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Abstract

Who has not been in a phone call distorted by background noises like traffic or wind?
An algorithm able to denoise a distorted speech signal is of interest in many everyday
situations. We have implemented a state-of-the-art deep learning algorithm for speech
enhancement, a conditional generative adversarial net inspired by Pascual et al. (2017).
The algorithm learns a mapping from noisy to clean speech through a two-player game
between a generator and a discriminator. This approach is interesting because of two
things: it enhances end-to-end and constructs the loss function in an untraditional way.
It is hard to capture the quality and intelligibility of a noisy signal with a traditional loss
function. Here, the loss function is learned based on competition between the generator
and discriminator; the discriminator learns a loss for the generator’s enhancement to be
accurate.

Initially, the aim of a generative adversarial network (GAN) was to learn to generate
samples from a training distribution. The generator receives latent random noise as input
and maps to the wanted distribution. The latent noise makes the output of the algorithm
stochastic. In the speech enhancement setting, noisy speech is used as a conditional vari-
able in both generator and discriminator - the goal to learn an accurate mapping from
noisy to clean speech. If the mapping is accurate, it is not of importance whether or not
it is stochastic. Inspired by similar approaches in the image-to-image setting, we have
compared the enhancement results for a conditional generative adversarial net with and
without latent noise.

The algorithm was trained with speech signals from 220 different speakers from a
Norwegian speech database and 99 different noise signals from two noise corpora with
environmental noise recordings. The training files were constructed at speech-to-noise
ratios 0, 10 and 15 dB. The test set contains unseen speech and noise signals, combined
at the same ratios of SNR, in addition to the unseen ratio 5 dB. Assessment of the perfor-
mance of the generative adversarial network was evaluated objectively by use of the ITU-T
standard Perceptual Evaluation of Speech Quality (PESQ) and the Short-Time Objective
Intelligibility (STOI). There have also been some subjective reviews on the enhanced files
from the student.

The proposed setup without latent noise perform comparable to the original setup with
latent noise, but the scores obtained in terms of PESQ and STOI are slightly lower on
average. Both implementations achieve improvements in PESQ similar to other imple-
mentations that are using a GAN framework for speech enhancement. The STOI scores
decline a little after enhancement, but that might be partly because the STOI scores of the
noisy test files were high to begin with. In general, the enhanced speech signals have a
reduced noise level. Some of the enhanced signals have high-frequency artifacts and a
degree of speech distortion.

The training progress is unstable. Early stopping could have been implemented to
ensure that the final model is the best one of the different versions developed during train-
ing. Pascual et al. (2019) seems to have found solutions to both unstable gradients and
high-frequency artifacts, but this article was not published before late April and was un-
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fortunately discovered too late to be included in this work.
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Sammendrag

Hvem har ikke vært i en samtale forvrengt av bakgrunnslyd som trafikk eller vind? En
algoritme som kan forbedre et støyete talesignal er av interesse i mange hverdagslige situ-
asjoner. Vi har implementert en deep learning algoritme for taleforbedring, et betinget
generativt adversarielt nettverk inspirert av Pascual et al. (2017). Algoritmen lærer en
transformasjon fra støyete til renere tale gjennom et topersonsspill mellom en generator
og en diskriminator. Denne tilnærmingen er interessant på grunn av to ting: den forbedrer
i tidsdomenet og konstruerer tapsfunksjonen på en utradisjonell måte. Det er vanskelig å
fange både kvaliteten og forståeligheten til et støyende talesignal med en tradisjonell taps-
funksjon. Her læres tapsfunksjonen basert på konkurranse mellom generatoren og diskrim-
inatoren; diskriminatoren lærer et tap for at generatorens forbedring skal være nøyaktig.

I utgangspunktet var målet med et generativt adversarielt nettverk (GAN) å lære og
generere fra en treningsfordeling. Generatoren mottar latent tilfeldig støy som input og
lærer en transformasjon til ønsket fordeling. Den latente støyen gjør generert output av
algoritmen stokastisk. I taleforbedringssituasjonen brukes støyete tale som en betinget
variabel i både generator og diskriminator - målet å lære en god transformasjon fra støyete
til ren tale. Hvis transformasjonen er god, er det ikke viktig om outputet er stokastisk eller
ikke. Inspirert av lignende tilnærminger i bilde-til-bilde-settingen, har vi sammenlignet
forbedringsresultatene for nettverk med og uten latent støy.

Algoritmen ble trent med talesignaler fra 220 forskjellige talere fra en norsk tale-
database og 99 forskjellige lydsignaler fra to støydatabaser med naturlige støyopptak.
Treningsfilene ble konstruert ved tale-til-støy-forhold på 0, 10 og 15 dB.

Testsettet inneholder opptak fra 2 talere med 5 unike setninger hver. Det støyete test-
settet ble konstruert ved å kombinere talesignaler med støysignaler, ved det usette tale-
støyforholdet 5 dB i tillegg til forholdene 0, 10 og 15 dB. Støysignalene i testsettet er
plukket ut for å være realistiske når det gjelder hva man møter i virkeligheten. Meto-
dens ytelse ble evaluert objektivt ved bruk av ITU-T standarden ”Perceptual Evaluation of
Speech Quality” (PESQ) og ”Short-Time Objective Intelligibility” (STOI). Det har også
vært noen subjektive vurderinger på de forbedrede filene fra studenten.

Det foreslåtte oppsettet uten latent støy forbedrer sammenlignbart med det opprin-
nelige oppsettet med latent støy, men resultatene oppnådd i form av PESQ og STOI er
noe lavere i gjennomsnitt. Begge implementeringene oppnår forbedringer i PESQ som
kan sammenliknes med andre implementeringer som bruker et GAN-rammeverk for tale-
forbedring. STOI-poengene avtar etter forbedring, men det kan være delvis fordi input
STOI-poengsummene til de støyete testfilene var høye. Generelt har de forbedrede tales-
ignalene et redusert støynivå, men noen ganger på bekostning av høyfrekvente artefakter
og litt taleforvrengning.

Treningsfremgangen er ustabil. ”Early stopping” kunne ha blitt implementert for å
sikre at den endelige modellen er den beste av de forskjellige versjonene som ble utviklet
under trening. Pascual et al. (2019) ser ut til å ha funnet løsninger på både ustabile gra-
dienter og høyfrekvente artefakter, men denne artikkelen ble ikke publisert før slutten av
april, og ble dessverre oppdaget for sent for å bli inkludert i dette arbeidet.
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Chapter 1
Introduction

1.1 Background

The goal of speech enhancement is to improve the quality and/or intelligibility of a speech
signal. Speech enhancement has been a field of research for several decades. Traditional
approaches include spectral restoration, filtering techniques, and model-based methods
(Benesty et al., 2008). Recent approaches view the problem as a supervised learning prob-
lem, and the progress in the field has accelerated after the breakthroughs of deep learning.

Tamura and Waibel (1988) applied feedforward multilayer perceptrons (MLPs) on
speech enhancement already in the ’80s. A range of deep neural nets have later been
applied: convolutional neural nets (CNNs) (Hui et al., 2015; Fu et al., 2016; Park and
Lee, 2016), recurrent neural nets (RNNs) (Weninger et al., 2015a,b; Erdogan et al., 2015),
and generative adversarial networks (GANs) (Pascual et al., 2017; Michelsanti and Tan,
2017). The methods have been used in different manners. MLPs are trained supervised
to find a mapping from the input to target functions. CNNs use shared weights, which
lead to lower computational costs and local invariance, which is known to be an effective
method for grid-like topologies. RNN’s allow feedback connections and are known to be
good for modeling of time series. GAN’s are trained based on a two-player game between
a generator and a discriminator.

A majority of the current systems are based on the short-time Fourier transform. The
enhancement is done in the time-frequency (T-F) domain, and do often involve an as-
sumption of the phase being of less importance; the noisy phase is often reapplied after
enhancement of the spectral magnitude. That was questioned by Paliwal et al. (2011),
which showed that the quality of the enhanced speech could be further improved by in-
cluding enhancement of the phase spectrum. Recent interest in end-to-end methods is
motivated by avoiding that assumption.

”What are meaningful optimization criteria for speech enhancement and how can they
be mathematically formulated?” (Benesty et al., 2005, p. 62). Fu et al. (2018) pointed
out that there has been a mismatch between the training’s loss function and the evaluation
criterion used on the enhanced speech. Speech enhancement algorithms use loss functions
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not necessarily are justified mathematically from the goal of improved intelligibility and
quality. The GAN approach, with a competition based loss function, is interesting in that
aspect.

1.2 Motivation
It is not hard to imagine fields where noise reduction is of interest. In the field of telecom-
munication, noise reduction is important to improve the quality of conversations in noisy
environments. The field of hearing aids and cochlear implants is another example. Hearing-
impaired listeners do often have a greater problem with listening in noisy environments
compared to normal-hearing listeners. Enhancement of the speech signal was found to
substantially improve the intelligibility of listeners with cochlear implants in noisy en-
vironments (Yang and Fu, 2005). Speech enhancement is also used as a preprocessing
step to make speech-to-text algorithms more robust to noisy environments. That is useful
for smart assistants (Audio Software Engineering and Siri Speech Team, 2018), speaker
recognition (Ortega-Garcia and Gonzalez-Rodriguez, 1996) and speech recognition (Hin-
ton et al., 2012).

1.3 Approach
We will implement a generative adversarial network based on Pascual et al. (2017)’s
speech enhancement GAN (SEGAN). In the speech enhancement GAN, a generator learns
to map from latent noise and noisy speech to enhanced speech. The discriminator receives
input pairs consisting of corresponding noisy and clean speech or noisy and enhanced
speech and tries to label each pair correctly as being generated or real. The discrimina-
tor’s loss function is based on the aim of making the correct guess, while the generator’s
loss function is based on the aim of convincing the discriminator that the noisy-enhanced
pair is real and not generated. Through gradient-based training, the discriminator’s loss is
teaching the generator to do an accurate enhancement. Inspired by the Pix2Pix framework
(Isola et al., 2016), who omitted the latent noise earlier used in GANs, we will compare the
SEGAN inspired implementation with an alternative implementation without latent noise.

The performance of the GAN’s is assessed through evaluation of the enhanced test set,
in terms of the standard ITU-T method Perceptual Evaluation of Speech Quality (PESQ)
and the intelligibility measure STOI ( Short-Time Objective Intelligibility). In addition,
minor informal listening tests are performed. The training and test data are constructed by
use of the Norwegian speech database NB Tale (Nasjonalbiblioteket, 2016) and the noise
corpora by Hu (2014) and Thiemann et al. (2013). The training data have speech-to-noise
ratios 0, 10 and 15 dB, while the test data, in addition, have the unseen ratio 5 dB.

The rest of the thesis is organized as follows. Chapter 2 introduces theory that has
been relevant for the project. Some basic concepts from speech processing are defined,
before necessary theory from machine learning, and deep learning is presented. Chapter 3
contains a description of the datasets, implementation, and experiment details. The results
are in Chapter 4, while Chapter 5 contains the discussion. Lastly, Chapter 6 concludes the
thesis with some final remarks.
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Chapter 2
Basic Theory

The applied problem, speech enhancement, is from the field of speech processing. Essen-
tial concepts like speech quality, intelligibility, and signal-to-noise ratio will be defined.
Generative adversarial networks are from the deep learning field. Deep learning theory
will be presented, starting from the more basic building blocks before advancing to the
generative adversarial network. Lastly, the setup of the speech enhancement GAN used as
inspiration will be presented.

