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Abstract
Customers are the foundation of any business’s success, and a business can never
be too grateful for loyal customers. Customer insight is therefore an important
key to help sustain loyal and active customers. In this thesis we are going to
detect significant differences between different customer types, as well as indi-
cating future inactive customers. Doing so, we will get useful insight about the
inactive customers, and perhaps understand why they choose to go from being
active to being inactive. The analyses are done on a bank customer database,
provided by the bank itself.

The bank customers are divided into six groups, or categories, based on
customer activity and the number products used. The categories are denoted
by A–F, where A contains the most active customers and F contains the least
active customers with no products used. We perform nominal regression in order
to detect differences between these groups. We experienced that customers that
have applied for loan/credit card are more likely to be customers from the
categories A and B. Furthermore, we experienced that probability for being
in category F is strongly decreased if the customer is a member or a non-
member with member benefits. Also, the probability for being in category A is
significantly increased if the customers have activated electronical billing.

Let the categories A–D relate to the active customers, and the categories
E–F relate to the inactive customers. To indicate customers that are going to
be inactive in the future, we create an indicator model. We perform statisti-
cal modelling and learning methods, such as binary logistic regression, random
forests and XGBoost, in order to create this model. We use model selection
methods, such as the Akaike Information Criterion (AIC), lasso regularization
and variable importance. The performance of a model is evaluated on the AUC
value on test data. The model that performed best was the XGBoost model
with all the variables included. Thus, this will be used as the indicator for
detecting bank customers that are going to be inactive within the next year.
We experienced that balance of the customer was clearly the most significant
variable, when it comes to being active or inactive in the future. The binary
logistic regression coefficient for this variable is negative. Hence, the higher the
balance on the deposit account of a customer, the lower is the probability for
being inactive in the future. The number of transactions of the customer and if
the customer has a loan, are both also very important factors when it comes to
being active/inactive in the future.
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Sammendrag
Kunder er grunnlaget for enhver forretning sin suksess, og en forretning kan
aldri være for takknemlig for sine trofaste kunder. I denne masteroppgaven skal
vi finne signifikante forskjeller mellom ulike typer kunder. Ved å gjøre dette kan
vi få nyttig kundeinnsikt av passive kunder, og forstå hvorfor kunder velger å gå
fra å være aktive til å bli inaktive kunder. Analysene er gjort på kundedatabasen
til banken som denne oppgaven er skrevet for.

Bankkundene er delt inn i seks grupper, eller kategorier, basert på kundeak-
tivitet og antall bankprodukter tatt i bruk. Vi betegner kategoriene som A–F,
hvor kategori A står for kundene som er mest aktive og kategori F står for kun-
dene som er minst aktive. Vi bruker nominal regresjon til å finne forskjeller i
hver av disse kategoriene. Vi fant ut at kunder som har vært i en søkeprosess
for lån eller kredittkort hadde en større sannsynlighet for å være en kunde av
kategoriene A og B. Vi fant også ut at sannssynligheten for å være kategorisert
i F er sterkt redusert hvis kunden er medlem eller ikke-medlem med medlems-
betingelser. I tillegg, sannsynligheten for å være en kunde av kategori A økes
kraftig dersom kunden har aktivert eFaktura.

La kategoriene A–D være kategoriene med aktive kunder, og kategoriene
E–F være kategoriene med inaktive kunder. Vi lager en indikatormodell som
forutser hvilke kunder som går fra å være aktive til å bli inaktive i fremti-
den. Vi utfører statistiske modellerings- og læringsmetoder, som binær logis-
tisk regresjon, “random forests” og XGBoost, for å oppdage disse kundene. Vi
tester også forskjellige modeller basert på modellseleksjonsmetoder som bruker
Akaike informasjonskriterium (AIC), lasso regularisering og viktighet av vari-
abler. Modellkvaliteten er evaluert på AUC-verdien på test data. Modellen som
presterte best var XGBoost-modellen med alle variablene inkludert. Dermed
vil denne modellen bli brukt som indikatormodellen, m.a.o. modellen som skal
forutse om en aktiv bankkunde holder seg aktiv eller blir inaktiv i løpet av det
kommende året. Vi erfarte at innskuddssaldoen til kunden var den mest sig-
nifikante variabelen i denne analysen. Den logistiske regresjonskoeffisienten for
denne variabelen er negativ, som betyr at jo høyere innskuddsaldoen er, desto
lavere sannsynlighet er det for å bli inaktiv i fremtiden. Antall transaksjoner av
kunden og om kunden har lån, er også svært viktige faktorer som spiller inn.
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Abbreviations

c = The prediction value of a leaf node in a decision tree
d = The number of categories, excluding a reference category
i = Customer index
j = Variable index
k = The number of explanatory variables (predictors)
m = Decision tree/basis function index
n = The number of customers
p = The total number of variables, equal to k + 1
p̂tr = Proportion of class r in region Rt
r = Category index
s = Splitting value in decision trees
t = Leaf node index
u = A latent utility model
w = Weight parameter
x = A single data value from X
xi = The data vector for a observation i
y = A response variable
y = A response vector
z = The size of the column subset P0

C = A cumulative distribution function
D = Deviance, or cross entropy
E = Misclassification error
F = The expected Fisher information matrix
G = Gini index
H = The observed Fisher information matrix
I = Identity matrix or identity function
K = The number of categories, equal to d+ 1
L = Likelihood function
M = The total number of trees
R = The predictor regions in a decision tree
T = The number of leaf nodes in a decision tree
W = A weight vector
X = A data matrix
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α = Some positive constant used in loss functions
β = Regression coefficient
γ = Penalizing parameter for T
δc = A column subsampling fraction
δr = A row subsampling fraction
ε = A positive value sufficiently close to zero
ε = An error term
ζ = A dispersion parameter
η = The linear predictor
θ = A parameter of interest
κ = The number of levels of a categorized variable
λ = Penalizing parameter used in lasso regularization
µ = Mean value
ν = Weight-smoothing parameter for w in XGBoost
π = Probability or proportion
ρ = Correlation parameter
σ = Standard deviance
τ = Parameter between 0 and 1, related ROC-curves
φ = Decision tree (basis function in XGBoost)
Γsplit = The maximum gain at node splits in φ
Σ = Covariance matrix
Ω = Complexity penalizing term
L = Loss function

AIC = Akaike Information Criterion
AUC = Area under curve, (for ROC-curves)
GLM = Generalized linear models
LOOCV = Leave-one-out cross-validation
MLR = Multiple linear regression
MSE = Mean squared error
ROC = Receiver operating characteristic
RSS = Residual sum of squares

v of 69



Table of Contents
Abstract i

Sammendrag ii

Preface iii

Abbreviations iv

1 Introduction and Problem Description 1

2 Theory 3
2.1 Background theory . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Multiple Linear Regression . . . . . . . . . . . . . . . . . 3
2.1.2 Generalized Linear Models . . . . . . . . . . . . . . . . . 4
2.1.3 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4 k-Fold Cross-Validation . . . . . . . . . . . . . . . . . . . 9

2.2 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 The Binomial Distribution . . . . . . . . . . . . . . . . . . 10
2.2.2 Canonical Link . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 MLE of β for Logistic Regression . . . . . . . . . . . . . . 11
2.2.4 Interpretation of Regression Coefficients . . . . . . . . . . 14

2.3 Nominal Regression . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 The Multinomial Distribution . . . . . . . . . . . . . . . . 14
2.3.2 Nominal Models . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Model Selection and Regularization . . . . . . . . . . . . . . . . . 16
2.4.1 Lasso Regularization . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Akaike Information Criterion . . . . . . . . . . . . . . . . 17

2.5 Tree-Based Ensemble Methods . . . . . . . . . . . . . . . . . . . 18
2.5.1 Random Forests . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Extreme Gradient Boosting . . . . . . . . . . . . . . . . . 20

2.6 ROC Curves and AUC . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Implementation in R 27
3.1 Understanding the Data Sets . . . . . . . . . . . . . . . . . . . . 27
3.2 Significant Differences Between Customer Categories . . . . . . . 33

3.2.1 Column Filtering . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Row Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Dummy Variable Coding . . . . . . . . . . . . . . . . . . 36
3.2.4 Nominal Logistic Regression in R . . . . . . . . . . . . . . 37

3.3 Indicator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Column Filtering . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Row Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 The full model . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.4 Variable Selection Based on AIC . . . . . . . . . . . . . . 40
3.3.5 Variable Selection Based on Lasso Regularization . . . . . 41

vi of 69



3.3.6 Variable Selection Based on Variable Importance . . . . . 42
3.3.7 Prediction Methods and Model Assessment . . . . . . . . 43

4 Results and Discussion 44
4.1 Significant Differences Between Groups . . . . . . . . . . . . . . . 44
4.2 Indicator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Interpreting the Full Model . . . . . . . . . . . . . . . . . 46
4.2.2 Results from Different Variable Selection Methods . . . . 48
4.2.3 Prediction Methods and Model assessment . . . . . . . . 52
4.2.4 Interpreting the Indicator Model . . . . . . . . . . . . . . 56

5 Conclusion and Further Work 59

Appendix A Summary Output 61
A.1 Nominal Regression . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.2 Binary Logistic Regression - Full Model . . . . . . . . . . . . . . 67

vii of 69



1 Introduction and Problem Description
How many customers a bank has, does all depend on how a customer is defined.
The last 8–9 years, the respective bank has classified a customer as either active
or inactive, based on whether the customer has created a deposit and/or a
lending product or not. The old customer categorization can be seen in Table
1. A problem with this categorization is that it is too general, and thereby
superficial. Almost half of the active customers don’t have capital transactions
registered the last year. This means they are not as active as the category
suggests.

The bank has a new proposal of how to categorize the customers. The cus-
tomers are classified into six categories A–F. We denote category A, B, C and
D as the desired customers and category E, F as potensial customers. The new
customer categorization can be seen in Table 2. Given the new customer cate-
gorization we want to investigate the following:

• Are there any significant differences between the customers in each cate-
gory?

• Develop an indicator that indicate if an active customer (category A, B,
C, D) soon will be inactive (category E, F).

For the first and smaller task, nominal regression can be used to see the effects
of each variables within different groups. Nominal regression models the linear
predictor ηir = ln(πir/πi,c+1), for observation i and category r. Category c+ 1
is the reference category, which in this case will be category A. Looking at
the regression coefficient estimates, we will se the change in probability for the
customer to be in category r, relative to category A.

For the second and bigger task, we follow a statistical learning approach to
develop the indicator. We look at learning approaches such as random forests
and XGBoost. Binary logistic regression is also used, but mainly as a simple
guide to interpret the effects of different variables on the response variable. It
is also used for observing the bad prediction accuracy relative to tree-based
ensemble methods.
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Category Description
Active Customer with deposit and/or lending

products.
Inactive No deposit and/or lending products.

Table 1: Categorization of customers currently used by the bank.

Category Description Criteria
A Full customer Payroll input and several products
B Customer with

several products
Several products, deposit customers must
have capital transactions within the last
year.

C Customer with
one product

Only one product, deposit customers must
have capital transactions within the last
year, loan co-signers do not count.

D Savings customer Deposit customers with no capital transac-
tions within the last year, but with balance
over NOK 1000.

E Inactive customer Customer with balance equal to zero or de-
posit balance under NOK 1000. In addi-
tion, the customer does not have a credit
card nor capital transactions within the
last year.

F Passive customer No deposit and/or lending products.

Table 2: Proposal of new categorization of customers.
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2 Theory
Here we will describe the theory that we will use in practice later in this the-
sis. In Section 2.1 we look at some background theory. This includes multiple
linear regression (MLR), generalized linear methods (GLM) and decision trees.
Further, we present the theory from two special cases of GLM, namely logistic
regression and nominal regression, described in Section 2.2 and 2.3, respectively.
In Section 2.4 we introduce some variable selection and regularization methods,
such as AIC and lasso regularization. The theory behind random forests and
XGBoost are presented in Section 2.5, which will be used to create the indica-
tor model. Finally, we will use ROC plots and AUC, whose theory are described
in Section 2.6, to evaluate the model performance. Most of the theory is taken
from Fahrmeir et al. (2013) and James et al. (2013).

2.1 Background theory
We start off with by describing the theory of the essentials within statistical
analysis and modelling. This theory will be the foundation of the theory that
comes after, starting at Section 2.2.

2.1.1 Multiple Linear Regression

In multiple linear regression, or MLR, the response variable, y, is described by

y = Xβ + ε,

where X is a data matrix, β is a vector of coefficients and ε is a vector of
error terms. The ε is Gaussian distributed with mean zero and variance σ2,
i.e, ε ∼ N(0, σ2I), where I is the identity matrix. Denote by n the number
of observations in the data set, and k the number of variables. The vector of
coefficients also includes the intercept, β0, so we denote p = k+1 as the number
of coefficients we want to estimate. Then X will be a n × p matrix, where the
first column corresponding to β0, which only contains ones, and β will be a
p× 1 vector containing the regression coefficients. Let xi and yi be the variable
values and the response value for observation i, respectively. We assume the
pairs (xi, yi) are independent of each other, and also that X has full rank. Then
yi follows a Gaussian distribution with mean

E(yi) = xTi β,

and variance,
Var(yi) = σ2.

So how is β estimated? There are two different ways to estimate β, least squares
and maximum likelihood estimator. The least squares estimate can be found
by minimizing the RSS (residual sum of squares),

∑n
i=1(yi − ŷi)2, where ŷi =

β0 +
∑k
j=1 xijβj . Since this is a convex function of β, it follows that it has some
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minimum value. A perfect regression line would result in a minimum value of
zero. The least squares method can also be written on matrix form,

β̂ = (XTX)−1XTy.

The maximum likelihood estimator can be found by likelihood theory. We will
come back to this in the next section. Both of the methods give the same esti-
mates for β.

2.1.2 Generalized Linear Models

The linear regression model is well suited for regression analyses where the
response variable is continuous and somewhat normally distributed. For cases
when the response is not normally distributed, we need an appropriate trans-
formation of the response. Let us assume that the response is binary, i.e. the
yi ∈ {0, 1}. The response in linear models can take any value between −∞ and
∞. Therefore, we need to somehow transform the response values into values
between 0 and 1. We introduce generalized linear models (GLM), to investi-
gate the more general cases of linear modelling. GLM contains three important
components (Fahrmeir et al., 2013):

1. The random component: The distribution of the response variable yi.

2. The systematic component: The linear predictor ηi = xTi β, which is simply
a linear combination of the explanatory variables.

3. The link function: The linear predictor is connected to the mean of the re-
sponse µi = E(yi) by a link function, µi = g(ηi). The inverse of the link function
is called the response function, and is denoted as h(µi).

For regular MLR, the random component is simply yi ∼ N(µi, σ2). The response
is normally distributed with mean µi and nuisance parameter σ2. The systematic
component is ηi = xTi β. The link function is g(ηi) = ηi, which means that the
linear predictor is the estimated mean of the distribution. This is called the
identity link. The three components for the most common distributions are
given in Table 3.

If the response distribution belongs to an exponential family, then the distri-
bution has some useful properties. The exponential families include some of the
most important distributions, such as binomial, poisson and categorical. Since
all of these distributions originate from the exponential families, we can use the
same algorithm for all of them. A univariate exponential family has a pdf (or
pmf) of the form

f(yi | θi) = exp
(
yiθi − b(θi)

ζ
· wi + c(yi, ζ, wi)

)
. (2.1)

where ζ is a dispersion parameter, or nuisance, θi is the parameter of interest
and wi some weight. The functions b and c are specific for each exponential
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R.C. S.C. Link function
Gaussian regression (MLR) N(µi, σ2) ηi = xTi β ηi = µi

Exponential regression Exp(λi) ηi = xTi β ηi = − 1
µi

Poisson regression Poiss(λi) ηi = xTi β ηi = lnµi
Binary regression Bin(1, πi) ηi = xTi β ηi = ln µi

1−µi

Table 3: Important components for GLM. Here, the random component (R.C.),
the systematic component (S.C.) and the link function are listed for the Gaus-
sian, exponential, poisson and bernoulli distribution.

family. The mean and variance of this distribution can be found by

E(yi) = b′(θi) and Var(yi) = b′′(θi) ·
ζ

wi
,

respectively (Fahrmeir et al., 2013). Therefore, we need b to be twice differen-
tiable. The GLM framework also requires b to be a one-to-one function.

The most important goal in generalized linear models, including in multiple
linear models, is to estimate the regression coefficients β = (β1, . . . , βk) and their
significance. We introduce the likelihood as the the product of the densities of
every observation yi,

L(β) =
n∏
i=1

Li(β) =
n∏
i=1

f(yi | β),

where Li(β) are each of the n individual likelihood contributions. We want
to maximize the likelihood L(β), or the log-likelihood lnL(β), through the un-
known parameter β. This is known as maximum likelihood estimation (Fahrmeir
et al., 2013). The log-likelihood is simply

l(β) = lnL(β) =
n∑
i=1

li(β) =
n∑
i=1

lnLi(β).

We want to maximize this function, hence the first derivative of the log-likelihood
with respect to β is needed. This is called the score function, and it can be shown
that

s(β) = ∂l(β)
∂β

=
n∑
i=1

si(β) =
n∑
i=1

∂li(β)
∂β

=
n∑
i=1

(yi − µi)xih′(ηi)
Var(yi)

.

This can also be written on matrix form, s(β) = XTDΣ−1(y− µ), where D =
diag(h′(ηi)) and Σ = diag(Var(yi)). In order to maximize the log-likelihood, we
require that s(β̂) = 0. This results in the ML equations (Fahrmeir et al., 2013),
which is a set of p equations. These equations can either be solved analytically or
iteratively, depending on the equations are linear or not. The Newton–Raphson
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and Fisher scoring are the most popular algorithms used to solve non-linear ML
equations. These algorithms require either the observed or the expected Fisher
information matrix. Denote byH(β) and F (β) the observed and expected Fisher
information respectively, then

H(β) = −∂s(β)
∂βT

and F (β) = Cov(s(β)).

Furthermore, these matrices are connected through F (β) = E(H(β)) (Fahrmeir
et al., 2013). The expected Fisher information can also be written on matrix
form, F (β) = XTWX, where W = diag(h′(ηi)2/Var(Yi)).

The Newton–Raphson algorithm is defined by

β̂
(i+1)

= β̂
(i)
−
s
(
β̂

(i))
s′
(
β̂

(i)) ,
where i is the current iteration. The derivative of the score function s′(β) is the
negative of the observed Fisher information F (β), i.e. s′(β) = −H(β), hence it
can be rewritten as

β̂
(i+1)

= β̂
(i)

+H−1
(
β̂

(i))
· s
(
β̂

(i))
The Fisher scoring method is obtained when the observed Fisher information
is replaced by the expected Fisher information,

β̂
(i+1)

= β̂
(i)

+ F−1
(
β̂

(i))
· s
(
β̂

(i))
.

Since we make use of F−1(β), the data matrix X needs to be full rank. This
should be no problem if n > p. For GLM, this can also be written on matrix
form as an iteratively reweighted least squares (IRLS),

β̂
(i+1)

=
(
XTW

(
β̂

(i))
X
)−1

XTW
(
β̂

(i))
Y (i),

where W are weights defined as before. In order to start the algorithm, an
initial value β̂

(0)
is required. The iterations stop when the algorithm has met

some convergence criterion, for example when
∥∥∥β̂(i+1)

− β̂
(i)∥∥∥/∥∥∥β̂(i)∥∥∥ is smaller

than some positive value ε. Then we set β̂ = β̂
(i)
, because the algorithm has

reached a steady state.

2.1.3 Decision Trees

Tree–based methods are simple methods used for modelling and prediction of
data. The simplest model within tree-based methods is called a decision tree.
The main idea behind building a tree is to split up the data into different
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regions, based on a set of decision rules. In order to make prediction for a new
observation, we classify the observation into one of these regions by applying
the decision rules.

A single decision tree is drawn as an upside down tree, where the top node is
called the root. The bottom nodes with no splitting criteria are called terminal
nodes, or leaf nodes. Each terminal node represents one of the predictor regions,
R = {R1, R2, . . . , RT }, where T is the number of leaf nodes. The points along
the tree where the predictor space is split, are referred to as internal nodes.
Denote by X the data matrix and by f(X) the predicted values of X. Then

f(X) =
T∑
t=1

ct · I(X ∈ Rt), (2.2)

where ct is some prediction constant and I(X ∈ Rt) is the indicator function.
If X ∈ Rt, the indicator function will return one, otherwise it will return zero.
Applying the decision rules to X, we assign the value ct to the observations in
X that fall into region Rt. A single decision tree is easy to interpret, but not
necessarily a good way to predict data. Figure 1 illustrates a single tree structure.
We can split decision trees into two groups, regression trees and classification
trees.

Regression trees are trees where the response is quantitative. For every ob-
servation that falls into region Rt, we make the same prediction, the mean of
all response values in the predictor space Rt. To obtain the regions in R, we
need to make some splitting criterion that minimizes the prediction error. For
regression trees, a top-down, greedy algorithm called recursive binary splitting
is used. This is done by starting with all of the observations in a single region
of the predictor space. Then we split this region into two new regions, R1 and
R2. The splitting criterion will split the region based on the predictor xj and a
splitting value s, such that R1(j, s) = {x | xj < s} and R2(j, s) = {x | xj ≥ s}.
The quantity we want to minimize is then∑

i:xi∈R1(j,s)

(yi − ŷR1)2 +
∑

i:xi∈R2(j,s)

(yi − ŷR2)2. (2.3)

Doing so, we have created to new regions. Furthermore, we want to split these
again and again, until we reach some stopping criterion. The stopping criterion
can for example be when the reduction in RSS =

∑
i(yi − ŷi)2 is smaller than

some limit, or there is less than a minimum number of observations left in a
certain region.

