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Abstract

In this thesis, the risk measures expected shortfall (ES), potential future ex-
posure (PFE) and expected positive exposure (EPE) are studied in the context of
counterparty exposure for a pay floating –receive fixed swap contract. The Heath-
Jarrow-Morton framework for modelling interest rates is used to generate future
market scenarios by Monte Carlo simulation. Further, the simulated future interest
rates are used to price an interest rate swap at every simulated time step in the
lifetime of the swap. Finally, the collection of simulated swap prices is used to
generate values for the counterparty exposure, represented by the risk measures
ES, PFE, and EPE.

The performance of the measures were tested during different periods between
2005 and 2019, with interest rate data going back to 2002. Results show that the
ES measure performs better than PFE, but none of them are fully able to capture
the actual exposure during periods of market stress, such as the financial crisis of
2008.

A shift toward ES as the primary risk measure for swaps is discussed from a
regulatory standpoint, thus following the trend seen for other asset classes in the
aftermath of the financial crisis.

i



Sammendrag
I denne oppgaven har risikomålene Expected Shortfall (ES), Potential Future Ex-
posure (PFE) og Expected Positive Exposure (EPE) blitt studert for å undersøke
motpartseksponering for en rentebytteavtale hvor flytende rente betales og en fast
rente mottas. Heath-Jarrow-Morton-rammeverket for rentemodellering har blitt
brukt for å generere fremtidige scenarioer for markedsutvikling ved bruk av Monte
Carlo-simulering. Videre har de simulerte fremtidige rentene blitt brukt til å verd-
sette rentebytteavtaler ved hvert simulerte tidssteg innenfor rentebytteavtalens lev-
etid. Til slutt er samlingen av de simulerte prisene på rentebytteavtalene brukt til
å generere verdier for motpartseksponeringen, representert ved riskikomålene ES,
PFE og EPE.

Risikomålene har blitt vurdert ut i fra hvilken grad de har evnet å forutse mot-
partseksponeringen som ville ha oppstått ved reelle rentebytteavtaler i forskjellige
perioder mellom 2005 og 2019. Resultatene viser at ES presterer bedre enn PFE,
men ingen av dem klarer i tilstrekkelig grad å forutse den virkelige eksponeringen
i perioder hvor finansmarkedene er presset, slik som under finanskrisen i 2008.

Et skifte mot ES som det primære risikomålet for rentebytteavtaler har blitt
diskutert fra et regulatorisk ståsted, slik at det dermed også følger trenden for andre
aktivaklasser i etterkant av finanskrisen.
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Chapter 1
Introduction

The global markets for financial derivatives totalled a notional amount of more
than 595 trillion (1012) USD at the end of June 2018 [1]. Comparing this to the
market capitalization of publicly traded companies globally, which totals approx-
imately 80 trillion USD [2], it is clear that the derivatives markets are huge, even
though it is worth noting that market value of all outstanding derivatives are cur-
rently estimated to be around 10 trillion USD 1. In any case, it is evident that
the consequences of losses in the derivatives markets have the potential to cause
serious damage to the whole financial system.

During the financial crisis of 2008, counterparty risk turned out to be a major
issue for many actors in the financial markets. Several of the largest banks were
unable to fulfill their obligations agreed to in derivative contracts, causing the col-
lapse of the investment bank Lehman Brothers and the U.S. government rescuing
several others to avoid a collapse of the entire financial system. Since counterparty
risk had suddenly become such a major issue, hedged positions involving more
than one counterparty now carried significant risk since a default would lead to the
position being unhedged.

In the wake of these events, regulatory actions were taken to reduce the sys-
temic risk caused by over-the counter (OTC) derivative instruments [3]. These
regulations demanded that standardized OTC derivatives be cleared through a cen-
tral counterparty (CCP) as a general rule. This results in both parties of the contract
having the CCP as their only counterparty. Since CCPs are only concerned with
handling such risks, this is considered adding robustness to the system. New regu-
lations were also imposed to the trading books of banks, being closer to the regula-
tions that were already existing for the banking books. These regulations marked

1This value may change drastically in event of market stress.
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a shift towards using the risk measure Expected Shortfall (ES) instead of the up-
until-then benchmark Value at Risk (VaR), because of significant shortcomings in
the latter to capture tail risk [4]. A similar move when in terms of counterparty
risk is discussed in this thesis.

Modelling counterparty risk is fairly complex, requiring two things; frame-
works for fair and consistent pricing of derivative contracts given the current in-
formation available in the markets and the generation of possible future market
scenarios and changes in factors affecting the counterparties’ ability to fulfill their
obligations. In this thesis, a framework combining these tasks to estimate coun-
terparty risk has been implemented. The main focus of the thesis is on aspects
considering such a model.

To model the evolution of interest rates, the framework introduced in 1992 by
David Heath, Robert A. Jarrow and Andrew Morton in their article ”Bond Pricing
and the Term Structure of Interest Rates: A New Methodology” [5] has been used.
This model marked a revolution within interest rate modelling, incorporating the
full term structure of interest rates as opposed to the existing models at the time,
which only had one or a few sources of randomness.

The interest rates modelled by the Heath-Jarrow-Morton model is used to
model counterparty exposure for swap contracts. The model has been tested dur-
ing different periods after 2002 to discover its strengths and shortcomings of the
model. Since all models are simplified representations of the real world, they only
capture a certain perception of the real world [6]. Thus, following the model in all
situations may lead to significant errors during situations where the model is un-
able to represent the real world accurately. Consequently, knowing the limitations
of models is as crucial as knowing their strengths.

The contract known as interest rate swaps are studied within the implemented
framework. This is the most widespread interest rate derivative, accounting for
almost 80 % of the total market for interest rate derivatives totalling 326 trillion
USD in notional amounts [1]. Acting mainly as insurance instruments, protecting
against unfavorable movements in the interest rate markets, swaps are used by
companies in all industries to provide increased financial visibility and stability.

The thesis is constructed in the following way. Chapter 2 introduces basic
financial assumptions and mathematical concepts that are integral for the models in
this thesis. This chapter also introduces some general techniques that are important
parts of the models implemented for this thesis.

Chapter 3 provides an introduction to financial derivatives and the pricing of
such instruments. Concepts such as arbitrage and risk neutrality are discussed and
put into the context of derivative pricing.

Further, in chapter 4, interest rate modelling is introduced. The chapter starts
off by providing some background on stochastic interest rate modelling, and ex-

2



plaining the development of these models. The chapter touches into a few im-
portant concepts in interest rate modelling and some basic interest rate models.
Finally, the Heath-Jarrow-Morton model for interest rates is introduced and de-
scribed in detail.

Chapter 5 considers financial risk, focusing on counterparty risk. The chapter
first defines the concept of counterparty risk and outlines important concepts of
credit risk. Then, some risk measures are introduced, before regulations and ways
to manage and mitigate risk is discussed.

Chapter 6 describes the data used for the analysis, and describes the methods
in more detail. The results are then presented and discussed in chapter 7, before
some concluding remarks are finally presented in chapter 8.

3



4



Chapter 2
Theory

2.1 Financial Preliminaries

In the theory of mathematical finance, certain conditions about the nature of the
market are assumed to hold. The pure financial assumptions are presented below.

Absence of Arbitrage

The assumption of an arbitrage-free market is central to the theory within math-
ematical finance. Arbitrage can be defined in various ways, in more or lesser
mathematical terms, and the definition below is in purely financial terms.

Definition 2.1 (Arbitrage). Arbitrage is a strategy yielding an instantaneous profit
above the risk-free rate with carrying zero risk of loss, or equivalently, with an
initial investment of zero.

Informally, the no-arbitrage theorem is often stated as ”there is no free lunch”.
A more detailed treatment of arbitrage, with more mathematical focus is presented
in chapter 3.

Efficient Markets

Markets are assumed to be efficient, meaning that all asset prices are correct given
the information available in the market at any given time. Prices are assumed to
react instantaneously to news in the market carrying information that could move
prices. This assumption is closely related to the no-arbitrage assumption.

5



Time Value of Money

Financial theory assumes that a unit of money received at the current time t is
worth more than a unit of money received at time T > t. A heuristic argument
for this assumption is that the money received today can be invested in something
yielding a positive return at a later time, giving back the initial investment in addi-
tion to the return. At least, in any case, just keeping the money has provided some
optionality in the meantime, carrying some value.

This assumption leads to the assumption of the existence of a risk-free asset
yielding positive return. Such an asset will be referred to as the numéraire for the
remainder of this thesis.

Other Assumptions

Some other assumptions are also required to ensure consistency in the theory.
These are easily interpretable and will only be stated without further discussion.

• Markets are liquid, meaning that assets can be sold at any time to market
price.

• Financial assets are divisible and can be traded in fractions.

• Transactions are small compared to market depth, and does not move market
prices.

• There are no transaction costs.

2.2 Mathematical Preliminaries

Much of the theory on financial modelling and derivative pricing is based on ele-
mentary results from measure theory and stochastic calculus. Readers unfamiliar
with these subjects are referred to the appendix, respectively sections A and B,
for a treatise on some elementary concepts relevant for the topics presented in this
thesis.

The market is assumed to be a probability space (Ω,F , P ). Here Ω is the
sample space, representing all the potential outcomes in the market, and F is a σ-
algebra representing measurable events. Measurable events are also often referred
to as random variables. The market is enabled with the filtration F = {Ft}, t ∈
[0, T ], with T being the time horizon in which the model operates. P is a prob-
ability measure, assigning a non-negative probability to each outcome ω in the
countable set of potential outcomes, Ω. The market model also assumes the exis-
tence of a non-dividend paying numéraire asset defined in the following manner.

6



Definition 2.2 (Numéraire). A numéraire is a price process (β(t)), t ∈ [0, T ],
which is almost surely strictly positive for all t.

The numéraire is a price process acting as a discount factor or deflation asset
for other assets. Future cash flows are discounted by the numéraire, since this
asset represents the risk free rate. The existence of a numéraire ensures that asset
prices be martingales when discounted, which is a desirable property. Further, an
important notion considering numéraires, is the concept of equivalent martingale
measures.

