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Abstract

In this thesis the German electricity market is studied, with the aim of predicting
the day-ahead electricity spot prices. Three forecast models are presented; the first
model being a persistence model, which serves as a baseline model, only incorpo-
rating previous values of the electricity spot prices. The second model is a rolling
window regression (RWR) model, while the third model is a state-space model.
The two latter models incorporate previous electricity spot prices in the model, as
well as values of other fundamental variables that are assumed to influence the the
day-ahead electricity spot price. These include historical oil, coal and gas prices,
spot price volatility and electricity demand, to name a few. The RWR model uses
information from a window of previous days, whereas the state-space model only
considers the preceding day.

The parameter estimation of the RWR model is performed using the least squares
equivalents of this model. As for the state space model, a Kalman filter is im-
plemented to perform parameter estimation. The estimates from these models are
then used to forecast the spot prices, in addition to perform inference on the esti-
mates.

When comparing the models it is found that both the RWR and state-space model
outperform the persistence model, with the RWR model having the most accurate
predictions. Evidence indicates that this is due to the electricity prices having
larger memory than one day. Unlike the persistence model, both the RWR model
and the state-space model manage to capture some of the stochastic nature of the
spot price.
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Sammendrag

Denne masteroppgaven har studert det tyske elektrisitetsmarkedet, i den hensikt å
predikere neste dags elektrisitetsspotpriser. Tre modeller er presentert; den første
modellen er en ”persistence”-modell, som fungerer som en grunnmodell som kun
inkluderer tidligere elektrisitetsspotpriser. Den andre modellen er en ”rolling win-
dow regression”-modell (RWR), og den tredje er en tilstandsmodell. De to sist-
nevnte modellene inkluderer, i tillegg til tidligere priser for elektrisitetsspotkon-
trakten, også verdier til andre variabler som antas å påvirke neste dags spotpris.
Disse inkluderer historiske olje-, kull- og gasspriser, spotprisvolatilitet og etterspørsel
etter elektrisitet, for å nevne noen. RWR-modellen utnytter informasjon fra et
vindu av tidligere dager, mens tilstandsmodellen kun tar i bruk informasjon fra
dagen før.

Parameterestimering for RWR modellen foregår gjennom den tilsvarende minste
kvadraters metode. For å estimere parametrene i tilstandsmodellen er et Kalman-
filter blitt implementert. Estimatene fra begge modellene brukes så til å predikere
spotprisene i tillegg til å utføre inferens.

Ved sammenligning av modellene ble det funnet at både RWR- og tilstandsmod-
ellen ga bedre resultater en persistence-modelle, hvorav RWR-modellen hadde de
mest presise prediksjonene. Dette tyder på at elektrisitetsspotprisene har lengre
minne en en dag. I motsetning til persistence-modellen klarer både RWR- og til-
standsmodellen å fange opp noe av den stokastiske oppførselen til spotprisene.
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Chapter 1
Introduction

Ever since the first light bulb was lit in the 19th century, electricity has been crucial
in the development of the modern society. Today it is nearly impossible for any
civilised society to imagine a life without electricity, but our extensive consump-
tion of it has led to irreversible global challenges we now suffer from. At the same
time, electricity is essential to alleviate developing countries from poverty and to
stimulate economic growth. Thus, to keep global warming at bay, without the ex-
pense of drastically decreasing the electricity consumption, countries around the
world are forced to focus more on the renewable energy sources, which are more
dependent on the weather than the traditional ones. The power generation from
these sources are therefore subject to short-time changes and has a higher volatil-
ity compared to traditional sources, making it an important price driver for the
electricity markets [1].

Whereas the early electricity markets were characterised by governmental monop-
olies and regulations, today’s markets are to a greater extent privatised and deregu-
lated. With this new market structure, competition is present, where the electricity
prices are governed by the law of supply and demand, among other things. Now,
utility companies have to take other factors into account than before, such as the
market situation as well as financial risk [2]. Considering the above-mentioned
factors, models that capture the dynamics of the electricity prices are of interest
for the market participants in order to make decisions and plan ahead [3].

Numerous modelling approaches have been developed in order to predict the elec-
tricity prices in the different markets in the world, and the preferred models de-
pend, among other things, on the time horizon of the prediction. An attempt to
classify the numerous models were carried out in [4], in which six different groups
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of electricity price forecast models are proposed: game theoretic, fundamental,
reduced-form, statistical and artificial intelligence-based models. However, many
of the models considered in the literature are hybrid, combining techniques from
two or more of the groups mentioned.

In this thesis the aim is to predict the day-ahead electricity spot prices in Germany.
Data from the German electricity market were provided by Florentina Paraschiv,
and include the prices of the electricity spot contract, coal, gas and oil, as well as
the demand, to name a few. These data are from the year 2010 to 2016. Three
models, which can be categorised as statistical and fundamental models, are then
formulated with the aim of predicting the day-ahead electricity spot prices in Ger-
many. These models are the persistence model, rolling window regression model
and the state-space model. A description of the electricity market, as well as a
more detailed presentation of the data, are given in chapter 2. In addition, a more
detailed literature review is given here, focusing on the fundamental, statistical and
artificial intelligence-based models. Further, in chapter 3, relevant theory for the
development of the models will be presented, including means of evaluating their
predictive performance. In chapter 4 the models are presented, discussed and com-
pared, while the final chapter, chapter 5, concludes the thesis as well as suggesting
further work.
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Chapter 2
The Electricity Market

In this chapter the relevant background of this thesis is presented, starting in 2.1
by presenting the market from which the data is collected, that is the European
Energy Exchange. Then the price formation on the electricity spot market will
be explained in further detail, followed by a presentation of the data used in the
thesis, including some data analysis. Lastly, a literature review focusing on the
fundamental, statistical and artificial intelligence-based models, is conducted.

With the liberalisation of the power sector the need for organised markets at the
wholesale level emerged. In these markets electricity is treated as a commodity,
and different electricity contracts may be traded much similar to other financial
assets and commodities. These contracts can be sold over-the-counter or in organ-
ised markets, the latter of which will be the focus in this thesis. The contracts may
be physical contracts for delivery of electricity or financial contracts for hedging
or speculations [5]. Further, the various physical contracts have different maturi-
ties, and they are classified as either long-term or short-term, that is spot contracts.
The former includes futures, forwards and bilateral agreements which may have
maturities exceeding one year. It is the latter that will be the focus for this thesis,
so the long-term contracts will not be explained any further. As for the short-term
contracts there exist both day-ahead and intraday markets, but this thesis will only
look at the day-ahead market.

3



2.1 The European Energy Exchange

In the early days of electricity markets their only purpose was to deliver electricity
to customers. Today, however, their role has expanded to also address the new
challenges in the political and environmental climate. Now the electricity should
be produced in a sustainable manner to ensure environmental protection and pre-
vent climate change mitigation [6]. In addition they serve as regulated and neutral
marketplaces, so that all producers and consumers have non-discriminatory access
to the market [7]. This thesis will focus on a particular market, that is the German
electricity market, operated by the European Energy Exchange (EEX). EEX is the
leading energy exchange in central Europe and was founded in 2002 in Leipzig,
Germany [8]. EEX offers various energy and commodity products; power, natural
gas, emission allowances and oil, to name a few [9].

As mentioned, this thesis will focus on the electricity spot market, more specif-
ically the European Power Exchange (EPEX), which is part of the EEX group.
EPEX consists of Germany, as well as France, United Kingdom, the Netherlands,
Belgium, Austria, Switzerland and Luxembourg, which represent 50 % of the elec-
tricity consumption in Europe [10]. The spot market is a day-ahead market where
the spot is an hourly contract between producers and consumers with physical de-
livery of electricity the following day. The 24 spot prices are determined in a daily
auction, which takes place at 12:00 (noon) every day. Here market participants
bid on the spot contract, in e/MWh, for hourly blocks the following day, with in-
formation from the previous days in mind. The bidding process is schematically
illustrated in figure 2.1. The final spot price for the individual hours, the market
clearing price, is then determined after all the bids have been collected by the prin-
ciples of supply and demand [11].

To understand how the electricity spot prices are determined, it is important to
understand the concept of the merit order curve (the supply curve) and the demand
curve. The merit order curve is constructed based on the merit order principle,
meaning that the suppliers’ electricity offers are ranked based on the marginal
costs of the power plants used to generate it. One example of this (stepwise) curve
is illustrated in figure 2.2, with the producers’ supply bid in MWh on the horizontal
axis and the marginal cost in e/MWh on the vertical axis. Electricity production
from renewable energy sources, such as wind and solar, has the lowest marginal
cost, and may even be negative when factoring in the renewable support schemes
[6]. These sources are then followed by, with increasing marginal cost, the power
plants covering the base load (lignite and nuclear), coal, gas and oil fired power
plants. As can be seen from figure 2.2, the marginal cost of a power plant depend

4



Known information

t− 1 t t+ 1

00.00
12.00

00.00
12.00

00.00 00.00
12.00

Known spot price

Bidding interval

Deadline for bid

Figure 2.1: Overview of the bidding process. At day t the bids for the electricity prices
for day t+ 1 are determined in hourly intervals, the first interval being from 00:00-01:00,
the second 01:00-02:00 etc. At the time of the bidding the spot prices for all intervals of
the current day are known, as these were settled upon the day before.

on the fuel cost and the emission cost, as shown in grey and blue, respectively.
The merit order curve also shows the preferred sources at any time, favouring the
power production from the power plants having the lowest marginal cost. Note
that this curve is not constant in time, and is affected by the weather, changes in
fuel prices and power plant outages, among other things.
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Figure 2.2: The merit order curve, inspired by [12]. The vertical lines represent the
demand during night (red) and day (black). The intersections between the demand and
supply are illustrated by the horizontal lines, determining the prices during the night and
day
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With the merit order curve the market clearing price, that is the spot price, is de-
termined by the intersection of the supply and demand curve. As the demand is
nearly inelastic in the short term [7], the demand curve is illustrated by a vertical
line. This is due to the fact that electricity is considered a necessity, and an in-
crease in the price is not likely to effect consumers’ behaviour to a great extent as
there exist no other alternative to electricity. During the day the demand is natu-
rally higher than during the night hours, meaning that during the hours with high
demand more CO2 intensive power plants will often be used to meet the demand.
In turn this leads to higher electricity prices during these hours. During the night,
on the other hand, it typically suffices with the electricity generated by wind and
the power plants covering the base load to cover the demand.

