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Abstract 

Enzymatic hydrolysis of food processing by-products is a gentle, non-toxic and highly specific strategy 

for utilization of unexploited protein sources into added-value peptide-rich formulations, towards 

mitigation of food waste footprint. However, mild treatment conditions, better suited for such high-

value applications, are often associated to long processing times and limited extraction yields. 

Innovative technologies, such as high-pressure processing (HPP), microwave heating (MW) and 

sonication (US), can contribute to the valorisation of food residuals through enzymatic hydrolysis by 

enhancing the availability of cleavage sites through biomatrix restructuration and protein unfolding. 

Thus, the resulting hydrolysates exhibit improved/standard techno-functionality and health-

promoting effects, besides higher process yields.  

The objective of this work was to investigate the potential of innovative technologies (MW; US; HPP) 

to enhance the bioactive and functional properties of the hydrolysates obtained from enzymatically 

hydrolysed mechanically deboned chicken residual (MDCR). 

In the present study, this was conducted by applying MW, US and HPP as pre-treatments of 

mechanically deboned chicken residual (MDCR) prior to enzymatic hydrolysis using an industrially 

relevant enzyme. After enzyme inactivation (95 ℃; 15 min), the hydrolysis reaction media was 

separated into a filtered aqueous, lipid, solid, particulate and a semi-solid multicomponent phase. 

The weight of all phases was recorded for the different experimental conditions. The protein 

concentration in the hydrolysates at 0.5, 5, 15, 30 and 60 min of hydrolysis and in the total reaction 

volume after hydrolysis (FHV) was determined. For the FHV of specific trials, the protein solubility of 

the hydrolysate at pH 2, 4, 6 and 11 was determined, as well as the DPPH radical scavenging 

(antioxidant) activity at protein concentrations of 0.5, 1, 2, 4 and 6 mg/mL. The investigated 

technologies present specific advantages with regards to the hydrolysate properties. In order to 

produce hydrolysates with increased protein concentration (after 60 min of hydrolysis), HPP should 

be applied at pressures of 400 MPa or higher (15 min; 25 ℃). The best option for enhanced DPPH 

radical scavenging activity (4 and 6 mg/mL protein concentration) would be US pre-treatment at 900 

W (30 min, T < 30 ℃). Finally, hydrolysates with increased protein solubility over pH could be 

achieved with a microwave treatment of 1 min (40 ℃; 2.45 GHz) or HPP treatment, however longer 

treatment times would be needed (15 min). Apart from the mentioned recommendations the results 

suggest that several of the technologies hold the potential to induce the formation of peptides with 

enhanced functionality apart from protein solubility. A US pre-treatment at 600 W (30 min, T < 30 ℃) 

and a MW pre-treatment for 1 min (40 ℃; 2.45 GHz) seem to hold the potential of inducing the 

formation of peptides with higher lipid associating properties, as does HPP treatments at 200 MPa 

(15 min; 25 ℃) which also present antioxidant properties (4 mg/mL). 
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1  Introduction 

1.1 Increasing formation of food by-products and residuals and their potential 

utilization and valorisation 

 

1.1.1  Current situation, driving forces and potential 

 

Traditional diets in developing countries have been based on cereal and coarse grains, consumption 

patterns are however changing. Increasing income causes the intake of meat, eggs and fish to 

increase fast (Pingali 2007). In Asia alone the consumption of animal protein increased by 225% 

between 1961 and 2007 (Boland, Rae et al. 2013).  While meat production in developing countries 

remains high, the per capita consumption of meat and meat-products is low as compared to 

developed nations. During the 80s, Europe produced most meat (40% of global) as compared to Asia 

(21%). Now 41% of the global meat production is constrained to the Asian continent (Ali and Pappa, 

2011). In countries such as Norway the production and consumption of chicken meat, beef, eggs and 

fish are on the rise (InnovasjonNorge 2018, Landbruksdirektoratet 2018). The general trend in 

Europe indicates an increase in meat consumption as of overall, while meat consumption per capita 

has remained relatively constant since the early 90s. However, there seems to be clear shift towards 

higher poultry and pig meat consumption (Kanerva 2013). 

 

40-60% of animal and fish weight does not comprise the main product, such as fillets, and thus is 

seen upon as waste (Aspevik, Oterhals et al. 2017). Globally, 1.3 billion tons of food and one third of 

the total global food production is wasted every year, costing the world economy close to €750 

billion (Dahiya, Kumar et al. 2018). In Europe every year 88 million tons of food-waste is generated 

with an associated cost of €143 billion (FUSIONS 2016). Traditional applications of the waste are 

burning, incineration, composting and animal feed (Jain, Dhakal et al. 2017). 
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Figure 1: Environmental impact associated with different waste handling actions (Lin, Pfaltzgraff et 
al. 2013). 

 

There are different environmental impacts resulting from different waste applications (Figure 1). 

Land fillings are often the least desirable action due to formation of methane which is a potent 

climate gas produced during anaerobic digestion of food components. Another disadvantage is the 

release of heavy metals which might accumulate in soil and groundwater (Girotto, Alibardi et al. 

2015). Thermal treatments have been applied in combination with anaerobic digestion to handle the 

waste and at the same time produce biogas and an effluent applicable as fertilizer. However, while 

the biogas-production compensates for the energy used during the thermal treatment, the high 

moisture content in the waste makes this option a low-efficiency solution (Edwards and Daniel 1992, 

Girotto, Alibardi et al. 2015). Recycling food residuals is another option, either using them as fertilizer 

or animal feed. As food-waste generally is highly nutritious, animal feed might be a desirable option. 

However, there are strict regulations for premarket approval, limiting its commercial exploitations 

(Dahiya, Kumar et al. 2018). In addition, the production of animal feed from food by-products is 

regarded as a low value solution (Rustad 2003). 

The increasing amount of food-related waste is receiving significant attention as proper uses are 

required in order to avoid devastating environmental and health effects. Plans and legislations 

launched by the European Union intend to change the current perception of these residuals as waste 

into resources applicable for value-added products. One of the regulations the EU has imposed on 

member states was to reduce the amount of land fillings by 35% within 2016.  Another is to stepwise 

reduce food waste in the EU by 30% within 2025 and further by 50% within 2030. In addition, an 
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action plan to initiate a circular economy has been established, in order to boost jobs creation, 

investment, economic growth and to achieve a carbon neutral and resource efficient economy. 

Essential in the vision of a circular economy is sound and efficient waste management systems 

(Directorate-General 2010, Union 2017, Union 2019).  

 

Valorization of food waste is a new concept in light of a circular economy, which offers high-value 

alternatives beyond that of land fillings and composting for the full exploitation.  

 

 

Figure 2: Pyramid of value for the different products one might generate from by-products. While the 
value of the products increase upwards in the pyramid, todays production-volumes decreases towards 
the top of the pyramid (Berbel and Posadillo 2018). 

 

Non- or under-utilization of residuals and other food processing by-products causes a loss of 

potential revenues and might even be associated with increased cost due to high disposal fees. It has 

been estimated that 11 and 7% of the gross income from beef and pork respectively (United States 

Dept. of Agriculture Economic Research Service), comes from the residuals. However, these 

residuals comprise between 66 and 52 % of the total live weight  (Jayathilakan, Sultana et al. 2012). 

Compared to the above-mentioned utilization of residuals, better profitability is found in applications 

intended for human consumption, biotechnological uses and pharmaceutical applications (Rustad 

2003). However, in order to climb the steps illustrated in Figure 2 there are obstacles to overcome.  

Development and commercialization of the high-value products are complex, expensive and risky 

and beyond the technological obstacles are legislations as well as consumer demands. The 

potentially marketable component present in the by-product must first be extracted from the matrix 

through combinations of biochemical, chemical or physical treatments and further modified into the 

higher value food products or other products. This without introducing microbial hazards and still 
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making sure that the final product follow food regulations and meet consumer preferences. Well-

established and novel extraction technology used to recover biomolecules from by-products have 

recently received much research attention. However, in order to both make the final product 

affordable for the consumer and ensuring economic feasibility production-wise, the operating 

conditions and technology itself must be optimized with regards to the extraction of the desired 

component (Baiano 2014). Adding value to by-products earlier regarded as waste implies a certain 

degree of innovation. Several novel technologies have emerged in food industry recently. Ultrasound 

and microwave have for example been pointed out as the most convenient ones in an economic, 

processing and energy-efficient point of view (Pojić, Mišan et al. 2018). In Europe, the EU has 

developed an elaborated framework governing the use of residuals from fisheries, aquaculture, 

livestock and poultry industries. Type and quality of each material is important to define further use 

in food/feed applications according to the hygiene rules for food of animal origin. Processing must 

thereafter be implemented according to regulations relevant for subsequent utilization, for example 

obeying food hygiene regulations if processing into human consumption (Aspevik, Oterhals et al. 

2017).  

 

The expected increase in the world’s population (to almost 10 billion within 2050) is one of the 

driving forces towards the formulation of sustainable solutions for valorization of food residuals. 

Enhancing the efficiency of food systems, generating less food-waste through redesigning food 

supply chains and introducing innovative and sustainable technology which might both reduce food 

losses and waste and allow for recycling resources are believed to be important (Nations 2017). A 

good prerequisite is that food waste is a reservoir of carbohydrates, proteins, lipids and functional 

foods, i.e. a well-suited raw material for further valorization. Possibilities for valorisation into 

production of biofuels, enzymes, bioactive compounds and other molecules has been reported and is 

illustrated in Figure 3 (Girotto, Alibardi et al. 2015). 
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Figure 3: Possible applications for different types of side streams generated within food production 
(Girotto, Alibardi et al. 2015). 

 

Animal by-products are in general high in protein but is often discarded due to aesthetic reasons (Lai, 

Khong et al. 2017). However most protein fractions might be extracted and used in hydrolysate 

production and further applied as food ingredients (McCarthy, O'Callaghan et al. 2013, Lai, Khong et 

al. 2017). While there are multiple bottlenecks, the potential is high. In fact, the global functional 

food market has been estimated to 168 billion US$ (2010) with USA holding the largest market 

segment followed by Europe and Japan. Functional food is a concept first promoted in 1984 by 

Japanese scientists who investigated relationships between nutrition, sensory satisfaction, 

fortification and modulation of physiological systems. Functional foods could enter every food 

category. Today this term is used to market food fortified with technologically developed ingredients 

(Siro, Kápolna et al. 2008, Grasso, Brunton et al. 2014). 

The fact that consumers to a larger degree couple diet and health might urge them towards foods 

with additional benefits. However, there are different attitudes towards functional foods, new 

products and technology. In Europe there are great variations in consumer perception towards 

functional foods. Denmark often poses negative attitudes towards foods with health claims, while 

Finland and Sweden display more moderate responses. Another important factor regarding 

consumer acceptance is taste. In general, consumers do not offer taste for health benefits. Therefore 

superior tasting functional foods seem as a necessity for any new product (Grasso, Brunton et al. 

2014). Foods fortified with proteins originating from marine by-products, is sometimes associated 
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with perception of bitterness when consumed by humans, making them unfavourable for consumer 

acceptance (Maehashi and Huang 2009). Another important bottleneck associated with consumer 

and market is the price of the product; in fact the large price gap between conventional and 

functional foods has been reported to make them inaccessible to consumers, even though 

consumers seem willing to pay more for functional foods (Grasso, Brunton et al. 2014). In addition, to 

reach the consumer, technology must be mature enough to allow for processing which ensures 

economic viability.   

 

One of the high potential applications of fish waste/by-products is the production of protein 

hydrolysates through enzymatic treatment considering the large volume of proteinaceous waste in 

the form of heads, scales, bones and viscera from the fish processing (Jayathilakan, Sultana et al. 

2012). Poultry residues are often dominated by head, skin, feet and viscera and might also serve as a 

source of protein hydrolysates (Lai, Khong et al. 2017).  The by-products and residuals for example 

associated with fish processing are often used as fertilizer or feed, however these uses are associated 

with low profitability (Rustad 2003).  

 
 

1.1.2  Revalorization of proteins present in the by-products and the advantages of enzymatic 

hydrolysis 
 

Which method or process to be applied for by-product valorization is dependant both on the raw 

material to be treated and the targeted product. A wide variety of methods is available for protein 

extraction from by-products including solvent extraction, supercritical fluid extraction, subcritical 

water extraction, thermal treatments, enzymatic hydrolysis and chemical extraction. Today the most 

relevant methods are either chemical or enzymatical extraction. Chemical methods are usually based 

on extraction with isopropanol or acid/alkaline based (Ghaly, Ramakrishnan et al. 2013). The most 

commonly applied chemical method is based on the extraction with isopropanol. Undesirable issues 

associated with the final product include low solubility or dispersibility in foods and poor 

emulsification properties, which often is desirable in food products. Besides, safety issues related to 

solvent traces in the final product limit its applicability for human consumption. Both acid and 

alkaline methods have been applied to extract proteins from by-products (Kristinsson and Rasco 

2000). The application of acid and alkali are however associated with destruction of certain amino 

acids and racemization, resulting in a significant process loss (Kristinsson and Rasco 2000, Ghaly, 

Ramakrishnan et al. 2013).  
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Enzymatic hydrolysis may be conducted by utilizing either endogenous or exogenous enzymes. The 

use of endogenous enzymes simply relies on enzymes already present in the tissue/material which is 

to be processed. This has the advantage that no commercial enzymes must be added. Disadvantages 

include longer processing times and difficulties with process and product control. The use of 

exogenous enzymes allows higher process and product control (Shahidi, Han et al. 1995). Essentially, 

addition of exogenous enzymes reduces system complexity, which originates from several factors. 

First, the composition of reaction components is usually very diverse as peptide fragments are both 

product and reactant. Second, there is a multiplicity of reaction types, as both parallel and sequential 

peptide bond cleavage occurs. Third, further complexity is achieved by the presence of reaction 

networks. Single components in one network might affect components in different networks both 

through inhibition and promotion of enzymatic reactions (Qi and He 2006). The lower number of 

components and networks influencing and dominating an exogenous enzyme process allows better 

product and process control as opposed to systems dominated by several endogenous enzymes. In 

addition to the mentioned complexities, heterogenicity in the substrate and raw material would 

contribute to difficulties improving the product, especially if the process is continuously operated. 

Heterogenicity in the raw material would not only influence through the substrate content but also 

through content and composition of endogenous enzymes. 

 

Enzymatic hydrolysis of proteins might be applied to improve the physico-chemical, techno-

functional, nutritional properties and bioactivity of the original proteins (Qi and He 2006).  

For human consumption, there are roughly two groups of peptides, based on their properties, which 

may be produced by cleavage of protein peptide bonds yielding shorter peptides. The first group is 

characterized by short-chain peptides with a characteristic amino acid composition and a defined 

molecular size and are desirable for specific formulations. In humans, absorption of di- and tri-

peptides are considered more efficient when compared to free amino acids due to the presence of 

specific transport systems. Some amino acids are also insoluble when in free form (Clemente 2000). 

This group is suitable for nutritional purposes, which for example may be relevant for elderly or 

immunocompromised subpopulations unable to efficiently digest proteins or for infants (Aluko 

2018). The second group of peptides are also short-chain peptides which possess a sequence of 

amino acids which are responsible for a certain biological activity, not enabled when in the native 

protein. Therefore, enzymatic hydrolysis is required to liberate the active peptide sequence from the 

originating protein. These peptides may influence physiological functions and produce health 
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benefits. Among these benefits are reduction in blood pressure and oxidative stress relief. This group 

is known as the bioactive group. While dietary applications are favoured by low molecular weight 

peptides, improvement of techno-functional properties usually requires larger peptides, often 

peptides with more than 20 amino acid residues (Silvestre 1997).  Protein hydrolysates can also 

improve techno-functional properties in foodstuff, to which degree is dependent on how, and if, 

interactions between protein, water and other components in the food matrix occur. Interactions 

between the mentioned components depend on both extrinsic (e.g. temperature, pH and ionic 

strength) and intrinsic (e.g. protein composition, protein chain length, protein rigidity, content of 

charged groups on protein and protein concentration) factors. Among the alterations in techno-

functional properties that arise from protein hydrolysis, solubility, water-holding capacity, gelation 

and coagulation, emulsification, foaming and surface hydrophobicity have been reported (Panyam 

and Kilara 1996). 

 

 

1.1.3  The composition and structure of major proteins present in mechanical deboned 

chicken residual  
 

The protein-rich chicken residue from mechanical deboning (MDCR) has been recognized as a 

valuable enricher in food-applications (Sun, Zhao et al. 2010, Lafarga and Hayes 2014). The residue is 

formed in a process where a ground slurry of chicken meat and bones are placed into a mechanical 

deboner and pressure is applied to separate meat and soft tissue from the remaining fraction which 

is often rich in bone particles, muscle, connective tissue and fat (Kijowski and Niewiarowicz 1985). 

Such residues are reported to contain from 16 to 20% protein where the major fraction is collagen. 

18% of the protein content is reportedly muscle associated proteins, namely sarcoplasmic and 

myofibrillar protein (McCurdy, Jelen et al. 1986). These proteins could be extracted and utilized for 

higher-value applications.  

 

The myofibril is the major organelle in muscle cells. Sarcoplasmic proteins are also present inside the 

muscle cells often as soluble enzymes (Skaara and Regenstein 1990). The basic unit of a myofibril is 

the sarcomere. The sarcomere is a protein structure containing different components which perform 

different functions; however, the overall function is contraction. Actin is the major protein 

component in the thin filament and is anchored to an element called Z-disks and furthermore 

protrude towards the centre of the sarcomere. Myosin is the major component of the thick filament 
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and is connected to an element called the M-line which denoted the mid-point of the sarcomere 

(Kerth 2013). This is illustrated in Figure 4. 

 

 

Figure 4: Illustration of the structure and position of the major myofibrillar components actin (thin 
filament), myosin (thick filament), the Z-disk and the M-line (Stehle, Solzin et al. 2009). 

 

Myosin is the most abundant protein component in muscle tissue (For schematic structure see Figure 

5). Myosin is an oligomer containing two heavy chains, two light chains and two heads. Areas on the 

myosin molecule naturally denoted to movement are reportedly susceptible to proteolytical 

digestion (Marked Swivel and Hinge in Figure 5) (Kerth 2013). 
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Figure 5: Illustration of the various sections of the myosin molecule (Kerth 2013). 

 

In the thick filament, myosin molecules are associated such that the tails are oriented towards each 

other, generating a region with only heavy chains, namely the bare zone. Every thick filament, with 

myosin heads protruding in all surrounding directions, is surrounded by six thin filaments. Myosin 

comprises approximately 45% of the total myofibrillar protein content. There might be slight 

differences in amino acid composition and thereby molecular weights and physio-chemical 

properties between species, but the overall differences are small between different vertebrates. The 

amino acid content found in the myosin rod is consistent with that of an alpha-helical structure. The 

amino acid content of the myosin head is such that a globular structure would be favourable, in 

addition the myosin heads is rich in -SH groups (about 13 in each). There is also indication of a 

hydrophobic site in the globular head fragment of myosin (Skaara and Regenstein 1990). 

While myosin is the main component of the thick filament, the thin filament is composed of both 

structural and regulatory proteins. However, the main thin filament component is the structural 

protein actin. In monomeric form actin takes a globular structure (G-actin). At physiologic ionic 

strength the monomeric actin is assembled into a filamentous structure (F-actin, as illustrated in 

Figure 6). Two F-actin structures generate the basis of the thin filament. Also present in the thin 

filament are two regulatory proteins, namely troponin and tropomyosin (Kerth 2013).  

 

Figure 6: Illustration of F-actin filaments associated with tropomyosin and troponin (Skaara and 
Regenstein 1990). 
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The thin filament is anchored to the Z-disk (Figure 4), while the M-line is associated with the thick 

filament. The thin filaments surround the thick filaments and are arranged in a symmetrical pattern. 

In fact, the M-line connect adjoining thick filaments and the Z-disk connect adjacent sarcomeres 

(Kerth 2013). There are several proteins present in addition to those mentioned. A group of proteins 

not directly responsible for contraction in muscle-cells are the sarcoplasmic proteins, comprising 

about 30-35 % of the total muscle proteins. These proteins are located inside the muscle cell and are 

soluble in water or at low ionic strengths. Specific proteins within this category are oxidative 

enzymes, myoglobin and other heme pigments, enzymes responsible for glycolysis and lysosomal 

enzymes (Owens, Sams et al. 2000). Intermediate proteins are a group of proteins which in general 

run in perpendicular to the length of the muscle fibre sustaining the three-dimensional structure and 

shape of the sarcomere and the myofibril (Kerth 2013).  

Connective tissue, skin and tendon is high in collagen which dominates the protein fraction of 

residuals obtained from mechanical deboned chicken (Engel and Bächinger 2005) (McCurdy, Jelen et 

al. 1986). The tissues associated with a mechanical function often possess collagen type 1. Other 

tissues such as bones and tooth dentin which require higher stiffness also contain, in addition to an 

organic matrix dominated by collagen, an inorganic component (carbonated hydroxyapatite) forming 

a high stiffness composite material. In tendons or cornea collagen is associated with other organic 

materials such as proteoglycans (Fratzl 2008). 

 

Figure 7: An overview of the collagen structure at a molecular, microfibrillar and fibrillar level 
(Canelón and Wallace 2016). 
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The collagen molecule is found at the lowest structural level and is a triple-helical protein chain. The 

individual chains within the molecule display a repeating amino acid sequence of Gly – X – Y, where X 

and Y are frequently proline and hydroxyproline, respectively. The three helices are staggered by one 

amino acid residue relative each other and super coiled along a common axis into the right-handed 

triple helix observed for the collagen molecule. The side-chains of the residues in the X and Y position 

play important roles, one of them due to the fact that they point out of the helix and might interact 

with other components during fibril formation (Engel and Bächinger 2005). These molecules are 

further staggered parallelly into collagen fibrils. 