2.1 Speech enhancement

Speech enhancement aims to improve the intelligibility and/or perceptual quality of a
speech signal. Different types of noise can corrupt a speech signal; noise is a term used
for any unwanted signal that interferes with the signal of interest. The noise can be di-
vided into four subcategories: additive noise coming from other sound sources, interfering
signals from other speakers, reverberation caused by the reflection of speech on the sur-
faces nearby and echo resulting from the coupling between loudspeakers and microphones
(Keintz et al., 2007, p. 844). Here, we will only consider additive noise. The speech en-
hancement/noise reduction problem can then be formulated as the goal of recovering a
clean speech signal x = x(n) from the noisy signal x̃ = x̃(n), where

x̃(n) = x(n) + v(n) (2.1)

and v(n) is the unwanted additive noise. We will focus on monaural speech enhance-
ment, which is enhancement of speech recordings with only one microphone. More infor-
mation regarding the location of the different sound sources is available when the record-
ings are done with more than one microphone.
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2.1.1 Speech-to-noise ratio
A widely used measure of signal intensity relative to noise intensity is the signal-to-noise
ratio (SNR). Throughout the thesis, the signal will be clean speech signal. Let P represent
the power of a signal, A the root-mean-square amplitude and N the length. The SNR is
defined as

SNR =
Px

Pv
=

(
Ax

Av

)2

=

(√
1
N

∑N
i=1 x

2
i

)2

(√
1
N

∑N
i=1 v

2
i

)2 . (2.2)

SNR is usually measured in decibels (dB). The difference in decibels between two
sound sources with power P1 and P2 is defined as

10 log
P2

P1
, (2.3)

where the logarithm is taken with base 10. The reference level used to give the sound
level in absolute value is 20 µPa. To find the P2’s sound level in dB one set P1 equal the
reference level. By combining Equation (2.2) with Equation (2.3), SNR can be expressed
as

SNRdB = 20 log
Ax

Av
, (2.4)

in decibels. It is often of interest to decide the wanted level of SNR. Given a noise
signal and a clean signal, a noisy signal with the wanted level of SNRdB can be constructed
as

x̃(n) = x(n) + αv(n), (2.5)

where the factor α is given by

α =
Ax

Av10SNRdB/20
. (2.6)

In the following, all SNR levels will be in decibels.

2.1.2 Speech quality and intelligibility
Speech quality is the overall impression of the quality of a speech signal. The perceived
quality depends on factors like intelligibility, naturalness, loudness, and listening effort.
Speech intelligibility is defined as ”the amount of speech understood from the signal
alone” (Keintz et al., 2007, p. 223). It can be measured objectively as the fraction of
words that listeners can perceive correctly. Speech intelligibility is affected by the quality
of the speech signal, noise, and reverberation due to reflections in the surroundings. An
example of a speech signal with high intelligibility, but low quality, is ”robot speech”:
machine generated speech that sounds artificial or strange.
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2.1.3 Evaluation measures

Quality

The mean opinion score (MOS) is a subjective quality assessment method where listeners
rate the audio clip from quality 1: ”Bad” to quality 5: ”Excellent” (ITU, 1996), as specified
in Table 2.1. An objective method with high correlation with listeners’ subjective rating
is the ITU-T standard Perceptual Evaluation of Speech Quality (PESQ; Rix et al., 2001).
The score range is [0.5, 4.5], where a higher score corresponds to better speech quality.

Speech quality Rating
Excellent 5
Good 4
Fair 3
Poor 2
Bad 1

Table 2.1: Grades in the MOS scale.

Intelligibility

A common objective measure for intelligibility is the Short-Time Objective Intelligibil-
ity (STOI; Taal et al., 2011). It is based on correlation between temporal envelopes of
clean and noisy speech in short time segments. The range is normally between 0 and 1
and can be interpreted as an estimator for the percentage of words correctly perceived.
STOI was shown to have high correlation with speech intelligibility by Taal et al. (2011),
though Gelderblom et al. (2017) found that that one should not rely solely on STOI when
predicting intelligibility.

2.2 Machine Learning Basics
Machine learning algorithms are algorithms that learn from data. A concise definition of
learning in this context is: ”A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E” (Mitchell, 1997, p. 2).

One differs between the classes supervised and unsupervised learning. We say that
the learning is supervised when the data is given in input-output pairs (xi, yi), for i =
1, · · · , N such that each input value xi has a corresponding response variable yi. Corre-
spondingly is unsupervised training data with only measurements xi, i = 1, · · · , N and
no response variables. We will not go further into unsupervised learning here.

2.2.1 Supervised learning

The aim of supervised learning was described by (James et al., 2014, p. 26) as:
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”We wish to fit a model that relates the response to the predictors, with the aim of accu-
rately predicting the response for future observations (prediction) or better understanding
the relationship between the response and the predictors (inference).”

Let X be the input data of dimension (N ×p), whereN is the number of observations,
and p is the number of features. The corresponding response variable Y is of dimension
(N × 1). We assume that there is some relationship between the input X and output Y,

Y = f(X) + ε, (2.7)

where ε ∈ (N × 1) is the random error term, representing the irreducible error. We
seek to find an estimate of the function f such that we can predict the response variable
for new observations x0 and/or understand relations between the features and the response
variable.

In our case, X is of dimension N × 1, and represents a noisy speech signal of length
N . The input-output pair is noisy speech and clean speech (x̃,x), and the aim is to find an
accurate mapping from x̃ to x, i.e. find a function f such that x = f(x̃).

The Machine Learning approach is to first choose which algorithm or model to es-
timate f with, and thereafter train the model to fit the data set (X,Y). In many cases,
the model chosen includes a hypothesis regarding the relation between input and output
variables.

2.2.2 Model assessment
Let Ŷ be the predictions or estimates made by the algorithm on input X. The performance
of the model is evaluated by computing the distance between Y and Ŷ. It is measured with
a loss function L(Ŷ,Y). A common example is the mean squared error (MSE), given by
E(Y − Ŷ )2.

The validation set approach

It is normal to split the data set into three separate parts: a training set, a validation set,
and a test set. The training set is used to train the algorithm. The algorithm’s performance
increases in general when it is exposed to more data, so most of the data should be in this
group. A smaller part is put in the validation set. The validation set can be used during
training to measure the generalization ability of the model while it is adapted. The test
set should not be involved before the model is made. It is important that the test data are
previously unseen by the net in order to get a realistic estimate of the test error.

The training MSE used to fit the model is computed by

MSE =
1

n

n∑
i

(ŷi − yi)2, (2.8)

where n is the number of observations.
One distinguishes between training loss and test/validation loss. The training loss is

only a measure of how well the algorithm performs on the data the model is built upon.
The test error, on the other hand, measures how well the model performs on unseen data.
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This is often called the model’s ability to generalize. The aim is to design an algorithm
that performs well on new data, therefore is the test error of highest interest.

The Bias-Variance Trade-Off

Theoretically, the expected test MSE for a new observation can be decomposed into the
sum of the components bias, variance, and irreducible error. Let (x0, y0) represent a new
observation. The expected test MSE is then

E(y0 − f̂(x0))2 = Var(f̂(x0)) + Bias(f̂(x0))2 + Var(ε), (2.9)

following the notation from James et al. (2014). The bias represents the expected
distance between y0 and predicted value f̂(x0), E(f̂(x0)− y0). The variance is a measure
of how much f̂ would change if it was estimated with a different training set. The variance
due to the random error is irreducible. In order to minimize the expected test MSE it is
thus necessary to simultaneously minimize bias and variance.

Generally does an increased complexity in the function estimation lead to higher accu-
racy, that is less bias. However, it also increases the risk of adapting to random patterns or
noise in the data set, and do therefore not necessarily lead to better predictions on unseen
data. An increase in model complexity may therefore correspond to an increase in vari-
ance. This trade-off is called the bias-variance trade-off. James et al. (2014) has illustrated
the correspondence between flexibility and test MSE in Figure 2.1. In the left image, one
can see data simulated from a distribution f , shown by the black line. Three estimates of
f are shown. The orange line with the linear fit has the least flexibility and is a poor fit of
the data. The blue line is a bit more flexible and gets the fit that is closest to the true dis-
tribution of f . The green curve is the most flexible curve and is following the data points
even more closely. In the right image, the corresponding training MSE (grey curve) and
test MSE (red curve) are displayed. The dashed line represents the irreducible error. One
can observe that the training error is monotonically decreasing with increase in flexibility.
However, the lowest training MSE does not correspond to the lowest test MSE, which has
a U-shaped curve instead. That is a typical situation, the test error increases when the
model gets too flexible and starts adapting to random noise in the data. This phenomenon
is called overfitting.

Regularization

The different techniques used to avoid overfitting are called regularization techniques.
”Regularization is any modification we make to a learning algorithm that is intended to
reduce its generalization error but not its training error” (Mitchell, 1997, p. 117). We will
go further into a couple of regularization techniques used in Deep Learning.

2.3 Deep Learning
Deep learning is a subfield within machine learning. While machine learning algorithms
have a predefined hypothesis space where they can search for function estimates f̂ , do deep
learning algorithms learn features from data by learning successive layers of increasingly
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Figure 2.1: Left: data simulated from a distribution f (black line). A linear estimate (orange curve)
and two smoothing splines (blue and green curves). Right: The corresponding test (red curve) and
training (grey curve) MSEs. The dashed line represents the minimum possible test MSE, or the
irreducible error. This is as seen in James et al. (2014)

meaningful representations. These layered representations are usually learned via neural
networks. An advantage with neural networks is that no prior assumptions regarding the
function shape are needed. Neural networks can approximate any function, according to
Leshno et al. (1993).

Neural networks have proven capable of solving tasks that earlier were considered too
complex for machine learning algorithms. Examples are near-human level image classifi-
cation, speech recognition, improved machine translation, and improved ad targeting. One
drawback with the neural nets is that they are often treated as a black-box - one does not
know specifically how they will react to previously unseen input.

We will start by exploring the simplest form of a deep neural net, the deep feedforward
neural network. Essential concepts like activation functions and back-propagation will be
introduced in this section. Thereafter, convolutional neural networks will be explained,
before we continue with generative adversarial neural networks. Both feedforward and
convolutional neural networks can be used as building blocks in generative adversarial
networks.

2.3.1 Deep Feedforward Neural Networks
The neural net is a supervised model that want to find a mapping from input x to output
y. During the training procedure, the network is given both input and target (x, y), s.t.
the network can measure its performance through a loss function, and update itself by use
of a gradient-based strategy. One must specify the net architecture, the loss function, the
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optimization algorithm, and additional features like regularization techniques.

Nodes and network architecture

A net is feedforward if the information flow is from input to output, without having any
connections going the opposite way. Deep feedforward neural networks are commonly
called multilayer perceptrons (MLPs). An illustration of a general MLP is shown in Figure
2.2. A neural network consists of nodes, separated in different layers. The first layer is
called the input layer. It receives the input data as input. Behind the input layer are
successive hidden layers before the last layer, which is called the output layer. In each
layer, one must specify the number of nodes, that is the width of the layer, (n(i)). In
the input layer, there is usually a natural number due to the dimensions of the input data.
Similarly, in the output layers, the width depends on the dimensions of the wanted output
data. The depth of the model is the number of hidden layers + 1.

Figure 2.2: An example of a fully connected MLP with two hidden layers.

The nodes in all layers except the input layer receives an affine transformation of
the previous layer as input. Let W represent the weight matrix, which is of dimension
m(i−1) ×m(i), such that there is a weight for each arrow between layer i − 1 and layer
i. Let b be the bias term. A net is called dense if it is fully connected, which means that
all nodes in layer i − 1 are connected to all nodes in layer i. The output from a layer is
determined by a non-linear function g called an activation function. The different layers
are computed successively: given the input values x, the first hidden layer is given by

h(1) = g(1)(W(1)Tx + b(1)), (2.10)

then the second layer is given by

h(2) = g(2)(W(2)Th(1) + b(2)), (2.11)
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and further,

h(i) = g(i)(W(i)Th(i−1) + b(i)), (2.12)

for i = 3, · · · l, where l is the output layer.

2.3.2 Activation functions

Each node has an activation function that is applied to the input from the previous layer.
The activation functions’ derivatives are important because the network is learning through
gradient based training. The training stagnates when the gradient is zero or close to zero.
There are many different choices of activation functions. We will consider the sigmoid
function and the rectified linear unit (ReLU; Jarrett et al. 2009a; Nair and Hinton 2010;
Glorot et al. 2011), and some of ReLU’s generalizations.

Sigmoid units

Earlier, the sigmoid-function was the default choice in the hidden layers. It is defined by

g(x) =
1

1 + e−x
, (2.13)

and the range of the function is (0, 1). One can observe in Figure 2.3 that it is saturating
when x moves away from zero. Due to this, it has lost its role as the default choice in
hidden layers. However, it is still a popular choice as activation function in the output
layer. For example, when modeling a Bernoulli probability, a probability p for an event A
and the probability 1− p for the event Ac, the sigmoid function is a common choice as it
has range (0, 1).
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Figure 2.3: The activation function sigmoid is displayed for x ∈ [−15, 15]
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Rectified Linear Units

The most popular hidden unit is the Rectified Linear Unit (ReLU), defined by

g(x) = max(0, x). (2.14)

It is differentiable in all points except in x = 0. The non-convexity of the activation
function is not a problem in this setting because the gradient-based search for minimums
usually does not actually arrive at a local minimum. Instead, it is satisfied with reducing the
cost function’s value significantly. It is therefore of greater importance that the derivative
is 1 for all x greater than zero. In Figure 2.4 one can see that the derivative is zero on the
left side of x = 0 and 1 on the right side of x = 0. Compared to the sigmoid function, that
is a great improvement. While the sigmoid function saturates on both sides of x = 0, do
ReLU have a derivative equal to 1 on the whole R+. For points smaller than x = 0, there
is no effect from the training as the gradient is zero.