Classification trees are trees where the responses are categories. Denote byK
the number of categories. Often we have only two categories, i.e. K = 2, which
is called binary classification. For every observation that falls into region Rt, we
make the same prediction, the category with most responses in the predictor
space Rt. To obtain the regions R, we need to make some splitting criterion
that minimizes the prediction error. This approach will be different than for
regression trees. One of the easiest methods of measuring error in a classification

7 of 69



Figure 1: This is a visualization of a single tree structure. The root node is
split based on predictor xj and splitting value s. Here, the predictor space R
are divided into T = 3 regions. An observation that falls into region Rt will be
assigned the predicted value ct.

tree is the misclassification rate. We observe the number of misclassifications in
region Rt, and simply divide it by Nt, the number of observations in this region.
The following error measurements are taken from James et al. (2013). Denote
by

p̂tr = 1
Nt

∑
xi∈Rt

I(yi = r),

the proportion of class r in region Rt. Then the misclassification rate is

E = 1−max
k

(p̂tr),

which is the proportion of failed classifications. We also have the Gini index,
which is defined by

G =
K∑
r=1

p̂tr(1− p̂tr).

The Gini index measures the variance within each class k, and then computes
the total sum of these. We observe that if p̂tr is close to zero or one, then G ≈ 0.
Therefore, G will be some measurement of the so-called impurity in region Rt.
An alternative to the Gini index is cross-entropy, or deviance. The cross-entropy
is defined by

D = −
K∑
r=1

p̂tr log p̂tr. (2.4)
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Figure 2: This illustrates three different error measurements for binary classi-
fication trees, namely misclassification rate E, Gini index G and deviance D.
Deviance is scaled to go through point (0.5, 0.5).

Again, D will be close to zero, if p̂tk are close to zero or one. For a binary
classification problem, i.e. K = 2, we only have two probabilities, π1 and π2.
We can use the fact that π2 = 1−π1 and get E = 1−max(π, 1−π), G = 2π(1−π)
and D = −π log(π)−(1−π) log(1−π) (Friedman et al., 2001). The classification
error measurements are shown in Figure 2.

2.1.4 k-Fold Cross-Validation

Cross-validation is an approach to evaluate a model on data set. The evaluation
is based on an average error rate. Define training set as the data set on which
the model is trained and test set as the data set on which the model will be
evaluated. The data set is divided into a single training set and a single test set.
It is common to assign the majority of the data to the training set, for example
80% of the original data set, and assign the remaining data to the test set. A
test set is necessary to see how the model performs on new observations.

The k-fold cross-validation approach is simple. The training set,X, is divided
into k equally sized sets (folds). For the first iteration we keep the first fold as a
test fold, and train our model on the remaining k−1 training folds. The model is
evaluated on the test set by calculating the test error, MSE = 1

n

∑n
i=1(yi− ŷi)2.

Denote MSEi as the test error for iteration i. For iteration two we let the second
fold be the test fold, and train our model on the remaining k− 1 training folds.

9 of 69



Figure 3: This is an illustration of 10-fold cross-validation. The mean squared
error (MSE) is calculated at each iteration. The final cross-validation error is
the average of these k = 10 mean squared errors.

After k iterations we calculate the average MSE, which we will define as

CV(k) = 1
k

k∑
i=1

MSEi

The approach is illustrated in Figure 3. The most common choices of k are 5
and 10. Having k = n means we let one single observation be the test fold, and
the remaining observations be the training folds. This is known as leave-one-out
cross-validation (LOOCV). LOOCV has far less bias, because we fit n models
that is trained on n− 1 of the observations. However, it is very time consuming
if n is really big.

2.2 Logistic Regression
Logistic regression, or binary regression, is used to model a data set where the
response is binary, i.e., has two classes. We can think of the response as either
success or failure. Since a binary response follows the binomial distribution, we
can make use of the GLM framework which was explained in Section 2.1.2.

2.2.1 The Binomial Distribution

First let’s assume that the response yi is Bernoulli distributed, i.e. yi ∼ bin(ni, πi)
with ni = 1. The Bernoulli distribution has probability mass function

f(yi | πi) = πyi

i (1− πi)1−yi , (2.5)

where yi is either 1 or 0 and πi is the probability that the observation is 1.
The mean and variance of the Bernoulli distribution is µi = E(yi) = πi and
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Var(yi) = πi(1− πi), respectively. The distribution can be rewritten in an uni-
variate exponential form, as in (2.1),

f(yi | πi) = exp
(
yi ln πi

1− πi
+ ln(1− πi)

)
,

where φ = 1, wi = 1, θi = ln(πi/(1− πi)) and b(θi) = ln(1 + exp θi).

2.2.2 Canonical Link

We have the canonical link when the linear predictor is equal to the parameter
θi, i.e. θi = ηi. Letting the canonical link be the link function, some major
simplifications follow. We will obtain a concave likelihood, and also the expected
Fisher information matrix F (β) will be equal to the observed Fisher information
matrix H(β). We will come back to this later. The above definition gives

ηi = g(πi) = ln πi
1− πi

(2.6)

as the canonical link in logistic regression, which is called the logit function.
Similarly, we have the response function

µi = πi = h(ηi) = exp ηi
1 + exp ηi

which is basically the inverse of the logit function (see graph in Figure 4).

2.2.3 MLE of β for Logistic Regression

Given the Bernoulli distribution in (2.5), the likelihood for logistic regression is
defined by

L(β) =
n∏
i=1

f(yi | β) =
n∏
i=1

πyi

i (1− πi)1−yi .

The log-likelihood is simply the logarithm of the likelihood, yielding

l(β) =
n∑
i=1

li(β) =
n∑
i=1

yi ln πi
1− πi

− ln(1− πi). (2.7)

Given the the logit function in (2.6) as the link function, this can also be written
as

l(β) =
n∑
i=1

(yiηi + ln (1 + exp ηi)) . (2.8)

Furthermore, taking the derivative of the log-likelihood with respect to β, we
obtain the score function. This can be done by using the chain rule dli

dβ =
dli
dπi

dπi

dηi

dηi

dβ on (2.7), or dli
dβ = dli

dηi

dηi

dβ on (2.8). Both rules results in the same,
simple score function,

s(β) =
n∑
i=1

si(β) =
n∑
i=1

∂li(β)
∂β

=
n∑
i=1

xi(yi − πi).
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Figure 4: An illustration of the response function, also known as the inverse logit
function. The more negative the linear predictor ηi is, the lower is the probability
for observation i to be assigned to class 1. Similarly, the more positive the linear
predictor ηi is, the higher is the probability for observation i to be assigned to
class 1.

The regression coefficients can be estimated by

s(β̂) = 0, (2.9)

and if we replace πi with exp ηi

1+exp ηi
, we observe that the score function gives

non-linear ML equations of β,

s(β̂) =
n∑
i=1

xi
(
yi −

exp ηi
1 + exp ηi

)
=

n∑
i=1

xi

(
yi −

exp(xTi β̂)
1 + exp(xTi β̂)

)
= 0

Thus, we need to solve (2.9) iteratively. This means that the observed or ex-
pected Fishser information is required to find the MLE of β. Let us first calculate
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the observed Fisher information,

H(β) = −∂s(β)
∂βT

= − ∂

∂β

n∑
i=1

(xi(yi − πi(β)))

=
n∑
i=1

xi
∂πi(β)
∂β

=
n∑
i=1

xi
∂ηi
∂β

∂πi(β)
∂ηi

=
n∑
i=1

xixTi πi(1− πi).

The observed Fisher information is used in the Newton–Raphson algorithm.
Remember that πi = πi(β), hence πi, and therefore F (β), will be updated for
every iteration. Let us calculate the expected Fisher information,

F (β) =
n∑
i=1

Fi(β)

=
n∑
i=1

Cov(si(β))

=
n∑
i=1

E(si(β)si(β)T )

=
n∑
i=1

E(xixTi (yi − πi)2)

=
n∑
i=1

xixTi E((yi − πi)2)

Remember that E((yi − πi)2) is simply the variance Var(yi). The variance of yi
which is Bernoulli distributed is πi(1− πi), hence we can replace E((yi − πi)2)
with πi(1− πi),

F (β) =
n∑
i=1

xixTi πi(1− πi),

which we already know as the observed Fisher information H(β). Since we
used the canonical link function, H(β) and F (β) are identical. Similar to the
observed Fisher information, πi is a function of β which is why the expected
Fisher information also is a function of β. This results in the Fisher scoring
algorithm,

β̂
(i+1)

= β̂
(i)

+ F−1
(
β̂

(i))
· s
(
β̂

(i))
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which we can use to find the estimated β.

2.2.4 Interpretation of Regression Coefficients

The regression coefficients can be hard to interpret. This is due to the logit link
function. To understand what they actually mean, we introduce the log odds.
The log odds is defined by the logarithm of the probability of success divided by
the probability of failure, i.e. ln P (Yi=1)

P (Yi=0) = ln πi

1−πi
. Using the response function

to replace πi, i.e. πi = h(ηi), we get

ln πi
1− πi

= ηi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik

The log odds lead us to a fairly simple expression, which we can use to interpret
the βj ’s. Let us see what happens when we increase the variable value xij by 1.

ln P (Yi = 1 | xij + 1)
P (Yi = 0 | xij + 1) = β0 + β1xi1 + · · ·+ βj(xij + 1) + · · ·+ βkxik

= βj + β0 + β1xi1 + · · ·+ βkxik

= βj + ln P (Yi = 1 | xij)
P (Yi = 0 | xij)

We observe that the log odds change with an additive term of βj .

• If βj > 0, then the log odds will increase by βj .

• If βj < 0, then the log odds will decrease by βj .

• If βj = 0, then the log odds will stay the same.

2.3 Nominal Regression
When the response is categorical, we can choose between two types of responses.
The nominal response is chosen if the categories are unordered, i.e., the cate-
gories do not have any form of ordering to each other. Typical categories for
this type of response could be types of colors or names of locations. The ordinal
response is used when we do have ordered categories. Here we will take a closer
look at nominal regression.

2.3.1 The Multinomial Distribution

The multinomial distribution is similar to the binomial distribution. Instead of
two categories, consider a response having K = d+ 1 categories. Having d = 1
results in logistic regression. Category d+ 1 will then be the reference category
and the rest will have their probability estimated. Denote by πij the probability
that the response Yi falls into category j. The probabilities sum to one, i.e.,∑d+1
s=1 πis = 1. Thus, the last probability, πi,d+1, can be calculates from the first

d probabilities, i.e. πi,d+1 = 1−
∑d
s=1 πis.

14 of 69



The multinomial distribution for one observation has pmf

f(y | π) = πy1
1 · · ·π

yd

d (1− π1 − · · · − πd)1−y1−···−yd (2.10)

where y = (y1, y2, . . . , yd), π = (π1, π2, . . . , πd) and the number of independent
trials is m = 1. If the response comes from category j, then yj = 1 and the rest
of y is 0. The distribution has the following mean and covariance matrix

E(y) = π =


π1
π2
...
πd

 ,

Cov(y) =


π1(1− π1) −π1π2 · · · −π1πd
−π2π1 π2(1− π2) · · · −π2πd

...
...

. . .
...

−πdπ1 −πdπ2 · · · πd(1− πd)

 .

2.3.2 Nominal Models

Similar to logistic regression, we will now estimate the probabilities π. De-
note πir as the probability that observation i belongs to category r, where
r = 1, 2, . . . , d+ 1. This probability can be defined as

πir = P (yi = r) = P (yir = 1).

The observed y are modelled with help of a latent utility model u. Denote

ur = η̃r + εr

as the random utility function of the rth category, where η̃r is the utility of
category r and εr is an error variable with cumulative distribution function C.
The connection between y and ur is

y = r ⇔ ur = max
s=1,...,d+1

us.

Hence we observe the category r, when the associated utility is maximal. Using
the extreme maximal-value distribution C(x) = exp(− exp(−x)) as the cumu-
lative distribution of εr, we obtain (Fahrmeir et al., 2013)

P (yi = r) = exp η̃ir∑d+1
s=1 exp η̃ir

, r = 1, . . . , d+ 1

Only the difference in utility functions is identifiable and therefore a reference
category is required. With category d+ 1 as the reference category, we get

πir = exp(η̃ir − η̃i,d+1)
1 +

∑d+1
s=1 exp(η̃is − η̃i,d+1)

= exp ηir
1 +

∑d
s=1 exp ηis

,
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where ηir = xTi βr and βr is the regression coefficients for category r. Recall,
in logistic regression (d = 1), this probability is simplified as πi = exp ηi/(1 +
exp ηi). With d+ 1 different categories, β is now a k × d coefficient matrix,

β =


β1
β2
...
βd


T

=


β1,1 β1,2 · · · β1,d
β2,1 β2,2 · · · β2,d
...

...
. . .

...
βk,1 βk,2 · · · βk,d

 .

For example, β2,3 is the regression coefficient for the second variable in the
third category. The linear predictor, ηir could be seen as the log odds in logistic
regression, as we model the ratio P (yi = 1)/P (yi = 0). In nominal regression it
can be seen as relative risk between the category r and the reference category
d+ 1, as we model the ratio P (yi = r)/P (yi = d+ 1) (Fahrmeir et al., 2013),

ηir = ln πir
πi,d+1

The probabilities for an observation to belong to each category are as follows,

πir = exp(xTi βr)
1 +

∑d
s=1 exp(xTi βs)

πi,d+1 = 1− πi1 − · · · − πid = 1
1 +

∑d
s=1 exp(xTi βs)

.

Keep in mind when interpreting βjr, that a positive regression coefficient doesn’t
always mean an increase in the probability πir for an increasing xij . However,
it can be seen as an increase in the odds relative to the reference category d+ 1.
For example, let the coefficient for category s and variable j be greater than the
coefficient for a category r and the same variable, i.e. βjs > βjr. This tells us
that the ratio πis/(πi,d+1) grows faster than the ratio πir/(πi,d+1). Thus, there
is a possibility for βjr to have a decreasing effect on the probability πjr, even
though βjr is positive (Fahrmeir et al., 2013).

2.4 Model Selection and Regularization
In this section we will describe some of the methods used to reduce the number
of predictors in the model with minimal loss of information. This is called model
regularization, or shrinkage. There are mainly two types of model regularization,
lasso regularization and ridge regularization. The difference between these two
models is in the form of what is called a penalty term.

We will also look at how to choose between different candidate models. Let
k be the number of predictors we originally have and P = {x1, x2, . . . , xk} be
the set of predictors. Model selection is a way to identify which subset P0 ⊂ P
that best explains the observed data. Common methods include using criteria
like AIC, BIC, Mallows’ Cp and adjusted R2. The AIC is considered the first
criterion to use in practice when it comes to deciding which model is better. In
Section 2.4.2 we introduce AIC.
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2.4.1 Lasso Regularization

A full model, i.e. a model using all p parameters, will almost always perform
better than a model with less parameters on the particular data set. However, it
will most likely overfit and lose accuracy when used on other data sets. There-
fore we want to shrink the number of parameters as much as possible, without
losing too much information. Lasso regression is very similar to the least squares
method, but one additional penalizing term is added. Recall from Section 2.1.1
that the least squares method, which is defined as finding

min
β

n∑
i=1

(yi − ŷi)2,

was used to estimate the β in multiple linesar regression. The lasso regression
is defined as finding

min
β

n∑
i=1

(yi − ŷi)2 + λ

k∑
j=1
|βj | (2.11)

where as before, ŷi = β0 +
∑k
j=1 xijβj , and λ ≥ 0 is a tuning parameter for the

penalty term λ
∑k
j=1 |βj |. The additional term forces the values of β towards

zero. Since
∑k
j=1 |βj | is actually the L1-norm of β, we can also define the penalty

term of lasso regression as λ
∑k
j=1 |βj | = λ‖β‖1. Having λ = 0 results in the

ordinary least squares method, and having λ =∞ will force all of the regression
coefficients to zero. Using an optimal value of λ will set coefficients for unneces-
sary variables to zero. The optimal value of λ can be found by cross-validation
(see Section 2.1.4).

Now, why do we choose lasso regularization over ridge regularization? The
ridge regression is defined as

min
β

n∑
i=1

(yi − ŷi)2 + λ

k∑
j=1

β2
j

The last term is actually the squared L2-norm, and can be redefined as
λ
∑k
j=1 β

2
j = λ‖β‖2

2. Because of this last term, ridge regression has a big dis-
advantage. The penalty λ‖β‖2

2 will shrink all of the coefficients towards zero
(faster than lasso if the coefficients are far away from zero), but will not set any
of them to excatly zero (unless λ =∞) (James et al., 2013). This will result in
having all the p coefficients in the final model. Since our goal is to shrink the
number of parameters, we choose lasso regression where the regression coeffi-
cients can be set to zero. Reducing the number of parameters avoids overfitting,
and by doing lasso regression this will hopefully be the case.

2.4.2 Akaike Information Criterion

Suppose we have several candidate models to choose between. How would we
determine which model is better than the others? The intuition behind every
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statistical model, is to approximate reality. Given a data set, we would prefer the
model that best approximates the data set, i.e. the model that has minimized
the loss of information.

A measure of information loss was introduced by Kullback and Leibler
(1951). If we knew the true distribution, f(x), of the data, we could measure
the information loss by Kullback–Leibler divergence. However, we do not know
f(x), and cannot know for certain which model suffers more loss than the other.
Suppose we want to choose between a model g1(x) and g2(x). Akaike (1974)
showed how much information is lost by g1(x) relative g2(x). The Akaike Infor-
mation Criterion, or AIC, is an estimate of the amount of information lost by a
given model, i.e. an estimate of the model quality. The AIC is defined by

AIC = −2k + 2 logL(θ̂)

where k is the number of parameters included inn the model and θ̂ are a set of
parameters that maximizes the likelihood L.

2.5 Tree-Based Ensemble Methods
Decision trees alone suffer from high variance. Tree-based ensemble methods are
methods for reducing the variance. Say, we have observations Y1, . . . , Yn which
are independent with variance σ2. Then the mean of the observations, Ȳ , has
variance σ2/n. This means we can reduce the variance by averaging a set of
independent observations. Tree-based ensemble methods are based on this idea,
where we let an observation be a single tree.

2.5.1 Random Forests

First, let us introduce bootstrap sampling. We don’t know the exact distribution
of our data set, so have no distribution to sample from. What we do know,
is that our data is coming from this unknown distribution. The solution is to
use our data set as an empirical estimate of our distribution. Let n be the
number of observations in the data set. Each of the observations are drawn with
a probability of 1

n , and the drawn observations together form the bootstrap
sample. Random forests use bootstrapping to fit the trees (Breiman, 2001).
The observations that don’t make it to the training set are called “out-of-bag”
observations, and are used for calculating the error. Each bootstrap sample is
used to fit a single tree.

The idea is to combine the trees into a final model by taking the average.
This is what we call bagging. If a predictor is clearly more significant than the
others, it will most likely be included in the first split criterion for most of the
fitted trees causing the trees to be correlated. This will result in a final model
with high variance, which is not what we want. Random forests avoids this
problem and we will see how later.

Now, why does the variance of the final model depend on the correlation
between the trees? Consider we have the covariance between two trees φi and
φj , Cov(φi, φj) = ρσ2 for i 6= j, where ρ is a positive correlation value and σ2
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is some constant variance. Denote M as the number of trees fitted. Then, the
variance of the average is

Var(φ̄) = Var
(

1
M

M∑
b=1

φi

)

=
M∑
b=1

(
1
M

)2
Var(φi) + 2

M∑
b=2

b−1∑
j=1

(
1
M

)2
Cov(φi, φj)

=
(

1
M

)2 M∑
b=1

σ2 + 2
(

1
M

)2 M∑
b=2

b−1∑
j=1

ρσ2

= 1
M
σ2 + 2M(M − 1)

2

(
1
M

)2
ρσ2

= 1
M
σ2 + (M − 1)

M
ρσ2

= 1 + (M − 1)ρ
M

σ2

If we have highly correlated trees, i.e., ρ is close to 1, we can see that Var(X̄)
becomes close to σ2. The variance will almost be equally high as for just one
tree. If we have highly uncorrelated trees, i.e., ρ is close to 0, we see that Var(X̄)
becomes close to σ2/M . Hence, averaging the trees has the effect we were orig-
inally looking for.

Let us see how random forests reduce correlation between the trees. Let k
be the number of predictors we originally have, and P = {x1, x2, . . . , xk} be
the set of predictors. Instead of choosing between all k predictors when making
a split, as in bagging, we choose a predictor from a subset P0 ⊂ P with size
z < k. Typically, z = k

3 for regression and z =
√
k for classification (James et al.,

2013). Having z = k would result in bagging. The subset P0 is made by randomly
selecting z predictors from P . For example, if k = 9, we would only consider
z = 3 predictors in the next split. For example, P0 = {x2, x3, x9} could then
be the subset we were considering in the next split. The probability of having
the most significant predictor in the next splitting criterion is lower, making the
trees more uncorrelated. Thus, we will have a reduction of the variance in the
final model. The algorithm for random forests is described in Algorithm 1.