Definition 2.3 (Equivalent Martingale Measure). A probability measure P∗ on
(Ω,FT ) being equivalent to P is called an (equivalent) martingale measure for
a price process S̃ if S̃ follows a P∗-martingale with respect to the filtration F.

2.2.1 Change of Measure and Girsanov’s Theorem

The technique concerning change of measures is especially useful in derivative
pricing, enabling to change into a risk-neutral measure instead of the real-world
measure. Risk-neutrality will be properly introduced later in chapter 3.

Theorem 2.1 (Girsanov). Let X(t) be a stochastic process in the interval [0, T ]
and the standard probability space and let P and Q be two measures with Radon-
Nikodým derivative dQ/dP.

Consider the k-dimensional standard Brownian motion W (t), t ∈ [0, T ]. Let
γ be an Rk-valued process adapted to {FWt }, satisfying∫ t

0
||γ(u)||2du <∞

almost surely for all t. Also, let

X(t) = exp

(
−1

2

∫ t

0
||γ(u)||2du+

∫ t

0
γ(u)dW (u)

)
. (2.1)

If EP[X(T )] = 1, then {X(t), t ∈ [0, T ]} is a martingale and the measure Q
defined

dQ
dP

= X(T )

is equivalent to P. Under this measure Q, the process

WQ(t) ≡W (t)−
∫ t

0
γ(u)du, t ∈ [0, T ] (2.2)

is a standard Brownian motion with respect to {FWt }.
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Girsanov’s theorem makes sure that when the measures change, the volatility
remains the same through this change [7]. In derivative pricing this has great
importance, since prices are dependent on volatility of the underlying instrument.
Derivative pricing is discussed in chapter 3 where the importance of Girsanov’s
theorem will be made even clearer.

2.3 Monte Carlo Simulation

A popular method for simulation for problems involving many dimensions, is
Monte Carlo simulation. The method generates a given number, n, different sce-
narios, representing n realizations of the real-world evolution of some system.
Monte Carlo simulation is based on random number generation, and it is assumed
that there exists a method to generate random numbers 2. In finance, Monte Carlo
simulation is especially efficient for simulation when dealing with path-dependent
contracts, as these in reality are problems of very high dimensionality.

The principles of Monte Carlo simulation are quite simple, and is easily illus-
trated by the integral

α =

∫ 1

0
f(x)dx.

Now, consider this integral as an expectation, such that α = E[f(U)], where
U ∼ unif(0, 1). Assuming the existence of a method to generate independent
realizations from this distribution, U1, . . . , Un, evaluating the function f at each
Ui leads to the Monte Carlo estimate for α. This estimate is denoted α̂ and is given
by

α̂ =
1

n

n∑
i=1

f(Ui).

If f is indeed integrable on the interval [0, 1], the strong law of large numbers
ensures that

α̂→ α as n→∞
with probability 1.

It is evident that for the purpose of evaluating simple integrals such as the one
above, Monte Carlo is an inefficient method. Even for more complicated functions
f , there exist much more efficient numerical methods. The rate of convergence of
the Monte Carlo method is O(n−1/2). The benefits of Monte Carlo are, however,
apparent when the dimensionality of the problem increases, since the convergence
rate is independent of the number of dimensions [7].

2True random number generation is not possible with current computers, as they produce deter-
ministic sequences of numbers based on a seed. However, pseudo-random numbers generated by R
or other software, can be considered truly random for all practical purposes.
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Monte Carlo Error Estimation

Consider, as before, the function f , which is supposed to be square integrable.
Now, define

σ2f =

∫ 1

0
(f(x)− α)2dx.

The error in the Monte Carlo estimate, α̂ − α, is normally distributed with mean
0 and standard deviation σf/

√
n. As the true value of α in the general case is

unknown, meaning that σf is also unknown. However, an estimate can be provided
by the standard error of the sample, given by

sf =

√√√√ 1

n− 1

n∑
i=1

(f(Ui)− α̂n)2.

This estimator is unbiased for σf , and it is easily verified that the precision of the
Monte Carlo estimate indeed converges by a factor of 1/n1/2. It is also observed
that the number of dimensions is not a parameter in any of the estimates, and the
convergence rate is indeed independent of dimensionality.

2.4 Principal Component Analysis

Principal component analysis (PCA) is a well-known technique for reduction of
dimensionality of data. The technique consists of transforming a set of dependent,
correlated variables into independent uncorrelated ones. For each new variable,
called the principal components, the goal is to describe as much variance as pos-
sible not explained by the previous principal components. The derivation in this
section is mostly based on [8].

To derive the theory on PCA, consider a matrix containing the observed data.
Let this matrix be denoted X, with dimension n × p, with n being the number of
observations and p being the number of random variables. The goal now, is to con-
struct a new vector a1 such that a>1 X has the maximum variance. Then, construct
another vector a2, orthogonal to a1, where a>2 X has the maximum variance. Con-
tinue in this manner until a sufficient amount of the variance has been explained,
or until the desired number of principal components has been found.

Further, let Σ be the covariance matrix of X. Now, for each k = 1, . . . , p, the
k’th principal component is determined by the eigenvector zk corresponding to the
k’th largest eigenvalue of Σ, which will be denoted λk.

Having found the desired principal components, it is natural to ask how much
of the variance in the data that could be explained by each principal component.

9



Let qi denote the fraction of the total variance explained by the t’th principal com-
ponent. This fraction is given by the formula

qi =
λi∑p
`=1 λ`

. (2.3)

There is much more that could be said about PCA, but a full treatment on the
intricacies of PCA is not the scope of this thesis. Since further theory about the
calculations in detail is not necessary to understand the applications of PCA in this
thesis, it is not included either. A more detailed treatment can be found in [8].

10



Chapter 3
Derivative Pricing

Pricing derivatives is an important issue in mathematical finance, initially intro-
duced by Fisher Black and Myron Scholes in their 1973 article ”The Pricing of
Options and Corporate Liabilities” [9]. This article is the benchmark of derivative
pricing, which the field of derivative pricing is based on. A different approach
to derivative pricing, called arbitrage pricing, is presented in this chapter, but the
same results are ultimately arrived upon.

3.1 Outlining Derivative Pricing

First, before presenting the theory behind derivative pricing, a precise definition of
a financial derivative might be useful for readers unfamiliar with the concept.

Definition 3.1 (Derivative). A derivative, also commonly referred to as contin-
gent claim, is a financial contract whose payoff depends entirely on the value3 of
another financial asset, called the underlying, at the time of expiry, T .

The underlying instrument may be a stock, an interest rate, a commodity or
even the occurrence of events such as hurricanes or earthquakes [10]. Derivatives
in this thesis, however, are linked to interest rates. The specific contract that is
used for the analysis in this thesis, is called a swap contract.

Definition 3.2 (Swap). A swap contract is a financial contract between two par-
ties, in which they agree to switch cash flows at certain predetermined future dates
until the maturity date, T .

3Here, the value may also include the path taken between the time of agreement and expiry of
the contract.
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Being the most common interest rate derivative, swaps have an integral posi-
tion in the corporate world, for companies in all industries, not only in the financial
sector. In addition to swaps, many other derivatives exist, each of them having their
own properties and payoff structures, requiring them to be priced in a specific way.
In principle, derivatives can be constructed off any view that anyone may have
about the markets.

3.2 Arbitrage Pricing

The concept of arbitrage, defined in chapter 2, is a cornerstone when pricing con-
tingent claims. The no-arbitrage condition is assumed to hold, and the market is
the same as defined earlier, containing d+ 1 assets, including the numéraire. This
means that d assets carry risk. Now, define a trading strategy

ϕ(t) = (ϕ0, ϕ1, . . . , ϕd), t ∈ [0, T ].

Here, each ϕi represent the holdings of one asset in the market, whose weights
may be negative. It is assumed that the expectations of these functions exist. At
time t the value of the trading portfolio is given by

Vϕ(t) = ϕ(t) · S(t), t ∈ [0, T ],

where S is the price processes of the d assets. Vϕ is called the wealth process of
ϕ. Further, the earnings of the trading strategy in the interval [0, t] is given by

Gϕ(t) =

∫ t

0
ϕ(u)dS(u),

called the gains process of ϕ. The trading strategy is said to be self-financing if
Vϕ(t) satisfies

Vϕ(t) = Vϕ(0) +Gϕ(t) ∀t ∈ [0, T ].

Now, it is possible to define an arbitrage opportunity in new terms.

Definition 3.3 (Arbitrage Opportunity). A self-financing trade strategy is an arbi-
trage opportunity if

Vϕ(0) = 0, P (Vϕ(T ) > 0) = 1, and P (Vϕ(T ) > 0) > 0.

Conversely, if the market allows for no arbitrage opportunities, as is assumed,
then the following is true.

Theorem 3.1 (No Arbitrage). If the market is arbitrage-free, equivalent martin-
gale measures P∗ exist.

This theorem has the further implication for the prices of assets in the arbitrage-
free market that the discounted asset prices are martingales under the equivalent
martingale measure P∗.

12



3.3 Risk-Neutral Pricing

Risk neutrality is a central concept in derivative pricing theory, which, to many
may seem contrary to classical finance where an investor requires additional com-
pensation for taking on extra risk. A risk-neutral investor does not have such a
preference, and thus disregards the volatility of the asset from the equation. Since
all inherent risk can be hedged away for most derivatives, the level of risk is irrel-
evant, and the absence of arbitrage also makes it clear that the expected return will
be that of the numéraire.

Now, let a contingent claim be denoted by X . If there exists a trading strategy
ϕ whose value process Vϕ(T ) = X , the claim is said to be attainable. If a contin-
gent claim is attainable, then arbitrage considerations make it clear that the price
of the contingent claim must be equal to the price of the replicating strategy. A
consequence of this is stated in the theorem below. A proof is found in [11].

Theorem 3.2. Given an arbitrage-free market,M. Then, any attainable contin-
gent claim X is uniquely replicated inM.

