5 1 2 3 -1.4 -0.9 -0.7 -0.4 0.2 — — 1 0.2 — — 0.7 300
3 0.5 1 2 3 -1.2 -0.7 -0.4 -0.1 -0.2 0.4 -0.1 0.8 0.2 -0.2 0.1 0.7 300

Setup 1: One covariate, discrete and continuous effect in same direction.
Setup 2: One covariate, discrete and continuous effect in opposite directions.
Setup 3: Three covariates.

In all simulations the number of observations is set to nobs = 300 and the
variance of the error term εi is set to σ = 0.7, which mimics the behaviour of the
data on the cytokine TNF-α. Two parameters, the LOD and the intercept β0,
are varied in a full factorial experiment with four values each, giving a total of 16
scenarios. The detection limit is set to T = 0.5, 1, 2, 3, and the parameters of γ are
chosen to give approximately 0.5%, 5%, 30% and 50% of the continuous distribution
being censored. The parameters of β are chosen such that approximately 10%, 20%,
30% and 40% of the observations arises from the discrete part. The effect sizes are
chosen in order to give a power that is not too close to one or zero, such that it is
possible to assess how the factors affect the power.

Setup 1: One Covariate

In the main part of the simulation study we set

ln(Y ∗i )|Y ∗i > 0 = γ0 + γ1x1,i + εi

= 1 + 0.2x1,i + εi,
(4.1)

where x1,i ∼ Bernoulli(0.5) is a binary covariate and εi ∼ N (0, σ = 0.7) is a
normally distributed error term. This results in approximately approximately 0.5%,
5%, 30% and 50% of the continuous distribution being censored, when the LOD is
set to T = 0.5, 1, 2, and 3, respectively.

The discrete part is modelled with the same covariate, i.e

πi = P (Y ∗i = 0) = Φ(β0 + β1x1,i),

= Φ(β0 − 0.2x1,i).
(4.2)

For all datastes, β1 is set to −0.2, while the intercept β0 is set to −1.2, −0.7, −0.5
and −0.2 in order to give about 10, 20, 30 and 40 %, respectively, of the data
arising from the discrete part of the distribution. A description of the 16 scenarios
is provided in Table 4.3.

Naturally, the amount of zeroes increases with increasing LOD and with in-
creasing discrete proportion, giving expected proportions of observed zeroes ranging
from 10.3% to 68.9%. The marginal effect of the covariate increases with increasing
LOD, because the amount of censored data increases most in the group with the
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Table 4.3: Description of the 16 scenarios with only one covariate. The censored pro-
portions are the approximate proportions of observations from the continuous part that
falls below the LOD, and the discrete proportion is the overall approximate proportion of
data that arises from the discrete part. The expected percent of observed zeroes from the
underlying distribution is calculated from (4.2) and the overall marginal multiplicative
effects of xi,1 are calculated from the marginal effects in (3.9).

β0 = -1.2 β0 = -0.7 β0 = -0.5 β0 = -0.2
10 % discrete 20 % discrete 30 % discrete 40 % discrete

LOD
Censored
proportion

Percent
zeroes

Marginal
effect

Percent
zeroes

Marginal
effect

Percent
zeroes

Marginal
effect

Percent
zeroes

Marginal
effect

0.5 0.5 % 10.3 % 1.27 21.7 % 1.32 27.9 % 1.34 38.6 % 1.38
1 5 % 15.2 % 1.28 26.0 % 1.33 31.8 % 1.35 41.9 % 1.39
2 30 % 35.2 % 1.34 43.4 % 1.39 47.8 % 1.42 55.5 % 1.46
3 50 % 54.7 % 1.43 60.4 % 1.48 63.5 % 1.51 68.9 % 1.55

lowest mean, x1,i = 0, which increases the difference between the two groups. Fur-
thermore, the marginal effect increases with increasing discrete proportion, because
the group difference is greater in the discrete part.

A preliminary simulation study with 100 simulations is performed in order to
estimate the variance of the estimated parameters. The parameter with the largest
estimated variance is found to be β̂1 in the TPIC model when T = 3 and β0 = −1.2.
In this scenario, the variance of β̂1 is found to be significantly smaller than 3.31.
In order to achieve a Monte Carlo SE of at most 0.05 in the estimates of the bias
in β̂1 we will need

nsim =
Var(β̂1)

MCSE2 >
3.31

0.052
= 1324.

Most of the estimates will get a considerably lower MCSE. For instance, the vari-
ance in γ̂1 in the same scenario is estimated to be significantly smaller than 0.034,
which with nsim = 1324 simulations will give a MCSE of at most

MCSE =

√
Var(γ̂1)

nsim
<

√
0.034

1324
= 0.005

in the estimate of the bias in γ̂1. In order to ensure a satisfactory confidence in
the results with a comfortable margin we will perform the simulation study with
nsim = 2000.

Setup 2: Discrete and Continuous Effect in Opposite Direction

In the data described in the previous section, the covariate x1,i shifted the mean in
the same direction in both model parts. γ1 was positive, such that xi = 1 increased
the mean of the continuous part, and β1 was negative such that xi = 1 decreased
the probability of belonging to the discrete part. It is however entirely possible
that the effect is opposite in the two model parts. Imagine that xi represents sex
and that the response yi is a symptom of some disease. It is clearly possible that
females have a higher chance of catching the disease, while males have a greater
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symptom severity given that they have the disease. In such cases, sex might not
affect the marginal mean, even if it affects each model part.

We will now take a look into what happens in such scenarios by changing the
sign of β1, such that β1 = 0.2. In order to keep the proportion of data from the
discrete part similar the values of β0 are shifted in the opposite direction and are
now set to −1.4, −0.9, −0.7 and −0.4. Everything else is kept equal. The scenarios
are described in Table 4.4.

Table 4.4: Description of the 16 scenarios with one covariate and effects in opposite
directions. The censored proportions are the approximate proportions of observations
from the continuous part that falls below the LOD, and the discrete proportion is the
overall approximate proportion of data that arises from the discrete part. The expected
percent of observed zeroes from the underlying distribution is calculated as P (Y ∗

i = 0) =
Φ(β0 +0.2x1,i), and the overall marginal multiplicative effects of xi,1 are calculated from
the marginal effects in (3.9).

β0 = -1.4 β0 = -0.9 β0 = -0.7 β0 = -0.4
10 % discrete 20 % discrete 30 % discrete 40 % discrete

LOD
Censored
proportion

Percent
zeroes

Marginal
effect

Percent
zeroes

Marginal
effect

Percent
zeroes

Marginal
effect

Percent
zeroes

Marginal
effect

0.5 0.5 % 10.3 % 1.18 21.7 % 1.14 27.9 % 1.11 38.6 % 1.08
1 5 % 15.2 % 1.19 26.1 % 1.14 31.9 % 1.12 42.0 % 1.09
2 30 % 35.4 % 1.24 43.7 % 1.20 48.2 % 1.18 55.9 % 1.14
3 50 % 54.9 % 1.32 60.7 % 1.28 63.9 % 1.25 69.3 % 1.21

The observed proportions of zeroes are almost identical to the previous setting,
which is expected since the discrete proportion and the proportion of censored ob-
servations from the continuous part is kept equal. As before, the multiplicative
marginal effect increases with increasing LOD. This setup differs from the previ-
ous one in that the marginal effect decreases with increasing discrete proportion,
because the group with the highest mean in the continuous part has a greater
chance of belonging to the discrete part. Thus, the groups have an almost identical
marginal mean when T = 0.5 and β0 = −0.4.

We perform a preliminary simulation study with nsim = 100 simulations. As
before, the parameter with the highest estimated variance is β̂1 in the TPIC model
when T = 0.5 and β1 = −1.2. It is found to be significantly lower than 2.46. Thus,
we conclude that nsim = 2000 will give satisfactory confidence in the results in this
setup as well.

Setup 3: Multiple covariates

In the data described so far only one covariate has been included. This made it
possible to calculate the marginal effects for all methods and directly compare the
results across all models. However, an analysis will often contain more than one
covariate. Therefore, we will investigate what happens when multiple covariates
are included. The data is generated by letting

ln(Y ∗i )|Y ∗i > 0 = γ0 + γ1x1,i + γ2x2,i + γ3x3,i + εi

= 0.8 + 0.2x1,i − 0.2x2,i + 0.1x3,i + εi
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where x1 ∼ Bernoulli(0.5), x2 ∼ N (0, 1), x3 ∼ Pois(1) and εi ∼ N(0, 0.7). As
before, a limit of detection is introduced at T = 0.5, 1, 2, 3, such that the below
observations are observed as zero. This gives approximately the same proportions
of observations under the LOD in each scenario. The same covariates are included
in the discrete part of the model, such that the probability of belonging to the
discrete part is

πi = P (Y ∗i = 0) = Φ(β0 + β1x1,i + β2x2,i + β3x3,i)

= Φ(β0 − 0.2x1,i + 0.4x2,i − 0.1x3,i),
(4.3)

with intercepts β0 = −1.2,−0.7,−0.4,−0.1 such that the proportion of observations
from the discrete part is kept to approximately 10, 20, 30 and 40% as in the previous
analysis. The scenarios are described in Table 4.5.

With this data it is not possible to calculate the effect of each covariate on the
marginal mean, as the marginal effect of one covariate depends on the value of the
other two covariates.

Table 4.5: Description of the 16 scenarios with multiple covariates. The censored pro-
portion is the approximate proportion of observations from the continuous part that falls
below the LOD, and the discrete proportion is the overall approximate proportion of data
that arises from the discrete part. The expected percent of observed zeroes from the
mixture distribution is calculated from (4.3) for each scenario.

Discrete proportion

LOD
Censored
proportion

10 %
(β0 = -1.2)

20 %
(β0 = -0.7)

30 %
(β0 = -0.4)

40 %
(β0 = -0.1)

0.5 0.5 % 10.8 % 21.1 % 29.7 % 39.7 %
1 5 % 17.5 % 26.8 % 34.6 % 43.8 %
2 30 % 39.7 % 46.1 % 51.6 % 58.1 %
3 50 % 58.9 % 63.0 % 66.6 % 70.9 %

Since more covariates are included, the estimates are subject to more variance.
A preliminary simulation study with nsim = 100 simulations showed that the pa-
rameter with the largest estimated variance was β̂1 in the TPIC model when T = 2
and β0 = −1.2. Its variance was estimated to be significantly lower than 123.2. In
order to achieve a Monte Carlo SE of at most 0.05 we will need

nsim =
Var(β̂1)

MCSE2 >
123.2

0.052
= 49280.

A variance of 132.2 on a parameter with value −0.2 is however a clear sign that
the model does not behave well in this scenario. Therefore, aiming to achieve a low
MCSE in this case is arguably an unnecessarily strict requirement. If we consider
the TP model instead, the parameter with the highest estimated variance was β̂1
when T = 0.5 and β0 = −1.2. Its variance was estimated to be significantly lower
than 0.07, thus requiring only

nsim =
Var(β̂1)

MCSE2 >
0.07

0.052
= 28
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in order to achieve a MCSE of at most 0.05. Furthermore, a MCSE of at most 0.005
is achieved by using nsim > 2800. The Tobit and Substitute models have even lower
estimated variances in the parameters. We therefore conclude that nsim = 3000
will give satisfactory confidence in the results in all relevant cases.
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5 | Results from Simulation Study

The main focus of this simulation study is data with one covariate, as described
in Table 4.2 as setup 1. First we will explore and visualize the raw results in
Section 5.1, before we analyze the results for each model in terms of inference in
Section 5.2 and prediction in Section 5.3. Furthermore, a briefer analysis of data
with discrete effect in the opposite direction and data with multiple covariates is
included in Section 5.4 and Section 5.5, respectively. The R code used to perform
the simulation study is included in Appendix A.

5.1 Exploration and Visualization of Results

Before computing the performance measures, we explore the raw results. Recall
that γ1 is the effect of the covariate x1,i in the continuous part. In the two-part
models, it represents the effect conditioned on being a non-zero response, while in
the one-part models it represents the marginal effect of the covariate. Scatter plots
of the estimated parameters γ̂1 versus the estimated standard errors ŜE(γ̂1) are
displayed in Figure 5.1, together with density plots of γ̂1.

There are several clear patterns in Figure 5.1. When the LOD is small, the two-
part models are seemingly indistinguishable. The differences between the two-part
models increase as the LOD increases. In short, the estimates from the TP model
becomes more and more biased, and the TPIC gets a larger and larger variance
in the results, which is also reflected in increased estimated standard errors. The
one-part models are also close to equivalent when the LOD is low, and when the
discrete proportion is low.

Scatter plots and marginal density plots of the estimates of β1 are displayed in
Figure 5.2. It is the effect of the covariate x1,i in the discrete part, and is therefore
only present in the two-part models. As for γ1, the results are indistinguishable
for the smallest LOD. As the LOD increases, the TP model seems to get a slightly
negative bias, and the TPIC model provides very dispersed results, accompanied
by extremely large standard errors. There is a bump in the marginal density of
β̂1 around −3 and 3 in the results for the largest LOD. Thus, the assumption of
normally distributed estimates is clearly violated.

The estimates of the effect β1 must be seen in context with the estimates of
the intercept β0. A scatterplot of the estimates of two parameters with marginal
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Figure 5.1: Scatter plot of of the estimated parameters γ̂1 and corresponding estimated
standard errors ŜE(γ̂1) with marginal densities of γ̂1. The true value of γ1 is marked with
the horizontal dashed line. The parameter γ1 is the covariate effect in the continuous
part, as specified in (4.1).

densities is provided in Figure 5.3. This figure shows that the highest values of
β̂1, β̂1 ≈ 2, are accompanied by very low estimates of the intercept, β̂0 ≈ −3.5.
In these cases the probability of belonging to the discrete part of the distribution
for the group xi = 0 is estimated to Φ(−3.5) ≈ 0, while the probability for the
group xi = 1 is estimated to Φ(−4 + 3) ≈ 0.07, which is close to the truth. The
estimated effect β̂1 ≈ 3 is however very misleading, as the true value is β1 = −0.2.
The lowest estimates of β̂1 ≈ −3 are accompanied by relatively correct estimates
of the intercept, β̂0 ≈ −1. In these cases the estimated probability of belonging
to the discrete part for the group xi = 0 is close to the truth, while the estimated
proportion when xi = 1 is Φ(−1− 3) ≈ 0.

Failed solutions

The TPIC model fails to provide solutions for some datasets, either due to non-
convergence or producing a Hessian matrix that is not negative-definite. The latter
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Figure 5.2: Scatter plot of of the estimated parameters β̂1 and corresponding estimated
standard errors ŜE(β̂1) with marginal densities of β̂1. The true value of β1 is marked with
the horizontal dashed lines.

is the result of not reaching a maximum of the likelihood function, and leads to
negative estimates of the variance in one or more of the parameters. This clearly
indicates that the results are not reliable. We therefore regard these solutions as
missing, even if all convergence criteria are met. The amount of missing solutions
in each scenario is listed in Table 5.1. The problem of non-convergence is clearly
linked to the LOD, as there are no missing solutions for the two lowest LODs and
missing solutions in all scenarios with the two highest LODs. The proportion also
highest for the lowest discrete proportions.

A deeper look into the simulated data that resulted in failed solutions for the
TPIC model reveals that in most cases the expected amount of zeroes based on the
observed part of the continuous distribution is higher than or close to the observed
amount of zeroes in the data for both groups. Thus, all the observed zeroes can
be explained by left censoring of the continuous part, making the discrete part
superfluous. This is in most cases caused by unexpectedly many observations close
to the LOD, which makes the left tail of the continuous part appear heavier than
it truly is. An example is provided in Figure 5.4. The figure illustrates how the
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Figure 5.3: Scatter plot of of the estimated parameters β̂1 and β̂0 with marginal densities.
The true values are marked with dashed lines.

Table 5.1: Amount of missing solutions with setup 1. Only the TPIC model leads to
missing soultions with this setup.

TPIC
Discrete

LOD 10 % 20 % 30 % 40 %
0.5 — — — —
1 — — — —
2 1.4 % 0.3 % 0.3 % 0.1 %
3 1.3 % 1.3 % 1.1 % 0.5 %

observed positive data has a distribution that leads to overestimation of the left
tail of the continuous part of the distribution for both groups in the data.

In the scatter plots of β̂1 versus ŜE(β̂1) in Figure 5.2 it is clear that there are
some outliers in the data with extremely large estimated standard errors by the
TPIC model. The highest estimated standard error is ŜE(β̂1) = 295.9. A standard
error this high is a clear sign that the method has failed to converge properly. This
small number of outliers shifts the mean estimated standard error substantially in
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Figure 5.4: Illustration of a dataset that failed to provide a solution with the TPIC
model. It shows the result of fitting a truncated lognormal distribution to the observed
positive data (red curve), compared to the true underlying distribution of the continuous
data (green curve). The predicted censored left tailes are shown with dashed lines. In
this scenario T = 2 and β0 = −1.2.

certain scenarios. Therefore, we choose to regard solutions with an estimated stan-
dard error larger than 10 standard deviations from the mean estimated standard
error as failed in the further analysis. For instance, in the scenario with T = 3

and β0 = −0.2 (40% discrete proportion) the estimated standard errors ŜE(β̂1)
from the TPIC model has mean of 4.64 and standard deviation of 11.6, which gives
a cutoff at ŜE(β̂1)max = 4.63 + 10 · 11.6 = 120.6. Three observations lie above
this limit and are excluded in further analysis. This procedure is performed on all
parameters across all methods and scenarios, resulting in a total of 46 additional
missing solutions, all of which are from the TPIC model. In relative terms, this
makes up 0.14% of all the simulated results.

5.2 Inference

In this section, we will investigate how the different models perform when the goal
is to make inferences about the underlying process. In particular, it is of interest
to determine how well the models are able to distinguish between the two groups
in the data. In the two-part models, the group effect is quantified by γ1 in the
continuous part, conditioned on having observed a non-zero response, and by β1
in the discrete part. In the one-part models, the group effect is quantified by only
γ1, in terms of how the covariate affects the marginal mean. The performance
measures related to γ1 are displayed in Figure 5.5 and the performance measures
related to β1 are displayed in Figure 5.6.

The parameter γ1 have dissimilar interpretations in the one- and two-part mod-
els, and is therefore not expected to be the same across all models. In order to
assess the performance of the one-part models, we must assess whether they cor-
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Figure 5.5: Performance measures related to γ1 with 95 % Monte Carlo confidence
intervals.

rectly estimate the marginal effect. The marginal expected values for each group
and the multiplicative marginal effect of the group parameter is calculated for each
model in every scenario. The resulting bias in the estimates are displayed in Figure
5.7. Fitted densities for each model is shown for selected scenarios in Figure 5.8.
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Figure 5.6: Performance measures related to β1 with 95 % Monte Carlo confidence
intervals.

5.2.1 Two-Part Model w/ Interval Censoring

The two-part model with interval censoring (TPIC) is the model used to generate
the data for this simulation study. Therefore, it is expected that it gives unbiased
estimates of γ1 in all scenarios. The estimated standard errors ŜE(γ̂1), called the
model SE, increases with increasing LOD and with increasing discrete proportion.
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Figure 5.7: Bias in the estimated marginal means for each group and the marginal
multiplicative group effect.

This is to be expected, as the amount of observed data from the continuous dis-
tribution decreases. As a result, the power decreases. The model SE is close to
the empirical SE of γ̂1 in all scenarios, but the standard error is somewhat over-
estimated for the largest LOD. This gives a slight decrease in the coverage, which
otherwise is close to the expected 95%.

When it comes to the group effect in the discrete part of the distribution,
β1, the scatter plot in Figure 5.2 showed that the results for the TPIC model
became very unstable for large LODs, especially when the discrete proportion is
low. The performance measures displayed in Figure 5.6 gives a better insight into
this behavior. The model SE is greatly over-estimated, with an average relative
error of at worst 2000% when LOD = 3 and the discrete proportion is 10%. As a
consequence, the coverage increases to almost a 100% and the power decreases to
nearly zero for the highest LODs. Due to the high variance in the estimates, the
MCSE in the estimated bias is also very large.

Given the unbiased estimates of β1 and γ1, it comes to no surprise that the
model provides close to unbiased estimates of marginal means and the multiplica-
tive marginal effect, as shown in Figure 5.7. The fitted densities in Figure 5.8 also

56



5.2 Inference

Figure 5.8: The fitted densities based on the mean of the parameter estimates in four
of the scenarios when x1,i = 0. The results when x1,i = 1 look similar.

reveals a relatively good fit to the underlying curve. The discrete proportion is
however on average somewhat under-estimated, due to a negative bias in β0, which
is evident in Figure 5.3.

The instability in the results when a large proportion of the censored observa-
tions come from the continuous distribution, can be taken as a clear sign that the
model is over-parameterized in these scenarios. The model struggles to distinguish
between the true zeroes from the discrete part of the distribution and the "false"
zeroes that are censored observations from the continuous part. Therefore, the
estimates of β̂0 and β̂1 are highly unstable.