Algorithm 1 Random Forest
1: for m ∈ 1 : M do
2: Draw a bootstrap sample from the training set.
3: Make a decision tree, f̂m, based on the sample and only consider z

predictors in each split.
return f̂RF(x)← 1

M

∑M
m=1 f̂

m(x)
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2.5.2 Extreme Gradient Boosting

Before we discuss the theory behind Extreme Gradient Boosting (XGBoost), we
start by introducing boosting in general. Boosting is another tree-based ensem-
ble method used to improve the prediction. It is similar to bagging and random
forests (see Section 2.5.1), in the way that they create a strong, final model
based on a combination of decision trees. This is actually the main idea behind
boosting, the idea of “creating a strong learner, based on a set of weak learn-
ers”. Unlike random forests, boosting doesn’t require bootstrapping. Instead, the
trees are grown sequentially based on residuals (or misclassifications) from the
previous tree. Fitting a tree to the residuals will make the model better in areas
where it did not perform well (James et al., 2013). This way, the model learns
slowly, but surely. Focusing on the residuals, not only reduce the dimensionality,
but can also reduce the execution time as well.

The predicted class of observation i can be defined as

ŷi =
M∑
m=0

fm(xi) = θ0 +
M∑
m=1

θmφm(xi), (2.12)

(Chen and Guestrin, 2016), where the model from iteration m, fm, corresponds
to an independent basis function φm with weight θm, M is the number of tree
structures added and xi = [xi1, xi2, . . . , xik] is a vector of observed data for
observation i.

The basis functions will be independent decision trees in the case of tree
boosting algorithms, such that φm can be defined as in (2.2)

φm(xi) =
Tm∑
t=1

w̃tmI(xi ∈ Rtm), (2.13)

where Tm is the number of leaf nodes in φm, Rtm is the tth region in φm and
w̃tm is the weight of region Rtm. By inserting (2.13) into (2.12), we get

ŷi = θ0 +
M∑
m=1

θm

Tm∑
t=1

w̃tmI(xi ∈ Rtm)

= θ0 +
M∑
m=1

Tm∑
t=1

wtmI(xi ∈ Rtm),

as the prediction of tree boosting algorithms. Here, we have merged θm and w̃tm
into wtm, because they are both weights for the leaf nodes for tree structure φm.

The set of basis functions Φ = {φ1, φ2, . . . , φM} are in this case the weak
learners. These functions are greedily added to the final model, minimizing the
following regularized objective

{φ̂m} = arg min
{φm}

n∑
i=1
L(yi, f̂ (m−1)(xi) + φm(xi)) + Ω(φm(xi)). (2.14)
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Here, L is a loss function, yi is the true value of observation i, f̂ (m−1) is the
model from the previous iteration and Ω is a function penalizing the complexity
of the model. The temporary model f̂ (m−1) is simply all the basis functions,
along with their respective weights, made before iteration m. Hence f̂ (0) will
only result in the initial model θ0 = arg minθ

∑n
i=1 L(yi, θ), and f̂ (M) will result

in the final model.
The loss function determines the quality of a predicted value. We compute

the loss by measuring the discrepancy between the true value, picked by nature,
and the the predicted value, ŷ(m)

i = f̂ (m−1)(xi) + φm(xi). Given the latter
equation, we can generalize the loss function in the first term of (2.14), L(yi, ŷi).
Some common loss functions are

• L(yi, ŷi) = α(y − ŷi)2, quadratic loss function (for regression)

• L(yi, ŷi) = I(yi 6= ŷi), 0–1 loss (for classification)

• L(yi, ŷi) = exp(−αyiŷi), exponential loss function (for binary classifica-
tion)

where α > 0 is some constant. The lower the value returned from the loss
function, the better.

The complexity penalty term is the is defined by Ω(φm) = γTm + 1
2ν‖wm‖

2
2

(Chen and Guestrin, 2016). The first term is penalizing the number of leaf nodes
T through a penalizing factor γ. The second regularization term helps to smooth
the final learnt weights through a parameter ν, to avoid overfitting. We can now
expand the equation by rewriting (2.14) as the second order approximation and
by inserting the expanded version of Ω(φm),

{φ̂m} = arg min
{φ̂m}

n∑
i=1

[
L
(
yi, ŷ

(m)
i

)
+ gi(xi)φm(xi) + 1

2hi(xi)(φm(xi))2
]

+ γTm + 1
2ν‖wm‖

2
2.

where wm = [w1m, w2m, . . . , wTmm] and

ĝ(xi) = ∂f̂(m−1)(xi)L
(
yi, f̂

(m−1)(xi)
)
,

ĥ(xi) = ∂2
f̂(m−1)(xi)L

(
yi, f̂

(m−1)(xi)
)

are the first and second order gradient statistics (Chen and Guestrin, 2016).
The XGBoost algorithm can be referred to as Newton tree boosting. Newton
tree boosting implements the second order approximation instead of only first
order approximation, which are done by earlier boosting algorithms, such as
gradient boosting machine (Friedman, 2001). The algorithm for XGBoost can
be found in Algorithm 2.

The split is found by an exact greedy split finding algorithm (Chen and
Guestrin, 2016). This algorithm starts from a single leaf and adds branches in
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Algorithm 2 XGBoost
Input: Data set, X = [x1,x2, . . . ,xn]

A loss function, L
The number of iterations, M
The maximum number of terminal nodes, T
The learning rate, η
A penalizing factor of number of leaf nodes, γ
A weight-smoothing parameter, ν

1: Initialize θ0 = arg minθ
∑n
i=1 L(yi, θ).

2: for m = 1, 2, . . . ,M do
3: ĝ(xi) =

[
∂L(yi,f̂

(m−1)(xi))
∂f̂(m−1)(xi)

]
4: ĥ(xi) =

[
∂2L(yi,f̂

(m−1)(xi))
∂f̂(m−1)(xi)2

]
5: Determine the structure {R̂tm}Tm

t=1 by selecting splits which maximize

Γsplit = 1
2

(∑i∈IL
ĝ(xi)

)2∑
i∈IL

ĥ(xi)+ν
+

(∑
i∈IR

ĝ(xi)
)2∑

i∈IR
ĥ(xi)+ν

−
(∑

i∈I
ĝ(xi)

)2∑
i∈I

ĥ(xi)+ν

− γ
6: Determine the leaf weights {ŵtm}Tm

t=1 for the learnt structure by

ŵtm = −Gtm

Htm
= −

∑
i∈Itm

ĝm(xi)∑
i∈Itm

ĥm(xi)

7: f̂m(X ) = η
∑Tm

t=1 ŵtmI(X ∈ Rtm)
8: f̂ (m)(X ) = f̂ (m−1)(X ) + f̂m(X )

Output: f̂(X ) = f̂ (M)(X ) =
∑M
m=0 f̂m(X )
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an iterative manner. Let I = IL ∪ IR, where IL are the observations that fall
into the left branch, and IR are the observations that fall into the right branch.
The loss reduction is then measured by

Γsplit = 1
2

[ (∑
i∈IL

gi
)2∑

i∈IL
hi + ν

+
(∑

i∈IR
gi
)2∑

i∈IR
hi + ν

−
(∑

i∈I gi
)2∑

i∈I hi + ν

]
− γ. (2.15)

(Chen and Guestrin, 2016). This equation is used in Algorithm 2 in line 5.
We will not go into detail about XGBoost. Instead we wil sum up some of

the features that the boosting algorithm provides. XGBoost offers complexity
penalization in terms of the function Ω. Complexity penalization is used to pre-
vent overfitting and is one of the core improvements XGBoost has from earlier
versions of boosting algorithms, such as gradient boosting machine (Friedman,
2001). XGBoost also provides row subsampling, yielding substantial performance
improvements (Chen and Guestrin, 2016). Row subsampling works almost like
bootstrap sampling, which is used in both bagging and random forests. The
difference is that row subsampling draw samples from the data set without
replacement, while bootstrapping draw samples with replacement. A row sub-
sampling fraction 0 < δr ≤ 1 is defined such that the sample size equals to δrn,
where n is the number of rows in the original data set (Nielsen, 2016). Having
δr set to 1 will result in a procedure with no row subsampling. Similarly, we
have column subsampling. This is a simple, yet effective technique which is also
borrowed from random forests (Chen and Guestrin, 2016). This helps to decor-
relate the trees φm, which reduces the variance of the fitted model. A column
subsampling fraction 0 < δc ≤ 1 is defined such that the sample size equals to
δck, where k is the number of columns in the data set. Having δc set to 1 will
result in a procedure with no column subsampling. Compared to earlier versions
of boosting, gradient boosting machine only includes row subsampling.

In addition to this, number of leaf nodes for each tree is not fixed, but
optimized for the respective tree (Nielsen, 2016). The weight on each leaf in
a tree structure φm is shrunk independently and not by the same factor. Leaf
weights that are estimated on less data will be shrunk more than other leaf
weights. We also have a learning rate 0 < η ≤ 1, also called shrinkage parameter,
that is the step length at each iteration (Nielsen, 2016). It determines how much
we want to learn from the trees that are added to the model. The lower this
rate is, the slower the algorithm learns. A lower value of η tends to improve
generalization performance, but requires a higher value of number of iterations
M . XGBoost models can also be trained on data set with missing values (Chen
and Guestrin, 2016).

2.6 ROC Curves and AUC
In tree-based ensemble methods there are no likelihoods and regression coeffi-
cients, hence we no longer have criteria like AIC, BIC and Mallows’ Cp when
it comes to assessment of such models. We need to evaluate the models in a
different way, but keep in mind that we somehow want to compare these models
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Actual
class

Predicted class

N P

N True
Negative

False
Positive

P False
Negative

True
Positive

Table 4: A visualization of a confusion matrix for binary classification. An obser-
vation whose actual class is true, is called a true positive (TP) if it is predicted
true and a false negative (FN) if it is predicted false. Similarly, an observation
whose actual class is negative, is called a false positive (FP) if it is predicted
true and a true negative (TN) if it is predicted false. Thus, we want the number
of true negatives and true positives to be as high as possible.

to regular GLM models. Thus, focusing on the predicted probabilities seems like
a good alternative here.

One way to deal with is to use receiver operating characteristic curves, or
ROC curves. ROC curves are based on the predicted probabilities and their
actual classes. Before we explain the ROC curve, let us introduce the confusion
matrix. This is a K ×K matrix that keeps count of the number of successively
and wrongly predicted classes, based on the predicted and actual class of each
observation. The confusion matrix for binary classification, i.e. K = 2, is visu-
alized in Table 4. The ROC curve measures two rates called sensitivity (true
positive rate) and specificity, (true negative rate) defined as

Sensitivity = TP
TP + FN , Specificity = TN

TN + FP (2.16)

where TP is the number of true positives, FN is the number of false negative,
TN is the number of true negatives and FP is the number of false positives.

Let τ ∈ {0, 1} be a parameter and ŷi the probability that observation i
belongs to class 1. An observation belongs to class 1 if ŷi ≥ τ . ROC curves are
made by computing the sensitivity and the specificity for every value of τ . This
results in a parametric curve with τ as the parameter, with specificity on the
x-axis and sensitivity on the y-axis. An example with 20 observations, where ŷi
are the probability for observation i to be classified as 1 and yi ∈ {0, 1} are the
actual class, are shown in Table 5. The corresponding ROC curve is visualized
in Figure 5.

Starting with τ = 0, every ŷi will be classified to class 1. Since no observation
is classified as 0, the number of false negatives and true negatives will be zero,

24 of 69



i 1 2 3 4 5 6 7 8 9 10
ŷi 0.92 0.30 0.51 0.71 0.86 0.97 0.62 0.71 0.13 0.97
yi 1 1 0 1 1 1 1 0 1 1
i 11 12 13 14 15 16 17 18 19 20
ŷi 0.52 0.98 0.81 0.52 0.45 0.24 0.11 0.24 0.43 0.45
yi 0 1 1 1 0 0 0 0 1 0

Table 5: An example of vectors that can be used to make a ROC curve. In this
case, we have 20 observations. ŷi is the probability that observation i belongs
to class 1, and yi is the true class of observation i.

i.e. FN = TN = 0. This results in a sensitivity equal to one, and a specificity
equal to zero, according to the respective formulas in (2.16). Thus, we start in
the top right corner of the ROC plot in Figure 5. As we move τ towards one,
each observation ŷi at a time will consequently be classified as 0. The sensitivity
and specificity will consequently move towards zero and one, respectively.

From the example in Table 5 and Figure 5, the red dot in the top right corner
corresponds to 0 ≤ τ < 0.11. We refer to this red dot as a1. When τ = 0.11,
the observation ŷ17 are classified as 0. Since this observation has 0 as the actual
class, the number of true negatives becomes equal to one, i.e. TN = 1. The
specificity is then increased from 0/8 to 1/8 = 0.917 and the ROC curve moves
to the left. The sensitivity stays the same, because it does not depend on true
negatives. We refer to the red dot to the left of a1 as a2. Point a2 corresponds
to 0.11 ≤ τ < 0.13. When τ = 0.13, the observation ŷ9 are also classified as 0.
Since this observation has 1 as the actual class, the number of false negatives
becomes equal to one, i.e. FN = 1. The sensitivity is then decreased from 12/12
to 11/12 = 0.917 and the ROC curve moves down. The specificity stays the
same, because it does not depend on false negatives. The ROC plot in Figure 5
is the resulting sensitivity and specificity when gliding the parameter τ through
the interval [0, 1].

The closer this curve is to the top left corner, the better is the model. Sim-
ilarly, the more area that is covered under the curve, the better is the model.
This measure is called area under curve, or AUC, and will take a value between
0.5 and 1. Having an AUC equal to one will be a perfect classification. Hence, we
usually prefer the model that has AUC close to one, but in applications more
weight may be given to sensitivity or to specificity, or one or both might be
constrained.
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Figure 5: A visualization of a ROC curve which is made from the example data
in Table 5. The y-axis shows sensitivity and x-axis specificity. For each value of
τ ∈ [0, 1], the specificity and sensitivity are calculated. The red dots correspond
to each observation. The corresponding AUC is 0.79.
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3 Implementation in R
Here we will describe how we use the theory in Section 2 to attack the problems
given in the introduction. First of all, we describe the data sets old and new,
and their features, in Section 3.1. We will then explain how we clean the data
set and perform nominal regression in R, as well as how to do the analysis. This
is done in Section 3.2. In Section 3.3 we start working on the bigger task, i.e. the
indicator model. Here, we again start by cleaning the data set, before we perform
logistic regression. The regression coefficients will be useful for interpretation of
the regression model. We then perform different methods for variable selection
in order to reduce the dimensionality and execution time, and at the same time
increase the performance of the model. At last, we explain how a ROC curve
can be drawn in R, as well as calculating the AUC for a specific model.

3.1 Understanding the Data Sets
The data sets are provided by the bank itself. Each row of the data set represents
a customer of the bank. Each customer is described by k = 45 variables. Table
6 shows a list of the variables. We have two data sets with these variables,
extracted from different dates. One of them is from 31 January 2018, and will
be referred to as old. The other data set is from 31 January 2019, and will
be referred to as new. The number of customers in the data set old is nold =
69371. The number of customers in the data set new is nnew = 78940. The most
important column, which will play a huge role in the analysis, is the variable
number 42, Oppsummering.klasse. This column shows the customer category
for the different customers. The customer categorization is described in Table
2.

Table 6: A list of all the variables in the data set old.

Nr Name Description
1 KUNDE_NR_HASH An unique customer identifica-

tion key.
2 status A status of a customer consisting

of 4 degrees of activity.
• Active last five years
• Active last year
• Passive last five years
• Without active account

3 innskudd A binary variable denoting
whether the customer has posi-
tive balance on deposit account
(1) or not (0).

Continued on next page
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Table 6 – Continued from previous page
Nr Name Description
4 utlan A binary variable denoting

whether the customer has loan
(1) or not (0).

5 medlantaker A binary variable denoting
whether the customer is a loan
co–signer (1) or not (0).

6 SLUTT_DATO The date when information of
the customer was extracted.

7 BK_ANSVARSTED_KODE A 6 digit code which is differ-
ent for employees, members and
non-members. Says something
about the customer affiliation.

8 Postkode The ZIP code of the customer.
9 BK_KJONN_KODE The sex of the customer. The

customer is either male (M) or
female (K).

10 ALDER The age of the customer.
11 KUNDE_START_DATO The date when a customer be-

came a customer of the bank.
12 KUNDE_SLUTT_DATO The date when a customer ended

the relationship with the bank.
13 DOD A binary variable denoting

whether the customer has died
(1) or not (0).

14 LAN A counting variable denoting the
number of loaning products.

15 INNSKUDD A counting variable denoting the
number of deposit accounts.

16 DEBETKORT A counting variable denoting the
number of debit cards.

17 KREDITTKORT A counting variable denoting the
number of credit cards.

18 NETTBANK A binary variable denoting
whether the customer has ac-
tivated internet banking (1) or
not (0).

Continued on next page
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Table 6 – Continued from previous page
Nr Name Description
19 MOBILBANK A binary variable denoting

whether the customer has acti-
vated mobile banking (1) or not
(0).

20 BANKID A binary variable denoting
whether the customer has
activated BankID (1) or not (0).

21 SALDO.INNSKUDD The balance on the deposit ac-
count of the customer.

22 Medlem/ikke.medlem A binary variable denoting
whether the customer is a
member (1) or not (0).

23 Lønnsinngang A binary variable denoting
whether the customer has
payroll input (1) or not (0).

24 Søkeprosess A binary variable donting
whether the customer has ap-
plied for loan/ credit card (1) or
not (0).

25 Transaksjoner.siste.år The number of transactions the
last year.

26 Transaksjoner.nest.siste.år The number of transactions the
second last year.

27 Transaksjoner.tredje.siste.år The number of transactions the
third last year.

28 Transaksjoner.fjerde.siste.år The number of transactions the
fourth last year.

29 Transaksjoner.femte.siste.år The number of transactions the
fifth last year.

30 Input.aktivitet.kredittkort A binary variable denoting
whether the customer has one
or more active credit cards. A
credit card is active if it has
been used within the last six
months or if it has a limit of
over NOK 1000.

31 Fylke The county of the customer. This
variable has 18 levels.

Continued on next page
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Table 6 – Continued from previous page
Nr Name Description
32 Tot_medlem This variable says something

about whether the customer is
a member of the bank (1) or
not (0). Together with variable
Medlem/ikke.medlem, it is used
to form the variable Medlem.

33 Aktivmedlem A member whose company has
pension scheme at the bank.

34 Skade_avtale A binary variable denoting
whether the customer has
damage insurance (1) or not (0).

35 Bank_avtale A binary variable denoting
whether the customer is a cus-
tomer of the bank (1) or not
(0). From this definition, every
customer should be denoted 1,
as everyone in the data set is a
customer of the bank. However,
customers under the age of 18 is
not set to 1 (and due to some
delay in the system).

36 Nyhetsbrev A binary variable denoting
whether the customer receives
newsletters.

37 KRA_Livsfase The phase of life of the customer.
Customers are divided into 10
different levels:

• Single parent
• Established family with

children
• Couple without children
• Middle aged single
• Middle aged couple
• Senior single
• Senior couple
• Family with toddlers
• Single
• Student

Continued on next page
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Table 6 – Continued from previous page
Nr Name Description
38 KRA_Bolig_By_land The customer lives in either an

area where the people live far
from each other (S), close to each
other (T) or in the city (B).

39 KRA_Boligtype_Enkel The type of dwelling. Customers
are divided into 8 different levels:

• Detached
• Semi-detached
• Buildings with shared ac-

commodations
• Holiday cottage
• House with garage and/or

other outbuildings.
• Commercial buildings and

other buildings
• Terraced house, linked

house and other small
houses.

• Apartment in high-rise
buildings

.
40 BIL_I_HUSTAND A binary variable denoting

whether the customer has a
car registered on the household
(1) or not (0). For example,
someone in the family could
own a car, and it would still be
denoted as 1.

41 Fond_avtale A binary variable denoting
whether the customer has a
fund (1) or not (0).

42 Oppsummering.klasse The customer categorization as
defined in Table 2. Customers
are divided into six classes, A–F.

43 Medlem The customer is either a member
(Medlem), non-member (Ikke-
medlem) or non-member with
member benefits (Ikke-medlem
med medlemsbetingelser).

Continued on next page
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Table 6 – Continued from previous page
Nr Name Description
44 AvtaleGiro A binary variable denoting

whether the customer has ac-
tivated direct debit (1) or not
(0).

45 eFaktura A binary variable denoting
whether the customer has ac-
tivated eFaktura (electronical
billing) (1) or not (0).

47 Tlfsamtaler.siste.år Number of calls recieved from
the customer within the last
year.

Some of the variables listed above, are variables counting the number of
transactions for the previous years. Transactions can be seen as some sort of the
activity of the customer, and the more transactions that are registered, the more
active is the customer. Having more transactions one year, and less transactions
the second year, can be seen as a decrease in activity. A decrease in activity
could mean that this customer will end up in a more inactive category than the
current category in the future. We create a new variable, Transer.diff.0.1,
which will be defined as the difference

Transaksjoner.siste.år− Transaksjoner.nest.siste.år,

i.e., the difference between variable number 25 and 26 in Table 6. This allows
us not only to see if they have decreased or increased in transactions, but also
by what amount. A negative value will be a decrease in transactions, while a
positive value will be a increase in transactions. We will add this to our list
of variables that we will use. This variable is a linear combination of two other
variables, and having all of these three variables will result in an infinite number
of solutions of the least squares method. Thus, we need to remove one of these
three variables, which will be the variable Transaksjoner.nest.siste.år.