This property leads to an important definition in arbitrage pricing, called an
arbitrage price process.

Definition 3.4 (Arbitrage Price Process). Let X be an attainable contingent claim
in an arbitrage-free market. Then the arbitrage price process πX(t), 0 6 t 6 T
of X is given by the wealth process of any replicating strategy ϕ for X .

This is according to the risk-neutrality described above. Since the contingent
claims can be hedged, the risk in the individual contingent claim does not matter,
and the price is just the discounted expected payoff with respect to the risk-neutral
equivalent martingale measure P∗, which, in the section above was found to exist
in an arbitrage-free market.

Theorem 3.3. For an attainable contingent claim X , the arbitrage price process
is given by the risk-neutral valuation formula

πX(t) = β(t)−1E∗(Xβ(T )|Ft) ∀ T ∈ [0, T ],

where E∗ is the expectation with respect to the equivalent martingale measure P∗,
and β is the numéraire.

These are the basics of risk-neutral pricing theory, laying the foundation for
the next section.
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3.4 Complete Markets

While theorem 3.3 gives an explicit formula for calculating the fair price of an at-
tainable contingent claim, markets are often complicated. Hence, knowing whether
a claim is attainable or not is not immediately clear. In order to make this problem
more manageable, the concept of a complete market is useful.

Definition 3.5 (Complete Market). A market is said to be complete if every con-
tingent claim is attainable.

This definition provides no further idea of whether the contingent claims are
attainable or not. The theorem below, however, provides more general conditions
for when a market is complete.

Theorem 3.4 (Completeness of Markets). A market is complete if either of the
following equivalent statements are true.

1. There exists a unique equivalent martingale measure P∗.

2. Let d be the number of sources of randomness in the market. Then the num-
ber of traded assets, including the numéraire asset, is d+ 1.

Further, the notions of no-arbitrage and complete markets lead to a central the-
orem when pricing assets, referred to as the fundamental theorem of asset pricing,
which is stated below.

Theorem 3.5 (Fundamental Theorem of Asset Pricing). In an arbitrage-free com-
plete market, there exists a unique equivalent martingale measure, P∗

An observation that is clear throughout this entire chapter is the infrequency
of the real-world measure, P. The risk-neutral measure, P∗, however, appears
frequently, and is much more important in terms of derivative pricing. While in-
vestors generally assign widely different probabilities to different events, using
this measure would not provide any consistent prices of derivatives. The models
used, however assume that the investors agree on the volatility in the market. By
theorem 2.1, the volatility remains the same after a change of measure, enabling
pricing of derivatives based on the real-world volatility which does not change in
a risk-neutral setting. Another prerequisite for pricing under the risk-neutral mea-
sure is that the two measures agree on which events that are assigned a probability
zero, since that is a requirement for equivalence in the first place.

When it comes to pricing derivatives in this thesis, the evolution of the market
is simulated through Monte-Carlo simulation. This involves the simulation of a
numéraire for the entire lifetime of the derivative, which then discounts the cash

14



flow generated at maturity time T , making the discounted prices martingales. The
risk-neutral drift is regarded to be the risk-free rate, which the numeraire is re-
garded to be. The price process of the underlying asset is also simulated through
the risk-neutral measure, generating a payoff for each iteration of the Monte Carlo
simulation in addition to the simulation for the evolution of the risk-free rate. The
initial price of the derivative is then given by

V (0) = E∗(exp

(∫ T

0
r(t)dt

)
f(S, T )), (3.1)

where f(S, T ) is the payoff function of the derivative at maturity.
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Chapter 4
Interest Rate Modelling

4.1 Stochastic Interest Rate Models

Many different models exist for predicting the future development of interest rates,
and as interest rates are involved in some way in nearly every aspect of finance, a
lot of effort has been put into developing such models. The approach where interest
rates are regarded as stochastic processes is common, and there exist a wide variety
of stochastic interest rate models. Each of these models have their own strengths
and weaknesses, each capturing certain features of the interest rate evolution, while
missing out on others. They do, however, have one thing in common which is the
general form of the stochastic differential equation (SDE) describing the evolution
of the interest rates. This SDE is given by

dr = a(r, t)dt+ b(r, t)dW (t) (4.1)

where a and b are arbitrary functions chosen to fit to each individual model, while
dt is a deterministic time increment and dW is a standard Brownian motion. Apart
from this equation, there are differences between the different interest rate models,
but they can roughly be divided into a few categories.

4.1.1 The Bond Pricing Equation and Market Price of Risk

Even though fixed-income instruments such as American Treasury bills (T-bills)
in most cases are considered a risk-free investment, the value of T-bills are still
turning out to show volatility. This is because the T-bills, as well as other bonds, in
reality are priced based on the ”underlying” interest rate, which vary. Since there
is no way to directly invest in the interest rate, an investment in a bond cannot
be hedged by taking a short position in the interest rate. This makes hedging the
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position more complicated than if there existed a traded underlying asset. To hedge
this position, a short position has to be taken in a bond with a different maturity.
The value of the portfolio containing the two bonds is then

Π = B1 −∆B2,

where the subscripts denote the different times of maturity. The value of this port-
folio in a small timestep dt changes according to

dΠ =
∂B1

∂t
dt+

∂B1

∂r
dr +

1

2
b2
∂2B1

∂r2
dt

−∆

(
∂B2

∂t
dt+

∂B2

∂r
dr +

1

2

∂2B2

∂r2
dt

)
,

(4.2)

This equation is obtained by applying Itô’s lemma to functions of r and t. Define
the quantity ∆ in such a way that a small change in the price of the bond does not
change the value of the portfolio. This is given by

∆ =
∂B1

∂r

/
∂B2

∂r
.

Acknowledging that the return of a risk-free portfolio is not higher than the risk-
free rate, assures that the return in equation (4.2) is rΠdt. By inserting the right
quantities and collecting all terms with B1 and B2 at each side of the equation, the
expression

∂B1
∂t + 1

2b
2 ∂2V1
∂r2
− rB1

∂B1
∂r

=
∂B2
∂t + 1

2b
2 ∂2B2
∂r2
− rB2

∂B2
∂r

, (4.3)

is obtained. This is only true if both sides are independent of the maturity times of
the bonds, T1 and T2. Let either side equal the coefficient

k(r, t) = b(r, t)Λ(r, t)− a(r, t).

The quantity Λ is called the market price of risk, and is the amount an investor
requires for taking on an extra unit of risk in the bond. The market price of risk
varies with time, and during uncertain times where the market volatility is high,
this quantity tends to increase. Finally, an equation that is also obtained in this
process is the bond price equation, which is given by

dB

dt
+

1

2
b2
d2B

dr2
+ (a− Λb)

dB

dr
− rB = 0. (4.4)
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4.2 One-Factor Interest Rate Models

The simplest stochastic interest rate models are the one-factor models where one
single source of randomness describes the evolution of the interest rates. These
models primarily aim to model the short rate, the interest rate with the shortest
maturity available. Then, using the modelled short rate as a basis, the rest of the
yield curve describing interest rates with other maturities is derived.

When modelling interest rates, even though their evolution is considered stochas-
tic, certain properties are considered desirable. Different named models incorpo-
rate these properties to a varying degree. These desirable properties are the fol-
lowing:

• Positive interest rates: Interest rates are generally positive, and this is mo-
tivated by the time value of money. Negative interest rates are, however,
observed in many parts of the world, especially in Europe and Japan, as of
2019.

• Mean reversion: Interest rates are generally thought of to be rooted to some
mean level, and the deterministic drift part of the equation should ideally
have a form ensuring that the interest rates will move towards the mean with
time. The mean level might be time dependent.

• Non-attainable lower bound: Many models would get stuck at the lower
bound (such as 0) if it were attainable. This is solved by making the bound
non-attainable.

Among the most widely known one-factor interest rate models are the Vasicek
model introduced in 1977. The Vasicek model was introduced in [12] and follows
the equation

dr = (η − γr)dt+ βdW

where η is the long term mean, γ is a parameter describing the speed of mean
reversion and β a volatility parameter. This model is mean-reverting but it has no
lower bound, and can simulate negative rates.

However, with the term structure of interest rates clearly not being a one di-
mensional object, and consequently cannot be explained fully by a single factor,
the models quickly run out of sync with market data. The single factor implies
that any shift in the yield curve is a parallel shift, thus causing all modelled rates
to be perfectly correlated. After a quick look at the market, it is obvious that this
is not the case. Because of this, one-factor models must frequently be calibrated
to market data, to avoid too large discrepancies between real and modelled prices
[13]. This serious shortcoming makes it hard to model interest rates for longer
periods of time, motivating the need for more sophisticated models.
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4.2.1 Multi-Factor Models

As argued, the one-factor models briefly discussed above have some serious short-
comings, and a natural step further to deal with these shortcomings would be ex-
tending the model. Multi-factor extensions of the one-factor models presented
above exist, modelling at least one longer rate, with an independent source of ran-
domness, in addition to the short rate modelled by the one-factor models. The
governing SDE for multi-factor models is

dri = ai(r, t) + bi(r, t)dWi, i = 1, 2, . . . , N

where N is the number of factors, or sources of randomness, in the model. These
models can capture more complex structures in the term structure of interest rates
than a parallel shift and consequently provide simulations closer what is observed
in real markets.

4.3 The Heath-Jarrow-Morton Framework

The Heath-Jarrow-Morton (HJM) framework was introduced in the 1992 article
Bond Pricing and the Term Structure of Interest Rates: A New Methodology for
Contingent Claims Valuation by David Heath, Robert Jarrow and Andrew Morton
[5]. This framework provided a new methodology for modelling interest rates,
using the whole term structure instead of using only a fixed number of factors
or driving sources of randomness. In principle, this makes the model an infinite-
dimensional model, since the term structure is an infinite-dimensional object, with,
in principle, infinitely many times of maturity. However, in practice, the interest
rates in the market only exist with a finite number of maturities and the HJM model
is thus implemented with a finite number of factors, usually quite low, between 3
and 5 [7]. For this thesis, an implementation of the HJM framework has been used
to generate scenarios for interest rate development. The model implemented is in
accordance with the method described by Glasserman in [7].