5.2.2 Two-Part Model

The underlying assumptions of the two-part (TP) model differ from the distri-
bution of generated datasets in that the entire continuous part is assumed to be
observed. The consequences of this misassumption are expected to amplify as the
LOD increases.
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From Figure 5.5 it is evident that γ1 becomes increasingly under-estimated as
the LOD increases. As a consequence, the coverage decreases. This is a consequence
of attempting to fit a lognormal distribution to a truncated lognormal distribution.
It is an interesting result that the TP model has equally good power as the TPIC
model, even if the effect is underestimated. This is because the power is a function
of both the estimate γ̂1 and its corresponding estimated standard error ŜE(γ̂1).
The model SE of the TP model does not increase with increasing LOD, and con-
sequently, it suffers no more loss in power than the TPIC model. The model SE of
the TP model correctly estimates the empirical SE in all scenarios.

The effect β1 in the discrete part of the model is increasingly over-estimated
as the LOD increases. In this model, the discrete part represents all the observed
zeroes, including the observations that are truly censored observations from the
continuous part. Therefore, β1 represents the combined group effect on the proba-
bility of being observed as zero both from the discrete and continuous part. This
leads to biased results and decreased coverage. In terms of power, the TP model
performs a lot better than the TPIC model for high LODs, and will much more
frequently find a significant group difference in the discrete part. This will however
not be particularly useful, as it is not possible to determine whether the group
difference is caused by the effect γ1.

It is interesting to note that the estimated marginal means and the multiplica-
tive marginal group effect is close to unbiased in all scenarios, despite the bias in
both β̂1 and γ̂1. Clearly, the biases cancel out such that the resulting estimated
means are unbiased.

Figure 5.8 illustrates how the TP model behaves in selected scenarios. For the
lowest LOD it is indistinguishable from the true distribution, but for the largest
LOD its disadvantages are clear. The lognormal distribution does not fit well to the
truncated-lognormal distribution, and therefore gives misleading results. However,
the results from the TP model is shown to provide much more stable results than
the TPIC model for the high LODs, which nevertheless can make the TP model a
better choice.

5.2.3 Tobit Model

The Tobit model is a special case of the TPIC model where the discrete part is not
present, such that the latent continuous distribution accounts for all the observed
zeroes. This means that the entire group difference is quantified by γ1, which
is the marginal effect of the x1,i. Therefore, this model is expected to give biased
estimates for γ1, which is confirmed in Figure 5.5. The parameter is over-estimated
in all scenarios, as it also includes the effect in the discrete part of the model.
The estimated effect decreases with increasing LOD and increases with increasing
discrete proportion. The former can be explained by that discrete part of the
data constitutes a smaller portion of the observed zeroes as the LOD increases,
and therefore the effect in the discrete part becomes less prominent. Likewise, γ̂1
increases with increasing discrete proportion, because this makes the discrete part
more prominent. The model SE, ŜE(γ̂1), decreases with increasing LOD, which
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is in agreement with the empirical SE. This leads to the power being relatively
similar in all scenarios, between 50% and 75%.

The behavior of the Tobit model is nicely illustrated by the fitted curves in
Figure 5.8. For the lowest LOD, the curve is considerably left-skewed, because the
proportion of zeroes is way higher than what is expected from the continuous part
alone. This becomes worse as the discrete proportion increases. For the highest
LOD, the Tobit model provides a good fit to the true distribution, as the proportion
of zeroes is much closer to what is expected from the non-censored observations.
This behavior is reflected in the bias in the marginal means in Figure 5.7. The
estimated marginal means are close to unbiased for the highest LOD.

5.2.4 Substitute Model

In the substitute model, all zeroes are set to half the detection limit before a
lognormal distribution is fitted. This is a common technique when the proportion
of censored data is low. The model consists of one continuous part, where the
group effect is quantified by γ1. Thus, γ1 represents the effect on the marginal
mean, as opposed to the conditional effect which γ1 underlying distribution of the
data. Therefore, we expect the estimated parameters of γ1 by the substitute model
to be biased estimates of the underlying parameter γ1 used to generate the data. In
Figure 5.5, we see that the estimated effect decreases as the LOD increases, which
is expected since the distributions of the two groups become more similar when a
larger proportion falls below the LOD and is set to T/2.

When the LOD and the discrete proportion is low, all the performance measures
are very similar as for the Tobit model. The differences between the one-part
models become greater as the LOD and discrete proportion increases. In particular,
the substitute model estimates a smaller group effect γ1 than the Tobit model, as
well as smaller corresponding estimated standard errors. In the substitute model,
all the zeroes are fixed to T/2 for both groups in the data, while the distribution
below the LOD is flexible in the Tobit model. Therefore, it is justifiable that the
Tobit model detects a greater difference between the groups. In terms of power,
the one-part models have almost identical performance.

The substitute model over-estimates the marginal means for both groups (see
Figure 5.7). This is expected as all the zeroes are taken to be T/2. For the
lowest LODs, the marginal effect is however close to correctly estimated, but as
the LOD increases, the multiplicative marginal effect is greatly underestimated,
due to decreasing estimates γ̂1.

5.2.5 Concluding Remarks

As expected, the full TPIC model has the overall least biased estimates, as this
is the model used to generate the data. The model does however not behave well
when the discrete part of the model constitutes a smaller proportion of the total
amount of zeroes. These problems seem to kick in when less than 70% of the
total amount of zeroes arises from the discrete part of the model, and the analysis
becomes very problematic when less than half of the zeroes arises from the discrete
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part. In such scenarios, the TPIC model is clearly over-parameterized, and one
should either gather more data or use another model.

The Tobit model gives good results for larger LODs, and can therefore be a
good alternative when the TPIC model is over-parameterized. It provides nearly
unbiased estimates of the marginal means, and it achieves a much better power than
the TPIC model. A drawback with this approach is that the Tobit model consists
of only one part, such that both the effect in the discrete part and the continuous
part is contained in one parameter. In situations where it is desirable to isolate
these effects, the TP model can be a better option. It is however important to note
that the TP model gives biased results for higher LODs. Already when T = 1 and
5% of the observations from the continuous part of the data is censored, the TP
model has a substantial drop in performance in terms of bias and coverage.

The substitute model is inferior in all scenarios, but when the LOD is low it
provides good estimates of the marginal effect. It is by far the easiest model to apply
since all familiar regression techniques can be used on the data after substituting
the zeroes with T/2. Here we have shown that it can be a valid choice when the
proportion of censored observations is low.

5.3 Prediction

So far, we have compared the models in terms of inference. There are however many
situations where the goal is not to correctly identify the underlying properties of
the distribution, but rather to be able to predict the outcome of a new observation.
In order to compare how well the models are able to do this, we simulate new data
from the same underlying distribution and compare their mean continuous rank
probability score (CRPS) (3.30) for each scenario. The results are displayed in
Figure 5.9. Recall that a lower score is better.

Figure 5.9 shows that the two-part models achieve a close to optimal score in
all scenarios, with slightly better scores for the TPIC model than the TP model
when the LOD increases. The Tobit model performs poorly for the lowest LOD,
but achieves the lowest score for the highest LODs, i.e. when the proportion of
censored data form the continuous distribution exceeds 30 %. The substitute model
is inferior in all scenarios, but performs considerably better for low LODs than high
LODs.

5.4 Discrete and Continuous Effect in Opposite Di-
rections

The setup is displayed in Table 4.2 as Setup 2, and the data in the 16 scenarios
is described in Table 4.4. It differs from the previously analyzed data in that the
sign of β1 is reversed such that β1 = 0.2, and the values of β0 are shifted such that
the weight of the point mass at zero is the same. As a consequence, the marginal
effect of x1,i now decreases with increasing discrete proportion, thus giving a close
to zero marginal effect in some scenarios. The bias in the estimates of γ1 and β1
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Figure 5.9: The top panel shows the mean CRPS for each method and scenario, as well
as the theoretical optimal mean CRPS achieved by the true distribution represented by
the dashed lines. In the bottom panel, the theoretical optimal mean CRPS is subtracted,
so that the loss in performance compared to the true model is shown. The plot is zoomed
in so that the differences between the methods are visible.

is shown in Figure 5.10 and the power in the same parameters is shown in Figure
5.11.

The performance of the TPIC model is overall similar as in the previous analysis.
It provides close to unbiased estimates of γ1, but suffers great instability for the
larger LODs, especially in β̂1. The TP model performs equally good in estimating
γ1 as in the previous setup, but the results for β1 are highly misleading for the
higher LODs. Recall that the true value is β1 = 0.2. When T = 1 the TP
model estimates β1 to be close to zero, as the increased probability of belonging
to the discrete part associated with x1,i = 1 is canceled out by the decreased
probability of being censored from the continuous part. For the highest LODs β1
is estimated to be negative, because the increased probability of belonging to the
discrete part is dominated by the decreased probability of being censored from the
discrete proportion.

In the previously studied scenarios, the one-part models achieved better power
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Figure 5.10: Bias in estimates of β1 and γ1 in setup 2. The true values are β1 = 0.2
and γ1 = 0.2

than the two-part models and would therefore be preferable if power was the only
concern. This was because combining both the discrete and the continuous effect
into one parameter resulted in parameter estimates with greater magnitude. When
the discrete effect and the continuous effect affect the mean in opposite directions,
this result is reversed. The marginal effect on the mean is low because the effect of
γ1 is canceled by the effect of β1, therefore the one-part models give small, or even
negative, estimates for γ1, resulting in low power in many scenarios, as shown in
Figure 5.11. As a result, the two-part models performs best in terms of power in
most scenarios, except for when T = 3 where the marginal effect is greatest.

This example illustrates why it might be important to isolate the effect in the
discrete and continuous part of the underlying model. The Tobit or the substitute
model is clearly not a good alternative to the TPIC model for in many scenarios,
as they only detect the marginal effect of x1,i. The TP model gives misleading
estimates of β1, but it achieves a just as good power in γ1 as the TPIC model,
without the issues related to convergence. The performance in prediction is similar
as before, with the TPIC model performing best for the lowest LODs and the Tobit
model being the best when T = 3.
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Figure 5.11: Power of estimates of β1 and γ1 in setup 2.

5.5 Multiple Covariates

The setup is displayed in Table 4.2 as Setup 3, and the data in the 16 scenarios is
described in Table 4.5. Compared to the previous analysis, two additional covari-
ates are included in both parts of the underlying model. This gives four additional
parameters in the two-part models, and two additional parameters in the one-part
models.

The overall results with multiple covariates are similar as with one covariate.
In general, there is more variance in the results, as the models contain substan-
tially more parameters. Most notably, the instability in the TPIC model performs
considerably worse and there is a much larger proportion of failed solutions. The
proportions of failed solutions are displayed in Table 5.2. Overall, the proportions
are about ten times as large as when only one covariate was present. There is also
a greater proportion of outliers with extremely large estimated standard errors. In
total 171 solutions, making up 0.36% of the simulations, from the TPIC model
has estimated standard errors greater than ten standard deviations from the mean
estimated standard error. This makes it even more important to look for alterna-
tives to the TPIC model when the discrete part of the model makes out a small
proportion of the total amount of observed zeroes.

Figure 5.12 shows the bias in β̂1 and γ̂1 for all methods and scenarios when
multiple covariates are present. The biases in γ̂1 are very similar to the biases
when only one covariate was included, as shown in Figure 5.5. The bias in β̂1 in
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Table 5.2: Amount of missing solutions with multiple covariates.

TPIC
Discrete

LOD 10 % 20 % 30 % 40 %
0.5 — — — —
1 1.1 % — — —
2 5.6 % 3.1 % 2.2 % 1.5 %
3 8.7 % 6.3 % 5.5 % 5.1%

the TP model is also similar to before, with an increasingly negative bias as the
LOD increases. With only one covariate the estimates of β1 by the TPIC model
were close to unbiased. When more covariates are introduced β̂1 gets a substantial
negative bias for the largest LODs.

Figure 5.12: Bias in estimates of β1 and γ1 when multiple covariates are included.

The long-run empirical SE in β̂1 and γ̂1 is shown in Figure 5.13. The estimator
β̂1 is subject to extreme variation for the largest LODs when the TPIC model is
used, with an empirical SE around 12 in all the scenarios with T = 3. In practice,
this means that the estimates range from about −300 to 100. This is also the case
for the other parameters in β. The empirical SE of β̂1 in the TPIC model with one
covariate was only about 1.5 in the same scenarios, with estimates ranging from
about −4 to 4. This is a drastic increase in variance that is not seen in any of the
other models.

The results of including more covariates can be summarized in that the estima-
tors as expected has a higher variance, and that this has a particularly great impact
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5.5 Multiple Covariates

Figure 5.13: The long-run empirical SE of β̂1 and γ̂1 when multiple covariates are
included.

on the performance of the TPIC model. As with one covariate, both the TP model
and the Tobit model provide viable alternatives to the TPIC model for the highest
LODs. In terms of prediction, the Tobit model is the best alternative, while the
TP model might provide better results in terms of inference as it separates the two
model parts. This is the same conclusion as was drawn with one covariate, and can
therefore be taken as evidence that the results found for one covariate generalizes
to multiple covariates.
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6 | Application to Borrelia Data

In this Chapter the different models presented in Chapter 3.1 will be demonstrated
on the borrelia antibody data introduced in Section 2.1, with the primary goal of
estimating the prevalence of Lyme borreliosis.

6.1 Description of the Data

The data consists of 981 serum samples from medical offices in Sør-Trøndelag from
the period 2013 - 2017. It was collected as part of a medical undergraduate re-
search thesis by Holt and Eriksen (2018). The samples were analyzed for borrelia
antibody type IgG using the ELISA method LIAISON R©and reported in AU/ml.
This method is chemiluminescent, and the light signal is measured with a photo-
multiplier. Measurements lower than 5 AU/ml are indistinguishable from zero with
this method. Thus, the observations are subject to a lower limit of detection. A
presence of this antibody in the blood serum indicates that the individual has at
some point been infected by B. burdorferi.

A database of 12318 samples that satisfied the selection criteria was available.
The available samples were stratified based on region and age, which resulted in
36 strata. The number of samples to be selected from each stratum was decided
based on the population and age distribution in each region, such that the resulting
samples were representative for the population in Sør-Trøndelag. Trondheim was
not included in the study because the population of Trondheim consists of many
students from other from regions and countries, which may affect the results.

The county of Sør-Trøndelag was categorized into four regions; Inland, Mid-
East, Mid-West, and Coastal. The goal is to investigate whether the coastal region
has more occurrences of Lyme borreliosis than the other regions, therefore the three
first regions are combined to a region called non-coastal. The number of partici-
pants in each region and the number of non-censored observations is presented in
Table 6.1. Across all regions, the number of non-censored observations is low. In
total 96.8% of the measurements in the datasets falls below the LOD, with 93.3%
in the coastal regions and 98.5% in non-coastal regions. A plot of the non-censored
measurements is provided in Figure 6.1.

Figure 6.1 shows that the non-censored concentrations have a higher mean in
the coastal region, and from Table 6.1 the proportion of censored observations is
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Table 6.1: The number of participants and the population in each region, and the
proportion of the measurements in each region that are measured as above the LOD. The
population figures are from SSB (Statistics Norway) dated 01.01.2018.

Participants
Non-censored
observations Population

Non-Coastal 668 10 (1.5 %) 88828
Inland 210 4 (1.9 %) 28352
Mid-West 259 3 (1.2 %) 34029
Mid-East 199 3 (1.5 %) 26446

Coastal 313 21 (6.7 %) 41998
Total 981 31 (3.2 %) 130825

highest in the non-coastal region. Both points toward a higher occurrence of Lyme
borreliosis in the coastal region.

6.2 Statistical Analysis

The dataset consists of one binary covariate xreg, which indicates whether the
observation is from a coastal (xreg = 1) or non-coastal (xreg = 0) region. We will
fit all the four models presented in Section 3.1 to the presented cytokine data. A
brief overview of the models and their parameters is provided in Table 6.2.

Table 6.2: An overview of the models used in the statistical analysis. The parameter δ
is only present when the log-skew-normal distribution is used for the continuous part.

Model Parameters
Abbrivation Full Name Discrete Part Continuous Part
TP Two-Part Model w/o Interval Censoring β γ, σ, δ (conditional)
TPIC Two-Part Model w/ Interval Censoring β γ, σ, δ (conditional)
Tobit Tobit Model — γ, σ, δ (marginal)
Substitute Substitute (S = T/2) — γ, σ, δ (marginal)

In the Tobit model (3.2) all the observations are assumed to arise from the same
latent continuous distribution f(·) with all responses below the LOD being observed
as zero. In the simpler substitute models (3.10) all the censored observations are
set to equal S = T/2.

The two-part models have an additional discrete point mass at zero. The
standard two-part (TP) model (3.5) can be expressed as binary mixture with a
point mass at zero with weight πi = P (Yi = 0) and a continuous part f(·) with
weight (1 − πi). Left-censoring of the continuous part below the LOD is taken
into account in the two-part with interval censoring (TPIC) model (3.7), such that
πi = P (Y ∗i = 0) is the probability of belonging to a separate sub-LOD population
and the total probability of being censored is P (Yi = 0) = πi + (1− πi)F (T ;µi).

In all of these models the covariate is introduced to the continuous distribution
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Figure 6.1: Histograms of the non-censored measurements divided by group on the
measured scaled (left) and on log-scale (right). The black dashed vertical lines represents
the LOD, while the colored solid vertical lines represents the mean of the non-censored
measurements. A rug plot is included in the bottom margins to show the individual
measurements.

f(·) by letting
µi = γ0 + γregxreg.

In the two-part models the probit link is utilized to introduce the covariate to πi,
such that

πi = Φ(β0 + βregxreg).

In the dataset of borrelia antibody concentrations, it is expected that a large
proportion does not have the antibody, therefore a two-part model is assumed to
best represent the underlying process in the data. The histograms in Figure 6.1
shows many observations close to the LOD, which indicates a presence of censored
positive observations below the LOD. This points towards the TPIC model pro-
viding the best fit. The simulation study in Chapter 5 did, however, show that the
TPIC model becomes very unreliable when the majority of the censored observa-
tions comes from the continuous part. This is however unlikely to be a problem
here, as the prevalence of Lyme borreliosis is previously found to be only a few
percents (Vestrheim et al., 2016). Therefore, the large majority of the censored
observations is expected to be true zeroes. The prevalence of ticks has previously
been shown to be highest in the coastal areas of Norway (Jore et al., 2011). Con-
sequently, Lyme borreliosis is expected to be more prevalent in the coastal region
of Sør-Trøndelag.

The statistical analysis is performed in R using the command optim() with
method = "BFGS" for numerical optimization of the likelihood functions. This is a
Quasi-Newton optimization method that is described in Section 3.4.1. The models
are fitted using both a probit/lognormal mixture and a probit/log-skew-normal
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mixture. The difference between these two continuous distributions is a skew-
parameter δ, which allows for more flexibility. The lognormal distribution is a
special case of the log-skew-normal distribution with δ = 0. The R functions used
to fit the models are provided in Appendix A.1.

Table 6.3: Resulting maximum likelihood parameter estimates from fitting the models
with a lognormal continuous distribution with 95 % Wald-type confidence intervals.

Parameter TPIC TP Tobit Substitute
γ0 2.07 (0.59, 3.55) 2.79 (2.18, 3.40) -6.32 (-9.04, -3.60) 0.94 (0.91, 0.98)
γreg 1.09 (-0.31, 2.49) 0.63 (-0.11, 1.37) 2.52 (1.15, 3.89) 0.14 (0.08, 0.20)
σ 1.25 (0.71, 1.78) 0.98 (0.74, 1.23) 3.65 (2.49, 4.80) 0.44 (0.42, 0.46)
β0 1.99 (1.58, 2.40) 2.17 (1.93, 2.41) — —
βreg -0.55 (-0.98, -0.12) -0.67 (-1.00, -0.35) — —
`(θ̂) -169.3 -172.4 -172.8 -579.6
AIC 348.5 354.8 351.6 1165.2

The results from using the lognormal distribution as the continuous part are
shown in Table 6.3. Firstly, all fitted models find at least one of the group param-
eters γreg and βreg to be significantly different from zero, which is strong evidence
for the presence of an underlying difference between the two groups. In both two-
part models β̂reg is found to be negative and γ̂reg is found to be positive, which
means that the coastal region has a lower estimated probability of belonging to
the discrete part and a higher estimated expected concentration for the positive
responses. In the one-part models, γ̂reg is also positive, which again means that the
coastal region has a higher estimated concentration of the borrelia antibody. This
is consistent with the earlier studies on the prevalence of ticks and Lyme borreliosis
(Vestrheim et al., 2016; Jore et al., 2011).