 

Most collagen found in animals is in insoluble form and of type 1. In fact, collagen type 1 seems to 

have distinct features such as a greater degree of internal crystallinity as well as a wide distribution 

of fibril diameter. How the collagen fibrils are packed seems complex, however the 67 nm staggering 

is often observed. The association between collagen molecules seems driven by hydrophobic and 

electrostatic interaction where a 234 – amino acid residue occurring with pseudo periodicity seems 

to play an important role when collagen molecules are associating. Further stabilization between 

collagen molecules is obtained through cross-linking (Fratzl 2008). 

 

Together with glycoproteins, collagen compose the extracellular matrix which associates with the cell 

wall (sarcolemma) and their role is to keep the cells (e.g. muscle cells) together. This layer of collagen 

is named endomysium. Furthermore, these bundles of muscle fibres surrounded by the endomysium 

are coated with an additional layer of connective tissue namely the perimysium. The resulting 

structure is called a fascicle. Finally, multiple muscle fascicles are encased by the epimysium, forming 

and encapsulating the whole muscle. The epimysium is continuous around the muscle and joins the 

perimysium and the endomysium at the ends, ultimately thickening at junctions with tendons where 

muscle connects (Kerth 2013). The three mentioned layers of collagen allows the muscle to form a 

strong but still elastic structure and determines the solubility traits of the tissue. Unmodified collagen 

fibres tend to be relatively soluble upon heat treatment. Collagen insolubility mainly results from 

stable cross-linkages (Kerth 2013). 
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1.1.4 Motivating the introduction of a pre-treatment before hydrolysing MDCR enzymatically  
 

Poultry residues have been associated with functional and bioactive properties which might facilitate 

addition of value upon for example enzymatic hydrolysis (Brandelli, Sala et al. 2015). More 

specifically, protein hydrolysates obtained from MDCR treated enzymatically have been associated to 

both elevated antioxidative properties and other health promoting effects (Sun, Zhao et al. 2010, 

Lafarga and Hayes 2014). However, even if a raw material has a high content of proteinaceous 

compounds such as collagen and myofibrils, extraction using exogenous proteolytical enzymes could 

be associated with low yields. Enzymatic hydrolysis using exogenous enzymes on the residues from 

mechanically deboned chicken is one example of a low yield process, and similar results are obtained 

from residuals originating from fisheries (Ghaly, Ramakrishnan et al. 2013, OLIVEIRA, FRANZEN et al. 

2015). 

Within other sectors of biorefining, namely those focusing on lignocellulosic biomass, pre-treatment 

of the raw material is applied before enzymatic hydrolysis due to the compact and stable structure of 

the raw material. The overall goals with a pre-treatment of lignocellulosic biomass is to increase the 

access of enzymatic cleavage sites (reduced cellulose crystallinity through H-bond disruption) and 

breakdown the cross-linked matrix (hemicellulose and lignin interactions are dissociated), which 

increases porosity and accessibility of the enzyme and subsequently the hydrolysis yield (Berbel and 

Posadillo 2018). The rationale behind such a pre-treatment might be transferable to food by-

products as higher yields and shorter treatment times would be desirable, e.g. for enzymatic 

hydrolysis of MDCR. However, a thorough understanding of the residual structure and how a specific 

physical, chemical or biological pre-treatment affect the food matrix components is essential in order 

to properly design a well-functioning overall process.   

 

Innovative technologies hold possibilities regarding processing both of foods and food residuals. 

Microwave (MW) treatment allows for a advanced volumetric treatment where the temperature 

might be increased from the inside of the material potentially offering lower temperature gradients 

and a higher efficiency, thus avoiding the deleterious effects associated with thermal degradation of 

food components due to excessive temperatures (Pereira and Vicente 2010). Innovative non-thermal 

technologies, e.g. high-pressure processing (HPP) or ultrasound (US), have the potential to inactivate 

microorganisms without elevating the temperature significantly, thus maintaining high quality food 

characteristics (Pereira and Vicente 2010). These innovative technologies (MW, US and HP) have 

been reported to increase the susceptibility of different proteinaceous substrates upon subsequent 

or during simultaneous enzymatic hydrolysis and could potentially be used to increase extraction 
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yields, alter the product peptide properties and reduce process times when treating mechanically 

deboned chicken residuals (Alemán, Giménez et al. 2011, Ma, Huang et al. 2011, Uluko, Zhang et al. 

2013, Blayo, Vidcoq et al. 2016, Nguyen, Zhang et al. 2016, Bruno, Kudre et al. 2019). 
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1.2 Microwave technology (advanced volumetric heating)  
 

1.2.1 General introduction on microwave technology 

 

Microwaves (MWs) are a part of the electromagnetic spectrum. The wavelength of MWs range from 

3000 m to 1 mm, the corresponding frequency range from 100 kHz to 300 GHz. Today, the general 

acceptance is that MWs causes dielectric heating in biological systems as dielectric material absorbs 

MW energy and the absorbed energy is transformed into heat because of internal resistance towards 

rotation. In addition to this heating effect, there are reports in literature that suggest the existence of 

a non-thermal effect, i.e. effects that cannot be explained by a temperature increase alone. There is 

however some controversy in this regard (Shamis, Croft et al. 2012). 

 

In an electromagnetic wave two components are present, an electric field (Volt/m) and a magnetic 

field (amperes/m). Regarding a workload energy source, the electric field is especially important. An 

electric field originates due to the presence of a charged body and exerts a certain field stress at a 

given point in space. An example of an electrical field is that found between two charged plates in a 

capacitor. The electric field intensity is a vector between the two capacitor plates and is frequently 

drawn as “lines of forces”, as illustrated in Figure 8. These lines represent the path a charged particle 

would like to follow as a result of the force of the electrical field (Meredith 1998). How a material 

behaves when in an electric field is characterized by the material complex permittivity (Chen, Ong et 

al. 2004).  

 

Figure 8: Illustration of how charged particles (green and red circles) are reoriented when affected by 
an external electric field (Kholimatussadiah and Prijo 2018). 
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Capacitors are often used to easily illustrate how electric fields behave. A capacitor consists of two 

metal plates which carry equal but opposite charges and is used to store electrical energy. Today 

they are important components in electric equipment such as radios, clocks, cell phones, etc. When 

the capacitor is charged with for example a battery, one of the plates will acquire a negative charge (-

Q) while the other obtains a positive charge of the same size (+Q). If there was no loss between the 

two plates, they could essentially store this energy forever. But because there in fact is a loss 

between them, the difference in charge will after a certain time diminish. To which degree this 

occurs depends on the material present between the two plates. Thus the capability of the capacitor 

to maintain the difference in charges without loss is expressed in capacitance and is dependent of 

the material placed between the plates (Lillestøl, Hunderi et al. 2006). 

 

In an alternating electric field, the material in the field (between the two plates of the capacitor) 

might be influenced. For example, if the material between the two parallel plates in a capacitor, as 

illustrated in Figure 8, is exposed to an electric field the presence of charged particles, which are not 

free to move within the material may be polarized and shift their orientation back and forth as the 

electric field alternates. This is in fact a current, namely a displacement current, and currents or 

moving electric charges may generate magnetic fields (Meredith 1998). 

 

When microwaves are applied in order to heat a material, the effect is determined by the capability 

of the material to absorb microwave energy and convert it to heat. This is determined by the above 

mentioned complex permittivity or the dielectric properties (Chandrasekaran, Ramanathan et al. 

2013). The dielectric constant might also be referred to as relative permittivity and in such case be 

relative vacuum. The permittivity of free space vacuum is the force between two charged particles 

parted by vacuum. However, if the two charges (e.g. in a capacitor) was to be separated by 

something different than vacuum, for example the residuals from mechanically deboned chicken, the 

force between the charged plates would increase by a factor called the relative permittivity. 

By placing something different than vacuum between two charged plates the force exerted from one 

plate on the other increases, this indicates an increase in relative permittivity. This is due the 

response of the material when present in an electric field. There is in general four mechanisms of 

how a material might be influenced or polarized, and thus alter the force moving from one plate to 

the other in a capacitor. Electronic polarization occurs when electrons are displaced with respect to 

the nucleus, which happens to some degree for all substances. Atomic polarization occurs if atoms 

are moved within molecules or crystals. For molecules that carry a permanent dipole orientation 

polarization might occur. These molecules will try to re-orient themselves in the electromagnetic 
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field. The final mechanism is ionic polarization and is due to the movement of free ions (Ryynänen 

1995). How these four mechanisms are affected by the alternating electric field frequency is 

presented in Figure 9. As displayed, these mechanisms are often associated with different 

frequencies as some are slow and require lower frequencies to dominate, while others are fast and 

prevail at very high frequencies. This said, there is furthermore two general ways a material may 

interact with electric and magnetic fields. Energy might be stored, or it might be dissipated. For 

electric field interaction this is expressed in the complex permittivity where the real part is ascribed 

to the storage effect while the imaginary part, to dissipation. The value of these numbers are closely 

related the four mechanisms mentioned regarding energy storage and dissipation and is included in 

Figure 9 (red line is the loss factor/dissipation factor, blue line is the storage factor) (Chen, Ong et al. 

2004).  

 

 

Figure 9: Overview of the four major mechanisms a material can be influenced through when exposed 
to an alternating electric field and how these mechanisms are affected by varying the frequency of 
the field (Pérez Cesaretti 2012). 

 

In general, the relaxation frequency of the different polarization mechanisms is as follows. Electronic 

polarization involves the movement of the smallest mass and is therefore the fastest to re-obtain its 

regular, random movement as the influence of the electric field ceases. This essentially means that 

the mechanism is obtained even for very high frequencies, however for lower frequencies the overall 

contribution is smaller as a small amount of time is used to influence this polarization. Atomic 

polarization involves the movement of a larger mass and the response in an alternating electric field 

is therefore slower. Thus, at certain high frequencies this mechanism will drop of as there is not 
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enough time for a proper response. Further at lower frequencies orientation polarization dominates, 

which in general has lower relaxation frequencies than atomic polarization and is therefore not 

present at high frequencies. The last and slowest mechanism is ionic polarization and due to inertia 

does this mechanism only contribute to a materials response to an electric field at low frequencies. 

All these mechanisms represent the materials response to an electric field, thus as the frequency 

increases the different mechanisms will decrease and reduce the relative permittivity. However, the 

complex part of permittivity might increase at higher frequencies, this for example at frequencies 

where orientational polarization is exploited maximally (First red peak in Figure 9) (Içier and Baysal 

2004). 

In addition to different polarization mechanisms and frequency, factors such as temperature and 

moisture may affect the dielectric properties of a material. Increasing the temperature will, if the 

frequency applied is lower than the relaxation frequency, cause the loss factor (imaginary part) to 

increase (Içier and Baysal 2004). This is illustrated in Figure 10. However, increasing the temperature 

and thermal disorder in a system reduces the electric ordering of polar molecules, and thus their 

susceptibility to an electric field (Lillestøl, Hunderi et al. 2006).  

Moisture exists in a material in different ways, and this will influence the associated relaxation 

frequency. While free water has a relaxation frequency of about 18 GHz, bound water possess a 

relaxation frequency of 100 MHz (Delgado, Kulisiewicz et al. 2012). 

 

 

Figure 10: Illustration of how the complex permittivity loss factor is affected by elevating the system 
temperature (Delgado, Kulisiewicz et al. 2012).  
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Water in intercellular areas possess dielectric properties like those of free water. Properties of bound 

water on the other hand relate more to those of ice (Delgado, Kulisiewicz et al. 2012).  

 

1.2.2 General on microwave technology and its effect on specific biopolymers 
 

The most applied frequency in food applications is 2.45 GHz and is used in order to generate heat in 

high moisture foods (Osepchuk 2002). At this frequency the photon energy is approximately 0.0016 

eV which is not sufficient to alter chemical bonds (Ma, Tai et al. 2010). As a comparison, the bond 

energy of hydrogen bonds is 0.040 – 0.044 eV (de la Hoz, Diaz-Ortiz et al. 2005). However, heat might 

at some point cause structural changes in biopolymers such as proteins. A protein in its native state is 

folded into a compact and ordered configuration. The overall tertiary and quaternary structures are a 

result of the different secondary structure, which further depends on the primary structure. This final 

structure displays the energetic minimum and thus the most stable confirmation, which is achieved 

through different bonds and interactions such as hydrogen bonds, van der Waals interaction, ionic 

interactions and hydrophobic interactions. Thermal modification is initiated by elevated thermal 

motion which at some point overcome the mentioned intra and intermolecular forces which has 

been stabilizing the protein’s native confirmation. Eventually, as thermal motion increases, all 

protein groups are reorganized, hydrophobic groups are moved from the interior and exposed to the 

polar environment. This unfolding increases with temperature and generally secondary and tertiary 

structures are lost at 80 ℃. At this point a fully unfolded random coil is adopted. In addition, the 

unfolding is no longer reversible, and such irreversibility is achieved due to the disruption of 

disulphide bonds and chemical modification of sidechains. Denaturation is often associated with 

aggregation, and a particularly strong driver toward aggregation is the exposure of hydrophobic 

groups, since hydrophobic interactions offer a state of increased system entropy (Davis and Williams 

1998).  

Even though microwaves do not contain enough energy to directly alter chemical bonds, it is 

assumed that non-thermal effects might occur as polar groups could absorb energy which increase 

the kinetic energy and fluctuations of such segments, further affecting for example protein structures 

(Han, Cai et al. 2018). In fact, studies show that microwave treatment could both promote and 

reduce formation of disulphide bonds and different secondary protein structures (Han, Cai et al. 

2018). Bohr and Bohr (2000) illustrate non-thermal effects induced by microwaves on proteins, and 

attribute this to topological excitations of the proteins. In fact, this is currently a topic of debate in 

enzymatic catalysis and has caught the interest of the communities at the interface between physics 

and biology. Nonlinear excitations including topological excitations and discrete breathers are 
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proposed to have active roles in protein functional dynamics (Piazza and Sanejouand 2008).   

 

 

1.2.3 On the application of microwave as either pre or simultaneous treatment for enzymatic 

hydrolysis of proteinaceous substrates 
 

When considering the application of microwaves as a pre-treatment for subsequent hydrolysis 

several potential beneficial effects should be taken into account: enhanced enzymatic access through 

increased number of cleavage sites (measured through DH), higher concentration of released 

peptides in the final solution (i.e. increased protein concentration) and enhanced properties of the 

peptides with regards to their functionality or bioactivity. As described above, thermal effects are 

bound to influence the protein substrate if certain temperatures are reached, besides non-thermal 

effects. A selection of reported results on application of microwaves as pre-treatment before 

enzymatic hydrolysis is presented in Table 2. 

 

 

The reported changes in protein structure might not only alter the substrate’s susceptibility to 

proteolytic degradation during hydrolysis, but also they might alter the enzymatic activity if 

microwaves are applied during hydrolysis, since the structure of enzymes is closely linked to activity 

(Han, Cai et al. 2018). Coupling microwaves with enzymatic reactions requires high control on 

parameters such as temperature because local hotspot formation might easily denature the enzyme. 

Despite this, significant synergisms could be achieved between enzymes and microwaves (Pauzi, Pz 

et al. 2017). One possibility is that absorption of electromagnetic energy by polarizable domains in 

the protein could induce certain modifications with regards to structure, which could promote 

interaction between enzyme and substrate (Rejasse, Lamare et al. 2007). A selection of reported 

results on the application of microwaves during enzymatic hydrolysis is presented in Table 3. 
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Table 2: Various results obtained when applying MW as a pre-treatment prior to enzymatic hydrolysis 
of different proteinaceous substrates.  

Substrate Enzymes(s) Conditions Results/Conclusions Author(s) 

Milk protein  

concentrate 

Alcalase 

Trypsin 

Neutrase 

Alkaline protease 

Flavourzyme 

Pre-treatment: 

f: 2.45 GHz 

P: 800 W 

T: T < 50 ℃ 

t: 0, 1, 3, 5 min 

Hydrolysis: 

T: Optimal 

pH: Optimal 

t: 180 min 

Control: No pre-treatment 

• DH%: Significant increased for Neutrase, 

alkaline protease, Flavourzyme when MW 

was applied as pre-treatment.  

 

• Protein solubility: Increase toward pre-

treatment time. Similar for all enzymes. 

 

(Uluko, Zhang 

et al. 2013) 

Milk protein  

concentrate 

Pepsin + Trypsin Pre-treatment: 

f: 2.45 GHz 

P: 800 W 

T: T < 90 ℃ 

t: 10 min 

Hydrolysis:  

T: 37 ℃ 

t:2 h + 2 h 

Control: No pre-treatment 

• DH%: Significantly higher than that of 

control. 

  

• DPPH: Higher activity for pre-treated than 

control samples. . 

(Uluko, Zhang 

et al. 2015) 

Fish frame  Alcalase Pre-treatment: 

f: 2.45 GHz 

P: 800 W 

T: 55, 90 ℃ 

t: 2-10 min 

Hydrolysis: 

T: 55 ℃ 

t: 15 min 

Control: No pre-treatment. 

 

• DH%: Pre-treatment at 55 ℃ does not 

influence DH with increasing treatment time. 

Pre-treatment at 90 ℃ increases DH with 

increasing treatment time.  

 

• Protein solubility: Pre-treatment at 55℃ 

do not influence solubility with increasing 

treatment time. Pre-treatment at 90℃ 

reduces solubility with increasing treatment 

time. 

 

(Ketnawa and 

Liceaga 2017) 

Sweet 

potato 

protein 

powder 

Pepsin 

Pancreatin 

Pre-treatment: 

f: n/g 

P: 700 W 

T: n/g 

t: 2 min 

Hydrolysis: 

T: 37 ℃ 

t: 1, 2 h  

Control: No pre-treatment. 

• DH%: Microwave treatment significantly 

increased DH compared to the control. 

 

• Peptide weight distribution: Lower 

quantity of large peptides (> 10 kDa) 

compared to the control.  

Higher quantity of small peptides (3-10 kDa) 

compared to control. 

 

(Zhang, Huang 

et al. 2019) 

Abbreviations and units 

f: Frequency [GHz], P: Power [W], T: Temperature [℃], t: time [min] [h], n/g: Not specified 
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Table 3: Various results obtained when applying MW simultaneously as enzymatic hydrolysis of 
different proteinaceous substrates. 

Substrate Enzymes(s) Conditions Results Author(s) 

β-lactoglobulin Pronase 

α-chymotrypsin  

MW-assisted:  

P: 15, 30 W 

f: 2.45 GHz 

T: 40 ℃ 

t: 20, 30 min 

Control: 

Conventional 

heating 

• DH%: Pronase: No effect compared to the control.  

• DH%: α-chymotrypsin: Significantly lower than the 

control. 

 

 

(Izquierdo, Alli 

et al. 2005) 

Bovine serum 

albumin 

Cytochrome c 

β-casein 

Trypsin MW-assisted: 

P: 850 W 

f: 2.45 GHz 

T: 37, 50 ℃ 

t: 1, 3, 5,10, 30 min 

and 2, 16 h 

Control: 

Conventional 

heating 

• Rate of proteolysis: MW-assisted tryptic digestion 

of BSA, cytochrome c, β-casein proceeds at virtually 

identical rates as observed when applying conventional 

heating.  

(Damm, 

Nusshold et al. 

2012) 

Lobster shell 

 

Alcalase MW-assisted: 

P: 40 W 

f:  n/g 

T: 55 ℃ 

t: 30, 60, 90 min  

Control: 

Conventional 

heating 

• Rate of protein solubilisation: Amount of protein 

solubilized from the solid lobster shell significantly 

increased when MWs were applied as compared to 

conventional heating. 

(Mazinani and 

Yan 2016) 

(Nguyen, Zhang 

et al. 2016) 

Fish frame Alcalase MW-assisted: 

P: 20% power with 

50% duty cycle at 

1200 W 

f:  n/g 

T: 50-55 ℃ 

t:  3, 5, 15min  

Control: 

Conventional 

heating 

• DH%: MW-assisted hydrolysis significantly increased 

DH% as compared to the control. 

 

• Protein solubility: Certain conditions did not display 

changes while other indicated reduction/enhancement 

when microwave was applied during hydrolysis. 

 

• Surface hydrophobicity: Significantly lower or equal 

when MW was applied as compared to the control. 

 

• Foaming and emulsifying properties: In general, 

significantly higher for hydrolysates obtained from 

microwave-assisted hydrolysis. 

(Nguyen, Jones 

et al. 2017) 

Abbreviations and units 

f: Frequency [GHz], P: Power [W], T: Temperature [℃], t: time [min] [h], n/g: Not specified 
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Whether microwaves promote enzymatic activity by applying it as a pre-treatment on the substrate 

or simultaneously appears to be dependent on the enzyme and substrate. However, these could be 

due to temperature variances at the microscopic level affecting both enzyme and substrate. 

Furthermore, MW pre-treatment on residuals obtained from mechanically deboned chicken residuals 

might influence other components present in the raw material than proteins. The organized 

biomatrix could influence the effect of MW as a pre-treatment before enzymatic hydrolysis. 

Raghavan and Kristinsson (2014) reviewed the effect of microwave on lipids and it seems MWs could 

induce lipid oxidation. Moreover, some results indicate that there might be compounds such as 

antioxidants present in the biological system which could reduce this effect. MW has been reported 

as beneficial in processing of fish, meat and foods due to the high response of free water. However, 

reports on the effect of microwaves on meat, fish, minced meat or other high protein food products 

prior to enzymatic hydrolysis are scarce, as most treatments are conducted with isolated protein 

components in dilute suspensions.   