Also, by a proposal from the bank employees, we choose to
look at interaction terms between the variables innskudd, utlan and
Input.aktivitet.kredittkort. Thus, we get four new variables to take care
of,

• utlan0:Input.aktivitet.kredittkort1

• innskudd0:utlan0

• innskudd0:Input.aktivitet.kredittkort1

• innskudd0:utlan0:Input.aktivitet.kredittkort1

We already have the variables
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• innskudd1:utlan1:Input.aktivitet.kredittkort0 (within intercept)

• innskudd0

• utlan0

• Input.aktivitet.kredittkort1

thus we have all 8 combinations of Input.aktivitet.kredittkort, innskudd
and utlan.

3.2 Significant Differences Between Customer Categories
For this task we are going to use nominal regression, which we introduced in
Section 2.3, (see Section 1 for task descriptions). Nominal regression models use
unordered categories as the response. The categories A–F, which is found in
the variable Oppsummering.klasse, are somewhat ordered categories, but for
simplicity we will assume they are unordered. We want to know if there are
any significant differences between these categories, and we will use the output
regression coefficients from nominal regression to solve this task. The analysis
will be based on the new data set.

3.2.1 Column Filtering

Before applying any methods to the data set, we start off by removing unnec-
essary variables. These variables can be identical or unique for each of the n
customers, i.e. columns containing only one or n different values, respectively.
They could also be linearly dependent of other variables or “better” explained
by other variables. Linearly dependent variables will result in infinite number
of solutions of the least squares method. Thus, there will be no unique solution
for the coefficients estimates β̂ for such a model.

The response variable Oppsummering.klasse are mainly calculated based
on formulas including other variables in the data set. The criteria are shown in
Table 2. Hence, before we start analyzing, we need to remove these variables also.
These variables will turn out to be very significant if we do not remove them and
they will most likely make us miss out on other potentially significant variables.
The variables that are included in the category formulas are status, innskudd,
utlan, medlantaker, DEBETKORT, NETTBANK, MOBILBANK, BANKID, KREDITTKORT,
SALDO.INNSKUDD and Lønnsinngang. Thus, these variables are being removed
from the data set new. In Table 7 we show which variables that is removed from
the data set, and explain the reason why they are being removed.
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Table 7: Variables to be removed from the data set task1.

Nr Name Reasons to remove variable
1 KUNDE_NR_HASH This is a unique text string for

every customer, and makes no
sense to bring in to an analysis.

2 status Partly explained by the variable
Oppsummering.klasse.

3 innskudd Partly explained by the variable
Oppsummering.klasse.

4 utlan Partly explained by the variable
Oppsummering.klasse.

5 medlantaker Partly explained by the variable
Oppsummering.klasse.

6 SLUTT_DATO The data of every customer
was extracted the same day, i.e.
31/01/2018 for the dataset old
and 31/01/2019 for the dataset
new.

7 BK_ANSVARSTED_KODE This variable is partly explained
by the variable Medlem.

8 Postkode There are 3029 different ZIP
codes in the dataset. We also
have another area variable,
Fylke, which is only 18 different
codes. Hence we choose to
remove this variable, and keep
Fylke.

12 KUNDE_SLUTT_DATO No customer in the dataset has
ended the relationship with the
bank. Hence, all of the customers
denoted as 0.

13 DOD All of the customers denoted as
0.

14 LAN Partly explained by the variable
utlan.

15 INNSKUDD Partly explained by the variable
innskudd.

Continued on next page
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Table 7 – Continued from previous page
Nr Name Reasons to remove variable
16 DEBETKORT A product provided by the

bank. Therefore, partly
explained by the variable
Oppsummering.klasse.

17 KREDITTKORT A product provided by the
bank. Therefore, partly
explained by the variable
Oppsummering.klasse.

18 NETTBANK A product provided by the
bank. Therefore, partly
explained by the variable
Oppsummering.klasse.

19 MOBILBANK A product provided by the
bank. Therefore, partly
explained by the variable
Oppsummering.klasse.

20 BANKID A product provided by the
bank. Therefore, partly
explained by the variable
Oppsummering.klasse.

21 SALDO.INNSKUDD Partly explained by the variable
Oppsummering.klasse.

22 Medlem/ikke.medlem Used, together with Tot_
medlem, to create the variable
Medlem.

23 Lønnsinngang Partly explained by the
Oppsummering.klasse.

25 Transaksjoner.siste.år Number of capital trans-
actions. Therefore, partly
explained by the variable
Oppsummering.klasse.

26 Transaksjoner.nest.siste.år We only consider the number of
transactions within the last year.

27 Transaksjoner.tredje.siste.år We only consider the number of
transactions within the last year.

28 Transaksjoner.fjerde.siste.år We only consider the number of
transactions within the last year.

Continued on next page
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Table 7 – Continued from previous page
Nr Name Reasons to remove variable
29 Transaksjoner.femte.siste.år We only consider the number of

transactions within the last year.
30 Input.aktivitet.kredittkort Partly explained by the variable

Input.aktivitet.kredittkort.
32 Tot_medlem Used, together with Medlem/

ikke.medlem, to create the vari-
able Medlem.

33 Aktivmedlem Used to create Tot_medlem,
which again is used to create
Medlem.

35 Bank_avtale Every customer in the datasets
is a customer of the bank, hence
all of the customers should be de-
noted as 1.

3.2.2 Row Filtering

The next thing that needs to be done, is to remove all rows with missing values.
If the data is missing at random, then it is safe to remove the corresponding
rows. However, if the missing values are not random, then removing the row
can produce a bias. Since our data most likely are missing at random (through
personal communication with lead business analyst of the bank), we can go
ahead and remove the corresponding rows, which can simply be done by using
the R function complete.cases(). This leaves us a simplified smaller data set,
which we will call task1. This data set has ntask1 = 45384 bank customers that
is explained by ktask1 = 16 variables.

3.2.3 Dummy Variable Coding

Categorical variables are transformed into numerical columns, by using a tech-
nique called dummy variable coding. Denote by κj the number of categories
within a categorical variable j. This technique transform one column with κj
categorical classes, to κj binary columns. These columns are given a high (1)
and a low (0) value based on if the specific binary column matches the category
in the old categorized variable. Let us look at an example. Say, we have a vari-
able color, whose categories are blue, red and yellow. We will refer to these
categories as levels. Here, the number of levels is κ = 3. Thus, we transform the
category variable color into three new binary columns, one for each level. An
illustration is shown in Table 8.

Due to many variables being categorical in the task1 data set, some with
more levels than others, we end up with more than k = 16 regression coeffi-
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Dummy variable coding
color
blue
red

yellow
yellow

red
red
blue
red

=⇒

color:blue color:red color:yellow
1 0 0
0 1 0
0 0 1
0 0 1
0 1 0
0 1 0
1 0 0
0 1 0

Table 8: This is an illustration of dummy variable coding. A variable with cat-
egories are transformed into columns with binary values corresponding to each
category.

cients. For example, the variable Fylke has κ31 = 18 levels and the variable
KRA_Livsfase has κ37 = 10 levels. All in all, transforming into dummy variable
coding results in a total of ktask1 = 48 individual variables.

3.2.4 Nominal Logistic Regression in R

Multiple different packages are available in order to perform nominal regres-
sion. Some of them are the mlogit() function from the mlogit package, the
multinom() function from the nnet package and the vglm() function from the
VGAM package (Croissant, 2019; Ripley and Venables, 2016; Yee, 2019). Here,
we will use the latter alternative. The vglm() function can perform both nom-
inal and ordinal regression, by setting the argument family = multinomial
and family = cumulative, respectively. To obtain the regression coefficients,
β, one can simply use the summary() function on the vglm-object.

We have six customer categories as the response, which results into d = 5 in
the nominal model. Category 1 in the output corresponds to customer category
F, category 2 in the output corresponds to customer category E and so on.
Category d + 1 corresponds to customer category A, which is our reference
category. Thus, 48 × 5 coefficients are being output when performing nominal
regression.

3.3 Indicator Model
For this task, (see Section 1 for task descriptions), we are going to develop an
indicator that indicate whether an active customer (category A, B, C, D) soon
will be inactive (category E, F) or not. This is the task that we emphasized the
most. To attack this problem, we first need to make the response variable.

The response variable will be 1 if the customer has gone from an active
category to an inactive category, and 0 otherwise. Also, if a customer from the
old data set are not in the new data set, means that the customer is not a
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customer anymore. Hence, we will also denote the customer as 1 if the cus-
tomer has an active category in the old data set, and is not found in the new
data set. The response variable can easily be created by using the variable
Oppsummering.klasse from both data sets.

This variable will be called Response, and will be merged with the old data
set. We can now apply methods, such as variable selection through AIC and
lasso regularization, to the data set.

3.3.1 Column Filtering

Again, before deriving any methods on the data set, we start off by removing
unnecessary variables. These variables can be identical or unique for each of the
n customers, i.e. columns containing only one or n different values, respectively.
They could also be linearly dependent of other variables or “better” explained
by other variables. Linearly dependent variables will result in infinite number
of solutions of the least square method. Thus, there will be no unique solution
of β̂ for such a model.

In Section 3.2.1 we removed the variables that explained the
Oppsummering.klasse variable. The bank customers are better explained with
many specific variables, than one “universal” variable. In the first task, the
Oppsummering.klasse variable was required, since this was the response vari-
able. In this task, this variable is just a variable like any other. Hence, we will
do the opposite in this task, i.e. remove the the Oppsummering.klasse variable
and keep the variables status, innskudd, utlan, medlantaker, DEBETKORT,
NETTBANK, MOBILBANK, BANKID, Transaksjoner.siste.år, KREDITTKORT,
SALDO.INNSKUDD and Lønnsinngang. In Table 9 we show which variables that is
removed from the data set, and explain the reason why they are being removed.

Table 9: Variables to be removed instantly from the data set task2

Nr Name Reasons to remove variable
1 KUNDE_NR_HASH This is a unique text string for

every customer, and makes no
sense to bring in to an analysis.

6 SLUTT_DATO The data of every customer
was extracted the same day, i.e.
31/01/2018 for the data set old
and 31/01/2019 for the data set
new.

7 BK_ANSVARSTED_KODE This variable is partly explained
by the variable Medlem.

Continued on next page
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Table 9 – Continued from previous page
Nr Name Reasons to remove variable
8 Postkode There are 3029 different ZIP

codes in the dataset. We also
have another area variable,
Fylke, which is only 18 different
codes. Hence, we choose to
remove this variable and keep
Fylke.

12 KUNDE_SLUTT_DATO No customer in the dataset has
ended the relationship with the
bank. Hence, all of the customers
denoted as 0.

13 DOD All of the customers denoted as
0.

22 Medlem/ikke.medlem Used, together with Tot_
medlem, to create the variable
Medlem.

26 Transaksjoner.nest.siste.år A linear combination of vari-
able Transaksjoner.siste.år
and Transer.diff.0.1.

27 Transaksjoner.tredje.siste.år We only consider the number of
transactions within the last year.

28 Transaksjoner.fjerde.siste.år We only consider the number of
transactions within the last year.

29 Transaksjoner.femte.siste.år We only consider the number of
transactions within the last year.

32 Tot_medlem Used, together with Medlem/
ikke.medlem, to create the vari-
able Medlem.

33 Aktivmedlem Used to create Tot_medlem,
which again is used to create
Medlem.

35 Bank_avtale Every customer in the data set
is a customer of the bank, hence
all of the customers should be de-
noted as 1.

Continued on next page
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Table 9 – Continued from previous page
Nr Name Reasons to remove variable
42 Oppsummering.klasse This variable is based

on the variables status,
innskudd, utlan, medlantaker,
Transaksjoner.siste.år,
KREDITTKORT, SALDO.INNSKUDD
and Lønnsinngang, as explained
in Table 2.

3.3.2 Row Filtering

To simplify our data set, we can remove all inactive customers, i.e. customers
within categories E and F, from the old data set. These customers already are
inactive in the old data set, which makes it impossible for them to go from
being active to be inactive. This will also help to reduce nuisance, as these
customers are irrelevent for the model. Furthermore, we go ahead and remove
rows with missing values, which can simply be done by using the R function
complete.cases(). This leaves us a simplified smaller data set, which we will
call task2. This data set has ntask2 = 26189 bank customers that is explained
by ktask2 = 33 variables.

3.3.3 The full model

To get a quick overview of the model containing all the ktask2 = 33 variables,
i.e. the full model, we can simply run the glm() function on the data set. Our
response is binary, hence a logistic regression model is preferred. This can be
done by including the argument family = "binomial" in the glm() function.
The function summary() can be used on the fitted object in order to obtain
the regression coefficient estimates, along with their standard error and p-value.
We can then easily sort out the the most significant coefficients with the lowest
p-values. Dummy variable coding is also used to transform category variables
into numeric variables, which results in ktask2 = 71 variables for the task2 data
set. See Section 3.2.3 for the explanation of dummy variable coding. The results
are shown in Section 4. The next two sections are using this glm-model as a
base model to perform variable selection.

3.3.4 Variable Selection Based on AIC

There are multiple ways to select the best subset of variables. There are mostly
greedy, stepwise algorithms that use criteria like AIC, BIC, Mallows’ Cp and
adjusted R2. Several functions in R can be used for model selection, which
is the step() function (or the stepAIC() function from the MASS package),
the regsubsets() function from the leaps package and RegBest() from the
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FactoMineR package. We will use the stepwise algorithm called stepAIC() func-
tion. This function takes in and examines a range of models, and calculates the
AIC for these models in an iterative manner (Ripley et al., 2013). We choose to
examine the full range, i.e. from including all the variables, to only examine the
intercept. There are three different directions to choose, “forward”, “backward”
and “both”, where “both” is the default for the stepAIC() function.

A forward stepwise model selection means that we start with no variables
in the model, then calculate the AIC on the k different models, by iteratively
adding one variable to the model at a time. The variable that resulted in the
lowest AIC are being added to the model. The next iteration we examine k− 1
different models and add the variable that result in the lowest AIC, and so on. A
backward stepwise model selection means that we start with all of the variables,
then calculate the AIC on the k different models, by iteratively removing one
variable from the full model at a time. The variable that results in the highest
AIC are being removed from the model. The next iteration we examine k − 1
different models, and then remove the variable that resulted in the highest AIC.
The forward and backward stepAIC algorithm are described in Algorithm 3 and
Algorithm 4, respectively.

Algorithm 3 Forward stepAIC

1: minAIC = ∞
2: for i ∈ k : 1 do
3: minAIC2 = ∞
4: for j ∈ 1 : i do
5: Add the jth variable (that is not in the model) and calculate the AIC

for this model, fij(x).
AIC = AIC(fij(x)).

6: minAIC2 = min(AIC, minAIC2)
7: minAIC = min(AIC, minAIC)
8: Add the variable that resulted in minAIC2 to the model.

return Model fij(x) that resulted in minAIC.

We choose to do both directions, where the output will be the model with
the lowest AIC from the two algorithms. Running the stepAIC() on the model
from Section 3.3.3 will return the suggested model based on AIC.

3.3.5 Variable Selection Based on Lasso Regularization

We can simply use the glmnet() function from the glmnet package to perform
lasso regression. The coefficients that are forced to be exactly zero, will be
excluded from the suggested model. The glmnet() function has an argument,
alpha, that determines what type of regression we are going to use (James
et al., 2013). Ridge regression is fit when alpha = 0 and lasso regression is
fit when alpha = 1, thus we set alpha = 1. This function also takes in the
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Algorithm 4 Backward stepAIC

1: minAIC = ∞
2: for i ∈ k : 1 do
3: maxAIC = −∞
4: for j ∈ 1 : i do
5: Remove the jth variable (that is in the model) and calculate the AIC

for this model, fij(x).
AIC = AIC(fij(x)).

6: maxAIC = max(AIC, maxAIC)
7: minAIC = min(AIC, minAIC)
8: Remove the variable that resulted in maxAIC from the model.

return Model fij(x) that resulted in minAIC.

penalty value λ as an argument. The optimal value for λ can be found by cross
validation by using another function within the glmnet package, which is the
function cv.glmnet().

There are two different values of λ that are returned from the cv.glmnet()
function, namely λ1se and λmin. The latter is defined as the λ that minimizes the
mean cross-validated error. The λ1se is the largest value of λ such that the error is
within one standard error of the minimum (Hastie and Qian, 2014). Now, which
of the λ’s should we use? Based on the cross-validation, having λ = λmin results
in the best model. However, this model tends to be more complex, i.e. having
more variables, and probably overfit. Having λ = λ1se we would get a simpler
model including less variables, but then again it would perform slightly worse
than the model resulting from λmin. In our case, performing lasso regression
with λ = λmin results in only three of ktask2 = 71 coefficient being set to zero.
Setting λ = λ1se results in getting 47 regression coefficients set to zero. Getting
a much simpler model at the cost of some cross-validation error is preferred,
since we want to observe which variables are less significant than other. Hence,
we choose to set λ = λ1se. The results can be found in Section 4.2.2.

3.3.6 Variable Selection Based on Variable Importance

Variable importance is another way to determine which variables to use in a
model. This is a feature from tree-based ensemble methods, which allows us to
see the importance of each variable. In the case of using regression trees, the
importance are measured in decrease of RSS averaged over all M trees, and for
classification trees, the importance are measured in decrease of the Gini index
averaged over all M trees (James et al., 2013).

We simply use the randomForest() from the randomForest package to per-
form random forests. Along with the predicted classes (or probabilities for be-
ing classified to class 1), we can plot the variable importance by using the
varImpPlot() function, which is also a part of the randomForest package, on
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the random forest object.

3.3.7 Prediction Methods and Model Assessment

We have seen how to select variables. The next thing to do is to select a statistical
method. An important key to constructing an accurate model is to decide, for
any given data set X, which method produces the best results (James et al.,
2013). We will use different methods, such as binary logistic regression, random
forests and XGBoost, to construct our models. For these methods, we are going
to use the glm() function, randomForest() function from the randomForest
package and xgb.train() function from the xgboost package, respectively, to
train our models (Liaw and Wiener, 2019; Chen et al., 2019). We could also
fit a lasso model as a fourth method. Lasso models are based on regression,
which lacks of prediction accuracy compared to tree-based ensemble methods
Hence, we choose to only include binary logistic regression as the only regression
method.

The predicted values can be found through the predict() function, by in-
serting the model object and test data. The output are the probabilities for each
customer to be inactive in the future. Finally, we will evaluate the outcome by
measuring the AUC value based on ROC-plots, (see Section 2.6). This can sim-
ply be done by using the roc() function from the pROC package (Robin et al.,
2019). This will return a ROC-object. We can plot the ROC-object by directly
using the plot() function on the object, and get the AUC value by using the
auc() function, from the pROC package, on the same object (Robin et al., 2019).
We will decide the best model based on the AUC values and the ROC plots.

To avoid lucky and unlucky results, i.e. very good or very bad performance
for a particular partition of the training and test set, when deciding the best
model, an approach could be to compute the average test AUC over Nsim simu-
lations. This way, we can observe which models performance is more robust than
others. The model that perform best on average, will be strongly recommended
as the indicator model.
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4 Results and Discussion
In this section we will show and discuss the results from Section 3. The results
from the smaller task are shown in Section 3.2, and the results from the bigger
task are shown in Section 3.3.

4.1 Significant Differences Between Groups
In Section 3.2.4 we performed nominal regression in R, with the customer cat-
egories A–F as the response. The variables that show the most significance
between categories are listed in Table 10. The full output can be found in Ap-
pendix A.1. Recall that the regression coefficient estimate β̂jr is the coefficient
estimate for variable j and category r, and the probability for customer i to be
assigned to category r is πir. We are looking at the change in probability πi,r
relative to the probability πi,6 for category A, hence we can imagine that the
regression coefficient estimate for category A is equal to zero, i.e. β̂j,6 = 0 for
all j.

In Table 10 we observe the five different regression coefficient estimates for
the Søkeprosess1 variable. This variable relates to if a customer has applied for
a loan/credit card. We observe that all of the coefficient estimates are negative,
and that β5,5 is clearly higher than the other estimates. This means that the
ratio for category B relative to A, πi,5/πi,6, decreases the least among the five
categories. Since the estimate for category A can be imagined as zero and the
estimate for category B is relatively close to zero, they form a cluster that
stands out from the rest of the estimates. Thus, if we know that the customer
has applied for a loan/credit card, the probability for customer i to be assigned
to category B and A, i.e. πi,5 and πi,6, increases the most of all the categories.

We also observe some significant difference between the groups when it comes
to the variable KRA_Bolig_By_landS. This variable relates to if the customer
lives in an area where the people live far from each other. The estimate for cate-
gory B and D is clearly lower than the estimates for the other categories. Thus,
a customer that lives in a scattered residental area has a reduced probability
for being in category B and D.