Test for Skew

The results from using the log-skew-normal distribution for the continuous distribu-
tion is shown in Table 6.4. Using a log-skew-normal distribution for the continuous
part gives a slight improvement in the AIC for the TPIC model. However, a likeli-
hood ratio test for the presence of the skew-parameter δ based on the hypotheses
finds it not to be significant (p = 0.07), as shown in Table 6.5. The test is based
on the hypotheses

H0 : δ = 0, H1 : δ 6= 0,

and the test statistic follows a χ2
1-distribution.

It is interesting to note that the substitute model provides a very good fit when
the log-skew-normal distribution is used. It estimates an extremely low σ̂ = 3·10−4.
Recall that the skew-normal distribution (3.15) can be expressed as

f(y|µ, σ, δ) =
2√

σ2 + δ2
φ

(
y − µ√
σ2 + δ2

)
Φ

(
δ

σ

y − µ√
σ2 + δ2

)
.

When σ → 0 the last multiplicative term becomes zero for y < µ and one for
y > µ, such that the result is a normal distribution with mean µ and variance δ2
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that is left truncated at y = µ. In this case µ ≈ T/2 for both groups, such that the
likelihood at T/2 is very high, f(T/2;µ, σ, δ) ≈ 1.8. As 96.8% of the observations
are censored, and therefore set to y = T/2 in the substitute model, this gives
a remarkably high likelihood for the model. The resulting model is however not
useful for inference purposes, as it does not provide any insight to the underlying
process.

Table 6.4: Resulting maximum likelihood parameter estimates from fitting the models
with a log-skew-normal continuous distribution with 95 % Wald-type confidence intervals.

Parameter TPIC TP Tobit Substitute
γ0 3.96 (3.12, 4.80) 2.81 (-5.03, 10.7) 2.37 (0.67, 1.32) 0.91 (0.87, 0.94)
γreg 1.18 (0.24, 2.12) 0.63 (-0.11, 1.37) 2.49 (1.32, 3.66) 0.004 (-0.03, 0.04)
σ 0.40 (0.01, 0.79) 0.98 (0.72, 1.24) 1.14 (0.17, 2.11) 3·10−4(2·10−5,6·10−4)
β0 1.38 (-2.88, 5.63) 2.17 (1.93, 2.41) — —
βreg -0.71 (-2.59, 1.16) -0.67 (-1.00, -0.35) — —
δ -10.4 (-93.6, 71.7) -0.02 (-9.83, 9.78) -42.0 (-72.2, -11.76) 0.45 (0.43, 0.47)
`(θ̂) -167.7 -172.4 -170.3 75.5
AIC 347.5 356.8 348.6 -143.1

The Presence of Interval Censoring

The TP model achieves a lower likelihood than the TPIC model with the same
number of parameters. Thus the interval censoring improves the fit of the model.
The fitted continuous part of the two-part models is shown in Figure 6.2. The
TPIC model estimates a heavier left tail than the TP model, due to assuming
that a proportion of the censored observations arises from the continuous part.
Chai and Bailey (2008) argues that a well-specified model should include interval
censoring if it is known to be present in the data. In this dataset, there are many
observations close to the LOD. Thus, it seems reasonable to believe that some of
the censored observations are in fact non-zero concentrations that could have been
detected with a more sensitive measurement technique. All of this indicates that
the interval censoring should be included in the model.

Test for the Discrete Part

The TPIC model is found to be superior in terms of AIC, with the Tobit model
performing nearly as well. The AIC is known to give somewhat anti-conservative
results, therefore a likelihood ratio test (LRT) is performed for the presence of the
discrete part. The Tobit model is a special case of the TPIC model with β0 = −∞
and βreg = 0. Therefore, a LRT can be performed based on the hypotheses

H0 : (β0, βreg) = (−∞, 0), H1 : (β0, βreg) 6= (−∞, 0).

Since the restriction on β0 lies on the boundary of the parameter space R2, the
resulting test statistic follows a mixture of two chi-square distributions, 1

2 (χ2
1 +χ2

2)
(Self and Liang, 1987). The discrete part is found to be significant with a p-value of
0.02, as shown in Table 6.5. This confirms that the TPIC model provides the best
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Figure 6.2: Plot of the fitted continuous parts of the two-part models with lognor-
mal continuous distribution along with a histogram of the positive observations for both
groups.

Table 6.5: Results of likelihood ratio tests for the presence of skew, discrete part and
fixed effects.

Model -2*loglikelihood
-2*Difference in
loglikelihoods Distribution p-value

(a) TPIC with skew 335.4
Skewness:
(b) TPIC 338.6 3.2 (b-a) χ2

1 0.07
Discrete part:
(c) Tobit 345.6 7.0 (c-b) 1

2
(χ2

1 + χ2
2) 0.02

Fixed effects:
(d) TPIC without γreg 341.3 2.7 (d-b) χ2

1 0.10
(e) TPIC without βreg 340.9 2.3 (e-b) χ2

1 0.13
(f) TPIC without βreg and γreg 358.6 23.2 (f-b) χ2

2 9·10-6

fit, and is in agreement with the assumed structure of the underlying process, which
is expected to have a prominent discrete part at zero representing the individuals
without the borrelia antibody.

Test for Fixed Effects

As the lognormal TPIC model is shown to provide the best fit for the data, the
reminder of the analysis is focused on this model. Likelihood ratio tests are per-
formed for the fixed effects in the model. Both γreg and βreg do not significantly
increase the likelihood of the model when tested separately. When the discrete ef-
fect βreg is restricted to zero the continuous effect γreg increases in magnitude and
captures a lot of the group difference previously explained by βreg, and vice versa.
However, when both parameters are tested simultaneously the drop in likelihood is
highly significant (p = 9 ·10−6), which is strong evidence for including the covariate
xreg in the model.
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Estimated Prevalence

If we define an occurrence of Lyme borreliosis as having a presence of borrelia
antibody in the blood serum, the estimated prevalence by the TPIC model without
skew is

P̂ (Y ∗i > 0|xreg = 0) = 1−Φ(β̂0) = 1−Φ(1.99) = 2.3%

for the non-coastal region and

P̂ (Y ∗i > 0|xreg = 1) = 1−Φ(β̂0 + β̂reg) = 1−Φ(1.99− 0.55) = 7.5%

in the coastal region. The difference between the groups is significant, as β̂reg has
a p-value of 0.01.

Usually, a more strict definition of prevalence is used. For the given data, a
sample is regarded as definitely positive if the concentration is above 15.6 AU/ml.
If this definition is used, the estimated prevalence is

P̂ (Y ∗i > 15.6|xreg = 0) = (1−Φ(β̂0))(1− F (15.6|µ̂i = γ̂0, σ̂)) = 0.7%

in the non-coastal region and

P̂ (Y ∗i > 15.6|xreg = 1) = (1−Φ(β̂0 + β̂reg))(1− F (15.6|µ̂i = γ̂0 + γ̂reg, σ̂)) = 4.7%

in the coastal region.
The overall prevalence in Sør-Trøndelag is estimated by fitting a model without

the region covariate. This gives

P̂ (Y ∗i > 15.6) = (1−Φ(β̂0))(1− F (15.6|γ̂0, σ̂))

= (1−Φ(1.76))(1− F (15.6|2.76, 1.34)) = 2.0%

The estimated prevalence is a function of the three estimates θ̂ = (γ̂0, σ̂, β̂0). It is
not straight forward to calculate its variance, as it is the function is nonlinear. The
variance can however be estimated by the delta method based on error propagation
(Powell, 2007). Let P̂ (Y ∗i > 15.6) = h(θ̂). The delta method can be formulated as

Var(h(θ̂)) ≈ ∇h(θ̂)′Cov(θ̂)∇h(θ̂)

This approximation gives SE(h(θ̂)) ≈ 0.023. This is a relatively large standard
error compared to the estimated value of h(θ̂) = 0.020. This is mainly caused by
the great variance in γ̂0 and σ̂, due to few observations above the detection limit.
The Wald-type confidence interval truncated at zero is (0%−6.5%), but this is not
reliable as the assumption of normality is clearly violated.

The estimated prevalence of 2.0% is somewhat lower than the previously esti-
mated prevalence in Sør-Trøndelag by Vestrheim et al. (2016), which estimated the
prevalence to be 3.9%(95 % CI: 2.3% − 6.4%) and 3.7%(95 % CI: 2.4% − 5.7%)
with two different assays and sample size n = 301. They used the same definition
of a positive sample. Unlike for the data studied here, Vestrheim et al. (2016) did
include Trondheim in the study. Since Trondheim constitutes 60 % of the popu-
lation in Sør-Trøndelag, this may have contributed greatly to the difference in the
estimates.
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Comparison to Logistic Regression

A common approach to estimating the prevalence is categorizing the data in positive
and negative samples and using logistic regression to estimate the probability of
the sample being positive. Let

Ỹi =

{
1, Yi > 15.6

0, Yi ≤ 15.6
,

such that Ỹi = 1 indicates a positive sample. We want to estimate pi = P (Ỹi =
1|xi). This is done by using the logit link, such that

log

(
pi

1− pi

)
= β0 + βregxreg,i.

Solving for pi gives the estimated probability,

pi =
exp(β0 + βregxreg,i)

1 + exp(β0 + βregxreg,i)
.

The parameters can be estimated using the function glm in R, which gives β̂0 =
−4.88(−5.76,−4.00) and β̂reg = 1.75(0.71, 2.79) with 95 % confidence intervals.
Thus, the estimated prevalences are

P̂ (Ỹi = 1|xreg = 0) =
exp(β0)

1 + exp(β0)
= 0.7%

in the non-coastal region and

P̂ (Ỹi = 1|xreg = 1) =
exp(β0 + βreg)

1 + exp(β0 + βreg)
= 4.2%

in the coastal region. The estimated prevalence in the non-coastal region is similar
as when the TPIC model was used, but the estimated prevalence in the coastal
region is lower. This indicates that the amount of observations above the limit
15.6 is lower than what is expected from the probit/lognormal mixture fitted to all
the data. Fitting the model without the covariate gives

P̂ (Ỹi = 1) =
exp(β0)

1 + exp(β0)
=

exp(−3.98)

1 + exp(−3.98)
= 1.8%,

with 95 % confidence interval (1.2% − 2.9%). The estimated prevalence with the
TPIC model was 2.0%(SE ≈ 2.3%). Thus, the logistic regression gives a slightly
lower estimate of the prevalence with a much smaller uncertainty. The TPIC
model takes more information into account, as it is based on the entire distribution
of the data, whereas the in the logistic regression the data is collapsed into two
categories. One can however argue that in this case with very few observations
above the detection limit, logistic regression is a better option because the TPIC
model provides results with much larger uncertainty.
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In this chapter, the models presented in Chapter 3 will be demonstrated on the
cytokine data presented in Section 2.2. First, a longitudinal analysis will be con-
ducted in Section 7.2 with the methods presented in Section 3.2 on three individual
cytokines with different proportions of censored observations. A comprehensive
analysis of the cytokine TNF-α with 32.5% censored observations is followed by
briefer analyses of the cytokines MCP1 with 3.6% censored observations and IL8
with 76.9% censored observations. The primary goal is to identify differences in the
time profiles across the diagnostic groups. Then, a bivariate analysis is conducted
on two of the cytokines, TNF-α and IL8, in Section 7.3 in order to estimate their
correlation.

7.1 Description of the Data

The data consists the concentrations of 34 cytokines measured simultaneously with
multiplex assays, as well as the time period of the measurement, the diagnosis of
the individual, the age of the individual and a code indicating which individual the
measurement is from. Measurements indistinguishable from zero are recorded as
below the LOD.

There is a total of 308 measurements from 75 patients across seven time-points.
Five patients have measurements from more than two pregnancies. In these cases,
we regard the distinct pregnancies as two separate individuals, which gives a total
of 80 patients. The patients have one of four diagnoses; 19 patients are healthy
controls, 28 are diagnosed with SLE, 23 are diagnosed with RA, and ten are di-
agnosed with SN-RA. The number of measurements per patient ranges from only
one to seven. Some patients have more than one recording for certain time points.

The possible time points, labeled 0 - 6, corresponds to different time periods
before, during, and after the pregnancy. Time point 0 is before the pregnancy, time
points 1 - 3 are respectively the first, second and third trimester of the pregnancy,
and time points 4 - 6 are six weeks, six months and twelve months postpartum.
They are illustrated on a timeline in Figure 7.1.

The age is recorded at least once per individual. Naturally, their ages increase
through the pregnancies. For simplicity, we regard the first recorded age during
pregnancy as the patients’ age, unless the only available measurement is before
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Figure 7.1: Illustration showing when the measurements are obtained on an axis denot-
ing weeks. Note that the time of birth will vary, so there is some uncertainty regarding
how much time has passed from the prepartum (during pregnancy) measurements to the
postpartum (after birth) measurements.

pregnancy. Table 7.1 displays the number of patients for each diagnosis, along with
the mean age of the group. We see that there are considerably fewer patients with
the SN-RA diagnosis. It might be desirable to merge this group with seropositive
RA to not over-parameterize the models.

Table 7.1: Patient characteristics.

Healthy SLE RA SN-RA Total
Patients n (%) 19 (24) 28 (35) 23 (29) 10 (12) 80
Age mean (sd) 30 (2.5) 30 (5.3) 33 (4.4) 31 (3.1) 31 (4.5)

The number of measurements taken at each time point per diagnosis is displayed
in Table 7.2. We see that there are some variations across the time points. Perhaps
most noteworthy, there are no measurements of healthy controls before pregnancy
(0) and twelve months postpartum (6). In general, there are most measurements
during the first two trimesters of the pregnancy (1 - 2), and gradually fewer after
that.

Table 7.2: The number of measurements per time period for each diagnosis.

Time Period
0 1 2 3 4 5 6 Total

Healthy 0 19 20 19 20 16 0 94
SLE 9 19 20 18 15 13 13 107
RA 15 13 13 10 6 9 8 74
SN-RA 5 6 6 3 5 3 5 33
Total 29 57 59 50 46 41 26 308

The further analysis focuses on the log-transformed concentrations. The his-
tograms of the log-transformed concentrations are displayed in Figure 7.2, along
with the percentage of left-censored observations. The proportion of left-censored
observations ranges from zero to 99% (TNF-β). Four cytokines have no censored
observations, while for seven cytokines more than 90% of the observations are below
the LOD.

The Spearman’s correlations between the log-transformed concentrations are
depicted in Figure 7.3. The Spearman’s correlation denotes the correlation be-
tween the ranks of the observations, which makes it more suitable for data known
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Figure 7.2: Density histograms of the log-transformed concentrations for each cytokine
across all patients and time points. The black bins represent the left censored observations.
The proportion of censored observations is specified in the headings.
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Chapter 7. Application to Cytokine Data

Figure 7.3: Illustration of the Spearman’s correlation matrix between the log-
transformed concentrations of the cytokines. The color indicates the sign of the cor-
relation and the size of the circle increases with the magnitude. Cytokines with less than
10 non-censored observations are excluded from the plot.
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7.1 Description of the Data

to not be normally distributed, such as data subject to detection limits (Kaune and
Kettrup, 1994). The censored observations are set to LOD/2, however their values
are arbitrary, as only the ranks are used to calculate the correlations. Cytokines
with ten or fewer non-censored measurements are excluded from the figure. Figure
7.3 shows a preponderance of positive correlations, meaning that a high concentra-
tion of one cytokine tends to be accompanied by high concentrations of the other
cytokines.

We will continue to focus on the cytokines TNF-α with 32.5% censored ob-
servations, MCP1 with 3.6% censored observations, and IL8 with 76.9% censored
observations as illustrative examples. The first-mentioned is a pro-inflammatory
cytokine that has been linked to the improvement of RA during pregnancy (Swain
and Jena, 2016). The second and third are chemoattractant cytokines. MCP1 has
been associated with both RA and SLE (Deshmane et al., 2009), and IL8 is linked
to bone-erosion and pain in RA (Ridgley et al., 2018).
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Chapter 7. Application to Cytokine Data

Cytokine TNF-α

More insight into the data on the cytokine TNF-α is provided in Figure 7.4. There
are several noteworthy takeaways from the figure. Firstly, the proportion of cen-
sored observations in each group varies from 21.6% in the RA group to almost the
double, 40.4%, in the healthy group. This is indicative of a group effect on the
probability of being censored. There is however no very apparent difference in the
distributions of the non-censored observations.
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Figure 7.4: Density histograms, spaghetti plots and box plots of the log-transformed
concentrations of TNF-α. In the histograms the censored observations are represented by
a black bin below the LOD. In the spaghetti plots and box plots the censored observations
are set to the detection limit.

From the spaghetti plots and box plots in Figure 7.4, the concentration of TNF-
α seems to increase throughout the pregnancy for the healthy patients with a peak
at time point 4 (six weeks postpartum) and a decline to time point 5 (six months
postpartum). This trend is not seen in any of the other groups, which display no
apparent temporal trends. The three diagnosed groups appear to have close to
equal mean concentrations, that remains stable across all the time points.
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7.1 Description of the Data

Cytokine MCP1

A more detailed look into the data on the cytokine MCP1 is provided in Figure
7.5. It shows separate histograms for each diagnosis, and spaghetti plots and
box plots that illustrate the development over time. From Figure 7.5 we see that
the concentration of MCP1 increases throughout the pregnancy for the healthy
patients, with a peak at time point 4 (six weeks postpartum). No clear trend is
visible in any of the diagnosed groups.
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Figure 7.5: Density histograms, spaghetti plots and box plots of the log-transformed
concentrations of MCP1. In the histograms the censored observations are represented by
a black bin below the LOD. In the spaghetti plots and box plots the censored observations
are set to the detection limit.

The amount of censored observations in each group ranges from 15.2% for the
SN-RA group and zero for the RA group. Note however that all the censored
observations in the SN-RA group come from the same individual. Based on the
spaghetti plots there seems to be a considerable correlation between the measure-
ments from the same individual, which indicates that the measurements cannot be
regarded as independent.
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Chapter 7. Application to Cytokine Data

Cytokine IL8

A detailed overview of the data on the cytokine IL8 is provided in Figure 7.6. The
proportion of censored observations varies from 70.1% in the SLE group to 86.2%
in the healthy group. This is indicative of a group difference in the probability of
being censored. There is however no clear trend over time in any of the groups.
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Figure 7.6: Density histograms, spaghetti plots and box plots of the log-transformed
concentrations of IL8. In the histograms the censored observations are represented by a
black bin below the LOD. In the spaghetti plots and box plots the censored observations
are set to the detection limit.

7.2 Longitudinal Statistical Analysis

In this section, longitudinal statistical analysis is performed on data on the three
cytokines TNF-α, MCP1, and IL8 with methods presented in Section 3.2. Methods
for estimating the model parameters are described in 3.4.

There are many computational challenges with fitting the models. The integrals
in the marginal likelihoods (3.18) must be estimated and the resulting likelihood
function (3.28) must be maximized. The proposed mixture models are nonlinear,
so it is not possible to use R-packages like lme4 and glmmTMB. The latter does
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7.2 Longitudinal Statistical Analysis

have functionality for modeling zero-inflated data, but does not have options for
including interval censoring or using the skew-normal distribution.

The SAS procedure NLMIXED handles non-linear mixed models with random
effects and is very flexible. It offers a wide range of optimization techniques and
allows the user to specify the likelihood function. The NLMIXED procedure is used
by e.g. Berk and Lachenbruch (2002) and Mahmud et al. (2010) for similar prob-
lems. For the longitudinal analysis, we use the NLMIXED procedure with adaptive
Gaussian quadrature for estimating the marginal likelihoods and quasi-newton op-
timization of the likelihood (tech = QUANEW) with the BFGS method for itera-
tively estimating the Hessian (update = BFGS). One drawback with SAS is that
the skew-normal distribution is not implemented. However, the probability density
function of the skew-normal distribution can easily be calculated from the normal
probability density and cumulative density function, as expressed by

f(yij |µij , σ, δ) =
2√

σ2 + δ2
φ

(
yij − µij√
σ2 + δ2

)
Φ

(
δ

σ

yij − µij√
σ2 + δ2

)
.

In order to fit the Tobit model (3.2) and the TPIC model (3.7), the cumulative
density function

F (T |µij , σ, δ) = Φ

(
T − µij√
σ2 + δ2

)
− 2T

(
T − µij√
σ2 + δ2

,
δ

σ

)
must be evaluated, which requires implementing Owen’s T function

T (h, a) =
1

2π

∫ a

0

e−
1
2h

2(1+x2)

1 + x2
dx.

We implement a numerical approximation of Owen’s T function in SAS based on
the implementation in the R-package sn (Azzalini, 2017). It is based on work
by Owen (1956), which showed that for small positive values of h and a > 1 the
integral can be estimated by series expansion, and for larger positive values of h and
a > 1 asymptotic approximation can be used. A number of reflection properties
are utilized to cover the remaining cases. As Azzalini (2017), we set the cut-point
for h at h = 8 and truncate the series expansion after 50 terms. The code used for
this is provided in Appendix B.