Another peculiar aspect that can be deduced from figure 2.2 is the merit order
effect. This is a term for describing the decrease in the electricity prices due to
an increase in electricity produced by renewable energy sources. This effect is
illustrated in figure 2.3; in both 2.3a and 2.3b the demand is the same, but in
the latter the supply from renewable energy sources is larger, resulting in a lower
electricity price than in the former case, illustrated by the arrow.

Figure 2.3: Illustration of the merit order effect. The axes and the bars are the same as in
figure 2.2, and the vertical and horizontal line represent the demand and intersection with
the merit order curve, respectively. As can be seen, this particular intersection decreases
from the left panel to the right panel, as indicated by the arrow. This results in a lower spot
price.
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(a) The merit order curve of a certain day.
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(b) The merit order curve of another day
with higher supply of electricity generated
from renewable energy sources, but with
same demand as in figure 2.3a.
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2.2 Data

In this section, the data provided for this thesis will be presented. These include
the German electricity spot prices, coal, gas and oil prices, price for CO2 emission
allowances (EUA1), expected infeed from photovoltaics and wind, expected power
plant availability and expected demand were provided for the analysis. These were,
as mentioned, supplied by Florentina Paraschiv, one of the authors behind the ar-
ticle ”The Impact of Renewable Energies on EEX Day-Ahead Electricity Prices”
[11], which this thesis is influenced by. The period the data come from is from the
1st of January 2010 to the 31st of August 2016, except from the spot price, with
the first entry from the 25th of December 2009. The data are summarised in table
2.1, and includes a description of these. Summary statistics may be found in table
2.2, while the plots of the development of the variables with daily granularity are
shown in the figures 2.4.

Before describing the data any further, some of the terms found in table 2.1 will
be explained. As seen, the value for the coal price is the latest available price of
the front-month Amsterdam-Rotterdam-Antwerp (ARA) futures contract, that is
the price of the futures contract having the closest expiration date. ARA denotes
the port in this specific area, and is one of the most important gateways for coal
in Europe [7]. As for the gas price, the value in the data is the NCG (NetCon-
nect Germany) day-ahead natural gas spot price, which constitutes the relevant gas
spot price for the German area [13]. Lastly, the value for the oil price is the active
ICE (Intercontinental Exchange) Brent Crude futures contract, which is the futures
contract for a specific type of oil originating from the North Sea [7].

Furthermore, it is important to understand why the data in table 2.1 are included
in the analysis. With the merit order curve in figure 2.2 in mind, it is logical that
the prices of coal, gas, oil and CO2 emission allowances are included in a for-
mulation of a fundamental model. These prices directly influence the electricity
generation from the fossil-fired power plants, hence having an impact on the merit
order curve. The expected infeed of electricity from the renewable energy sources
is included because of the merit order effect; as seen in figure 2.3, an increase in
the infeed from electricity generated by photovoltaic and wind tends to decrease
the electricity price. The demand also influences the spot price, as it determines the
intersection with the merit order curve. Lastly, the power plant availability is also
included, because it simply gives as a cap for the potential electricity production
at a given time. As for the spot price volatility, this will be explained in chapter 4.

1One EUA permits emitting one tonne of CO2 equivalent.
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Table 2.1: A list of the data provided for this thesis including a description of these. The
units and granularity of the data are also given, the latter being either hourly (h), that is
24 values per day, or daily (d), that is one value per day. The variable marked with * is a
derived variable.

Variable (units) [granularity] Description

Spot price (e/MWh) [h] Market clearing price for all
hours.

Spot price volatility* (e/MWh) [h] Standard deviation of the market
clearing prices for the same hour
of the five last delivery days.

Coal price (e/12,000 t) [d] Latest available price of the
front-month ARA futures con-
tract before the electricity price
auction occurs. This is auc-
tioned daily.

Gas price (e/MWh) [d] Last available price of the NCG
day- ahead natural gas spot price
on the day before the electricity
price auction takes place.

Oil price (e/barrel) [d] Last available price of the active
ICE Brent Crude futures con-
tract on the day before the elec-
tricity price auction takes place.

Price for EUA (e0.01/EUA) [d] Latest available price for the
EEX Carbon Index. Auctioned
daily at 10:30 am.

Expected PV and wind infeed (MWh) [h] Sum of expected wind and pho-
tovoltaic electricity infeed into
the grid. Published by Ger-
man transmission system oper-
ators after the electricity price
auction.

Expected power plant availability (MWh) [d] Ex-ante expected power plant
availability for electricity pro-
duction on the delivery day.
Published daily at 10:00 am.

Expected demand (MWh) [h] Demand forecast data for the rel-
evant hour on the delivery day.
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As can be seen in table 2.2, as well as in figure 2.4a, the spot prices may also
be negative, which is one of the aspects that make electricity spot prices different
from that of other financial assets or commodities. The occurrences of these prices
are marked with red dashed lines in all the plots in figure 2.4, in total 10 occur-
rences.2 These counterintuitive prices occur in times when low demand meets a
high inflexible power generation, often accompanied with a higher power gener-
ation from fluctuating sources like wind. This fact is supported by the plots in
figure 2.4; as seen in figure 2.4c the negative prices coincide with high infeed from
wind and solar power, while the demand is low. The occurrences of negative prices
mostly happen during nighttime, when these events occur. The fact that wind con-
stitute a large part of the electricity generation during nighttime also make the spot
prices during these hours more volatile than during the day.

Table 2.2: Descriptive statistics of the variables in table 2.1, with corresponding units.

Variable Mean Std. dev. Minimum Maximum
Spot price 38.55 16.55 −222.99 210

Coal price 7.88 1.73 4.61 12.16

Gas price 21.44 4.69 11 39.50

Oil price 40.37 10.12 15.02 56.66

Price for EUA 8.46 3.80 2.72 16.84

Expected PV and wind infeed 9157 7077 263.4 44607

Expected power plant availability 55323 4862 40016 64169

Expected demand 41557 8548 18233 63715

The reason why the spot prices may be negative can be explained by the fact that
electricity is economically non-storable [4], meaning the power system requires a
constant balance between production and consumption. Thus, prices may fall in
times of low demand to signal generators to reduce the power generation to avoid
overloading the grid, and may even be negative because the cost of shutting down
and restarting a power plant may exceed the cost of accepting negative prices [14].
With 24 hourly blocks, there are 58608 spot prices in the spot price data provided
for this thesis, and 401 occurrences of negative prices. With only 0.68 % of the
prices in the data set being negative, this phenomenon is rather rare.

2It appears to only be four occurrences, however the negative prices often occur in consecutive
hours, causing the dashed lines to (seemingly) coincide.
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Another peculiar aspect of the electricity spot is its mean reverting behaviour [5].
Mean reversion is the assumption that the price of a commodity, or a financial
asset, will tend to move to its long-term average price. Whereas stock prices are
governed by the principles of supply and demand only, and thus can become ar-
bitrarily large or small (but never negative), electricity spot prices are in addition
to being influenced by supply and demand, also associated with the cost of gen-
erating the electricity itself. Although there exist price spikes in both the negative
and positive direction in the short run, electricity spot prices express a mean re-
verting behaviour in the long run reflecting the cost of production of this particular
commodity [15]. Even when sudden price spikes occur in the short run, the prices
rapidly return to the previous price level.

To inspect the correlation between the different variables, a correlation matrix is
found in figure 2.5. First, as can be seen, the spot prices and the demand are highly
correlated, with a positive correlation of 0.59. This is due to the fact that supply
and demand of electricity must balance at every moment. In addition, as seen in
the previous section, the demand determines the intersection with the merit order
curve, which sets the spot price. To inspect the correlation further, plot of the
standardised spot price, shown in black, and expected demand, shown in red, of
the first week of 2010 is presented in figure 2.6. The two curves seem to follow
each other, however the spot price development is much more ”extreme” in the
sense that its curve is spikier than that of the demand. Both the spot price and the
demand expresses a seasonal behaviour in the daily pattern, as seen in figure 2.6,
but also as in the weekly and yearly patterns. The spiky nature of the spot price
development may be explained by the fact that the underlying factors that affect
the spot price are unpredictable, like the weather, power plant outages and trans-
mission constraints [1], whereas the demand is more easily predicted. According
to said article, an appropriate forecasting model for electricity spot prices should
consider the deterministic patterns as well as these stochastic components.