 

1.2.4 The choice of MW process conditions for the treatment of MDCR prior to enzymatic 

hydrolysis 
 

By-products such as mechanically deboned chicken residuals contain large amounts of proteins. This 

protein fraction is further dominated by collagen, although they also contain smaller amounts of 

muscle tissue mainly comprised of myofibrils and sarcoplasmic proteins. Applying microwaves to pre-

treat this type of material could pose processing similarities to cooking (aggregate formation through 

cross-linking, hydrophobic interactions, etc.) due to the thermal effect, which has been associated 

with reduced proteolytic digestion (Gatellier and Santé-Lhoutellier 2009). Uluko, Zhang et al. (2013) 

reported that pre-treatments on milk protein concentrate with short MW treatments (1, 3 and 5 min, 

T < 50 ℃) increased both protein solubility and DH% when treatment time increased. Meanwhile, 

thermal treatment of milk proteins at 65 ℃ has been show to only cause minor denaturation for 

treatment times ranging between 10 and 30 min (Qian, Sun et al. 2017). This indicates that slight 

unfolding of proteins could be beneficial when proteins are targeted for subsequent proteolytic 

degradation. Important to note is that concentrations would probably influence the results as high 

protein concentrations would easily facilitate protein interactions and aggregate formation.  

 

In muscle tissue phenomena such as granulation and gel formations occur at certain temperatures, 
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which are closely associated to structural alterations of the different protein components. Kijowski 

and Mast (1988) investigated at which temperatures protein denaturation occurred in chicken breast 

and thigh muscles. Five transition temperatures were observed at 57 ℃, 63 ℃, 67 ℃, 73 ℃ and 78 ℃ 

and found to correspond to the denaturation of myosin, sarcoplasmic proteins, collagen and F-actin. 

Denaturation of myosin is often associated with several temperature peaks due to complex 

denaturation, this is also the case for collagen, which often displays broader temperature ranges for 

transition due to differences in tissues such as endomysium, perimysium and epimysium (Bernal and 

Stanley 1986). Murphy and Marks (2000) investigated the effect of heat on minced chicken breast 

properties such as protein solubility and molecular size distribution. While overall protein solubility 

decreased as temperature increased between 40 and 80℃ the presence of low-molecular weight 

species increased when the 40 ℃ treatment was conducted. The presence of low-molecular species 

disappeared at 50 ℃. Investigations conducted by Chang, Wang et al. (2011) on beef semitendinosus 

muscle with conventional heat treatment and microwaves found that granulation seemed to occur 

first at 50 ℃ and increased upon higher temperatures. Granulation is thought to be a result of both 

collagen shrinkage and myofibrillar denaturation. No granulation was observed at 40 ℃.  Granulation 

and gel formation is regarded as non-favourable for a subsequent hydrolysis. The work done by 

Zhang and Barbut (2005) gives an indication of the temperature at which gel formation starts in 

chicken breast meat. The elastic modulus of the different chicken meats did not change much until a 

temperature of 48 ℃ was achieved. However, between 48 and 55 ℃ a rapid increase occurred. This 

increase is explained by the denaturation of proteins resulting in the onset of structure formation, 

which results in the highest storage modulus obtained by heating seen at a temperature of 75 ℃. 

Upon subsequent cooling the storage modulus continues to increase due to the formation of 

hydrogen bonds. 

 

Thus, the pre-treatment of proteinaceous materials rich in collagen and muscle tissue should 

preferable avoid effects such as granulation and gel formation, which is reported at temperatures 

close to 50 ℃. In fact, the presence of low-molecular weight species at 40 ℃, possibly originating 

from myosin dissociation, could display beneficial characteristics such as increased cleavage sites, if 

enzymatic accessibility is sufficient. As for treatment time is 1, 5 and 10 min chosen for further 

investigation in the present work and are based on the parameters applied by Bruno, Kudre et al. 

(2019). 
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1.3 Ultrasound technology 
 

1.3.1 General introduction on ultrasound technology 
 

Ultrasound (US) refers to mechanical waves at frequencies above those which humans can hear. 

Depending on the frequency, US may be divided into three categories; Power US (16-100 kHz), high 

frequency US (0.1-1 MHz) and diagnostic US (1-10 MHz) (Zhang, Wang et al. 2018). 

The types of mechanical waves which might occur in gasses, liquids and solids are either longitudinal 

or shear waves. In longitudinal waves the particles move back and forth parallel to the wave. In shear 

waves, the particles move at right angles to the direction of the wave propagation, i.e. up and down 

if the wave propagates in the horizontal direction. While longitudinal waves frequently occur in soft 

tissue, shear waves often occur in hard tissues such as bone (O’Brien Jr 2007). 

 

 
Figure 11: Illustration of the particle movement association with longitudinal waves (top)  and shear 
waves (bottom)  (O’Brien Jr 2007). 

 

Neither longitudinal nor shear waves produce any net flow of the medium. The particles are simply 

displaced for a certain amount of time, before returning to their original position only to be displaced 

again. The speed of the particles is higher in the areas where there is no displacement and close to 

zero in the regions with the most pronounced displacement (negative or positive maxima). The 

movement of particles in soft tissues form areas where particles concentrate and areas less 

concentrated, also known as areas of compression (high pressure) and rarefaction (low pressure), 

respectively. For simple linear waves, the acoustic pressure (rarefaction and compression areas) and 

the particle velocity are in phase (Leighton 2007). In real waves protruding through for example soft 

tissue different factors will cause small or large deviations to the mentioned in-phase relationship.  

 

Ultrasound applied in water and soft tissues causes different effects but the most reported one is 

acoustically generated cavitation. When ultrasonical waves propagate through the tissue, a 
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mechanical strain can be generated. If this strain is significant around gas or vapor bubbles present in 

the medium, then cavitation can occur (Leighton 2007). The overall effect ultrasound poses on gas or 

vapor bubbles may be sorted into two categories; Inertial cavitation and non-inertial cavitation. The 

non-inertial cavitation is associated to a process where low energy effects occur (e.g. microstreaming 

due to water streaming close to an oscillating gas bubble). Inertial cavitation is associated to high-

energy effects such as the formation of free radicals and shock waves. In order to generate inertial 

cavitation, the vapor or gas bubble must undergo a violent collapse. Whether this can occur or not 

depends on multiple factors, but it can be illustrated through the two main forces acting on the 

bubble, namely bubble stiffness and inertial forces. 

As a volume of gas or vapor is compressed there will be forces, for convenience called bubble 

stiffness, acting and resisting the deformation. This resistance will in fact tend the bubble to expand. 

The potential energy associated with the highly compressed state will, as the bubble expands, be 

converted to kinetic energy which acts on the surrounding water and pushes it away. Because there 

is a certain delay (inertia) in the response from the surrounding liquid, the bubble can expand over its 

equilibrium radius. Eventually, the slightly compressed surroundings will start once again to 

compress the vapor or gas bubble (Crum 1984). When an acoustic field is applied on vapor or gas 

bubbles, in addition to the previously mentioned forces (inertial force from surrounding liquid and 

stiffness from the gas incompressibility), an acoustic pressure function is present. If the dynamics of 

the bubble collapse is dominated by the force from the acoustic pressure field, inertial cavitation 

occur. One might visualize this by realizing that the bubble needs to reach a certain size during 

expansion before collapsing fast enough to get ahead of the stiffness working against the bubble 

compression. While the surrounding water does not offer a quick enough compression, the 

assistance from an acoustic sound field might (Leighton 2007). The frequency of the acoustic field 

will also affect which bubble diameters are able to undergo inertial cavitation. There is a critical size 

range of bubble radii, which increases with increasing acoustic pressure amplitude and decreasing 

frequency, which will undergo inertial cavitation. Bubbles outside this critical range will tend to not 

undergo inertial cavitation (Leighton 2007). This is illustrated in Figure 12. 
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Figure 12: The relationship between acoustic pressure, initial bubble radius and how US frequency 
affects the threshold for inertial cavitation. Above the frequency curves inertial cavitation is favoured 
in water with a certain content of bubbles (Apfel and Holland 1991). 

 

The overall cavitation activity (both inertial and non-inertial effects) depends on the size and number 

of bubbles present, power applied and frequency. Increasing both power and frequency seem to 

increase inertial cavitation. However, this effect seems to be observed only up to a certain point at 

which inertial cavitation stops (Hatanaka, Yasui et al. 2001, Lee, Yasui et al. 2018). Another important 

factor is that the initial amount and changes in gas content causes completely different cavitational 

effects (Sutkar and Gogate 2009). Furthermore, increasing power does not cause a linear increase in 

acoustic pressure (indicator on inertial cavitation), which may be attributed to two factors. First, a 

greater fraction of applied energy is transferred into higher frequency components as power 

increases. Acoustic signals in the MHz range are for example produced from a low kHz fundamental 

in strongly cavitational environments, with less inertial cavitation induced at higher frequencies (in 

general). Second, the acoustic pressure may be shielded by bubble clouds (very high inertial 

cavitation effect within small volumes) and therefore only extend a very short distance from the 

transducing surface (Hodnett, Choi et al. 2007). The region of shielding seem to extend with 

increasing power setting (Hodnett and Zeqiri 2008). 

 

1.3.2 General on US technology and its effect on specific biopolymers 
 

Different effects are reported when ultrasound is applied to biological materials. Yu, Zeng et al. 

(2016) reported the reduction in gelatine particle size followed by enhanced enzymatic hydrolysis, 

which was attributed to the physical effects of ultrasound (not radicals). However, Yang, Li et al. 

(2017) found protein solubility and subsequent hydrolysis to be enhanced when defatted wheat 
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germ protein was treated with ultrasound. These effects in addition to protein loosening and 

unfolding was attributed to sonochemical effects and thus, to the presence of H2O2 and free radicals. 

Disruption of disulphide and hydrogen bonds are also reported and might cause matrix expansion, 

thus facilitating subsequent enzymatic hydrolysis (Zhang, Ma et al. 2015).  Another effect associated 

to ultrasound is the direct scission of polymer chains, however chain rupture has been reported and 

seem to favour polymers with high molecular weight in suspension (Pu, Zou et al. 2017). While 

proteins and carbohydrates have frequently been studied, the studies on the effects of ultrasound on 

lipids are scarce. However, many of the factors known to affect lipid degradation are also present 

during ultrasound processing such as high temperatures, light and free radicals (Pingret, Fabiano-

Tixier et al. 2013). 

 

1.3.3 On the application of ultrasound as either pre or simultaneous treatment for enzymatic 

hydrolysis of proteinaceous substrates 

 
US can as already indicated be beneficial when applied as a pre-treatment followed by enzymatic 

hydrolysis. Effects apart from those already mentioned are reduction of aggregates, pore formation 

and removal of indigestible outer-layer tissues (Wang, Yan et al. 2018). Increased number of cleavage 

sites and enzyme accessibility have been reported. A short summary of reports on the application of 

US as a pre-treatment to enzymatic hydrolysis is presented in Table 4. 

Most enzymes are proteins, and as seen US might alter protein conformation. Enzymatic activity 

often depends heavily on the configuration of the active site; thus, the activity of an enzyme might 

be affected by US. However, there seems to be no general link between structural changes and the 

specific US treatment. Further, while it is believed that effects associated with inertial cavitation alter 

protein conformation, expose enzymatic active sites and unfold the polypeptide chain, which might 

enhance interaction between enzyme and substrate, there is not any specific US effect linked to the 

different protein conformation changes. However, US is able to alter the enzymatic activity as 

different effects affect different enzymes with high specificity. Ma, Wang et al. (2015) investigated 

the use of US on the activity of polygalacturonase and discovered that a certain treatment enhanced 

the activity. This might be a result of shear forces, heat or free radicals formed from the collapsing 

bubble and further affecting the enzyme structure and activity. The effect seen on the enzyme was 

irreversible (Ma, Wang et al. 2015). However, Jadhav and Gogate (2014) reported, when 

investigating the activity of a lipase treated with ultrasound, a two-fold activity increase followed by 

a steady decrease after 60 min, thus displaying reversibility. A selection of results reported in 

literature on the simultaneous effect of US on different proteases and substrates is presented in 

Table 5. 
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Table 4: Various results obtained when US is applied as a pre-treatment before enzymatic hydrolysis 
of various proteinaceous substrates.  

Substrate Enzymes(s) Conditions Results Author(s) 

Tilapia 

muscle 

Flavourzyme Pre-treatment:  

f: 20 kHz 

P: 10, 70 W 

t: 15, 30, 45 min 

T: 55 ℃ 

Hydrolysis:  

t: 60 min 

T: 55 ℃ 

Control: Untreated sample 

• DH%: Pre-treatment with US reduced DH% 

as compared to the control.  

 

• DPPH: Lowest for the control. Higher when 

US was applied as pre-treatment. 

 

 

(Kangsanant, 

Murkovic et al. 

2014) 

Fish head Protamex Pre-treatment:  

f: 20 kHz 

P: 750 W 

T: n/g 

t: 5, 10, 15 min 

A: 40% 

Hydrolysis:  

T: 55 ℃ 

t: 2 h 

Control:  Untreated sample 

• DH%: In general, US enhanced DH% as 

compared to the control.  

  

• Protein extraction/protein solubility: 

Increased with US treatment time and was 

higher than that of the control for all 

treatment times. 

 

(Bruno, Kudre 

et al. 2019) 

Rice protein Alcalase Pre-treatment:  

f: 20, 28, 35, 40, 50,60 kHz 

P: 300 W per generator 

T: 30 ℃ 

t: n/g 

Hydrolysis:  

T: 50 ℃ 

t: 1 h 

Control:  Untreated sample 

• Protein solubility: Ultrasound significantly 

improved peptide concentration in the 

hydrolysate as compared to that of the 

control.  

 

• Multiple simultaneous frequencies: 

Multiple frequencies applied simultaneously 

seemed to offer a slight additional 

enhancement in peptide solubilisation.  

(Yang, Li et al. 

2017) 

Potato 

protein 

Alcalase Pre-treatment:  

f:  20/40 kHz 

P: 250 W/L 

T: 25 ℃ 

t: 10 min 

Hydrolysis:  

T: 30, 40, 50, 60 ℃ 

t: 2 h 

Control:  Untreated sample 

• Reaction rate constant during hydrolysis: 

Significantly higher for all temperatures when 

US was applied as a pre-treatment as 

compared to that of the control.  

(Cheng, Liu et 

al. 2017) 

Abbreviations and units 

f: Frequency [kHz], P: Power [W] or volumetric power [W/L], T: Temperature [℃], t: time [min] [h], 

n/g: Not specified. 
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Table 5: Various results obtained when US is applied during enzymatic hydrolysis of different 
proteinaceous substrates.  

Substrate Enzymes(s) Conditions Results Author(s) 

Tilapia muscle 

protein 

Flavourzyme US-assisted: 

P: 10, 70 W 

f: n/g 

T:55 ℃ 

t:  60 min  

Control: 

Conventional 

heating during 

hydrolysis 

• DH%: US-assisted hydrolysis reduced DH%. 

Enzyme exposure to US alone only caused a 6% 

reduction in enzyme activity.  

 

• Possible gelation: The substrate treated with 

US appeared more viscous than the control.  

The temperature during the treatment could 

have induced substrate network-formation. 

(Kangsanant, 

Murkovic et al. 

2014) 

Rice protein α-amylase US-assisted: 

P: n/g 

f: 20, 28, 35, 40, 50 

kHz 

T: 50 ℃ 

t:  3 h  

Control: 

Conventional 

heating during 

hydrolysis 

• Protein concentration: US-assisted hydrolysis 

significantly enhanced the protein extraction 

rate for all frequencies compared to that of the 

control. 

 

• Frequencies: For protein extraction it seems 

beneficial to apply low frequencies (20 or 35 kHz 

instead of 40 or 50 kHz for instance). Application 

of dual frequency modes seems to offer 

enhanced extraction rates compares to single 

modes.  

 

• Surface hydrophobicity: Ultrasound 

enhances surface protein hydrophobicity. 

(Yang, Li et al. 

2018) 

Abbreviations and units 

f: Frequency [kHz], P: Power [W], T: Temperature [℃], t: time [min] [h], n/g: Not specified. 
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1.3.4 The choice of US process conditions for the treatment of MDCR prior to enzymatic 

hydrolysis 
 

Applying an ultrasound treatment on residuals from mechanically deboned chicken residuals will not 

only differ from the literature presented in Table 4 and Table 5 due to other biomolecules being 

present, but also due to the organized biomatrix, which could influence the effect of ultrasound as a 

pre-treatment before enzymatic hydrolysis. Similarly to other proteinaceous substrates treated with 

US general trends are scarce. Kang, Gao et al. (2017) investigated alterations in water holding 

capacity, tenderness, water distribution and myofibril denaturation during brining of solid beef 

assisted by US. While the brine itself caused some denaturation, both water holding capacity and 

myofibril denaturation increased for a US treatment of 30 min in combination with power above a 

certain level. Even though myofibrillar fragmentation increased, myosin oligomer formation 

generated through S-S bond formation also occurred. While S-S bond formation and associated 

aggregation would probably restrict a subsequent hydrolysis, increased water holding capacity and 

myofibrillar fragmentation would possibly benefit a subsequent hydrolysis. The combination of 

smaller particles of substrate (increased fragmentation of myofibrils) and more water present would 

lead to better accessibility for the proteolytic enzymes, which depends on the substrate access in the 

liquid phase. Increased water holding capacity could also indicate protein denaturation, which 

promotes water-protein interaction and thus increased protein solubility and extraction yield.  

 

The results of Kang, Gao et al. (2017) refer to inertial cavitational effects, as also commonly reported 

for suspensions or solids treated with US. Non inertial cavitational effects are far milder than those 

associated to inertial cavitation and are believed to promote effects such as mass-transfer through 

for example microstreaming. According to Leighton (2007), the energy associated to the hotspot 

generated by inertial cavitation is not important for the effect seen by US, as the associated energy is 

very low. The remaining main effects are radical formations and the shockwave or rebound pulse, as 

well as the effect associated to non-inertial cavitation such as microstreaming. Another mild effect 

associated with cavitation is micro jets. Bubbles associated with solid surfaces often collapse 

asymmetrically where a liquid jet protrude through the collapsing bubble and onto the solid surface 

where a corroding effect occur. This is often called micro jets and is a mild effect.  

 

The hot-spot formed during inertial cavitation might form the basis for thermal decomposition of 

water and can cause formation of hydroxyl radicals, hydrogen anions and hydrogen peroxides 

(Rehman, Jawaid et al. 2016). Previous investigations on myofibrils have displayed result indicating 

both enhanced and reduced proteolytic digestibility when exposed to oxidation and hydroxyl radicals 
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(Grune, Jung et al. 2004, Morzel, Gatellier et al. 2006). Suzuki, Kaneko et al. (1991) investigated the 

effect of hydrogen peroxide on myofibrils. The results suggested that oxygen free radicals may work 

by oxidation of SH groups, however it was emphasised that other oxygen radical effects such as 

protein-protein crosslinking and protein chain scission still could occur. When treating porcine 

muscle myofibrillar protein Park, Xiong et al. (2007) found protein unfolding and reduction of myosin 

heavy chain to occur. The effect was more pronounced with increasing hydrogen peroxide 

concentration.  

Collagen exposed to radical generating systems can induce damage to the material, resulting in 

fragmentation and higher susceptibility for enzymatic degradation (Hawkins and Davies 1997). Liu, 

Jiang et al. (2014) investigated the effect of treating tilapia skin collagen type 1 with hydrogen 

peroxide. The results showed that strength and resistance of collagen decreased exponentially with 

heating time (53 ℃). First the ordered structure of collagen and its crystallinity was reduced, 

destroying bundle structures. Further fibre bundles were loosened and microfibres exposed and 

dissociated (Liu, Jiang et al. 2014). Collagen has also been found to be susceptible to fragmentation 

by superoxide anion. Seemingly, hydroxyl radicals in the presence of oxygen, cleave collagen into 

smaller peptides. Hydroxyl radicals in absence of oxygen however trigger polymerization of collagen 

through cross-link formation (Monboisse and Borel 1992).  

Water radicals seem to offer varying results. However, the effect from radicals originating from water 

could potentially explain the myofibrillar fragmentation and enhanced water holding capacity 

observed by Kang, Gao et al. (2017) which was mentioned in the beginning of this section. 

 

Another inertial-cavitational effect that could be responsible for the effect described by Kang, Gao et 

al. (2017) is the shock-wave associated to the collapsing bubble, which is generated subsequently the 

implosion. Biological tissue is acoustically inhomogeneous, which causes wave refraction and 

scattering, resulting in highly variable movement in the material. Shock-wave technology has been 

applied in meat tenderization treatment (Bolumar and Toepfl 2016). Shock-waves travel fast through 

fluids that resemble water, and as most meats contain about 75% water, pressure waves travel 

through meat, and at places where there are differences in acoustic impedance energy momentum is 

transferred so that muscle structure may be teared. A shock wave is much like sound waves which 

travel through a medium with oscillating positive acoustic pressure followed by a negative pressure 

region. However, a shock wave is primarily a single front wave with very high-pressure, followed by a 

negative pressure. The negative pressure is usually not as significant as the high-pressure 

component. The pressure difference still being large offers a significant effect. This has been 

reported to significantly increase tenderness of beef, fragment myofibrils, increase intermyofibrillar 

spaces, increase protein solubility as well as increase brine absorption of turkey breast (Bolumar and 
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Toepfl 2016). Meat treated with shockwaves seems to fragment myofibrils through physical tearing 

close and parallel to the Z-line (Figure 4). The endomysial space also seems to be increased by shock-

wave treatment, likely due to disruption of collagen fibril network. Thus, shock waves seem to 

tenderize through both disrupting myofibrils and collagen (Bolumar and Toepfl 2016). Also the effect 

of shock waves seems to potentially be responsible for the effects seen by Kang, Gao et al. (2017), as 

myofibril fragmentation, tenderness, increase in protein solubility and in brine absorption have been 

reported and overlap with the effects mentioned. However, the effect of shock-waves and water 

radicals are based on sufficient inertial cavitation, and in solid food this might not be the case. 