We fit all the four models presented in Section 3.2 with random effects to
account for the correlation between measurements from the same individual. Let
yij be an observation from the ith individual taken at the jth time point. Among
the considered models there are two one-part models, the Tobit model (3.19) and
the Substitute model (3.20). The former is based on the assumption that all the
observations come from the same latent continuous distribution, while the latter
takes all the censored observations to be a substitute value S and fits a continuous
distribution to the resulting data. As before, we will use the substitute value
S = T/2. In both of these models covariates and random effects are introduced to
the parameter µij of the continuous distribution such that

µij = z′ijγ + τ1i,
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where z′ij is a set of covariates with corresponding fixed effects γ, and τ1i is a
random effect for individual i. For the one-part models the random effect is assumed
to be normally distributed with variance s211, τ1i ∼ N (0, s11).

In the two-part models, an additional discrete point mass at y = 0 is included.
Let the weight of the point mass be πij . In the two-part (TP) model (3.23) the
point mass represents the observed zeroes. Thus, πij = P (Yij = 0) denotes the
probability of falling below the LOD, and f(·) is the distribution of the non-censored
responses. This model can be expanded to take left-censoring of the continuous
part f(·) on the interval [0, T ] into account. This results in the TPIC model (3.24).
In this setting πij represents the probability that the true latent concentration of
yij comes from a separate sub-LOD population represented by a point mass at
zero. In both two-part models covariates are introduced to πij by using the probit
link,

πij = Φ(x′ijβ + τi2),

where x′ij is a set of covariates with corresponding fixed effects β, and τ2i is a
random effect for individual i. The two random effects are assumed to follow a
bivariate normal distribution, τ i = (τi1, τi2) ∼ N2(0,Σ) with

Σ =

[
s11 s12
s12 s22

]
.

Thus, s11 and s22 are the variances of respectively τ1i and τ2i, and s12 is their
covariance.

The available covariates for this analysis are the patients diagnostic status, the
time point of the measurement, and their age. Because there are relatively few
patients with the diagnosis SN-RA, we choose to merge this diagnosis with the
group of RA patients, as they are known to display similar behavior. There are
also certain time points with few observations, in particular the first and last, which
has no observations from healthy controls. In order to have observations from all
groups in all time periods and reduce the number of parameters, we group the
time points into three time periods denoted as t1, t2, and t3. The first time period
t1 contains the measurements from before the pregnancy and during the first two
trimesters, i.e. before/early pregnancy, the next period t2 contains measurements
from the third trimester and six weeks postpartum, i.e. around birth, and the last
period t3 contains measurements from 6 months and 12 months postpartum, i.e.
after birth. With these simplifications, the data is categorized into three diagnostic
groups and three time periods.

7.2.1 Cytokine TNF-α

With the specified simplifications of the dataset, there are three diagnostic groups
and three time periods, as well as a continuous variable for the age of the patient.
This gives a total of five fixed effects in each model part. Because it is of interest
to determine whether the time period affects the diagnostic group differently, we
also include interaction terms between time period and diagnosis, which gives four
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7.2 Longitudinal Statistical Analysis

additional parameters in each model part. Including the intercepts, this gives a
total of ten parameters that may be present in γ and β, such that

µij =γ0 + γage xage,i + γRA xRA,i + γSLE xSLE,i + γt2 xt2,ij + γt3 xt3,ij+

γt2×RA xRA,i xt2,ij + γt3×RA xRA,i xt3,ij+

γt2×SLE xSLE,i xt2,ij + γt3×SLE xSLE,i xt3,ij + τi1,

πij =Φ(β0 + βage xage,i + βRA xRA,i + βSLE xSLE,i + βt2 xt2,ij + βt3 xt3,ij+

βt2×RA xRA,i xt2,ij + βt3×RA xRA,i xt3,ij+

βt2×SLE xSLE,i xt2,ij + βt3×SLE xSLE,i xt3,ij + τi2).

Furthermore, the random effects contribute with one parameter, the variance s11,
in the one-part models and the three parameters of the covariance matrix Σ in the
two-part models. Including the standard deviation σ of the normal distribution,
this results in 12 parameters in the one-part models and 22 parameters in the
two-part models. Using the skew-normal distribution gives the additional skew
parameter δ.

Based on the histograms of the concentrations in Figure 7.4 it seems very un-
likely that all the observations originate from the same continuous distribution,
as the proportion of censored observations looks much larger than what could be
expected from the distribution of the non-censored data. This indicates a presence
of excess zeroes, therefore the two-part models are expected to provide a much
better fit than the one-part models. Since there are very few observations close to
the LOD, we expect the censored tail of the continuous distribution to be small.
The simulation study in Chapter 5 showed that the two-part models are close to
equivalent when that is the case, both giving close to unbiased parameter estimates.

The results of fitting the four models with a log-skew-normal continuous dis-
tribution are shown in Table 7.3. In all models, most of the interaction effects
are found to be significant, which is strong evidence for an underlying difference
in the time profiles across the diagnoses. The signs of the parameters in γ in the
two-part models are in all cases except one opposite from the sign of the associated
parameter in β, which means that lower probabilities of belonging to the discrete
part tend to be associated with a higher expected value in the continuous part, and
vice versa.

In terms of AIC, the two-part models are superior, with the TPIC model achiev-
ing a slightly better score than the TP model. Furthermore, the Tobit model gets
a much higher likelihood than the substitute model with the same number of pa-
rameters. Thus, the substitute model is clearly not suitable for this problem, which
was expected as the proportion of censored data is 32.5%.

The Presence of Interval Censoring

From Table 7.3 we see that the results from the TPIC and TP model are very
similar, which was expected based on the distribution of the data. The greatest
differences lie in β, which has a different interpretation in the two models. In the TP
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Table 7.3: Maximum likelihood parameter estimates from fitting the four models with
a log-skew-normal continuous part. Wald-type 95% confidence intervals are included in
parenthesis for the fixed effects.

Parameter TPIC TP Tobit Substitute
γ0 2.33 (0.82, 3.83) 2.30 (0.84, 3.76) 2.32 (0.67, 3.97) 2.12 (0.41, 3.83)
β0 -0.66 (-2.85, 1.52) -0.56 (-2.65, 1.53) — —

γage -0.01 (-0.06, 0.04) -0.01 (-0.06, 0.03) -0.01 (-0.06, 0.04) -0.02 (-0.07, 0.03)
βage 0.03 (-0.04, 0.10) 0.03 (-0.04, 0.09) — —

γRA 0.23 (-0.38, 0.83) 0.22 (-0.37, 0.80) 0.79 (0.04, 1.54) 0.84 (0.14, 1.54)
βRA -1.24 (-2.12, -0.36) -1.21 (-2.06, -0.36) — —

γSLE 0.21 (-0.42, 0.85) 0.22 (-0.39, 0.84) 0.57 (-0.19, 1.33) 0.58 (-0.12, 1.29)
βSLE -0.73 (-1.59, 0.13) -0.70 (-1.54, 0.14) — —

γt2 0.91 (0.41, 1.41) 0.90 (0.42, 1.37) 1.41 (0.74, 2.07) 1.51 (0.90, 2.12)
βt2 -1.44 (-2.19, -0.70) -1.45 (-2.18, -0.72) — —

γt3 1.10 (0.47, 1.74) 1.11 (0.49, 1.72) 1.21 (0.46, 1.96) 1.25 (0.56, 1.93)
βt3 -0.52 (-1.37, 0.32) -0.54 (-1.37, 0.30) — —

γt2×RA -0.80 (-1.47, -0.13) -0.76 (-1.40, -0.13) -1.51 (-2.35, -0.67) -1.58 (-2.43, -0.72)
βt2×RA 1.83 (0.66, 3.00) 1.81 (0.67, 2.95) — —

γt3×RA -1.14 (-1.92, -0.35) -1.09 (-1.84, -0.34) -1.20 (-2.20, 0.20) -1.09 (-2.04, 0.13)
βt3×RA -0.30 (-1.76, 1.15) -0.12 (-1.37, 1.12) — —

γt2×SLE -1.29 (-1.96, -0.63) -1.25 (-1.87, -0.62) -1.70 (-2.63, -0.78) -1.76 (-2.55, -0.97)
βt2×SLE 1.39 (0.34, 2.43) 1.44 (0.44, 2.44) — —

γt3×SLE -0.97 (-1.77, -0.16) -0.98 (-1.75, -0.21) -1.34 (-2.44, -0.24) -1.16 (-2.07, -0.25)
βt3×SLE 0.01 (-1.19, 1.21) -0.001 (-1.16, 1.16) — —

σ 0.26 0.29 0.20 0.34
δ -1.31 -1.20 -3.35 -2.43

s11 0.40 0.40 0.45 0.56
s12 -0.03 -0.06 — —
s22 0.90 0.89 — —
`(θ̂) -437.0 -440.2 -484.2 -572.1
AIC 924.1 930.4 994.3 1170.2
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model πij = Φ(x′ijβ+ τ2i) is the probability of falling below the LOD, while in the
TPIC model πij is the probability of belonging to a separate sub-LOD population.
Therefore, π̂ij is expected to be larger in the TP model, which is reflected in a
higher estimate of the intercept β0. Furthermore, both models estimate a negative
skew-parameter δ, which gives a heavier left tail. The magnitude of δ̂ is greater in
the TPIC model, which takes left-censoring below the LOD into account.

The expected proportion of censored observations from the continuous distri-
bution in the TPIC model is given by

P (Y ∗ij < T |Y ∗ij > 0) = F (T ; µ̂ij , σ̂, δ̂),

where F (·) in this case is the log-skew-normal distribution. If we set the age to the
average x̄age,i = 31 the population averaged expected proportion varies from 0.2%
in the healthy group in the last time period t3, to 1.9% in the healthy group during
the first time period t1. The weighted average based on the number of individuals
in each group is 1.0%. In the simulation study in Chapter 5 we showed that the TP
model and TPIC model gave close to equivalent results when the proportion was
around 0.5%, and that the TP model had a substantial bias and loss in coverage
when the proportion was 5% and higher. Thus, the TP model may be slightly
more biased than the TPIC model for this data. There are no major differences in
the parameter estimates between the two models, so the difference in bias cannot
be large, but we choose to continue with the TPIC model as this is likely to give
better predictions. The results of likelihood ratio tests for the different parts of the
model is shown in Table 7.4.

The Presence of Skew

In order to examine the effects of allowing for skewness in the log-transformed
observations, we fit the TPIC model with a lognormal continuous part. The esti-
mated skew-parameter of the TPIC model with log-skew-normal continuous part
is δ̂ = −1.31, which gives a heavier left tail. Since the lognormal distribution is
a special case of the log-skew-normal distribution with δ = 0, the significance of
δ can be demonstrated with a likelihood ratio test, as shown in Table 7.4. The
test statistic is 11.4 and follows a χ2

1 distribution under the null hypothesis. This
results in a p-value of p = 7 · 10−4, which is strong evidence for skewness in the
log-transformed data.

The parameter estimates of the fitted TPIC model without skew are presented
in Table 8.2 in Appendix D. The biggest differences lie in the regression intercept
γ0 and the parameter σ of the continuous part, which is justifiable since these
parameters have different interpretations in the two models. In the skew-normal
distribution, γ0 does not represent the expected value when all covariates are zero,
and σ shares the variability with δ, as stated in (3.17). Calculating the mean and
variance of the skew-normal distribution gives

E(X) = γ̂0 + δ̂

√
2

π
= 2.33− 1.31

√
2

π
= 1.28,

Var(X) = σ̂2 + δ̂2
(

1− 2

π

)
= 0.262 + (−1.31)2

(
1− 2

π

)
= 0.69,
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Table 7.4: Results of likelihood ratio tests for the presence of skew, discrete part and
fixed effects. All models are with a log-skew-normal continuous part, except for model
(c) used for testing the presence of skewness.

Model -2*loglikelihood
-2*Difference in
loglikelihoods Distribution p-value

(a) TPIC 874.0
Discrete part:
(b) Tobit 968.4 94.4 (b-a) χ2

10, χ
2
11, χ

2
12 <2.2·10-16

Skewness:
(c) TPIC without skew 885.5 11.5 (c-a) χ2

1 7·10-4

Correlation in Random Effects:
(d) TPIC without s12 874.1 0.1 (d-a) χ2

1 0.75
Random Effects:
(e) TPIC without τ1i 902.2 28.1 (e-d) 1

2
(χ2

0 + χ2
1) 6·10-8

(f) TPIC without τ2i 900.8 26.7 (f-d) 1
2
(χ2

0 + χ2
1) 1·10-7

Fixed effects in γ:
(g) TPIC without age 874.4 0.3 (g-d) χ2

1 0.58
(h) TPIC without interactions 890.0 15.9 (h-d) χ2

4 0.003
(i) TPIC without time 892.0 2.0 (i-h) χ2

2 0.37
(j) TPIC without diagnosis 894.7 4.7 (j-h) χ2

2 0.10
Fixed effects in β:
(k) TPIC without age 874.1 0.03 (k-d) χ2

1 0.86
(l) TPIC without interactions 887.9 13.8 (l-d) χ2

4 0.008
(m) TPIC without time 896.4 9.5 (m-l) χ2

2 0.01
(n) TPIC without diagnosis 893.9 6.0 (n-l) χ2

2 0.05

which is similar to the intercept γ̂0 = 1.25 and variance σ̂2 = 0.60 of the TPIC
model without skew. Thus, the estimated mean and variance is similar, even if the
parameter estimates are different.

There is also a notable difference in the intercept β0 of the discrete part. In
the TPIC model with skew β̂0 = −0.66 while the model without skew gives a
higher estimate β̂0 = −0.62. This is related to δ, since the skewed TPIC model
estimates a heavier left tail, and therefore that a larger proportion of the censored
observations comes from the continuous part. The result is lower estimates of the
discrete weight πij , reflected in a lower estimate of β0.

Since allowing for skewness in the log-transformed data gives a highly significant
improvement of the model fit (p = 7 · 10−4), we choose to do the remainder of the
analysis on the TPIC model with a log-skew-normal continuous part.

Test for the Discrete Part

Since the Tobit model is a special case of the TPIC model, it is possible to use
a likelihood ratio test to assess the significance of the discrete part of the TPIC
model. In total, the Tobit model has 12 fewer parameters than the TPIC model,
namely the ten parameters in β and the variance and covariance of the random
effect τ2i. Two of the parameters, the intercept β0 and the variance s22 in the
random effect τ2i, lies on the boundary of the parameter space. Therefore the
test-statistic follows a mixture of χ2

10, χ2
11, and χ2

12 under the null hypothesis (Self
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and Liang, 1987). Since more degrees of freedom gives higher p-values, we use the
χ2
12 distribution to get an upper bound for the p-value. As expected, this provides

solid evidence for the presence of the discrete part, which means that all of the
data have not originated from a single log-skew-normal distribution.

Based on the fitted TPIC model, the left-censored tail of the continuous part is
very small. Therefore, the amount of observations below the LOD is much larger
than what is expected from the observed part of the continuous distribution. In
the simulation study in Chapter 5 the Tobit gave very misleading results in this
kind of scenarios. It suffered a substantial bias in the estimated marginal effect,
and it achieved a much higher CRPS than the two-part models. Based on this, the
Tobit model is not a suitable choice for these data.

Test for Random Effects

The random effect τ i = (τ1i, τ2i)
′ contributes with the three parameters of their

covariance matrix

Σ =

[
s11 s12
s12 s22

]
.

The variances s11 and s22 quantifies to what degree the random effects varies
between the individuals. A low variance indicates that the differences between
individuals are small, while a higher variance signifies that which individual the
measurement is taken from greatly affects the expected response. A variance of zero
means that there is no individual effect on the response, and thus no individual
random effect. The covariance s12 quantifies to which degree the two random effects
correlate. For the TPIC model with skew the estimated covariance is ŝ12 = −0.03,
which corresponds to a correlation of ρ̂τ = −0.05. This means that a higher random
effect in the continuous part tends to be accompanied by a lower random effect in
the discrete part. In other words, individuals with higher than average positive
responses tend to have lower than average probabilities of belonging to the discrete
component, and vice versa.

Likelihood ratio tests are performed for the significance of the three parameters.
The presence of the covariance is assessed with the hypotheses

H0 : s12 = 0, H1 : s12 6= 0.

The test statistic follows a χ2
1 distribution, which gives a p-value of 0.75. Thus,

the null hypothesis is not contradicted, and there is no evidence for the presence
of correlation. The presence of the random effects are tested with the hypotheses

H0 : s11 = 0, H1 : s11 > 0,

for the presence of τ1i and likewise with s22 for the presence of τ2i. Since H0 lies
on the boundary of the parameter space, the test statistics follows the mixture
1
2 (χ2

0 + χ2
1). The chi-squared distribution with zero degrees of freedom is a point

mass at zero. Thus, the resulting p-values are half of the p-values obtained from
using the χ2

1 distribution (Goldman and Whelan, 2000). As shown in Table 7.4,
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the respective resulting p-values are p = 6 · 10−8 and p = 1 · 10−7, which is strong
evidence for the presence of both random effects.

Since the correlation s12 complicates computations and interpretations and the
LRT did not provide evidence for its existence, we choose to remove it in the further
calculations.

Tests for Fixed Effects

Likelihood ratio tests are performed for the presence of the fixed effects in both
model parts. The results are presented in Table 7.4. In both model parts the age
parameter is found to not be significantly different from zero with p = 0.58 in the
continuous part and p = 0.86 in the discrete part. Furthermore, the interaction
effects between time and diagnosis are highly significant in both parts, which is
strong evidence for a difference in the time profiles between the diagnoses. The
resulting p-values are p = 0.003 and p = 0.008 in the continuous part and the
discrete part, respectively.

Based on the results of the likelihood ratio tests, we choose to remove the age
parameters, as there is no evidence for an effect of age on the cytokine concen-
trations. This makes inference on the time profiles much more straightforward, as
only categorical covariates are present.

Population Averaged Time Profiles

In order to estimate the time profiles we use the probit/log-skew-normal TPIC
model without age and the correlation s12 between the random effects. The result-
ing parameter estimates are shown in Table 8.2 in Appendix D. The log-likelihood
of the simplified model is −437.14, whereas the full model with γage, βage and s12
has a log-likelihood of −437.03. Thus, a likelihood ratio test for the combined
significance of the three parameters has a test statistic of 0.22 that follows a χ2

3

distribution under the null hypothesis. This gives a p-value of p = 0.97.
The expected value of the latent concentration Y ∗ij given that the response comes

from the continuous part can be expressed as

E(Y ∗ij |Y ∗ij > 0) = 2ez
′
ij γ̂+τ1i+(σ̂2+δ̂2)/2Φ(δ̂),

where τ1i is the unobserved random effect for the individual. The random effect
is assumed to follow a normal distribution with mean zero and variance ŝ11. In
order to calculate the expected value for unobserved members of the population,
we must integrate over the possible random effects. Thus, the population averaged
expected value conditioned on a non-zero latent concentration is

E(Y ∗ij |Y ∗ij > 0) = 2ez
′
ij γ̂+(σ̂2+δ̂2)/2Φ(δ̂)

∫
eτ1i

1√
ŝ11

φ
( τi1√

ŝ11

)
dτ1i

= 2ez
′
ij γ̂+(ŝ11+σ̂

2+δ̂2)/2Φ(δ̂)

Furthermore, the population averaged probability of belonging to the point mass
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at zero is found by integrating over the random effect τi2,

π̂ij =

∫ ∞
−∞

Φ(x′ijβ̂ + τi2)
1√
ŝ22

φ
( τi2√

ŝ22

)
dτi2.

The first term is the cumulative distribution of a normally distributed variable
with mean µ = −x′ijβ̂ and variance σ = 1, i.e. if Z ∼ N (−x′ijβ̂, 1) then
P (Z ≤ τi2) = Φ(x′ijβ̂ + τi2). The second term is the probability density of a
variable with mean zero and variance s22. Thus, if Q ∼ N(0, s22), then P (Q =

τi2) = 1√
s22
φ
(

τi2√
s22

)
. Furthermore, if Q and Z are independent we can write the

integral as π̂ij =
∫∞
−∞ P (Z ≤ Q|Q = τi2)P (Q = τi2) dτi2, which equals the un-

conditional probability P (Z ≤ Q) = P (Z − Q ≤ 0). Since both Z and Q are
normally distributed their difference is also normally distributed with mean −x′ijβ̂
and variance 1 + ŝ22. Therefore, the desired integral can be written as

π̂ij = Φ

( x′ijβ̂√
1 + ŝ22

)
.