Moreover, we also see a clear distinction between the categories related to
the variable Medlem. The coefficient estimates for having this variable set to
Ikke medlem med medlemsbetingelser or Medlem are also presented in Table
10. The first case, i.e. variable j = 45, relates to the customers that are non-
members with member benefits. We observe that β45,1 is more negative than
the other four estimates. The coefficient estimate is β45,1 = 6.931, which means
that if customer i is a non-member with member benefits, the odds relative to
the reference category A, i.e. πi,1/πi,6, will decrease by a factor of exp(6.931) =
0.00098. This means that the probability for being in category F, relative to
category A, is clearly reduced. Also, since it is the most negative coefficient
estimate of this variable, we know that the probability πi,1 decreases the most
among the six probabilities, i.e. πir where r = 1, ..., 6. The latter case, i.e.
variable j = 46, relates to the customers that are members. We observe that
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Variable Cat Coef Estimate p–value

Søkeprosess1

F β̂5,1 −1.748 < 2 · 10−16

E β̂5,2 −1.293 < 2 · 10−16

D β̂5,3 −2.309 < 2 · 10−16

C β̂5,4 −2.024 < 2 · 10−16

B β̂5,5 −0.1320 0.001489

KRA_Bolig_By_landS

F β̂34,1 −0.0425 0.564444
E β̂34,2 −0.0850 0.132788
D β̂34,3 −0.2311 0.017836
C β̂34,4 −0.0837 0.107769
B β̂34,5 −0.2237 0.000170

MedlemIkke medlem
med medlemsbetingelser

F β̂45,1 −6.931 7.68 · 10−10

E β̂45,2 −1.690 0.135106
D β̂45,3 −2.397 0.078874
C β̂45,4 −2.876 0.010624
B β̂45,5 −0.3649 0.772912

MedlemMedlem

F β̂46,1 −4.134 < 2 · 10−16

E β̂46,2 −0.5897 0.233624
D β̂46,3 −0.0335 0.964172
C β̂46,4 0.0793 0.873588
B β̂46,5 0.2104 0.712221

AvtaleGiro1

F β̂47,1 −8.636 < 2 · 10−16

E β̂47,2 −1.902 0.023333
D β̂47,3 −1.173 0.363619
C β̂47,4 −5.208 1.16 · 10−10

B β̂47,5 −0.9543 0.285965

eFaktura1

F β̂48,1 −3.920 < 2 · 10−16

E β̂48,2 −3.684 < 2 · 10−16

D β̂48,3 −2.946 < 2 · 10−16

C β̂48,4 −1.574 < 2 · 10−16

B β̂48,5 −1.844 < 2 · 10−16

Table 10: This table contains the nominal regression coefficient estimates for six
out of 54 variables. Each of the six variables contain estimates that clearly differ
from the other categories. Each coefficient estimate (Coef) are listed with their
respective category (Cat), estimate and p-value.
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β46,1 is also the most negative of the five estimates. So, if customer i is a member
or a non-member with member benefits, the probability for being a customer
from category F, i.e. πi,1, has a clear decrease. Hence, there is a reason to believe
that there is a high percentage of non-members in category F.

When it comes to the AvtaleGiro1 variable, i.e. variable number 47, we ob-
serve a clear distinction between β47,1, β47,4 and the other coefficient estimates.
The estimates for categories C and F is clearly more negative (F more than
C), which tells us that the probability for a customer i with direct debit to be
categorized in F and C is a significantly reduced (probability for F more reduced
than the probability for C). The last variable listed in Table 10 is eFaktura1,
which is related to customers that have activated electronical billing. We ob-
serve that all of these estimates are sufficiently lower than zero. Thus, category
A stands out here. The probability for customer i to be categorized in A, i.e.
πi,6, is significantly increased if the customer has electronical billing activated.
This is an interesting find, as we observe a clear difference between category A
and B. For the most variables, the coefficient estimates for these categories are
close to one another.

4.2 Indicator Model
In this section we create an indicator model that indicate customers that are
going to be inactive in the future. Before applying variable selection methods to
the data set, we look at the effects of each variable in the data set. This is done
in Section 4.2.1. Then we will look at the results from the three different variable
selection methods in Section 4.2.2. Further, 15 different models are trained on a
training set. In Section 4.2.3, we test the performance of each model according
to a test set. The performance are evaluated in the form of AUC. Finally, we will
interpret the final model, which is going to be the indicator model, in Section
4.2.4.

4.2.1 Interpreting the Full Model

To get a quick overview of the most significant variables, we can use the summary
table that was made in Section 3.3.3. We sort the variables according to p-
value, since we are looking for variables with significant effects. The lower the p-
value, the more significant is the variable. The top ten most significant variables
are shown in Table 11. The full summary output is presented in Appendix
A.2. Having a positive coefficient estimate will have a positive effect on the
linear predictor ηi. This means that the returned probability πi for customer
i to become inactive in the future will increase. Similarly, negative coefficient
estimates will have a negative effect on the linear predictor ηi, which again will
decrease the probability πi for customer i to become inactive in the future.

In Table 11 we observe that SALDO.INNSKUDD is the most significant variable,
with a p-value of 3.85 · 10−29. This coefficient estimate is −5.24 · 10−06, so for
every one unit increase of this variable will decrease the odds πi/(1 − πi) by a
factor of exp(−5.29 · 10−06) = 0.9999947. Keep in mind that one unit for this
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Variable name Estimate Std.Error p–value
SALDO.INNSKUDD −5.29 · 10−6 4.54 · 10−7 3.85 · 10−29

utlan1 −2.631697 0.2809412 7.43 · 10−21

Lønnsinngang1 −1.361438 0.1849998 1.85 · 10−13

innskudd1 −1.234689 0.1755195 2.00 · 10−12

Søkeprosess1 0.432285 0.0823391 1.52 · 10−07

statusUten aktiv konto 1.489935 0.2924175 3.48 · 10−7

statusPassiv siste 5 år 0.851061 0.2288074 2.00 · 10−4

statusAktiv siste år 0.601313 0.1661946 2.97 · 10−4

innskudd1:Input..kredittkort1 1.084984 0.3081047 4.29 · 10−4

Fond_avtale1 −0.635918 0.1806580 4.32 · 10−4

Table 11: A list of the ten most significant variables in the full model. The list is
obtained by the coefficient table, where the variables are sorted by p-value. The
coefficient table are provided by the summary() function on the glm-object.

variable is 1 NOK, which explains the small change. From another point of view,
having a balance of 100000 NOK will decrease the odds πi/(1− πi) by a factor
of exp(−5.29 · 10−06 · 100000) = 0.589. This variable has a negative effect on
the linear predictor ηi, which means that the probability for becoming inactive
in the future is reduced. It also makes sense that this variable is one of the
most significant. Those who are future active bank customers probably have a
balance which is sufficiently greater than zero, while future inactive customers
have a balance close to zero. Considering the p-value and coefficient estimate,
there is a reason to believe that we see this variable as significant in our final
model.

The second most significant variable is the utlan variable. The coefficient
estimate for having the utlan variable set to 1, i.e. a customer with loan, is
2.632. This means that the odds, πi/(1−πi), of customer i for becoming inactive
decreases by a factor of exp(−2.632) = 0.0719. This variable also makes sense to
be significant. Of all the customers with loan, 2.49% had their loan removed and
became inactive. Hence, bank customers with loan will most likely owe the bank
in the future as well, which counts as using one of their products. A customer
that is using one of their products falls into category C, see Table 2. Thus, a
customer with loan are using at least one product, and will fall into one of the
active categories A–C, depending on the usage of other products. Considering
the p-value and coefficient estimate, there is a reason to believe that we see this
variable as significant in our final model as well.

The next variable on the list is the Lønnsinngang variable. Having this
variable set to 1 relates to the customers that have payroll input. The regression
coefficient estimate is 1.361, which means that the odds, πi/(1−πi), of customer
i for becoming inactive decreases by a factor of exp(1.361) = 0.2564. Customers
usually are most active within the bank where they have their payroll input,
so the effect of this variable makes sense. The variable innskudd has a similar
effect on the linear predictor. This coefficient relates to customers that have a
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positive balance on their deposit account. This also makes sense, as one could
think that a customer would not go inactive unless the balance was close to
zero.

We also observe that the Søkeprosess variable is significant. If a customer
is applying for loan or credit card, the linear predictor ηi for this customer
will be increased, together with the probability πi. This variable is the most
significant variable with a positive effect on the linear predictor. This is a bit
surprising as the customer is willing to get more products provided by the bank.
However, these may be customers that have reached a stage where a mortgage
is applicable. The customers have saved up a lot on their accounts in advance,
which may explain the activity. Further, they choose to apply for a loan, as well
as check the loan conditions with other banks. This may result in inactivity if
the application is rejected, or if other banks offer better loan conditions.

The next three variables are related to the status variable, where Uten
aktiv konto refers to customers without an active account, Passiv siste 5
år refers to customers that have been passive the last five years and Aktiv
siste år refers to customers that have been active the last year. These coeffi-
cients are relative to the level Aktiv siste 5 år, which refers to the customers
that have been active the last 5 years. This explains the positive coefficient es-
timates. Among the three variables, customers without an active account have
the highest increase in the probability and customers that have been active the
last year have the lowest increase in the probability, which makes sense.

The interaction variable innskudd1:Input.aktivitet.kredittkort1 also
shows great significance. Customers whose Input.aktivitet.kredittkort
variable is set to 1 and innskudd variable is set to 1, will have an increase
of the probability πi. This is also very interesting. However, this is an interac-
tion term and it can be seen as a correction from the two individual variables.
The coefficient estimates for inskudd1 and Input.aktivitet.kredittkort1 is
−1.234 and −1.328, respectively. Hence, a customer with an active credit card
and positive balance on the deposit account will have a total effect of −1.477,
which is still negative. This means that this variable has a reduced negative
effect on the probability πi.

Finally, we have the Fond_avtale as the tenth most significant variable. The
coefficient estimate for having the Fond_avtale variable set to 1, i.e. a customer
with fund, is 0.636. This means that the odds, πi/(1 − πi), of customer i for
becoming inactive decreases by a factor of exp(0.636) = 0.529. The customers
with a fund is more connected to the bank, hence this makes sense.

4.2.2 Results from Different Variable Selection Methods

In Section 3.3 we implemented and executed three different methods for model
selection. One method was based on the AIC, another method was based on
lasso regression and last method was based on variable importance. The returned
model for each method are shown in Table 12. The returned model from the
stepAIC() function has an AIC value of 6357.26, which is lower than the AIC
value of full model, that is 6397.96. In addition to this, the returned AIC-model
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(a) This plot represents the value of the
71 coefficient estimates, with λ as the pa-
rameter. Each line corresponds to a single
coefficient estimate. The L1 Norm on the
x-axis refers to the amount ‖β‖1, which
increases while λ decreases. The numbers
above the plot relates to the number of
estimates that have not yet been set to
zero.

(b) This plot illustrates the cross-
validation error plotted against log(λ).
The error is measured in binomial de-
viance. The value log λ increases as λ in-
creases. The numbers above the plot re-
lates to the number of estimates that have
not yet been set to zero.

Figure 6: These plots illustrates the shrinkage of β and cross-validation error
for different values of the penalty parameter λ.

has only 34 degrees of freedom, compared to the original 71 degrees of freedom
in the full model. The number of degrees of freedom is reduced by more than
half, yet we have almost the same level of quality.

From the lasso regression in R, we can observe the which variables that are
forced to zero given a value of λ. This can be seen in Figure 6a. For example,
the cyan line at the very top is referring to variable 5, which is the innskudd1
variable. Since we have a total of 71 regression coefficients to handle, this plot
will visualize 71 lines, which make it hard to distinguish and interpret most of
the regression coefficients. Therefore, we will only use this plot only to illustrate
that the coefficients are being forced towards zero.

Furthermore, we can plot the cross-validation error from the cv.glmnet()
function to the corresponding value of λ by simply using the plot() function on
the returned object. The error is visualized in Figure 6b. Along with the error,
which is measured in binomial deviance, we can observe both λmin and λ1se in
the figure. We observe that using λmin results in a model with 68 degrees of
freedom. That is only a reduction by 3 degrees of freedom from the full model.
Using λ1se results in a model with only 24 degrees of freedom, which is far less.
This is the reason why we choose to set λ = λ1se, which in this case is 0.00262.
We exclude the variables that have been set to zero in the resulting lasso model.

In Figure 7 we observe the 15 most important variables in random forests.
The variable SALDO.INNSKUDD is by far the most important variable of them
all. The importance is measured in the mean decrease of the Gini index over
all M trees in the random forest model. The percentages of all variables sum
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Figure 7: Top 15 most important variables in the random forest model. The
importance are measured in mean decrease of the Gini index. The percentages
of all variables sum to 100%.

to 100%. The SALDO.INNSKUDD variable stands out with almost 10% of the
mean decrease in the Gini index. We observe that the top eight variables in
this list is either continuous variables or factor with many levels. A factor is a
variable with categorical values, where the number of levels corresponds to κ
(see Section 3.2.3). Binary variables and factors with few levels are observed to
be less important in random forests. When we are making a split in an individual
tree structure, we choose the splitting value s that minimize the sum of RSS of
the created regions from (2.3). For binary variables, different values of s ∈ {0, 1}
will result in the same split. This split will most likely not reduce the Gini index
as much as for a continuous variable, where the split is more “customized”. Thus,
continuous variables and categorical variables with many levels tends to be more
important than binary variables in the variable importance plot.

Comparing the returned model for each method help us understand which
variables that turns out to be significant on average. Some variables can “get
lucky” and come out as significant for one model selection method, but can come
out as not significant in an other method. In the same table, we have created a
model “Combo”, which is a combination model of the all the tree methods. Here
we assign the variables that repetitively appear to be significant to the Combo
model.
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Table 12: Different model selection methods with their returned suggested
model. Variables marked with “x” are used in the model. The column AIC
refers to the model returned by the stepAIC() function. The column Lasso
refers to the model returned by the glmnet() function. The column VarImp
refers to the model with the 20 most important variables in random forests,
which can be found in Figure 7. The last column, Combo, includes the variables
that repetitively appeared in the returned model from the first three columns.

Nr Names AIC Lasso VarImp Combo
2 status x x x x
3 innskudd x x x x
4 utlan x x x x
5 medlantaker x x x
9 BK_KJONN_KODE x
10 ALDER x x x x
11 KUNDE_START_DATO x x x x
14 LAN x
15 INNSKUDD x x x x
16 DEBETKORT
17 KREDITTKORT x
18 NETTBANK x x x
19 MOBILBANK
20 BANKID x
21 SALDO.INNSKUDD x x x x
23 Lønnsinngang x x x
24 Søkeprosess x x x x
25 Transaksjoner.siste.år x x x
30 Input.aktiv..kredittkort x x x
31 Fylke x x x
34 Skade_avtale x x x x
36 Nyhetsbrev
37 KRA_Livsfase x x x
38 KRA_Bolig_By_land x x x x
39 KRA_Boligtype_Enkel x x x x
40 BIL_I_HUSTAND x x x
41 Fond_avtale x x x
43 Medlem
44 AvtaleGiro x x x
45 eFaktura
47 Tlfsamtaler.siste.år x
48 Transer.diff.0.1 x x x x
49 utlan:0

Input.aktiv..kredittkort:1
x x x

50 innskudd:0
utlan:0

x x x

Continued on next page
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Table 12 – Continued from previous page
Nr Names AIC Lasso VarImp Combo
51 innskudd:0

Input.aktiv..kredittkort:1
x

52 innskudd:0
utlan:0
Input.aktiv..kredittkort:1

x

4.2.3 Prediction Methods and Model assessment

We have trained and evaluated 15 different models. We will use the variable
combinations found in Table 12 and the full model as different model formulas.
Each of these models are then trained by the methods binary logistic regres-
sion, random forests or XGBoost. Thus, 5 (different variable combinations) ×
3 (different prediction methods) = 15 different models are trained and evalu-
ated. The number of simulations is set to Nsim = 100. The mean test AUC
for the different models are presented in Table 13. To get a better overview of
the results, the test AUC densities for each model are plotted in Figure 8. In
random forests we have set the predictor subset size to z =

√
k and the number

of trees to MRF = 200 trees. When it comes to setting parameters XGBoost,
we have used max depth per tree = 8, learning rate η = 0.05, row and col-
umn subsampling parameter δr = δc = 0.6, leaf node penalizing factor γ = 2,
weight-smoothing parameter ν = 1 and number of iterations MXGB = 200. The
loss function is the binary classification error rate L(y, ŷ) = 1

n

∑n
i=1 I(yi 6= ŷi),

which is the default loss function of xgb.train() for classification problems
(Chen et al., 2019). The loss is simply the number of wrongly predicted classes
divided by the total number of observations n, hence it is highly associated with
the 0-1 loss function described in Section 2.5.2. The parameters will be constant
for their respective model.

In Figure 8 we observe a big difference when it comes to the prediction
accuracy of the three different methods. Binary logistic regression, the green
density curves labeled as “GLM”, is the method that clearly performs the worst
according to AUC. This is as expected, as binary regression only consider lin-
ear relations between variables and and the response. Regression in general is
great for interpretation of the model, but lacks prediction accuracy. Similarly,
tree-based ensemble methods lacks interpretation, but gives remarkable results
when it comes to prediction accuracy. Random forests, the red density curves,
performs sufficiently better than logistic regression. XGBoost performs the best
on average, as all of the five XGBoost models scores a higher test AUC than
the five random forest models. It is a clear separation between the regression
models and the tree-based models.

It is easier to see differences in numbers than in density plots, thus we will
now discuss the results in Table 13. These results origins from the same simula-
tions as used for the density plots in Figure 8. Each model are given a reference
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Figure 8: This plot illustrates the test AUC density curves after 100 simulations
for the 15 different models. The green density curves represent the binary logistic
regression models, the red density curves represent the random forest models
and the black density curves represent the XGBoost models.

Method Model Model nr Mean Std. dev

Binary logistic regression

Full 1 0.8543127 0.0104251
AIC 2 0.8577110 0.0106357
Lasso 3 0.8543190 0.0104297
VarImp 4 0.8480242 0.0100768
Combo 5 0.8544283 0.0104554

Random forests

Full 6 0.9074290 0.0100192
AIC 7 0.8936977 0.0108110
Lasso 8 0.9033378 0.0097330
VarImp 9 0.9061586 0.0095581
Combo 10 0.9050527 0.0100330

XGBoost

Full 11 0.9174993 0.0086294
AIC 12 0.9158849 0.0088899
Lasso 13 0.9129416 0.0092966
VarImp 14 0.9154367 0.0094171
Combo 15 0.9156563 0.0094694

Table 13: A list of test AUC results after 100 simulations of the 15 different
models. Mean and standard deviance of the test AUC are shown in the two last
columns. Each of these columns contains a red and a green number. The red
and green number denotes the worst and best value of this column, respectively.
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number, for example random forests with the lasso variable combination are
referred to as model 8. This table shows the mean and standard deviance of the
100 simulated test AUC values. We want the mean to be as high as possible, and
the standard deviance to be as low as possible. The mean corresponds to the
performance of the model. The higher the mean, the better is the performance.
Standard deviance corresponds to the performance stability and robustness. A
model whose performance vary a lot, is not preferred. This can lead to unstable
results in projects that is based on this model.

Observing the first five models (1-5), i.e. the logistic regression models, we
see that the mean are relatively low. Model 4 resulted in the worst test AUC
mean, which is not surprising. This model uses the variables which was found
to be most important in random forests. This variable combination is meant
for tree-based prediction methods, and this is why this model results in the
lowest test AUC mean. Overall, these models have a test AUC mean on around
0.85. I Figure 8, we can clearly see which densities that origins from the logistic
regression. Model 2 results in the best regression model, as it has the highest
mean and the lowest deviance among the five models.

Moreover, we have the next five models (6-10), which are using random
forests. We observe that the test AUC mean is overall around 0.89− 0.91. This
is far better than the logistic regression models. Model 7 suffers the highest
standard deviance of all 15 models, with a value of 0.0108. It also suffers the
lowest test AUC mean among the random forest models. Again, this is not
surprising. This model uses the variables which are found to be most significant
in binary regression models, and is meant for regression models. Model 6 and
9 results in the best random forest models, as they have the highest mean and
the lowest deviance among the random forest models, respectively. Since model
9 has a relatively high mean and far less variables, one can argue that this is
the preferred random forest model.

Lastly, we have the five final models (11-15), which are trained using XG-
Boost. We observe a relatively high overall mean test AUC values, ranging
0.91 − 0.92. This was expected, due to its reputation of giving state-of-the-art
results for a wide range of problems. (Chen and Guestrin, 2016). We will use one
of these models as our final model, as the models with the overall highest mean
and lowest standard deviance are found among these models. That is, model
11 with the highest mean and the lowest standard deviance. It is interesting to
see that the model with all the variables included in the model, i.e. model 11,
beats the other models when it comes to the mean test AUC. This may be, due
to including insignificant variables that make small positive changes. Model 13
suffers the lowest mean and the highest among the XGBoost models, hence this
model is outperformed by the others. All in all, we observe that this table is
highly related to the test AUC densities in Figure 8, where the green density
curve to the very left represents model 4 and the black density curve to the very
right represents model 11.

We usually prefer the model that has AUC closest to one, but as mentioned
earlier, in applications more weight may be given to sensitivity or to specificity.
The idea of the model is to indicate if a bank customer are going to be inactive in
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Figure 9: This plot illustrates the average ROC curves after 100 simulations for
the 5 different XGBoost models. The black curve represents the full model, the
red curve curve represents the AIC model, the green curve represents the lasso
model, the blue curve represents the variable importance model and the purple
curve represents the combo model.

the future. Indicating a customer that are going to be inactive is more important
than indicating a customer that are still going to be active. Thus, we are more
interested in sensitivity, i.e. the true positive rate, than specificity, i.e. the true
negative rate. Therefore, sensitivity will be more weighted than specificity.

The average ROC curves ofNsim = 100 simulations are presented in Figure 9.
We observe that the average ROC curves are almost inseparable. The mission
here is to see which model that performs best according to the true positive
rate. This would be the model represented by the ROC curve whose sensitivity
is closest to 1 at any point (vertical direction). This curve would be the black
curve representing the full model. This model also turned out to be the model
with the highest mean test AUC in Table 13 and the lowest standard deviance.
Consequently, we would select model 11 as the final model. However, this model
contains all the variables and this ROC curve is very similar to the other four
ROC curves. Hence, a simpler model with less variables could be preferred.