It is therefore important to initialize the net with a smart choice of start values such
that most of the net has the possibility of being improved. It is common to initialize the
constant term b with a small positive value, like 0.1 (Goodfellow et al., 2016, p. 187).

Jarrett et al. (2009a) compared different architectural choices and found that using a
rectifying non-linearity was very important for the performance of a recognition system.
The use of ReLU in hidden layers is one of the main reasons for the recent improvements
in Deep Learning (Goodfellow et al., 2016, p. 219).
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Figure 2.4: The activation function ReLU is displayed for x ∈ [−15, 15].

Generalizations of Rectified Linear Units

There exist several generalizations of ReLU. Most of these perform comparably, but occa-
sionally better (Goodfellow et al., 2016, p. 187). Three generalizations are based on using
a non-zero slope α for x < 0:

g(x) = max(0, x) + αmin(0, x). (2.15)
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Absolute value rectification fixes α to -1, and obtains g(x) = |x|. Jarrett et al.
(2009b) used it for object recognition from images, where it is natural to want features
that are invariant under a reversal of the input. A leaky ReLU (Maas, 2013) fixes α to a
small positive value. Absolute value rectification and LeakyReLU with α = 0.3 is plotted
in Figure 2.5a and 2.5b. Another variant is parametric ReLU (PReLU; He et al., 2015),
where α is treated as a learnable parameter.
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(a) Absolute value rectification.
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(b) The activation function LeakyReLU.

Figure 2.5: Two generalizations of ReLU is displayed for x ∈ [−15, 15].

2.3.3 Training the net

The objective function used is typically written as an average of the loss function over the
training set,
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J(θ) = E(x,y)∼p̂data L(f(x;θ), y), (2.16)

where L is the loss function per sample, and the expectation is taken over the empirical
distribution (Probability 1/n of drawing each sample xi.) In order to train the DNN, the
weights θ are optimized such that the value of the loss function J(θ) is minimized. There
exist several different optimization algorithms, which are based on stochastic gradient
descent.

Gradient descent

In contrast to regular optimization do the algorithm not necessarily halt at a local minimum
- instead it halts at a convergence criterion based on early stopping, that has reduced the
objective function sufficiently. Early stopping is preventing the model from overfitting by
storing a copy of the weights every time the validation set error reaches a new minimum.
When the algorithm terminates are these weights returned instead of the latest obtained
weights. This is inspired by the concepts discussed in Section 2.2.2

A gradient descent algorithm takes a step in a direction of descent. Let k be the index
of the current step, α the step size f the objective function. Steepest descent is then given
by

xk+1 = xk − α∇θf(x|θ)). (2.17)

The gradient of the objective function J(θ) can often be expressed as a sum over the
observations in the training set,

∇θJ(θ) =
1

n

n∑
i=1

L(f(x(i);θ),y(i)) (2.18)

DNNs are often trained with very large data sets. Computing the gradient involves all
the training data and is computationally expensive for large data sets. A common solution
is to use stochastic gradient descent (SGD). Instead of computing the gradient based on all
observations, it is computed on a mini batch of samples drawn randomly from the data set.
That is, draw m′ random samples from the training set, and estimate the gradient using
only these observations,

g =
1

m′

m′∑
i=1

L(f(x(i);θ),y(i)). (2.19)

Back-propagation

The term back-propagation refers to the algorithm for numerical computation of the gra-
dient of the total loss, J , with respect to the parameter values, θ,∇θJ(θ) = L(y, ŷ). It is
computed by moving from the output layer and towards the input layer. The algorithm is
based on the chain rule from calculus and was first introduced by Rumelhart et al. (1986).
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We need to compute ∂
∂θi

J(θ) for i = 1, · · ·N , where N =
∑l
i=1(m(i−1) + 1)m(i)

is the number of free weights. Because of the layer-based structure of the net does this
include a chain of derivatives.

We are looking at one single input pair (x, y). L(y, ŷ) = L(y, g(l)(W (l)h(l−1) + b(l)),
where h(l−1) is the input from the second outermost layer, which again is a function of
the layer before and so on, as described in Section 2.3.1. To find the partial derivative of
L with respect to a weight Wi,j in layer i = l, one use the chain rule to first differentiate
with respect to g(Wi,j), and then with respect to Wi,j :

∂L(y, ŷ)

∂W
(l)
i,j

=
∂L

∂g(l)
∂g(l)

∂W
(l)
i,j

. (2.20)

In order to compute the derivatives of the weights in previous layers, one must ”back-
propagate” further inwards. This is a potentially computationally expensive algorithm,
but through reuse of already computed derivatives can the computational cost be highly
reduced.

The Adam optimizer

There are several different optimizers used in DNNs. Schaul et al. (2014) compared a
range of different optimization algorithms and found that the algorithms with adaptive
learning rates were more robust to hyperparameter tuning, though no single best algorithm
was found. One common choice is Adam, which is an algorithm published by Kingma
and Ba (2015). The pseudo code is presented in Algorithm 1, as seen in their article:

Like expressed in Algorithm 1, the aim is to minimize the value of an objective func-
tion f(θ) with respect to the parameters θ. We denote the gradient at time step t gt.
The parameters are updated along exponential moving averages of first and second order,
where the exponential decay is due to the hyperparameters β1, β2 ∈ [0, 1). Because the
moments are initialized as a vector of zeros are the following moment estimates biased
towards zero, especially in the first time steps and when the decay rate is small. There is
therefore included a bias correction of both moments.

The algorithm uses a SGD approach with an adaptive learning rate and a momentum
term. Momentum terms are inspired by mass times velocity from physics. It prevents the
algorithm from moving in too different directions at successive steps, due to a mean of the
previous steps being part of the gradient estimate. The adaptive step size is given explicitly
by ∆t = α · m̂t/(

√
v̂t+ ε). For convergence properties, check out the analysis by Kingma

and Ba (2015) and Reddi et al. (2018).

The RMSProp optimizer

Another common choice is the RMSProp optimizer, an unpublished optimizer proposed
by Hinton (2012) in a university course. The algorithm is regiven from Goodfellow et al.
(2016) in Algorithm 2. An exponentially decaying average is used to discard history from
past iterations, such that the method converges rapidly if it finds a convex bowl.
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Algorithm 1 Adam, an adaptive stochastic optimization algorithm. With subscript t we
mean a a parameter’s value at time step t, while superscript t means exponentiating to the
power t.

Require: α : Stepsize (Suggested default value: 0.001)
Require: β1, β2 ∈ [0, 1) : Exponential decay rates for moment estimates (Suggested

default values: 0.9 and 0.999, respectively)
Require: f(θ): Objective function with parameters θ
Require: θ0 : Initial parameter vector
Require: ε : Small constant used for numerical stability (Suggested default:10−8)
m0 ← 0 //Initialize 1st moment vector
v0 ← 0 //Initialize 2nd moment vector
t← 0 //Initialize time step
while θt not converged do
t← t+ 1
gt ← ∇θft(θt−1) //Get gradients w.r.t. stochastic objective at
timestep t
mt ← β1 ·mt−1 + (1− β1) · gt t //Update biased first moment estimate
vt ← β2 · vt−1 + (1− β2) · g2t //Update biased second raw moment estimate
m̂t ← mt/(1−βt1) //Compute bias-corrected first moment estimate
v̂t ← vt/(1 − βt2) //Compute bias-corrected second raw moment
estimate
θt ← θt−1 − α · m̂t/(

√
v̂t + ε) //Update parameters

end while
return θt //Resulting parameters

Algorithm 2 The RMSProp algorithm

Require: ε : Global learning rate
Require: ρ : Decay rates for moment estimates
Require: f(θ): Objective function with parameters θ
Require: θ0 : Initial parameter vector
Require: δ : Small constant used for numerical stability (Suggested default:10−6)
r ← 0 //Initialize accumulation variable
while stopping criterion not met do

Sample a minibatch of m inputs from the training set {x(1), · · · , x(m)}, with corre-
sponding targets y(i)

g ← 1
m∇θ

∑
i L(f(x(i); θ), y(i)) //Get gradients w.r.t. stochastic objective

r ← ρr + (1− ρ)g · g //Accumulate squared gradient
∆θ ← − ε√

δ+r
· g

θ ← θ + ∆θ
end while
return θ //Resulting parameters
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Batch Normalization

Ioffe and Szegedy (2015) introduced Batch Normalization to optimize network training.
The Batch Normalization transform is presented in Algorithm 3. Batch Normalization is
applied at one mini-batch at a time (this is how the training is organized, same as back-
propagation), before the non-linearity (Section 2.3.2) is applied. The mean and variance
of the mini-batch is calculated before the samples are normalized to have mean 0 and vari-
ance 1. A constant ε is added to the mini-batch variance to ensure numerical stability.
Thereafter, the variables are scaled and shifted with the learned parameters γ and β. These
parameters make the identity perform possible, if γ =

√
Var[x(k)] and β(k) = E[x(k)].

Thereby is the representational power of the network not limited by use of Batch Normal-
ization.

Algorithm 3 Batch Normalizing Transform, applied to activation x over a mini-batch.
Parameters to be learned: γ, β

Require: Values of x over a mini-batch B = {x1,...,m}
µB ← 1

m

∑
i=1mxi // mini-batch mean

σ2
B ← 1

m

∑
i=1m(xi − µB)2 // mini-batch variance

x̂i ← xi−µB√
σ2
B+ε

// normalize

yi ← γx̂i + β // scale and shift
return yi ≡ BNγ,β(xi)

Batch Normalization makes networks train faster, less sensitive to the initial weights
and allows for higher learning rates. Furthermore is Batch Normalization working as a reg-
ulizer of the model. There exist other normalization variants like reference normalization
and virtual batch norm (Salimans et al., 2016).

2.3.4 Convolutional Neural Networks

Convolutional neural networks (CNNs; Lecun 1989) were among the first neural networks
to succeed. CNNs have been used by AT&T to read checks since the 1990s (Lecun et al.,
1998). One of the reasons that the CNN was able to succeed earlier than the DNN is its
lower computational requirements. While a DNN has layers that often are fully connected,
which requiresO(m2) parameters for a layer with widthm, do a CNN use parameter shar-
ing and local connections. This can dramatically reduce the number of parameters needed.
CNNs are good at capturing local patterns in data and is therefore well suited for grid-like
topologies such as images and time series. Other attractive features are sparse interac-
tions, parameter sharing, and equivariant representations. The present application areas
are object detection, object tracking, natural language processing, and speech recognition.

There exist a large number of different CNN architectures. We will go through the
four typical layers in a CNN: a convolutional layer, a pooling or sub-sampling layer, a
non-linear layer, and at last fully connected layers.
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The convolutional layer

A convolutional layer applies a filter at its input. The filter’s values correspond to the
DNN’s weights. A convolutional layer learns its weights in order to extract important
features from the previous layer, thereby is the output of the applied filter often called a
feature map.

In an MLP, layer i receives a weighted combination of layer i−1, where the weights in
the weight matrix W are free. If the layers are fully connected, this involves (m+ 1)×m
parameters. Revisiting Figure 2.2, observe that all connections have its own arrow. In a
CNN, the weight matrix is substituted with a filter or kernelK, which often is of dimension
k << m. The kernel is applied at the layer i by taking the dot products between size k×k
areas of layer i and the kernel. The filter is applied with a specified stride between each
receptive area.

Using a kernel with a dimension less than the layer width is equivalent to forcing
the weight matrix W to use the same parameters at different positions. This is called
parameter sharing, as the same kernel/weights are applied at several places, instead of
learning individual weights for each connection i → i + 1. The interactions are sparse if
the kernel is much smaller than the layer width. The sparse interactions can potentially
dramatically reduce the number of needed operations. If the number of connections each
node can have is limited to k, is there a decrease fromO(m×m) toO(k×m) in run time
(Goodfellow et al., 2016, p. 326).