Finally, because τi1 and τi2 are assumed to be independent the expected value of
the lantent variable Y ∗ij is given by

E(Y ∗ij) = π̂ijE(Y ∗ij |Y ∗ij = 0) + (1− π̂ij)E(Y ∗ij |Y ∗ij > 0)

= (1− π̂ij)E(Y ∗ij |Y ∗ij > 0)

= Φ

( −x′ijβ̂√
1 + ŝ22

)
2ez

′
ij γ̂+(ŝ11+σ̂

2+δ̂2)/2Φ(δ̂).

The resulting estimates of the three quantities are plotted for each diagnostic
group and time period in Figure 7.7. In this calculation of the latent expected value
it is assumed that sub-LOD population with weight πij has a point mass at zero, but
since it is unobserved it can, in theory, be any distribution fully contained on the
interval [0,T]. The true latent concentration might therefore be higher. However,
it does not seem unreasonable to assume that the sub-LOD population contains
responses with zero or negligible concentrations. In this case T = 0.29, so even if
the sub-LOD population is assumed to be a point mass at T , the resulting expected
latent concentrations are almost identical to the ones displayed.

Figure 7.7 shows that the expected outcomes for patients diagnosed with RA
and SLE are relatively similar, while the healthy controls clearly differ from the
diagnosed patients. The healthy controls experience increased levels of TNF-α
around birth (second time period), this is reflected in both a lower probability
of being censored and greater magnitude in the non-censored observations. The
diagnosed patients have a more stable concentration throughout the course of the
pregnancy, which is also reflected in both parts of the model.

It is interesting to observe that for the healthy controls the expected value of
the positive responses increases from the second to the third time period, while the
probability of falling below the LOD also increases, resulting in an overall reduced
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Figure 7.7: Probability of belonging to discrete part, expected value of the continuous
part, and expected value of the latent concentration Y ∗

ij of the cytokine TNF-α for each
diagnosis and time period by the probit/log-skew-normal TPIC model. The first time
period includes time point 0 - 2, the second time period is time point 3 - 4, and the last
time period is time point 5 - 6.

expected observation from the second to the third time period. This means that
more observations are censored, but those that are not censored tend to be higher.
This example highlights that the mixing probability and the magnitude of the
non-censored observations are the results of two independent processes. However,
in general, an increase in the non-censored observations tend to coincide with a
reduced probability of being censored.

7.2.2 Cytokine MCP1
For this cytokine, there are several time periods without any censored observations
from several of the diagnostic groups. For instance, during the last time period
t3, there are no censored observations from Healthy controls or patients with SLE.
In total, there are 11 censored observations, which are undoubtedly not enough to
estimate all the ten parameters in β used in the analysis of TNF-α. Because the
main focus of the analysis lies in detecting group differences, we choose to include
only the diagnostic group effects in the discrete part. Thus,

µij =γ0 + γage xage,i + γRA xRA,i + γSLE xSLE,i + γt2 xt2,ij + γt3 xt3,ij+

γt2×RA xRA,i xt2,ij + γt3×RA xRA,i xt3,ij+

γt2×SLE xSLE,i xt2,ij + γt3×SLE xSLE,i xt3,ij + τi1,

πij =Φ(β0 + βRA xRA,i + βSLE xSLE,i + τi2).

Including the parameter σ of the lognormal distribution and the variances of the
random effects, this gives a total of 12 parameters in the one-part models and 17
parameters in the two-part models. Using the log-skew-normal distribution for the
continuous part contributes with the additional skew parameter δ.
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Based on the histograms in Figure 7.5 it is not entirely clear whether all the
data may have arisen from a single continuous distribution, or if an additional part
below the LOD is needed to explain the number of censored observations. Thus,
the Tobit model may provide a good fit to the data. Since the amount of censored
observations is so low, the substitute model may also be adequate.

The results of fitting the four models with a log-skew-normal continuous part
are shown in Table 7.5.

Table 7.5: Resulting maximum likelihood parameter estimates from fitting the models
with a log-skew-normal continuous distribution with 95 % Wald-type confidence intervals.

Parameter TPIC TP Tobit Substitute
γ0 4.39 (2.91, 5.88) 4.39 (2.90, 5.87) 4.22 (2.49, 5.96) 4.23 (2.51, 5.97)

γage -0.01 (-0.06, 0.03) -0.01 (-0.06, 0.03) 0.01 (-0.04, 0.06) 0.01 -0.04, 0.06)

γRA 0.68 (0.12, 1.24) 0.68 (0.12, 1.24) 0.52 (-0.14, 1.18) 0.53 -1.13, 1.18)

γSLE 0.87 0.30, 1.44) 0.87 (0.30, 1.44) 0.69 (0.03, 1.35) 0.69 (0.03, 1.35)

γt2 1.55 (1.20, 1.90) 1.55 (1.20, 1.90) 1.50 (1.11, 1.88) 1.50 (1.20, 1.90)

γt3 1.64 (1.18, 2.10) 1.64 (1.18, 2.10) 1.65 (1.14, 2.15) 1.65 (1.14, 2.16)

γt2×RA -1.70 (-2.26, -1.15) -1.70 (-2.26, -1.15) -1.68 (-2.27, -1.09) -1.69 (-2.28, -1.09)

γt3×RA -1.24 (-1.87, -0.61) -1.24 (-1.87, -0.61) -1.24 (-1.95, -0.54) -1.25 (-1.96, -0.54)

γt2×SLE -1.67 (-2.18, -1.17) -1.68 (-2.18, -1.17) -1.50 (-2.04,-0.96) -1.50 (-2.05, -0.96)

γt3×SLE -0.91 (-1.54, -0.28) -0.91 (-1.53, -0.28) -0.62 (-1.34, 0.11) -0.61 (-1.35, 0.12)

β0 -3.69 (-6.27, -0.31) -3.67 (-6.21, -1.13) — —
βRA -1.38 (-4.78, 2.01) -1.44 (-4.90, 2.01) — —
βSLE -0.50 (-2.73, 1.73) -0.53 (-2.77, 1.71) — —

σ 0.60 0.60 0.39 0.39
δ -0.82 -0.82 -1.39 -1.42

s11 0.59 0.59 0.89 0.87
s12 -1.19 -1.21 — —
s22 4.42 4.45 — —
`(θ̂) -432.7 -432.8 -461.4 -468.7
AIC 901.5 901.5 948.8 963.3

The Presence of Interval Censoring

The TP model and TPIC model achieve close to equal log-likelihoods, respectively
−432.77 and −432.74, and the resulting parameter estimates from the two models
are almost identical. When the age is set to the mean x̄age = 31, the population
averaged proportion of the continuous distribution that falls below the LOD ranges
from 0.0002% to 0.07% across the time periods and diagnoses.

The main argument for not including the interval censoring is that it makes the
model more complex in several ways. The expression for the likelihood becomes
more complex, since it includes the cumulative density function of the continuous
part of the model. Furthermore, both parts of the mixture model play a role in
the probability of falling below the LOD, which complicates computations and
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interpretations. In the simulation study in Chapter 5, we showed that the interval
censoring was superfluous when less than 0.5% of the continuous part was censored.
Thus, it seems safe to conclude that the interval censoring is superfluous here.

In the TP model, πij represents the probability of falling below the LOD. Since
there are sub-LOD responses in the data, the discrete parts have to be present.
Alternatively, a Tobit or Substitute approach could be used to handle the sub-
LOD observations. However, both of these models perform substantially worse in
terms of AIC, so we conclude that the TP model is best suited for this data.

Table 7.6: Results of likelihood ratio tests for the presence of skew, discrete part and
fixed effects. All models are fitted with a lognormal continuous part, except model (a)
which is used to test the presence of skew.

Model -2*loglikelihood
-2*Difference in
loglikelihoods Distribution p-value

(a) TP with skew 865.5
Skewness:
(b) TP 866.8 1.3 (b-a) χ2

1 0.25
Correlation in Random Effects:
(c) TP without s12 873.5 6.7 (c-b) χ2

1 0.01
Random Effects:
(d) TP without τ1i 938.7 65.2 (d-c) 1

2
(χ2

0 + χ2
1) 3·10-16

(e) TP without τ2i 898.1 24.6 (e-c) 1
2
(χ2

0 + χ2
1) 4·10-7

Fixed effects in γ:
(f) TP without age 867.0 0.2 (f-b) χ2

1 0.65
(g) TP without interactions 917.9 51.1 (g-b) χ2

4 2·10-10

(h) TP without time 956.1 38.2 (h-g) χ2
2 5·10-9

(i) TP without diagnosis 918.6 0.7 (i-g) χ2
2 0.70

Fixed effects in β:
(j) TP without diagnosis 868.2 1.4 (j-b) χ2

2 0.50

Tests for Model Parameters

The results of likelihood ratio tests for the presence of the different model parts of
the TP model are displayed in Table 7.6. Based on these results, the skewness is
insignificant (p = 0.25), and therefore omitted. As for the cytokine TNF-α, there
is also no evidence for an effect of the patients’ age on the response (p = 0.65).
Unsurprisingly, due to the low number of observations below the LOD, there is no
significant effect of the patients’ diagnosis on the probability of falling below the
LOD (p = 0.50). Omitting the diagnostic covariates in β leaves only the intercept
β0.

The results for this cytokine differs from the results on the cytokine TNF-α in
that there is a significant covariance s12 at level of significance α = 0.01 between
the two random effects. Thus, the two random effects are not independent. This
makes the computation of the population averaged time profiles more complicated.
The simplified model upon removing the age covariate from γ and the diagnostic
covariates from β is displayed in Table 8.1 in Appendix D.
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Population Averaged Time Profiles

For the cytokine TNF-α we could calculate the population averaged π̂ij and con-
ditional expected value E(Y ∗ij |Y ∗ij > 0) separately, and the resulting population
averaged expected value was simply given by (1− π̂ij)E(Y ∗ij |Y ∗ij > 0). In the result-
ing model for the cytokine MCP1, the two random effects are correlated. Thus, the
population averaged expected value is found by integrating over the two random
effects simultaneously, i.e.

E(Yij) =

∫∫
(1−Φ(β̂0 + τ2i))e

x′ij γ̂+τ1i+σ̂
2/2f(τ |Σ̂) dτ

= ex
′
ij γ̂+σ̂

2/2

∫∫
(1−Φ(β̂0 + τ2i))e

τ1if(τ |Σ̂) dτ

= 1.31 ex
′
ij γ̂+σ̂

2/2,

where f(τ |Σ̂) is the bivariate probability distribution of τ with mean zero and
covariance matrix Σ̂. As before, the population averaged probability of belonging
to the discrete part is given by

π̂ij =

∫
Φ(β̂0 + τ2i)f(τ2i|ŝ22) dτ2i = Φ

(
β̂0√

1 + ŝ22

)
= Φ

(
−4.11√
1 + 3.85

)
= 3.1%.

The conditional expected value of the continuous part is

E(Yij |Yij > 0) =

∫
ex
′
ij γ̂+τ1i+σ̂

2/2f(τ1i|ŝ11) dτ1i = 1.32 ex
′
ij γ̂+σ̂

2/2.

Note that this is almost identical to the unconditional expected value E(Yij), due to
the low amount of censored observations. Therefore, we plot only the unconditional
expected value in Figure 7.8.

It is important to note that the TP model is used, thus the inference is done on
the observed concentration Yij , and not the latent concentration Y ∗ij . This means
that all the concentrations below the LOD is assumed to be zero. The TP model
is however shown to give almost identical parameter estimates as the TPIC model
for this data. Therefore, this distinction is virtually immaterial here.

7.2.3 Cytokine IL8

For this cytokine, there are 71 non-censored observations in total. The group
with the highest proportion of censored observations is the healthy controls, which
has no non-censored observations during the last time period t3. Thus, there is not
enough data to support three time periods with interactions in the continuous part,
γ. Therefore, we choose the divide the data into two time periods instead. The first
time period, denoted t1, contains the measurements conducted before birth (time
point 0 - 3), and the last time period t2 contains the postpartum measurements
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Figure 7.8: Expected value of the observed concentration Yij of the cytokine MCP1 for
each diagnosis and time period by the probit/lognormal TP model. The first time period
includes time point 0 - 2, the second time period is time point 3 - 4, and the last time
period is time point 5 - 6.

(time point 4 - 6). The resulting parameterization is

µij =γ0 + γage xage,i + γRA xRA,i + γSLE xSLE,i + γt2 xt2,ij+

γt2×RA xRA,i xt2,ij + γt2×SLE xSLE,i xt2,ij + τi1,

πij =Φ(β0 + βage xage,i + βRA xRA,i + βSLE xSLE,i + βt2 xt2,ij+

βt2×RA xRA,i xt2,ij + βt2×SLE xSLE,i xt2,ij + τi2).

Including the 2 × 2 covariance matrix Σ of the random effects and the parameter
σ of the lognormal distribution, this gives a total of 9 parameters in the one-part
models and 18 parameters in the two-part models. Using the log-skew-normal
distribution for the continuous part gives one additional skew parameter δ.

Based on Figure 7.6, it seems highly unlikely that all the observations have
originated from a single continuous distribution. Therefore, the two-part models
are assumed to be superior. Furthermore, there are several observations close to
the LOD, which is indicative of left-censoring from the continuous part. This points
towards the TPIC model as the best choice.

The results of fitting the four models with a log-skew-normal continuous part
are displayed in Table 7.7. As expected, the two-part models are superior to the
one-part models in terms of AIC. In particular, the substitute model is clearly not
suitable for this data. As with the borrelia antibody concentration data with 96.8%
censored observations examined in Chapter 6, the substitute model estimates a very
small σ̂, such that the fitted distribution is in practice a lognormal distribution that
is left-truncated at y = µ̂ij .
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Table 7.7: Maximum likelihood parameter estimates from fitting the four models with
a log-skew-normal continuous part to the data on the cytokine IL8. Wald-type 95%
confidence intervals are included in parenthesis for the fixed effects.

Parameter TPIC TP Tobit Substitute
γ0 5.42 (0.58, 10.3) 3.72 (-0.43, 7.87) -2.11 (-6.90, 2.68) -0.34 (-1.17, 0.49)
β0 -2.27 (-12.2, 7.52) -5.76 (-14.7, 3.17) — —

γage -0.21 (-0.37, -0.04) -0.18 (-0.32, -0.03) -0.04 (-0.20, 0.13) -0.03 (-0.05, 0.00)
βage 0.16 (-0.18, 0.50) 0.31 (-0.02, 1.86) — —

γRA 0.23 (-0.38, 0.83) 0.38 (-0.83, 1.58) 0.57 (-0.98, 2.13) 0.22 (-0.14, 0.59)
βRA -0.84 (-3.84, 2.16) -0.85 (-3.32, 1.61) — —

γSLE 1.24 (-0.31, 2.79) 0.99 (-0.22, 2.21) -0.08 (-1.59, 1.42) 0.37 (-0.08, 0.84)
βSLE 0.29 (-2.30, 2.89) -0.32 (-2.82, 2.18) — —

γt2 1.20 (0.65, 1.75) 1.18 (0.60, 1.76) 0.75 (-0.12, 1.62) -0.03 (-0.12, 0.07)
βt2 1.30 (-0.15, 2.75) 0.73 (-0.39, 1.86) — —

γt2×RA -0.81 (-1.57, -0.05) -0.75 (-1.49, -0.003) -0.36 (-1.62, 0.90) 0.05 (-0.08, 0.18)
βt2×RA -1.55 (-3.74, 0.64) -1.22 (-2.70, 0.25) — —

γt2×SLE -0.75 (-1.42, -0.08) -0.69 (-1.38, 0.01) 0.19 (-1.09, 1.48) 0.07 (-0.09, 0.23)
βt2×SLE -2.68 (-4.96 -0.40) -2.03 (-3.95, -0.12) — —

σ 0.20 0.14 0.29 0.02
δ -0.82 0.90 -2.61 0.88

s11 3.35 1.61 27.8 0.67
s12 -4.99 -3.67 — —
s22 10.4 10.0 — —
`(θ̂) -157.5 -164.4 -195.8 -305.4
AIC 353.0 366.9 411.5 610.8

The Presence of Interval Censoring

Based on the results in Table 7.7, we see that there are some substantial differ-
ences between the TP model and the TPIC model, and that the latter achieves a
substantially better fit to the data. The population averaged proportion of cen-
sored observations from the continuous part, F (T ; µ̂ij , σ̂, δ̂), for individuals with
age x̄age = 31 ranges from 48.4% in the SLE group during the second time period
to 67.7% in the healthy group during the first time period. In the simulation study
in Chapter 5, the TP model was shown to give biased estimates in scenarios with
a non-negligible censored left tail of the continuous distribution. Therefore, we
continue with the TPIC model for this data.

Tests for Model Parameters

Likelihood ratio tests are performed for the presence of the various parameters of
the TPIC model. The results are presented in Table 7.8. Neither the skew param-
eter δ, the correlation s12 between the random effects, nor the age parameters, are
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Table 7.8: Results of likelihood ratio tests for the presence of skew, discrete part and
fixed effects. All models are with a log-skew-normal continuous part, except for model
(c) used for testing the presence of skewness.

Model -2*loglikelihood
-2*Difference in
loglikelihoods Distribution p-value

(a) TPIC with skew 315.0
Discrete part:
(b) Tobit with skew 391.5 76.5 (b-a) χ2

7, χ
2
8, χ

2
9 <7·10-14

Skewness:
(c) TPIC 319.0 4.0 (c-a) χ2

1 0.04
Correlation in Random Effects:
(d) TPIC without s12 324.1 5.1 (d-c) χ2

1 0.02
Random Effects:
(e) TPIC without τ1i 383.2 59.1 (e-d) 1

2
(χ2

0 + χ2
1) 7·10-15

(f) TPIC without τ2i 361.7 37.6 (f-d) 1
2
(χ2

0 + χ2
1) 4·10-10

Fixed effects in γ:
(g) TPIC without age 325.9 1.8 (g-d) χ2

1 0.18
(h) TPIC without interactions 326.5 0.6 (h-d) χ2

2 0.74
(i) TPIC without time 340.2 13.7 (i-h) χ2

1 2·10-4

(j) TPIC without diagnosis 331.3 4.8 (j-h) χ2
2 0.09

Fixed effects in β:
(k) TPIC without age 324.3 0.2 (k-d) χ2

1 0.65
(l) TPIC without interactions 330.5 6.4 (l-d) χ2

2 0.04
(m) TPIC without time 330.5 0.02 (m-l) χ2

1 0.89
(n) TPIC without diagnosis 331.3 0.6 (n-l) χ2

2 0.44

significant at level of significance α = 0.01. Therefore, they are omitted in order
to simplify the inference.

The interaction terms, as well as the diagnosis covariates, are insignificant in
both model parts, also when tested together (p = 0.12). This means that when
splitting the time points into two periods, before birth and after birth, and regard-
ing the RA and SN-RA patients as the same diagnosis, there are no significant
differences in the measured concentrations across the diagnostic groups.

7.3 Bivariate Statistical Analysis

Methods for bivariate statistical analysis of variables with a lower limit of detection
are presented in Section 3.3. In this section, these methods will be applied to
data on two of the previously analyzed cytokines, TNF-α and IL8. As well as
demonstrating the applicability of the methods, the main goal is to estimate the
correlation between the two cytokines.

Let yi = (y1i, y2i) = (yTNF-α,i, yIL8,i) be a pair of observations from the same
individual at the same time point, with detection limits T1 and T2. As both the
measurements of TNF-α and IL8 are subject to a lower detection limit, there are
four possible types of pairs; (1) Both y1i and y2i are observed, (2) y1i is observed
and y2i ≤ T2, (3) y1i ≤ T1 and and y2i is observed, and (4) both y1i ≤ T1 and
y2i ≤ T2.
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7.3 Bivariate Statistical Analysis

The simplest model is a one-part bivariate Tobit model, which is based on the
assumption that all the data have originated from a single bivariate lognormal dis-
tribution subject to censoring due to the detection limits. This model is described
by the likelihoods in (3.26). Under this model, the amount of observed pairs of type
(2) to (4) corresponds to the observed distribution of the non-censored pairs of type
(1). The model consists of the five parameters θ = (µ1, µ2, σ

2
1 , σ

2
2 , ρ), where (µ1, σ

2
1)

defines the marginal distribution of y1, (µ2, σ
2
2) defines the marginal distribution

of y2, and ρ is the correlation between the two variables.
The restriction on the number of observed pairs of type (4), where both variables

are below the LOD, can be relaxed by introducing a lower part fL(yi) that is
entirely contained on the domain [0, T1] × [0, T2]. Let the high component fH(yi)
be a bivariate lognormal distribution. The resulting distribution is a two-part
mixture model

f(yi) = πifL(yi) + (1− πi)fH(yi),

where πi denotes the probability that yi belongs to the lower component. Under
this model the amount of half-observed pairs of type (2) and (3) must correspond
to the distribution of the fully observed pairs of type (1), while the amount of
censored pairs of type (4) may exceed the expected proportion based on the rest
of the data. This requires one additional parameter π, such that the total number
of parameters is six, θ = (µ1, µ2, σ

2
1 , σ

2
2 , ρ, π).