 

Duerkop, Berger et al. (2018) demonstrates the importance of vapor bubbles close to proteins in 

liquid phase by increasing the protein concentration, and at some point, the vapor/liquid interphase 

seemed to get saturated with proteins. As the bubbles collapsed inertially, protein aggregation 

reached a limit upon a certain protein concentration. Similar effects on cell lysis induced by inertial 

cavitation are reported by Miller, Miller et al. (1996). Neither formation of radicals nor mechanical 

shear seem to influence significantly aggregation. Proteins present at the surface of an oscillating 

bubble are forced, as this bubble collapses, inward towards the centre where high temperatures and 

pressure are formed. It would seem obvious that these proteins would denature and possibly 

entangle and forming aggregates. This would also explain why no more aggregation occurs when 

there is no more bubble surface for the proteins to occupy. Results suggest that close approximation 

to the collapsing bubble is important for the protein alteration. Inertial cavitation in materials such as 

soft tissue has been investigated both with regard to frequency and acoustic pressure threshold 

(Vlaisavljevich, Lin et al. 2015). Interestingly, the threshold seems to be independent of material 

stiffness but decreases with decreasing frequencies, which is in line with the trend shown in Figure 

12. However, even though the threshold is lowered by decreasing frequencies, the acoustic threshold 

in tissues such as tendon, liver and tongue is close to that of degassed water (15% O2). In order to 

generate inertial cavitation in the mentioned soft tissues approximately three times the acoustic 

pressure needed in gas saturated water is required (Vlaisavljevich, Lin et al. 2015. This might relate to 

the general low gas nucleation in biological tissues, thus high acoustic pressures are required to 

initiate inertial cavitation. However, tissues such as lungs are often high in gas nuclei and inertial 

cavitation are observed at lower acoustic pressures. Another factor which could explain the elevated 

acoustic pressures required in tissue is the restricted movement offered to the bubbles (Miller, Miller 

et al. 1996). 

 

The effects associated with inertial cavitation could explain the results of Kang, Gao et al. (2017). 

However, a low amount of pre-existing bubbles, which require very high acoustic pressures, in 
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addition to the importance of close association to the collapsing bubble might be proof that inertial 

cavitation is not accountable for the observed effect. An interesting result mentioned by Miller 

(1985) is that individual pressure-pulses and their associated induced strain seem to accumulate 

during multiple pulse exposures, causing a gradual fatigue. Frenkel, Kimmel et al. (2000) reported on 

intercellular space widening as an effect that neither seems thermally induced, nor due to inertial 

cavitation. It is suggested that the formation of transverse shear waves is most likely responsible for 

the space increase between cells. The mechanism might be illustrated by cells forced into each other 

before being pulled apart by the different wave characteristics. Hancock, Smith et al. (2009) treated 

mice calf muscle with ultrasound and investigated, among other things, the structure of fibre bundles 

and the reversibility of the changes. Samples treated displayed enlarged gaps between the muscle 

fibres compared to the control. The gaps were reversible after 72 h. Disrupted connective tissue was 

observed between the gaps in addition to disrupted capillaries. This research might further suggest 

non cavitational mechanisms being responsible for the results obtained by Kang, Gao et al. (2017). 

 

While the exact mechanism behind the results reported by Kang, Gao et al. (2017) remains uncertain, 

the results seem interesting with regards to a subsequent hydrolysis. Several works where raw 

materials with characteristics like those of MDC residuals were treated with ultrasound will be 

evaluated. Most research articles focus on brining of meat products and thus, the results are 

influenced by a high ionic strength. The effect of salt is mentioned by Kang, Zou et al. (2016), it seems 

to function by reducing the repulsion between myofibrillar molecules, allowing molecular relaxation 

and increasing the free sulfhydryl content and dissolution. Not all proteins are stabilized by salt-ions 

as the ions compete with water molecules in charged-group bonding and thereby might decrease 

solubility as ionic strength is increased. The salt might, at least partly, explain the increased protein 

solubility reported by Kang, Gao et al. (2017). Kang, Zou et al. (2016) report that when treating beef 

longissimus dorsi with ultrasound, the total sulfhydryl content decreased, which was further 

accompanied by a reduction in myosin heavy chain content and formation of high molecular weight 

aggregates. This seemed to occur for most power settings with increasing treatment time, however 

the reduction was not significant for a treatment time of 30 min. The loss of total sulfhydryl content 

could possibly be favoured by increased ionic strength. Surface hydrophobicity increased for all 

treatment times and power applied. This might be beneficial for subsequent hydrolysis as it indicates 

protein denaturation but might be exaggerated by the elevated ionic strength. Work done by Wang, 

Kang et al. (2018) where m. semitendinosus were treated with US (20 kHz, 5 ℃, 20 and 40 min, 25 

W/cm2) accelerated degradation upon subsequent storage. This was attributed to better access for 

endogenous enzymes. The results upon storage indicated increased degradation of the proteins 

desmin and troponin-T. Desmin is an important protein responsible for extending between Z-disks in 
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adjacent sarcomeres. Troponin is present in the thin filaments together with actin. Regarding 

collagen in association with beef, there are reports on the formation of US induced staggering and 

structural disordering which is further associated with a loose arrangement (40 kHz, 1500 W, 20 ℃, 

10-60 min). The particle size reached a minimum after 20 min of treatment and increased slightly 

upon further processing (Chang, Xu et al. 2012). 

 

Based on presented literature which report on desirable US effects on raw materials similar to 

MDCR, it would seem preferable to choose a treatment time between 20 and 40 min. Therefore, a 

treatment time of 30 min is chosen for the US trials in the present work. Furthermore, to avoid the 

thermal effects (gel formation and granulation) mentioned during the discussion of MW pre-

treatment conditions (Section 1.2.4), temperatures higher than 30 ℃ should be avoided to ensure 

minimal intervention. Independently on which mechanism dominates and dictates the effect of a US 

treatment, a variation in power settings seems to be favourable. This ensures that an effect would be 

observable at lower power settings if, for example, higher power settings avoid the associated US 

effect through, for example, bubble shielding. Also, the power setting is highly variable between 

various US systems and therefore a high degree of uncertainty is associated with adapting power 

settings applied in trials employing different equipment. 
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1.4 High-pressure processing technology 
 

1.4.1 General introduction on high-pressure processing technology  
 

High-pressure processing (HPP) relies on a liquid medium to transmit pressure to the sample. The 

pressure acts uniformly throughout the mass and is not dependent on size, shape or composition 

(Khan, Ahmad et al. 2017). This is illustrated in Figure 13. A multitude of changes occur in systems at 

elevated pressures, e.g. changes in boiling point, melting point, density, viscosity, solubility, 

conductivity and the dielectric constant. In addition, effects such as changes in secondary and/or 

tertiary and/or quaternary structures in large complex compounds are reported (Zhang, Wang et al. 

2018). 

 

 

Figure 13: The application of HPP on a system and how the functioning forces affect a material is 
illustrated  (Khan, Ahmad et al. 2017). 

 

1.4.2 General on high-pressure processing and its effect on specific biopolymers  

 
Two principles are often used to explain the effect elevated pressure has on e.g. alteration of protein 

structures. However, in complex systems such as biomatrices where equilibrium seldomly is reached 

is the first principle, Le Châteliers principle, less applicable than the second, the transition state 

theory (Martinez-Monteagudo and Saldaña 2014). The second principle states that if the molar 

volume of the intermediate species is different than the molar volume of the reactive species, the 

reaction velocity can increase or decrease by increased pressure. Thus, if the intermediate or product 
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species is less voluminous compared to the initial species, the reaction rate will increase upon 

elevated pressure. The opposite would be the case if the reactant was less voluminous. Elevated 

pressure will in other words benefit reactions with overall negative reaction volume and negative 

activation volume (Martinez-Monteagudo and Saldaña 2014). 

 

Most literature consider the activation volume as an indicator on whether a reaction is promoted or 

inhibited by pressure and is mainly composed of two types of interactions (Martinez-Monteagudo 

and Saldaña 2014). The first type of interactions causing a basis for volumetric changes is molecular 

reorganization. Examples are alterations in chain-chain interactions that exist within the molecule. 

For example, a van der Waals interaction could be exchanged by a hydrogen bond and cause 

molecular reorganization and volumetric changes. The second term represents changes in solvent-

molecule interactions. For example, cavities contribute to the overall volume, and might originate 

from e.g. imperfect packing of hydrophobic amino-acid residues localized in the interior of protein 

molecules. These surfaces, which are associated with non-polarity causes a reduction in hydration 

volume (Gekko and Hasegawa 1986).     

 

Changes in bond types create one of the fundaments for volumetric alterations.  

As pressure is increased the distance between certain atoms are changed. Weak interactions where 

the bond energy is dependent on distance is especially affected by changes in pressure (Martinez-

Monteagudo and Saldaña 2014). Among these are coulomb, van der Waal, hydrogen bonds, 

solvation and hydrophobic interactions. Often the formation of hydrogen bonds is associated with a 

negative volume change. Formation of charged groups from ionic interactions is also associated to 

reduction in volume. The reason for this volume change is believed to be due to elevated 

electrostriction of the solvent molecules around the newly formed charged species. Association 

between non-polar groups seems to vary. While association between aliphatic groups seems to 

generate a positive volume change, association between aromatic groups generates a negative 

change in volume (Heremans 1982). It is generally accepted that high pressure only affects non-

covalent bond types (Okamoto, Kawamura et al. 1990).  

 

In complex food matrices there are multiple components present, which through different 

interactions will affect the overall compressibility of such systems. For example, the compressibility 

of chicken breast appears to be similar to ham at higher pressures, while at lower pressures chicken 

breast is more compressible (Min, Sastry et al. 2010). One explanation could be the higher content of 
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air in chicken breast, which will dissolve and reduce the volume as the pressure is increased. Another 

factor influencing systems such as chicken breast and ham is the high moisture content. 

Compressibility of liquids is relatively high at low pressures as there is a considerable amount of free 

volume between the molecules. When the pressure is increased this free volume rapidly diminishes 

and together with repulsive forces acting between molecules, further compressing is limited. A 

frequent food component is fat. Compared to water, chicken fat for example exhibits a high 

compressibility for pressures up to 100 MPa, a similar compressibility up to 300 MPa, but a reduced 

compressibility upon further pressurization up to 700 MPa (Min, Sastry et al. 2010). The high 

compressibility observed up to 100 MPa is attributed to the relatively loose packing of fat molecules. 

At pressures above 300 MPa, the free space in fats is probably occupied and chemical and physical 

resistance decreases further compressibility (Min, Sastry et al. 2010). High compressibility up to 100 

MPa has also been observed for chicken breast, however a further pressure increase is associated to 

compressibility lower than that of water (Min, Sastry et al. 2010). The physical compression of 

compounds such as proteins is known to alter their structure (Pérez-Andrés, Charoux et al. 2018).   

The compressibility of proteins is closely related to their inherent flexibility (Gekko and Hasegawa 

1986). Globular proteins in general display a positive compressibility due to a strong compression of 

voids within the structure (Heremans 1982). Fibrous proteins are on the other hand far less 

compressible (Gekko and Hasegawa 1986). As a general rule, protein denaturation occur at pressures 

of 100-1200 MPa with an associated midpoint transition between 400-800 MPa (Pérez-Andrés, 

Charoux et al. 2018). While thermal protein denaturation is known to occur through strong thermal 

fluctuations eventually transferring nonpolar groups from the hydrophobic protein core to the 

exterior, increasing pressure causes the opposite effect (Knorr, Heinz et al. 2006). Pressure 

denaturation of proteins occur as polar water molecules are forced into the protein interior. It is 

further believed that the mechanism relies on a loss of interaction between the non-polar groups 

which causes the molecule to unfold (Knorr, Heinz et al. 2006). To which degree the protein unfold 

depends on its flexibility and thus ability to compensate for the loss of non-covalent bonds. 
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1.4.3 On the application of high-pressure processing as either pre or simultaneous treatment 

for enzymatic hydrolysis of proteinaceous substrates 
 

High-pressure processing could be applied prior to enzymatic hydrolysis and protein unfolding may 

expose more sites for enzymatic cleavage and increase access in a complex biomatrix. Marciniak, 

Suwal et al. (2018) reports on the use of HPP as both a pre-treatment and a simultaneous treatment 

when producing bio-active peptides with different enzymes on different proteinaceous substrates. 

Even though benefits seem evident, the nature and properties of substrate and enzyme should be 

considered when the choice of HPP parameters is made. According to literature, when HPP is applied 

as a pre-treatment hydrolysis should be conducted shortly thereafter, as the structural alterations 

are reversible (Marciniak, Suwal et al. 2018). Another interesting result is that higher pressures not 

necessarily results in quicker unfolding (Marciniak, Suwal et al. 2018). Pressurization may also result 

in protein-protein interactions and can further result in aggregates. For complex substrates, lipid-

lipid and lipid-protein aggregation could occur, which may cause difficulties in downstream 

processing. A selection of results on the pre-treatment of proteinaceous substrates with HPP prior to 

enzymatic hydrolysis is presented in Table 6. 

 

As happens with protein substrates, high pressure could also affect the catalytic effect of enzymes. 

This will depend on the magnitude of the volume changes, in addition to the reversibility of the 

changes. If high pressure is applied simultaneously to the catalysis, the overall effect will be 

influenced by changes in substrate, enzyme and the interaction between them. Both reversible 

enhancements and reductions of enzymatic activity are reported when using HP, possibly through 

either changing substrate specificity, or by changing rate-limiting molecular structures. The rate-

determining step of an enzymatic reaction may be influenced by pressure by changing the substrate 

conformation, such as polymer unfolding or gelatinization. There is also evidence suggesting that 

pressure can change enzyme specificity, which may alter the product composition (Knorr, Heinz et al. 

2006). Moreover, conditions such as temperature, time, properties of the solvent, pH, ionic strength 

and the concentration of substrate will play important roles in the enzyme activity (Marciniak, Suwal 

et al. 2018). The ideal conditions for the simultaneous use of HPP will have to be a compromise 

between enzyme activity and substrate denaturing as both probably would be affected. A selection 

of results on simultaneous HPP and enzymatic hydrolysis is presented in Table 7. 
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Table 6: Various results obtained when HPP is applied as a pre-treatment prior to enzymatic 
hydrolysis of different proteinaceous substrates.  

Substrate Enzymes(s) Conditions Results Author(s) 

Insoluble bovine 

collagen type 1 

Alcalase 

Collagenase 

Thermolysin 

Proteinase K 

Pepsin 

Trypsin 

Pre-treatment:    

P: 600 MPa 

T: n/g 

t: 15 min 

Hydrolysis:  

T:  Optimal 

t:  4 h 

Control:  

Untreated sample 

• DH%: Applying HPP as a pre-treatment 

increased the DH% for Alcalase and 

collagenase. The effect of the pre-treatment 

was enzyme dependant.  

(Zhang, Olsen 
et al. 2013) 

Whey protein  Trypsin Pre-treatment:    

P: 300 MPa 

T: 25 ℃ 

t: 15 min 

Hydrolysis:  

T: 37 ℃ 

t: 135 min 

Control:  

Untreated sample 

• DH%: Applying a HPP pre-treatment 

significantly enhanced the DH%.   

 

• Protein solubility: The pre-treatment 

reduced the protein solubility to 

approximately 75%. 

 

(Blayo, Vidcoq 

et al. 2016) 

Egg white (EW) 

protein 

Trypsin Pre-treatment:    

P: 350, 450, 550 MPa 

T:  15-25 ℃ 

t: 5-15 min 

Hydrolysis:  

T: 37 ℃ 

t: 120 min  

Control:  

Untreated sample 

• DH%: The DH% increased with an increase 

in both pressure level and pressure holding 

time when compared to the control. 

 

  

(Singh and 

Ramaswamy 

2014) 

Abbreviations and units 

P: Pressure [MPa], T: Temperature [℃], t: time [min] [h], n/g: Not specified. 
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Table 7: Various results obtained when HPP is applied simultaneously to enzymatic hydrolysis of 
various proteinaceous substrates.  

Substrate Enzymes(s) Conditions Results Author(s) 

Fish gelatin Alcalase 

Collagenase 

Trypsin 

Pepsin 

HP-assisted:  

P: 100, 200, 300 MPa 

T: Optimal 

t: 15-30 min 

Control: 

Atmospheric pressure 

• DH%: Increased with all enzymes for the HP-

assisted hydrolysis as compared to the control 

hydrolysis.  

  

 

(Alemán, 

Giménez et al. 

2011) 

Anchovies 

powder 

Flavourzyme 

Alcalase 

Marugoto E 

Protamex 

HP-assisted:  

P:  300 MPa 

T: 50 ℃ 

t: 1 h 

Control: 

Atmospheric pressure 

• DH%: Significantly higher for all enzyme 

combinations when hydrolysis was conducted at 300 

MPa as compared to the control.  

 

• Protein solubility: Increased significantly when 

hydrolysis was conducted during the 300 MPa 

pressurization, this holds for all enzyme 

combinations. as does the result mentioned on DH. 

(Kim, Son et al. 

2016) 

Soy protein 

isolate 

Flavourzyme HP-assisted:  

P:  100-600 MPa 

T: 50 ℃ 

t: 15 min 

Control: 

Atmospheric pressure 

• DH%: HPP-assisted hydrolysis at 100 MPa 

significantly increased the DH%. However, the DH% 

declined at higher pressures and was equal to the 

control at 600 MPa. 

 

• Protein solubility: HPP applied during hydrolysis 

resulted in a significant increase in protein solubility 

at pH 4 and 7 as compared to that of raw soy protein 

extract. However, this was even more enhanced 

when HPP was applied as pre-treatment. 

(Meinlschmidt, 

Brode et al. 

2017) 

Abbreviations and units 

P: Pressure [MPa], T: Temperature [℃], t: time [min] [h], n/g: Not specified. 
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1.4.4 The choice of HPP process conditions for the treatment of MDCR prior to enzymatic 

hydrolysis 
 

In order to apply high pressure as a means for increasing the number of enzymatic cleavage sites, 

changing the cleavage sites available and increasing accessibility in a proteinaceous material such as 

MDCR, some sort of structural alteration is required. As shown in Table 6 and Table 7, changes in 

protein structure which enhance/reduce substrate digestibility or enzyme activity seem to be specific 

regarding applied pressure, time and temperature. Therefore, in order to choose appropriate system 

conditions, treatments conducted on similar material should be investigated. Buckow, Sikes et al. 

(2013) stated that HP might cause various alterations on proteins present in muscles, which is 

dependent on pressure magnitude, temperature and treatment duration. Exactly which mechanisms 

that causes changes in meat texture and water holding capacity is not entirely understood. Other 

apparent changes caused by high pressure on food structures are for instance colour modifications 

due to changes in myoglobin structure and content. This might generate a cooked-like appearance of 

fresh meat treated with HP, however high moisture foods often appear unaltered.  

 

Myosin is as previously mentioned the major myofibrillar protein with both globular heads rich in -SH 

groups and a helical rod. F-actin is stabilized through hydrophobic and electrostatic interactions, 

another component of the thin filament, tropomyosin, interacts with F-actin through a positive 

charge present in an F-actin groove (Von der Ecken, Müller et al. 2015). Other proteins, in addition to 

those mentioned, are also present in the myofibrillar structure. Collagen is present in muscular tissue 

and constitutes the major protein fraction in MDCR. However, collagen is found to be unaffected by 

high pressure (Fernandez-Martin 2007). Since myosin and F-actin present globular structures, it 

seems feasible that a high-pressure response could occur during certain treatments. Also, water 

soluble sarcoplasmic proteins often display a globular structure which potentially could contain void 

spaces which might be influenced by high pressure. More uncertainty is however associated with 

pressure induced alterations of the helical rod section of myosin.  

In a review by Aubourg (2018), the extractable content of sarcoplasmic proteins was found to both 

decrease at elevated pressures (400 MPa) but also to be non-affected by HPP. Another review on 

pressure effects on myofibrillar proteins  revealed that dissociation of myosin into monomers 

seemed to be favoured at elevated pressures (Cheftel and Culioli 1997). This due to the positive 

volume change associated to the formation of the dimer, therefore the volume change is negative 

upon dissociation and favoured upon elevated pressures. Even though there is a connection between 

myosin and actin which only can loosen upon addition of ATP, the length of the filaments is often 

reduced upon elevated pressures. This might indicate that high pressure acts in the same way as 
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muscle contraction, which could cause fragmentation similar to that occurring upon rigor.  