The size of the feature map is controlled by the depth, stride, and zero-padding. Depth
is the number of filters used. The stride is the number of elements between each frame
taken from the input. It can be specified in all dimensions of the input. In the example in
Figure 2.6 is a kernel of dimension 2 × 2 applied at an input tensor of dimension 4 × 4,
with a stride of 2 elements in both directions. The colored areas mark which elements of
the input that contribute to each element in the output. The grey frame results in the grey
output frame when the kernel is applied, and similarly for the other colors.

Figure 2.6: An illustrative example of convolution between an input of size 4 × 4 and a kernel of
size 2× 2 with stride 2. The kernel applied to the grey input area results in the grey output area, and
so on for the other colors.

The concept zero-padding describes different ways of treating the elements close to
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the input tensor’s border. There are three common types of zero-padding. One option is
to use no zero-padding, commonly called valid convolution. Only the frames where the
kernel is fully contained in the input-matrix are used. In this way are all output elements
a function of the same number of input elements. Observe that the size of the output
shrinks: A kernel with dimensions k×k applied on am×mmatrix with stride 1 results in
an output that ism−k+1×m−k+1. Another option is to use just enough zero-padding
to output the same dimension as the input. This is called same convolution. Note that
input elements near the border affect fewer output elements than elements further away
from the border, which can make the border elements underrepresented in the model. That
is the motivation behind the third type of zero-padding: full convolution. In this variant,
there is added enough zeros around the border such that also the border elements influence
the same number of output cells as the other input elements. Though, the output elements
near the border are a function of fewer elements than output pixels further away from
the border. That may make it difficult to find a kernel that performs well on all parts of
the image. According to Goodfellow et al. (2016, p. 340) is the optimal amount of zero
padding usually between valid and same convolution.

The non-linear layer

Introducing non-linear layers is what gives neural networks the stacking ability. If all the
layers consisted of linear operations, the whole neural network would be a linear transfor-
mation. The non-linearities increase the representational abilities of a neural net. In the
non-linear layer, there is used activation functions like the ones described in Section 2.3.2.

The pooling layer

A pooling layer summarizes the previous layer by use of a summary statistic like taking
the average or choosing the maximum value. The pooling operation is specified and not
learned, which means that the pooling layer is not adding any parameters to the network.
The pooling operation makes the neural network invariant to small translations in the input.
If there are small changes in the location of an input, the pooled feature map will still have
the feature in the same location. The filter width is usually small (2 or 3 elements) to avoid
losing too much details in the downsampling.

The fully connected layers

After layers of convolution, pooling and non-linearities, are the fully connected layers used
to form a non-linear combination of the learned features.

2.3.5 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) were first introduced by Goodfellow et al. (2014).
The general situation is a wish of sampling from a complex, high-dimensional training dis-
tribution - but there is no direct way of doing this. A solution is to sample from a simple
distribution, like random noise, and learn a transformation to the training distribution.
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GANs are based upon a simple but elegant idea: A generator G learns to generate
samples from a distribution X by trying to convince its opponent, the discriminator D that
the sample is real and not generated. This is a two-player game whereG is trying to foolD,
while D is trying to classify samples correctly as being ”real” or ”fake”. An illustration is
shown in Figure 2.7. Further, we will go deeper into the model and its training procedure,
and review the theoretical convergence results presented by Goodfellow et al. (2014).

Figure 2.7: An overview of the GAN setup. The discriminator receives either a generated sample
or a sample from the training data as input and outputs a probability of the sample being from the
training data.

Let z ∈ Z be a noise variable with prior distribution pz. Let xdata ∈ X be the observed
training data, from a distribution pdata. The generator G(x; θg) performs a mapping from
Z to X, G : z → x̂ = g(z). The discriminator D(x; θd) maps from the space X to a
probability for the received input being from xdata, D : x → d(x) ∈ (0, 1). We train
D to maximize the probability of assigning the correct label to both training samples and
generated samples. In the original article were both G and D represented by a MLP, with
parameters θg and θd.

Let Y be an indicator variable representing whether x is from pdata or pg , i.e.

Y =

{
1, if x ∼ pdata,

0, if x ∼ pg.

Every guess performed by the discriminator can be viewed as a bernoulli trial with
probability p = d(x) of type xdata and probability 1 − d(x) of a generated sample. The
density function for a bernoulli trial is given by

f(y) = py(1− p)1−y. (2.21)

Thereby is the log-likelihood function given by

log(L(p; y)) = log(f(y; p)) = y log(p) + (1− y) log(1− p), (2.22)

where the first part of Equation (2.22) has support for Y = 1 and the second part
has support for Y = 0. This results in the following expected value of the log-likelihood
function:
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E[log(L(p; y))] = Ex∼pdata(x)

[
logD(x)

]
+ Ez∼pz(z)

[
log(1−D(G(z)))

]
. (2.23)

The training objective for the discriminator is to maximize Equation (2.23). It can be
interpreted as maximizing the log-likelihood for the conditional probability P (Y = y|x).
Simultaneously, the generator is trained to minimize

log(1−D(g(z))), (2.24)

in other words fool the discriminator into predicting a value close to one. The loss
functions of D and G are illustrated by looking at log(D(x)) and log(1−D(x)) in Figure
2.8. Observe that log(1 − D(x)) is minimized when D(x) → 1 and maximized when
D(x)→ 0. Thereby are the loss functions of D and G dragging in each their direction for
the input x̂ = G(z). When x ∼ pdata do the discriminator want to predict a value close to
1, i.e. maximize the objective function.

0.0 0.2 0.4 0.6 0.8 1.0
D(x)
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1
log(D(x))
log(1 D(x))

Figure 2.8: A comparison of log(D(x)) and log(1−D(x)) for D(x) ∈ (0, 1).

This results in the following minmax two-player game with value function V (G,D)
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from Equation (2.23):

min
G

max
D

V (G,D) =

min
G

max
D

Ex∼pdata(x)

[
logD(x)

]
+ Ez∼pz(z)

[
log(1−D(G(z)))

]
.

(2.25)

The training procedure, as presented by Goodfellow et al. (2014) is in Algorithm 4.
At each iteration are first the discriminator’s weights θd updated while the weights of
the generator are held fixed. The updates are found by ascending in the direction of the
stochastic gradient of the loss (2.23). After that are the generator’s weights θg updated
while the discriminator’s weights are held fixed, by descending in the direction of the
loss in Equation (2.24). The theoretical justifications for the presented algorithm will be
examined. (Rather than training G to minimize Equation (2.24) is G trained to maximize
logD(G(z)). That leads towards the same goal, as visualized in Figure 2.8, but provides
stronger gradients early in the training phase.)

Algorithm 4 Minibatch stochastic gradient descent training of generative adversarial nets.
The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1,
the least expensive option, in our experiments.

for number of training iterations do
for k steps do

Sample minibatch of m noise samples {z(1), z(2), · · · , z(m)} from noise prior
pg(z).
Sample minibatch ofm examples {x(1),x(2), · · · ,x(m)} from data generating dis-
tribution pdata(x).
Update the discriminator by ascending its stochastic gradient:

∇θd
1

m

m∑
i=1

[
logD(x(i)) + log(1−D(G(z(i))))

]
.

end for
Sample minibatch of m noise samples from {z(1), z(2), · · · , z(m)} from noise prior
pg(z). Update the generator by descending its stochastic gradient:

∇θg
1

m

m∑
i=1

log(1−D(G(z(i)))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used
momentum in our experiments.
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Global optimality of pg = pdata

Proposition 1. For G fixed, the optimal discriminator D is

D∗G(x) =
pdata(x)

pdata(x) + pg(x)
(2.26)

Proof. The training objective for the discriminator D, given any generator G, is to max-
imize the value function specified by Equation (2.23). This can be rewritten due to the
variable substitution theorem,

V (G,D) =

∫
x

pdata(x) logD(x)dx+

∫
z

pz(z) log(1−D(g(z)))dz

=

∫
x

pdata(x) logD(x) + pg(x) log(1−D(x))dx.

(2.27)

For any (a, b) ∈ R \ {0, 0} do the function

f(y) = a log(y) + b log(1− y)

achieve its minimum for y ∈ [0, 1] at a
a+b . This can be seen by differentiating with respect

to y and setting equal to zero:

df(y)

dy
=
a

y
− b

1− y
= 0

=⇒ a(1− y)− by = 0

=⇒ y =
a

a+ b
.

As f ′′ < 0 must a
a+b be a maximum point. The discriminator D does not need to be

defined outside supp(pdata) ∪ supp(pg), and hence is the proof concluded.

The minmax game in Equation (2.25) can be reformulated using the optimal D∗(x) =
pdata(x)

pdata(x)+pg(x)
. Reformulating yields

C(G) = max
D

(V (G,D)

= Ex∼pdata(x)

[
logD∗(x

]
+ Ez∼pz(z)

[
log(1−D∗(G(z)))

]
= Ex∼pdata(x)

[
logD∗(x

]
+ Ex∼pg(x)

[
log(1−D∗(x))

]
= Ex∼pdata(x)

[
log

pdata(x)

pdata(x) + pg(x)

]
+ Ex∼pg(x)

[
log

pg(x)

pdata(x) + pg(x)

]
.

(2.28)

Theorem 1. The global minimum of the virtual training criterion C(G) is achieved if and
only if pg = pdata. At that point, C(G) achieves the value − log 4.
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Proof. Inserting pg = pdata into Equation (2.30) yields

C(G) = Ex∼pdata(x)

[
log

1

2

]
+ Ex∼pg(x)

[
log

1

2

]
= Ex∼pdata(x)

[
− log 2

]
+ Ex∼pg(x)

[
− log 2

]
= − log 4.

(2.29)

Subtracting the second line in Equation (2.29) from C(G) = V (D∗, G) yields

C(G) = Ex∼pdata(x)

[
log

pdata(x)

pdata(x) + pg(x)

]
+ Ex∼pg(x)

[
log

pg(x)

pdata(x) + pg(x)

]
−
(
Ex∼pdata(x)

[
− log 2

]
+ Ex∼pg(x)

[
− log 2

]
+ log 4

)
= − log 4 + Ex∼pdata

[
log

2 · pdata

pdata + pg

]
+ Ex∼pdata

[
log

2 · pg
pdata + pg

]
= − log 4 +KL

(
pdata

∥∥∥∥pdata + pg
2

)
+KL

(
pg

∥∥∥∥pdata + pg
2

)
.

(2.30)

A brief definition of KL divergence and JS divergence is in the Appendix ??. Observe
that KL

(
pdata

∥∥∥pdata+pg
2

)
+KL

(
pg

∥∥∥pdata+pg
2

)
= 2 · JSD

(
pdata

∥∥∥pg).
Jensen Shannon divergence is greater than zero unless pg = pdata. Thereby is

C(G) = − log 4 + 2 · JSD
(
pdata

∥∥∥pg)
≥ − log 4.

(2.31)

Hence is C∗ = − log 4 the global minimum of C(G), and the only solution is for
pg = pdata.

In the original article, there is also a proof, that show that under certain conditions, will
pg converges to pdata. One condition is that G has enough capacity, and that G is updated
to improve the loss function given in Equation (2.25). In practice, does this proof not fully
apply, as the adversarial nets represent a limited family of distributions pg through the
function G(z; θg), and it is the parameters θg that are optimized rather than pg itself.

The formulation of the loss function in Equation (2.25), suffer from vanishing gra-
dients, and slow convergence. A range of alternative loss functions has been proposed,
among others the least squares loss which will be presented in Section 2.3.7.

2.3.6 Deep Convolutional GANs
Radford et al. (2015) introduced Deep Convolutional GANs (DCGANs) to ” bridge the
gap between the success of CNNs for supervised learning and unsupervised learning”.
They propose some architectural changes from the original GAN that lead to more stable
training convergence:

• Replace pooling layers by strided convolutions.

• Use batch normalization in discriminator and generator.
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• Remove fully connected hidden layers for deeper architectures.

• Use ReLU activation in generator for all layers except for the output, which uses
Tanh.

• Use LeakyReLU activation for all layers in the discriminator.

Using strided convolutions instead of pooling layers allows the network to learn its
own spatial downsampling. Fully connected hidden layers are removed to increase con-
vergence speed. The learning is stabilized by using batch normalization in the generator
and discriminator. This was shown to make deep generators learn better, and to prevent
mode collapse. Though, applying batch normalization in all layers led to oscillating sam-
ples. This was prohibited by removing the batch normalization to the output layer of the
discriminator and the input layer of the generator.