Furthermore, the fluctuant nature of the renewable energy sources can be seen
from figure 2.4c. In addition, as seen from the correlation matrix in figure 2.5,
both wind and photovoltaic electricity are negatively correlated to the spot price.
This supports the merit order effect discussed earlier, that is that an increase in
the electricity generated by renewable sources tend to decrease the electricity spot
prices. From figure 2.5 it is seen that the wind infeed has a stronger correlation to
the spot price than do photovoltaic, more specifically −0.39 against −0.08. With
the elecricity prices being correlated to these volatile variables, especially wind,
partly explains the stochastic nature of these prices.
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Figure 2.4: Plots of the development of the variables with hourly granularity, as presented
in table 2.1. The data are taken from the first half of 2010. The dates on the first axis are
presented in the day/month format, while the units are given on the second axis. The red
dashed lines indicate the occurrences of negative spot prices.
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Lastly, to inspect the correlation between the prices of oil, gas, emission allowances
and coal, a plot showing the development of these prices is shown in figure 2.7.
Prior to plotting them, the prices were standardised in order to compare them, as
these are of different magnitude. From the plot it seems that the price develop-
ments follow each other, and this is also supported by the correlation matrix in
figure 2.5. As seen, the correlation between gas and oil is the highest, with a cor-
relation of 0.75. This is also the strongest correlation found in the dataset. The
second strongest correlation is found between the coal and oil prices, with a corre-
lation coefficient of 0.64. As for the price of emission allowances, this is positively
correlated to the coal price, with a correlation coefficient of 0.58, while it is neg-
atively correlated to the gas and oil price. Due to the high correlations, a change
in one of the variables influences the others. As for oil and gas the relationship is
nearly linear. In comparison, the correlation between the demand and spot prices
is 0.59, which is also considered a strong correlation.
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Figure 2.7: Plot of the development of the standardised prices of oil (blue curve), gas (red
curve), EUA (green curve) and coal (black curve) in the first half of 2010.
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2.3 Literature Review

In this section a literature review will be conducted, with an emphasis on the funda-
mental, statistical and artificial intelligence-based models. Models in the literature
also include game theoretic and the reduced-form models, however, these will not
be detailed any further. This is due to the fact that the former groups of models do
not focus on predicting the electricity prices per se, but rather intent to analyse the
strategic behaviour of the agents in the market. As for the latter groups of models,
the reduced form models, these are not useful for short-term electricity pricing,
as these focus on the long-term development of electricity pricing. Thus, these
models are more important in derivatives valuation and risk analysis. The research
involving electricity price forecasting is vast, especially after the deregulation of
these markets became a fact. Much of the literature review in this section is based
on [4], an excellent paper treating the field of electricity price forecasting, which
also gives a more extensive literature review than presented here.

The first type of models that will be presented are the fundamental models. These
are models which attempt to capture the physical and economic aspects that are
present in the electricity market. As argued by [4], this group of models can be di-
vided into parameter rich models, utilising variables that are assumed to influence
the electricity prices, or parsimonious structural models of supply and demand. In
[16] an approach is made to model the electricity spot prices in the Nordic market,
using stochastic processes of fundamental variables. In this article the fundamen-
tal variables are climatic, hydropower, demand and base load supply data. How-
ever, as concluded in this particular paper, this method is better at predictions for
longer time periods than the day-ahead market, making this method better suited
for analysing company risk. Another paper dealing with fundamental models is
[17], which developed both regression-based and time series models using funda-
mental variables such as demand, demand volatility and fuel prices, to name a few.
Using these models, the aim was to predict the electricity prices in the day-ahead
market as well as the intra-day market in Britain. In the article which this the-
sis is influenced by, [11], a state-space model incorporating fundamental variables
from the German electricity market was formulated and solved by the Kalman fil-
ter. In this, the fundamental variables coincide with those of table 2.1. The aim
here, however, was to observe the impact the fundamental variables had on the
electricity spot price, and did not reach an overall conclusion about the predictive
performance of the model compared to other models.

Further, the statistical models use statistical techniques to forecast the electricity
prices, using data on the previous electricity prices or previous or current values of
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exogenous variables. The statistical models mainly comprise regression and time
series models, as well as the popular similar-day methods. The latter methods
searches historical data and finds a day having the same characteristics as the day
of interest. One of the articles mentioned in the previous article, [17], developed
regression models using time-varying parameters, thus including a time series ap-
proach. The simplest cases comprise models of univariate time series, where the
spot price is dependent on the price from previous days or hours. In [18] various
univariate autoregressive (AR) and autoregressive moving average (ARMA) mod-
els were proposed and tested on the German market. The spot prices were tested
as a single series for the whole time period considered, or as 24 different series
modelling each hour of the day. The aforementioned article found that the models
performed better on the hourly series. Pure AR type models do not take into ac-
count that the electricity spot price may be influenced by other time series, but by
combining time series models with fundamental models, this is issue is resolved.
This is done in for example [19], which utilises variables based on technologies of
the power plants, market concentration, congestions and volumes. In this article,
a GARCH structure of the residuals was also included, which is popular for mod-
elling the volatility in the electricity markets. In fact, some of the characteristics of
financial time series, including electricity spot prices, are volatility clusters. This
phenomenon occurs because the variability of the time series is dependent on its
own past.

Lastly, the artificial intelligence based methods consist mainly of various neural
networks (NNs) and support vector machines (SVMs). These methods are ”in-
telligent” in the sense that they learn from the data that is fed into them. These
are flexible methods that can handle the complexity of the electricity markets, as
well as the non-linearities that may be present in determining the electricity spot
prices [5]. In [1], [20] and [21], artificial neural networks were tested on fore-
casting short-term electricity prices. In the first article, an ANN was implemented
and trained using fundamental data to model the day-ahead electricity spot prices
in Germany. The results showed that the forecasts errors are competitive to those
of the other models tested, and even better in some cases. The other models in-
cluded a time series approach, modelling the electricity spot price as a time series,
accounting for daily seasonality, and two other naı̈ve models. These forecasted
the electricity spot prices using the price of the same hour from the previous day
or week as forecasts. In the second article, an ANN model based on a similar
day method was implemented and tested on the North-American electricity prices,
compared with a direct similar approach. In this article, data on load and prices
were used to characterise the days. This article found that the ANN based model
performed better than the similar day approach alone. In the third article the ANN
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was tested using nothing but the historic electricity prices in Spain an California,
comparing the results with time series models found in the literature, with success.
Recurrent neural networks have also been implemented with the aim of predicting
the electricity spot prices, and tested on the markets in Spain and New York [22],
with greater accuracy than other, more traditional models. Further. using SVM
in the electricity price forecast literature is different than predictions per se. As
SVMs are classification tools, these models are first trained as a classifier using
part of the data, then exploit this to classify (or predict) the other data. Examples
of SVM in the electricity price forecast literature include, among other things, [23]
and [24]. In the first article it is shown that the SVM implemented performs better
than a specific type of NN, that is radial basis function neural network. The sec-
ond article trains the SVM with fundamental data that is assumed to influence the
electricity price, and shows a better predictive performance than that of an NN.
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Chapter 3
Theory

This chapter introduces theory relevant for this thesis. First some relevant details
and theory behind time series will be explained, starting with the basic building
blocks of these series. Further, the theory behind state-space models is introduced,
which are models that are capable of handling a wide range of time series models.
The Kalman filter is also presented, which utilises the state-space representation
of a system to solve it. Next, linear regression and the connection with state-
space models will be presented. Lastly, the evaluation methods which are used to
evaluate the predictive performance of the models are presented.

3.1 Time Series

Time series are series of observations yt that are measured over a set of times
t = 1, . . . , N and may have either continuous or discrete sample spaces. These
models assume that the observations depend on each other in some manner re-
lated to time, be it daily, weekly, monthly or yearly. Time series are widely used;
in finance and economics they are, among other things, used for modelling daily
closing stock prices. In demography one may want to study a particular popula-
tion, and the population size may be modelled by a time series. In environmental
studies time series may model the concentration of a certain particle in the air.
The range of applications is huge. Based on previous observations, one goal is to
fit a statistical model for the time series, and then do forecasting with these models.
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3.1.1 Autoregressive Processes

An autoregressive (AR) process is a representation of a time series model where
the current state is defined via its former values multiplied with some weights plus
error [25]. More formally, an AR process of order p, AR(p), is a representation of
a zero-mean process, yt, t = 1, . . . , N , where

yt =

p∑
i=1

φiyt−i + εt, εt ∼ N (0, σ2), (3.1)

where p is a non-negative integer. As can be seen from the above equation the
process depends on the p previous values of the series, where the φis determine
the dependency of the previous values.

A simple example is the AR(1) process, which takes the form

yt = φ1yt−1 + εt, (3.2)

where φ1 6= 0 and εt is as before. This process has been simulated in R over 100
time units for φ1 = 0.1 and φ1 = 0.9, which are presented in figure 3.1a and 3.1b,
respectively. In both cases σ2 = 1.
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(a) AR(1) process with φ1 = 0.1
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(b) AR(1) process with φ1 = 0.9

Figure 3.1: Simulated AR(1) processes over 100 time units with two values of φ1. Here
εt ∼ N (0, 1).

As can be seen, the graph of the process in figure 3.1a is rather jagged compared
to that of figure 3.1b. This can be explained by the fact that when φ1 = 0.1 the
process depends less on the previous value than when φ1 = 0.9. As a consequence,
the error term εt has a larger impact on the process, resulting in a jagged graph
more similar to white noise. As for figure 3.1b the values of the process seem to
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be more dependent on the previous value, resulting in a smoother graph.
The properties of time series are well understood because of the linear combination
of Gaussian terms. For AR(1) processes, see (3.2), the variance becomes

Var(yt) = Var(φ1yt−1) + Var(εt) = φ21Var(yt−1) + σ2.

When the mean and variance of a process are independent of time, the process is
said to be stationary [26]. Assuming that the AR(1) process is stationary, meaning
Var(yt) = Var(yt−1) = σ2y , the mean and variance become

E[yt] = φ21E[yt−1] + E[εt] = 0,

Var(yt) = σ2y = φ21Var(yt−1) + Var(εt) = φ21σ
2
y + σ2,

where the latter can be written as

σ2y =
σ2

1− φ21
. (3.3)

As can be seen, both the mean and variance of the process are time independent.
Because σ2y > 0, one must require that the denominator be greater than 0, meaning
φ21 < 1 or |φ1| < 1 in order for the process to be stationary.