The HJM framework is a forward rate model and uses the instantaneous for-
ward rates to describe the evolution of the interest rates. Forward rates differ from
ordinary interest rates, and are defined the in following way.

Definition 4.1 (Forward Rate). A forward rate, denoted F (t, T1, T2), is the interest
rate that can be guaranteed at time t for investing money in the interval [T1, T2],
where t 6 T1 6 T2.

While the model is specified for forward rates in the original article, using
other rates observed in the markets, such as swap rates of zero-coupon bond rates,
are equivalent to using the forward rates. There are, however one good reason to
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use the forward rates, since it can be argued that these reflect a somewhat more
basic description of the term structure of interest rates [7].

The HJM framework specifies an ultimate maturity date, which is denoted by
T ∗ as the final point of simulation. Hence the evolution in the forward curve is
at every point in time, t, simulated for the interval [t, T, T ∗], 0 6 t 6 T 6
T ∗ , where T are the maturity dates of the forward rates observed in the market.
Generally, T ∗ is the longest maturity available in the market. As the time increases,
the maturities of the interest rates are adjusted to fit the remaining time to maturity
of the given interest rate.

From the bond pricing equation, the equation

B(t, T ) = exp

(
−
∫ T

t
f(t, u)du

)
(4.5)

can be deduced. This equation related the bond prices, B, and the forward rates,
f . As a consequence of this relation, the forward rates can always be calculated
from the prices the bonds are traded at in the market, and are given by

f(t, T ) = − ∂

∂T
logB(t, T ). (4.6)

The shortest available interest rate is used to generate the short rate, which in
the case of the HJM model is the instantaneous forward rate with shortest avail-
able maturity time. In symbolic terms, this is denoted r(t) = f(t, t). Evolution
of the forward rates in the HJM framework are described through the stochastic
differential equation

df(t, T ) = µ(t, T )dt+ σ(t, T )>dW (t). (4.7)

When operating in the HJM setting, the differential df is with respect to the current
time t, not the maturity argument T . W is a d-dimensional standard brownian
motion, and d is the number of random sources, or driving forces, of the model.
Generally, this number is quite low, often in the range between one and three. A
higher number of factors enables the model to capture more advanced movements
in the yield curve than a model with fewer factors. For the model implemented
for this thesis, the drift and volatility factors µ and σ are deterministic functions
of the time arguments t and T > t. These functions could also in principle be
stochastic [14], and although this is a highly interesting topic, such models will not
be used for the interest rate models used in this thesis. Equation (4.7) represents
the evolution of the forward curve under a risk-neutral measure. The absence of
arbitrage in the markets implies that asset prices be martingales when divided by
the numéraire

β(t) = exp

(∫ t

0
r(u)du

)
. (4.8)
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That being said, interest rates are not assets, and the implications of imposing risk-
neutral dynamics on interest rates are not immediately clear, and will hence be
discussed in the subsequent paragraphs.

The risk-neutral dynamics of assets are known, and hence, starting with assets
is natural for deriving the implications of risk-neutrality on interest rates, more
specifically a bond, called B. Then, the discounted bond price B(t, T )/β(t) must
be a positive martingale and the bond price returns are given by

dB(t, T )

B(t, T )
= r(t)dt+ ν(t, T )>dW (t), 0 6 t 6 T 6 T ∗. (4.9)

Here, ν denotes the bond volatility, and is a function of the bond prices, or equiv-
alently through equation (4.6), the forward rates. ν is an unwanted factor in this
equation because the pricing is performed under risk neutrality. To eliminate this
factor, Itô’s lemma is applied to (4.9), and this yields

d logB(t, T ) =

[
r(t)− 1

2
ν(t, T )>ν(t, T )

]
dt+ ν(t, T )>dW (t). (4.10)

Further, differentiation with respect to the maturity argument T , and changing the
order of differentiation gives the dynamics for the forward curve when inserted
into (4.6). The equation obtained is

df(t, T ) = − ∂

∂T
d logB(t, T )

= − ∂

∂T

[
r(t)− 1

2
ν(t, T )>ν(t, T )

]
dt− ∂

∂T
ν(t, T )>dW (t).

Now, the desired expressions for the risk-neutral drift and volatility parameters, µ
and σ, can be extracted from inserting this expression into the governing stochastic
differential equation (4.7). These are given by

σ(t, T ) = − ∂

∂T
ν(t, T ) (4.11)

and

µ(t, T ) =

(
∂

∂T
ν(t, T )

)>
ν(t, T ). (4.12)

Clearly, the bond volatilities are still present in (4.12), but inserting (4.3) yields
the final expression for the risk-neutral drift in an arbitrage-free world, which is
explicitly given by

µ(t, T ) = σ(t, T )>
∫ T

t
σ(t, u)du. (4.13)
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Now, all the terms of the expression for the forward rate under risk-neutral dynam-
ics are found and the governing equation (4.7) in the risk-neutral world becomes

df(t, T ) =

(
σ(t, T )>

∫ T

t
σ(t, u)du

)
dt+ σ(t, T )>dW (t). (4.14)

4.3.1 Discretization of the HJM Framework

As briefly mentioned, the HJM framework described in the above section regards
the forward curve as a continuous function. This fact has the consequence that
simulation from the continuous model is not possible, except for certain, highly
specific situations. Hence, a discretization scheme for f is necessary in order to
generate simulations from (4.14).

The forward curve f(t, T ) is a function of both the current time t and the time
to maturity T , and a discretization is needed for both these arguments. Start by
fixing a time grid 0 = t0 < t1 < . . . < tM for the time argument t. Even
when keeping the time argument fixed at ti, representing the forward curve in
a continuous manner is still infeasible. Hence, a grid is fixed for the maturity
argument T as well, and the two grids are assumed to be equal for the rest of this
thesis even though they in principle could be different. However, having them
equal simplifies notation a lot, and the implementation of the model in this thesis
also assumes that the two grids coincide.

In the continuation, a circumflex is used to distinguish discretized variables
from their corresponding continuous version. The discretized bond prices, B̂(ti, tj)
are, analogously to equation (4.5), given by

B̂(ti, tj) = exp

(
−
∑
`=i

j − 1f̂(ti, tj)[t`+1 − t`]

)
. (4.15)

In order to minimize discretization error, the initial values of the discretized bonds,
B̂(0, tj) are calibrated so that they coincide with the values of the market bond
prices, B(0, tj) for all maturities in the discrete grid. By comparing (4.15) and
(4.5) is is clear that this holds when

j−1∑
`=0

f̂(0, t`)[t`+1 − t`] =

∫ tj

0
f(0, u)du. (4.16)

Stated for each component of the discretized forward rate, this becomes, equiva-
lently,

f̂(0, t`) =
1

t`+1 − t`

∫ t`+1

t`

f(0, u)du =
1

t`+1 − t`
log

B(0, t`)

B(0, t`+1)
, (4.17)
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for ` = 0, 1, . . . ,M − 1. From this it is observed that the initial values of the
discretized forward rates should be set to the average level in the intervals [t`, t`+1].

Now, a simulation of the forward rate will evolve according to the equation

f̂(ti, tj) = f̂(ti−1, tj) + µ̂(ti−1, tj)[ti, ti−1] +
d∑

k=1

σ̂k(ti− 1, tj)
√
ti − ti−1Zik,

where the Zik’s are iid random variables following a N(0, 1)-distribution. The
discrete drift parameter is approximated to best fit to the continuous drift derived
in (4.13), as well as preserving the martingale property of discounted bond prices
under risk-neutral measures. These drift parameters are given by

µ̂k(ti−1, tj)[tj+1 − tj ] =

1

2

(
j∑
`=i

σ̂k(ti−1, t`)[t`+1 − t`]

)2

− 1

2

(
j−1∑
`=i

σ̂k(ti−1, t`)[t`+1 − t`]

)2

.

Here, σ̂k denotes the k’th component of the d-dimensional vector σ̂. Further, this
gives the total drift, which is given by

µ̂(ti−1, tj)[tj+1 − tj ] =

d∑
k=1

µ̂k(ti−1, tj). (4.18)

4.3.2 Volatility in the HJM Model

The volatility parameter, σ, is an important quantity in the implementation of the
HJM framework performed for this thesis. Since both the deterministic drift pa-
rameters, µ as well as the random deviations depend on this parameter, a good
specification of the volatility is crucial for obtaining reliable simulations.

Since the HJM framework includes a wide variety of forward rates of all ma-
turities within the final time of consideration T ∗, it seems more natural to refer to
the volatility parameter as a volatility structure. This structure is found through
principal component analysis, which is presented in chapter 2.

This volatility structure, σ, is calibrated to the market prices of bonds at the
time of initialization of the model.
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Chapter 5
Counterparty Credit Risk

Counterparty credit risk is the risk that a counterparty in a contract is unable fulfill
its obligations agreed upon at initialization of the contract. In this chapter, an out-
line is first provided on the basics of credit risk in general. Then, some elementary
theory on measuring risk in finance is presented. Further, the theory is extended
to cope with the more specific counterparty risk, and finally some background is
provided on the regulations that apply to the field. The material in this chapter is
mainly based on the books by Cesari et. al. [15] and Jorion [16].

5.1 Outlining Credit Risk

Credit risk is the risk that an issuer of a debt instrument, such as a bond, fails to
meet its contractual obligations, i.e. defaults the contract. When estimating credit
risk, especially three metrics are fundamental for the estimation.

1. Probability of Default (PD): The probability that the issuer of the instru-
ment is not able to fulfill its contractual obligations.

2. Loss Given Default (LGD): When a counterparty defaults on a contract,
one can normally recover parts of the claim from the counterparty’s assets.
Hence the loss is rarely the full notional amount of the defaulted claim.

3. Exposure At Default (EAD): When a default occurs, what is the exposure
of the defaulting counterparty. This is especially important for contracts
where the exposure varies with the levels of interest rates.