The authors conclude that there is still some instability remaining in the architecture -
after training for a long time, there is sometimes collapse of filters to a single oscillating
mode.

2.3.7 Least Squares GAN
Generative adversarial networks’ training abilities were further improved by the introduc-
tion of the least squares loss function (LSGAN; Mao et al., 2016). The authors show that
LSGANs are able to generate images of higher quality than regular GANs. In addition,
LSGANs are more stable during the training process.

Minimization of the loss function used in the original GAN, Equation (2.25), is suffer-
ing from vanishing gradients. By introducing the least squares loss, samples are penalized
based on their distance to the decision boundary. This is in contrast to the old loss func-
tion, which does not have any gradient contribution from the samples on the right side of
the decision boundary. In this setup is D no longer outputting a probability of the sample
being real. Instead, D wants to learn directly to predict the correct labels: Let a and b
denote the labels for fake and real data. The objective function of the LSGAN is defined
as follows:

min
D

VLSGAN(D) =
1

2
Ex∼pdata(x)

[
(D(x)− b)2

]
+

1

2
Ez∼pz(z)

[
(D(G(z))− a)2

]
min
G

VLSGAN(G) =
1

2
Ez∼pz(z)

[
(D(G(z))− c)2

]
,

(2.32)

where c denotes the label that the generator wants the discriminator to guess for fake
data. It is shown that minimizing the objective function Equation (2.32), yields a mini-
mization of the Pearson χ2 divergence when b − c = 1 and b − a = 2. In practice, the
results with a binary coding scheme a = 0, b = 1, c = 1 are showing similar performance.
A comparison of D’s loss function in a traditional GAN and in a LSGAN with binary
coding is shown in Figure 2.9. Observe that the slope is saturating close to the correct
probability prediction for the traditional loss. In comparison, LSGAN’s loss is only flat
when D makes the exact correct prediction, and the slope is higher nearby, also on the
right side of the decision boundary. Regular GANs have a very small loss for samples that
are on the right side of the decision boundary.
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Figure 2.9: The discriminator’s loss for LSGAN leads D to predict values close to b = 1 for real
samples x ∼ pdata and values close to a = 0 for generated samples x ∼ pg . In the general GAN,
the discriminator aims to maximize its loss function, thereby predict probabilities close to 1 for
training samples and probabilities close to 0 for generated samples.

2.3.8 Conditional Generative Adversarial Networks
The conditional version of generative adversarial nets was introduced by Mirza and Osin-
dero (2014). In an unconditioned generative model, the goal is to generate samples from
the training data’s distribution pdata. There is no way of controlling which part of pdata
the generated sample belongs to. Introducing a conditional variable x, is a way of being
able to direct the data generation process. Examples of different conditional variables are
class labels (Mirza and Osindero, 2014), images (Isola et al., 2016) and audio (Pascual
et al., 2017).

The conditional variable is given as input both to the generator and the discriminator:
G : x, z → y and D : x,y → (0, 1). The value function from Equation (2.25) can be
rewritten as

V (G,D) = Ex,y

[
logD(x,y)

]
+ Ex,z

[
log(1−D(x, G(x, z)))

]
. (2.33)

Previous approaches found it useful to combine the value function with more tradi-
tional losses, like MSE or MAE (Isola et al., 2016).

2.4 Generative Adversarial Networks for Speech Enhance-
ment

The first end-to-end Speech Enhancement GAN (SEGAN) was implemented by Pascual
et al. (2017). The method has two interesting properties. Firstly, as the model is working
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end-to-end, it avoids making any assumptions regarding the raw data. Secondly, the GAN
learns a loss function from the data, and hence avoiding to optimize according to a loss
function that is not necessarily deduced from the aim of enhancement. The idea is that D
learns a loss for G’s enhancement to seem accurate.

Both discriminator and generator are conditioned on the noisy speech. The genera-
tor is doing the enhancement mapping from latent noise and noisy speech to enhanced
speech, while the discriminator takes input pairs of corresponding noisy and clean speech
or noisy and enhanced speech and returns a probability of the input pair being from the
training data. The architecture is inspired by the DCGAN framework (Section 2.3.6) and
the LSGAN loss function (Section 2.3.7) is used.

Model design

Let us use the syntax presented by Pascual et al. (2017). Given a noisy signal x̃, we
want to teach the generator G a mapping from noisy to clean, i.e., we want G to enhance
the signal: G : (z, x̃) → x̂. The discriminator receives input pairs of either noisy and
enhanced speech (x̃, x̂) or noisy and clean speech (x̃,x). The system is shown in Figure
2.10. We will go further into the specific architecture used to make G and D.

Figure 2.10: The generator G receives latent noise and noisy speech as input and outputs enhanced
speech x̂. The discriminator D receives either a real or fake pair, that is either (x̃,x) or x̃, x̂), and
gives out a prediction of the received input, as described in Section 2.3.7.

The G network is fully convolutional, with no dense layers. The input has a window
length L = 16384 samples, which is slightly more than one second of speech1 The archi-
tecture is illustrated in Figure 2.11. It has an encoder-decoder structure. In the encoder
stage there is used one dimensional strided convolutional layers with filter width 31 and
stride 2. The resulting layers are of dimensions 16384× 1, 8192× 16, 4096× 32, 2048×
32, 1024×64, 512×64, 256×128, 128×128, 64×256, 32×256, 16×512, and 8×1024.
The convolutional layers are followed by parametric rectified linear units (PReLUs; Sec-
tion 2.3.2). Decimation is done until we have a condensed representation c of dimension
8×1024. There, the latent noise z is sampled from a standard normal distributionN (0, I)
of dimension 8×1024. The condensed representation c and the latent noise z are concate-
nated before the decoding stage. The decoding stage is a mirrored version of the encoding
stage. The only difference is due to the concatenated z, which lead to a doubling of the
number of feature maps in every layer.

1All speech files are downsampled to 16 kHz before enhancement.
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In order to pass fine-grained information of the wave-form do the network use skip-
connections between each encoding layer and its corresponding decoding layer. This can
also lead to better training performance, as it allows the gradients to flow deeper through
the whole network (Ronneberger et al., 2015).

Figure 2.11: The generator is formed as an encoder-decoder. The noisy input of width L = 16384
gets downsampled by strided convolutional layer till a condensed representation c, which is con-
catenated with random noise z. The upsampling layers are a mirrored version of the downsampling
layers, with skip connections between corresponding layers. The illustration is inspired by Figure 2
in Pascual et al. (2017).

The D network follows the same convolutional structure as G’s encoder stage, but
there are some differences. It receives two input channels instead of one, as it gets 16384
samples of noisy and clean or enhanced speech. Virtual batch normalization is used before
LeakyReLu non-linearities (Section 2.3.2) with parameter α = 0.3. In the last activation
layer, there is a one-dimensional convolution layer with one filter of width one that does
not downsample the hidden activations. (1× 1 convolution), which reduces the number of
required parameter in the fully connected component from 8× 1024 = 8192 to 8.

Loss function

The loss function chosen is the least-squares GAN described in Equation (2.32), modified
for the conditional setting. An L1 regularization term is added to the generator’s loss,
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in order to minimize the distance between its generations and the clean samples. The
resulting loss functions are

min
D

VLSGAN(D) =
1

2
Ex,x̃

[
(D(x, x̃)− 1)2

]
+

1

2
Ex,z

[
D(G(z,x),x)2

]
(2.34)

min
G

VLSGAN(G) =
1

2
Ex,z

[
(D(G(z,x),x)− 1)2

]
+ λ ‖G(z,x)− x‖1 , (2.35)

where the hyperparameter λ were set to 100 during experiments.
The system is trained iteratively like a regular GAN, such thatG’s weights θg are fixed

when D’s weights θd are updated through back-propagation, and θg is fixed when θd is
updated.
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Chapter 3
Methods

The project is developed in Python with use of the API Keras (Chollet et al., 2015) with
TensorFlow backend (Abadi et al., 2015). The implementation is strongly inspired by
SEGAN (Pascual et al., 2017). The full code can be found at https://github.com/
miralv/Speech-Enhancement-with-a-Generative-Adversarial-Network.
NTNU’s cluster Idun has been used to train the model on a GPU. We will first go through
the datasets that have been used before we go further into the experimental details.

3.1 Dataset

3.1.1 Speech signals
The clean audio files are generated from the Norwegian speech database NB Tale (Nasjon-
albiblioteket, 2016), produced by Lingit AS in cooperation with NTNU. The speech database
contains recordings of 380 different speakers, from 24 different dialect areas. Each speaker
has read 20 sentences, where each sentence was specifically chosen to include different
acoustic sounds. The recordings were done with 48 kHz frequency and 16 bit resolu-
tion1. There have been used two microphones during the recordings, but we will only use
one of the microphone recordings due to this project being focused on monaural speech
separation. We have used the recordings form Module 1, which contains 4800 recorded
sentences read by 240 speakers. The data set is divided into 12 groups, where each group
correspond to a geographic area of Norway.

3.1.2 Noise signals
The noise files are generated from a noise database with 100 different environmental
sounds (Hu, 2014) and the Demand noise database (Thiemann et al., 2013). The noise

1A subset of the recordings have mistakenly been recorded with wrong frequency (44.1 kHz). These have
been upsampled to 48 kHz. A log of which files this regards can be found together with the audio records
(Nasjonalbiblioteket, 2016)
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signals collected by Hu were sampled at 20 kHz with a 16 bit resolution. The files are
labeled after which type of noise they contain. Examples are crowd noise, machine noise,
traffic, wind, and water noise.

The Demand database contains a collection of recordings of acoustic noise in diverse
environments. Also here are the recordings done with several microphones, but we will
only use the first channel, labeled ”ch01” in the database. The recordings used are sampled
at 16 kHz with 16 bit resolution.

3.1.3 Training, validation and test set

The noise files and speech files have been partitioned into a training set, a validation set,
and a test set. All speech signals from group 1 - 11 are put in the training set, together
with 101 noise signals. 95 are from the 100 environmental sounds, and 6 are from the
Demand database. The speech and noise files are combined randomly at SNR 0, 10 and
15 dB during training.

The validation set contains two sentences from two speakers from group 12, one male
and one female. They are combined with two noise signals from the 100 environmen-
tal sounds; n46:Traffic and n77:Wind, and two noise signals from the Demand
database: Station and Bus. The noisy validation files are constructed at the unseen
SNR 5 dB, in addition to the levels 0, 10 and 15 dB.

The test set uses two other unseen speakers from group 12, one male and one fe-
male, where both speakers have five sentences. The noise files Traffic, Cafeteria,
n78:Wind, n68:Water and n28:Machine are used. The noisy files in the test set
are constructed at the same levels of SNR as the validation set. Figure 3.1 shows the
spectrograms of the noise files used for test and validation.

3.2 GAN setup

We have two different versions of the setup: with and without latent noise. The difference
is visualized in Figure 3.2. Most other architectural detail is like explained in Section 2.4.
The optimizers RMSProp and Adam were both tested during preliminary runs and showed
similar results. Hence, we have followed the choice made by the authors of SEGAN and
used RMSProp.

G and D are created and compiled separately. Before the GAN is constructed are D’s
weight fixed, such that D’s weights are unchanged when the GAN is trained. The GAN
with latent noise is constructed by creating a model that takes a pair of noisy and enhanced
or clean speech as input, together with latent noise z, and outputs the predicted label from
D and the enhanced speech from G.

GAN = Model(inputs=[clean_audio_in, noisy_audio_in, z],
outputs=[D_out, G_out])

Similarly is the GAN without latent nosie constructed by creating a model graph with-
out latent noise:
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(a) n46:Traffic
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(b) n77:Wind
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(c) Bus
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(d) Station
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(e) Traffic
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(f) Cafeteria
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(g) n28:Machine
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(h) n68:Water
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(i) n78:Wind

Figure 3.1: Log-density spectrograms of the noise files used to validate and test the GAN. The
noises that are labeled with a number are from the 100 environmental sounds (Hu, 2014), while the
others are from the Demand database (Thiemann et al., 2013). All files have been scaled to have
RMS of 1000 before visualization.

(a) SEGAN with latent noise z. (b) SEGAN without latent noise z.

Figure 3.2: Two different versions of SEGAN have been implemented, one version which uses
latent noise like presented in the original algorithm (3.2a), and one version that omits the latent
noise (3.2b).