Returning to the plots in figure 3.1, where σ2 = 1, it can be seen that when
φ1 = 0.1 the variance is, according to (3.3), σ2y = 1/(1 − 0.12) ≈ 1.01. When
φ1 = 0.9 the variance becomes σ2y = 1/(1 − 0.92) ≈ 5.26. As can be seen
from figure 3.1, yt ∈ (−2, 3) in figure 3.1a, while yt ∈ (−2, 5) in figure 3.1b,
which correspond well with the calculated variances. In both plots the graphs are
symmetric around 0, which corresponds well with the theoretical mean of 0. Al-
ternatively one can enforce σy = 1, so that σ2 = 1 − φ21. With a φ1 = 0.1, the
residual variance becomes 1− 0.12 = 0.99, whereas when φ1 = 0.9, it is equal to
1− 0.92 = 0.19.

A non-stationary AR(1) process occurs when |φ1| ≥ 1. Then Var(yt) 6= Var(yt−1),
so that Var(yt) = φ21Var(yt−1) + σ2. As |φ1| > 1 it can be seen that the variance
increases with time. A special case of a non-stationary process, common in the
field of finance, is the one-dimensional random walk. This is an AR(1) process
with φ1 = 1,

yt = yt−1 + εt, (3.4)

with initial conditions y0 = 0 [26]. Then it can easily be seen that (3.4) may be
written as a sum of white noises, that is yt =

∑t
i=1 εi. It follows that E(yt) =
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∑t
i=1 E[εi] = 0, which trivially is independent of time. The variance, on the other

hand, becomes

Var(y1) = Var(y0) + σ2 = 0 + σ2 = σ2,

Var(y2) = Var(y1) + σ2 = 2σ2,

...

Var(yt) = tσ2,

meaning the variance increases linearly with time. A plot of 50 simulated random
walks is shown in figure 3.2. Here it can be seen that the variance increases with
time, and that the different walks are symmetric around 0, which corresponds well
with the theory.
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Figure 3.2: 50 simulations of random walks over 100 time units, with red lines showing
the 95 % confidence band. Here σ2 = 1.

3.1.2 Persistence Model

One of the simplest forecasting models for time series is the persistence model.
This model assumes that future values are equal to some values from the past. Say
the value of the time series at time t and t + h are related, the persistence model
for a stationary time series is [27]

yt = yt−h + εt, εt ∼ N (0, σ2).
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The simplicity of the model makes it popular as a baseline model, that is a model
which other models are compared to in order to evaluate their predictive perfor-
mance. Another version of the persistence model is obtained when taking the
average of a window of previous observations, that is

yt =
1

p

p∑
i=1

yt−i + εt. (3.5)

This may be thought of as an AR(p) process, with φi = 1/p, i = 1, . . . , p, see
equation (3.1). The estimate of the mean is then

ŷt =
1

p

p∑
i=1

yt (3.6)

while the variance is estimated from

σ̂2 =
1

p− 1

p∑
i=1

(yt − ŷt)2. (3.7)

The window size p may be determined based on some evaluation method, some of
which will be presented in a section 3.2.

3.1.3 Multiple Linear Regression in the Time Series Context

One of the basic prediction models in statistics is the multiple linear regression
(MLR) model, which assumes a linear relationship between the variable of inter-
est, the response, and the explanatory variables, or predictors. In the time series
context, the response and the explanatory variables are themselves time series.
Rather than modelling the response as a single time series, that is relating its cur-
rent value to its own past, the MLR model also take into account that the variable
of interest may be influenced not only by its past values, but also by current and
past values of other exogenous time series [26].

Now, denote by yt, t = 1, . . . , N the response at time t and ct the corresponding
vector of predictors at time t. With k predictors, ct is a k× 1 vector. The response
may also be a vector, but throughout the remainder of this thesis, assume it it a
scalar. The relationship between yt and ct may then be written [28]

yt = c>t xt + vt vt ∼ N (0, Rt),

where xt is the k × 1 vector of the coefficients, or weights, of the explanatory
variables, and vt white noise with variance Rt. Now let y and v be the N × 1
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vectors with elements yt and vt, respectively, and C the matrix with c>t as rows,
that is

C =


c>1
c>2
...
c>N

 =


c1,1 c1,2 · · · c1,k

c2,1
. . .

...
...

. . .
...

cN,1 · · · . . . cN,k

 .
With this notation the MLR model may be written more compactly as

y = Cx+ v.

The goal is then to find the ”best” estimate x̂. This amounts to minimising some
objective function f(x), so that

x̂ = arg min
x

f(x).

With the estimate x̂ the predicted value of the MLR model is given by ŷ = Cx̂.
A standard approach when solving for x is the method of least squares. Then the
objective function is

f(x) = (y − Cx)>(y − Cx) = r>r,

where r is the vector of residuals. In other words, the optimal estimate of x is the
one that minimises the square of the residuals. With this method, one obtains the
least square estimate

x̂ = (C>C)−1C>y,

while the variance of vt is estimated by

R̂ =
1

N − k
(y − Cx̂)>(y − Cx̂) =

1

N − k
r̂>r̂.

Both x̂ and R̂ are unbiased estimators for x and R, respectively, meaning E[x̂] =
x and E[R̂] = R. In addition, the covariance matrix of x̂, used for inference, is
Cov(x̂) = (C>C)−1R̂.

3.1.4 Rolling Window Regression

Parameter instability is considered a crucial issue when forecasting in various
fields. To deal with the instability it is common to use only the most recent ob-
servations, and not all the available data as in the regular MLR model, to estimate
parameters. The observations used makes up the so-called window, which are then
used to perform parameter estimation through least squares. Contrary to the MLR
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model, which assigns the same weight to the explanatory variables, the rolling
window regression (RWR) model allows for changing weights over time. With a
window size of p ≤ N , an illustration of the method is found in figure 3.3. When
being at day t− 1, trying to predict the value for yt,the weights xt are fitted from
the data in the window, which can be written

yt(p) =


yt−1
yt−2

...
yt−p

 , Ct(p) =


c>t−1
c>t−2

...
c>t−p

 =


ct−1,1 ct−1,2 · · · ct−1,k

ct−2,1
. . .

...
...

. . .
...

ct−p,1 · · · . . . ct−p,k

 .
With the notation above, the RWR model may be written

yt(p) = Ct(p)xt(p) + vt(p), (3.8)

so that the least squares estimates of this model are [29]

x̂t(p) =
[
Ct(p)

>Ct(p)
]−1

Ct(p)
>yt(p), (3.9)

R̂t(p) =
1

p− k
[yt(p)− Ct(p)x̂t(p)]

> [yt(p)− Ct(p)x̂t(p)] , (3.10)

Cov(x̂t(p)) =
[
Ct(p)

>Ct(p)
]−1

R̂t(p).

With the estimated weights x̂t(p), the electricity price at day t may be calculated
as

ŷt = ctx̂t. (3.11)

The size p of the window may be determined based on some evaluation measure,
which will be presented in section 4.2, as mentioned in the previous section.

ct−p
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yt−p−1

t / days
tt− 1t− p

. . .
t+ 1

. . .. . .
t− p− 1

Figure 3.3: Illustration of the rolling window. When estimating x̂t(p) only the data in the
window are used, here emphasised by the red circles.
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3.1.5 State-Space Models

Another model that, in the regression sense, allows for changing regression co-
efficients over time are state-space models, or dynamic linear models. These are
general models that are able to represent various systems in only two equations;
the state equation and observation equation. The model was originally introduced
as a method for use in aerospace-related research, but has proved to be applicable
in various other fields [26]. The techniques used for these models are flexible and
capable of handling a much wider range of problems than other time series models
[30].

In the state-space representation of a model it is the state of the model that is the
variable of interest. The state equation may be written

xt = Axt−1 +wt, t = 1, . . . , N, wt ∼ N (0, Qt), (3.12)

where the k × 1 vector xt defines the current state. This depends linearly on
the past state xt−1, where the dependency is determined by the k × k transition
matrix A, plus some white noise wt. Here Qt is the time dependent k × k covari-
ance matrix of the error. In addition it is assumed that the first state is equal to
x0 ∼ N (µ0,Σ0), with known µ0 and Σ0. For k = 1, this is simply the AR(1)
process, defined in equation (3.1), where A = φ1.

However, in state-space models it is assumed that the state xt is not observed
directly, but through a linearly transformed version of it, which is the observation
yt. The observation equation determines this relation, and is

yt = c>t xt + vt, vt ∼ N (0, Rt), (3.13)

where ct is, as before, a k×1 vector. Recall that yt was defined to be a scalar for the
purpose of this thesis. As can be seen, ct is the time dependent vector determining
the linear relationship between the state xt and the observation yt. In addition,
vt is white noise with time dependent variance Rt. It is assumed that wt and vt
are independent. As xt is of interest, the goal is to estimate xt by y1, y2, . . . , yt.
Note that when xt = xt−1 = x ∀t, the state-space model reduces to an MLR
model, where the regular least squares estimates may be used. When this is not
the case, however, more intricate techniques are required which will be presented
in the subsequent section.

3.1.6 Kalman Filter

Once the model is formulated in a state-space form, the Kalman filter may be used
to estimate the states xt. The object of filtering is to update our knowledge of the
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system as new observations yt are observed [30]. Let Yt = {y1, . . . , yt}, that is
the set of all the observations up to time t, and denote E[xt|Yt−1] = x̂t|t−1 and
Var(xt|Yt−1) = Pt|t−1. Then, using (3.12),

x̂t|t−1 = E[Axt−1 +wt|Yt−1] = Ax̂t−1|t−1,

Pt|t−1 = Var(Axt−1 +wt|Yt−1) = APt−1|t−1A
> +Qt.

Further, the error in the estimation, called the innovation residual, can be found by

et = yt − E[yt|Yt−1] = yt − E[c>t xt + vt|Yt−1] = yt − c>t x̂t|t−1,

with associated innovation covariance

St|t−1 = Rt + c>t Pt|t−1ct.