In Table 14 we see the number of degrees of freedom, i.e. the number of
variables, for each of the five XGBoost models. The simplest model corresponds
to the model with the lowest number of degrees of freedom. The maximum
number of degrees of freedom is 71, which the full model has. Model 12 has the
lowest number of degrees of freedom, 34, which is significantly less. This model
also has the second highest mean and the second lowest standard deviance.
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Method Model Model nr Mean Std. dev Df

XGBoost

Full 11 0.9174993 0.0086294 71
AIC 12 0.9158849 0.0088899 34
Lasso 13 0.9129416 0.0092966 57
VarImp 14 0.9154367 0.0094171 54
Combo 15 0.9156563 0.0094694 56

Table 14: A list of test AUC results after 100 simulations of the 15 different
models. Mean, standard deviance and the degrees of freedom of the test AUC
are shown in the three last columns. Each of these columns contains a red and
a green number. The red and green number denotes the worst and best value of
this column, respectively.

Thus, one could argue that this model would be preferred over the full model.
A model with lower degrees of freedom is preferred for simplicity and execution
time when training a model. XGBoost handles execution time very well, and a
simpler model will not be necessary. Thus, the XGBoost model containing all
the variables will be used as the final model. After all, it does perform better
than the other 14 models based on AUC.

4.2.4 Interpreting the Indicator Model

We choose the XGBoost model using the all the variables, due to its high mean
and low standard deviance on test AUC. This is the model we want to use, to
indicate if customer are going from being active to inactive. In Section 4.2.1,
we interpreted the full model by using the GLM framework, binary logistic
regression. Although, this is not a valid interpretation of the final XGBoost
model, it can be used as a simple guide to interpret the effects of each variable
on the probabilities, π. We will interpret the indicator model by calculating the
importance of each variable. The variable importance for the indicator model
can be found in Figure 10.

Variable importance for an XGBoost model is measured on the amount of
Γsplit, which is referred to as gain by Nielsen (2016) and Chen and Guestrin
(2016). The variable importance is presented by percentage of total gain in the
model. The value Γsplit are used in Algorithm 2, which is the algorithm for
XGBoost. The SALDO.INNSKUDD variable again is the most important variable,
providing almost 35% of the total gain. This variable also turned out to be the
most significant variable in logistic regression, Table 11, and in random forests,
Figure 7. Thus, it is safe to say that this variable is the most significant of
them all. Future active bank customers will probably have a balance which is
sufficiently greater than zero, while future inactive customers have a balance
close to zero. Thus, the importance of this variable is not surprising.

The second most important variable, providing almost 15% of the gain in
the XGBoost model, is the Transaksjoner.siste.år variable. This percentage
is far less than for the SALDO.INNSKUDD variable, observing . The same variable
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Figure 10: Top 15 most important variables in the indicator model. The impor-
tance are measured in gain, Γsplit, from (2.15). The percentages of all variables
sum to 100%.
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was also the fourth most important variable when performing random forests,
as observed in Figure 7. This variable is continuous and highly related to the
activity of the customer. Hence, it makes sense that this variable is one of the
most important variable in the XGBoost model. The third variable is more
interesting, as we have a binary variable providing almost 10% of the total
gain within the indicator model. This variable, utlan, was also found to be
significant in the binary regression model, as well as having an increasing effect
on the probability of being inactive in the future, if set to 1.

The next variable is Transer.diff.0.1, which is also a continuous vari-
able related to activity, similar to the Transaksjoner.siste.år variable. This
variable relates to the change in number of transactions between the last two
years. A positive number shows an increase in number of transactions, while a
negative number shows a decrease in the number of transactions. A decrease
in activity could mean that this customer will end up in a more inactive cat-
egory than the current category in the future. This explains the importance
of this variable. One can think that, the longer the customer relationship with
the bank is, the more loyal is the customer. This may be the reason why the
variable KUNDE_START_DATO is one of the top five most important variable in
the indicator model. From the sixth variable on the variable importance plot in
Figure 10 and lower the importance percentage is clearly reduced relative to the
number one most important variable.
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5 Conclusion and Further Work
We have performed several methods to the customer database, to investigate
differences between different types of customers. We performed nominal regres-
sion in order to see differences between the coefficient estimates βjr, where r
refers to the different customer categories and j is a specific variable. We expe-
rienced that customers that have applied for loan/credit card are more likely to
be customers from the categories A and B. Similarly, customers that have not
applied for loan/credit card are more likely to be customers from the categories
C, D, E and F. Also, we observed that the probabilities for being a customer in
the categories B and D were clearly reduced if the customer lives in a scattered
residential area. Furthermore, we experienced that probability for being in cat-
egory F is strongly decreased if the customer is a member, a non-member with
member benefits or if the customer has activated direct debit. The probability
for being in category C is also reduced if the customer has activated direct debit.
Finally, the probability for being in category A is significantly increased if the
customers have activated electronical billing.

We experienced that the deposit balance of a customer was clearly the most
significant variable, when it comes to being active or inactive in the future.
Observing the logistic regression coefficient for this variable, it has a negative
effect on the probability πi for being inactive in the future. The number of
transactions of the customer and if the customer has a loan, are both also very
important factors when it comes to being loyal to the bank.

We performed logistic regression, random forests and XGBoost in order to
make the indicator model. We also looked at different variable combinations,
to observe the change in performance. The different variable selection methods
only had a positive effect in logistic regression model, where the AIC model
outperformed the full model. As for the tree-based ensemble methods, the full
model outperformed the other models. Looking at the performance of each of the
models in the form of AUC, logistic regression was a clear loser, while XGBoost
performed best among the tree-based methods. This resulted in the XGBoost
model containing all the variables as the indicator model.

So how can this indicator model be used? Customer care and customer in-
sight are two key words to this question. The bank can use the model on their
customer database to estimate the probability for each customer to be inactive
in the future. The model also gives information about why a given customer
have high probability for becoming inactive in the future. Customers with high
probability for being inactive can be contacted and informed about the bank
product based on the insight about the customers behaviour. Reaching out to
the customers before they become inactive can be a huge advantage to help
sustain active customers, and will help the bank to provide better customer
care.

In addition, by contacting customer with high probability for being inactive,
the bank also can learn more about these “types of customers”. This insight is
valuable for the company, when making new offers or products.
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A Summary Output
A.1 Nominal Regression