The restrictions can be relaxed further by introducing more parts to the mix-
ture. As in the two-part mixture, let fH(yi) be a higher bivariate lognormal com-
ponent, and fL(yi) be a lower component located entirely on the domain [0, T1]×
[0, T2]. In addition, let fL1

(yi) be a distribution on the domain [0,∞)× [0, T2], and
fL2(yi) be on the domain [0, T1] × [0,∞). In other words, fL(yi) represent low-
repsonders in both cytokines, fL1(yi) represents low-responders in y2, and fL2(yi)
represents low-responders in y1. We denote the mixing weights of fL1

(yi) and
fL2

(yi) respectively π1i and π2i. The resulting four-part mixture distribution is

f(yi) = π1ifL1
(yi) + π2ifL2

(yi) + πifL(yi) + (1− π1i − π2i − πi)fH(yi).

For the two half-censored components fL1(yi) and fL2(yi) only the marginal distri-
bution of the non-censored variable and their relative weight are observable. Thus,
the two components contribute with three parameters each. This gives a total
of twelve parameters, θ = (π1, π2, π, µ1, µ2, σ1, σ2, ρ, µL1

, σL1
, µL2

, σL2
). Here µL1

and σL1
are the parameters of fL1

(yi), and µL2
and σL2

are the parameters of
fL2

(yi). The model can be simplified by assuming that the half-observed lower
components fL1(yi) and fL2(yi) has the same marginal distributions as the higher
component fH(yi), such that µL1 = µ1, σL1 = σ1, µL2 = µ2 and σL2 = σ2.

In the previous longitudinal analysis, we showed that there is a significant corre-
lation between measurements from the same individual, such that all the observed
pairs cannot be regarded as independent. Therefore, we limit the analysis to one
time-point, t = 2, which has the most observations. This time-point is the second
trimester of the pregnancies, and includes a total of 59 observations. The number
of observations of each type is shown in Table 7.9. Among the 59 pairs, only ten
are non-censored in both variables.
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Table 7.9: Number of observed pairs of each type at time point two, where y1i is the
cytokine TNF-α and y2i is IL8.

y1i > T1 y1i ≤ T1 Total
y2i > T2 10 (17 %) 2 (3 %) 12 (20 %)

y2i ≤ T2 27 (46 %) 20 (34 %) 47 (80 %)

Total 37 (63 %) 22 (37 %) 59

The results of fitting a bivariate lognormal distribution to only the ten fully ob-
served pairs are shown in Table 7.10. The estimated correlation is ρ̂ = 0.63 (95% CI :
0.15, 0.89). The estimate is subject to great uncertainty due to a low number of
observations, but there is a significantly positive correlation between the measure-
ments of type (1) of the two cytokines. This may, however, be a biased estimate of
the underlying correlation, due to both variables being subject to detection limits.
In the longitudinal analysis in the previous section, we showed that the data on
both TNF-α and IL8 showed signs of non-negligible left-censored tails, based on
the TPIC model providing a substantially better fit than the TP model. There-
fore, one of the censored bivariate models might provide a better estimate of the
correlation.

Table 7.10: Maximum likelihood parameter estimates from fitting a bivariate lognormal
distribution to the pairs of type (1) that are non-censored in both variables. 95 % Wald-
type confidence intervals are shown in parenthesis.

Parameter Estimate
µ1 1.39 (0.73, 2.06)

σ1 1.07 (0.60, 1.54)

µ2 1.67 (0.87, 2.46)

σ2 1.28 (0.72, 1.84)

ρ 0.63 (0.15, 0.89)

Since both cytokines were shown to have a significant amount of excess obser-
vations below the LOD in the longitudinal analysis, the underlying assumptions of
the bivariate Tobit model are not satisfied. The bivariate two-part model allows
for excess observations below the LOD, but it is assumed that both variables are
low responses simultaneously. This is not the case for this data, as there are a lot
more excess zeroes in IL8 than in TNF-α. Based on this, it is expected that the
bivariate four-part model provides the best fit.

The parameters of the three models, as well as the simplified version of the
four-part model, are estimated using the command optim() in R with method =
"BFGS" to maximize the likelihoods. The R code used to estimate the parameters
is included in Appendix C. The results are presented in Table 7.11.

The behaviour of the models is investigated by plotting the resulting higher
components fH(yi) in Figure 7.9. The upper left plot is the result of fitting a
bivariate normal distribution to the log-transformed fully observed pairs of type
(1). It does not take into account that there might be observations from the higher
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Table 7.11: Resulting maximum likelihood parameter estimates from fitting the models
with a log-skew-normal continuous distribution with 95 % Wald-type confidence intervals.

Parameter Tobit Two-Part Four-Part Simplified Four-Part
µ1 0.19 (-0.27, 0.66) 0.81 (0.09, 1.53) 1.01 (0.57, 1.46) 1.11 (0.65, 1.56)

σ1 1.67 (1.26, 2.08) 1.30 (0.79, 1.82) 0.97 (0.65, 1.30) 1.06 (0.71, 1.41)

µ2 0.36 (-0.27, 0.98) 0.60 (-0.01, 1.22) 0.61 (-0.08, 1.29) 0.53 (-0.09, 1.16)

σ2 1.18 (0.72, 1.64) 1.22 (0.70, 1.55) 1.24 (0.74, 1.75) 1.13 (0.70, 1.55)

ρ 0.51 (0.12, 0.77) 0.38 (-0.05, 0.70) 0.56 (0.14, 0.83) 0.42 (0.02, 0.72)

π — 0.23 2·10-6 0.15
π1 — — 0.07 2·10-4

π2 — — 0.34 0.18

µL1 — — 2.48 (2.07, 2.89) —
σL1 — — 0.29 (0.01, 0.57) —
µL2 — — 1.11 (0.91, 1.31) —
σL2 — — 0.14 (0.01, 0.27) —
`(θ̂) -120.2 -119.5 -110.6 -118.0
AIC 250.4 251.0 245.2 252.0

component that are partially or fully censored due to the detection limits. In the
Tobit model shown in the upper right corner, one bivariate normal distribution
is fitted to all the data. Therefore, a large portion of the distribution extends
below the LODs to account for the censored observations. In the two-part model
an additional part is introduced on the domain [0, T1] × [0, T2]. Therefore, the
higher component does not extend as far down in the lower left corner. In the four-
part model two additional parts are introduced on the domains [0, T1]× [0,∞) and
[0,∞) × [0, T2], resulting in a higher component that extends even less below the
LODs. However, it still extends much farther below T2 then the model based only
on the observed pairs, so a substantial proportion of the censored observations of
IL8 are expected to be censored observations from the higher component. This is in
agreement with the results found in the longitudinal analysis, where the continuous
part of the fitted TPIC model had a large left-censored tail.

The best model in terms of AIC is the full four-part model. It estimates the
correlation to be ρ̂ = 0.56 (95% CI : 0.14, 0.83). This model is, however, arguably
overfitted. The estimated mean of y1i in the higher component is µ̂1 = 1.01. The
lower component fL1

(yi), which represents the high-responders in y1i and low-
responders in y2i, has a substantially higher estimated mean µ̂L1 = 2.48. The
observations of type (2) are assumed to have originated from either fH(yi) or
fL1

(yi). Thus, the pairs of type (2) with higher observations of y1i are expected to
come from fL1

(yi) and be low-responders in y2i, while the pairs of type (2) with
lower observations of y1i are expected to be censored observations from fH(yi).
This does not seem reasonable, and the good fit is apparently a result of overfitting.

The room for overfitting is reduced in the simplified four-part model, where
the marginal distributions of fL1(yi) and fL2(yi) are forced to be the same as the

101



Chapter 7. Application to Cytokine Data

Observed Pairs

TNF−alfa

IL
8

−4 −2 0 2 4

−
2

0
2

4
Tobit

TNF−alfa

IL
8

−4 −2 0 2 4

−
2

0
2

4

Two−Part

TNF−alfa

IL
8

−4 −2 0 2 4

−
2

0
2

4

Four−Part

TNF−alfa

IL
8

−4 −2 0 2 4

−
2

0
2

4

Figure 7.9: The fitted bivariate normal higher components fH(yi) to the log-transformed
concentrations. The red lines are the detection limits, and the black points are the fully
observed pairs of type (1). The upper left plot is the result of fitting a bivariate normal
distribution to only the observed pairs and ignoring the rest of the data, with parameters
shown in Table 7.10, while the other three are based on results in Table 7.11.

marginal distributions of fH(yi). This assumption is however problematic. Since
the two cytokines apparently are not independent, it is not reasonable to assume
that the measurements of TNF-α paired with a censored observation in IL8 fol-
lows the same distribution as the measurements of TNF-α paired with uncensored
observations of IL8, and vice versa.

In conclusion, none of the models considered here are suitable for estimating
the correlation in this particular data. The underlying assumptions of the Tobit
and the two-part model are not met, and the attempt to generalize the two-part
model by introducing two additional parts leads to overfitting. The overfitting is
reduced by adding restrictions to the additional parts in the four-parts model, but
still, the underlying assumptions are questionable at best.
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8 | Conclusion and Further Work

In this thesis, we have studied methods for analyzing data subject to detection
limits. Four models were specified; The Tobit model, a two-part mixture model, a
censored two-part mixture model, and a naive substitute model. The performance
of the four models was tested in numerous scenarios with data generated from a
two-part model with interval censoring in a simulation study. This provided insight
into the behavior of the models under different circumstances. In particular, it was
demonstrated that even if the underlying process was a censored two-part model,
there are certain scenarios where other models are better choices for analysis, both
in terms of inference and prediction. When the true zeroes constituted less than half
of the censored observations, the two-part model with interval censoring was over-
parameterized, as there were not enough data to distinguish between the true and
false zeroes. Both the Tobit model and the uncensored two-part model provided
viable alternatives in these scenarios, depending on the problem at hand. In terms
of prediction, the Tobit model achieved the best CRPS for the highest detection
limits, while the two-part model was shown to be better for inference purposes with
certain structures in the data.

The application on the borrelia data showed that the binary mixture model with
interval censoring can be a useful alternative to logistic regression when estimating
prevalence in a population. The two approaches differ in that the mixture model
takes more information into account as a model is fitted to directly to the observed
concentrations. However, for the borrelia data, the number of non-censored obser-
vations was so low that the continuous part of the mixture was subject to great
uncertainty. Thus, logistic regression was arguably more practical.

The applicability of the four candidate models in a longitudinal setting was
demonstrated on three cytokines in the cytokine data. For the cytokine TNF-α with
32.5% censored observations, there was a significant skew in the log-transformed
data. Thus the probit/log-skew-normal two-part model with interval censoring
provided the best fit. For the cytokine MCP1 with 3.6% censored observations,
the estimated left censored tail of the continuous distribution was negligible, mak-
ing the interval censoring superfluous. The probit/lognormal two-part model was
best suited for the data. The cytokine IL8 with 76.9% censored observations had
substantial estimated left-censoring of the continuous part, making the interval cen-
soring crucial. Significant differences in the time profiles between the diagnostic
groups were detected in the two first-mentioned cytokines.
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There are methods for handling left-censored data that are not included in
this thesis. We have considered the substitute model, where all the censored ob-
servations are substituted with half the detection limit. As expected, this led to
considerable bias in estimates en predictions, and was not suitable for analysis in
any of the applications. More sophisticated methods for replacing the censored ob-
servations with alternative values do, however, exist. In multiple imputation (MI),
the missing values are replaced with random variables from a suitable distribution.
Several imputed datasets are generated in order to minimize the variance related
with imputation. This method has been shown to provide valid statistical inference
when less than half of the observations are censored (Lee et al., 2012).

Bivariate models were applied in order to estimate the correlation between the
cytokines TNF-α and IL8. A significantly positive correlation was estimated in
three of the four candidate models. However, none of the models were suitable
for the data in question. The underlying assumptions in the one- and two-part
models were not satisfied, and the four-part models resulted in overfitting. There
are, however, many other approaches for multivariate analysis of data on this form.
Exploring more methods in the multivariate realm could make it possible to analyze
the diagnostic effects on the complete cytokine profiles, and not only on individual
cytokines. Among other possibilities, Lee and Scott (2012) formulated an EM
algorithm for multivariate analysis of data with interval censoring below a detection
limit and zero inflation.

In this thesis, we used a frequentist approach for estimation of the model pa-
rameters. In further analysis, it would be interesting to try a Bayesian approach.
This would open for incorporation of prior information, which has the potential
to give better estimates and predictions. In particular, we would like to attempt
to use integrated nested Laplace approximation (INLA), which has shown great
success in a wide range of applications (Rue et al., 2017). In order to use this, the
model must be expressed as a latent Gaussian model and the observations may
only depend on a linear combination of latent nodes. The latter is not the case for
the two-part model with interval censoring, but we see no reasons for why INLA
should not be successful with the other univariate models.
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Appendix

A Simulation Study - R Code

In Section A.1 we present the code for maximizing the likelihoods of the models
used in the simulation study, followed by the code for calculating the mean CRPS
in Section A.2. The framework of the simulation study is provided in Section A.3.

A.1 Likelihood Maximization

fit_model <-function(x, y, LOD, model, init, cont = "ln"){
# x: Data, y: responses, LOD: Limit of Detection,
# model: Which model to fit, init: Initial values
# cont: Which continuous distribution to use.
# (ln = lognormal, lsn = log-skew-normal)

if(model == "ni"){ # Two-part
return(optim(par = init, fn = optim_likelihood_ni, x = x, y = y,
LOD = LOD, cont = cont, method = "BFGS", hessian = TRUE,
control = list("fnscale"=-1)))

}else if(model == "i"){ # Two-part w/ interval censoring
return(optim(par = init, fn = optim_likelihood_i, x = x, y = y,
LOD = LOD, cont = cont, method = "BFGS", hessian = TRUE,
control = list("fnscale"=-1)))

}else if(model == "pi"){ # Substitute model
return(optim(par = init[1:ceiling((length(init)+1)/2)],
fn = optim_likelihood_pi, x = x, y = y, LOD = LOD, cont = cont,
method = "BFGS", hessian = TRUE, control = list("fnscale"=-1)))

}else if(model == "t"){ # Tobit model
return(optim(par = init[1:ceiling((length(init)+1)/2)],
fn = optim_likelihood_t, x = x, y = y, LOD = LOD, cont = cont,
method = "BFGS", hessian = TRUE, control = list("fnscale"=-1)))

}else if(model == "mt"){ # Marginalized two-part model
return(optim(par = init, fn = optim_likelihood_mt, x = x, y = y,
LOD = LOD, cont = cont, method = "BFGS", hessian = TRUE,
control = list("fnscale"=-1)))

}
}

### TWO-PART W/O INTERVAL CENSORING:
log_likelihood_ni= function(x, y, beta, gamma, sigma, LOD, cont, delta = NA){
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# Log-likelihood of TP model

censored = as.integer(is.na(y))
likelihood = 0

# Iterate over all observations
for(i in 1:length(y)){

y_i = y[i]
x_i = x[i,]
p = pnorm(sum(x_i * beta)) # probit link function
if(censored[i]){ # censored

update = log(p)
}else{ # not censored

if(cont == "ln"){ # Lognormal continuous part
update = log(1 - p) + dnorm(x = y_i, mean = sum(x_i * gamma),

sd = abs(sigma), log = TRUE)
}else if(cont == "lsn"){ # Log-skew-normal continuous part

update = log(1 - p) + dsn(x = y_i, xi = sum(x_i * gamma),
alpha = delta/abs(sigma),
omega = sqrt(sigma^2 + delta^2), log = TRUE)

}
}
likelihood = likelihood + update

}
return(likelihood)

}

optim_likelihood_ni = function(par, x, y, LOD, cont){
# Function to be maximized by optim for TP model

if(cont == "lsn"){ # Log-skew-normal continuous part
delta = par[length(par)]
par = par[-length(par)]

}else{ # Lognormal continuous part
delta = NA

}
gamma = par[1:floor(length(par)/2)]
sigma = par[ceiling(length(par)/2)]
beta = par[(ceiling(length(par)/2)+1):length(par)]
return(log_likelihood_ni(x, y, beta, gamma, sigma, LOD, cont, delta))

}

### TWO-PART MODELT WITH INTERVAL CENSORING:
log_likelihood_i= function(x, y, beta, gamma, sigma, LOD, cont, delta = NA){
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# Log-likelihood of TPIC model

censored = as.integer(is.na(y))
likelihood = 0

# Iterate over all observations
for(i in 1:length(y)){

y_i = y[i]
x_i = x[i,]
p = pnorm(sum(x_i * beta)) # probit link function
if(censored[i]){ # censored

if(cont == "ln"){ # Lognormal continuous part
update = log(p + (1 - p) * pnorm(q = LOD, mean = sum(x_i * gamma),

sd = abs(sigma)))
}else if(cont == "lsn"){ # Log-skew-normal continuous part

update = log(p + (1 - p) * psn(x = LOD, xi = sum(x_i * gamma),
alpha = delta/abs(sigma),
omega = sqrt(sigma^2 + delta^2)))

}

}else{ # not censored
if(cont == "ln"){ # Lognormal continuous part

update = log(1 - p) + dnorm(x = y_i, mean = sum(x_i * gamma),
sd = abs(sigma), log = TRUE)

}else if(cont == "lsn"){ # Log-skew-normal continuous part
update = log(1 - p) + dsn(x = y_i, xi = sum(x_i * gamma),

alpha = delta/abs(sigma),
omega = sqrt(sigma^2 + delta^2), log = TRUE)

}
}
likelihood = likelihood + update

}
return(likelihood)

}

optim_likelihood_i = function(par, x, y, LOD, cont){
# Function to be maximized by optim for TPIC model

if(cont == "lsn"){ # Log-skew-normal continuous part
delta = par[length(par)]
par = par[-length(par)]

}else{ # Lognormal continuous part
delta = NA

}
gamma = par[1:floor(length(par)/2)]
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sigma = par[ceiling(length(par)/2)]
beta = par[(ceiling(length(par)/2)+1):length(par)]
return(log_likelihood_i(x, y, beta, gamma, sigma, LOD, cont, delta))

}

### SUBSTITUE MODEL
log_likelihood_pi= function(x, y, gamma, sigma, LOD, cont, delta){
# Log-likelihood function of substitute model

y[is.na(y)] = LOD - log(2) # plugin LOD/2
likelihood = 0

# Iterate over all observations
for(i in 1:length(y)){

y_i = y[i]
x_i = x[i,]
if(cont == "ln"){ # Lognormal distribution

update = dnorm(x = y_i, mean = sum(x_i * gamma),
sd = abs(sigma), log = TRUE)

}else if(cont == "lsn"){ # Log-skew-normal distribution
update = dsn(x = y_i, xi = sum(x_i * gamma), alpha = delta/abs(sigma),

omega = sqrt(sigma^2 + delta^2), log = TRUE)
}
likelihood = likelihood + update

}
return(likelihood)

}

optim_likelihood_pi = function(par, x, y, LOD, cont){
# Function to be maximized by optim for substitute model

if(cont == "lsn"){ # Log-skew-normal distribution
delta = par[length(par)]
par = par[-length(par)]

}else{ # Log-normal distribution
delta = NA

}
gamma = par[1:(length(par)-1)]
sigma = par[length(par)]
return(log_likelihood_pi(x, y, gamma, sigma, LOD, cont, delta))

}

### TOBIT MODEL:
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log_likelihood_t= function(x, y, gamma, sigma, LOD, cont, delta){
# Log-likelihood function of substitute model

censored = as.integer(is.na(y))
likelihood = 0

# Iterate over all observations
for(i in 1:length(y)){

y_i = y[i]
x_i = x[i,]
if(censored[i]){ # censored

if(cont == "ln"){ # Lognormal distribution
update = pnorm(q = LOD, mean = sum(x_i * gamma),

sd = abs(sigma), log = TRUE)
}else if(cont == "lsn"){ # Log-skew-normal distribution

update = log(psn(x = LOD, xi = sum(x_i * gamma),
alpha = delta/abs(sigma),
omega = sqrt(sigma^2 + delta^2)))

}
}else{ # not censored

if(cont == "ln"){ # Lognormal distribution
update = dnorm(x = y_i, mean = sum(x_i * gamma),

sd = abs(sigma), log = TRUE)
}else if(cont == "lsn"){ # Log-skew-normal distribution

update = dsn(x = y_i, xi = sum(x_i * gamma),
alpha = delta/abs(sigma),
omega = sqrt(sigma^2 + delta^2), log = TRUE)

}
}
likelihood = likelihood + update

}
return(likelihood)

}

optim_likelihood_t = function(par, x, y, LOD, cont){
# Function to be maximized by optim for Tobit model

if(cont == "lsn"){ # Log-skew-normal distribution
delta = par[length(par)]
par = par[-length(par)]