This thesis will focus on the part considering exposure at default, given dif-
ferent scenarios of development in the markets. The other two parts of the credit
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risk, requires more specific data about the counterparty, such as credit ratings, cap-
ital structure, and future development of these factors among others. A complete
framework for estimating credit risk related to a transaction, would incorporate all
these factors.

Further, frameworks can also be extended to cover portfolio risk, in where the
following two risk elements also have to be covered [11]

1. Default and Credit Quality Correlation: To which extent the defaults or
credit migrations of one counterparty are correlated to similar events for
other counterparties.

2. Risk Contribution and Credit Concentration: How much of the total ex-
posure of a portfolio depends on a single counterparty or a single risk factor.

These may also require data from external sources to provide good estimates,
but while constructing a portfolio, an estimate of the concentration of the exposure
due to a single counterparty or risk factor can be provided without the use of ex-
ternal data, in many cases. These parts of the credit risk process are not explicitly
part of this thesis, but is useful to keep in mind for the analysis.

5.2 Risk Measures

According to Holton [6], risk is a product of exposure and the uncertainty of out-
comes. While the credit risk part in this thesis concerns the exposure part of the
equation, and what consequences that may arise in unfavorable outcomes such as
defaults, one can also look at the losses that will occur to a portfolio in the event of
unfavorable development of the markets. As part of the revisions of the regulations
of banks and other financial institutions in the wake of the financial crisis in 2008 ,
banks and other financial institutions are required to report the market risk of their
trading portfolios [4]. Two risk measures that are particularly well-known are the
measures Value-at-Risk (VaR) and Expected Shortfall (ES). They are defined the
following way.

Definition 5.1 (Value-at-Risk). A VaR measure is specified with a level of confi-
dence, α and a time-horizon T . Let L be a loss of the portfolio. The VaR estimate
for given values of these parameters are then

P (L > VaRTα ) 6 1− α. (5.1)

Definition 5.2 (Expected Shortfall). Given a confidence level and time-horizon as
above. Then the corresponding ES estimate of a portfolio is

ESTα = E
[
L|L > VaRTα

]
(5.2)
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A VaR estimate thus only contains the loss which occurs during the worst
fraction of periods, while ES better captures the real losses when these periods
happen. The risk estimates from the two measures may differ quite significantly,
especially when portfolio returns show signs of leptokurtosis.

5.2.1 Coherent Risk Measures

Risk can be measured in variety of different ways, each measure providing dif-
ferent results and capturing different aspects of the riskiness of an investment, but
up until now there has not been a way of comparing a risk measure to another.
Artzner et. al. proposed, in the article ”Coherent Measures of Risk, a framework
for estimating the quality of a risk measure. The article proposes four desirable
properties that a high quality risk measure should have. A risk measure satisfying
all these properties are called coherent.

Definition 5.3 (Coherent Risk Measure). A risk measure, R, on a portfolio return
P is called a coherent risk measure if it satisfies all the following properties.

1. Monotonicity. P1 6 P2 =⇒ R(P1) > R(P2). If the returns of portfolio
1 is systematically lower than the returns of portfolio 2, for all states of the
world, then the risk is greater in portfolio 1.

2. Translation invariance. Let K be an amount of cash. Then R(P + K) =
R(P )−K. The addition of cash to a portfolio reduces risk by that amount.

3. Homogeneity. Let a be an arbitrary factor. Then, R(aP ) = aR(P ). In-
creasing the portfolio, by a factor, causes the risk to increase proportionally.

4. Sub-additivity. R(P1 + P2) 6 R(P1) + R(P2). Adding two portfolios
together cannot increase the total risk. Equality holds if the returns are
independent.

From this definition, an important conclusion that can be drawn is that ES is a
coherent risk measure, while VaR is not, because it is not sub-additive [17].

5.3 Basics of Counterparty Exposure

As argued previously, counterparty exposure, or exposure at default is an impor-
tant part in the process of evaluating credit risk. When estimating counterparty
exposure, multiple risk measures exist, providing different information about the
risk associated with the contract. Two of the most notable are stated below.
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Definition 5.4 (Potential Future Exposure (PFE)). The PFE of a contract is given
with a confidence level α. Then PFEα is the exposure that will not be exceeded in
a proportion α of scenarios.

Definition 5.5 (Expected Positive Exposure (EPE)). The EPE of a contract is the
mean of the positive part of the distribution of the exposure.

One thing worth noting about the PFE measure, is that it is in fact a VaR
measure, as introduced in section 5.2 , without the time horizon being specified
explicitly. The EPE is not a measure capturing the tail of the distribution of future
values, and is more to be thought of as a measure for a development that is likely
to occur. The EPE thus reflects a very likely scenario, and exposure equal to the
EPE should not be thought of as worrisome requiring extraordinary intervention
through hedging or similar.

5.3.1 Simulating Counterparty Exposure

In its essence, there are two elements of computing counterparty exposure of a
derivative. The first part is to generate scenarios for the underlying process, which
in this thesis are the interest rates. This is done by Monte Carlo simulation, which
is described in chapter 2. Then, the second part is to evaluate the given derivative
at each simulated point in the simulation of the underlying. For a swap, this means
that the forward curve for the entire time until maturity needs to be estimated for
each time in the time grid used for simulation, in order to generate an estimate for
the exposure given a certain realization of the simulation.

Further, as a final step, risk measures are applied to the collection of simula-
tions of the counterparty exposure, to generate an estimate of the risk associated
with the contract.

5.4 Regulations on Counterparty Credit Risk

Regulations on counterparty risk was revised in the aftermath of the financial cri-
sis. During this crisis, even the largest banks and insurance providers globally
were considered to carry significant amounts of counterparty risk, requiring gov-
ernmental aid to avoid bankruptcy. Since banks are highly leveraged institutions,
involved at ll levels in the financial system, failures of large banks can destabilize
the whole financial system. As a consequence of this, banks are subject to a vari-
ety of regulations, ensuring the stability of the financial system. These regulations
were revised after significant weaknesses had been exposed in the crisis.

The Bank for International Settlements proposed new regulations, stating that
standardized contracts should be cleared through a central counterparty. The re-
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quired margin should correspond to the VaR at a 99 % significance level on a 5 day
time horizon for centrally cleared derivatives and a 10 day horizon for non-cleared
derivatives [3] [18]. This is, as earlier stated, equivalent to a potential future expo-
sure with the same significance level.

For the most standard OTC derivatives, the new regulations demanded that
these be cleared through a central counterparty (CCP), thus transferring the risk to
the CCP. A CCP has the sole responsibility of handling the risks associated with
the contract. Thus, the CCP has a net zero position, and both counterparties have
the CCP as their only counterparty. This has led to lower risk in the derivatives
sector in banks, and a more stable financial system in general. However, as very
few entities are responsible for very large amounts of the clearing, a new systemic
weakness has emerged, potentially causing grave damage to the financial system
if risk management is performed poorly [19].

In a note written by Rama Cont [18] for the International Swaps and Deriva-
tives Association (ISDA), some changes in the regulations are proposed. The ar-
ticle argues that the existing regulations do not take into consideration the market
depth and concentration of positions, causing significant liquidity risk for larger
position in thin markets. Further, a longer horizon for the the VaR measure is
proposed, to reflect a longer liquidation horizon.

Other regulations that are imposed to financial institutions concern topics such
as maximum exposure to single counterparties, frequency of settlement of collat-
eral and reserve capital. These regulations are of less importance for the discussion
in this thesis.

5.5 Managing, Mitigating and Hedging Counterparty Risk

The regulations described in the section above assigns higher margin requirements
to higher notional amounts. This incentivizes minimization of the positions. Since
many CCPs handle large amounts of transactions, and market participants are split
in their view of the market, CCPs handle many positions with opposite exposure.
A way to decrease the overall margin requirements and also reduce total risk, is
by netting these opposite positions to reduce the overall exposure from the deriva-
tives. The process of netting out positions is called trade compression. Trade
compression has been a significant explanatory factor for the reduction in the to-
tal outstanding amounts in the derivative markets in recent years [1]. However,
multilateral netting may lead to changes in which counterparties the exposure is
towards, requiring that the CCP do its risk management correctly in order to avoid
systemic risks to arise [20].

As mentioned at several places earlier in this chapter, derivative contracts come
with certain margin requirements. This is in itself a way to reduce the overall risk,
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since the margin works as a security against unfavorable development in the mar-
ket. This collateral is usually posted in cash or other liquid assets, such as gov-
ernment bonds. Posting collateral for parts of the exposure reduces the potential
loss by the same same amount as the collateral. Generally, collateral is split in two
parts, one part which is paid when entering the agreement, and a variable part paid
during the lifetime of the agreement depending on the current exposure.

In cases where a CCP is not handling the risks associated to the derivatives, a
party entering into a derivative agreement may need to manage the counterparty
risk themselves. Obviously this involves getting an overview of the potential expo-
sure to the counterparty, which this thesis largely focus on. In addition, estimates
for the probability of default and recovery rate given default are required.

A normal way to hedge the counterparty exposure is through purchasing credit
default swaps (CDS), which is a derivative generating a payout in case of a coun-
terparty’s default. CDSs work as insurance against counterparty default, but it is
merely a transfer of risk to the issuer of the CDS. Generally, the CDS prices should
reflect the risk of default for the given counterparty [16].

For small or high-risk counterparties, CDSs may not be available for purchase,
and consequently hedging has to be done through other means. In such situations
where CDS purchasing is impossible or impractical taking a short position in the
underlying debt is among the ways to hedge the exposure. This position will de-
velop positively in an event of default. In many cases it is also possible to identify
market factors that are specific for the counterparty having a high correlation to
their specific area of business. This strategy carries other types of risk, but may
still be a useful tool for managing counterparty risk.
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Chapter 6
Data and Methodology

For this thesis, the Heath-Jarrow-Morton framework for interest rates was imple-
mented to generate future scenarios for the development of interest rates. The
simulation was done using the Monte Carlo approach.

Further, counterparty exposure for different swap contracts have been esti-
mated, based on the HJM simulations. To quantify the exposure, the measures that
have been used are Potential Future Exposure and Expected Positive Exposure.