F-actin seems to denaturate at relatively low pressures, often at 100 MPa. The myosin light chains 

(helical) seem to be unaffected by pressure, but at pressures around 300 MPa myosin denaturation 

seems to occur, which presumably refers to denaturation of globular domains. The solubilization of 

these myofibrillar structures is reported to increase upon high pressure treatment, which depends 

on process parameters, although pressures ranging 150-300 MPa seem to favour enhanced solubility 

and subsequent extraction. The proteins extracted are reportedly actin, tropomyosin, troponin C and 

M-proteins. Myosin heavy chains are not reported to solubilize before pressures of 300 MPa are 

reached. Other results suggest that myosin fragments do not solubilize even at pressures close to 

500 MPa even though partial denaturation is observed (Aubourg 2018).  

 

Ma and Ledward (2004) treated beef longissimus dorsi (200-800 MPa; 20-70 ℃; 20 min) and found 

collagen to be relatively unaffected by pressure, being still intact at 800 MPa. Furthermore, results 

regarding myosin and actin coincide well with those mentioned in the section above. At 20 ℃ myosin 

seems to denature at pressures close to 400 MPa, while actin denatures at 200 MPa. A new structure 

seems to be formed upon the denaturation of myosin and actin. This is also reported by Sikes, 

Tornberg et al. (2010). Further pressure increase does not dissolve this new complex formed, 

indicating that it is not stabilized by weak bonds. The formation of this complex could explain why, as 

mentioned earlier, no elevated protein extraction was found even though myosin had denatured. It 

therefore seems beneficial to avoid this complex formed at higher pressures. However, the thermal 

transition temperature of the pressure induced complex is close to 50 ℃ which could be beneficial 

when conducting enzymatic hydrolysis at a similar temperature.  

 

As temperature and pressure display contradicting effects on the raw material, room temperature is 

considered a sensible choice when conducting HPP as a treatment prior to enzymatic hydrolysis of 

MDCR (Fernandez-Martin 2007). The treatment time of myofibrillar substrates vary mainly between 

5 and 30 min (Aubourg 2018). Therefore, a treatment time of 15 min is chosen for further 

investigation in the present work. To investigate the denaturation of the major protein constituent 

within the MDCR, namely that of actin (~100-200 MPa) and myosin (~400 MPa), and how this affects 

subsequent enzymatic hydrolysis, the pressures 100, 200 and 400 MPa are chosen for further 

investigation. However, 600 MPa is also further investigated in the present work as it might shed 

light on the proteolytic susceptibility of the pressure-induced protein complex reported to form at 

high pressures. 
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2 Objectives 
 

The objective of this work is to investigate the potential of innovative technologies (high-pressure 

processing, HPP; microwave, MW; ultrasound, US) to enhance the bioactive and functional 

properties of the hydrolysates obtained from enzymatically hydrolysed rest raw materials 

(mechanically deboned chicken residual, MDCR). Specific activities are included in the following.  

• Effect of innovative technologies (HPP, MW and US) implemented as pre-treatments on the 

enzymatic hydrolysis of rest raw materials (MDCR) by using an industrially relevant enzyme.  

o HPP: 100, 200, 400 and 600 MPa; 15 min; mild temperature 

o MW: 1000 W; 2.45 GHz; 40 ℃ 

o US: 300, 600 and 900 W; 15 min; T < 30 ℃; 67/170 kHz ± 2 kHz 

• To characterize the hydrolysates: composition (e.g. protein content), physico-chemical and 

properties (protein solubility), bioactivity (e.g. antioxidant activity). 
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3 Materials and methods 

 

3.1 Materials 

 

Chemical reagents applied for analysis were NaOH (MERCK, >99%), Na2CO3 (Riedel-de Haën, 

analytical grade), Folin and Ciocalteus phenol reagent (MERCK, 1.09001.0100), CuSO4x(H2O)5 (Sigma 

Aldrich, ≥98%), Bovine Serum Albumin (Sigma, EC: 232-936-2, [9048-46-8]), 2,2-Diphenyl-1-

picrylhydrazyl (95%, CAS: 1898-66-4, ThermoFisher Alfa Aesar), hydrochloric Acid 25% (MERCK, 

1.00316.1000), ethanol (96%, Kemetyl Norge AS, EG.nr. 200-578-6) and potassium sodium tartrate 

(1.77 M, VWR International, The Tintometer Ltd., LOVI466101).  

An industrially relevant enzyme and residuals from mechanically deboned chicken carcasses kindly 

supplied by Norilia were used for the experimental trials. The residuals were collected on 30.01.2019 

at 09.00 AM and transported by car in an insulated bag with cooling elements, thus ensuring a 

temperature between 0-4 ℃. When the raw material arrived at Nofima it was kept at 3 ℃ before 

further processing. The raw material was minced with a MADO Garant type MTK662 (MADO GmbH, 

Germany, Dornhan) for 10 s at low speed followed by 10 s at high speed. Thereafter, 500 g of minced 

residue was vacuum packed (99%) in double 29.5 x 20.0 cm sous-vide bags using WEBOMATIC FH-S 

Supermax C V3 vacuum machine (Webomatic, Germany, Bochum). Packed samples were stored  

at -40 ℃. Prior to experimental trials, the minced samples were thawed at 4 ℃ overnight. 
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3.2 Pre-treatment processing  
 

3.2.1 Innovative pre-treatments (MW; US; HPP) 
 

Pre-treatment of the thawed minced samples was conducted by microwave (MW), ultrasound (US) 

or high-pressure processing (HPP), as summarised in Figure 14. The control samples were not subject 

to any pre-treatment. 

                            

 

Figure 14: Flowchart illustrating the various pre-treatment conditions applied in the experimental 
trials in the present work and the operations conducted prior to and after the pre-treatments.  

 
3.2.2 Microwave pre-treatment  
 

MW treatment was performed in a microwave-heated batch autoclave (Gigatherm AG, Flawil, 

Switzerland) operating at 2.45 GHz. The apparatus was configured such that a power of 1000 W was 

generated from a single water-cooled magnetron. The raw-material sample was adapted to a flat, 

cylindrical shape with a diameter of approximately 16.5 cm, as illustrated in Figure 15. Three thermal 

sensors were inserted to monitor the temperature evolution in the sample. The mentioned sensors 

were placed at 1, 8 and 12 cm respectively from the sample edge, along a pre-defined and constant 

trajectory and depth (approx. 0.5 cm below surface) (the position of the sensors are illustrated in 

Figure 15 as blue circles).  
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Figure 15: The figure illustrates the shape of the MDCR sample and the positions for the three thermal 
sensors (blue circles). The blue square and the straight lines indicate a fixed point and angle used to 
ensure a constant sample position in the apparatus.    

 

The software (TwinCAT 2.11.000) enabled power-adjustment such that an average temperature of 40 

℃ was achieved after 154-190 s. Treatment times of 1, 5 and 10 min were applied from the point at 

which an average temperature of 40 ℃ was reached. Plots displaying temperature evolution towards 

exposure time can be found in Appendix A.  

 

 

3.2.3 Ultrasound pre-treatment 
 

US treatment was conducted using a BT 130H bench top system (UPCORP, Illinois, USA), with a 

maximum power of 1000 W through transducers bonded to the tank bottom. The transducers are 

further configured to two banks, each of an effect 500 W but operating at 67 kHz and 170 kHz. Thus, 

half the effect is originating from each bank and frequency. The system furthermore allows for 

different frequency sweep rates for a 4 kHz sweep output. In this work a maximum sweep rate of 

1000 Hz was used as it was recommended by the manufacturer for viscous solutions. This essentially 
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implies that the output frequency in the apparatus changes with a rate equal to 1000 Hz around 67 

kHz and 170 kHz with ±2 kHz. The external/second sous-vide bag was removed before the treatment 

and the sample packed in a single vacuum bag was placed at a pre-defined location in the bath 

(centre) and approximately 2.5 cm above the tank bottom, as illustrated in Figure 16.  

 

    

Figure 16: The figure presents the configuration of the sample (packed in one vacuum bag) in the US 
water bath prior to treatment.  

 

In the present work, US powers of 300, 600 and 900 W were investigated. The initial temperature of 

the water bath was chosen such that a temperature of 29-30 ℃ (Anritsu HD-1250K Thermometer, 

Atsugi, Japan) was reached at the end of each pre-treatment. A fixed exposure time of 30 min was 

selected for the US pre-treatments.  

 

3.2.4 High-pressure processing pre-treatment 
 

High-pressure processing (HPP) pre-treatments at 100, 200, 400 and 600 MPa were conducted using 

a high hydrostatic pressure machine QFP 2L-700 (Avure Technologies Inc., Columbus, USA). Samples 

(in two vacuum-packing bags) were placed in a treatment-chamber filled with distilled water. 
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Software (RSView runtime 1500 Ver. 06.02.20.00) further allowed programming for rapid 

pressurization and depressurization. Plots displaying both pressure and temperature evolution inside 

the treatment chamber are available in the Appendix B. 15 min holding time at the previously 

mentioned pressures was selected. 

 

 

 

 

Figure 17: The flowchart illustrates operations conducted prior to and after the enzymatic hydrolysis. 
The conditions applied during the enzymatic hydrolysis is also presented.  

 

 

3.3 Enzymatic hydrolysis 

 

Enzymatic hydrolysis of control and pre-treated samples were conducted in a 2 L Radleys 

ReactorReady (Radleys, Saffron Walden, UK) mounted with a Heidolph Hei-Torque400 (Heidolph, 

Germany, Schwabach) with stirring speed set at 360 rpm. The temperature in the jacketed reactor 

was maintained at 50 ℃ by means of an external circulating water bath. 990 mL of distilled water 

was initially added to the reactor and allowed to warm up to 50 ℃. The operations conducted prior 

to and after the enzymatic hydrolysis is illustrated in Figure 17. When the temperature in the water 

reached 50-51 ℃ (Anritsu HD-1250K Thermometer, Atsugi, Japan), the pre-treated or control sample 

was added. Further, when the temperature of the reactor media (990 mL distilled water and the 

sample) reached 50 ℃, 10 mL of an enzyme solution (0.5 g enzyme per mL) was added and this point 
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was considered the start of the 60 min hydrolysis. The enzymatic hydrolysis set-up is illustrated in 

Figure 18.  

 

 

Figure 18: The figure illustrates the enzymatic hydrolysis set-up used in the present work during 
experimental trials.  

 

Samples of 15 mL were taken at 0.5, 5, 15, 30 and 60 min. After 60 min the remaining reactor volume 

was drained into a crystallization bowl and inactivated. For both, samples and final hydrolysis 

volume, the enzyme was inactivated by microwave treatment (Menumaster Commercial Microwave 

Model DEC18E2 ACP, 1800 W, Cedar Rapids, USA) allowing rapid boiling of the medium (within 30 

seconds for the 15 mL samples and 4 min for the final hydrolysis volume) and subsequent heating at 

95 ℃ in a water bath for 15 min. After enzyme inactivation, the final hydrolysis volume was allowed 

to cool down for 30 min under cold running water. An overview of the operations conducted prior 

and after the enzyme inactivation is presented in Figure 19. 
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Figure 19: The figure illustrates the operations conducted prior to and after the enzyme inactivation. 
The conditions applied for inactivation of the time samples and final hydrolysis volume are also 
presented.  

 

 

 

 

3.4 Separation of phases 

 

The samples taken at different time intervals during the enzymatic hydrolysis (time-samples) and the 

final hydrolysis volume were centrifuged after cooling down. The final hydrolysis volume was 

centrifuged at 4,400 rpm (Thermo Scientific Heraeus multifuge x3 FR, Osterode, Germany; bucket 

Thermo Scientific FIBERLite F14-6x250LE (USA)) and 25 ℃ for 20 min. The time-samples were 

centrifuged at similar conditions however a different bucket (Thermo Scientific FIBERLite F15-8x50cy, 

USA) was applied. After centrifugation, approximately 2 mL of the aqueous phase of time-samples 

was filtered with an acetylated cellulose syringe filter (w/0.45µm, VWR international, Art. Nr. 514-

0063) and stored at -40 ℃ for further analysis.  



64 
 

 
 

Figure 20: The various phases present after the centrifugation of the final hydrolysis volume is 
illustrated. 1: The aqueous phase which also contains suspended particles. 2: The lipid phase. 3: The 
solid phase. 4: The multicomponent phase. The aqueous phase (1) is later filtered yielding a solid 
particulate and a filtered aqueous phase/hydrolysate.  

 

The various phases present in the final hydrolysis volume is presented in Figure 20. For the final 

hydrolysis volume, the phases were separated into an unfiltered aqueous, solid, lipid and 

multicomponent phase after centrifugation by gently pouring the medium through a sieve into a 

phase-separation funnel. The multicomponent phase was entrapped in the sieve while the lipid-

water mixture continued into the funnel and was allowed 15 min to form immiscible phases and then 

separated into an aqueous and lipid phase. The solid phase was held back in the centrifugation 

bottle. The aqueous phase was vacuum-filtered (Pall filter systems, Depth Filters, Material nr. 

1426045) using a Büchner filtration system to remove the remaining solid particulate. The solid, 

filtered aqueous and lipid phases were stored at -40 ℃. The solid, unfiltered aqueous, filtered 

aqueous, lipid and multicomponent phases were weighed. An overview of the various operations 

conducted after enzyme inactivation for both the final hydrolysis volume and the various time-

samples is presented in Figure 21. 
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Figure 21: The flowchart presents an overview of the various operations conducted after the enzyme 
inactivation of either the final hydrolysis volume or the time-samples. 

 

 

 

3.5 Analytical methods 

 

The protein concentration of the time-samples was analysed through the method of Lowry, this is 

illustrated in Figure 21. An overview of other analysis performed with the filtered aqueous phase 

from the final hydrolysis volume is presented in Figure 22. 

 

 

3.5.1 Soluble protein content  
 

The protein concentration in the time-samples (syringe-filtered aqueous phase) and in the final 

hydrolysis volume (vacuum and syringe filtered aqueous phase) was determined by the method of 

Lowry, Rosebrough et al. (1951) with bovine serum albumin as standard. For the spectrophotometric 

measurements, a Shimadzu UV-mini 1240 spectrophotometer (Shimadzu, Japan) was used. 

Absorbance was measured at 750 nm.  
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Figure 22: The figure illustrates the operations conducted between obtaining the unfiltered aqueous 
phase from the inactivated final hydrolysis volume, to performing various analysis.  

 
 

 

3.5.2 The DPPH radical scavenging activity 

 

The DPPH radical scavenging activity was determined according to Shimada, Fujikawa et al. (1992) as 

described by Thiansilakul, Benjakul et al. (2007) with slight modifications. A solution of 0.15 mM 

DPPH in 96% EtOH was prepared the day before analysis and stirred at 4 ℃ overnight in the dark. 1.5 

mL of the diluted hydrolysate sample was added to 1.5 mL of 0.15 mM DPPH and mixed vigorously 

with a vortex for 10 s. The samples were left at room temperature in the dark for 60 min. The 

absorbance was then read at 517 nm. The blank was prepared in the same way as the hydrolysate 

samples, but 1.5 mL of distilled water was used instead of proteinaceous sample. DPPH radical 

scavenging was calculated according to Equation 1.  

                                         Radical scavenging activity(%) =  
B−A

B
∗ 100%,     (Equation 1) 

                                                                                                                                                                                                         

Where A is the measured absorbance of the hydrolysate sample and B is the measured absorbance 

of the blank. The apparatus was calibrated with diluted hydrolysate (1.5 mL hydrolysate sample 

diluted with 1.5 mL distilled water), as the proteins present will contribute to the absorbance 

measured in the sample but not in the blank (Cumby, Zhong et al. 2008). 
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3.5.3 Protein solubility against pH 

 

4.38-5 mL of the final hydrolysis volume was mixed with distilled water and HCl (1, 0.1 and 0.01 M) or 

NaOH (1 and 0.1 M) to obtain the pH 2, 4, 6 or 11. The total volume and the protein concentration 

after pH adjustment was 25 mL and 8.2-8.6 g/L, respectively. After either the base, acid or water 

were added to the samples they were mixed vigorously with a vortex for 5 s. When the desired pH 

was achieved, the samples were left at room temperature for 30-60 min and then centrifugated at 

10,000 rpm for 15 minutes at 20 ℃ (Thermo Scientific Heraeus multifuge x3 FR, Osterode, Germany; 

Bucket: Thermo Scientific FIBERLite F15-8x50cy (USA)). After centrifugation, 120 µL were pipetted 

immediately from the clear supernatant. The soluble protein content was then determined through 

the method of Lowry. In order to compare the different pre-treatments with the control, the soluble 

protein concentration at various pH (2, 4, 6 and 11) was normalised against the soluble protein 

concentration at neutral pH (6.9-7) also diluted to 25 mL with distilled water instead of acid/base and 

the following procedure was kept equal. The soluble protein content at a respective pH relative to 

the soluble protein content at neutral pH was calculated as described in Equation 2.  

 

Undiluted protein concentration at certain pH [
g

L
]

Undiluted protein concentration at neutral pH [
g

L
]
,   (Equation 2)                    

 

 

 

3.5.4 Statistical analysis 

 
For statistical analysis, Excel and the function T.TEST were used. The function returns the probability 

associated with a Student t-test. The function has syntax T.TEST(array1, array2, tails, type). Array1 

and array2 are the first and second data set, respectively. The term “Tails” indicates whether 1 or 2 

distribution tails are applied (</> or ≠) and the term “type” indicates which type of test is to be 

conducted. In this work, a two tailed distribution (≠) and a type 3 test was performed. A type 3 t-test 

assumes two unequal sample variances. Limit for significance was set as α ≤ 0.05. 
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4 Results and discussions 

 

4.1 The control samples and samples not added exogenous enzymes 

 

4.1.1 The results and discussion on the effect of exogenous enzyme addition on the protein 

solubilisation and the phase contents 
 

 

 

Figure 23: The figure presents the evolution of protein concentration against hydrolysis time for the 
control (no pre-treatment but presence of exogenous enzymes) and the trials where no exogenous 
enzymes were present. Significant differences at similar conditions among different treatments is 
indicated by different lower-case letters. Significant differences at varying conditions within a certain 
treatment is indicated by different upper-case letters. 
 

As shown in Figure 23, enzymatic hydrolysis with no pre-treatment, i.e. the control for pre-treated 

samples, has in this work been found as an efficient method for peptide extraction from MDCR. A 

significant increase in solubilized peptides was obtained after 0.5, 5, 15 and 60 min of enzymatic 

hydrolysis. On the other side, without enzyme addition there was not any significant effect between 

0.5 min and 60 min, indicating a low inherent protein solubility and low endogenous enzyme activity 

in MDCR at the treatment conditions. Halim, Yusof et al. (2016) reported a trend similar to what is 

observed in this present work when hydrolysing fish proteins, namely a sharp increase in protein 
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concentration during the first minutes of hydrolysis. Fonkwe and Singh (1996) investigated 

enzymatically hydrolysis of mechanically deboned turkey residue with papain at 60 ℃. In general, 

the solubilised protein content seemed significantly lower than that of the control in the present 

work. This could be due to the temperature applied as the proteinaceous constituents within the raw 

material are reported to denaturate between 50 and 60 ℃ (Murphy and Marks 2000). However, the 

application of different enzymes and variations within the raw material might also contribute to the 

observed differences.  

 

In trials added exogenous enzymes there is an effective protein solubilization, as seen in Figure 23, 

this significantly affects the contents of the various phases obtained after the enzyme inactivation. 

The final hydrolysis volume is separated into a solid, multicomponent and a liquid phase. The liquid 

phase is further separated into an unfiltered aqueous and a lipid phase. The aqueous phase is then 

filtered into a filtered aqueous phase and a particulate phase. The content of the lipid associated 

phases (the lipid and multicomponent phase), the filtered aqueous phase and solid phases 

(particulate and solid) for the control and trials without addition of exogenous enzymes are 

presented in Figure 25, Figure 26 and Figure 26, respectively. 

 

 

Figure 24: The figure presents the content of the multicomponent and lipid phase obtained from trials 
where exogenous enzymes were applied (control) or not (no exogenous enzyme). Significant 
differences for similar phases among different treatments is indicated by different lower-case letters.  
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As shown in Figure 24, the lipid and lipid + multicomponent content increased for the control as 

compared to trials where no exogenous enzymes were present. The formation of soluble peptides 

could enhance the association between proteins and lipids, thereby increasing the lipid and 

lipid+multicomponent contents. Even though there is no significant increase in the multicomponent 

content between control samples and trials absent of exogenous enzymes, there seem to be an 

increase in the multicomponent phase. This could together with the increase of the lipid phase 

indicate that peptides able to associate with the lipids are formed during the enzymatic hydrolysis.  

 

Figure 25: The figure presents the content of the filtered aqueous phase/hydrolysate obtained from 
the trials where exogenous enzymes were applied (control) or not (no exogenous enzyme). Significant 
differences for similar phases among different treatments is indicated by different lower-case letters. 

 

The addition of exogenous enzymes significantly increased the filtered aqueous phase content, as 

presented in Figure 25. This could be due to the thermally induced formation of proteinaceous 

network structures from undissolved proteins in trials lacking exogenous enzymes. Such structures 

can form upon the heat-treatment mimicking enzyme inactivation and could further entrap water 

and thereby reduce the content of the filtered aqueous phase for trials without exogenous enzymes. 

In fact, formation of proteinaceous networks are reported to start in chicken meat for temperatures 

between 48 and 55 ℃ (Zhang and Barbut 2005). The rapid protein solubilisation seen upon addition 

of exogenous enzymes (Figure 23) therefore seem to dissolve the proteins present before any 

significant network structures are formed.  
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Figure 26: The figure presents the content of solids and particulate (filtered from the aqueous phase) 
from trials where exogenous enzymes were applied (control) or not (no exogenous enzyme). 
Significant differences for similar phases among different treatments is indicated by different lower-
case letters. 

 

While the particulate content seems to be unaffected, the solid phase content is significantly 

reduced upon addition of exogenous enzymes, as presented in Figure 26. Upon addition of 

exogenous enzymes, the reduction of solid phase content, as seen in Figure 26, and the increase in 

lipid content, as seen in Figure 24, could possibly be due to liberation of lipids as solid protein 

structures are degraded by active exogenous enzymes. Also, for the trials with no exogenous 

enzymes present, the heat-treatment operation designated for enzyme inactivation could generate 

proteinaceous network structures which entrap lipids, and thereby reducing the lipid phase content. 