GAN = Model(inputs=[clean_audio_in, noisy_audio_in],
outputs=[D_out, G_out]).
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The summaries from the compiled GAN models can be found in Appendix B.1. The
model with latent noise has a total of 98, 498, 155 parameters where only 74, 120, 049 of
them are trainable (θg). D’s parameters θd are marked as untrainable when GAN.train on batch()
is called, such that only θg is updated. D is trained by calling D.train on batch()
separately.

The removal of z results in a reduction of parameters: the parameters in G is reduced
to 57, 867, 121 parameters. The discriminator’s number of parameters is unchanged.

For additional details, see the implementaion on Github.

3.3 Training procedure

3.3.1 Overview

A float diagram of the training procedure is presented in Figure 3.3. The inner loop pre-
sented in the diagram is run for 10 epochs, with 40 batches per epoch and batch size 200.
The system uses a window length of 16384 samples, which is slightly more than one sec-
ond. Thereby is the algorithm trained on 10× 40× 200× 16384/16000 = 81920 seconds
of noisy speech, which is 22, 76 hours. After every epoch is the current version of the
generator used to enhance the validation set. Lastly, the noisy test set is enhanced by the
trained generator.

Speech and noise files are drawn randomly from the training set before they are prepro-
cessed and added at wanted SNR. Thereafter isGmapping from noisy to enhanced speech,
with or without latent noise. D receives one batch of fake pairs (enhanced, clean) and one
batch of real pairs (noisy, clean) and predicts labels. Thereafter are D’s weights updated
based onD’s loss, andG’s weights updated based onG’s loss by use of back-propagation.
The different parts of the training procedure will be elaborated in the following.

Figure 3.3: An overview of the different steps performed in the inner loop during the training
procedure.

3.3.2 Random generation of speech and noise

The speech and noise files are drawn randomly during training. All speech paths and all
noise paths in the training set have been gathered in the variables speech paths and
noise paths. For each generation of a batch size of speech and noise files, is a ran-
dom choice of speech paths and noise paths chosen with replacement with the function
random.choice from NumPy (Oliphant, 2006). The procedure is presented in Algo-
rithm 5.
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Algorithm 5 Random generation of a batch of speech and noise files.

Require: batch size: number of elements in each batch
Require: speech paths: the paths to all speech files in the training set
Require: noise paths: the paths to all noise files in the training set

for number of batches do
speech batch← a random choice of a batch size of speech paths from speech paths
noise batch← a random choice of a batch size of noise paths from noise paths

end for

3.3.3 Preprocessing

The speech and noise file are both downsampled to 16 kHz by use of the function resampy.resample
(McFee, 2016) before they are scaled to have values in the range [-1,1]. After that is a ran-
dom part of one window length drawn randomly from both speech and noise file. The
noisy speech is constructed by adding the windows at an SNR level drawn randomly from
the SNRs used during training, 0, 10 and 15 dB. The SNR factor was calculated on the full
speech and noise signal before preprocessing as specified in Equation (2.6). Lastly, a high-
frequency preemphasis filter is applied, like done by Pascual et al. (2017). A schematic
overview of the process is presented in Figure 3.4.

Figure 3.4: A schematic overview of the preprocessing steps done before the clean speech x and
noisy speech x̃ is given as input to the GAN.

3.3.4 Training the GAN

The original speech enhancement GAN is presented in Figure 2.10. G and D are trained
iteratively like explained in Algorithm 4, but the algorithm is modified for the conditional
setting. First is a batch of (noisy, clean) pairs (x̃,x) drawn randomly and preprocessed as
described in Section 3.3.3. Thereafter, a batch of the latent noise z of dimension (8×1024)
is drawn from a standard normal distributionN(0, I) if the setup is with z. G performs the
mapping from z and x̃ or only x̃ to the enhanced speech signal x̂. The discriminator D is
trained on one batch of real pairs (x̃,x) and one batch of fake pairs (x̃, x̂) at each iteration.
I.e. the weights θd are updated through back-propagation, where the loss function is as
stated in Equation (2.34). After that, the generator is trained such that only θg is updated,
by using the loss function from Equation (2.35). Note that G’s weights are fixed when D
is trained and oppositely. The training loss, validation loss, and the enhanced validation
set are stored after each epoch.
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3.4 Testing procedure
When the GAN has been trained, the generator G has (hopefully) learned to enhance
noisy speech. The objective measures PESQ and STOI are used to measure the quality
and intelligibility of the enhanced signals. The test float is further elaborated below.

Figure 3.5: When the GAN has been trained, the generator G can be used to enhance speech. G
maps from noisy speech x̃ as input along with random generated latent noise z, and performs the
learned mapping to enhanced speech x̂. The setup without latent noise is equal, just without z.

The noisy signal is constructed like in the training phase, the only difference is that
instead of drawing windows randomly, they are taken successively from the noisy signal.
The generator enhances the signal window by window, and the outputs are later concate-
nated. The concatenated enhanced windows are further postprocessed by inverting the
steps performed in the preprocessing phase, i.e., the signals are deemphasized, before they
are upscaled to int16. We let the enhanced files remain in 16 kHz.

One could have enhanced noisy recordings directly. The advantage of using a con-
structed combination of speech and noise to construct the noisy input, is that the corre-
sponding clean version is known. The noisy and enhanced version of a file is compared
with the clean reference version when the quality is assessed through PESQ and STOI.

3.4.1 Experiments
Because there are several elements in the model that include randomness (SGD, random
generation of noise, random initialization of weights), the results may differ between ses-
sions with completely equal setup. Due to high computational requirements is only one
configuration of hyperparameters tested. The model will therefore be trained 3 times with
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latent noise and 3 times without latent noise, before their results are compared. Motivated
by their results, one shorter run where the number of batches per epoch is reduced from
40 to 10 was run for both setups. The shorter run’s enhancement results are mainly in
Appendix B.4.
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Chapter 4
Results

We will go through the different runs’ progress during training, by examining the PESQ
and STOI scores of the enhanced validation set. We will also look at the training and val-
idation loss of the loss functions used. The test set is enhanced with each of the trained
models, and the enhancement results are evaluated objectively by PESQ and STOI. The
models’ ability to enhance the different noise types will be examined by looking at statis-
tics for the different noise signals separately. The PESQ and STOI results are compared
with the scores obtained by the SEGAN article of inspiration and a different GAN setup,
where the enhancement is done by enhancing spectrograms. Lastly, we have provided
some dropbox links to enhanced signals, with some minor subjective analysis.

4.1 Training progress
The validation set has been enhanced after each epoch, with use of the model G at that
time. I.e. there is the differences in G that lead to the differences in the enhanced output
from epoch to epoch.

4.1.1 PESQ
In Figure 4.1, the enhancement results for the validation set for each of the three runs
with and without latent noise are plotted. The stippled lines represent the PESQ score of
the noisy validation of given SNR level before enhancement. The three different runs are
distinguished by different nyances of each color. The blue lines are from signals with SNR
0 dB, the yellow 5 dB, the green 10, dB and the red 15 dB. The different runs are plotted
separately in Appendix B.3.

We can start by exploring the PESQ scores from the setup with latent noise z. At SNR
0 dB, the majority of the enhanced scores are higher than the reference score. There is
an increasing trend for the first 3 epochs. One of the runs gets a drop at epoch 4, before
the trend is decreasing from epoch 5 − 6. The different runs converge towards the score
of 1.7. At SNR 5 dB, the PESQ scores start under the reference line. The different runs
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converge towards a value of 1.9, slightly above the reference score. The scores at SNR
10 dB, are mostly under the reference line, and the values converged to the point 2.1 for
epoch 10, which is visibly below the noisy reference line. At SNR 15 dB are none of the
runs achieving PESQ scores over the reference line.

The three realizations without PESQ are displayed in Figure 4.1b. Compared to the
PESQ scores with z, the maximum values for each SNR are higher, achieving some scores
over the reference line also for SNR 15 dB. All levels of SNR start with an increase until
epoch 2 − 4, before there eventually is a decreasing trend (for two of three runs) the last
epochs. The end score is more diverse for the different runs, compared to the model with
z.
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Figure 4.1: The validation set have been enhanced after each epoch, with the then version of the
generator. The PESQ results are displayed here for epoch 1 - 10 for the tree runs with and without
latent noise. The dashed lines are the PESQ scores obtained by the noisy validation set before
enhancement.

The highest PESQ scores with z are achieved at epoch 3, run 1, while the highest
scores without z are achieved at epoch 4, run 3. Some of these enhanced files are provided
on Dropbox, and briefly commented in Section 4.2.2.

4.1.2 STOI

None of the runs lead to an improvement in terms of STOI, at any point, as illustrated in
Figure 4.2. Observe that the noisy reference lines are above the corresponding lines of the
same color at all points. There is a smaller difference between different SNR-levels here,
and the curves are intersecting for SNR 0, 5 and 10.
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Figure 4.2: The validation set have been enhanced after each epoch, with the current version of the
generator. The STOI results are displayed here for epoch 1 - 10 for the tree runs with and without
latent noise. The dashed lines represent the STOI scores obtained by the noisy validation set before
enhancement.

4.1.3 Training and validation loss

The training and validation losses of G and D during the three training runs are displayed
in Figure 4.3 for the setup with latent noise, and in Figure 4.4 for the setup without latent
noise. G’s error is dominated by the term from the discriminator’s loss in Equation (2.35).

In the first run with z, the discriminator’s training loss is decreasing rapidly from epoch
2 to 4, and thereafter stabilizing at a low level. The validation loss is stable at a higher level.
D’s training loss is decreasing until epoch 5 before it flattens out.

In run 2 and 3 are the scale a lot higher, due to very high loss contributions from the
discriminant - the values predicted are far away from the given labels 0 and 1. In run 2,
the values are decreasing after the sudden increase, while run 3 ends at a maximum point.

The runs without z have some peaks in the first run, a very high maximum loss in the
second run, where the value decrease in the following epoch and the third run ends at a
maximum point also here.

4.2 Enhancement results

4.2.1 Objective evaluation

The trained models’ ability of enhancement of diverse speakers and noise sources will be
evaluated by use of the objective measures PESQ and STOI. The first run’s PESQ results
are additionally visualized in histograms together with the PESQ scores of the noisy test set
before enhancement. (The three runs gave similar results, we are therefore only showing
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Figure 4.3: Training and validation loss for G and D are plotted for the three runs with latent noise
z.
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Figure 4.4: Training and validation loss for G and D are plotted for the three runs without latent
noise z.

the results for the first run for both methods).

Enhancement with latent noise

The PESQ scores of the noisy test set and the enhanced test set after run 1 have been
visualized in a histogram in Figure 4.5. Every bar has a width of 0.1, and the height is the
relative frequency. The noisy bars are colored red, while the enhanced scores are displayed
in blue. There is a visible shift to the right from the noisy to the enhanced files. The noisy
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files have an average score of 1.32, while the enhanced files have an average score of 1.53.
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Figure 4.5: The PESQ score of the noisy test set and enhanced test set is displayed in a relative
frequency histogram. The setup with latent noise z was used.

The PESQ scores of the test set and the enhanced test set distributed after SNR is
visualized in Figure 4.6. The corresponding mean scores can be found in Table 4.1, Run
1. All SNRs have a shift towards higher values from noisy to enhanced, but the difference
is most visible for SNR 10 and 15. For SNR 0 dB, there is a small shift to the right
from noisy to enhanced. The mean value of the noisy files with SNR 0 is 1.11 while it
is increased to 1.22 for the enhanced set. For SNR 5 dB is there a more clear shift to the
right for the enhanced test set, and the mean score increases from 1.18 to 1.38. There is a
clear difference between the noisy and enhanced set for SNR 10 dB too. The mean score
increases from 1.34 to 1.62. For SNR 15 dB, the increase from noisy to enhanced is from
1.64 to 1.85.

In Table 4.4 are the STOI scores of noisy and enhanced test set shown. The noisy STOI
score is higher than the average obtained for each of the runs at all levels of SNR. At SNR
0 dB, the enhanced set with the generator from the first run is only 0.1 below, while the
distance increases to 0.3 for SNR 5 dB, 0.4 for SNR 10 dB and 0.6 for SNR 15 dB. The
average noisy score is 0.90, while the highest average score for the enhanced test set is
0.87.
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(c) SNR: 10 dB
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Figure 4.6: The PESQ score of the noisy test set and the enhanced test set with latent noise z is
visualized in relative frequency histograms separated according to SNR.