6.1 Supplied Data

The data used for the analysis were supplied by DNB and are the Norwegian
Inter-Bank Offered Rates (NIBOR) and Norwegian swap rates from 16.08.2002
to 11.03.2019. The maturities of the NIBOR rates are 3 months and 6 months, and
the maturities of the swap rates are 1, 2, 3, 4, 5, 7, 10, 15 and 20 years. Due to
small deviations in which days these rates were quoted, data from dates where at
least one of the rates were not quoted has been removed from the data set. This
problem could also have been solved by other means, for instance by interpolation
of the missing points. However, the number of missing observations was small,
and consequently, the effect of removing the observations is also limited. The
missing observations were also fairly evenly distributed in the data set, causing
a smaller impact on the data than if the missing observations had been clustered
around certain periods. The NIBOR and swap interest rates are considered risk
free, with probability of default equal to 0. Hence they represent the risk free rate
with different maturities.

The period the data is taken from was characterized by certain events in the
financial markets. The beginning of the period, the years around 2002, was char-
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acterized by the burst of the dot-com bubble. Further, in 2008, the most profound
financial crisis since the great depression in 1929 took place. This crisis had a huge
impact on the financial markets and led to a sharp decrease in interest rates. In the
aftermath of this financial crisis, interest rates have been kept low, and negative
interest rates, generally regarded as a very bad property for interest rate models,
have been the reality in most of Europe and Japan.

In figure 6.1, the swap rates of all the different maturities are shown as a func-
tion of the yield they generate at any given time. From the graph, it is evident that,
even though the evolution of the interest roughly follows each other, the spreads
are not constant and vary with time. As argued in chapter 4, one factor models,
which only describe a parallel shift in the yield curve, are not accurate, and this is
clearly shown in the figure. A table showing some essential summary statistics of
the interest rates can be found in table 6.1.
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Figure 6.1: The swap rates in the period from 2002 to 2019 used for the analysis. The
different colors denote different times of maturity.
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Interest rate Average yield (%) Annualized volatility Daily volatility
3m NIBOR 2.612 0.7105 0.0448
6m NIBOR 2.608 0.6945 0.0437

1y Swap 2.760 0.6643 0.0418
2y Swap 2.896 0.6374 0.0402
3y Swap 3.044 0.6402 0.0403
4y Swap 3.183 0.6411 0.0404
5y Swap 3.310 0.6338 0.0399
7y Swap 3.516 0.6246 0.0393
10y Swap 3.724 0.6281 0.0396
15y Swap 3.879 0.6898 0.0435
20y Swap 3.914 0.6845 0.0431

Table 6.1: Some summary statistics about initial interest rate supplied. The volatilities
are calculated in absolute terms (not relative). The data has been collected from the time
period between 16.08.2002 and 11.03.2019.

From table 6.1 it is easily observed that the interest rates with longer maturity
times tend to be at higher levels than interest rates with shorter maturity. This
is to be expected from financial theory, as investors will normally require higher
compensation for tying up their money for longer periods of time. An important
observation from figure 6.1 is that the general level of the interest rates tend to
decrease across the period, with a slight increase during the most recent years.

The average volatility across the entire period of observation is also shown in
table 6.1, in daily and annual terms. It is worth noting that the volatility is seen to
be far from constant in the period, showing significant signs of clustering at certain
periods. Hence, the volatility in these interest rates varies greatly throughout the
period, with long periods with significantly lower volatility, as well as periods with
significantly higher levels of volatility.

6.1.1 Interpolation of data

Since the maturities of the interest rates are unevenly distributed, rates are interpo-
lated to create a grid of evenly distributed rates for the whole term structure in the
interval [0, T ], where T = 20 years. Interpolation of rates to fit to predefined ma-
turities, such as whole years is common market practice, and is done in the yields
provided daily by the U.S. Treasury [21]. This interpolation is mostly due to the
fact that there are generally no existing outstanding bond with the exact remaining
maturity of, say, 10 years. This would require debt to be issued every day, which
would not be suitable. It would also require trading in the instrument every day, at
a certain volume, to make the prices trustworthy. Neither of these requirements are

33



realistic, hence interpolation is performed to provide an approximate value based
on the assets that are traded, having remaining maturity closest to the desired time.

Since the interest rate data supplied for this thesis only contained data for the
maturities stated above, intermediary maturities have been interpolated linearly
such that there exist annual maturities in the entire period of consideration, which
is 20 years.

6.1.2 Transformation to Forward Rates

Since the HJM framework requires forward rates, and the rates supplied for the
analysis are NIBOR and swap rates, meaning that a transformation has to be per-
formed in order to obtain the rates as forward rates. The interest rates are trans-
formed according to equation (4.17), to obtain the instantaneous forward rates for
all the original times of maturity as well as the interpolated ones.

6.2 Volatility Structure

The volatility structure is specified from principal component analysis, as briefly
mentioned in chapter 4. For this specification, the data with interest rates trans-
formed into forward rates is used. Using the entire dataset, the principal com-
ponents are calculated, and in table 6.2 below, the proportions of the variance ex-
plained by each principal component is found, as well as the cumulative proportion
of the variance explained by the PCs λ1, . . . , λi.

PC Explained variance Cumulative explained variance
λ1 62.79 % 62.79 %
λ2 17.29 % 80.09 %
λ3 7.47 % 87.56 %
λ4 6.07 % 93.63 %
λ5 3.11 % 96.74 %
λ6 1.41 % 98.15 %
λ7 0.58 % 98.73 %

Table 6.2: Proportion of explained variance and cumulative explained variance by each
PC in the transformed data.

From the table it is seen that more than 95 % of the variance in the data can
be explained from the first five PCs, which is assumed to be sufficient in this case.
Consequently, five PCs are used for the HJM algorithm in the further analysis of
this thesis.
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The term structure of interest rates is a complex function, and the principal
components provides a way to explain this complex structure in fewer dimensions
than the original data. In figure 6.2 the first three principal components are shown
as a function of the maturity of the interest rates. Accordingly, these PCs represent
the three most important movements in the yield curve. Only the first three PCs
are shown, since these are more interpretable than the rest.
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Figure 6.2: The factor loadings of the first three principal components in the interest rate
data, as a function of the maturity time.

It is seen from the figure that the first PC represents a near parallel shift in the
yield curve, where the loadings from all maturities are almost equal.. This is the
most important movement in the yield curve, accounting for more than 60 % of the
variability in the data. The second PC represent movements where the short end of
the yield curve move upwards, while the longer rates fall. This is a movement that
is generally present during yield curve inversions, seen ahead of many financial
crises. The third PC represents situations of increasing rates in the very short term,
while interest rates are falling for longer maturities. The yields are decreasing only
at the middle of the yield curve, while short and the longest rates increase slightly.

6.2.1 Swap specification

Swaps were briefly defined in definition 3.2, but this definition is very basic, and
different types of swaps exist. Swaps in this thesis have interest rates as the under-
lying. It is common market practice that swaps are initialized to have zero value
at t = 0. For this thesis it is assumed that swaps are specified in such a way that
a floating rate is paid, while a fixed rate is received. This is a normal exposure for
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banks, when offering fixed rates to corporations or private persons. The opposite
is also possible, resulting in the exact opposite exposure profile. Further, annual
settlements are assumed, and the received interest rate at each settlement date is
the short rate. A maturity of five years is chosen for the swaps. Shorter maturities
will to a limited degree provide good exposure profiles, while longer maturities are
a bit less common.

6.3 Simulation Procedure

First, simulation of the future evolution of the interest rates is done through the
HJM framework described in chapter 4. The framework is implemented in accor-
dance with the algorithm described in Monte Carlo Methods in Financial Engi-
neering by Paul Glasserman [7].

By using the simulated forward curves obtained from the HJM algorithm,
swaps are priced at every point in the specified time grid, which in this case is
annual. The swaps are initialized to have zero exposure at the beginning of the
simulation, in accordance to market practice. For each simulated scenario, the fair
swap price is obtained at every point in the time grid. The price of this swap at
every time point is then regarded as the level of counterparty exposure in each
scenario.

Then, by using the intermediate forward curves generated by the HJM algo-
rithm, swaps are priced. The fair price obtained from this procedure at every step
of the simulation is the exposure in the given scenario. Finally, for each of the pe-
riods simulated, the risk measures PFE, EPE and ES are applied to the exposures
obtained from the previous step. Both lower and upper bounds for the exposure
are estimated, with a significance level of 95 % for the upper bounds and 5 % for
the lower bounds.

6.3.1 Backtesting Methodology

To perform the backtesting procedure, the data are divided into periods. As the
model requires some data to generate reliable results, the first period is only to
provide the model with some data. Longer periods provide the model with more
data to estimate the volatility structure, leading to more precise estimates for ex-
posure of the swaps. The data were divided into five three-year periods, rounded
to the next trading day if the initial endpoint was not a trading day. However, since
the lifetime of the swaps that are analysed were five years, and exposure curves
are desired for the entire lifetime of the swaps, exposure is estimated for the next
five years, resulting in some overlap between the different swaps. Since there were
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no data for the full five years for the last period, the exposure is terminated at the
latest data point for that period.

Further, each period has been analysed in two ways. First, an analysis was
conducted by using only the volatility data for the preceding period to generate the
exposure, while the second approach used all available data from previous periods.

This causes the results from the first approach are more directly comparable to
each other than the results from the second approach, as more data is expected to
yield better results. A further discussion of the results and the validity of them will
be conducted in the next chapter.
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Chapter 7
Results and Discussion

7.1 Results

In this section the results obtained from the analysis is presented. First, the conver-
gence of the results obtained from the algorithm that generates possible scenarios
is presented. Then, the results obtained for each of the periods in the backtest are
presented.