Estimate
BK_KJONN_KODEK: 1 1 . 8 9 0 e+01
BK_KJONN_KODEK: 2 9 . 1 3 3 e+00
BK_KJONN_KODEK: 3 5 . 1 8 5 e+00
BK_KJONN_KODEK: 4 1 . 3 6 9 e+01
BK_KJONN_KODEK: 5 6 . 9 3 3 e+00
BK_KJONN_KODEM: 1 1 . 8 7 9 e+01
BK_KJONN_KODEM: 2 9 . 4 3 4 e+00
BK_KJONN_KODEM: 3 5 . 3 7 2 e+00
BK_KJONN_KODEM: 4 1 . 3 9 3 e+01
BK_KJONN_KODEM: 5 7 . 0 7 0 e+00
ALDER: 1 −1.455 e−02
ALDER: 2 −3.529 e−02
ALDER: 3 −3.943 e−04
ALDER: 4 −1.408 e−02
ALDER: 5 −2.082 e−02
KUNDE_START_DATO: 1 1 . 7 7 1 e−05
KUNDE_START_DATO: 2 3 . 9 9 4 e−05
KUNDE_START_DATO: 3 −6.614 e−05
KUNDE_START_DATO: 4 −4.257 e−05
KUNDE_START_DATO: 5 −1.685 e−04
S o k e p r o s e s s 1 : 1 −1.748 e+00
S o k e p r o s e s s 1 : 2 −1.293 e+00
S o k e p r o s e s s 1 : 3 −2.309 e+00
S o k e p r o s e s s 1 : 4 −2.024 e+00
S o k e p r o s e s s 1 : 5 −1.320 e−01
FylkeAust−Agder : 1 4 . 1 5 2 e−01
FylkeAust−Agder : 2 1 . 2 4 3 e−01
FylkeAust−Agder : 3 −5.410 e−02
FylkeAust−Agder : 4 2 . 7 3 9 e−01
FylkeAust−Agder : 5 −1.654 e−01
FylkeBuskerud : 1 3 . 4 4 8 e−01
FylkeBuskerud : 2 3 . 5 0 2 e−02
FylkeBuskerud : 3 3 . 4 1 7 e−01
FylkeBuskerud : 4 1 . 2 1 3 e−02
FylkeBuskerud : 5 −2.473 e−01
FylkeFinnmark : 1 1 . 7 9 5 e−01
FylkeFinnmark : 2 1 . 9 4 1 e−01
FylkeFinnmark : 3 −2.507 e−01
FylkeFinnmark : 4 8 . 5 1 1 e−02
FylkeFinnmark : 5 −5.838 e−02
FylkeHedmark : 1 3 . 4 4 5 e−01
FylkeHedmark : 2 3 . 1 0 0 e−02
FylkeHedmark : 3 7 . 2 3 2 e−02
FylkeHedmark : 4 6 . 5 3 6 e−02
FylkeHedmark : 5 −1.641 e−01
FylkeHordaland : 1 1 . 4 2 6 e−01
FylkeHordaland : 2 −6.515 e−02
FylkeHordaland : 3 3 . 1 1 7 e−01
FylkeHordaland : 4 1 . 7 0 5 e−01
FylkeHordaland : 5 −1.849 e−01
FylkeMore og Romsdal : 1 3 . 3 8 3 e−01
FylkeMore og Romsdal : 2 −3.259 e−02
FylkeMore og Romsdal : 3 1 . 3 6 0 e−01
FylkeMore og Romsdal : 4 1 . 1 7 4 e−01
FylkeMore og Romsdal : 5 −4.133 e−01
FylkeNordland : 1 3 . 3 3 9 e−01
FylkeNordland : 2 3 . 9 2 9 e−02
FylkeNordland : 3 1 . 4 6 4 e−01
FylkeNordland : 4 1 . 0 2 0 e−01
FylkeNordland : 5 −2.957 e−01
FylkeOppland : 1 3 . 3 4 1 e−01
FylkeOppland : 2 −9.469 e−03
FylkeOppland : 3 2 . 7 4 9 e−01
FylkeOppland : 4 6 . 5 0 8 e−02
FylkeOppland : 5 −3.229 e−01
FylkeOslo : 1 1 . 1 8 6 e−01
FylkeOslo : 2 −1.054 e−01
FylkeOslo : 3 6 . 3 5 2 e−01
FylkeOslo : 4 1 . 6 1 7 e−02
FylkeOslo : 5 −3.326 e−04
FylkeRogaland : 1 6 . 0 8 5 e−02
FylkeRogaland : 2 −1.261 e−01
FylkeRogaland : 3 −1.579 e−02
FylkeRogaland : 4 6 . 1 1 7 e−02
FylkeRogaland : 5 −3.668 e−01
FylkeSogn og Fjordane : 1 3 . 8 5 5 e−01
FylkeSogn og Fjordane : 2 5 . 6 3 3 e−02
FylkeSogn og Fjordane : 3 8 . 9 1 9 e−01
FylkeSogn og Fjordane : 4 5 . 3 1 7 e−01
FylkeSogn og Fjordane : 5 −5.820 e−01
FylkeTelemark : 1 6 . 9 8 7 e−01
FylkeTelemark : 2 2 . 9 4 9 e−01
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FylkeTelemark : 3 6 . 8 5 4 e−01
FylkeTelemark : 4 3 . 2 1 5 e−01
FylkeTelemark : 5 −1.249 e−01
FylkeTroms : 1 2 . 0 8 4 e−01
FylkeTroms : 2 7 . 5 5 2 e−02
FylkeTroms : 3 1 . 9 1 9 e−01
FylkeTroms : 4 1 . 0 6 9 e−01
FylkeTroms : 5 −4.669 e−02
FylkeTrondelag : 1 6 . 5 4 5 e−01
FylkeTrondelag : 2 2 . 1 9 7 e−01
FylkeTrondelag : 3 5 . 0 0 1 e−01
FylkeTrondelag : 4 2 . 4 5 5 e−01
FylkeTrondelag : 5 −2.362 e−01
FylkeVest−Agder : 1 3 . 5 7 3 e−01
FylkeVest−Agder : 2 1 . 6 4 9 e−01
FylkeVest−Agder : 3 6 . 1 5 8 e−01
FylkeVest−Agder : 4 4 . 7 5 2 e−01
FylkeVest−Agder : 5 −1.916 e−01
F y l k e V e s t f o l d : 1 1 . 7 1 1 e−01
F y l k e V e s t f o l d : 2 5 . 5 9 7 e−02
F y l k e V e s t f o l d : 3 −4.755 e−02
F y l k e V e s t f o l d : 4 −4.301 e−02
F y l k e V e s t f o l d : 5 −1.483 e−01
F y l k e o s t f o l d : 1 2 . 0 8 5 e−01
F y l k e o s t f o l d : 2 −1.580 e−01
F y l k e o s t f o l d : 3 −2.864 e−01
F y l k e o s t f o l d : 4 −2.340 e−01
F y l k e o s t f o l d : 5 −2.465 e−01
Skade_a v t a l e 1 : 1 −1.178 e+00
Skade_a v t a l e 1 : 2 −1.052 e+00
Skade_a v t a l e 1 : 3 −7.957 e−01
Skade_a v t a l e 1 : 4 −5.818 e−01
Skade_a v t a l e 1 : 5 −3.019 e−01
Nyhetsbrev1 : 1 −3.327 e+00
Nyhetsbrev1 : 2 −2.126 e+00
Nyhetsbrev1 : 3 −2.848 e+00
Nyhetsbrev1 : 4 −3.711 e+00
Nyhetsbrev1 : 5 −9.881 e−01
KRA_L i v s f a s e E t a b l e r t B a r n e f a m i l i e : 1 1 . 2 2 6 e−02
KRA_L i v s f a s e E t a b l e r t B a r n e f a m i l i e : 2 −2.790 e−01
KRA_L i v s f a s e E t a b l e r t B a r n e f a m i l i e : 3 −6.605 e−02
KRA_L i v s f a s e E t a b l e r t B a r n e f a m i l i e : 4 2 . 7 1 1 e−02
KRA_L i v s f a s e E t a b l e r t B a r n e f a m i l i e : 5 −1.318 e−01
KRA_L i v s f a s e M i d d e l a l d r e n d e E n s l i g : 1 −1.446 e−01
KRA_L i v s f a s e M i d d e l a l d r e n d e E n s l i g : 2 −1.679 e−01
KRA_L i v s f a s e M i d d e l a l d r e n d e E n s l i g : 3 5 . 7 1 4 e−01
KRA_L i v s f a s e M i d d e l a l d r e n d e E n s l i g : 4 2 . 4 1 5 e−01
KRA_L i v s f a s e M i d d e l a l d r e n d e E n s l i g : 5 3 . 6 0 6 e−02
KRA_L i v s f a s e M i d d e l a l d r e n d e P a r : 1 −3.009 e−01
KRA_L i v s f a s e M i d d e l a l d r e n d e P a r : 2 −4.970 e−01
KRA_L i v s f a s e M i d d e l a l d r e n d e P a r : 3 2 . 3 1 2 e−01
KRA_L i v s f a s e M i d d e l a l d r e n d e P a r : 4 1 . 5 4 3 e−01
KRA_L i v s f a s e M i d d e l a l d r e n d e P a r : 5 −2.585 e−01
KRA_L i v s f a s e P a r U t e n B a r n : 1 −3.311 e−01
KRA_L i v s f a s e P a r U t e n B a r n : 2 −4.517 e−01
KRA_L i v s f a s e P a r U t e n B a r n : 3 3 . 9 6 8 e−01
KRA_L i v s f a s e P a r U t e n B a r n : 4 1 . 5 8 8 e−01
KRA_L i v s f a s e P a r U t e n B a r n : 5 −4.292 e−01
KRA_L i v s f a s e S e n i o r E n s l i g : 1 −9.191 e−01
KRA_L i v s f a s e S e n i o r E n s l i g : 2 −3.265 e−01
KRA_L i v s f a s e S e n i o r E n s l i g : 3 8 . 0 4 3 e−01
KRA_L i v s f a s e S e n i o r E n s l i g : 4 4 . 9 9 1 e−01
KRA_L i v s f a s e S e n i o r E n s l i g : 5 8 . 6 9 5 e−02
KRA_L i v s f a s e S e n i o r P a r : 1 −5.034 e−01
KRA_L i v s f a s e S e n i o r P a r : 2 −8.921 e−01
KRA_L i v s f a s e S e n i o r P a r : 3 5 . 0 2 7 e−01
KRA_L i v s f a s e S e n i o r P a r : 4 2 . 6 7 1 e−01
KRA_L i v s f a s e S e n i o r P a r : 5 −4.217 e−01
KRA_L i v s f a s e S i n g e l : 1 −6.471 e−01
KRA_L i v s f a s e S i n g e l : 2 −5.801 e−01
KRA_L i v s f a s e S i n g e l : 3 1 . 2 6 8 e−01
KRA_L i v s f a s e S i n g e l : 4 5 . 1 1 3 e−02
KRA_L i v s f a s e S i n g e l : 5 −2.608 e−01
KRA_L i v s f a s e S m a b a r n s f a m i l i e : 1 −2.985 e−01
KRA_L i v s f a s e S m a b a r n s f a m i l i e : 2 −4.483 e−01
KRA_L i v s f a s e S m a b a r n s f a m i l i e : 3 2 . 3 0 5 e−01
KRA_L i v s f a s e S m a b a r n s f a m i l i e : 4 −1.911 e−01
KRA_L i v s f a s e S m a b a r n s f a m i l i e : 5 −3.938 e−01
KRA_LivsfaseUngdomStudent : 1 −1.061 e+00
KRA_LivsfaseUngdomStudent : 2 −8.250 e−01
KRA_LivsfaseUngdomStudent : 3 1 . 1 0 8 e+00
KRA_LivsfaseUngdomStudent : 4 6 . 9 2 0 e−01
KRA_LivsfaseUngdomStudent : 5 −5.183 e−01
KRA_B o l i g_By_landS : 1 −4.252 e−02
KRA_B o l i g_By_landS : 2 −8.496 e−02
KRA_B o l i g_By_landS : 3 −2.311 e−01
KRA_B o l i g_By_landS : 4 −8.368 e−02
KRA_B o l i g_By_landS : 5 −2.237 e−01
KRA_B o l i g_By_landT : 1 1 . 2 6 9 e−01
KRA_B o l i g_By_landT : 2 −6.237 e−03
KRA_B o l i g_By_landT : 3 −3.499 e−01
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KRA_B o l i g_By_landT : 4 −3.344 e−02
KRA_B o l i g_By_landT : 5 −1.243 e−01
KRA_B o l i g t y p e_E n k e l E n e b o l i g e r : 1 −1.081 e+00
KRA_B o l i g t y p e_E n k e l E n e b o l i g e r : 2 −5.150 e−01
KRA_B o l i g t y p e_E n k e l E n e b o l i g e r : 3 3 . 2 5 0 e−01
KRA_B o l i g t y p e_E n k e l E n e b o l i g e r : 4 −5.587 e−01
KRA_B o l i g t y p e_E n k e l E n e b o l i g e r : 5 7 . 0 3 4 e−02
KRA_B o l i g t y p e_E n k e l F r i t i d s b o l i g e r : 1 −6.661 e−01
KRA_B o l i g t y p e_E n k e l F r i t i d s b o l i g e r : 2 6 . 8 6 7 e−02
KRA_B o l i g t y p e_E n k e l F r i t i d s b o l i g e r : 3 6 . 5 1 6 e−01
KRA_B o l i g t y p e_E n k e l F r i t i d s b o l i g e r : 4 −5.900 e−01
KRA_B o l i g t y p e_E n k e l F r i t i d s b o l i g e r : 5 −4.158 e−01
KRA_B o l i g t y p e_E n k e l G a r a s j e og uthus t i l b o l i g : 1 −2.109 e+00
KRA_B o l i g t y p e_E n k e l G a r a s j e og uthus t i l b o l i g : 2 −8.830 e−01
KRA_B o l i g t y p e_E n k e l G a r a s j e og uthus t i l b o l i g : 3 −1.108 e+01
KRA_B o l i g t y p e_E n k e l G a r a s j e og uthus t i l b o l i g : 4 −3.156 e−01
KRA_B o l i g t y p e_E n k e l G a r a s j e og uthus t i l b o l i g : 5 −8.253 e−01
KRA_B o l i g t y p e_EnkelNaringsbygg og andre bygg : 1 −5.393 e−01
KRA_B o l i g t y p e_EnkelNaringsbygg og andre bygg : 2 −3.110 e−01
KRA_B o l i g t y p e_EnkelNaringsbygg og andre bygg : 3 4 . 4 7 8 e−01
KRA_B o l i g t y p e_EnkelNaringsbygg og andre bygg : 4 −3.040 e−01
KRA_B o l i g t y p e_EnkelNaringsbygg og andre bygg : 5 2 . 1 4 8 e−01
KRA_B o l i g t y p e_EnkelRekkehus , k j e d e h u s og andre smahus : 1 −1.032 e+00
KRA_B o l i g t y p e_EnkelRekkehus , k j e d e h u s og andre smahus : 2 −5.235 e−01
KRA_B o l i g t y p e_EnkelRekkehus , k j e d e h u s og andre smahus : 3 8 . 9 4 0 e−02
KRA_B o l i g t y p e_EnkelRekkehus , k j e d e h u s og andre smahus : 4 −6.760 e−01
KRA_B o l i g t y p e_EnkelRekkehus , k j e d e h u s og andre smahus : 5 7 . 1 1 8 e−02
KRA_B o l i g t y p e_E n k e l S t o r e b o l i g b y g g ( blokk ) : 1 −7.752 e−01
KRA_B o l i g t y p e_E n k e l S t o r e b o l i g b y g g ( blokk ) : 2 −4.715 e−01
KRA_B o l i g t y p e_E n k e l S t o r e b o l i g b y g g ( blokk ) : 3 9 . 3 5 1 e−02
KRA_B o l i g t y p e_E n k e l S t o r e b o l i g b y g g ( blokk ) : 4 −5.160 e−01
KRA_B o l i g t y p e_E n k e l S t o r e b o l i g b y g g ( blokk ) : 5 5 . 0 3 3 e−02
KRA_B o l i g t y p e_EnkelTomannsboliger : 1 −9.021 e−01
KRA_B o l i g t y p e_EnkelTomannsboliger : 2 −3.632 e−01
KRA_B o l i g t y p e_EnkelTomannsboliger : 3 2 . 9 8 7 e−01
KRA_B o l i g t y p e_EnkelTomannsboliger : 4 −4.134 e−01
KRA_B o l i g t y p e_EnkelTomannsboliger : 5 2 . 4 3 1 e−01
BIL_I_HUSTAND1: 1 −2.786 e−02
BIL_I_HUSTAND1: 2 −1.244 e−01
BIL_I_HUSTAND1: 3 1 . 7 5 7 e−01
BIL_I_HUSTAND1: 4 −5.512 e−02
BIL_I_HUSTAND1: 5 −6.260 e−02
Fond_a v t a l e 1 : 1 6 . 2 7 4 e−02
Fond_a v t a l e 1 : 2 2 . 2 9 9 e−01
Fond_a v t a l e 1 : 3 −3.412 e−01
Fond_a v t a l e 1 : 4 −4.193 e−01
Fond_a v t a l e 1 : 5 −1.912 e−01
MedlemIkke medlem med m e d l e m s b e t i n g e l s e r : 1 −6.931 e+00
MedlemIkke medlem med m e d l e m s b e t i n g e l s e r : 2 −1.690 e+00
MedlemIkke medlem med m e d l e m s b e t i n g e l s e r : 3 −2.397 e+00
MedlemIkke medlem med m e d l e m s b e t i n g e l s e r : 4 −2.876 e+00
MedlemIkke medlem med m e d l e m s b e t i n g e l s e r : 5 −3.649 e−01
MedlemMedlem : 1 −4.134 e+00
MedlemMedlem : 2 −5.897 e−01
MedlemMedlem : 3 −3.352 e−02
MedlemMedlem : 4 7 . 9 3 2 e−02
MedlemMedlem : 5 2 . 1 0 4 e−01
A v t a l e G i r o 1 : 1 −8.636 e+00
A v t a l e G i r o 1 : 2 −1.902 e+00
A v t a l e G i r o 1 : 3 −1.173 e+00
A v t a l e G i r o 1 : 4 −5.208 e+00
A v t a l e G i r o 1 : 5 −9.543 e−01
eFaktura1 : 1 −3.920 e+00
eFaktura1 : 2 −3.684 e+00
eFaktura1 : 3 −2.946 e+00
eFaktura1 : 4 −1.574 e+00
eFaktura1 : 5 −1.844 e+00
T l f s a m t a l e r . s i s t e . ar : 1 −1.177 e+00
T l f s a m t a l e r . s i s t e . ar : 2 −7.965 e−01
T l f s a m t a l e r . s i s t e . ar : 3 −1.494 e+00
T l f s a m t a l e r . s i s t e . ar : 4 −3.925 e−01
T l f s a m t a l e r . s i s t e . ar : 5 −1.207 e−01
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p−v a l u e
BK_KJONN_KODEK: 1 < 2e−16 ∗∗∗
BK_KJONN_KODEK: 2 3 . 7 7 e−09 ∗∗∗
BK_KJONN_KODEK: 3 0 . 0 1 8 7 7 0 ∗
BK_KJONN_KODEK: 4 < 2e−16 ∗∗∗
BK_KJONN_KODEK: 5 4 . 6 3 e−05 ∗∗∗
BK_KJONN_KODEM: 1 < 2e−16 ∗∗∗
BK_KJONN_KODEM: 2 1 . 1 6 e−09 ∗∗∗
BK_KJONN_KODEM: 3 0 . 0 1 4 9 4 5 ∗
BK_KJONN_KODEM: 4 < 2e−16 ∗∗∗
BK_KJONN_KODEM: 5 3 . 3 0 e−05 ∗∗∗
ALDER: 1 0 . 0 0 2 5 7 7 ∗∗
ALDER: 2 < 2e−16 ∗∗∗
ALDER: 3 0 . 9 5 3 0 6 9
ALDER: 4 4 . 3 7 e−05 ∗∗∗
ALDER: 5 4 . 4 4 e−08 ∗∗∗
KUNDE_START_DATO: 1 0 . 1 5 1 3 3 3
KUNDE_START_DATO: 2 0 . 0 0 0 2 4 1 ∗∗∗
KUNDE_START_DATO: 3 2 . 0 6 e−05 ∗∗∗
KUNDE_START_DATO: 4 3 . 4 7 e−06 ∗∗∗
KUNDE_START_DATO: 5 < 2e−16 ∗∗∗
S o k e p r o s e s s 1 : 1 < 2e−16 ∗∗∗
S o k e p r o s e s s 1 : 2 < 2e−16 ∗∗∗
S o k e p r o s e s s 1 : 3 < 2e−16 ∗∗∗
S o k e p r o s e s s 1 : 4 < 2e−16 ∗∗∗
S o k e p r o s e s s 1 : 5 0 . 0 0 1 4 8 9 ∗∗
FylkeAust−Agder : 1 0 . 0 2 9 2 4 5 ∗
FylkeAust−Agder : 2 0 . 3 9 8 9 4 8
FylkeAust−Agder : 3 0 . 8 4 8 9 9 7
FylkeAust−Agder : 4 0 . 0 4 1 2 2 1 ∗
FylkeAust−Agder : 5 0 . 2 7 7 1 2 1
FylkeBuskerud : 1 0 . 0 1 0 2 0 4 ∗
FylkeBuskerud : 2 0 . 7 2 5 1 9 2
FylkeBuskerud : 3 0 . 0 5 7 1 0 5 .
FylkeBuskerud : 4 0 . 8 9 4 9 7 4
FylkeBuskerud : 5 0 . 0 1 4 6 9 9 ∗
FylkeFinnmark : 1 0 . 3 2 7 0 5 1
FylkeFinnmark : 2 0 . 1 5 4 4 2 5
FylkeFinnmark : 3 0 . 4 1 5 6 7 3
FylkeFinnmark : 4 0 . 5 1 7 2 5 2
FylkeFinnmark : 5 0 . 6 8 1 7 5 7
FylkeHedmark : 1 0 . 0 1 0 5 4 2 ∗
FylkeHedmark : 2 0 . 7 6 1 6 3 5
FylkeHedmark : 3 0 . 7 0 6 0 1 7
FylkeHedmark : 4 0 . 4 9 0 2 8 3
FylkeHedmark : 5 0 . 1 1 0 2 4 9
FylkeHordaland : 1 0 . 2 3 3 8 7 1
FylkeHordaland : 2 0 . 4 6 7 7 8 6
FylkeHordaland : 3 0 . 0 5 3 7 6 4 .
FylkeHordaland : 4 0 . 0 3 8 5 4 9 ∗
FylkeHordaland : 5 0 . 0 3 8 3 6 4 ∗
FylkeMore og Romsdal : 1 0 . 0 0 9 7 3 9 ∗∗
FylkeMore og Romsdal : 2 0 . 7 4 9 1 9 8
FylkeMore og Romsdal : 3 0 . 4 5 2 4 3 1
FylkeMore og Romsdal : 4 0 . 2 0 7 2 4 6
FylkeMore og Romsdal : 5 9 . 8 2 e−05 ∗∗∗
FylkeNordland : 1 0 . 0 1 0 3 4 7 ∗
FylkeNordland : 2 0 . 6 9 1 5 5 0
FylkeNordland : 3 0 . 4 2 7 6 5 2
FylkeNordland : 4 0 . 2 6 7 4 2 4
FylkeNordland : 5 0 . 0 0 3 9 0 1 ∗∗
FylkeOppland : 1 0 . 0 1 6 1 2 6 ∗
FylkeOppland : 2 0 . 9 2 9 0 6 0
FylkeOppland : 3 0 . 1 3 9 7 6 1
FylkeOppland : 4 0 . 5 0 5 9 1 6
FylkeOppland : 5 0 . 0 0 3 6 0 8 ∗∗
FylkeOslo : 1 0 . 4 1 8 2 5 0
FylkeOslo : 2 0 . 3 3 4 8 0 4
FylkeOslo : 3 0 . 0 0 0 5 5 1 ∗∗∗
FylkeOslo : 4 0 . 8 7 0 4 9 5
FylkeOslo : 5 0 . 9 9 7 4 3 7
FylkeRogaland : 1 0 . 6 1 1 7 9 5
FylkeRogaland : 2 0 . 1 6 0 5 2 2
FylkeRogaland : 3 0 . 9 2 5 9 4 3
FylkeRogaland : 4 0 . 4 5 9 7 2 2
FylkeRogaland : 5 6 . 4 1 e−05 ∗∗∗
FylkeSogn og Fjordane : 1 0 . 0 8 3 4 2 7 .
FylkeSogn og Fjordane : 2 0 . 7 5 5 8 0 7
FylkeSogn og Fjordane : 3 0 . 0 0 0 7 6 0 ∗∗∗
FylkeSogn og Fjordane : 4 0 . 0 0 1 5 0 6 ∗∗
FylkeSogn og Fjordane : 5 0 . 0 0 8 0 7 1 ∗∗
FylkeTelemark : 1 1 . 9 1 e−06 ∗∗∗
FylkeTelemark : 2 0 . 0 0 9 4 1 3 ∗∗
FylkeTelemark : 3 0 . 0 0 0 2 6 5 ∗∗∗
FylkeTelemark : 4 0 . 0 0 1 8 8 5 ∗∗
FylkeTelemark : 5 0 . 2 8 5 6 5 6
FylkeTroms : 1 0 . 1 5 7 1 1 7
FylkeTroms : 2 0 . 4 8 9 9 5 4
FylkeTroms : 3 0 . 3 4 2 1 1 5
FylkeTroms : 4 0 . 2 9 6 1 7 6
FylkeTroms : 5 0 . 6 6 9 2 2 7
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FylkeTrondelag : 1 2 . 3 2 e−08 ∗∗∗
FylkeTrondelag : 2 0 . 0 1 4 7 7 0 ∗
FylkeTrondelag : 3 0 . 0 0 1 8 8 2 ∗∗
FylkeTrondelag : 4 0 . 0 0 3 1 5 5 ∗∗
FylkeTrondelag : 5 0 . 0 1 1 1 9 7 ∗
FylkeVest−Agder : 1 0 . 0 5 1 4 8 3 .
FylkeVest−Agder : 2 0 . 2 4 4 1 7 7
FylkeVest−Agder : 3 0 . 0 0 8 2 9 6 ∗∗
FylkeVest−Agder : 4 0 . 0 0 0 2 2 5 ∗∗∗
FylkeVest−Agder : 5 0 . 1 9 3 4 1 0
F y l k e V e s t f o l d : 1 0 . 1 7 1 4 6 8
F y l k e V e s t f o l d : 2 0 . 5 4 2 9 0 6
F y l k e V e s t f o l d : 3 0 . 7 8 8 1 2 4
F y l k e V e s t f o l d : 4 0 . 6 1 1 9 1 6
F y l k e V e s t f o l d : 5 0 . 0 9 7 5 5 4 .
F y l k e o s t f o l d : 1 0 . 0 6 3 9 4 3 .
F y l k e o s t f o l d : 2 0 . 0 5 5 4 5 5 .
F y l k e o s t f o l d : 3 0 . 0 8 8 0 7 7 .
F y l k e o s t f o l d : 4 0 . 0 0 2 1 6 0 ∗∗
F y l k e o s t f o l d : 5 0 . 0 0 1 9 1 8 ∗∗
Skade_a v t a l e 1 : 1 < 2e−16 ∗∗∗
Skade_a v t a l e 1 : 2 < 2e−16 ∗∗∗
Skade_a v t a l e 1 : 3 < 2e−16 ∗∗∗
Skade_a v t a l e 1 : 4 < 2e−16 ∗∗∗
Skade_a v t a l e 1 : 5 6 . 1 7 e−14 ∗∗∗
Nyhetsbrev1 : 1 0 . 0 0 1 0 1 5 ∗∗
Nyhetsbrev1 : 2 0 . 0 3 7 2 0 8 ∗
Nyhetsbrev1 : 3 0 . 0 1 1 2 6 4 ∗
Nyhetsbrev1 : 4 0 . 0 0 0 2 3 7 ∗∗∗
Nyhetsbrev1 : 5 0 . 3 8 1 5 7 0
KRA_L i v s f a s e E t a b l e r t B a r n e f a m i l i e : 1 0 . 9 1 5 2 6 9
KRA_L i v s f a s e E t a b l e r t B a r n e f a m i l i e : 2 0 . 0 0 1 2 7 2 ∗∗
KRA_L i v s f a s e E t a b l e r t B a r n e f a m i l i e : 3 0 . 7 4 3 0 9 7
KRA_L i v s f a s e E t a b l e r t B a r n e f a m i l i e : 4 0 . 7 5 2 5 9 1
KRA_L i v s f a s e E t a b l e r t B a r n e f a m i l i e : 5 0 . 1 3 9 0 7 6
KRA_L i v s f a s e M i d d e l a l d r e n d e E n s l i g : 1 0 . 2 7 9 2 7 8
KRA_L i v s f a s e M i d d e l a l d r e n d e E n s l i g : 2 0 . 0 8 9 4 8 6 .
KRA_L i v s f a s e M i d d e l a l d r e n d e E n s l i g : 3 0 . 0 0 6 4 9 4 ∗∗
KRA_L i v s f a s e M i d d e l a l d r e n d e E n s l i g : 4 0 . 0 1 1 2 1 5 ∗
KRA_L i v s f a s e M i d d e l a l d r e n d e E n s l i g : 5 0 . 7 1 8 4 1 4
KRA_L i v s f a s e M i d d e l a l d r e n d e P a r : 1 0 . 0 1 7 8 4 1 ∗
KRA_L i v s f a s e M i d d e l a l d r e n d e P a r : 2 1 . 6 8 e−07 ∗∗∗
KRA_L i v s f a s e M i d d e l a l d r e n d e P a r : 3 0 . 2 5 6 9 0 9
KRA_L i v s f a s e M i d d e l a l d r e n d e P a r : 4 0 . 0 9 2 4 9 6 .
KRA_L i v s f a s e M i d d e l a l d r e n d e P a r : 5 0 . 0 0 8 0 2 8 ∗∗
KRA_L i v s f a s e P a r U t e n B a r n : 1 0 . 0 2 2 6 1 2 ∗
KRA_L i v s f a s e P a r U t e n B a r n : 2 3 . 8 8 e−05 ∗∗∗
KRA_L i v s f a s e P a r U t e n B a r n : 3 0 . 0 9 1 7 2 7 .
KRA_L i v s f a s e P a r U t e n B a r n : 4 0 . 1 4 3 4 9 2
KRA_L i v s f a s e P a r U t e n B a r n : 5 0 . 0 0 0 2 2 8 ∗∗∗
KRA_L i v s f a s e S e n i o r E n s l i g : 1 5 . 6 3 e−06 ∗∗∗
KRA_L i v s f a s e S e n i o r E n s l i g : 2 0 . 0 2 9 1 9 9 ∗
KRA_L i v s f a s e S e n i o r E n s l i g : 3 0 . 0 0 3 4 0 2 ∗∗
KRA_L i v s f a s e S e n i o r E n s l i g : 4 0 . 0 0 0 2 0 4 ∗∗∗
KRA_L i v s f a s e S e n i o r E n s l i g : 5 0 . 5 5 2 9 0 4
KRA_L i v s f a s e S e n i o r P a r : 1 0 . 0 0 4 1 3 3 ∗∗
KRA_L i v s f a s e S e n i o r P a r : 2 3 . 5 4 e−11 ∗∗∗
KRA_L i v s f a s e S e n i o r P a r : 3 0 . 0 4 8 3 1 2 ∗
KRA_L i v s f a s e S e n i o r P a r : 4 0 . 0 2 9 2 4 4 ∗
KRA_L i v s f a s e S e n i o r P a r : 5 0 . 0 0 1 9 4 5 ∗∗
KRA_L i v s f a s e S i n g e l : 1 1 . 9 4 e−05 ∗∗∗
KRA_L i v s f a s e S i n g e l : 2 1 . 1 5 e−07 ∗∗∗
KRA_L i v s f a s e S i n g e l : 3 0 . 6 0 5 7 1 9
KRA_L i v s f a s e S i n g e l : 4 0 . 6 3 6 0 3 5
KRA_L i v s f a s e S i n g e l : 5 0 . 0 2 0 9 0 3 ∗
KRA_L i v s f a s e S m a b a r n s f a m i l i e : 1 0 . 0 1 7 1 3 0 ∗
KRA_L i v s f a s e S m a b a r n s f a m i l i e : 2 1 . 6 8 e−06 ∗∗∗
KRA_L i v s f a s e S m a b a r n s f a m i l i e : 3 0 . 2 7 2 7 8 2
KRA_L i v s f a s e S m a b a r n s f a m i l i e : 4 0 . 0 4 2 4 0 6 ∗
KRA_L i v s f a s e S m a b a r n s f a m i l i e : 5 5 . 7 6 e−05 ∗∗∗
KRA_LivsfaseUngdomStudent : 1 0 . 0 0 0 7 5 8 ∗∗∗
KRA_LivsfaseUngdomStudent : 2 0 . 0 0 1 4 4 4 ∗∗
KRA_LivsfaseUngdomStudent : 3 0 . 0 0 4 4 2 9 ∗∗
KRA_LivsfaseUngdomStudent : 4 0 . 0 0 6 0 6 7 ∗∗
KRA_LivsfaseUngdomStudent : 5 0 . 0 7 3 0 7 1 .
KRA_B o l i g_By_landS : 1 0 . 5 6 4 4 4 4
KRA_B o l i g_By_landS : 2 0 . 1 3 2 7 8 8
KRA_B o l i g_By_landS : 3 0 . 0 1 7 8 3 6 ∗
KRA_B o l i g_By_landS : 4 0 . 1 0 7 7 6 9
KRA_B o l i g_By_landS : 5 0 . 0 0 0 1 7 0 ∗∗∗
KRA_B o l i g_By_landT : 1 0 . 0 4 8 7 3 6 ∗
KRA_B o l i g_By_landT : 2 0 . 9 0 0 9 4 3
KRA_B o l i g_By_landT : 3 0 . 0 0 0 1 1 6 ∗∗∗
KRA_B o l i g_By_landT : 4 0 . 4 6 9 7 9 2
KRA_B o l i g_By_landT : 5 0 . 0 1 7 0 5 2 ∗
KRA_B o l i g t y p e_E n k e l E n e b o l i g e r : 1 0 . 1 3 0 8 4 8
KRA_B o l i g t y p e_E n k e l E n e b o l i g e r : 2 0 . 3 8 9 9 6 3
KRA_B o l i g t y p e_E n k e l E n e b o l i g e r : 3 0 . 7 7 7 1 9 2
KRA_B o l i g t y p e_E n k e l E n e b o l i g e r : 4 0 . 3 2 0 3 9 2
KRA_B o l i g t y p e_E n k e l E n e b o l i g e r : 5 0 . 9 1 6 4 0 0
KRA_B o l i g t y p e_E n k e l F r i t i d s b o l i g e r : 1 0 . 4 2 6 7 3 7
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KRA_B o l i g t y p e_E n k e l F r i t i d s b o l i g e r : 2 0 . 9 1 9 0 4 1
KRA_B o l i g t y p e_E n k e l F r i t i d s b o l i g e r : 3 0 . 6 1 2 0 3 3
KRA_B o l i g t y p e_E n k e l F r i t i d s b o l i g e r : 4 0 . 3 5 2 6 2 8
KRA_B o l i g t y p e_E n k e l F r i t i d s b o l i g e r : 5 0 . 5 8 8 7 8 5
KRA_B o l i g t y p e_E n k e l G a r a s j e og uthus t i l b o l i g : 1 0 . 1 2 6 6 6 3
KRA_B o l i g t y p e_E n k e l G a r a s j e og uthus t i l b o l i g : 2 0 . 4 1 9 3 9 5
KRA_B o l i g t y p e_E n k e l G a r a s j e og uthus t i l b o l i g : 3 NA
KRA_B o l i g t y p e_E n k e l G a r a s j e og uthus t i l b o l i g : 4 0 . 7 3 5 6 7 5
KRA_B o l i g t y p e_E n k e l G a r a s j e og uthus t i l b o l i g : 5 0 . 5 4 0 9 4 7
KRA_B o l i g t y p e_EnkelNaringsbygg og andre bygg : 1 0 . 4 7 0 2 1 5
KRA_B o l i g t y p e_EnkelNaringsbygg og andre bygg : 2 0 . 6 1 8 2 0 6
KRA_B o l i g t y p e_EnkelNaringsbygg og andre bygg : 3 0 . 7 0 4 8 2 3
KRA_B o l i g t y p e_EnkelNaringsbygg og andre bygg : 4 0 . 6 0 3 3 8 3
KRA_B o l i g t y p e_EnkelNaringsbygg og andre bygg : 5 0 . 7 5 6 9 4 9
KRA_B o l i g t y p e_EnkelRekkehus , k j e d e h u s og andre smahus : 1 0 . 1 5 0 5 7 7
KRA_B o l i g t y p e_EnkelRekkehus , k j e d e h u s og andre smahus : 2 0 . 3 8 3 0 1 0
KRA_B o l i g t y p e_EnkelRekkehus , k j e d e h u s og andre smahus : 3 0 . 9 3 8 0 8 2
KRA_B o l i g t y p e_EnkelRekkehus , k j e d e h u s og andre smahus : 4 0 . 2 3 0 0 1 5
KRA_B o l i g t y p e_EnkelRekkehus , k j e d e h u s og andre smahus : 5 0 . 9 1 5 5 1 8
KRA_B o l i g t y p e_E n k e l S t o r e b o l i g b y g g ( blokk ) : 1 0 . 2 7 9 5 1 9
KRA_B o l i g t y p e_E n k e l S t o r e b o l i g b y g g ( blokk ) : 2 0 . 4 3 1 6 7 6
KRA_B o l i g t y p e_E n k e l S t o r e b o l i g b y g g ( blokk ) : 3 0 . 9 3 5 1 5 9
KRA_B o l i g t y p e_E n k e l S t o r e b o l i g b y g g ( blokk ) : 4 0 . 3 5 9 1 7 2
KRA_B o l i g t y p e_E n k e l S t o r e b o l i g b y g g ( blokk ) : 5 0 . 9 4 0 1 6 7
KRA_B o l i g t y p e_EnkelTomannsboliger : 1 0 . 2 0 9 7 5 7
KRA_B o l i g t y p e_EnkelTomannsboliger : 2 0 . 5 4 5 8 9 8
KRA_B o l i g t y p e_EnkelTomannsboliger : 3 0 . 7 9 5 5 8 6
KRA_B o l i g t y p e_EnkelTomannsboliger : 4 0 . 4 6 3 9 4 9
KRA_B o l i g t y p e_EnkelTomannsboliger : 5 0 . 7 1 7 6 9 0
BIL_I_HUSTAND1: 1 0 . 7 5 2 0 4 2
BIL_I_HUSTAND1: 2 0 . 0 6 7 0 1 3 .
BIL_I_HUSTAND1: 3 0 . 1 5 7 9 0 0
BIL_I_HUSTAND1: 4 0 . 3 8 7 7 6 5
BIL_I_HUSTAND1: 5 0 . 3 6 7 5 2 6
Fond_a v t a l e 1 : 1 0 . 4 7 1 4 0 1
Fond_a v t a l e 1 : 2 0 . 0 0 0 8 4 3 ∗∗∗
Fond_a v t a l e 1 : 3 0 . 0 0 1 1 6 8 ∗∗
Fond_a v t a l e 1 : 4 3 . 6 5 e−12 ∗∗∗
Fond_a v t a l e 1 : 5 0 . 0 0 4 9 1 6 ∗∗
MedlemIkke medlem med m e d l e m s b e t i n g e l s e r : 1 7 . 6 8 e−10 ∗∗∗
MedlemIkke medlem med m e d l e m s b e t i n g e l s e r : 2 0 . 1 3 5 1 0 6
MedlemIkke medlem med m e d l e m s b e t i n g e l s e r : 3 0 . 0 7 8 8 7 4 .
MedlemIkke medlem med m e d l e m s b e t i n g e l s e r : 4 0 . 0 1 0 6 2 4 ∗
MedlemIkke medlem med m e d l e m s b e t i n g e l s e r : 5 0 . 7 7 2 9 1 2
MedlemMedlem : 1 < 2e−16 ∗∗∗
MedlemMedlem : 2 0 . 2 3 3 6 2 4
MedlemMedlem : 3 0 . 9 6 4 1 7 2
MedlemMedlem : 4 0 . 8 7 3 5 8 8
MedlemMedlem : 5 0 . 7 1 2 2 2 1
A v t a l e G i r o 1 : 1 < 2e−16 ∗∗∗
A v t a l e G i r o 1 : 2 0 . 0 2 3 3 3 3 ∗
A v t a l e G i r o 1 : 3 0 . 3 6 3 6 1 9
A v t a l e G i r o 1 : 4 1 . 1 6 e−10 ∗∗∗
A v t a l e G i r o 1 : 5 0 . 2 8 5 9 6 5
eFaktura1 : 1 < 2e−16 ∗∗∗
eFaktura1 : 2 < 2e−16 ∗∗∗
eFaktura1 : 3 < 2e−16 ∗∗∗
eFaktura1 : 4 < 2e−16 ∗∗∗
eFaktura1 : 5 < 2e−16 ∗∗∗
T l f s a m t a l e r . s i s t e . ar : 1 < 2e−16 ∗∗∗
T l f s a m t a l e r . s i s t e . ar : 2 < 2e−16 ∗∗∗
T l f s a m t a l e r . s i s t e . ar : 3 < 2e−16 ∗∗∗
T l f s a m t a l e r . s i s t e . ar : 4 < 2e−16 ∗∗∗
T l f s a m t a l e r . s i s t e . ar : 5 < 2e−16 ∗∗∗
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A.2 Binary Logistic Regression - Full Model
Estimate