Enhancement without latent noise

The histograms resulting from runs without latent noise are very similar to the histograms
obtained with latent noise, as shown in Figure 4.8 and Table 4.3. The noisy files have an
average score of 1.32, while the enhanced files have an average score of 1.50, which is
0.3 lower than the average score with latent noise. The average scores for all three runs
for with and without z are shown in Table 4.1 and Table 4.3, respectively. The runs with
z have a higher average for all levels of SNR, though the difference is only 0.2 for SNR 0
and 5 dB. The difference is 0.6 for SNR 10 dB. For SNR 15 dB there is a clear difference,
of 0.12.

Noise statistics

How do the models perform on the different types of noise tested on? The results from
the setup with latent noise, organized by type of noise are displayed in Table 4.5 (PESQ)
and Table 4.6 (STOI). In terms of PESQ, there are improvements from noisy to enhanced
speech for all types of noise, at all the levels of SNR. At 0 and 5 dB is the largest increase
from noisy to enhanced for cafeteria noise, where the increases are 0.15 and 0.29. At SNR
10 dB is the largest increase in PESQ for machine noise, from 1.32 to 1.68, that is an
increase of 0.36. The largest increase at SNR 15 dB is also for machine noise, from 1.58

42



Table 4.1: PESQ scores for different levels of SNR is calculated for the noisy test set and the
enhanced test set, where the set has been enhanced by the resulting G after three runs of the training
period with equal parameters. The setup with latent noise z was used for training and testing.

0 dB 5 dB 10 dB 15 dB Mean

Noisy 1.11 1.18 1.34 1.64 1.32

Run 1 1.21 1.38 1.63 1.90 1.53
Run 2 1.22 1.39 1.61 1.80 1.51
Run 3 1.21 1.37 1.61 1.85 1.51
Average 1.22 1.38 1.62 1.85 1.52

Table 4.2: Average STOI scores for different levels of SNR is calculated for the noisy test set and the
enhanced test set, where the set has been enhanced by the resulting G after three runs of the training
period with equal parameters. The setup with latent noise z was used for training and testing.

0 dB 5 dB 10 dB 15 dB Mean

Noisy 0.81 0.89 0.94 0.97 0.90

Run 1 0.80 0.86 0.90 0.91 0.87
Run 2 0.77 0.82 0.85 0.87 0.83
Run 3 0.78 0.83 0.87 0.89 0.84
Average 0.78 0.84 0.87 0.89 0.85

to 1.94, 0.36.
In terms of STOI, there are mostly a decrease from noisy to enhanced. At SNR 0 dB

there is one improvement, which is for water noise, increasing the STOI score from 0.70
to 0.73. For traffic noise, the score is unchanged, while for cafeteria and machine noise,
the results are only decreasing by 0.1. Water noise gets an improved STOI score also for
SNR 5 dB, where the score increases from 0.79 to 0.80. For the rest of the comparisons,
there is a decrease between 0.02 and 0.06.

The noise statistics for the setup without latent noise z is displayed in Table 4.5 (PESQ)
and Table 4.8(STOI). The scores are compared with the corresponding scores with latent
nosise. The PESQ scores at 0 dB are equal for machine and wind noise, and slightly higher
for the other types of noise. At 5 dB SNR, the score is still equal for wind, while there is
a small increase in the other values. The trend shifts at SNR 10 dB. The scores without
z are lower for all types of noise except water noise. At the highest value of SNR, the
enhanced PESQ is lower than for the other model for all the different noise types. The
STOI differences between the two model setups are minor, with the largest differences
being on 0.02.

Results in context

Michelsanti and Tan (2017) produced a noise specific table where their conditional spec-
trogram based GAN method was compared against baseline methods. They obtained en-
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Figure 4.7: The PESQ score of the noisy test set and enhanced test set is displayed in a relative
frequency histogram. The setup without latent noise z was used for training and testing.

hancement results comparable to the results of a DNN. Their models were tested on air-
plane, babble, cantine, market, and white noise. Their results for their noise general model
on cantine noise can be compared with our results with cafeteria noise (well aware that
there might be differences in the complexity of the noise signals). Their improvement
from noisy to enhanced in terms of PESQ are of the same magnitudes for SNR 0, 5 and
10 dB. The differences in improvement are of 0.01, 0.03 and −0.04, respectively, where
the sign correspond to improvement or decline of our model. For SNR 10 dB they have
achieved an improvement of 0.36, from 2.07 to 2.43, which is a 0.04 higher difference than
we obtained. At SNR 15 dB do their improved difference exceed our by 0.11, obtaining
an improvement from 2.57 to 2.81.

Their obtained results in terms of STOI are also comparable. The noisy files with input
STOI score above 0.80 get a reduced STOI score for the enhanced file for all the tested
noise types. The difference is between 0.02 and 0.07. Files with lower input STOI are
achieving improvements. (We have not tested with any input STOI lower than 0.77).

The SEGAN article used as the main motivation for this project compared SEGAN-
enhanced signals with Wiener-enhanced signals. The PESQ and MOS score reported are
regiven in Table 4.9. The PESQ improvement from noisy to SEGAN-enhanced is on 0.19,
which is comparable with our results with and without latent noise. The best run with z
achieve an improvement of 0.21, while the best run without z improves the noisy PESQ
score by 0.18.
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Figure 4.8: The PESQ score of the noisy test set and the enhanced test set with latent noise z is
visualized in relative frequency histograms separated according to SNR.

Observe that the PESQ score obtained for the wiener-enhanced signal is higher than
the score obtained by SEGAN. A total of 16 listeners were presented with 20 sentences
from their test set, to rate the set according to the MOS scale from Table 2.1. SEGAN
enhanced signals obtained a higher mean score. As PESQ is used as an estimator of the
MOS scores, the MOS scores are perhaps more interesting.

4.2.2 Subjective evaluation

Each of the six runs have enhanced the test set of 200 files, which means that there has
not been time to get a full overview of the audible difference between the implementation
with and without latent noise. Some sample files are available on Dropbox1. The vali-
dation scores in terms of PESQ have a non-increasing trend during training, and we have
therefore included the enhanced validation set from the run and epoch with the overall
highest average score for both models. Lastly, the enhanced test set files are compared
with the enhanced results of a shorter run with latent noise, where the number of batches
per epoch have been reduced from 40 to 10.

1https://www.dropbox.com/sh/gps8xzvya9cftp9/AAAp6f7eGHCmoC3MFqeSrXiYa?
dl=0
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Table 4.3: Average PESQ scores for different levels of SNR is calculated for the noisy test set and
three enhanced versions of the test set. The setup without latent noise z was used for training and
testing.

0 dB 5 dB 10 dB 15 dB Mean

Noisy 1.11 1.18 1.34 1.64 1.32

Run 1 1.23 1.40 1.60 1.78 1.50
Run 2 1.19 1.31 1.48 1.64 1.40
Run 3 1.20 1.38 1.60 1.79 1.49
Average 1.20 1.36 1.56 1.73 1.46

Table 4.4: Average STOI scores for different levels of SNR is calculated for the noisy test set and
three enhanced versions of the test set. The setup without latent noise z was used for training and
testing.

0 dB 5 dB 10 dB 15 dB Mean

Noisy 0.81 0.89 0.94 0.97 0.90

Run 1 0.80 0.85 0.88 0.90 0.86
Run 2 0.80 0.85 0.88 0.90 0.85
Run 3 0.78 0.83 0.86 0.88 0.84
Average 0.79 0.84 0.88 0.89 0.85

Validation set

The noisy files noisy f1 3 t-c1019 n46 snr 0.wav (traffic, female speaker), noisy m1 5 x-c1727 ION 16k ch01 snr 0.wav
(station) and noisy m1 5 x-c1745 n46 snr 0.wav (traffic, male speaker) and their
enhancements are available on Dropbox. There is no audible difference between the en-
hancements of the file with traffic noise and male speaker. Both files have a reduced
noise level without any additional speech distortion. The enhanced files with traffic noise
and female speaker have musical noise for both enhanced versions, though the enhanced
file without latent noise have a more intense ringing. The ringing gets more evident during
training, which one can hear by listening to the enhanced validation set from the last epoch
(epoch 10). The station noise is highly reduced in the enhanced versions of both models.

Test set

One noisy file with each type of the test set noises have been listened to at SNR 0 dB. One
additional file have been analyzed for SNR 0, 5, 10 and 15 dB. The noise signals n68 and
n28 have enhanced files with a weak musical noise. The noise level is reduced, but at
the cost of some degradation of the speech. Both models have similar results. n78 have
enhanced files with more distorted noise. Traffic do also result in a combination of
noise reduction, speech degradation and musical noise.

The enhanced versions can be compared with the results of a more recent run with
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Table 4.5: The PESQ scores of the trained model G for different noise sources have been compared.
The model with latent noise z was used.

0 dB 5 dB 10 dB 15 dB
Noisy Enhanced Noisy Enhanced Noisy Enhanced Noisy Enhanced

Traffic 1.06 1.14 1.10 1.28 1.22 1.52 1.46 1.79
Cafeteria 1.12 1.27 1.24 1.53 1.50 1.82 1.95 2.08
Machine 1.12 1.24 1.18 1.43 1.32 1.68 1.58 1.94
Water 1.07 1.14 1.12 1.27 1.22 1.48 1.48 1.73
Wind 1.17 1.26 1.26 1.41 1.43 1.67 1.75 1.96

Table 4.6: The STOI scores of the trained model G for different noise sources have been compared.
The model with latent noise z was used.

0 dB 5 dB 10 dB 15 dB
Noisy Enhanced Noisy Enhanced Noisy Enhanced Noisy Enhanced

Traffic 0.77 0.77 0.86 0.84 0.92 0.89 0.96 0.91
Cafeteria 0.85 0.84 0.93 0.89 0.97 0.92 0.99 0.93
Machine 0.86 0.85 0.92 0.89 0.95 0.91 0.97 0.92
Water 0.70 0.73 0.79 0.80 0.87 0.85 0.93 0.89
Wind 0.88 0.83 0.93 0.88 0.97 0.91 0.98 0.92

latent noise with a lower amount of training. Observe that the voices are more comfortable
to listen to.

Restaurant noise have been considered for all levels of SNR, with and without latent
noise. The noisy files have higher levels of noise compared to the enhanced files, but they
are still more comfortable to listen to. The ehanced files have some level of musical noise,
in addition to more uneven background noise. The speech have some distortion. Both
models seem to have removed the background noise at SNR level 10 and 15 dB.

Spectrograms illustrating the enhancement of a noisy speech signal with n28:Machine
noise are shown in Figure 4.9. The horizontal patterns are noise, as can be seen in Fig-
ure 3.1g. Observe that the enhancement with z seem to have removed more of the noise
at frequency 1000 and in frequency range 3000− 5000 Hz. The version enhanced with z
have recovered stronger vertical stripes between 3 and 4 seconds. The files can be listened
to at Dropbox. Both GAN-setups have been successful in reducing the noise level. The
speech is only weakly distorted for the setup with z, while for the setup without z, the
distortion is more severe. The version with z have some musical noise.
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Table 4.7: The PESQ scores of the trained model G for different noise sources have been compared.
The model without latent noise z was used.

0 dB 5 dB 10 dB 15 dB
Noisy Enhanced Noisy Enhanced Noisy Enhanced Noisy Enhanced

Traffic 1.06 1.16 1.10 1.29 1.22 1.48 1.46 1.68
Cafeteria 1.12 1.31 1.24 1.54 1.50 1.76 1.95 1.89
Machine 1.12 1.24 1.18 1.43 1.32 1.63 1.58 1.80
Water 1.07 1.16 1.12 1.30 1.22 1.51 1.48 1.69
Wind 1.17 1.26 1.26 1.43 1.43 1.64 1.75 1.82

Table 4.8: The STOI scores of the trained model G for different noise sources have been compared.
The model without latent noise z was used.

0 dB 5 dB 10 dB 15 dB
Noisy Enhanced Noisy Enhanced Noisy Enhanced Noisy Enhanced

Traffic 0.77 0.77 0.86 0.84 0.92 0.88 0.96 0.90
Cafeteria 0.85 0.83 0.93 0.88 0.97 0.90 0.99 0.91
Machine 0.86 0.83 0.92 0.87 0.95 0.89 0.97 0.90
Water 0.70 0.73 0.79 0.80 0.87 0.85 0.93 0.89
Wind 0.88 0.82 0.93 0.87 0.97 0.90 0.98 0.91

Table 4.9: Noisy signals and Wiener- and SEGAN-enhanced signals were compared objectively in
terms of PESQ and subjectively in terms of MOS by Pascual et al. (2017). The results are regiven
here.