7.1.1 Convergence of Swap Price

To check the correctness of the model and assess the question of ho many iterations
that are required to obtain satisfactory results from the swap pricing procedure, a
convergence test is performed. First, a number is selected for how many times each
experiment is to be performed. This number is chosen to be 50, which is well above
the roughly 30 that is required according to the central limit theorem is sufficient
to make the result well approximated by the normal distribution [22]. Further, for
each of these 50 replications, a swap is priced a number of times. Finally for each
number of iterations that is performed, the mean and standard deviation of the 50
replications is estimated. The results from this convergence test are found in the
figures 7.1 and 7.2.
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Figure 7.1: The average price of each of the 50 replication as a function of the number of
iterations. The dotted red line shows the theoretical price.
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Figure 7.2: The standard deviation of the price of the swaps, as a function of the number
of iterations. The dotted line shows the tolerance limit of 0.001.

From figure 7.1, it is clearly seen that the prices of the simulated converges
towards zero, which is the theoretically correct price. It is also seen that the stan-
dard deviation decreases according to the theory, proportionally to the square root
of the number of iterations. From figure 7.2, it is seen that the estimated standard
deviation crosses the tolerance limit of 0.001 for the error in the swap price at
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around e8, corresponding to roughly 5000 iterations. The standard deviations for
4096 iterations is 0.0005, well below the tolerance limit. For the remainder of this
thesis, 5000 iterations are performed to price swaps when estimating the counter-
party exposure. This provides a good margin with respect to the tolerance, without
requiring excessive computational power.

7.1.2 Results from Backtest

For each of the three-year periods in the backtest, results of the estimated counter-
party exposure is found in the sections below. Each period is taken from August
the initial year of the period, and lasts to August five years later. A figure of the
estimated exposure is found in the section for each period. In these figures, the ac-
tual exposure (AE) of a swap entered into at the beginning of the period is shown,
and the value of this swap is marked to market every trading day, thus having a
much finer granularity than the estimated quantities, which are only estimated at
each point in the time grid. The figures also show the EPE for the swap in each
period as well as the 95 % ES and PFE. If the exposures were to go negative, the 5
% PFE and ES4 are also shown for each period.
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Figure 7.3: The exposure in the period 2005 - 2010.

4This ES represent the 5% of cases having the most negative exposure, not the 95 % with the
least negative as original definition could indicate.
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From figure 7.3 it is seen that during the period of rapid rate hikes which took place
in the period before the financial crisis of 2008, the exposure profiles generated by
the model is not able to capture the AE from the swap contract studied. Since the
exact same volatility data is used for the model using all previous available data,
the result from this model generates the exact same exposure profiles. As expected,
the lower ES boundary is closest to capturing the negative exposure that is seen in
a period where interest rates increased rapidly, but the AE still moves significantly
outside the 5 % ES.
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Figure 7.4: The exposure in the period 2011 - 2016.

This period contains the financial crisis at the very beginning of the period, where
interest rates plummeted. The massive increase in volatility, reaching record highs,
causes the estimated exposure to be far outside all exposure estimates, including
the ES. As expected, when more payments are settled, the AE moves closer to
the 95 % ES boundary since fewer remaining payments naturally leads to lower
exposure.
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Figure 7.5: The exposure in the period 2011 - 2016.

During this period, the volatility has decreased to more normal levels, even though
they are still decreasing fairly rapidly. For the majority of the period, the AE stays
within the PFE boundary, but toward the end of the period, the PFE and ES go
below the AE. The linear decrease of the ES and PFE before the last settlement is
unrealistic, since defaults happen at settlement dates, and thus the exposure stays
the same until the payment is completed.
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Figure 7.6: The exposure in the period 2014 - 2019.

In this period, the interest rates continue to decrease, but a bit less aggressively that
in the previous periods, and they even increase a bit from the middle of the period
toward the end. The AE stays inside the PFE boundary for the entire period, except
for a short time at the beginning of the period. For the very end of the period, there
is no available data.

The exposure generated by the analysis using all previous available data esti-
mate somewhat higher exposures, but still fail to capture the dramatic fall in the
interest rates during and after the financial crisis by a good margin. Thus, the
results from such an analysis is surprisingly equal to the results presented here.
However, including high-volatility periods in the data may lead to the model being
more robust to more volatile periods in the time going forward. Plots showing the
exposure curves generated from the analysis using all available data are shown in
the appendix.

Distribution of the swap exposures

In figure 7.7 the distributions of the exposures after three years for the four periods
are shown.
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Figure 7.7: The simulated exposure profiles after 3 years for each of the four periods.
The red line shows the normal distribution, and the vertical lines show ES, PFE and AE as
indicated by the legends.

For the first period, the AE is negative to a degree that it falls outside of the
window shown in the figure. As for the second, more interesting period, it is seen
that AE exceeds the simulated measures by a lot. This is even after the interest rates
are normalized a bit, thus bringing the AE down from the values observed earlier
in the period. Examining the profile a little further, there are some simulations
giving exposure higher than the AE at this point. For the third and fourth periods
the AE of the swaps 3 years out in the simulation are well within what would be
expected, well below both the PFE and ES boundaries. Interest rates during these
two periods have been historically low, representing a low-rate environment unlike
anything observed previously, even though the volatility has been fairly low across
these periods.
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7.2 Discussion

Since interest rates have been decreasing for most of the period that is analysed,
a pay floating – receive fixed swap have caused positive exposure profiles for all
except the first period analysed. While carrying significant exposure in all these
periods, it is worth pointing out that this means that a positive counterparty expo-
sure is a positive development of the investment, thus representing earnings on the
contract. Until the payments are settled, however, the earnings cannot be consid-
ered risk free, and in the case of a counterparty defaulting, losses could amount to
the level of exposure to the counterparty in default.

Observing interest rates in developed markets since the mid-1980’s, rates have
had a downward trend in general, with lower highs and lower lows. This has left
holders of the kind of swaps studied in this thesis, which in many cases are banks,
in a favorable position for an extended period of time.

7.2.1 Negative interest rates

The HJM framework allows for negative interest rates, which, as mentioned earlier
traditionally has been regarded as a very bad property. However, negative interest
are at the time of writing this thesis the reality in major economies in Europe and
Japan. Generally, in the few cases where interest rates would turn negative, one
would expect that only the shorter interest rates turn negative, but at the time of
writing this, examples of 10-year government bonds with negative yields is not
rare 5. This may indicate that allowing interest rates to go negative is not a bad
property after all. Examining the simulated interest rates generated by the HJM
algorithm, the simulated interest rates tend to go more negative than the real ones,
providing a bit more strength to the original theory, or at least that there should
still be a lower bound for how low interest rates may go, even though this bound
may be negative.

7.2.2 Normally Distributed Interest Rates

The interest rate evolution simulated by the HJM algorithm are normally dis-
tributed. However, there is widespread evidence that this is not the case, and
that especially large negative outcomes are much more frequent in real markets
than in the normal distribution [23]. As is also observed from the analysis in this
thesis, the simulated exposures fail spectacularly when facing events such as the
financial crisis in 2008. The normal distribution is, however, a convenient one,

5German 10-year government bonds yield -0.36 % at the time of writing (05.07.19). Source:
https://www.bundesbank.de/resource/blob/772220/9498171a60ac9532503ffce5a89c13b9/mL/rendbund-
data.pdf
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representing the majority of events fairly well, and also having desirable statistical
properties, making it easy to sample from and easily understandable. These desir-
able properties are also important to account for when discussing the shortcomings
of normally distributed interest rates. An alternative to the normal distribution is
discussed below.

7.2.3 Volatility

The volatility structure used for this thesis is based on PCA, preserving the general
structure of the correlation between interest rates of different maturity. This is good
for many purposes, but the level of volatility is severely underestimated during
times of market stress, such as 2008. In addition to volatility being significantly
higher, there is also evidence that historical market correlations tend to break down
during such periods [24]. This may also lead to the exposure profiles being wrong
not only in terms of level of exposure, but also in shape, during stressful periods.

Using the volatility structure from only the most recent three years might be a
suitable strategy for estimating exposure under the current market situation. Thus,
using the most updated data would better capture the correlation structure that is
seen at the exact point of initialization of a contract. However, as risk measurement
is much about expecting the unexpected, one could argue that a longer period
where abnormal periods are included would be more suitable for capturing the
risk when things actually go wrong. This is also seen in the estimates in this
thesis, where the exposure generated with all available estimated higher exposure,
although the difference was not very large.

7.2.4 Risk Measures

Examining the estimated exposure profiles generated with ES and PFE, it is ob-
served that the model using all the available data tend to provide a bit wider es-
timates for the exposure. This is expected, since including periods with higher
volatility will result in the model estimating a higher general level of volatility.

It seems that ES provides better estimates than PFE, but none of them produce
satisfactory results. However, it is worth pointing out that all these exposure pro-
files are generated with normally distributed interest rates. By incorporating a lep-
tokurtic distribution such as Student’s t-distribution, one can observe that the dif-
ferences between the two measures would increase dramatically. Table 7.1 shows
how the quantiles of the standard normal distribution and Student’s t-distribution
as the observations go toward more and more extreme observations.

It is clearly seen that the distance between the normal and the t-distribution
increases drastically with higher quantiles. This indicates that a leptokurtic distri-
bution would be able capture abnormal events better than the normal distribution.
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Quantile N(0,1) t6 t4
95 % 1.64 1.94 2.13

97.5 % 1.96 2.45 2.78
99 % 2.33 3.14 3.75

99.9 % 3.09 5.21 7.17

Table 7.1: Quantiles of standard normal and Student’s t-distribution with 6 and 4 degrees
of freedom.

However, many issues are also related to such distributions, being more complex
and lacking the convenient properties of the normal distribution. Still, a leptokur-
tic distribution would lead to a larger distance between PFE and ES, making the
latter even better at capturing the exposure that may arise during periods of market
stress.

Financial institutions need to balance their profits and robustness. Incorpo-
rating risk measures generating higher exposure will also naturally lead to higher
capital requirements, reducing profitability. Thus, measuring risk most correctly
is the goal, resulting in more understandable capital requirements, as well as more
solid financial institutions. An ES measure could thus lead to lower safety margins
on top of the measured exposure.