( I n t e r c e p t ) 8 . 0 1 6 e−01
s t a t u s A k t i v s i s t e ar 6 . 0 1 3 e−01
s t a t u s P a s s i v s i s t e 5 ar 8 . 5 1 1 e−01
s t a t u s U t e n a k t i v konto 1 . 4 9 0 e+00
innskudd1 −1.235 e+00
u t l a n 1 −2.632 e+00
m e d l a n t a k e r I k k e medlantaker 5 . 7 5 9 e−01
BK_KJONN_KODEM 1 . 7 7 8 e−01
ALDER −1.009 e−02
KUNDE_START_DATO −3.626 e−05
LAN 3 . 2 7 2 e−02
INNSKUDD −1.029 e−01
DEBETKORT −1.951 e−02
KREDITTKORT −1.190 e−01
NETTBANK1 −5.175 e−01
MOBILBANK1 −1.053 e−02
BANKID 2 . 6 2 4 e−01
SALDO.INNSKUDD −5.294 e−06
Lonnsinngang1 −1.361 e+00
S o k e p r o s e s s 1 4 . 3 2 3 e−01
T r a n s a k s j o n e r . s i s t e . ar −2.857 e−04
Input . a k t i v i t e t . k r e d i t t k o r t 1 −1.328 e+00
FylkeAust−Agder 2 . 8 4 5 e−01
FylkeBuskerud 6 . 0 0 3 e−02
FylkeFinnmark 2 . 5 1 4 e−01
FylkeHedmark 7 . 5 5 8 e−02
FylkeHordaland −5.654 e−02
FylkeMore og Romsdal 1 . 9 6 6 e−01
FylkeNordland 7 . 9 9 1 e−02
FylkeOppland 1 . 2 2 4 e−01
FylkeOslo 1 . 2 7 1 e−01
FylkeRogaland −2.369 e−03
FylkeSogn og Fjordane −3.232 e−01
FylkeTelemark −5.982 e−02
FylkeTroms 1 . 0 4 3 e−01
FylkeTrondelag 2 . 7 9 1 e−01
FylkeVest−Agder −3.429 e−01
F y l k e V e s t f o l d 1 . 1 2 5 e−01
F y l k e o s t f o l d 1 . 0 7 8 e−01
Skade_a v t a l e 1 −2.819 e−01
Nyhetsbrev1 −2.269 e−02
KRA_L i v s f a s e E t a b l e r t B a r n e f a m i l i e −3.266 e−01
KRA_L i v s f a s e M i d d e l a l d r e n d e E n s l i g −5.811 e−02
KRA_L i v s f a s e M i d d e l a l d r e n d e P a r −1.898 e−01
KRA_L i v s f a s e P a r U t e n B a r n −1.356 e−01
KRA_L i v s f a s e S e n i o r E n s l i g −3.742 e−01
KRA_L i v s f a s e S e n i o r P a r −3.501 e−01
KRA_L i v s f a s e S i n g e l −5.212 e−01
KRA_L i v s f a s e S m a b a r n s f a m i l i e −1.608 e−01
KRA_LivsfaseUngdomStudent −7.178 e−01
KRA_B o l i g_By_landS −2.094 e−01
KRA_B o l i g_By_landT −5.883 e−02
KRA_B o l i g t y p e_E n k e l E n e b o l i g e r −8.557 e−02
KRA_B o l i g t y p e_E n k e l F r i t i d s b o l i g e r 5 . 0 6 0 e−01
KRA_B o l i g t y p e_E n k e l G a r a s j e og uthus t i l b o l i g −1.252 e+01
KRA_B o l i g t y p e_EnkelNaringsbygg og andre bygg 7 . 3 4 9 e−02
KRA_B o l i g t y p e_EnkelRekkehus , k j e d e h u s og andre smahus 1 . 6 6 4 e−01
KRA_B o l i g t y p e_E n k e l S t o r e b o l i g b y g g ( blokk ) 2 . 3 8 1 e−01
KRA_B o l i g t y p e_EnkelTomannsboliger −3.007 e−01
BIL_I_HUSTAND1 1 . 9 7 0 e−01
Fond_a v t a l e 1 −6.359 e−01
MedlemIkke medlem med m e d l e m s b e t i n g e l s e r −2.185 e−01
MedlemMedlem −1.913 e−01
A v t a l e G i r o 1 −6.474 e−01
eFaktura1 2 . 9 5 5 e−03
T l f s a m t a l e r . s i s t e . ar 1 . 0 6 4 e−02
Transer . d i f f . 0 . 1 −4.359 e−04
u t l a n 1 : Input . a k t i v i t e t . k r e d i t t k o r t 1 −1.107 e+01
innskudd1 : u t l a n 1 −2.981 e−01
innskudd1 : Input . a k t i v i t e t . k r e d i t t k o r t 1 1 . 0 8 5 e+00
innskudd1 : u t l a n 1 : Input . a k t i v i t e t . k r e d i t t k o r t 1 1 . 2 8 2 e+01
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Std . E r r o r
( I n t e r c e p t ) 1 . 2 3 4 e+00
s t a t u s A k t i v s i s t e ar 1 . 6 6 2 e−01
s t a t u s P a s s i v s i s t e 5 ar 2 . 2 8 8 e−01
s t a t u s U t e n a k t i v konto 2 . 9 2 4 e−01
innskudd1 1 . 7 5 5 e−01
u t l a n 1 2 . 8 0 9 e−01
m e d l a n t a k e r I k k e medlantaker 1 . 9 5 6 e−01
BK_KJONN_KODEM 7 . 4 2 9 e−02
ALDER 6 . 6 5 0 e−03
KUNDE_START_DATO 1 . 9 1 9 e−05
LAN 1 . 1 6 6 e−01
INNSKUDD 4 . 4 8 8 e−02
DEBETKORT 9 . 0 7 3 e−02
KREDITTKORT 2 . 0 7 0 e−01
NETTBANK1 5 . 4 1 1 e−01
MOBILBANK1 9 . 8 3 7 e−02
BANKID 1 . 3 5 0 e−01
SALDO.INNSKUDD 4 . 5 4 3 e−07
Lonnsinngang1 1 . 8 5 0 e−01
S o k e p r o s e s s 1 8 . 2 3 4 e−02
T r a n s a k s j o n e r . s i s t e . ar 1 . 8 1 5 e−04
Input . a k t i v i t e t . k r e d i t t k o r t 1 4 . 8 6 9 e−01
FylkeAust−Agder 2 . 4 7 5 e−01
FylkeBuskerud 1 . 9 2 1 e−01
FylkeFinnmark 2 . 6 1 0 e−01
FylkeHedmark 1 . 8 8 0 e−01
FylkeHordaland 1 . 6 5 5 e−01
FylkeMore og Romsdal 1 . 7 4 5 e−01
FylkeNordland 1 . 8 7 6 e−01
FylkeOppland 1 . 9 7 7 e−01
FylkeOslo 1 . 8 7 4 e−01
FylkeRogaland 1 . 7 0 2 e−01
FylkeSogn og Fjordane 3 . 2 3 1 e−01
FylkeTelemark 2 . 0 8 2 e−01
FylkeTroms 1 . 9 6 2 e−01
FylkeTrondelag 1 . 6 0 4 e−01
FylkeVest−Agder 2 . 5 6 2 e−01
F y l k e V e s t f o l d 1 . 6 8 2 e−01
F y l k e o s t f o l d 1 . 6 2 3 e−01
Skade_a v t a l e 1 8 . 2 5 1 e−02
Nyhetsbrev1 1 . 0 6 2 e−01
KRA_L i v s f a s e E t a b l e r t B a r n e f a m i l i e 1 . 6 2 1 e−01
KRA_L i v s f a s e M i d d e l a l d r e n d e E n s l i g 1 . 7 4 9 e−01
KRA_L i v s f a s e M i d d e l a l d r e n d e P a r 1 . 7 0 7 e−01
KRA_L i v s f a s e P a r U t e n B a r n 1 . 9 0 9 e−01
KRA_L i v s f a s e S e n i o r E n s l i g 2 . 6 7 6 e−01
KRA_L i v s f a s e S e n i o r P a r 2 . 4 3 5 e−01
KRA_L i v s f a s e S i n g e l 2 . 0 2 4 e−01
KRA_L i v s f a s e S m a b a r n s f a m i l i e 1 . 6 9 3 e−01
KRA_LivsfaseUngdomStudent 3 . 3 3 7 e−01
KRA_B o l i g_By_landS 1 . 0 7 2 e−01
KRA_B o l i g_By_landT 9 . 0 9 6 e−02
KRA_B o l i g t y p e_E n k e l E n e b o l i g e r 1 . 0 6 0 e+00
KRA_B o l i g t y p e_E n k e l F r i t i d s b o l i g e r 1 . 1 9 1 e+00
KRA_B o l i g t y p e_E n k e l G a r a s j e og uthus t i l b o l i g 4 . 0 8 3 e+02
KRA_B o l i g t y p e_EnkelNaringsbygg og andre bygg 1 . 0 9 2 e+00
KRA_B o l i g t y p e_EnkelRekkehus , k j e d e h u s og andre smahus 1 . 0 6 3 e+00
KRA_B o l i g t y p e_E n k e l S t o r e b o l i g b y g g ( blokk ) 1 . 0 6 1 e+00
KRA_B o l i g t y p e_EnkelTomannsboliger 1 . 0 6 6 e+00
BIL_I_HUSTAND1 1 . 1 7 0 e−01
Fond_a v t a l e 1 1 . 8 0 7 e−01
MedlemIkke medlem med m e d l e m s b e t i n g e l s e r 3 . 5 1 3 e−01
MedlemMedlem 2 . 3 8 9 e−01
A v t a l e G i r o 1 5 . 3 3 6 e−01
eFaktura1 1 . 1 8 6 e−01
T l f s a m t a l e r . s i s t e . ar 3 . 5 6 3 e−02
Transer . d i f f . 0 . 1 2 . 1 5 9 e−04
u t l a n 1 : Input . a k t i v i t e t . k r e d i t t k o r t 1 2 . 2 0 9 e+02
innskudd1 : u t l a n 1 3 . 1 3 9 e−01
innskudd1 : Input . a k t i v i t e t . k r e d i t t k o r t 1 3 . 0 8 1 e−01
innskudd1 : u t l a n 1 : Input . a k t i v i t e t . k r e d i t t k o r t 1 2 . 2 0 9 e+02
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p−v a l u e
( I n t e r c e p t ) 0 . 5 1 6 0 2 6
s t a t u s A k t i v s i s t e ar 0 . 0 0 0 2 9 7 ∗∗∗
s t a t u s P a s s i v s i s t e 5 ar 0 . 0 0 0 2 0 0 ∗∗∗
s t a t u s U t e n a k t i v konto 3 . 4 8 e−07 ∗∗∗
innskudd1 2 . 0 0 e−12 ∗∗∗
u t l a n 1 < 2e−16 ∗∗∗
m e d l a n t a k e r I k k e medlantaker 0 . 0 0 3 2 3 0 ∗∗
BK_KJONN_KODEM 0 . 0 1 6 6 7 8 ∗
ALDER 0 . 1 2 9 1 7 7
KUNDE_START_DATO 0 . 0 5 8 7 8 3 .
LAN 0 . 7 7 9 0 1 6
INNSKUDD 0 . 0 2 1 8 4 8 ∗
DEBETKORT 0 . 8 2 9 7 2 4
KREDITTKORT 0 . 5 6 5 4 6 8
NETTBANK1 0 . 3 3 8 9 1 1
MOBILBANK1 0 . 9 1 4 7 2 3
BANKID 0 . 0 5 1 9 3 5 .
SALDO.INNSKUDD < 2e−16 ∗∗∗
Lonnsinngang1 1 . 8 5 e−13 ∗∗∗
S o k e p r o s e s s 1 1 . 5 2 e−07 ∗∗∗
T r a n s a k s j o n e r . s i s t e . ar 0 . 1 1 5 4 1 2
Input . a k t i v i t e t . k r e d i t t k o r t 1 0 . 0 0 6 3 9 1 ∗∗
FylkeAust−Agder 0 . 2 5 0 4 4 5
FylkeBuskerud 0 . 7 5 4 6 2 9
FylkeFinnmark 0 . 3 3 5 4 9 1
FylkeHedmark 0 . 6 8 7 6 5 4
FylkeHordaland 0 . 7 3 2 6 4 0
FylkeMore og Romsdal 0 . 2 6 0 0 4 2
FylkeNordland 0 . 6 7 0 1 1 8
FylkeOppland 0 . 5 3 5 7 4 2
FylkeOslo 0 . 4 9 7 8 8 7
FylkeRogaland 0 . 9 8 8 8 9 7
FylkeSogn og Fjordane 0 . 3 1 7 2 1 8
FylkeTelemark 0 . 7 7 3 8 0 2
FylkeTroms 0 . 5 9 4 8 9 5
FylkeTrondelag 0 . 0 8 1 7 9 4 .
FylkeVest−Agder 0 . 1 8 0 6 6 0
F y l k e V e s t f o l d 0 . 5 0 3 5 7 4
F y l k e o s t f o l d 0 . 5 0 6 6 9 3
Skade_a v t a l e 1 0 . 0 0 0 6 3 5 ∗∗∗
Nyhetsbrev1 0 . 8 3 0 8 6 4
KRA_L i v s f a s e E t a b l e r t B a r n e f a m i l i e 0 . 0 4 3 8 5 9 ∗
KRA_L i v s f a s e M i d d e l a l d r e n d e E n s l i g 0 . 7 3 9 6 9 6
KRA_L i v s f a s e M i d d e l a l d r e n d e P a r 0 . 2 6 6 2 1 8
KRA_L i v s f a s e P a r U t e n B a r n 0 . 4 7 7 3 9 3
KRA_L i v s f a s e S e n i o r E n s l i g 0 . 1 6 2 0 5 4
KRA_L i v s f a s e S e n i o r P a r 0 . 1 5 0 4 9 1
KRA_L i v s f a s e S i n g e l 0 . 0 1 0 0 3 0 ∗
KRA_L i v s f a s e S m a b a r n s f a m i l i e 0 . 3 4 2 2 5 7
KRA_LivsfaseUngdomStudent 0 . 0 3 1 4 8 3 ∗
KRA_B o l i g_By_landS 0 . 0 5 0 6 4 8 .
KRA_B o l i g_By_landT 0 . 5 1 7 8 0 8
KRA_B o l i g t y p e_E n k e l E n e b o l i g e r 0 . 9 3 5 6 8 6
KRA_B o l i g t y p e_E n k e l F r i t i d s b o l i g e r 0 . 6 7 0 9 3 5
KRA_B o l i g t y p e_E n k e l G a r a s j e og uthus t i l b o l i g 0 . 9 7 5 5 2 9
KRA_B o l i g t y p e_EnkelNaringsbygg og andre bygg 0 . 9 4 6 3 3 4
KRA_B o l i g t y p e_EnkelRekkehus , k j e d e h u s og andre smahus 0 . 8 7 5 5 4 0
KRA_B o l i g t y p e_E n k e l S t o r e b o l i g b y g g ( blokk ) 0 . 8 2 2 5 0 9
KRA_B o l i g t y p e_EnkelTomannsboliger 0 . 7 7 7 8 1 1
BIL_I_HUSTAND1 0 . 0 9 2 2 1 0 .
Fond_a v t a l e 1 0 . 0 0 0 4 3 2 ∗∗∗
MedlemIkke medlem med m e d l e m s b e t i n g e l s e r 0 . 5 3 4 0 0 0
MedlemMedlem 0 . 4 2 3 2 2 2
A v t a l e G i r o 1 0 . 2 2 5 0 3 7
eFaktura1 0 . 9 8 0 1 1 5
T l f s a m t a l e r . s i s t e . ar 0 . 7 6 5 2 5 2
Transer . d i f f . 0 . 1 0 . 0 4 3 5 0 9 ∗
u t l a n 1 : Input . a k t i v i t e t . k r e d i t t k o r t 1 0 . 9 6 0 0 2 7
innskudd1 : u t l a n 1 0 . 3 4 2 3 0 5
innskudd1 : Input . a k t i v i t e t . k r e d i t t k o r t 1 0 . 0 0 0 4 2 9 ∗∗∗
innskudd1 : u t l a n 1 : Input . a k t i v i t e t . k r e d i t t k o r t 1 0 . 9 5 3 7 3 5
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