Now, having observed yt, the updated state estimate can be calculated by

x̂t|t = x̂t|t−1 +Ktet,

whereKt = Pt|t−1ctS
−1
t|t−1 is the Kalman gain. The updated covariance is

Pt|t = (1−Ktc
>
t )Pt|t−1.

To summarise, the Kalman filter is an algorithm which iteratively estimates the
system’s state and updates it as new observations are available. These steps are
done through the prediction step and the updating or filtering step. Before these
steps the system has to be initialised with some initial conditions,

x̂0|0 = µ0,

P0|0 = Σ0.
(3.14)

The prediction step is then

x̂t|t−1 = Ax̂t−1|t−1,

Pt|t−1 = APt−1|t−1A
> +Qt,

St|t−1 = Rt + c>t Pt|t−1ct,

(3.15)

while the updating step consists of

Kt = Pt|t−1ctS
−1
t|t−1,

x̂t|t = x̂t|t−1 +Ktet,

Pt|t = (1−Ktc
>
t )Pt|t−1.
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3.2 Evaluation Measures

In this section, the evaluation measures used to evaluate the predictive performance
of the models in the thesis will be presented. These include the mean square error,
the continuous ranked probability score and the mean absolute error, which will be
presented in the following.

3.2.1 Mean Square Error

The mean square error (MSE) is a common measure to evaluate the prediction
accuracy of a certain model. Denote by yt the observation at time t, t = 1, . . . , N ,
and ŷt its point prediction. Then the MSE is defined as

MSE =
1

N

N∑
t=1

(yt − ŷt)2 (3.16)

As can be seen, a model yielding perfect predictions correspond to an MSE of 0,
while a higher MSE indicates a poorer prediction [31].

3.2.2 Continuous Ranked Probability Score

The continuous ranked probability score (CRPS) is a measure for evaluating prob-
abilistic forecasts. Contrary to point forecasts, where a specific value is given,
probabilistic forecasting assigns a probability distribution to the forecast. Let Ft

be the probabilistic cumulative distribution function (cdf) at time t of the forecast
with the corresponding observation yt. Then its CRPS is defined as [32]

CRPSt =

∫ ∞
−∞

(Ft(x)− 1{x ≥ yt})2dx,

where 1{x ≥ yt} is the indicator function, defined as

1{x ≥ yt} =

{
0 x < yt,

1 x ≥ yt.

For several probabilistic forecasts, each having a cdf Ft(yt), t = 1, . . . , N , the
CRPS becomes

CRPS =

∑N
t=1 CRPSt

N
. (3.17)

The CRPS measures the squared difference between the cdf of the forecast and that
of the observation yt, which takes the form of the indicator function defined above.
The difference of the cdf of a forecast and an observation is illustrated in figure 3.4
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by the grey area. In this particular case the forecasted distribution is standard
normal, shown in red, while the cdf of the observation is shown in black. Here the
observation is at 1.2. In the same figure the cdf of a N (1.2, 0.22) distribution is
presented in blue. As can be seen, the CRPS depend on the forecasted distribution,
and is lower for the cdf of N (1.2, 0.22). However, this requires a high precision
and low variance. As shown in [32], in the particular case of a normal distribution
with mean µ and variance σ2, the CRPS at time t takes the form

CRPSN ,t = −σ
[

1√
π
− 2ϕ

(
yt − µ
σ

)
− yt − µ

σ

(
2Φ

(
yt − µ
σ

)
− 1

)]
,

(3.18)
where ϕ(·) denote the probability density function and Φ(·) the cumulative distri-
bution function of the normal distribution.
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Figure 3.4: Illustration of the CRPS. The plot shows the cdf of a standard normal distri-
bution (red curve), the cdf of an observation (black curve), and the cdf of a N (1.2, 0.22)
distribution (blue curve). The observation is at at 1.2. Assuming the forecasted distribu-
tion is a standard normal, the CRPS is the square of the grey area. As can be seen, for this
particular observation, the N (1.2, 22) distribution yields lower CRPS.
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3.2.3 Mean Absolute Error

The last evaluation measure considered is the mean absolute error (MAE). This is
defined as

MAE =

∑N
t=1 |yt − ŷt|

N
, (3.19)

where t = 1, . . . , N , as before. Note that equation (3.17) reduces to the mean
absolute error for point forecasts [32]. As seen, this measure is rather similar to
the MSE, however, as pointed out in in [33] the MAE is ”a more natural measure of
average error”. This is due to the fact that the MSE penalises large errors, as this
measure square the errors. Thus, with outliers present, yielding large prediction
errors, the MSE may underestimate a model’s performance.
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Chapter 4
Forecasting the Electricity Spot
Prices at the European Energy
Exchange

In this chapter three models for forecasting the day-ahead electricity spot price on
the European Energy Exchange are studied. The electricity market, as well as the
data provided for this project, have already been described in chapter 2. The mod-
els that have been developed and studied in this thesis are the persistence, RWR and
the state-space model. The former model is a pure statistical model, more specif-
ically a time series model, as it relates the electricity prices to its own past. The
other models also take into account that the electricity prices may be influenced
by other time series as well as its own historic values, and are thus classified as
a hybrid between the statistical and fundamental models. Further, the persistence
model serves as a baseline model which the other models are compared with to in-
spect their predictive performance. All the models are tested with data from 2010,
and the hourly intervals 03:00-04:00, 12:00-13:00, 18:00-19:00. Henceforth, these
intervals are referred to as hour 03:00, 12:00 and 18:00, respectively. A plot of the
spot price development for these hours are shown in figure 4.1. Note that negative
prices only occur in hour 03.00, when the demand is at its lowest. This supports the
statement that these prices mostly occur during the night, as mentioned in chapter
2. On the other hand, price spikes in the positive direction mostly occur during
the evening, at 18:00, where the demand reaches its evening peak. Despite the fact
that the demand is highest at noon, there are less price spikes than for the other
hours.
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Figure 4.1: The spot price development for hour 03:00 (shown in black), 12:00 (shown in
red) and 18:00 (shown in blue) for various dates in 2010. The dates are presented in the
day/month format. A horizontal dotted line is included to indicate a spot price of 0.

In the following the spot price at day t and hour i is denoted yi,t, while ŷi,t denote
its prediction. As mentioned, the RWR and the state-space model use past values of
other time series, in addition to the spot price, to forecast the day-ahead electricity
price. These explanatory variables are based on the data in 2.1, and are contained
in the vector defined as

ci,t =



Spot pricei,t−1
Volatilityi,t−1
Coal pricet−1
Gas pricet−1
Oil pricet−1

EUA pricet−1
Expected PV and windi,t

ExPPAi,t

Demandi,t
Demandi,t−1


.

In the following, yi,t and ci,t replace yt and ct as presented in chapter 3. As seen,
the number of explanatory variables is k = 10. Note that for the vector ci,t the
subscript i is omitted for some of the entries. This is due to the fact that these are
given on an hourly basis, as seen in table 2.1.

To understand why the entries of ci,t are chosen, recall the price formation of the
spot contract discussed in chapter 2. In this chapter, the inclusion of the prices
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of coal, gas, oil and CO2 emission allowances are already argued for, as well as
the expected infeed from photovoltaic and wind and the demand. For the lag spot
price, it is argued in [11] that this is included to reduce autocorrelation in the data
and incorporate historic price and risk signals, which usually influence agents’
price expectations and risk aversion. In addition, as noted in [17] and [18], the
AR(1) process is a benchmark model for mean reversion, which supports having
the lag spot price incorporated in the model. Lastly, as for the volatility of the spot
price, this is included to serve as another indicator for historic price instability and
risk.

In this chapter the models will be presented in separate sections, starting with the
persistence model, then the RWR model and lastly the state-space model. The
different sections will also assess the models, both in terms of their predictive
performance as well as assessing the model assumptions of the residuals. The
quality of the predictions are measured through the MSE, CRPS and MAE, as
presented in section 3.2. As for the CRPS, this requires a predictive distribution,
which for all the models is assumed to be normal, meaning equation (3.18) may
be used to calculate it.

4.1 Persistence Model

The simplest model that is studied for predicting the day-ahead electricity spot
prices is the persistence based model given in equation (3.5). In this model the
electricity price at i, t is modelled as an average of the prices of the same hour
from the p previous days, thus generating 24 time series for each hour i. The win-
dow size p is chosen to minimise the MSE, CRPS and MAE, which takes the form
of (3.16), (3.18) and (3.19), respectively. These are calculated using the estimates
of the mean and the variance, which are estimated as in the equations (3.6) and
(3.7).

Plots of the MSE and CRPS for different window sizes p and the hours 03:00,
12:00 and 18:00, may be found in figure 4.2. The optimal window sizes are ei-
ther 2, 7 or 8, depending on the hour and which error measure considered, as
summarised in the tables 4.1a and 4.1b. The window size is chosen to be 7 even
though this is not the optimal window for all hours for the CRPS. However, as
mentioned earlier, the spot prices express, among other things, weekly seasonal-
ity, which makes a window size of 7 plausible. With this window size, the MSE,
CRPS and MAE for the hour 12:00, is 77.64, 4.09 and 6.79, respectively, while
these values for the other hours are found in table 4.1a. Corresponding tables as in
4.1, as well as similar plots to the ones found in figure 4.2, using MAE as the error
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measure may be found in table A.1 and figure A.1 in the appendix.

Further, it is seen that the persistence model predicts best for the hour 18:00 when
p = 7, as the MSE, CRPS and MAE are lowest for this hour. The predictions for
the hour 12:00 is almost as good as for the hour 18:00, with an MSE, CRPS and
MAE of only 1.97 %, 0.39 % and 8.30 % higher than the best prediction, using
a window size of p = 7. As for the hour 03:00, on the other hand, the MSE,
CRPS and MSE are 20.50 %, 15.12 % and 14.83 % higher than the predictions for
hour 18:00. This may be due to the fact that the prices during nighttime are more
volatile than during the day, as mentioned in chapter 2. As seen from the figure
4.1, it can also be seen that the variability in the spot prices at 03:00 is greater than
for the other hours, causing the average of the p last days to be a bad prediction for
this particular hour.