However, some of the increased lipid content could be due to the presence of peptides with certain 

properties allowing protein-lipid interaction. Tveit (2014) reports that hydrolysates produced from 

MDC by a commercial enzyme contained soluble peptides with low content of hydrophobic amino 

acids like leucine, phenylalanine, isoleucine and lysine, which probably cause minor peptide-lipid 

association. Also, increasing the DH% has been found to elevate the lipid phase after hydrolysis on 

behalf of a phase containing a mixture of all components. This indicates a reduction of peptides 

associating with lipids due to higher content of charges per chain length which occur upon elevated 

DH%. A high content of charges would interact unfavourably with the lipid phase making these 
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fractions would be non-miscible. Formation of peptides favouring lipid-protein structures is however 

enzyme dependant (Šližyte, Daukšas et al. 2005). Therefore, the results obtained in the present work 

could be influenced by peptides and lipids interacting after the hydrolysis. However, even if peptides 

are lost through the multicomponent or lipid phase, variations of these phase contents could indicate 

variations in the product peptide properties. To be noted is that the multicomponent phase in the 

present work is not an emulsion in the usual sense, but rather a structure not miscible in the lipid or 

aqueous phase with some rigidity allowing maintenance of structure during and after centrifugation. 

Thus, in order to avoid misinterpretations is the phase in the present work referred to as a 

multicomponent phase. But for later discussion regarding peptide properties should it be noted that 

certain characteristics are associated with peptide-lipid interactions. Peptides consisting of at least 

20 amino acids, a hydrophobic domain, a hydrophilic domain and region(s) where similar peptides 

can interact favourably with each other and form a film which can withstand mechanical and thermal 

motion are believed to be prerequisites for interaction between peptides and lipids in an aqueous 

environment (Kristinsson and Rasco 2000).  
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4.1.2 The results and discussion on the DPPH radical scavenging activity for the control 

hydrolysates 
 

 

 

Figure 27: The figure presents the DPPH radical scavenging activity for the control hydrolysates at 
protein concentrations 0.5, 1, 2 and 4 mg/mL. Significant differences at varying conditions within a 
certain treatment is indicated by different upper-case letters. 

 

 

The DPPH radical scavenging for the control hydrolysates with protein concentrations 0.5, 1, 2 and 4 

mg/mL is presented in Figure 27. There was a linear increase in the DPPH radical scavenging activity 

when peptide concentration was increased between 0.5-2 mg/mL (R2>0.988). However, a significant 

reduction in the DPPH radical scavenging activity was observed when the peptide concentration 

further was increased to 4 mg/mL. The potential peptides present in meat contain sequences of 

amino acids with health effects such as antioxidant activity (Udenigwe and Howard 2013). In general, 

high antioxidant properties are correlated to peptides of high hydrophobic group content (Saiga, 

Tanabe et al. 2003). Dávalos, Miguel et al. (2004) reported that Trp, Tyr and Met showed the highest 

antioxidant activities. Next was Cys, His and Phe. The remaining amino acids (Arg, Asn, Gln, Asp, Pro, 

Ala, Val, Lys, Ile, Tre, Leu, Glu, Gly) did not display any antioxidant properties. Shorter peptides are 

reported to allow higher rates of radical interaction and therefore are correlated to better 

antioxidant activity, as compared to longer chain peptides (Onuh, Girgih et al. 2014). Saiga, Tanabe et 
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al. (2003) identified several peptides displaying antioxidant properties from myofibril hydrolysates. In 

fact, Udenigwe and Howard (2013) observed that myosin and actin potentially were the richest 

sources of peptides displaying antioxidant activity from chicken proteins. However, myofibrillar 

proteins are reported to be relatively robust towards hydrolysis compared to sarcoplasmic proteins, 

which is associated to the spatial structure of actomyosin (Khantaphant, Benjakul et al. 2011). 

However, the DPPH radical scavenging activity of myofibrils might still be enhanced through 

enzymatic hydrolysis, which also applies for sarcoplasmic proteins although the effect is less 

significant than for myofibrils (Borawska, Darewicz et al. 2016).  

 

There are several methods applicable in order to investigate the radical scavenging activity of 

peptides. Scavenging of the DPPH radical evaluates to what degree the antioxidant peptide displays 

activity as a hydrogen donor. However, there are constraints associated to the DPPH radical 

scavenging activity as a measurement of antioxidant properties. Serpen, Gökmen et al. (2012) 

suggest that the DPPH radical, being relatively hydrophobic compared to other radicals such as the 

ATBS radical, could interact less with polar antioxidant compounds than for example the ATBS 

radical. Ethanol is in the present work used as a solvent during DPPH radical scavenging activity 

measurements and could potentially participate in the precipitation of proteins present in the 

hydrolysate. This could be explained by the solvent interacting with certain amino acids present 

within the peptides. Ethanol interactions with glycine, asparagine and histidine are unfavourable thus 

decreases their solubility, while ethanol interaction with hydrophobic amino acids such as leucine 

and phenylalanine are favourable (Yoshikawa, Hirano et al. 2012). Glycine is usually considered one 

of the three amino acids within the collagen backbone. Tveit (2014) reported on a hydrolysate 

produced from MDCR rich in the amino acids associated with collagen. If the protein hydrolysate 

contains peptides and proteins comprised of amino acids which unfavourably interact with ethanol, 

this could cause precipitation during the assessment of DPPH radical scavenging activity. Precipitated 

proteins could further reduce apparent scavenging activity of the sample, not only as antioxidant 

peptides precipitate from the liquid phase, but also as precipitate absorb light at the wavelength 

often used during such investigations (Cumby, Zhong et al. 2008). This negative effect could get more 

pronounced as protein concentration increases (Dissanayake, Ramchandran et al. 2013). The above 

mentioned effects could explain the drop in DPPH radical scavenging activity observed when 

increasing peptide concentration from 2 to 4 mg/mL, as presented in Figure 27. Centenaro, Salas-

Mellado et al. (2014) investigated the DPPH radical scavenging of fish muscle hydrolysates obtained 

with Flavourzyme and α-chymotrypsin. The radical scavenging of the hydrolysate produced with α-

chymotrypsin increased between 0.5-2.5 mg/mL but dropped between 2.5-5.0 mg/mL. Meanwhile, 

hydrolysates produced with Flavourzyme displayed an increasing DPPH radical scavenging activity 
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when protein concentration was increased between 2.5 and 5.0 mg/mL. An explanation could be that 

Flavourzyme cleave bonds which produce peptides of a more hydrophobic nature as compared to α-

chymotrypsin. 

 

4.1.3 The results and discussion on the relative protein solubility at pH 2, 4, 6 and 11 for the 

control hydrolysates 
 

 

 

Figure 28: The figure presents the relative protein solubility at pH 2, 4, 6, 7 and 11 for the control 
sample hydrolysates/filtered aqueous phases. Significant differences at varying conditions within a 
certain treatment is indicated by different upper-case letters. 

 

In this present work the relative protein solubility of the control samples varied significantly between 

neutral pH and pH 2, 4, 6 and 11, as displayed in Figure 28. However, no significant differences 

between the relative protein solubility at pH 2, 4, 6 or 11 was observed. Protein solubility could vary 

for several reasons but probably due to changes in the content of charged or hydrophobic groups per 

peptide chain length. As the net charge is shifted from zero at the pI, protein solubility increases. 

Thus, certain proteins or peptides in the aqueous phase of the hydrolysate exhibits reduced solubility 
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at pH 2, 4, 6 and 11, this due to fewer groups interacting with water at these pH values. Food 

industry often prefers protein hydrolysates with high protein solubility over a wide pH as highly 

soluble proteins provide a homogenous dispersibility of the molecules in colloidal systems and 

enhance interfacial properties (Thiansilakul, Benjakul et al. 2007). As proteins are cleaved during the 

enzymatic hydrolysis some of the hydrophobicity in the chain is converted as two-end carbonyl and 

amino groups are formed. Hydrophobic regions do not favour solute-solvent (in water) interactions 

and thereby do not contribute to dissolving proteins. Hydrophobic regions can instead interact and 

form aggregates. Higher content of polar and charged components allows more frequent solute-

solvent interaction thus increasing the soluble fraction (Halim, Yusof et al. 2016). The pH will 

determine the charged state of weakly acidic and basic side-chain groups in the peptides and 

therefore peptide solubility (Kristinsson and Rasco 2000).  

 

The results presented in this work are in line with the results of Gbogouri, Linder et al. (2004) when 

investigating the solubility of salmon by-product (head) hydrolysates produced with Alcalase, where 

protein solubility increased from pH 3, with a peak at pH 6-7 before declining until a pH of 11. When 

producing hydrolysates from salmon muscle with Alcalase, Kristinsson and Rasco (2000) also 

observed reduced solubility of the hydrolysate (5% DH) at low (1-3) and high (11) pH as compared to 

neutral pH. Souissi, Bougatef et al. (2007) also conducted investigations with Alcalase on fish proteins 

and observed a similar trend on evolution of protein solubility towards pH as that reported by 

Kristinsson and Rasco (2000) for acidic and alkaline conditions (6.62 DH%). Thus, the protein 

solubility of hydrolysates produced from raw materials exhibiting similarities to MDCR display 

reduced solubility at pH different than neutral. What seem to be a general trend is that the highest 

protein solubility improvement through enzymatic hydrolysis for such raw materials is seen between 

pH 4 and 6. This indicates the presence of parental proteins with low charge content at these 

conditions and it overlaps with the pI of myosin and actin (Collins and Elzinga 1975, Lin and Park 

1998). In the present work, the specific peptides responsible for the precipitation observed at e.g. pH 

4 and 6 could therefore originate from either myosin or actin. However, the liberated peptides 

present in the hydrolysate do not necessarily display the same isoelectric properties as the parental 

proteins. Several peptides present in the product could either be dominated by basic amino acids, 

and thus precipitating at alkaline conditions, or dominated by acidic amino acids and precipitating at 

acidic conditions. However, a significant loss in protein solubility is in this work already seen at pH 6, 

which could indicate presence of relatively large peptide species. Both myosin and sarcoplasmic 

proteins generate peptide fragments with relatively high molecular weight upon enzymatic 

hydrolysis, which could indicate formation of peptides resistant for further proteolytical degradation. 

This is reported by Kristinsson and Rasco (2000) and Souissi, Bougatef et al. (2007) who also observed 
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reduced solubility at alkaline and acidic conditions compared to neutral pH, however the reduction in 

protein solubility seemed more gradual to what observed in the present work. The rapid solubility 

loss against pH seen in this work highly resemble the results obtained by Diniz and Martin (1997) at 

relatively low DH%. This also suggests that peptides with higher molecular weights are present, 

which in generally are more sensitive to changes in pH as compared to shorter peptides. As pH is 

further reduced other peptides with isoelectric points lower than pH 6 could dominate the relative 

protein solubility. The reduced peptide solubility at pH 11 observed in this work could be due to a 

high gelatin content. While gelatin present at neutral pH often is soluble, this content could be 

partially precipitated at alkaline conditions. Gelatin formed from collagen through mild processing 

such as heat treatment could display a pI of 9.4 (Poppe 1992). Besides, due to the complexity of the 

raw material might other basic peptides be responsible for the reduced solubility observed at pH 11.  
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4.2 The results and discussion on the effect of pre-treating samples with microwave 

(MW)  
 

4.2.1 Protein solubilisation during the enzymatic hydrolysis after MW pre-treatments  
 

 

Figure 29: The figure presents the protein concentration at 0.5, 5, 15, 30 and 60 min of hydrolysis for 
the control, MW1, MW5 and MW10 trials. In addition, the protein concentration observed after 
enzyme inactivation of the final hydrolysis volume is presented for the mentioned trials. Significant 
differences at similar conditions among different treatments are indicated by different lower-case 
letters. Significant differences at varying conditions within a certain treatment is indicated by 
different upper-case letters. 
 

According to the Figure 29, applying microwaves prior to the enzymatic hydrolysis (1, 5 and 10 min; 

MW1, MW5 and MW10; 1000 W; 40 ℃; 2.45 GHz) significantly reduces the protein solubility after 

0.5 min of hydrolysis, as compared to the control without pre-treatment, which indicate some 

structural alteration of the proteinaceous substrates. For the 0.5 min sample, there is no significant 

difference among the microwave pre-treatment times 1, 5 or 10 min (MW1, MW5 or MW10) which 

could be due to the small difference in absorbed microwave energy (See Appendix A). The protein 
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concentration in pre-treated samples was still significantly lower than that of control samples after 5 

min of hydrolysis. However, after 15 min of hydrolysis, there was no significant difference in the 

protein concentration between pre-treated samples and the control samples. In fact, while the 

protein solubilisation seemed to increase steadily for the control samples, there was a sudden 

increase in solubilised proteins between 5 and 15 min for all microwave treated samples, which 

compensates the low initial protein solubilisation, as compared to the control samples. The 

solubilisation patterns following 15 min of hydrolysis vary among the MW treated samples but only 

significantly after 60 min of hydrolysis (samples). MW5 show a significant increase as compared to 

MW10 and control samples, while MW10 exhibits a significant decrease as compared to the rest of 

conditions. The soluble protein concentration measured in the final reactor volume after hydrolysis 

(60 min final hydrolysis volume samples) does not significantly differ among the treatments or 

control, but it seems to gradually decrease with increasing MW treatment time. There is a significant 

difference in the protein concentrations measured between the total reaction volume after 

hydrolysis (60 min final hydrolysis volume) and the time-samples withdrawn after 60 min of 

hydrolysis. This could be due to varying release of collagen or other proteinaceous compounds from 

the large content of solids present during enzyme inactivation of the remaining hydrolysis content 

(final hydrolysis volume). This could hide the slight but significant effect observed in the 60 min 

samples. Another factor influencing the 60 min final hydrolysis volume might be the potential loss of 

peptides due to the formation of the multicomponent phase after enzyme inactivation and 

centrifugation.   
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4.2.2 Phase contents obtained after enzyme inactivation of the final hydrolysis volumes from 

samples pre-treated with MW 
 

The amount of solid and particulate phases, filtered aqueous phase, lipid and multicomponent 

phases originating from the control, MW1, MW5 and MW10 samples are presented in Figure 30, 

Figure 31 and Figure 32, respectively. In general, no significant differences of solid or particulate 

content were observed among the various treatments, including the control samples.  

 

 

Figure 30: The figure presents the particulate and solid phase contents from the control, MW1, MW5 
and MW10 trials. Significant differences among similar phases between different treatments are 
indicated by different lower-case letters. 
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There were also no significant differences in the filtered aqueous content across the various MW pre-

treatments or as compared to the control samples.  

 

 

Figure 31: The figure presents the filtered aqueous phase content for the control, MW1, MW5 and 
MW10 samples. Significant differences among similar phases between different treatments are 
indicated by different lower-case letters. 
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Finally, there were no significant differences in the total lipid content or lipid phase + 

multicomponent phase content among the treatments/control, but significant differences were 

observed in the multicomponent content depending on the MW pre-treatment applied. MW1 

samples showed a significantly higher multicomponent content as compared to the MW5 and MW10 

samples. However, these results do not vary significantly from the control samples.  

 

 

Figure 32: The figure presents the contents of the lipid and multicomponent phases in addition to the 
sum of these phases for the control, MW1, MW5 and MW10 samples. Significant differences among 
similar phases between different treatments are indicated by different lower-case letters.  
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4.2.3 The DPPH radical scavenging activity observed in the hydrolysates of samples pre-

treated with MW  
 

The DPPH radical scavenging activity in the hydrolysates (filtered aqueous phase) of the control, 

MW1 and MW10 at various peptide concentrations is presented in Figure 33. A linear dependence 

between the DPPH radical scavenging activity and the peptide concentration of 0.5-2.0 mg/mL 

(R2>0.988) was observed for the control, MW1 and MW10. The protein concentrations of 0.5, 1 and 2 

mg/mL presented no significant variations among treatments/control. However, 4 mg/mL presented 

significant differences among the applied treatments/control. MW1 samples displayed a significantly 

lower DPPH radical scavenging activity as compared to both MW10 and the control samples. MW10 

samples presented a significantly higher radical scavenging activity with respect to MW1 samples, 

but this value was still lower than that of the control samples.  

 

Figure 33: The figure presents the DPPH radical scavenging activity for the control, MW1 and MW10 
hydrolysates/filtered aqueous phases with protein concentration 0.5, 1, 2 and 4 mg/mL. Significant 
differences at similar conditions among different treatments are indicated by different lower-case 
letters. Significant differences at varying conditions within a certain treatment is indicated by 
different upper-case letters. 
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4.2.4 The relative protein solubility observed for hydrolysates of samples pre-treated with 

MW 
 

The protein solubility of the hydrolysates (filtered aqueous phases) from the control, MW1 and 

MW10 treatments at pH 2, 4, 6 and 11, as compared to the protein solubility at neutral pH, is 

presented in Figure 34. The relative protein solubility for the control samples was not found to be 

different at pH 2, 4, 6 or 11. MW1 samples displays significantly higher relative protein solubility at 

all pH values as compared to that of the control, but these values were not significantly different to 

those of the MW10 pre-treatment at any pH value. Similarly, MW10 samples displayed significantly 

higher relative protein solubility as compared to that of the control at all pH except pH 4, where 

protein solubility was not statistically different with regards to that of the control and MW1. The 

relative protein solubility of MW1 samples was similar at pH 6 and 11 and significantly higher than 

the values at pH 2 and 4, which were similar among themselves. The relative protein solubility of 

MW10 samples followed the same trend as MW1 samples. The result indicates that a MW pre-

treatment followed by hydrolysis generates peptides with similar protein solubility against pH, 

irrespective of the MW pre-treatment time applied.  

 

Figure 34: The figure presents the relative protein solubility at pH 2, 4, 6 and 11 for the 
hydrolysates/filtered aqueous phase from the control, MW1 and MW10 trials. Significant differences 
at similar conditions among different treatments are indicated by different lower-case letters. 
Significant differences at varying conditions within a certain treatment is indicated by different upper-
case letters. 
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4.2.5 Discussion of MW results  
 

The solubilized protein content in the control was significantly higher than for MW10 samples at 60 

min of hydrolysis. Furthermore, there seemed to be a stop in protein solubilisation for MW10 

samples between 30 and 60 min of hydrolysis. An explanation for this is protein aggregation, which 

suggests that the effect from the pre-treatment and the thermal conditions in the reactor (50 ℃; 

optimal temperature for the enzyme) could have been too severe on the proteinaceous components 

in the raw material. Protein aggregates are reported to be highly resistant to further enzymatic 

breakdown, and could also decrease the peptide content in the aqueous phase and thus, the 

extraction yield (Šližyte, Daukšas et al. 2005). Mohr (1980) mention that proteins might denature and 

precipitate during hydrolysis, but this would depend on both the type of protein and conditions 

applied. The cause of the effect observed in the present work could be a combination of both the 

pre-treatment, the hydrolytic activity of the enzymes and the thermal effect from the reactor. As a 

general trend muscle protein solubility is negatively affected by microwave treatment through 

aggregation of originally soluble proteins (YOWELL and FLURKEY 1986, Kong, Tang et al. 2008, Wu 

and Mao 2008). The MW energy absorbed during pre-treatment is presented in Appendix A and 

Table 8. The MW energy absorbed was significantly higher when the raw material was treated for 10 

min as compared to the 1 min pre-treatment, but this was not noticeable for the protein 

concentrations until a hydrolysis time of 60 min was reached. However, this suggests that the initial 

alterations of protein structures caused by the various MW pre-treatments were different, leading to 

different bonds being hydrolysed by the enzyme, with peptides present after 30-60 min of hydrolysis 

capable of forming aggregates. Such structural alteration could be attributed the thermal effect 

associated with long MW pre-treatment time or temperature (Murphy and Marks 2000). The 

alterations could also be non-thermal and associated to the differences in absorbed MW energy 

(George, Bilek et al. 2008). What should especially be noted is the similarity of protein solubilisation 

throughout the course of hydrolysis for MW1, MW5 and MW10 samples, which only seemed to 

differ for the 60 min samples. It seems as the effect posed from the pre-treatment causes a similar 

effect of denaturing independent of treatment time, but the additional affect from MW5 or MW10 

seem to eventually contribute in a positive or negative manner. There would seem as there is a fine 

balance between desirable and non-desirable outcomes when MW is applied. And as shall be seen in 

the following there seem to be differences in the product peptide properties.  

The protein content in the filtered aqueous phase after enzyme inactivation of the total hydrolysis 

volume was influenced not only by the enzymatic hydrolysis, but also by the formation and 

separation of the various phases. The presence of functional peptides stabilized in the 
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multicomponent phase or antioxidant peptides in the lipid phase may have caused their reduced 

contents in the aqueous product as compared to that seen in the 60 min samples. This will be 

covered further later in this discussion. 

Why the 60 min time samples display significant differences in protein concentration, while the 

inactivated total hydrolysis volume does not, could be several. One explanation would be differences 

in solid content when inactivating the time-samples as compared to the total hydrolysis reaction 

volume. As stated earlier, the content of collagen is relatively high in MDCR (McCurdy, Jelen et al. 