A shift toward ES has been seen in the banks’ trading books after the financial
crisis [4]. These regulations concern exchange traded instruments such as stocks
and bonds. For standard derivatives, traded on exchanges, central clearing is stan-
dard, and the CCP is responsible for handling counterparty risk. This leaves the
OTC derivatives, where the risk is only required measured through a VaR measure
[18]. A shift towards measurement of risk in non-centrally cleared through ES as
well could thus lead to a more stable financial system in total, reducing financial
institutions’ vulnerability to larger market movements than expected.

With none of the risk measures providing satisfactory results for the exposure
during stressful periods, capital held by financial institutions should exceed the
limits posed by the ES if models similar to this is used. One solution could be
a constant factor times the ES, chosen carefully to balance profitability and risk
reduction. Hedging against certain risk factors, such as increased volatility, is also
a viable solution for many financial institutions, but hardly anything that can be
required through regulations.
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Chapter 8
Concluding Remarks

8.1 Conclusion

In this thesis counterparty exposure has been estimated for a pay floating – receive
fixed swap contract with five years maturity and annual settlements. The exposure
was estimated using the risk measures ES and PFE. The future evolution of interest
rates was simulated with the HJM framework for interest rates. The swap contract
was analysed for four different five year period, using historical data of at least
three years for each period.

ES was found to outperform the PFE measure in terms of capturing the real
exposure of a swap during these periods. However, none of them provided suffi-
ciently wide boundaries to capture the actual exposure during the financial crisis,
and neither during the fairly aggressive interest rate hike in the period preceding
the crisis of 2008. For the more recent periods with historically low rates, the
actual exposure was well below the boundaries posed by both these risk measures.

The normally distributed interest rates generated by the HJM model was dis-
cussed, and found to be reason for the ES not capturing the actual exposure during
volatile periods. To accommodate this problem, using a simulation method with a
leptokurtic distribution such as Student’s t-distribution was discussed. A such dis-
tribution would lead to a higher difference between the PFE and the ES, causing
the ES boundary to be higher, thus capturing the tail risk experienced in volatile
periods.

It was briefly discussed whether the volatility structure used to simulate the
interest rates was sufficiently well formulated to capture periods of market stress.
Not only does such periods have much higher levels of volatility, but there is also
observed a correlation breakdown during such periods, changing the traditional
correlation patterns. In light of this, incorporating a stochastic volatility model
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was briefly discussed.
As for the current markets, interest rates are very low, to a degree that could be

regarded as ”uncharted territory”. No extreme events have occurred for a signifi-
cant period of time, and market volatility is low. The implications of this low rate
environment is unknown, and one cannot be sure whether this is a new normal, or
if interest rates and volatility will return to higher levels again. In any case, loosen-
ing the regulatory framework and capital requirements is something to handle with
utmost care. Crises have a tendency to occur when nobody expects them, having
unexpected consequences. It is also worth noting that the existing regulations have
many more considerations than what is done in this thesis, many which are not
taken into account at all.

Risk measures that are incorporated into regulations for financial institutions
are expected to provide accurate representations of the real risk associated with
the financial activities of the institution. Regulatory bodies as well as financial
institutions should be aware of the strengths and, especially, shortcomings of the
regulations that are effective at any time, enabling them to take action when the
situation require measures to be taken.

8.2 Further Work

A natural path to explore for further work, is to perform similar analysis to the one
in this thesis with other modern interest rate models, such as the LIBOR market
model (also called the Brace-Gatarek-Musiela model). An outline of this model
can be found in [13] or [7]. Apart from historical interest rate data, no market
data has been used for the analysis in this thesis, and comparing the prices of
derivatives generated by the HJM framework to real market prices could be useful
for checking whether the simulated prices are in fact accurate or far off from reality.

To further examine the claims made about leptokurtic distributions in this the-
sis, it is also natural to continue working with incorporating a framework that
produces simulations according to such distributions. Then, examining the claims
made here further could also be done.

Another step that could contribute to establishing confidence in the models
and/or capital requirements proposed as a consequence of the model is to construct
scenarios of market stress, and simulating counterparty exposure under these these
conditions. Accurate generation of realistic scenarios of stress would be a major
challenge if this exercise were to be performed.
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Appendix

A Measure theory

This section presents some elementary background from measure theory, neces-
sary to fully understand the theory presented in chapter 2. The contents of this
section is based on the books by Bingham & Kiesel [11] and Klenke [25].

For the remainder of this section, let Ω be a set.

Definition A.1 (Algebra). A collection of subsets A0 of Ω is called an algebra on
Ω if

1. Ω ∈ A0,

2. A ∈ A0 ⇒ Ac = Ω\A ∈ A0,

3. A,B ∈ A0 ⇒ A ∪B ∈ A0.

A more general version of an algebra is the σ-algebra, defined the following way.

Definition A.2 (σ-algebra). An algebra A of subsets of Ω is called a σ-algebra on
Ω if for any sequence An ∈ A, additionally

∞⋃
n=1

An ∈ A

The pair formed by the set Ω and the σ-algebra is called a measurable space. In
order to make this measurable space into a more useful concept, functions, or more
accurately measures, will be defined on the measurable space.

Definition A.3 (Measure). A countably additive map, µ, on the measurable space
(Ω, A), such that

µ : A→ [0,∞],

is called a measure on that measurable space. Further, (Ω, A, µ) is called a mea-
sure space.
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When the measure on the measurable space is a probability measure assigning
values in [0, 1] to each event, the measure space is called a probability space.

A subclass of σ-algebras that is important in derivative pricing theory is the
filtration. It is defined the following way. [25]

Definition A.4 (Filtration). Let F = (Ft, t ∈ R) be a family of σ-algebras, where
Ft ⊂ F for every t ∈ R. If Fs ⊂ Ft for all s 6 t,F is called a filtration.

Another concept from measure theory having significant importance in the the-
ory of derivative pricing is the equivalence of measures, enabling market partic-
ipants to disagree on the probabilities of an event, yet agreeing on the price of
derivatives. A few results are necessary here.

Definition A.5. A measures P is absolutely continuous with respect to a measure
Q defined on the same σ-algebra F if P(A) = 0 whenever Q(A) = 0, A ∈ F .
This is denoted

P << Q.

Theorem A.1 (Radon-Nikodým). P << Q iff there exists a F-measurable func-
tion f s.t.

P(A) =

∫
A
fdQ, for all A ∈ F

The Radon-Nikodým theorem is an important prerequisite for the vital Radon-
Nikodým derivative in derivative pricing. Analogous with ordinary calculus, dP/dQ
for a function f is written if∫

A
dP =

∫
A

dP
dQ

dQ,∀A ∈ F .

Shorthand, when P << Q this is written

dP =
dP
dQ

Q.

Definition A.6 (Radon-Nikodým derivative). The measurable function dP/dQ is
called the Radon-Nikodým derivative of P with respect to Q.

Definition A.7 (Equivalence of measures). The two measures are P and Q are said
to be equivalent if P << Q and Q << P.

Essentially, this means that equivalent measures agree on which events that
have probability zero. The concept of equivalent measures is especially important
for the theory on risk-neutrality, being a cornerstone in the theory of derivative
pricing.
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B Stochastic Calculus

Many models in mathematical finance rely heavily on results from stochastic cal-
culus. This section presents the theory within this field being relevant for the
models in this thesis.

Definition B.1 (Standard Brownian Motion ). A continuous-time stochastic pro-
cessWt is a Standard Brownian motion, or a Wiener process, if the following three
statements are true.

1. W0 = 0;

2. {Wt , t > 0} has stationary and independent increments;

3. For every t > 0, Wt ∼ N(0, σ2t).

The Standard Brownian motion is a widely used process, which is central in
many financial models, mainly used for modelling the evolution of financial assets,
including stock prices and interest rates.

Definition B.2 (Adapted Stochastic Process). A stochastic process X(t), t > 0, is
adapted to the filtration F = Ft, t > 0 if Xn is Ft-measurable for all t.

In other words, the value of an adapted stochastic process, X(t),is known at time
t.

A class of stochastic processes having great importance in finance, is the mar-
tingales. Martingales describe ”fair games” which is typically the case for many
processes in finance.

Definition B.3 (Martingale). A stochastic process, Xt, is said to be a Martingale
if

1. X is adapted, and E[|Xt|] <∞ for all t > 0

2. E[Xt|Fs] = Xs for all 0 6 s < t <∞

where Fs is a filtration on X .

Further, a property that is implied by the efficient market hypothesis is the
Markov property. This property states that the future development of stochastic
processes only depend on the current state [26]. Such stochastic processes are
called Markov Chains.

Definition B.4 (Markov Property). A stochastic process, X , has the Markov prop-
erty if its next state only depends on the current state, independently of how the
current state is reached.
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The Markov property is useful for simplifying many problems by disregard-
ing all earlier information about a process. This causes the complexity of many
problems of decrease drastically.

Trading in financial markets takes in reality place in discrete takes, but the
intervals are very small, and assuming that trading takes place in continuous time
(when markets are open) is normal. When going from discrete time to continuous
time, as the time increment dt → 0, the result known as Itô’s lemma is useful.
Itô’s lemma plays an important role in stochastic calculus, comparable to Taylor’s
theorem in ordinary calculus [26].

Theorem B.1 (Ito’s Lemma). Suppose that the random function, G, is governed
by a stochastic differential equation of the form

dG = A(G, t)dX +B(G, t)dt, (1)

whereA andB are arbitrary functions. Given the function f(G), Itô’s lemma says
about the differential df that

df = A
df

dG
dX +

(
B
df

dG
+

1

2
A2 d

2f

dG2

)
dt. (2)
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C Additional Figures

In this section, the figures obtained from the analysis done with all the available
data prior to each period are shown. Since they barely differ from from the ones
shown in the analysis, they are discussed in little detail. As the results from the
period 2005 - 2010 is exactly equal to the ones presented in the main part, the
figure is omitted.
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Figure C.1: The exposure using all data in the period 2008 - 2013.
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Figure C.2: The exposure using all data in the period 2011 - 2016.
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Figure C.3: The exposure using all data in the period 2014 - 2019.
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