In the following, predictions for the hours 12:00 are considered. Even though
the persistence model performs better on the hour 12:00 with respect to the error
measures considered, the other models which are presented later in this chapter
predict the price at noon better. In addition, the values of both MSE, CRPS and
MAE for the predictions at 12:00 are rather similar to those of hour 18:00. Now,
the spot price predictions for p = 7, as well as the actual spot price, can be found
in figure 4.3 in red and black, respectively. A 95 % confidence interval for the
prediction is also shown in said figure. As can be seen, the curve of the predicted
electricity prices seem to smooth the curve of the true prices, and fail to capture the
jaggedness of the true spot price development. This is as expected, as this model
takes the average of the 7 last electricity prices. Despite this, the true spot price is
within the 95 % confidence interval for all the days considered.

Table 4.1: The optimal p for the persistence model with respect to MSE and CRPS, for all
the hours. The MAE is also given.

(a) The p yielding lowest MSE.

Hour p MSE CRPS MAE

03:00 7 91.75 4.34 7.20

12:00 8 76.44 4.09 6.79

18:00 7 76.14 3.77 6.27

(b) The p yielding lowest CRPS.

Hour p MSE CRPS MAE

03:00 2 97.82 4.25 7.06

12:00 8 76.44 4.10 6.79

18:00 7 76.14 3.77 6.27

To assess the persistence model further, various diagnostic plots are plotted and
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Figure 4.2: The MSE and CRPS for the persistence model for various window sizes p and
the hours 03:00 (black curve), 12:00 (red curve) and 18:00 (blue curve). A vertical dotted
line at p = 7 is also shown in all the plots.
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(d) The CRPS for window sizes p ≤ 100.

presented in figure 4.4. As seen in figure 4.4a, the histogram of the model is shown,
with a normal density curve in red. The histogram shows that there are more
negative residuals than positive, so the histogram is not perfectly symmetrical. As
for the plot of the predicted versus the actual spot price, ŷ12,t versus y12,t, shown in
figure 4.4b, the predictions are not very off in the sense that it seems to be a linear
relationship between them. In fact, the regression slope is 0.997, with 1 being the
ideal slope. The standard error of the slope, indicating the spread of the points, is
8.75 · 10−3. Moving on to figure 4.4c, it is seen that the residuals express a slight
linear relationship to the fitted values, having a regression slope of −3.07 · 10−4,
as illustrated by the red line. However, when conducting a significance test for the
linear relationship, the null hypothesis of a regression slope of 0 is not rejected
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Figure 4.3: The spot price predictions, ŷi,t, from the persistence model with p = 7 (red
curve) and the actual spot prices, yi,t, for the year 2010 (black curve). Here i = 12. A
95 % confidence interval is included and shown as dotted lines. The axes correspond to
those of figure 4.1. Note that the start date is the 8th of January as the first p = 7 days are
used to calculate the first prediction.

on neither a 5 % nor 10 % significance level. Thus it may be concluded that
the linear relationship is not significant. Moreover, figure 4.4d shows a QQ plot
with a red reference line, as well as a 95% confidence interval for the normal
distribution. The slight concave relationship indicates a heavy left tail and a light
right tale, even though the right tail is within the 95 % confidence interval, as seen
from the QQ plot. This gives evidence that the data are left-skewed. This is also
supported by figure 4.4a. Thus, other distributions meeting this criteria should be
analysed further. In fact, when conducting a Shapiro-Wilks test [34] for testing
for normality, there is adequate evidence that the null hypothesis that the residuals
come from a normally distributed population be rejected on a 5 % significance
level.
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Figure 4.4: Different diagnostic plots to evaluate the persistence model with a window
size of p = 7.
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(a) The histogram of the standardised resid-
uals with the normal density curve in red.
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(b) Scatter plot of the predicted values of
the spot prices, ŷ12,t, versus the actual spot
prices, y12,t. The red diagonal line indicates
a perfect fit. Here the regression slope be-
tween ŷ12,t and y12,t is found to be 0.997.
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(c) Scatter plot of the predicted values, ŷ,
versus the standardised residuals. The red
line shows the regression line, with a slope
of −3.07 · 10−4.
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(d) The normal QQ plot with a 95 % confi-
dence interval indicated by the grey area.
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4.2 RWR Model

A drawback with the persistence model is that it only uses historical values of the
spot price itself, and do not take into account that it may be influenced by other
variables. In the RWR model, on the other hand, the day-ahead electricity price
may also be influenced by other underlying time series. This model takes the form
of equation (3.8), with the subscript t replaced by i, t. The window size p was, as
for the persistence model, chosen to minimise the MSE, CRPS and MAE. These
were calculated using the estimated mean and variance, estimated by (3.9) and
(3.10), respectively.

Plots of the MSE and CRPS for different window sizes p and the hours 03:00,
12:00 and 18:00, may be found in figure 4.5. As for the persistence model, there
are different optimal window sizes depending on the hour, summarised in table 4.2.
However, the MSE and CRPS for hour 18:00 increases for p larger than around 70,
while staying approximately the same for the hours 03:00 and 12:00. Therefore,
to keep both the MSE and CRPS small for all hours, p = 73 was chosen. For
this window size, the MSE, CRPS and MAE for the hour 12:00 are 47.70, 3.74
and 5.12, while for 18:00 they are 54.46, 3.83 and 5.22. As in the case for the
persistence model, corresponding tables as in 4.2, as well as similar plots to the
ones found in figure 4.5, using MAE as the error measure, may be found in table
A.1 and figure A.1 in the appendix.

As seen from table 4.2, the RWR model predicts the day-ahead spot prices at noon
better, even with the non-optimal window size of p = 73. Contrary to the persis-
tence model, the RWR model’s predictions are better for the hour 03:00 than 18:00
with respect to MSE. However, with respect to CRPS and MAE, the predictions
for hour 18:00 are better. To understand this, recall that the MSE penalises large
errors, and favours small errors, as this measure squares the errors. This may lead
to either underestimating or overestimating the model’s predictive performance.
Keeping this in mind, it might be the case that the some of the predictions for the
hour 18:00 yield larger errors, causing its MSE to be larger than that of the hour
03:00. Alternatively, some of the predictions for hour 03:00 may be close to the
actual value, leading to overestimating the performance of the prediction for this
hour. Nevertheless, all the error measures are lower than the corresponding values
for the persistence model, meaning the predictive performance of the RWR model
is better compared to that of the persistence model, considering these error mea-
sures.

The spot price predictions from the RWR model with p = 73, as well as the actual
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spot price, for hour 12:00 can be found in figure 4.6 in red and black, respec-
tively. In this figure a 95 % confidence interval is also included and shown as
dashed lines. Unlike the persistence model, the RWR model seems to capture the
stochastic nature of the spot prices to a greater extent. However, whereas the 95 %
confidence interval for the persistence model contain 100 % of the true values, the
corresponding percentage is 89 % for the RWR model. Thus, by taking a more ag-
gressive approach, which captures the stochastic behaviour of the electricity spot
prices, some of the actual spot prices consequently lie outside the confidence in-
terval.

Figure 4.5: The MSE and CRPS for the RWR model for various window sizes p and the
hours 03:00 (black curve), 12:00 (red curve) and 18:00 (blue curve). A vertical line at
p = 73 is also shown in all the plots.
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(d) The CRPS for window sizes p ≤ 100

As for the previous model, various diagnostic plots are plotted to evaluate the
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Figure 4.6: The spot price predictions from the RWR model with p = 73 (red curve)
and the actual spot price for the year 2010 (black curve). A 95 % confidence interval is
included and shown as dotted lines. The axes correspond to that of figure 4.1. Note that
the start date is the 15th of March as the first p = 73 days are used to calculate the first
prediction.

model further. These can be found in figure 4.7. Firstly, as seen in figure 4.7a,
the residuals still express a heavier left tail, however in this case there are extreme
values in both the left and the right tail. Due to this, a heavy-tailed distribution is
worth investigating further. Secondly, as figure 4.7b suggests, the relationship be-
tween the predicted and actual spot price seem to be linear, with a regression slope
of 1.009 and a standard error of 7.52·10−3. The fact that the points are closer to the
red reference line than in figure 4.4b, as the standard error of this particular slope
is less than that of the persistence model, this is another indicator that the RWR
model performs better in terms of predictions than the baseline model. Thirdly, the
residual scatter plot in figure 4.7c indicates a slight linear relationship between the
residuals and the predicted spot prices. Nonetheless, as in the case of the persis-
tence model, the null hypothesis of a non-significant regression coefficient cannot
be rejected on neither significance level considered. Lastly, the QQ plot in figure
4.7d, as well as figure 4.7a, suggests a heavy right and left tail. Similarly to the
persistence model, a Shapiro-Wilks test rejects normality of the residuals.

Furthermore, plots of the development of the weights for the coal price, gas price,
photovoltaic and wind and the expected demand may be found in figure 4.8. These
are shown for hour 03:00, 12:00 and 18:00. As for the weight of coal, this is neg-
ative for the most part for all hours. This would mean that an increase in the coal
price tend to decrease the electricity spot price, when keeping all the other vari-
ables constant. This is rather unintuitive, as the coal price is positively correlated
to the spot price, as seen in the correlation matrix in figure 2.5. However, from
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Table 4.2: The optimal p for the RWR model with respect to MSE and CRPS, for all the
hours. The MAE is also given.

(a) The p yielding lowest MSE.

Hour p MSE CRPS MAE

03:00 73 52.55 4.08 5.70

12:00 86 46.95 3.72 5.11

18:00 71 53.43 3.80 5.16

(b) The p yielding lowest CRPS.