1986). The hydrolysate of MDCR is reported to contain significant amounts of amino acids associated 

with collagen (Tveit 2014). The thermal solubilisation of collagen could occur during the hydrolysis, 

during the enzymatic inactivation or partially during both processes (Yannas 1972). Upon thermal 

(enzyme) inactivation of the final hydrolysis volume, the solid to liquid ratio could be higher than that 

in the time-samples. Thus, the potential peptide release when heat treating these samples with 

different composition was not similar. This could explain the significant increase observed between 

protein concentration in 60 min time-samples and 60 min final hydrolysis volume samples. The 

significant differences of protein concentration in 60 min samples could either have disappeared due 

to variances in the amount of proteins solubilized upon enzyme inactivation/heat-treatment, or due 

to the association of certain species through the multicomponent or lipid phase during the 

separation of phases. Increasing the MW treatment time seemed to negatively affect the protein 

concentration after inactivation of the final hydrolysis reaction volume. However, the extent was still 

not great enough to display an effect on the solid phase contents, as the solid and the particulate 

contents not changed significantly. A higher aggregate content would probably have been visible 

through increased particulate or solid phase contents. Interestingly, the MW5 samples presented a 

significantly higher protein concentration after 60 min of hydrolysis, with a reduced solid fraction and 

increased particulate content. This could indicate favourable conditions for solubilisation of major 

proteinaceous components within the raw material, as the particulate are suspended particles which 

indicate higher content of lower density compounds. Murphy and Marks (2000) observed increasing 

contents of low molecular weight species when heat treating chicken breast patties. Thus, the 

enhanced protein concentration observed for MW5 samples in the present work could be due to the 

release of such species. When Murphy and Marks (2000) further increased the temperature to 50 ℃ 

these species were lost and could indicate the scenario occurring upon to severe heat treatment as 

that for the late stage of hydrolysis in the present work.  

The multicomponent phase content of MW1 samples were significantly higher than that for MW5 

and MW10 samples, which indicates the presence of peptides with different properties. Moreover, it 

is noteworthy that the multicomponent phase of MW1 dropped when increasing the pre-treatment 
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time to 5 min (MW5), but the lipid phase + multicomponent phase content seemed to increase. This 

could indicate that the lipid fraction still was associated to certain peptides, even though not 

generating lipid-protein structures present within in the multicomponent phase. Further increasing 

the pre-treatment time to 10 min maintained the low multicomponent phase content observed for 

MW5, while the lipid fraction seemed to decrease slightly. This could indicate that protein-lipid 

interaction decreased when increasing treatment time from 5 to 10 min and could be connected to 

the reduction in protein concentration observed after 60 min of hydrolysis. This as hydrophobic 

peptide domains are lost through hydrophobically driven protein-protein association and thus 

reducing the release of species able to associate with the lipid phase. Kristinsson and Rasco (2000) 

connected interactions between peptides and lipids to the combination of hydrophilic and 

hydrophobic properties observed for protein hydrolysates, which allow proteins to adsorb to the 

surface of oil droplets and interact with water at the same time. This might prevent oil droplets from 

coalescing and could generate stable structures present in e.g. the multiphase content. Pacheco-

Aguilar, Mazorra-Manzano et al. (2008) further suggest that small peptides could be efficient 

absorbers at the liquid-oil-interphase, however when compared to larger peptides they are not as 

efficient in reducing the interfacial tension which is necessary in order to form emulsions, but could 

potentially contribute to elevated contents of lipid phase. However, partial hydrolysis of myofibrils 

are found to generate peptides interacting with both lipid and aqueous layers which could explain 

the observations on increasing multicomponent phase for the MW1 samples (Smith and Brekke 

1985). It could however be possible that further denaturing, which might be the case for MW5 and 

MW10 induce the formation of peptides merely absorbing at the liquid-lipid interphase as 

mentioned by Pacheco-Aguilar, Mazorra-Manzano et al. (2008). While the presence of such peptides 

could contribute to varying contents of multicomponent and lipid phases, the pre-treatment could 

also affect the actual release of lipids from the biomatrix during the enzymatic hydrolysis. After the 

enzymatic hydrolysis, undigested proteins aggregated during enzymatic inactivation could also 

entrap lipids, thereby affecting the contents of lipid and multicomponent phase.  

The presence of peptides with varying properties was not only indicated by differing phase contents, 

but also the DPPH radical scavenging activity. As shown in Figure 33, applying MW as a pre-treatment 

can alter the antioxidant properties of the hydrolysates. The apparent drop of antioxidant properties 

could be caused by charged and polar groups interacting unfavourably with ethanol (used in the 

present work during the measurement of the DPPH radical scavenging activity). Ethanol is a relatively 

non-polar solvent as compared to water (Yoshikawa, Hirano et al. 2012). Unfavourable interactions 

between peptides and ethanol could cause precipitation and thereby increase light absorbance at 

certain wavelengths, but also reduce the DPPH radical scavenging activity as the relevant peptides 



88 
 

did not offer scavenging activity due to precipitation (Cumby, Zhong et al. 2008). This effect could 

further be accelerated by increasing the hydrolysate protein concentration (Dissanayake, 

Ramchandran et al. 2013). As the aromatic and non-polar side chains of Trp, Tyr, Met and Phe are 

associated to high antioxidant properties, the enhanced multicomponent phase content could 

explain the reduction of DPPH radical scavenging activity observed for MW1 samples (Dávalos, 

Miguel et al. 2004). As the side chains which are known to display high antioxidant properties and 

interact favourably with the DPPH solvent, also could contribute to favourable interactions with the 

lipid phase or as a tension reducer by interacting favourably with both the lipid and aqueous phase 

simultaneously. Such peptides present in the product of MW1 could therefore generate protein-lipid 

structures and contribute to the content of the multicomponent phase. As the MW treatment time 

was increased from 1 to 10 min, the multicomponent phase content was reduced significantly while 

the DPPH radical scavenging activity increased significantly as compared to MW1 samples. This could 

indicate that groups capable of scavenging the DPPH radical are released and a higher content was 

available in the hydrolysate. However, the scavenging activity was still not higher than that of the 

control. This could be explained by the apparently high content of the lipid phase as groups 

interacting favourably with lipids also interacts relatively favourable with ethanol. Therefore, 

peptides able to scavenge the DPPH radical could be stabilized within the lipid phase. The apparent 

aggregation observed in the late stage of the MW10 hydrolysis could also contribute to the observed 

DPPH radical scavenging activity. These protein-protein interactions could be due to hydrophobic 

interactions that reduced the content of DPPH radical scavenging groups per gram of hydrolysate and 

therefore, reduce the scavenging abilities observed for MW10-hydrolysates.  

 

Applying MW as a pre-treatment significantly enhanced the peptide solubility at pH 2, 4, 6 and 11, as 

compared to the control, except for the MW10 hydrolysates exposed to pH 4. Enhanced solubility is 

often associated with increased DH% or reduced molecular weights which increase the charges 

present at both acidic and alkaline conditions, as additional carboxylic and amide groups are 

introduced upon hydrolysis of the peptide bond (Halim, Yusof et al. 2016). Thus, the increasing 

content of low molecular weight species present upon exposure of raw materials containing 

constituents like that of MDCR to 40 ℃, as mentioned by Murphy and Marks (2000), could generate a 

hydrolysate with peptides originating from small proteins, which further have the potential to 

increase the presence of peptides with high charge content per chain length in the hydrolysate. The 

improved solubility at various pH values explained by an increased number of charged/polar groups 

would also suit the reduced DPPH radical scavenging activity, since a high content of charged groups 

would interact unfavourably with ethanol but could elevate solubility at various pH values. Regarding 

the slight and not significant reduction in relative protein solubility at pH 2 and 4 seen for MW10 
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samples compared to those of MW1; If certain peptide species in the product of MW1 were 

associated to lipids and present in the multicomponent phase and therefore not in the MW1 

aqueous phase, the relative solubility at low pH would be enhanced if these peptides exhibited a high 

acidic group content. Moreover, if such peptides were present in MW10 samples, they would cause 

the solubility to decrease for acidic conditions and thus, reduce the relative solubility. 

As there was both a (slight) solubility reduction at low pH and an increase in DPPH radical scavenging 

activity for MW10 as compared to MW1 samples, this could indicate that groups able to interact 

favourably with both the polar aqueous and non-polar lipid phases were increasingly present in 

MW10 as compared to MW1 samples. The lipid phase + multicomponent phase also seemed to 

increase while the multicomponent phase content remained stable between MW5 and MW10 

samples. This could indicate a hydrolysate increasingly dominated by hydrophobic peptides.  

Interestingly, a pH of 4.5-5.5 often holds the highest potential for enhanced protein solubility in raw 

materials such as that applied in the present work (Smith and Brekke 1985). This is often related to 

the isoelectric properties of myofibrillar proteins (Collins and Elzinga 1975, Lin and Park 1998). 

Myofibrillar proteins are usually related to peptides with high potential both regarding functional and 

antioxidant properties when compared to sarcoplasmic protein, which could indicate that variations 

in solubility at acidic conditions (pH 2 and 4), changes in DPPH radical scavenging activity and 

protein-lipid properties are caused by modification within the structure of these proteins (Smith and 

Brekke 1985, Borawska, Darewicz et al. 2016). However, while these components are reported to 

potentially offer peptides with desirable properties, there is often limitations with regards hydrolysis 

of the actomyosin complex (Khantaphant, Benjakul et al. 2011). This motivates the application of a 

pre-treatment such as MW to generate structural alterations of the native protein confirmation 

which offer new cleavage sites for the enzyme. The mechanism this occur through is thermal, and 

during heat treatment, initial denaturation of proteins may occur with little or no apparent loss in 

solubility; this step is then usually followed by aggregation and solubility loss (Li‐Chan, Nakai et al. 

1984). The aggregated proteins are highly resistant to enzymatic breakdown, which reduces the yield 

of solubilised components (Šližyte, Daukšas et al. 2005). Cai, Feng et al. (2018) investigated how 

microwave treatment affected both sarcoplasmic and myofibrillar proteins and found that both 

microwave power and treatment time had direct effects on the protein solubility. However, 

aggregates formed from sarcoplasmic proteins required lower power or time to form as compared to 

myofibrillar proteins. In the present work, a gradual decrease (not significant) in the protein 

concentration was observed for the final hydrolysis volume samples. The significant reduction in 

protein concentration observed for MW10 samples after 60 min of hydrolysis could be due to the 

reported aggregation of sarcoplasmic proteins upon the final stages of hydrolysis. The increase in 
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DPPH radical scavenging activity seen for MW10 compared to MW1 samples and the declining 60 

min protein concentration could suggest the presence of hydrophobic protein surfaces at some point 

during the enzymatic hydrolysis, which further could cause aggregation through hydrophobic 

interactions. Feng, Xue et al. (2017) investigated changes in surface hydrophobicity of actomyosin 

heated by microwave to an average temperature of 35 ℃. Surface hydrophobicity increased 

gradually with treatment time until 40 min was reached at which the surface hydrophobicity 

dropped, suggesting aggregation. This confirms the possibility of the actomyosin complex to 

denature and form aggregates through hydrophobic interactions. It should be stated that this 

investigation was conducted in an actomyosin solution, and the complex would probably be more 

stable within the natural biomatrix. This is illustrated through the “polymer in a box” metaphor, as 

the denaturation of a protein inside the matrix is confined by the presence of all the surrounding 

structures as well. However, as mentioned by Tornberg (2005), certain components within the matrix 

might denature and connect to other structures, and in such a way favour aggregate formation. 

Tornberg (2005) proposed that this first occur through denaturation of sarcoplasmic proteins, which 

is in agreement with the work of Cai, Feng et al. (2018). This could explain what seem as a sudden 

drop in protein solubility between MW5 and MW10 and the hydrolysis-times of 30-60 min. An early 

denaturing of sarcoplasmic proteins, linking other structures into larger complexes would most 

certainly upon further actomyosin denaturing set the stage for precipitation. In order to avoid this 

the pre-treatment would have to favour early degradation of sarcoplasmic proteins, but also favour 

the subsequent degradation of the myofibrillar structures, which are reportedly relatively non-

soluble (Smith and Brekke 1985). One option to reduce what could be a negative effect from the 

denaturing sarcoplasmic proteins is pure water washing prior to the enzymatic hydrolysis which 

would remove the water soluble sarcoplasmic species and conditions could be optimised regarding 

the myofibrillar proteins (Lin and Park 1996). While the sarcoplasmic proteins might denature and 

link structures together, so might other components within the raw material. Work done by Konno, 

Yamamoto et al. (2000) display interesting effects of heat (3-5 min; 40 ℃) on carp myofibrils and 

subsequent chymotryptic digestion (0-60 min). The digestion patterns presented by heated 

myofibrils were clearly different than that of the control, as in the present work. Observations of new 

molecular weight species indicated that new cleavage sites were exposed on the myosin rod. What 

also should be noted regarding the mentioned work is that the solubility of the salt-soluble fraction 

(myofibrils) was reduced by 50 % when the material was heated at 40 ℃ for 3 min. However, this 

was relative the original solubility in a high ionic strength solution. Myofibrils in pure water are 

insoluble at low ionic strength (Smith and Brekke 1985) and therefore might the effect of heat on 

myofibrillar digestion be none-observable. However, the digestion of the control sample (no heat 

treatment) performed by Konno, Yamamoto et al. (2000) was conducted in ionic strength not 
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reported to affect myofibrillar solubility (Smith and Brekke 1985) and presented the formation of 

reduced molecular weight species. Even though some of the work of Konno, Yamamoto et al. (2000) 

present the solubilisation of myofibrils through elevation of ionic strength, it display important 

points. Both the 3 and 5 min heat treatment displayed the presence of major myofibrillar species 

containing significant hydrophobic domains (myosin S-1 and actin) when investigated after the 

digestion, thus was this treatment time not sufficient to aggregates these structures which would 

make them disappear into higher molecular weight species. However, the myosin S-1 fragment 

seemed to occur at later stages of hydrolysis when treatment time was increased. This could indicate 

that unfavourable conditions are increasingly occurring and could potentially explain the reduction in 

solubility for MW10 at 60 min of hydrolysis as potentially this fragment causes some aggregation of 

species which originally were soluble.  

 

Work done by Ketnawa and Liceaga (2017) bear some resemblance to the present work. A fish frame 

slurry was pre-treated with microwave (55 or 90 ℃; 2, 4, 6 or 8 min + 10 min for heating) before 

hydrolysed by Alcalase (55 ℃; 15 min). However, autolytic activity was inactivated (90 ℃; 15 min) 

prior to the pre-treatment. No significant effects were seen on degree of hydrolysis, protein solubility 

or protein recovery when pre-treatment time was changed. This could be due to the initial 

inactivation step used to ensure low autolytic activity. Work done by Bruno, Kudre et al. (2019)  

present many similarities to the present. A MW pre-treatment time of 5, 10 and 15 min (without 

heating period which in the present work was ~ 3 min) was applied on a fish head slurry before 

hydrolysed enzymatically (55 ℃; 2 h). The two shortest pre-treatment times resulted in a significantly 

higher DH%, indicating exposure of more cleavage sites, while the highest treatment time not 

resulted in an increase compared to the control. This suggest that certain denaturation was induced 

by the pre-treatment increased the number of enzymatic cleavage sites, while a prolonged treatment 

reversed this. This matches with the findings for MW1, MW5 and MW10 in the present work, where 

MW10 through aggregation very likely would correlate to the reduction in DH% observed by Bruno, 

Kudre et al. (2019). The work of Bruno, Kudre et al. (2019) also investigated extraction oil from the 

raw material. The longest pre-treatment time reduced the oil extraction yield. This was attributed 

reduced release of lipids due to a lower protein hydrolysis caused by heat aggregation. Released oil 

could also be entrapped in newly formed aggregates, which might form if partially degraded proteins 

form aggregates during e.g. enzyme inactivation. This could explain the results observed in the 

present work, where MW10 seem to present a reduced lipid content as compared to that of MW5. 

MW5 could therefore present a pre-treatment offering a high number of peptide cleavage sites 

which liberates a high content of lipids. Why the milder treatment of MW1 generates a higher 

content of multicomponent phase could be due to the earlier mentioned formation of protein-lipid 
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structures. This is reported to reduce the pure lipid phase (Šližyte, Daukšas et al. 2005). But it could 

also be due to a low release of initially entrapped lipids within the matrix of the raw material.  
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4.3 The results and discussion on the effect of pre-treating samples with ultrasound 

(US)  
 

4.3.1 Protein solubilisation during the enzymatic hydrolysis after US pre-treatments 
 

 

Figure 35: The figure presents the protein concentration at 0.5, 5, 15, 30 and 60 min of hydrolysis for 
the control, US300, US600 and US900 samples. In addition, the protein concentration observed after 
enzyme inactivation of the final hydrolysis volume is presented for the mentioned trials. Significant 
differences at similar conditions among different treatments are indicated by different lower-case 
letters. Significant differences at varying conditions within a certain treatment is indicated by 
different upper-case letters. 
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hydrolysis, indicating a structural alteration of the proteinaceous components in the raw material. 
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power declined, the protein concentration for US300 and US600 samples seemed to gradually 

approach the protein concentration observed for the control. US300 did in fact not exhibit any 

significant reduction in protein concentration compared to the control at 5 min of hydrolysis. The 

protein concentration of US600 samples at 5 min of hydrolysis was statistically similar to that for the 

rest of conditions. The protein concentration after 5 min of hydrolysis for US900 was significantly 

lower than that for the control but not significantly different than the protein content solubilised 

after 0.5 min of hydrolysis within the same treatment. This indicates that US900 causes an effect on 

the raw material at the early stages of hydrolysis where there are few cleavage sites able to release a 

significant mass of peptides available for the enzyme. At 15 min of hydrolysis, the only difference in 

the peptide concentration among treatments was observed for US300 and US600 treatments, with 

the highest content found for the latter. After 30 min of hydrolysis, there is no significant difference 

in dissolved peptide content among the different pre-treatments and control. After 60 min of 

hydrolysis, US300 displayed a significantly higher protein concentration as compared to the control; 

US900 presented a significantly lower protein concentration than all other treatments; and US600 

was not significantly different to the US300 samples or the control. Soluble protein content present 

in the total hydrolysis reaction volume was similar among all the treatments and significantly higher 

than the protein concentration for 60 min of hydrolysis samples within each treatment.  

The different time samples taken during the hydrolysis of the control were significantly different until 

the 30 min sample, which was statistically similar to the protein concentration in the 15 and 60 min 

sample; this trend was however affected by the US pre-treatments. In fact, increasing the ultrasound 

power from 300 to 600 W significantly increased the protein concentration obtained after 15 min, 

while the value at 900 W was statistically similar to both US300 and US600 treatments. Besides, for 

the US300 samples, the protein concentrations at 60 and 30 min of hydrolysis was statistically 

similar, as it was also for 5 and 15 min hydrolysis samples, else did the protein concentration increase 

significantly with each subsequent time step. For the US600 pre-treatment, the 30 min protein 

concentration was statistically similar to the levels observed for 15 min of hydrolysis, while other 

samples were significant different (higher for each subsequent time step). For US900, the protein 

concentration after 0.5 and 5 min of hydrolysis was statistically similar; in addition, the protein 

concentration at 30 min of hydrolysis was statistically similar to the levels at 15 and 60 min of 

hydrolysis. The protein concentrations among other time points were significantly different (higher 

for each subsequent time step).    
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4.3.2 Phase contents obtained after enzyme inactivation of the final hydrolysis volume from 

samples pre-treated with US 
 

The particulate and solid phase content, the filtered aqueous phase content, the multicomponent 

and lipid phase content of the various US trials and the control is presented in Figure 36, Figure 37 

and Figure 38, respectively. The mentioned contents originate from the final hydrolysis volumes. 

There are no significant differences in solid phase or particulate phase contents among the control 

and the different treatments.  

 

 

 

Figure 36: The figure presents the particulate and solid phase contents from the control, US300, 
US600 and US900 trials. Significant differences among similar phases between different treatments 
are indicated by different lower-case letters.   
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The filtered aqueous content for the various US trials and the control is presented in Figure 37. There 

are no significant differences among the different treatments.  

 

 

Figure 37: The figure presents the filtered aqueous phase/hydrolysate content for the control, US300, 
US600 and US900 samples. Significant differences among similar phases between different 
treatments are indicated by different lower-case letters. 
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Even though no significant differences for the multicomponent phase contents were found across 

the various US-treatments and control (Figure 38), US treatments displayed an enhancing effect in 

general. The multicomponent phase content seemed to increase with US300 and US600 treatments, 

as compared to the control, while decrease between the US600 and US900 treatments. However, the 

multicomponent content for US900 samples still presented seemingly similar values to that observed 

for US300 treatments. In addition to affect the multicomponent phase content, the lipid fraction 

obtained with the US900 treatment was significantly higher than that obtained with the US300 

treatment, while the amount of multicomponent phase seemed to be similar. The US600 and control 

samples displayed lipid phase content statistically similar to the US900 and US300 samples.  

 

 

Figure 38: The figure presents the contents of the lipid and multicomponent phases in addition to the 
sum of these phases for the control, US300, US600 and US900 samples. Significant differences among 
similar phases between different treatments are indicated by different lower-case letters. 
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4.3.3 The DPPH radical scavenging activity observed in hydrolysates from samples pre-treated 

with US 

 

The DPPH radical scavenging activity of hydrolysates from the different US pre-treatments and 

control is presented in Figure 39. For a protein concentration of 0.5, 1.0 and 2.0 mg/mL, there was a 

linear and significant increase in DPPH radical scavenging activity for increasing protein concentration 

(R2>0.982). This was observed for all investigated treatments. There was no difference in DPPH 

radical scavenging activity for concentrations of 0.5, 1.0 or 2.0 mg/mL across the different 

treatments. However, when investigating concentrations above 2.0 mg/mL, a decrease in DPPH 

radical scavenging activity was observed. Increasing the peptide concentration to 4.0 mg/mL and 6.0 

mg/mL caused significant reductions in DPPH radical scavenging for all the treatments as compared 

to 2.0 mg/mL for the same treatment. For the US300 treatment and a peptide concentration of 4.0 

mg/mL, the DPPH radical scavenging was significantly lower than the corresponding ones for the 

control and US900, the latter showing the highest value. At a peptide concentration of 6.0 mg/mL, 

only the hydrolysates from the US900 treatments resulted in a detectable DPPH radical scavenging 

activity.  