}else{ # Lognormal distribution
delta = NA

}
gamma = par[1:(length(par)-1)]
sigma = par[length(par)]
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return(log_likelihood_t(x, y, gamma, sigma, LOD, cont, delta))
}

A.2 Calculating Mean CRPS

mean.CRPS <- function(y0, x0, m = c(1,2,3,4,5), gamma_est,
sigma_est, beta_est = rep(NA,length(gamma_est)), realLOD = NA){

# x0: covariate
# y0: observed response
# Returns corresponding CRPS for all pairs (y0,x0)

p_est = pnorm(x0 %*% beta_est)
mu_est = x0 %*% gamma_est

if(m == 1){ # TPIC
s = mean(mapply(intfunc, y0 = y0, p_est = p_est, mu_est = mu_est,

MoreArgs = list(C=C1, realLOD=realLOD, sigma_est=sigma_est)))
}else if(m == 2){ # TP

s = mean(mapply(intfunc, y0 = y0, p_est = p_est, mu_est = mu_est,
MoreArgs = list(C=C2, realLOD=realLOD, sigma_est=sigma_est)))

}else if(m == 3){ # Substitute
s = mean(mapply(intfunc, y0 = y0, p_est = p_est, mu_est = mu_est,

MoreArgs = list(C=C3, realLOD=realLOD, sigma_est=sigma_est)))
}else if(m == 4){ # Tobit

s = mean(mapply(intfunc, y0 = y0, p_est = p_est, mu_est = mu_est,
MoreArgs = list(C=C4, realLOD=realLOD, sigma_est=sigma_est)))

}
return(s)

}

intfunc <- function(y0, p_est, mu_est, sigma_est, C, realLOD){
return(integrate(C, lower = 0, upper = Inf, y0, p = p_est, mu = mu_est,

sigma_est = sigma_est, realLOD = realLOD)$value)
}

# TPIC
C1 <- function(z, y0, p, mu, sigma_est, realLOD){

c = numeric(length(z))

c[which(z < 0)] = (0 - as.integer(z[which(z < 0)] >= y0))^2
c[which(z >= 0 & z < realLOD)] = (p + (1-p)*plnorm(realLOD, mu, sigma_est) -

as.integer(z[which(z >= 0 & z < realLOD)] >= y0))^2
c[which(z >= realLOD)] = (p + (1-p)*plnorm(z[which(z >= realLOD)],

mu, sigma_est) -
as.integer(z[which(z >= realLOD)] >= y0))^2
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return(c)
}

# TP
C2 <- function(z, y0, p, mu, sigma_est, realLOD){

c = numeric(length(z))

c[which(z < 0)] = (0 - as.integer(z[which(z < 0)] >= y0))^2
c[which(z >= 0)] = (p + (1-p)*plnorm(z[which(z >= 0)], mu, sigma_est) -

as.integer(z[which(z >= 0)] >= y0))^2

return(c)
}

#SUB
C3 <- function(z, y0, p, mu, sigma_est, realLOD){

c = (plnorm(z, mu, sigma_est) - as.integer(z >= y0))^2
return(c)

}

# TOBIT
C4 <- function(z, y0, p, mu, sigma_est, realLOD){

c = numeric(length(z))

c[which(z < 0)] = (0 - as.integer(z[which(z < 0)] >= y0))^2
c[which(z >= 0 & z < realLOD)] = (plnorm(realLOD, mu, sigma_est) -

as.integer(z[which(z >= 0 & z < realLOD)] >= y0))^2
c[which(z >= realLOD)] = (plnorm(z[which(z >= realLOD)], mu, sigma_est) -

as.integer(z[which(z >= realLOD)] >= y0))^2
return(c)

}

A.3 Simulation Study

library(rsimsum)

set.seed(1729) # Random seed. Do not change this.

n_sim = 2000 # Number of repeated simulations
n_obs = 300 # Sample size of datasets
n_sen = 16 # Number of different scenarios
n_met = 4 # Number of methods tested
n_par = 5+4 # Number of estimated parameters(regression parm. + calculated parm.)
n_test = 300 # Size of test set for calculating CRPS
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alpha = 0.05 # For tests and confidence intervals

methods = c("TP", "TPIC", "Substitute", "Tobit") # List of methods

# List of parameter names
par_name = c("gamma0", "gamma1", "sigma", "beta0", "beta1",

"mcrps", "marg_mean0", "marg_mean1", "marg_eff_obs")

## Data frames for storing results:
# Summary of results
summ.all = data.frame(stat = character(), est = numeric(), mcse = numeric(),

method = character(), LOD = character(),
disc_prob = character(), beta1 = character(),
par = character(), lower = numeric(), upper = numeric())

# Raw data
data.all = data.frame(dataset = integer(), method = character(),

theta = numeric(), se = numeric(),par = character(),
LOD = character(), disc_prob = character(),
.dropbig = logical())

res.list = list()

# Varying factors:
LOD_real = rep(c(c(0.5,1,2,3)), each = 4)
LOD_vec = log(LOD_real) # LOD on log-scale
LOD_n = gsub(".", ",", as.character(LOD_real), fixed = TRUE)

beta0_vec = rep(c(-1.2,-0.7,-0.5,-0.2), 4)
disc_prob = rep(c(10, 20, 30, 40), 4)
dp_n = gsub(".", ",", as.character(disc_prob), fixed = TRUE)

# Constant factors:
proportion_diagnosed = 0.5
beta1 = -0.2
gamma0 = 1
gamma1 = 0.2 # continuous part
sigma = 0.7 # continuous part

true.crps = numeric(n_sen) # Compute CRPS of true distribution

# Store failed data for analysis
xfail = c()
yfail = c()
dfail = c()
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LODfail = c()
beta0fail = c()

### ITERATE OVER SCENARIOS:
for(sen in 1:n_sen){

pos_res_sen = 1
res.simsum.sen =
data.frame(dataset = rep(NA, n_sim*n_met*n_par), # Scenario number

method = rep(NA, n_sim*n_met*n_par), # Name of the method
theta = rep(NA, n_sim*n_met*n_par), # Parameter estimate
se = rep(NA, n_sim*n_met*n_par), # Estimated standard error
par = rep(NA, n_sim*n_met*n_par), # Name of parameter
LOD = rep(NA, n_sim*n_met*n_par), # Limit of detection for dataset
disc_prob = rep(NA, n_sim*n_met*n_par) ) # Discrete probability

# Varying beta0
beta0 = beta0_vec[sen]

# Varying the LOD
LOD = LOD_vec[sen]
LOD_name = LOD_n[sen]

# Calculate true marginal means and effects:
Z_0 = (LOD - gamma0)/sigma
C_0 = (1-pnorm(Z_0 - sigma))
Z_1 = (LOD - gamma0 - gamma1)/sigma
C_1 = (1-pnorm(Z_1 - sigma))
marginal_effect = (1-pnorm(beta0 + beta1))/(1-pnorm(beta0)) *

C_1 / C_0 * exp(gamma1)
marginal_mean0 = (1-pnorm(beta0)) * (1-pnorm(Z_0 - sigma)) *

exp(gamma0 + sigma^2/2)
marginal_mean1 = (1-pnorm(beta0 + beta1)) * (1-pnorm(Z_1 - sigma)) *

exp(gamma0 + gamma1 + sigma^2/2)

### SIMULATIONS:
for(i in 1:n_sim){

beta = c(beta0, beta1)
gamma = c(gamma0, gamma1)

# TRAINING DATA:
x1 = rbinom(n = n_obs, size = 1, p = proportion_diagnosed) #"diagnosis"
x = cbind(1, x1)
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p = pnorm(x %*% beta)
discrete_part = as.integer(runif(n_obs) < p)

# On log-scale:
errors = rnorm(n = n_obs, mean = 0, sd = sigma)
y = x %*% gamma + errors
mean(y <= LOD)
y[y <= LOD] = NA # censored
y[discrete_part == 1] = NA # true zeroes

# TEST DATA FOR CRPS:
x10 = rbinom(n = n_test, size = 1, p = proportion_diagnosed) #"diagnosis"
x0 = cbind(1, x10)

p0 = pnorm(x0 %*% beta)
discrete_part0 = as.integer(runif(n_test) < p0)

# On real-scale:
errors = rnorm(n = n_test, mean = 0, sd = sigma)
y0_log = x0 %*% gamma + errors
y0_log[y0_log <= LOD] = NA # censored
y0_log[discrete_part0 == 1] = NA # true zeroes
y0 = exp(y0_log)
y0[is.na(y0)] = 0

# Likelihood maximization:
par = c(gamma, sigma, beta)
solution_ni = fit_model(x = x, y = y, LOD = LOD, model = "ni", par)
solution_i = fit_model(x = x, y = y, LOD = LOD, model = "i", par)
solution_pi = fit_model(x = x, y = y, LOD = LOD, model = "pi", par)
par = c(solution_pi$par[1:(length(gamma)+1)], beta)
solution_t = fit_model(x = x, y = y, LOD = LOD, model = "t", par)

solutions = list(solution_ni, solution_i, solution_pi, solution_t)

# Theoretically optimal CRPS from true distribution:
tc = mean.CRPS(y0, x0, m = 1, gamma_est = gamma, sigma_est = sigma,

beta_est = beta, realLOD = exp(LOD))
true.crps[sen] = true.crps[sen] + 1/n_sim * tc

# Storing results:
for(met in 1:n_met){

#Checking for errors:
if(solutions[[met]]$convergence != 0 |

class(try(solve(-solutions[[met]]$hessian), silent = TRUE)) !=
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"matrix"){
# Non-convergence
res.simsum.sen[pos_res_sen:(pos_res_sen+n_par-1),] =

cbind( rep(sen,n_par),
rep(methods[met],n_par),
rep(NA, n_par), rep(NA, n_par), par_name,
rep(LOD_name,n_par), rep(dp_n[sen],n_par), FALSE)

pos_res_sen = pos_res_sen + n_par

# Store failed data for analysis
xfail = rbind(xfail, x1)
yfail = rbind(yfail, t(y))
dfail = rbind(dfail, discrete_part)
LODfail = c(LODfail, LOD)
beta0fail = c(beta0fail, beta0)

}else if(sum(diag(solve(-solutions[[met]]$hessian)) < 0) > 0){
# Negative standard errors
print("Failed SE")
print(methods[met])
print(sen)
res.simsum.sen[pos_res_sen:(pos_res_sen+n_par-1),] =

cbind( rep(sen,n_par),
rep(methods[met],n_par),
rep(NA, n_par), rep(NA, n_par), par_name,
rep(LOD_name,n_par), rep(dp_n[sen],n_par), FALSE)

pos_res_sen = pos_res_sen + n_par

# Store failed data for analysis
xfail = rbind(xfail, x1)
yfail = rbind(yfail, t(y))
dfail = rbind(dfail, discrete_part)
LODfail = c(LODfail, LOD)
beta0fail = c(beta0fail, beta0)

}else{
# Successfull solution

C = solve(-solutions[[met]]$hessian) # Inverse negative Hessian
SE = sqrt(diag(C)) # Standard errors
solutions[[met]]$par[length(gamma)+1] =

abs(solutions[[met]]$par[length(gamma)+1]) # Ensure right sign

gamma.res = solutions[[met]]$par[1:length(gamma)]
sigma.res = solutions[[met]]$par[length(gamma)+1]
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if(length(SE) == length(gamma) + length(beta) + 1){ # Two-part models
beta.res = solutions[[met]]$par[(length(gamma)+2):(2*length(gamma)+1)]

# Calculate marginal effects and CPRS
if(methods[met] == "TP"){

marg_eff = (1 - pnorm(beta.res[1]+beta.res[2])) /
(1 - pnorm(beta.res[1])) * exp(gamma.res[2])

marg_mean0 = (1 - pnorm(beta.res[1])) *
exp(gamma.res[1] + sigma.res^2/2)

marg_mean1 = (1 - pnorm(beta.res[1] + beta.res[2])) *
exp(gamma.res[1] + gamma.res[2] + sigma.res^2/2)

mcrps = mean.CRPS(y0 = y0, x0 = x0, m = 2,
gamma_est = gamma.res, sigma_est=sigma.res,
beta_est = beta.res, realLOD = exp(LOD))

}else if(methods[met] == "TPIC"){
Z_0 = (LOD - gamma.res[1])/sigma.res
C_0 = (1-pnorm(Z_0 - sigma.res))
Z_1 = (LOD - gamma.res[1] - gamma.res[2])/sigma.res
C_1 = (1-pnorm(Z_1 - sigma.res))
marg_eff = (1-pnorm(beta.res[1] + beta.res[2])) /

(1-pnorm(beta.res[1])) * C_1 / C_0 * exp(gamma.res[2])
marg_mean0 = (1-pnorm(beta.res[1])) * (1-pnorm(Z_0 - sigma.res)) *

exp(gamma.res[1] + sigma.res^2/2)
marg_mean1 = (1-pnorm(beta.res[1] + beta.res[2])) *

(1-pnorm(Z_1 - sigma.res)) *
exp(gamma.res[1] + gamma.res[2] + sigma.res^2/2)

mcrps = mean.CRPS(y0 = y0, x0 = x0, m = 1,
gamma_est = gamma.res, sigma_est=sigma.res,
beta_est = beta.res, realLOD = exp(LOD))

}

res.simsum.sen[pos_res_sen:(pos_res_sen+n_par-1),] =
cbind( rep(sen,n_par),

rep(methods[met],n_par),
c(solutions[[met]]$par,

mcrps, marg_mean0, marg_mean1, marg_eff),
c(SE, 1, 1, 1, 1),
par_name, rep(LOD_name,n_par), rep(dp_n[sen],n_par), FALSE)

pos_res_sen = pos_res_sen + n_par

}else{ # One-part models
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if(methods[met] == "Substitute"){
marg_eff = exp(gamma.res[2])
marg_mean0 = exp(gamma.res[1] + sigma.res^2/2)
marg_mean1 = exp(gamma.res[1] + gamma.res[2] + sigma.res^2/2)

mcrps = mean.CRPS(y0, x0, m = 3, gamma_est = gamma.res,
sigma_est=sigma.res, realLOD = exp(LOD))

}else if(methods[met] == "Tobit"){
Z_0 = (LOD - gamma.res[1])/sigma.res
Z_1 = (LOD - gamma.res[1] - gamma.res[2])/sigma.res

marg_eff = (1 - pnorm(Z_1 - sigma.res)) /
(1 - pnorm(Z_0 - sigma.res)) * exp(gamma.res[2])

marg_mean0 = (1 - pnorm(Z_0 - sigma.res)) *
exp(gamma.res[1] + sigma.res^2/2)

marg_mean1 = (1 - pnorm(Z_1 - sigma.res)) *
exp(gamma.res[1] + gamma.res[2] + sigma.res^2/2)

mcrps = mean.CRPS(y0, x0, m = 4, gamma_est = gamma.res,
sigma_est=sigma.res, realLOD = exp(LOD))

}

res.simsum.sen[pos_res_sen:(pos_res_sen+n_par-1),] =
cbind( rep(sen,n_par),

rep(methods[met],n_par),
c(solutions[[met]]$par, rep(NA,length(beta)),

mcrps, marg_mean0, marg_mean1, marg_eff),
c(SE, rep(NA,length(beta)), 1, 1, 1, 1),
par_name, rep(LOD_name,n_par), rep(dp_n[sen],n_par), FALSE)

pos_res_sen = pos_res_sen + n_par
}

}
}

}
# Calculating performance measures
res.simsum.sen$theta = as.numeric(res.simsum.sen$theta)
res.simsum.sen$se = as.numeric(res.simsum.sen$se)

# Identify solutions with SE larger than 10 SD from average SE
res.simsum.sen = cbind(res.simsum.sen,

.dropbig = rep(FALSE, dim(res.simsum.sen)[1]))

123



# .dropbig = TRUE for extreme outliers
for(param in c("beta0", "beta1", "gamma0", "gamma1", "sigma")){

res.simsum.sen[res.simsum.sen$par == param, ] =
dropbig(subset(res.simsum.sen, par == param),

estvarname = "theta", se = "se", methodvar = "method",
by = c("LOD", "disc_prob"), max = Inf, semax = 10, robust = FALSE)

}
data.all = rbind(data.all, res.simsum.sen) # Store all data

# Remove extreme outliers
if(sum(res.simsum.sen$.dropbig, na.rm = TRUE) > 0){

res.simsum.sen[which(res.simsum.sen$.dropbig),]$theta = NA
res.simsum.sen[which(res.simsum.sen$.dropbig),]$se = NA

}

# Calculate performance measures (without extreme outliers)
s.sen = multisimsum(data = res.simsum.sen, estvarname = "theta", par = "par",

true = c(gamma0 = gamma[1], gamma1 = gamma[2],
beta0 = beta[1], beta1 = beta[2], sigma = sigma,
mcrps = 0, marg_mean0 = marginal_mean0,
marg_mean1 = marginal_mean1,
marg_eff_obs = marginal_effect),

se = "se", by = c("LOD", "disc_prob"),
methodvar = "method", ref = ’TPIC’, x = TRUE)

summ.all = rbind(summ.all, summary(s.sen)$summ)
res.list[[sen]] = s.sen

}
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B Longitudinal Analysis - SAS code

/* TPIC WITH SKEW */
proc nlmixed
data = multiplex
cov
df = 1000
alpha = 0.05
tech = QUANEW
update = BFGS;
parms /* Initial values */
g0 = 2.41 ga = 0 gr = 0.33 gs = 0.53 gt1 = 0.91 gt2 = 0.92
gt1r = -0.97 gt2r = -1.25 gt1s = -1.44 gt2s = -1.41
sigma = 0.51 delta = -1.61
b0 = -0.67 br = -0.95 bs = -0.53 bt1 = -1.03 bt2 = -0.34 ba = 0.02
bt1r = 1.17 bt2r = -0.37 bt1s = 0.94 bt2s = -0.05
s11 = 0.5 s12 = 0 s22 = 0.5;

bounds sigma > 0; bounds s11 > 0; bounds s22 > 0;

T = log(0.29); *LOD;
censored = (y=-100); *Indicator variable;

mu = g0 + gr*(RA+SN_RA) + gs*SLE + ga*age +
gt1*(time3+time4) + gt2*(time5+time6) +
gt1r*(time3+time4)*(RA+SN_RA) + gt2r*(time5+time6)*(RA+SN_RA) +
gt1s*(time3+time4)*SLE + gt2s*(time5+time6)*SLE + t1;

mu_pi = b0 + br*(RA+SN_RA) + bs*SLE + ba*age +
bt1*(time3+time4) + bt2*(time5+time6) +
bt1r*(time3+time4)*(RA+SN_RA) + bt2r*(time5+time6)*(RA+SN_RA) +
bt1s*(time3+time4)*SLE + bt2s*(time5+time6)*SLE + t2;

pi = CDF(’normal’, mu_pi);

* Estimate Owenst T-function;
h = (T - mu)/sqrt(sigma**2 + delta**2);
a = delta/sigma;
jmax = 50;
cut.point = 8;

aa = abs(a);
ah = abs(h);
if (aa = .I) then OT = sign(a) * 0.5*CDF(’normal’,-ah);
else if (aa = 0) then OT = 0;
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else if (ah = .I) then OT = 0;
else if (aa <= 1) then do;

th = ah;
ta = aa;

* Two ways to approximate integral based on cutpoint;
low = (th <= cut.point);
if low then do;

matr = 0;
cumb = 0;

do j = 0 to jmax;
cumb = cumb + (th**(2*j)) / ((2**j) * GAMMA(j+1));
b1 = EXP(-0.5 * th**2) * cumb;
matr = matr + (-1)**j * ta**(2*j+1) / (2*j+1) * (1-b1);

end; *for;
T.int = (ATAN(ta) - matr) / (2*CONSTANT("pi"));
OT = SIGN(a) * T.int;
end; *if;

else OT = SIGN(a) * (ATAN(ta) * EXP(-0.5*(th**2)*ta/ATAN(ta)) *
(1+0.00868*(th*ta)**4) / (2*CONSTANT("pi")));

end; *if;
else do; *(aa > 1);

th = aa * ah;
ta = 1 / aa;

* Two ways to approximate integral based on cutpoint;
low = (th <= cut.point);
if low then do;

matr = 0;
cumb = 0;

do j = 0 to jmax;
cumb = cumb + (th**(2*j)) / ((2**j) * GAMMA(j+1));
b1 = EXP(-0.5 * th**2) * cumb;
matr = matr + (-1)**j * ta**(2*j+1) / (2*j+1) * (1-b1);

end; *for;
T.int = (ATAN(ta) - matr) / (2*CONSTANT("pi"));
end; *if;

else T.int = ATAN(ta) * EXP(-0.5*(th**2)*ta/ATAN(ta)) *
(1+0.00868*(th*ta)**4) / (2*CONSTANT("pi"));