Hour p MSE CRPS MAE

03:00 99 52.72 4.06 5.71

12:00 86 46.95 3.72 5.11

18:00 70 53.53 3.79 5.14

the correlation matrix it is also seen that the coal price is strongly correlated to
gas, oil and the emission allowance price, with the correlation coefficients of 0.45,
0.64 and 0.58, respectively. Thus, this may give evidence that the coal price can
be linearly predicted by these, and that there exists multicollinearity in the data.
This is a phenomenon in which there are near-linear dependencies between the
explanatory variables [35]. As pointed out in this book, the determinant of the cor-
relation matrix may also be an indicator for multicollinearlity; if the determinant
is 1, the explanatory variables are independent, whereas when it is 0 there exists
an exact linear relationship between the variables. In this case, the determinant of
the correlation matrix is 8.11 · 10−3. Further, the issue of multicollinearity leads
to problems with the least squares estimates, hence also causing problems when
doing inference. In fact, in the case of strong multicollinearity, the least square
estimates of the weights and their variances tend to be large. Especially the lat-
ter gives problems when doing inference on the weights, and is the reason why
a 95 % confidence interval is not seen in the plots in figure 4.8, as the intervals
are too large. Despite these issues, multicollinearity do not reduce the predictive
power of the model itself, hence the MSE, CRPS and MAE are rather low. How-
ever, this would explain the unintuitive nature of the plot in figure 4.8a, namely the
unstability of the weight and the fact that it even changes sign.

To deal with multicollinearity, [35] proposes three methods, the first being to col-
lect additional data, the second to respecify the model, and the third being to per-
form Ridge regression. As the model already contains k = 10 explanatory vari-
ables, the first option does not seem to be necessary, and it may also be the case
that obtaining additional data is costly. The two other options seem plausible. As
mentioned, however, the presence of multicollinearity does not affect the model
fit. Thus, for the purpose of this thesis, the multicollinearity is merely addressed,
and makes an interesting topic to resolve for further work.
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Figure 4.7: Different diagnostic plots to evaluate the RWR model with a window size of
p = 73

Standardised residuals

D
en

si
ty

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

(a) The histogram of the standardised resid-
uals with the normal density curve in red.
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(b) Scatter plot of the predicted values of
the spot prices, ŷ12,t, versus the actual spot
prices, y12,t. The red diagonal line indicates
a perfect fit. Here the regression slope be-
tween ŷ12,t and y12,t is found to be 1.009.
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(c) Scatter plot of the predicted values, ŷ,
versus the standardised residuals. The red
line shows the regression line, with a slope
of 7.52 · 10−3.
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(d) The normal QQ plot with a 95 % confi-
dence interval indicated by the grey area.

As for the other plots in the figure 4.8, the signs are in accordance with the cor-
relation matrix. From the plot of the weight of gas, seen in figure 4.8b, it is seen
that the gas price has less influence on the electricity spot price during the sum-
mer, when the value of the weight is around 2. This makes sense as the electricity
demand reaches its minimum during the summer months, thus extra electricity
generated by the power plants situated to the right of the merit order curve, illus-
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trated in figure 2.2, is typically not needed. Further, the weight of photovoltaic
and wind in figure 4.8c is negative for the whole period considered, meaning an
increase in the electricity generated by these sources decreases the electricity spot
price. In addition to correspond to the correlation matrix, this is expected from
the merit order effect, discussed in section 2.1. As seen the effect of this vari-
able is less negative around August, meaning an increase in the infeed from these
sources do not have such a negative impact on the electricity prices than during
the first half of the year. This also makes sense, as the demand is low, and to a
greater extent than in high-demand months, met with the electricity generated by
the base load. Lastly, as for the weight of the demand, this is highest during the
summer months. As the demand is lowest during these months, it is plausible that
its weight is higher so as to keep the electricity prices at a reasonable level. Note
that although it appears that the the weight of the photovoltaic and wind infeed
and expected demand are small compared to those of coal and oil, recall that these
variables are of magnitude around 103 and 104, respectively, as seen in table 2.2.
Coal and gas are, in comparison, of magnitude 1 and 10.

Figure 4.8: Different plots of the development of the weights, estimated by equation
(3.9), of the RWR model with a window size of p = 73 and the hour 12:00. The dates are
displayed on the first axis in the day/month format.
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(d) The weight of the expected demand.
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4.3 State-Space Model

In the last approach a state space model for the electricity spot prices is formulated
as in equation (3.12) and (3.13), based on [11]. As before, yt and ct are replaced
by yi,t and ci,t, but in addition, the transition matrix in the state equation 3.12 is
also dependent of the hour i. For the sake of ease of reading, the state-space model
is restated here,

yi,t = c>i,txi,t + vi,t, vi,t ∼ N (0, Rt)

xi,t = Aixi,t−1 +wi,t, wi,t ∼ N (0, Qt).

As before, t = 1, . . . , N . Two different values of the transition matrix Ai are
tested, the first case is when Ai is equal to the identity matrix I for all i, as in
said article. In the other case the transition matrix is a diagonal matrix with its
entries estimated by the weights from the RWR model for some p. In this case, p
was chosen to be 73. The cases are denoted case 1 and case 2, respectively. More
specifically, for j = 1, . . . , k and i = 1, . . . , 24, let x̂i,j

[t0:t1]
denote the vector of the

weights of the jth explanatory variable for hour i in the time period t ∈ [t0, t1],
as estimated by the RWR model. In addition, let ŷi[t0,t1] be the vector containing
the predicted electricity spot prices for hour i in the same period, and yi[t0,t1] the
corresponding vector of the actual spot prices. That is

x̂i,j
[t0:t1]

=
[
x̂i,jt0 , x̂

i,j
t0+1, . . . , x̂

i,j
t1−1, x̂

i,j
t1

]>
,

ŷi[t0:t1] =
[
ŷit0 , ŷ

i
t0+1, . . . , ŷ

i
t1−1, ŷ

i
t1

]>
,

while yi[t0,t1] is similar to the latter, but with the circumflex omitted. Then, the
entries of the state-space models are calculated as

Âi
j,j = corr

(
x̂i,j
[2:(N−p)], x̂

i,j
[1:(N−p−1)]

)
, (4.1)

Q̂i,j = Var
(
x̂i,j
[2:(N−p)] −A

i
j,jx̂

i,j
[1:(N−p−1)]

)
, (4.2)

R̂i = Var
(
yi[1:(N−p)] − ŷ

i
[1:(N−p)]

)
, (4.3)

where N is the number of days considered and p is the size of the window used by
the RWR. Recall that with a window size of p, N − p estimates are obtained for
each hour i of the coefficients x̂i,t and the predicted spot prices, ŷi,t. Observe that
the above estimates are independent of the day t, and only depend on the hour i
and on the variable j considered. This assumption is also made in the article this
model is based on. Here Âi

j,j and Q̂i,j are the jth diagonal entry for the transition
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matrix and state covariance matrix, respectively, for hour i, and R̂i the variance
of the observation. The Kalman filter, presented in section 3.1.6, is then used to
solve the state-space model. In the following, the results from the Kalman filter,
using the different transition matrices, will be presented, starting with case 1. In
both cases Q̂i,j is estimated as in (4.2), while the initialisation step of the filter, see
(3.14), takes the form

µi,j0 =
1

N − p

N−p∑
t=1

x̂i,jt ,

Σi
0,j,j =

Q̂i,j

1− Âi2
j,j

,

Here µi,j0 is the jth entry of the k × 1 vector µ0 for hour i, and is estimated from
the weights from the least squares solution of the RWR model. Σi

0,j,j is the jth
entry of the diagonal matrix, Σ0 for the same hour, calculated by using equation
(3.3). In case 1, with A = I , the state equation (3.12) is non-stationary, and in fact
a k dimensional random walk, as described in section 3.1.1. As seen here, as well
as in figure 3.2, the variances of the states increase linearly with time. In case 2,
with A estimated as in (4.1), however, the state equation is stationary, meaning the
variances for the states xt are the same for all t and can be determined by equation
(3.3).

To evaluate the predictive performance for the model in both cases, the MSE,
CRPS and MAE for these and the hours 03:00, 12:00 and 18:00, can be found
in table 4.3. From these tables it is seen that the model with A = I performs better
with respect to the evaluation methods and for all the hours considered. Hence,
this model is evaluated further, for the hour 12:00. The spot price prediction, as
well as the actual spot price, for 2010 are shown in figure 4.9, including a 95 %
confidence interval for the prediction. The predictions seem to follow the actual
spot prices rather well, and improves the prediction from the persistence model
with respect to the error measures considered. However, it fails to outperform the
predictions from the RWR model considering the MSE and CRPS for all the hours.
The Kalman filter solution yields a smaller MAE for the hour 03:00 than for the
RWR model, however this measure is higher for the other hours. Based on these
measures, the overall performance of the RWR model is better. This may in turn
lead to the conclusion that the electricity spot prices have a larger ”memory” than
one day, as the state-space model only considers the data in ct, whereas the RWR
model considers data from a window of p days, that is Ct(p).

Also here the quality of the prediction for hour 03:00 is the worst, considering the
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CRPS and MAE. This is a recurring problem throughout all the models consid-
ered, and indicates that the models fail to capture the price jumps that occur during
nighttime. With a distribution having heavier tails this issue may be solved. In
addition, as all the models include data from previous electricity spot prices, the
extreme prices may have too much influence on the following predictions. This is
especially the case for the state-space model, which only incorporates data from
the previous day in the model, contrary to the other models, which uses a win-
dow of the p previous days. A possible solution to overcome this problem include
damping the effect of the prices under or above some threshold around its long-
term mean. Another solution could be to treat them as outliers, and substitute their
values with the mean of the preceding and following hour within the same day t.

Table 4.3: The MSE and CRPS of the Kalman filter solution of the state-space model for
both cases considered, in addition to all the hours. The MAE is also given

(a) Case 1.