Metric Noisy Wiener SEGAN

PESQ 1.97 2.22 2.16
MOS 2.09 2.70 3.18
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(a) Clean speech
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(b) Noisy speech
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(c) Enhanced with z
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(d) Enhanced without z

Figure 4.9: Log-density spectrograms of clean speech, noisy speech and the GAN-enhanced ver-
sions, from one setup with latent noise z and one setup without latent noise z. The noisy speech is
constructed by adding n28:Machine noise at SNR 0 dB.
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Chapter 5
Discussion

5.1 Comparison of the models with and without latent
noise

The enhancement results obtained with and without use of latent noise are in general very
similar. The setup with latent noise achieve generally slightly better scores in terms of
STOI and PESQ, but the differences in average are very small. There has not been time to
listen to all the different enhanced files, but the impression is that the setup without latent
noise more often get musical noise. The data material and number of experiments is too
limited to conclude that a setup without latent noise could not be an alternative setup.

Why is the latent noise leading to better results? The setup with latent noise have higher
representational power, since it has more free parameters than the model without latent
noise. It adds randomness to the model, which means that it might be interpreted as some
sort of regulizer. When pix2pix removed latent noise from their setup, dropout(Srivastava
et al., 2014) was added instead. They reported that the weights corresponding to z even-
tually became zero, such that the random noise did not influence the final result. We
did a minor experiment to check this, and enhanced a noisy signal 100 times, with new
randomly drawn z’s for each enhancement. The resulting enhanced files are plotted in Ap-
pendix B.1, where the plots show each realization subtracted the mean value of the runs.
The maximum distance from 0 is 55.2, which is a small number compared to the range in
the enhanced file being from −11728.0 to 16765.0 (1.9%). The average variance of each
sample value is only 1.43. Subjectively, I could not here any difference between the differ-
ent enhancements. This suggests that z do not lead to any large variation of the enhanced
output, even if there is some randomness.

If we take a look at the validation scores in epoch 10, it looks like the validation score
correlates with the test score. That is not surprising, as both scores are trying to measure
the model’s ability to generalize. This suggests that an implementation of early stopping
based on the validation set’s PESQ score could be beneficial to improve the end result.
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5.1.1 Overall evaluation

The PESQ score curves and STOI score curves for the three runs during training presented,
separated by run, are shown in Figure B.2 and Figure B.3. The curves for each run have a
similar shape for the different levels of SNR. That is, the minimum and maximum points,
etc. occur at the same epoch for the different SNRs. The extreme points for PESQ and
STOI seem visually to have some correlation. This may indicate that when the GAN
is ”good”, it is good for all the four SNRs, and oppositely, when it performs poorly, it
performs poorly for all SNRs.

The model is trained on a large variety of speakers and noise signals. The model is
able to decrease the noise level for all the noise sources tested on, though it sometimes
leads to distorted speech. The training procedure has not been optimized, so improved
results might be possible with other hyperparameters, initializers and optimizers. The
hyperparameters and architecture used is based on SEGAN’s article for the setup with
latent noise, and is therefore not necessarily the optimal choice for the model without
latent noise. It is therefore not possible to conclude that the model with latent noise in
general is better than the model without latent noise.

The 5 dB SNR level was not used during training. There was no evident difference in
the enhancement performed at this level compared to the other levels of SNR. The model is
probably already used to a range of different levels since the levels of SNR are calculated
on the full speech and noise signals.

5.2 Exploding loss function and GAN training

Exploding loss functions in the discriminator are appearing for some runs, as shown in
Figure 4.3 and Figure 4.4. However, the exploding loss is on the discriminator’s loss
function, i.e. the discriminator’s predictions distance to the correct labels/values 0 and
1. These exploding loss functions do not seem to correlate with the enhancement perfor-
mance. It would be interesting to see what happens to the gradients when the loss function
is exploding.

The training PESQ scores for the model without latent noise are generally decreasing
the last epochs - maybe the model gets overfitted? Due to computational requirements, it is
not possible to do all the tests again for reduced training time. For the effect of comparison,
we did one shorter run, where the amount of training data per epoch were reduced by a
factor of 4. The STOI and PESQ scores per epoch are displayed in Figure B.4 and Figure
B.5, for the setup with and without latent noise, respectively. One can observe that the
scores are almost monotonically increasing in time for both PESQ and STOI. 4 epochs in
this plot corresponds to the amount of data trained on for 1 epoch in the longer runs. Run
1, 2 and 3 with latent noise did also have a positive trend the first 3 epochs, while the trend
without z is more mixed. The average scores are displayed in Table B.1 and Table B.2.
The shorter run with latent noise achieve significantly higher scores in terms of PESQ,
specifically for the higher SNR levels. The results on STOI are also weakly increased.
The overall average is higher in both measures. The shorter run without latent noise get
the same average score for SNR 0 and 5 dB as the best long run without latent noise, while
there is improvement for SNR 10 and for 15 dB. In STOI is there a slight decrease in the
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score for SNR 0 and 5 dB and a slight increase for 10 and 15 dB. The overall average is
highest for the short run for both PESQ and STOI.

5.3 Future work

5.3.1 Early stopping
It would be interesting to implement early stopping based on the validation set scores in
terms of PESQ. The overall highest test scores in terms of PESQ are obtained for the
model with the highest validation set score at epoch 10, which is the model with a shorter
training time, with latent noise. The differences between the different end scores in PESQ
for the other runs with latent noise are minor, and so are the average PESQ scores of the
enhanced test set. The overall means differs only by 0.02., while the mean for the shorter
run is increased by 0.1.

5.3.2 Larger input windows
The model is only enhancing approximately one second at a time. Speech signals are
time series and have strong temporal dependencies. Enhancing only one second at a time
might lead to shifts at the boundary points between different time windows. We have not
explored whether this actually is a problem. This is a common setup in DNN methods,
among others tested during my project thesis (Vik, 2018), where two windows before and
after the current enhanced window ere given as input to the network.

5.3.3 Features or other training tricks
Some of the enhanced signals have a typical ”musical noise”. Wang and Chen (2018)
concluded in their overview article on supervised speech separation with deep learning
that a combination of deep learning and feature extraction is smart. A recent article by the
authors of SEGAN (Pascual et al., 2019) include tricks to avoid highfrequency artifacts
and exploding gradient in the discriminator’s loss function. Phase shift (Donahue et al.,
2018) can reduce high-frequency artifacts in the outputs ofG, while spectral normalization
(Miyato et al., 2018; Zhang et al., 2018) is used to avoid exploding gradients in D.
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Chapter 6
Conclusion

In this master thesis, generative adversarial nets have been implemented and used to do
end-to-end speech enhancement. The proposed setup without latent noise have been com-
pared to the original setup with latent noise. A large variety of speakers and noise signals
have been used during training and testing. The enhancement results show an improve-
ment in terms of PESQ, while the STOI score in general decline slightly. The original
setup performs slightly better in average in both evaluation metrics. Our implemented
models perform comparable to the other speech enhancement methods based on GAN in
literature. The GAN’s training have been unstable, and there have been high-valued loss
functions in the discriminator.

A recent article by the authors of SEGAN seem to have solved some of the problems
we have encountered. Including phase shuffle, spectral normalization and features in the
model might prevent exploding gradients in the discriminator and high-frequency artifacts
in the generator-enhanced speech.
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Appendix A
Information Theory

A.1 Kullback-Leibler divergence
Kullback-Leibler (KL) divergence is a measure of the difference between two distribu-
tions. Let P (x) and Q(x) be distributed over the same random variable x. The KL diver-
gence is given as

DKL(P
∥∥∥Q) = Ex∼P

[
log

P (x)

Q(x)

]
. (A.1)

The KL-divegence is non-negative, and zero only if P and Q have the same distribu-
tions in the case of discrete distributions or almost equal in the case of continuous distri-
butions. However, KL divergence is not symmetric, DKL(P

∥∥∥Q) 6= DKL(Q
∥∥∥P ).

A.2 Jensen-Shannon divergence
Jensen-Shannon divergence (JSD) is a different measure of the similarity between two
probability distributions P (x) and Q(x). It is a symmetric and smoother version of KL
divergence. It is defined by

JSD(P
∥∥∥Q) =

1

2
(P
∥∥∥M) +

1

2
(Q
∥∥∥M), (A.2)

where M = 1
2 (P + Q). Note that JS divergence has a lower bound of 0, since it is a

sum of two elements with minimum value 0.
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Appendix B
Further experimental details

B.1 Model summaries
GAN setup, with z:
______________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==============================================================================
in_noisy (InputLayer) (None, 16384, 1) 0
______________________________________________________________________________
noise_input (InputLayer) (None, 8, 1024) 0
______________________________________________________________________________
model_1 (Model) (None, 16384, 1) 74120049 in_noisy[0][0]

noise_input[0][0]
______________________________________________________________________________
model_2 (Model) (None, 1) 24378106 model_1[1][0]

in_noisy[0][0]
==============================================================================
Total params: 98,498,155
Trainable params: 74,120,049
Non-trainable params: 24,378,106
______________________________________________________________________________

GAN setup, without z:

Layer (type) Output Shape Param # Connected to
==============================================================================
in_noisy (InputLayer) (None, 16384, 1) 0
______________________________________________________________________________
model_1 (Model) (None, 16384, 1) 57867121 in_noisy[0][0]
______________________________________________________________________________
model_2 (Model) (None, 1) 24378106 model_1[1][0]

in_noisy[0][0]
==============================================================================
Total params: 82,245,227
Trainable params: 57,867,121
Non-trainable params: 24,378,106
______________________________________________________________________________

65



B.2 Variation due to latent noise
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Figure B.1: A noisy file with n28: machine noise have been enhanced N = 100 times with
new randomly drawn latent noise z. Each enhanced sequence minus the average of all the sequences
x̂i − E[x] is plotted. The dashed lines represent the window limits.
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B.3 Validation set scores for the longer runs
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Figure B.2: PESQ and STOI scores during training for the enhanced validation set, for the three
runs with latent noise z.

1 2 3 4 5 6 7 8 9 10
Epoch

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

PE
SQ

SNR
0 dB
5 dB
10 dB
15 dB

(a) PESQ scores run 1

1 2 3 4 5 6 7 8 9 10
Epoch

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

PE
SQ

SNR
0 dB
5 dB
10 dB
15 dB

(b) PESQ scores run 2

1 2 3 4 5 6 7 8 9 10
Epoch

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

PE
SQ

SNR
0 dB
5 dB
10 dB
15 dB

(c) PESQ scores run 3

1 2 3 4 5 6 7 8 9 10
Epoch

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

ST
OI

SNR
0 dB
5 dB
10 dB
15 dB

(d) STOI scores run 1

1 2 3 4 5 6 7 8 9 10
Epoch

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

ST
OI

SNR
0 dB
5 dB
10 dB
15 dB

(e) STOI scores run 2

1 2 3 4 5 6 7 8 9 10
Epoch

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

ST
OI

SNR
0 dB
5 dB
10 dB
15 dB

(f) STOI scores run 3

Figure B.3: PESQ and STOI scores during training for the enhanced validation set, for the three
runs without latent noise z.
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B.4 Results after a shorter run

Table B.1: Average PESQ and STOI scores for different levels of SNR is calculated for the enhanced
version of the test set. The setup with latent noise z was used for training and testing. The GAN was
trained with 10 batches per epoch, which is 1/4 of the amount used in the other runs.

0 dB 5 dB 10 dB 15 dB Mean

PESQ 1.26 1.45 1.75 2.11 1.64
STOI 0.81 0.88 0.92 0.94 0.89

Table B.2: Average PESQ and STOI scores for different levels of SNR is calculated for the enhanced
version of the test set. The setup without latent noise z was used for training and testing. The GAN
was trained with 10 batches per epoch, which is 1/4 of the amount used in the other runs.

0 dB 5 dB 10 dB 15 dB Mean

PESQ 1.23 1.40 1.68 2.01 1.58
STOI 0.79 0.86 0.90 0.92 0.87
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Figure B.4: PESQ and STOI scores during training, after enhancement of the validation set. The
GAN was trained with 10 batches per epoch, which is 1/4 of the amount used in the other runs. The
setup with latent noise z was used.
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Figure B.5: PESQ and STOI scores during training, after enhancement of the validation set. The
GAN was trained with 10 batches per epoch, which is 1/4 of the amount used in the other runs. The
setup without latent noise z was used.

69