OT = sign(a) * (0.5*CDF(’normal’,ah) +
CDF(’normal’,aa*ah)*(0.5-CDF(’normal’,ah)) - T.int);

end;

w = sqrt(sigma**2 + delta**2);

126



if censored then p = pi + (1-pi)*(CDF(’normal’,(T-mu)/w) - 2*OT);
else p = (1-pi) * 2/w * PDF(’normal’,(y-mu)/w) *

CDF(’normal’,delta/sigma*(y-mu)/w);
loglike = log(p);

model y ~ general (loglike);
random t1 t2 ~ normal([0,0],[s11, s12, s22]) subject = individual;
run;

/* TP WITH SKEW */
proc nlmixed
data = multiplex
cov
df = 1000
alpha = 0.05
gconv = 0
tech = QUANEW
update = BFGS;
parms /* Initial values */
g0 = 2.41 ga = 0 gr = 0.33 gs = 0.53 gt1 = 0.91 gt2 = 0.92
gt1r = -0.97 gt2r = -1.25 gt1s = -1.44 gt2s = -1.41
sigma = 0.51 delta = -1.61
b0 = -0.67 br = -0.95 bs = -0.53 bt1 = -1.03 bt2 = -0.34 ba = 0.02
bt1r = 1.17 bt2r = -0.37 bt1s = 0.94 bt2s = -0.05
s11 = 0.5 s12 = 0 s22 = 0.5;

bounds sigma > 0; bounds s11 > 0; bounds s22 > 0;

censored = (y=-100); *Indicator variable;

mu = g0 + gr*(RA+SN_RA) + gs*SLE + ga*age +
gt1*(time3+time4) + gt2*(time5+time6) +
gt1r*(time3+time4)*(RA+SN_RA) + gt2r*(time5+time6)*(RA+SN_RA) +
gt1s*(time3+time4)*SLE + gt2s*(time5+time6)*SLE + t1;

mu_pi = b0 + br*(RA+SN_RA) + bs*SLE + ba*age +
bt1*(time3+time4) + bt2*(time5+time6) +
bt1r*(time3+time4)*(RA+SN_RA) + bt2r*(time5+time6)*(RA+SN_RA) +
bt1s*(time3+time4)*SLE + bt2s*(time5+time6)*SLE + t2;

pi = CDF(’normal’, mu_pi);

w = sqrt(sigma**2 + delta**2);
if censored then p = pi;
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else p = (1-pi) * 2/w * PDF(’normal’,(y-mu)/w) *
CDF(’normal’,delta/sigma*(y-mu)/w);

loglike = log(p);

model y ~ general (loglike);
random t1 t2 ~ normal([0,0],[s11, s12, s22]) subject = individual;
run;

/* TOBIT WITH SKEW */
proc nlmixed
data = multiplex
cov
df = 1000
alpha = 0.05
gconv = 0
tech = QUANEW
update = BFGS;
parms /* Initial values */
g0 = 2.41 ga = 0 gr = 0.33 gs = 0.53 gt1 = 0.91 gt2 = 0.92
gt1r = -0.97 gt2r = -1.25 gt1s = -1.44 gt2s = -1.41
sigma = 0.51 delta = -1.61
s11 = 0.5;

bounds sigma >= 0; bounds s11 > 0;

T = log(0.29); *LOD;
censored = (y=-100); *Indicator variable;

mu = g0 + gr*(RA+SN_RA) + gs*SLE + ga*age +
gt1*(time3+time4) + gt2*(time5+time6) +
gt1r*(time3+time4)*(RA+SN_RA) + gt2r*(time5+time6)*(RA+SN_RA) +
gt1s*(time3+time4)*SLE + gt2s*(time5+time6)*SLE + t1;

* Estimate Owenst T-function;
h = (T - mu)/sqrt(sigma**2 + delta**2);
a = delta/sigma;
jmax = 50;
cut.point = 8;

aa = abs(a);
ah = abs(h);
if (aa = .I) then OT = sign(a) * 0.5*CDF(’normal’,-ah);
else if (aa = 0) then OT = 0;
else if (ah = .I) then OT = 0;
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else if (aa <= 1) then do;
th = ah;
ta = aa;

* Two ways to approximate integral based on cutpoint;
low = (th <= cut.point);
if low then do; *th < 8, ta <= 1;

matr = 0;
cumb = 0;

do j = 0 to jmax;
cumb = cumb + (th**(2*j)) / ((2**j) * GAMMA(j+1));
b1 = EXP(-0.5 * th**2) * cumb;
matr = matr + (-1)**j * ta**(2*j+1) / (2*j+1) * (1-b1);

end; *for;
T.int = (ATAN(ta) - matr) / (2*CONSTANT("pi"));
OT = SIGN(a) * T.int;
end; *if;

else do; *th > 8, ta <= 1;
if(-0.5*(th**2)*ta/ATAN(ta) < -600) then factor = 0;
else if(-0.5*(th**2)*ta/ATAN(ta) > 600) then factor = .I;
else factor = EXP(-0.5*(th**2)*ta/ATAN(ta));

T.int = ATAN(ta) * factor * (1+0.00868*(th*ta)**4) / (2*CONSTANT("pi"));
end;

end; *if;
else do; *(aa > 1);

th = aa * ah;
ta = 1 / aa;

* Two ways to approximate integral based on cutpoint;
low = (th <= cut.point);
if low then do;

matr = 0;
cumb = 0;

do j = 0 to jmax;
cumb = cumb + (th**(2*j)) / ((2**j) * GAMMA(j+1));
b1 = EXP(-0.5 * th**2) * cumb;
matr = matr + (-1)**j * ta**(2*j+1) / (2*j+1) * (1-b1);

end; *for;
T.int = (ATAN(ta) - matr) / (2*CONSTANT("pi"));
end; *if;

else do;
if(-0.5*(th**2)*ta/ATAN(ta) < -600) then factor = 0;
else if(-0.5*(th**2)*ta/ATAN(ta) > 600) then factor = .I;
else factor = EXP(-0.5*(th**2)*ta/ATAN(ta));
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T.int = ATAN(ta) * factor * (1+0.00868*(th*ta)**4) / (2*CONSTANT("pi"));
end;

OT = sign(a) * (0.5*CDF(’normal’,ah) +
CDF(’normal’,aa*ah)*(0.5-CDF(’normal’,ah)) - T.int);

end;

w = sqrt(sigma**2 + delta**2);
if censored then p = (CDF(’normal’,(T-mu)/w) - 2*OT);
else p = 2/w * PDF(’normal’,(y-mu)/w) * CDF(’normal’,delta/sigma*(y-mu)/w);
loglike = log(p);

model y ~ general (loglike);
random t1 ~ normal(0,s11) subject = individual;
run;

/* SUBSTITUTE WITH SKEW */
proc nlmixed
data = multiplex_sort
cov
df = 1000
alpha = 0.05
gconv = 0
tech= QUANEW
update = BFGS;
parms
g0 = 2.41 ga = 0 gr = 0.33 gs = 0.53 gt1 = 0.91 gt2 = 0.92
gt1r = -0.97 gt2r = -1.25 gt1s = -1.44 gt2s = -1.41
sigma = 0.51 delta = -1.61
s11 = 0.5;

bounds sigma >= 0; bounds s11 > 0;

T = log(0.29); *LOD;
censored = (y=-100); *Indicator variable;

mu = g0 + gr*(RA+SN_RA) + gs*SLE + ga*age +
gt1*(time3+time4) + gt2*(time5+time6) +
gt1r*(time3+time4)*(RA+SN_RA) + gt2r*(time5+time6)*(RA+SN_RA) +
gt1s*(time3+time4)*SLE + gt2s*(time5+time6)*SLE + t1;

w = sqrt(sigma**2 + delta**2);
if censored then p = 2/w * PDF(’normal’,(T-log(2)-mu)/w) *

CDF(’normal’,delta/sigma*(T-log(2)-mu)/w);
else p = 2/w * PDF(’normal’,(y-mu)/w) * CDF(’normal’,delta/sigma*(y-mu)/w);
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loglike = log(p);

model y ~ general (loglike);
random t1 ~ normal(0,s11) subject = individual;
run;

C Bivariate Analysis - R code

fit_bivariate = function(y, par, T1, T2, parts){
# Returns MLE of parameters with specified number of model parts
# y: data points
# par: initial values
# T1, T2: Detection limits
# parts: Number of model parts. 0 = only fully observed pairs.

y1 = y[,1]
y2 = y[,2]
if(parts == 1){ # Tobit

return(optim(par = par, fn = optim_bitobit, y1 = y1, y2 = y2,
T1 = T1, T2 = T2, method = "BFGS", hessian = TRUE,
control = list("fnscale"=-1)))

}else if(parts == 2){ # Two-part
return(optim(par = par, fn = optim_bitp, y1 = y1, y2 = y2,

T1 = T1, T2 = T2, method = "BFGS", hessian = TRUE,
control = list("fnscale"=-1)))

}else if(parts == 4){ # Four-part
return(optim(par = par, fn = optim_fp, y1 = y1, y2 = y2,

T1 = T1, T2 = T2, method = "BFGS", hessian = TRUE,
control = list("fnscale"=-1)))

}else if(parts == 0){ # Only fully observed pairs
return(optim(par = par, fn = optim_obs, y1 = y1, y2 = y2,

method = "BFGS", hessian = TRUE, control = list("fnscale"=-1)))
}

}

####### TOBIT
log_likelihood_bitobit = function(y1,y2,mu1,mu2,sigma1,sigma2,mu_rho,T1,T2){
# Loglikelihood of bivariate tobit model

sigma1 = abs(sigma1)
sigma2 = abs(sigma2)
rho = 2*pnorm(mu_rho)-1
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sigma12 = sqrt(sigma1^2*(1-rho^2))
sigma21 = sqrt(sigma2^2*(1-rho^2))

likelihood = 0

# Iterate over all observations
for(i in 1:length(y1)){

y1i = y1[i]
y2i = y2[i]

mu12 = mu1 + rho*sigma1/sigma2 * (y2i- mu2)
mu21 = mu2 + rho*sigma2/sigma1 * (y1i- mu1)

if(!is.na(y1i) & !is.na(y2i)){
update = dnorm(y1i, mean = mu12, sd = sigma12, log = TRUE) +

dnorm(y2i, mean = mu2, sd = sigma2, log = TRUE)
}else if(!is.na(y2i)){

update = dnorm(y2i, mean = mu2, sd = sigma2, log = TRUE) +
pnorm(T1, mean = mu12, sd = sigma12, log = TRUE)

}else if(!is.na(y1i)){
update = dnorm(y1i, mean = mu1, sd = sigma1, log = TRUE) +

pnorm(T2, mean = mu21, sd = sigma21, log = TRUE)
}else{

Sigma = matrix(c(sigma1^2,rho*sigma1*sigma2,rho*sigma1*sigma2,sigma2^2),
ncol = 2)

update = log(pmvnorm(lower = c(-Inf,-Inf), upper = c(T1,T2),
mean = c(mu1,mu2), sigma = Sigma))

}
likelihood = likelihood + update

}
return(likelihood)

}

optim_bitobit = function(par, T1, T2, y1, y2){
# Function to be maximized by optim for Tobit model

mu1 = par[1]
mu2 = par[2]
sigma1 = par[3]
sigma2 = par[4]
mu_rho = par[5]
return(log_likelihood_bitobit(y1, y2,mu1,mu2,sigma1,sigma2,mu_rho,T1,T2))

}

#### TWO- PART
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log_likelihood_bitp = function(y1,y2,mu1,mu2,sigma1,sigma2,mu_rho,mu_pi,T1,T2){
# Log-likelihood function bivariate two-part model

sigma1 = abs(sigma1)
sigma2 = abs(sigma2)
pi = pnorm(mu_pi)
rho = 2*pnorm(mu_rho)-1

sigma12 = sqrt(sigma1^2*(1-rho^2))
sigma21 = sqrt(sigma2^2*(1-rho^2))

likelihood = 0
for(i in 1:length(y1)){

y1i = y1[i]
y2i = y2[i]

mu12 = mu1 + rho*sigma1/sigma2 * (y2i- mu2)
mu21 = mu2 + rho*sigma2/sigma1 * (y1i- mu1)

if(!is.na(y1i) & !is.na(y2i)){
update = log(1-pi) + dnorm(y1i, mean = mu12, sd = sigma12, log = TRUE) +

dnorm(y2i, mean = mu2, sd = sigma2, log = TRUE)
}else if(!is.na(y2i)){

update = log(1-pi) + dnorm(y2i, mean = mu2, sd = sigma2, log = TRUE) +
pnorm(T1, mean = mu12, sd = sigma12, log = TRUE)

}else if(!is.na(y1i)){
update = log(1-pi) + dnorm(y1i, mean = mu1, sd = sigma1, log = TRUE) +

pnorm(T2, mean = mu21, sd = sigma21, log = TRUE)
}else{

Sigma = matrix(c(sigma1^2,rho*sigma1*sigma2,rho*sigma1*sigma2,sigma2^2),
ncol = 2)

update = log(pi + (1-pi)*pmvnorm(lower = c(-Inf,-Inf), upper = c(T1,T2),
mean = c(mu1,mu2), sigma = Sigma))

}
likelihood = likelihood + update

}
return(likelihood)

}

optim_bitp = function(par, T1, T2, y1, y2){
# Function to be maximized by optim for bivariate two-part model

mu1 = par[1]
mu2 = par[2]
sigma1 = par[3]
sigma2 = par[4]
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mu_rho = par[5]
mu_pi = par[6]
return(log_likelihood_bitp(y1, y2,mu1,mu2,sigma1,sigma2,mu_rho,mu_pi,T1,T2))

}

#### FOUR-PART

log_likelihood_fp = function(y1,y2,mu1,mu2,sigma1,sigma2,mu_rho,mu_pi1,mu_pi2,
mu_pi3,mu1L,sigma1L,mu2L,sigma2L,T1,T2){

# Log-likelihood function bivariate four-part model
sigma1 = abs(sigma1)
sigma2 = abs(sigma2)
sigma1L = abs(sigma1L)
sigma2L = abs(sigma2L)
pi1 = exp(mu_pi1)/(exp(mu_pi1) + exp(mu_pi2) + exp(mu_pi3) + 1)
pi2 = exp(mu_pi2)/(exp(mu_pi1) + exp(mu_pi2) + exp(mu_pi3) + 1)
pi3 = exp(mu_pi3)/(exp(mu_pi1) + exp(mu_pi2) + exp(mu_pi3) + 1)
#print(pi1 + pi2 + pi3)
rho = 2*pnorm(mu_rho)-1

sigma12 = sqrt(sigma1^2*(1-rho^2))
sigma21 = sqrt(sigma2^2*(1-rho^2))

likelihood = 0

# Iterate over all observations
for(i in 1:length(y1)){

y1i = y1[i]
y2i = y2[i]

mu12 = mu1 + rho*sigma1/sigma2 * (y2i- mu2)
mu21 = mu2 + rho*sigma2/sigma1 * (y1i- mu1)

if(!is.na(y1i) & !is.na(y2i)){ # Both observed
update = log(1-pi1-pi2-pi3) + dnorm(y1i, mean = mu12,

sd = sigma12, log = TRUE) +
dnorm(y2i, mean = mu2, sd = sigma2, log = TRUE)

}else if(!is.na(y1i)){ # y1 Observed
update = log((1-pi1-pi2-pi3)*dnorm(y1i, mean = mu1, sd = sigma1) *

pnorm(T2, mean = mu21, sd = sigma21) +
pi1*dnorm(y1i,mean=mu1L,sd=sigma1L))

}else if(!is.na(y2i)){ # y2 Observed
update = log((1-pi1-pi2-pi3)*dnorm(y2i, mean = mu2, sd = sigma2) *

pnorm(T1, mean = mu12, sd = sigma12) +
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pi2*dnorm(y2i,mean=mu2L,sd=sigma2L))
}else{ # Both censored

Sigma = matrix(c(sigma1^2,rho*sigma1*sigma2,rho*sigma1*sigma2,sigma2^2),
ncol = 2)

update = log(pi3 + pi1*pnorm(T1, mean = mu1L, sd = sigma1L) +
pi2*pnorm(T2, mean = mu2L, sd=sigma2L) +
(1-pi1-pi2-pi3)*pmvnorm(lower = c(-Inf,-Inf),

upper = c(T1,T2), mean = c(mu1,mu2),
sigma = Sigma))

}
likelihood = likelihood + update

}
return(likelihood)

}

optim_fp = function(par, T1, T2, y1, y2){
# Function to be maximized by optim for bivariate four-part model

mu_pi1 = par[1]
mu_pi2 = par[2]
mu_pi3 = par[3]
mu1 = par[4]
mu2 = par[5]
sigma1 = par[6]
sigma2 = par[7]
mu_rho = par[8]
mu1L = par[9]
sigma1L = par[10]
mu2L = par[11]
sigma2L = par[12]

return(log_likelihood_fp(y1,y2,mu1,mu2,sigma1,sigma2,mu_rho,mu_pi1,mu_pi2,
mu_pi3,mu1L,sigma1L,mu2L,sigma2L,T1,T2))

}
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D Application to Cytokine Data - Results

Table 8.1: Resulting maximum likelihood parameter estimates from fitting the models
on the data on the cytokine MCP1. The left column is the full TP model without skew,
and the right column is the simplified TP model without age in the continuous part
and diagnosis in the discrete part. Wald-type 95% confidence intervals are included in
parenthesis for the fixed effects.

Parameter TP TP
γ0 3.66 (2.26, 5.05) 3.39 (2.97, 3.79)

γage -0.01 (-0.05, 0.03) —
γRA 0.71 (0.15, 1.28) 0.63 (0.10, 1.17)

γSLE 0.94 0.37, 1.50) 0.90 (0.37, 1.43)

γt2 1.56 (1.20, 1.91) 1.56 (1.20, 1.91)

γt3 1.66 (1.20, 2.12) 1.66 (1.19, 2.12)

γt2×RA -1.70 (-2.27, -1.13) -1.70 (-2.27, -1.13)

γt3×RA -1.27 (-1.89, -0.64) -1.27 (-1.90, -0.64)

γt2×SLE -1.66 (-2.17, -1.15) -1.67 (-2.18, -1.16)

γt3×SLE -0.97 (-1.59, -0.36) -0.97 (-1.59, -0.36)

β0 -3.77 (-6.46, -1.09) -4.11 (-6.61, -1.61)

βRA -1.88 (-6.01, 2.25) —
βSLE -0.57 (-2.81, 1.67) —

σ 0.78 0.78

s11 0.60 0.56
s12 -1.49 -1.06
s22 4.97 3.85
`(θ̂) -433.4 -434.2
AIC 900.8 896.4
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Table 8.2: Resulting maximum likelihood parameter estimates from fitting the models
on the data on the cytokine TNF-α. The left column is the full TPIC model without skew,
and the right column is the simplified TPIC model without age and correlation between
the random effects. Wald-type 95% confidence intervals are included in parenthesis for
the fixed effects.

Parameter TPIC TPIC
γ0 1.25 (-0.38, 2.89) 2.03 (1.52, 2.54)
β0 -0.62 (-2.76, 1.51) 0.24 (-0.39, 0.88)

γage -0.01 (-0.06, 0.04) —
βage 0.03 (-0.04, 0.10) —

γRA 0.18 (-0.47, 0.84) 0.21 (-0.39, 0.80)
βRA -1.22 (-2.08, -0.36) -1.18 (-2.06, -0.31)

γSLE 0.26 (-0.42, 0.95) 0.20 (-0.43, 0.83)
βSLE -0.72 (-1.57, 0.13) -0.73 (-1.61, 0.14)

γt2 0.92 (0.41, 1.44) 0.91 (0.42, 1.40)
βt2 -1.44 (-2.18, -0.71) -1.45 (-2.20, -0.70)

γt3 1.16 (0.46, 1.87) 1.09 (0.48, 1.70)
βt3 -0.53 (-1.37, 0.31) -0.53 (-1.37, 0.32)

γt2×RA -0.74 (-1.46, -0.02) -0.79 (-1.45, -0.13)
βt2×RA 1.83 (0.68, 2.98) 1.83 (0.65, 3.00)

γt3×RA -1.11 (-1.96, -0.25) -1.13 (-1.90, -0.36)
βt3×RA -0.21 (-1.56, 1.14) -0.28 (-1.73, 1.16)

γt2×SLE -1.20 (-1.91, -0.50) -1.30 (-1.95, -0.65)
βt2×SLE 1.42 (0.40, 2.44) 1.40 (0.35, 2.46)

γt3×SLE -0.99 (-1.86, -0.12) -0.94 (-1.72, -0.15)
βt3×SLE 0.01 (-1.17, 1.19) 0.03 (-1.17, 1.24)

σ 0.77 0.22
δ — -1.34

s11 0.49 0.42
s12 -0.02 —
s22 0.89 0.95
`(θ̂) -442.7 -437.1
AIC 933.5 918.3
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