Hour MSE CRPS MAE

03:00 60.82 6.43 5.63

12:00 60.13 5.43 5.58

18:00 70.64 6.10 5.46

(b) Case 2.

Hour MSE CRPS MAE

03:00 91.11 6.77 6.72

12:00 85.89 5.85 6.64

18:00 94.05 6.39 6.57
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Figure 4.9: The spot price predictions from the Kalman filter (red curve) with the actual
spot price for 2010 (black curve). A 95 % confidence interval is included and shown as
dotted lines. The units of the second axis is e/MWh, and the dates on the first axis are
displayed as day/month.
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Another interesting aspect that can be seen from figure 4.9 is that the confidence
interval is rather large. This is due to the large innovation variances in the predic-
tion step (3.15), that is St|t−1. As pointed out in [36], the Kalman filter also suffers
from the presence of multicollinearity, and as discussed in section 4.2, there is ev-
idence of this phenomenon. The same consequences as for the RWR apply to the
Kalman filter solution, which explain why the innovation variances are as large as
seen here.

Further, in [11] the MAE for the Kalman filter solution for the hours 11:00-14:00
is, in comparison, 3.70. However, in this article the period studied is from the 28th
of Janury 2010 to the 28th of February 2013. As the data studied here are from
the year 2010, as well as the hourly interval 12:00-13:00, the MAE is not directly
comparable. However, this indicates that the model in the article performed bet-
ter with respect to the predicting the electricity spot prices. This may be due to
the method from which the parameters in the state-space model are estimated; in
the article mentioned, the maximum likelihood is used to perform parameter es-
timation. Thus, this gives evidence that parameter estimation through maximum
likelihood is preferred rather than the method which is used here.

To assess the model further, various diagnostic plots are plotted and shown in
figure 4.10. The histogram of the residuals, shown in figure 4.10a, looks rather
symmetric, and seems to follow the normal curve in red rather well. However,
there is one extreme value in the left tail. In the plot in figure 4.10b it is evidence
that there exists a linear relationship between the predictions and the actual values
of the spot price. In fact, the regression slope between the predicted and actual spot
price is 0.987, with a corresponding standard error of 7.51 · 10−3. Although this
regression slope is furthest away from that of a perfect fit compared to the other
models, the standard error is the smallest. Thus, this indicates that the predictions
from the state-space model are the most precise. Also here there are some extreme
values, which causes the regression slope to be further away from a perfect fit. As
for the plot in figure 4.10c, there is a negative relationship between the residuals
and the fitted values. This relationship is stronger than found in the corresponding
plot of the persistence and RWR model, with a slope of −1.661 · 10−3. When
testing the significance of the regression slope, the null hypothesis of a slope of
0 is not rejected on a 5 % significance level. On a 10 % significance level, on
the other hand, there is sufficient evidence to reject the null hypothesis. This may
indicate that the assumption that the variance of vi,t, that is Ri, is independent of
the day t is wrong. Hence, a GARCH structure of the vi,t may be more appropriate
[37]. From the QQ plot in figure 4.10d it is seen that both tails are heavier than for
a normal distribution. A Shapiro-Wilks test also rejects normality of the residuals.
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Due to these observations, a distribution having heavier tails may also be tested
further.

Figure 4.10: Different diagnostic plots to evaluate the persistence model with a window
size of p = 7.
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(b) Scatter plot of the predicted values of
the spot prices, ŷ12,t, versus the actual spot
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a perfect fit. Here the regression slope be-
tween ŷ12,t and y12,t is found to be 0.987.
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(c) Scatter plot of the predicted values, ŷ,
versus the standardised residuals. The red
line shows the regression line.
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(d) The normal Q-Q plot with a 95 % confi-
dence interval indicated by the grey area.

Similarly for the RWR model, the weights for coal price, gas price, photovoltaic
and wind and the expected demand are plotted and displayed in figure 4.11. First,
the weight of coal in figure 4.11a behaves rather strange, as it does for the RWR
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model. Similarly, this may be explained by the multicollinearity. As for the other
weights, these correspond better with respect to the correlation matrix in figure 2.5,
as their signs coincide. The weight of gas, seen in figure 4.11b, exhibits a different
behaviour than seen in figure 4.8b. Whereas in the least squares solution of the
RWR model the weight is in the interval [0.27, 4.85], the Kalman filter provides
the narrower interval [1.28, 2.66]. With this solution, the impact of the gas prices
do not vary as much throughout the year as in the RWR model’s solution. The
weight of photovoltaic and wind in figure 4.11c also behaves differently than in the
RWR model, and obtains a maximum around November. However, as the Kalman
filter estimates the weights differently, some deviations are expected. Lastly, the
weight of the demand in figure 4.11d behaves rather similarly as in the case of the
RWR model’s solution, as seen in figure 4.8d. Note, however, that in the Kalman
filter solution, the demand has less impact in the peak months, with a maximum
of 1.56 · 10−3, as opposed to 2.73 · 10−3 in the least squares solution of the RWR
model.

Figure 4.11: Different plots of the development of the weights estimated by the Kalman
filter for the hour 12:00. The dates are displayed on the first axis in the day/month format.
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Chapter 5
Closing Remarks

In this thesis the aim was to predict the day-ahead electricity spot prices at the Ger-
man market. Three models were formulated and compared with respect to their
predictive performance; the persistence model, belonging to the class of statistical
models, the RWR model and the state-space model, the latter ones classified as
a hybrid between the statistical and fundamental models. These are fundamental
models in that they incorporate variables that are thought to influence the electric-
ity spot prices, thus attempting to explain the physical and economic aspects of
the particular market. The fundamental variables included the spot price volatility,
fuel prices, demand, to name a few. The persistence model, on the other hand,
modelled the electricity spot price as one time series, predicting the day-ahead
electricity spot price as the average of a window of previous prices for the same
hour. All the models were assumed to be normally distributed. Due to the per-
sistence model’s simplicity, the persistence model served as the baseline model,
which the other, more sophisticated models, were compared to. All the models
were tested with data from 2010 and the hour 12:00. It was found that the RWR
model performed best with respect to forecasting the electricity spot prices, with
an MSE, CRPS and MAE of 4.70, 3.74 and 5.12, using a window size of p = 73.
In comparison, the MSE, CRPS and MAE for the persistence model, with a win-
dow size of p = 7, were 77.64, 4.09 and 6.79, while for the state-space model
these were 60.13, 5.43 and 5.58. The fact that the RWR model performed better
than the state-space model, as discussed in section 4.3, gives evidence that a model
with longer ”memory” is preferred.

Despite the satisfying predictions from the RWR and state-space model, perform-
ing inference on the weights of the explanatory variables proved difficult. As there
was evidence of multicollinearity in the data, this was assumed to cause the prob-
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lems. However, this issue did not affect the predictions per se. Further, when as-
sessing the normality assumption of the residuals, the Shapiro-Wilks test rejected
the null hypothesis of the residuals. In addition, the diagnostic plots for all the
models gave evidence that distribution having heavier tails should be tested fur-
ther; for the persistence model a distribution having a heavier left tail seem more
appropriate, while a distribution having heavier tails in both ends should be tested
for the RWR and state-space model. This is thus left for further work. As for the
persistence and the RWR model, the residuals did not show any significant linear
relationship to the fitted values. This was also the case for the Kalman filter solu-
tion on a 5 % significance level. On a 10 % significance level, however, this linear
relationship was found to be significant. As mentioned, this may indicate that a
GARCH model be more appropriate for the errors in this case, which may also
be an interesting subject for further work. Lastly, as mentioned in section 3.1.6,
there is also evidence that estimating the parameters using maximum likelihood
may increase the predictive performance of the model.

All the models considered performed worst when predicting the electricity spot
prices at the hour 03:00. As mentioned in section 3.1.6, this may be due to the
fact that the price spikes have a too large impact on the following electricity spot
prices. As suggested in the same section, the effects of price spikes should be
damped, either by limiting the prices below a certain threshold or to treat them as
outliers. This is also a suggestion for further work.

Moreover, it would also be interesting to investigate an artificial intelligence based
method to forecast the electricity spot prices. As seen in section 2.3, there have
been various successful attempts to model the day-ahead electricity spot prices us-
ing different NNs. In addition, these are flexible models that are able to handle
the complexity and non-linearities that are present in the electricity market. As
seen throughout chapter 4, there was evidence that the model assumptions made
here were wrong, such as the assumption of normally distributed errors, and in
the case of the state-space models, the assumption of homoscedastic errors. Thus,
instead of making possibly wrong assumptions of the electricity spot price dynam-
ics, training an NN to learn these dynamics itself is an interesting task for further
studies.
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Appendix

A Evaluation using MAE

Table A.1: The optimal p for the persistence (left table) and the RWR model (right table)
with respect to MAE, for all the hours.

(a) The p yielding lowest MAE for the per-
sistence model.

Hour p MSE CRPS MAE

03:00 2 97.82 4.25 7.06

12:00 8 76.44 4.10 6.79

18:00 8 74.15 3.71 6.16

(b) The p yielding lowest MAE for the RWR
model.

Hour p MSE CRPS MAE

03:00 73 52.55 4.08 5.70

12:00 86 46.95 3.72 5.11

18:00 70 53.53 3.79 5.14
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Figure A.1: The MAE for the persistence (upper panel) and RWR model (lower panel)
for various window sizes p and the hours 03:00 (black curve), 12:00 (red curve) and 18:00
(blue curve). vertical dotted line at p = 7 is also shown in the upper panels, whereas in the
lower panels the dotted line is at p = 93.
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(a) The MAE for for the persistence model.
Here p ≤ 300.
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(b) The MAE for the persistence model.
Here p ≤ 100

0 50 100 150 200 250 300

0

5

10

15

p

M
A

E

(c) The MAE for for the RWR model. Here
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