 

Figure 39: The figure presents the DPPH radical scavenging activity for the control, US300, US600 and 
US900 hydrolysates/filtered aqueous phases with a protein concentration of 0.5, 1, 2, 4 and 6 mg/mL. 
ND indicates that no DPPH radical scavenging activity was detected. Significant differences at similar 
conditions among different treatments are indicated by different lower-case letters. Significant 
differences at varying conditions within a certain treatment is indicated by different upper-case 
letters. 
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4.3.4 The relative protein solubility of hydrolysates from samples pre-treated with US 
 

The relative protein solubility of the hydrolysates from the control, US300 and US900 treatments at 

pH 2, 4, 6 and 11 is illustrated in Figure 40. The relative protein solubility for the control was not 

found to vary significantly among pH 2, 4, 6 or 11. The relative peptide solubility of US300 

hydrolysates was significantly higher at pH 11 as compared to pH 2. The relative solubility of US300 

hydrolysates at pH 4 and 6 were statistically similar to each other but also to the relative peptide 

solubility for US300 at pH 2 and 11. The US900 hydrolysates displayed significantly higher relative 

protein solubility at pH 6 and 11 as compared to pH 2 and 4. However, there was no statistical 

difference between the relative solubility at pH 2 and 4.  

In general, at pH 2 there was not significant differences in relative protein solubility among the 

various treatments. At pH 4, US300 displayed higher relative protein solubility as compared to US900 

and the control, which were statistically similar. At pH 6 and 11 the relative protein solubility was 

significantly higher for US300 and US900 as compared to the control, while there were not significant 

differences among the investigated US treatments at these pH values.  

 

Figure 40: The figure presents the relative protein solubility at pH 2, 4, 6 and 11 for the 
hydrolysates/filtered aqueous phases from the control, US300, US600 and US900 samples. Significant 
differences at similar conditions among different treatments are indicated by different lower-case 
letters. Significant differences at varying conditions within a certain treatment is indicated by 
different upper-case letters. 
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4.3.5 Discussion of the US results 
 

Applying US as a means of pre-treatment caused several changes in the course of protein 

solubilisation during the enzymatic hydrolysis. The protein concentration obtained after 0.5 and 5 

min of hydrolysis gradually decreased when increasing the power of the US treatment. As mentioned 

in Section 1.3.4 could this be due to any of the many effects posed by ultrasound on the MDCR 

system. But as the inertial cavitational effect could seem to be a minor contributor in such systems 

the “push-pull” mechanism caused by the alternating positive/negative acoustic pressures from the 

US-wave could explain the slow protein solubilisation in the early stages of hydrolysis. Ricce, Rojas et 

al. (2016) investigated whether vacuum packing carrot slices (or not) during US treatment had any 

effect on subsequent drying and rehydration. Samples treated directly in liquid medium seemed to 

benefit from the surrounding water as it flushed disrupted structures from the biomatrix and thereby 

increased porosity, enhanced drying and accelerated rehydration in the trials that followed. Samples 

vacuum-packed did not seem to benefit from this effect and were even slower to rehydrate than the 

control samples. This observation could advocate for the pushing-pulling effect of US where 

structures of low stiffness (certain proteins or carbohydrates) in the biomatrix are influenced, 

gradually disrupted and flushed out by the pulsing water (Pieczywek, Kozioł et al. 2017). When 

observing the early development for the US900 samples, namely the protein concentrations after 0.5 

and 5 min of hydrolysis, protein solubilisation seems to have halted when compared to the other 

treatments and the control. Thus, specific proteins within the MDCR could be influenced in similar 

ways as the pectin in the carrots of Ricce, Rojas et al. (2016), and if not removed continuously could a 

“clogging” effect occur and beneficial effects such as increased porosity would be absent (Wu, Du et 

al. 2011). This could explain the slow initial protein solubilisation as entangled/partially aggregated 

structures would be slower to dissolve, probably due to low enzyme accessibility. Meanwhile, in the 

present work, the US900 treatment also seemed to pose a negative effect on the protein 

concentration observed after 60 min of hydrolysis. US waves could potentially cause a combination 

of effects within the MDCR. First by posing a “push-pull” effect on complex components such as the 

myofibrillar structures and cause gradual fatigue and denaturation as suggested in section 1.3.4. The 

idea on gradual fatigue of certain structures by US was proposed by Miller (1985). Meanwhile, as 

bubbles and water seem essential for inertial cavitation, water soluble proteins such as sarcoplasmic 

or extracellular proteins could potentially be exposed to such mechanisms and thus aggregate at 

faster rates compared to the myofibrillar proteins, which only is exposed to the milder “push-pull” 

mechanism. Chang, Wang et al. (2015) treated vacuumed packed beef with US (40 kHz; 1500 W) and 

discovered shrunken sarcomeres, intracellular cavities and protein aggregates within the 
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extracellular space and the observations seemed to increase with treatment time (10-60 min). This 

could indicate that certain components required to maintain the elongated configuration of the 

sarcomere were partially disrupted while the proteins dissolved in aqueous environments were more 

prone to aggregation. Therefore, the work of Chang, Wang et al. (2015) does not reject the possibility 

of both inertial cavitation and push-pull mechanisms occurring simultaneously in such systems. 

Meanwhile, in the present work the US300 samples displayed two fast phases of protein 

solubilisation and did not experience the slow phases observed for the US900 samples. Also, the final 

protein concentration for the US300 samples were higher than compared to the control samples. 

One explanation is that the gradual increase of US power increases both the disruption of the 

sarcomeres and protein aggregation. A specific combination of these effects could introduce the 

differences in protein solubilisation observed for the US300 and US900 samples. The effect of 

sarcomere shrinkage could be due to denaturation of important structural proteins within or 

between the sarcomeres. Wang, Kang et al. (2018) treated m. semitendinosus with US (20 kHz; 5 ℃; 

20-40 min; 25 W/cm2) and observed accelerated degradation upon subsequent storage. This was 

attributed to better access for endogenous enzymes and could explain the significantly increased 

protein concentration observed for the US300 samples after 60 min of hydrolysis in the present 

work. The results of Wang, Kang et al. (2018) indicated increased degradation of the proteins desmin 

and troponin-T. Desmin is an important protein responsible for extending between the Z-disks in 

adjacent sarcomeres. Troponin is present in the thin filaments together with actin. Such findings 

could indicate that the “push-pull” mechanism is expressed between the sarcomeres through 

denaturation of proteins responsible to maintain their close association, in this case desmin. Kang, 

Gao et al. (2017) found myofibrillar fragmentation to increase with both US power and treatment 

time and desmin degradation was at a treatment time of 30 min heavily dependent on the power 

applied. Thus, desmin could be one of the proteins responsible for the altered protein solubilisation 

patterns observed for the various US treatments applied in the present work. This could potentially 

cause myofibrillar fragmentation which enhance enzymatic accessibility and increase the dissolved 

protein concentration as seen for the US300 samples after 60 min of hydrolysis. Further increasing 

power could potentially cause aggregation of protein species present in the sarcoplasm or 

extracellular space thereby reducing the benefits caused by the push-pull mechanism.  

 

The combination of the US and thermal effect in the reactor could also have resulted in the slow 

protein solubilisation observed during the late stages of the US900 hydrolysis (30-60 min). The effect 

of temperature on relevant proteins is discussed in the MW discussion Section 4.2.5. Interestingly, 

what might have been the case for the US samples is aggregation of sarcoplasmic/extracellular 
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proteins through inertial cavitation in compartments with high aqueous and bubble content (where 

inertial cavitation might be favoured). However, the temperature applied in the present work could 

have increased such effects. The proteins present at such locations are reported to link other 

proteinaceous structures together (Tornberg 2005) and could contribute to the slow protein 

solubilisation phases observed for the US900 samples.  

The significant increase in protein concentration observed for each treatment after enzyme 

inactivation/heat-treatment is believed to be due to similar causes as those discussed in Section 4.2.5 

and will not be mentioned further in this Section.  

Irrespective of the mechanism, the US pre-treatments induced structural alterations in the proteins 

within the raw material which upon subsequent enzymatic hydrolysis generated peptides capable of 

affecting the multicomponent phase content. This could be due to the formation of peptides able to 

interact favourably with both the polar and lipid phases. Proteolysis of myofibrillar proteins has been 

found to enhance the emulsifying properties as protein structures able to associate with both the 

aqueous and lipid phase are formed (Smith and Brekke 1985). While formation of emulsions often 

requires certain peptide size, it is suggested that smaller peptides could efficiently absorb to liquid-

oil-interphases (Pacheco-Aguilar, Mazorra-Manzano et al. 2008). This could explain the observed 

trend in the present work where a gradual increase of US power changed the product peptide 

properties. First for the US600 samples, the peptides seemed able to stabilise lipids in the increased 

content of the multicomponent phase. But as power and denaturation progressed to that of the 

US900 samples, the product peptides no longer associated to structures in the multicomponent 

phase, and instead caused a significant increase in the lipid phase as observed for the US900 

samples. Elevation in pure lipid content (higher content of pure lipids as compared to mixed phases) 

is often associated with increased DH% as the peptide size is reduced and the charge content per 

chain length is higher, but also because a higher content of lipids are released from the matrix 

(Kristinsson and Rasco 2000, Šližyte, Daukšas et al. 2005). The presence of peptides with protein-lipid 

associating properties seemed to be declining for the US900 samples compared to those of the 

US600 samples. However, the lipid content was significantly higher than that seen for US300 samples 

while the multicomponent phase content seemed relatively alike. This could suggest that more lipids 

were released from the solid phase upon enzymatic hydrolysis while the declining protein 

concentration could through aggregation have compensated for this, such that no significant 

difference was seen in solid or particulate phase content. Another possibility is that peptides 

containing significant hydrophobic domains could have associated to the lipid phase and resulted in 

the declining protein concentration seen after 60 min of hydrolysis for the US900 samples.  
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Applying US as a pre-treatment was found to both reduce and increase the DPPH radical scavenging 

activity relative the control. A suggestion for the reduction in the DPPH radical scavenging activity 

within each treatment/control as protein concentration was increased is given in Section 4.2.5 but 

will be repeated briefly for convenience. A high content of charged residues within a peptide is 

believed to interact unfavourably to the solvent applied (ethanol) during radical scavenging activity 

investigations, these groups are in general believed to present low DPPH radical scavenging activity 

and might exaggerate this effect by precipitating and absorbing light at the wavelength applied 

during the trials (Dávalos, Miguel et al. 2004, Cumby, Zhong et al. 2008, Yoshikawa, Hirano et al. 

2012, Dissanayake, Ramchandran et al. 2013).  

The significant reduction observed for the US300 samples (4 mg/mL) compared to that of the control 

could thus be due to the loss of radical scavenging groups to lipid-protein structures in the 

multicomponent phase. The significant increase observed for the US900 samples (4 and 6 mg/mL) 

compared to the control could be due to a higher content of hydrophobic peptides in the product 

aqueous phase. Some of which might be present in the lipid phase which was significantly increased 

as that seen for the US300 samples. These observations do not contradict the development of the 

protein concentration throughout the hydrolysis, and the reduction seen for the US900 samples at 60 

min of hydrolysis could be due to peptide loss through the lipid phase or aggregation but seem to 

occur as hydrophobicity increase. But as mentioned by Bruno, Kudre et al. (2019), variations in lipid 

extraction and thus the lipid phase content is affected by the overall degradation of matrix 

structures. First, a high degree of hydrolysis and protein solubilisation would release a high content 

of lipids originally unextractable. Second, a high degree of hydrolysis and protein solubilisation would 

also reduce the formation of aggregates that might form upon prolonged high temperature 

hydrolysis or during enzyme inactivation which can entrap lipids. Third, a high degree of hydrolysis 

and protein solubilisation would indicate high charge content per chain length and therefore 

unfavourable interactions with the released lipid phase. The US300 samples seemed to increase the 

multicomponent phase as the lipid phase content decreased and there was seemingly no change in 

solid or particulate content which rule out that additional protein-aggregates containing lipids were 

present in these phases. However, there was a slight increase in the aqueous product as compared to 

the control, US600 and US900 samples. This could indicate the presence of lipid-peptide structures 

enriching this phase and thereby contributing to the reduction observed for the lipid phase content 

and similar structures might be responsible for what seem to be a slight increase in the 

multicomponent phase. One possibility is the disruption of structures which liberate phospholipids. 

Hydrolytically liberated phospholipids have been reported to associate with the protein containing 

phases and might therefore be present in the hydrolysate (Slizyte, Nguyen et al. 2004). However, 

when increasing the US power, the aqueous phase content seemed to drop from the levels observed 
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for the US300 samples to those similar to the control samples. This could indicate the presence of 

peptides favouring formation of protein-lipid structures allowing their presence in the 

multicomponent phase instead of the aqueous phase as US power was increased (to 600 W). This 

seemed to occur solely on the behalf of the aqueous phase content, suggesting altered peptide 

properties or an altered effect on lipid structures. However, for the US900 samples the 

multicomponent phase seemed similar to that of the US300 samples, while the lipid phase content 

was significantly higher than that of the US300 samples, this also seemingly on the account of the 

aqueous phase product. Which together with the significantly increased DPPH radical scavenging 

activity seen for the US900 samples (4 and 6 mg/mL) and significantly reduced protein concentration 

after 60 min of hydrolysis suggests that peptides containing groups interacting relatively favourable 

with lipids (and ethanol) might contribute to the enhanced lipid phase.  

 

It might seem as a the content of hydrophobic peptides gradually increased as the power applied 

during US pre-treatment was increased. Zou, Xu et al. (2018) investigated how applying a US 

treatment (20 kHz; 20 min; T < 8 ℃) affected the properties of actomyosin. The content of near-

surface or surface charges was found to increase when the treatment power was increased. 

However, this was only up to a certain threshold were the application of higher power levels reduced 

the surface charge content observed on the actomyosin molecules. The same trend was observed for 

surface hydrophobicity. It should be noted that both surface charge content and surface 

hydrophobicity was maintained at levels higher than that of the control (no US treatment) at the 

power level above those found to result in the peak of surface hydrophobicity and surface charge 

content. The same was seen for emulsion activity, while emulsion stability declined at every 

subsequent US power. Even though the investigations of Zou, Xu et al. (2018) were done on 

actomyosin in an aqueous suspension, the findings display similarities to the present work. To be 

noted is that no enzymatic hydrolysis was conducted subsequent the US treatment, however the 

groups present at the protein surfaces would be those (probably) available for an enzyme and 

thereby relevant. The effect of ultrasound on the actomyosin molecule seemed to cause 

denaturation which up to certain point elevates both charged and non-charged species, which would 

coincide with the gradually enhanced multiphase content seen for US300 and US600 samples in the 

present work. The surface hydrophobicity, charge content and emulsion activity, peaked at the same 

power setting and the subsequent power causes a drop in the mentioned properties (still presenting 

values higher than for the control), which present similarities to the trend seen between US600 and 

US900 in the present work. It must be noted that emulsion related properties were not investigated 

in the present work, but such structures could have contributed to enhanced multiphase contents. 
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Exactly how the results of Zou, Xu et al. (2018) would affect an subsequent hydrolysis would 

obviously depend on many factors but because varying (increasing then decreasing) levels of 

hydrophilic + hydrophobic groups were present at the surface of the protein complexes it could 

certainly explain the results obtained in the present work. In the present work, the thermal effect in 

the reactor could have caused a combined contribution which explain the product peptide properties 

of the US900 samples seemingly dominated by hydrophobic residues (interpreted through increase 

of DPPH radical scavenging and elevated lipid content). This as both the thermal and US effect 

seemingly promotes exposure of hydrophobic surfaces on the proteins present in the MDCR. 

Meanwhile, the US effect also seemed to promote exposure of hydrophilic groups which could 

contradict the negative thermal effect seen for samples treated with MW.  

 

Enzyme accessibility could also be promoted by US. In fact, Zou, Zhang et al. (2018) treated 

actomyosin with US (20 kHz; 20 min) and found the treatment to immediately increase myofibrillar 

fragmentation. The content of free actin increased significantly 0 h after the treatment indicating 

dissociation of the actomyosin complex. The mentioned work was conducted with an actomyosin 

suspension, and thus the US mechanisms at play might differ from those displayed in the present 

work. Meanwhile, the fact that actin and myosin often are considered the richest sources of peptides 

displaying antioxidant and functional properties within raw materials such as that treated in the 

present work and the observed results of the lipid-associated phases and the DPPH radical 

scavenging activity might suggest that they are affected by the US pre-treatments (Smith and Brekke 

1985, Udenigwe and Howard 2013, Borawska, Darewicz et al. 2016). 

 

The relative protein solubility observed for the US300 and US900 samples at pH 4 suggest the 

presence of peptides with varying properties due to US power. In general, a higher DH% is associated 

with elevated protein solubility at various pH. This is due to the increased number of charges per 

chain length as peptide bonds are hydrolysed (Halim, Yusof et al. 2016), which seem to be the case 

for US300 and US900 hydrolysates at pH 6 and 11. However, the peculiar results of relative protein 

solubility against pH observed between the control, US300 and US900 suggest that some structures 

in the product not are affected by the pre-treatment, some depend on power while some seem 

independent on power. The similarities and differences in the protein solubility at various pH seen 

for US300, US900 and control does not necessarily originate from the same peptides. However, the 

results could indicate that US affect specific proteins within the raw material. Inertial cavitation, 

producing significant chemical and mechanical effects is reported to affect the main components 

within the present raw material, as discussed in Section 1.3.4. However, the seemingly specific effect 

seen in the present work could advocate for the push-pull effect mentioned in the work of Ricce, 
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Rojas et al. (2016). In the mentioned work the elastic component (in that specific case pectin) 

become particularly vulnerable to the continued back-forth oscillation posed by US and eventually 

dissolved when in direct contact with water. The push-pull mechanism could through a gradual 

fatigue of protein structure cause denaturing in the raw material, while other structures are spared. 

Wang, Yang et al. (2017) observed this type of specificity when treating actomyosin with ultrasound. 

Over a certain treatment period myosin seemed to exhibit slight denaturation while the structure of 

actin completely disappeared. This, together with the effect on desmin and troponin as mentioned 

by Kang, Gao et al. (2017) and Wang, Kang et al. (2018), the changes in sarcomere structure 

mentioned by Chang, Wang et al. (2015), suggest that such specificity could be due to an push-pull 

mechanism. This while proteins present in aqueous dominated environments could be susceptible 

for structural alteration through inertial cavitation.  

 

Kangsanant, Murkovic et al. (2014) and Misir and Koral (2019) are among few who have investigated 

the potential of US as a pre-treatment or a simultaneous treatment for enzymatic hydrolysis of 

substrates dominated by muscle proteins. Kangsanant, Murkovic et al. (2014) produced fish (fillet) 

protein hydrolysate through enzymatic hydrolysis (55 ℃; 1 h) after an ultrasound pre-treatment (10 

or 70 W; 15, 30 or 45 min). The pre-treated fish homogenate resulted in a lower DH% when 

compared to the control. Kangsanant, Murkovic et al. (2014) mention that the pre-treated 

homogenate appeared more viscous than the non-treated homogenate. This indicates protein-

protein interaction prior to the enzymatic hydrolysis, possibly through hydrophobic interactions. 

Exposure of hydrophobic groups is indicated in the present work through enhanced DPPH radical 

scavenging activity. In fact, both powers applied by Kangsanant, Murkovic et al. (2014) increased the 

DPPH radical scavenging activity. However, the DH% was reduced which indicate the presence of 

fewer cleavage sites probably due to aggregation which also the viscous pre-treated homogenate 

suggests. Meanwhile there were similarities between the present work and the work of Kangsanant, 

Murkovic et al. (2014), especially when observing the results for the US900 samples, even though 

aggregation only seem slight after 60 min of hydrolysis.  

Misir and Koral (2019) investigated the use of US during (assisted) (60 ℃; 1 h; US power or frequency 

not specified) enzymatic hydrolysis of rainbow trout by-products with Alcalase. However, as Alcalase 

has been displayed to exhibit increased catalytic activity in the presence of US, it is difficult to state 

the effect of US on the raw material (Ma, Huang et al. 2011). Meanwhile, Misir and Koral (2019) 

presented yields seemingly increased by US-assisted hydrolysis as compared to the control. However, 

no significant change (except for valine) was observed in the amino acid composition between 

conventional hydrolysis and US-assisted hydrolysis suggesting minor effect on the structure of the 

raw material, and the observed effect could be due either to enhanced Alcalase activity or increased 
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substrate accessibility within the matrix, this without causing any significant denaturation. The work 

by Misir and Koral (2019) therefore seem to present results which carry similarities to those found 

during the US300 treatment in the present work, where there seem to be a slight increase in 

dissolved proteins after 60 min of the enzymatic hydrolysis. In fact Misir and Koral (2019) observed 

increased DH between 30 and 60 min of hydrolysis when applying US during the proteolysis. The US-

assisted hydrolysis further generated a hydrolysate which significantly increased both oil-binding and 

foaming capacity, which even though not measured in the present work, could draw lines toward the 

observed contents of multicomponent and lipid phases in the present work.  
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4.4 The results and discussion on the effect of pre-treating samples with high-pressure 

processing (HPP) 
 

4.4.1 Protein solubilisation during the enzymatic hydrolysis after HPP pre-treatments 
 

 

Figure 41: The figure presents the protein concentration at 0.5, 5, 15, 30 and 60 min of hydrolysis for 
the control, HP100, HP200, HP400 and HP600 samples. In addition, the protein concentration 
observed after enzyme inactivation of the final hydrolysis volume is presented for the mentioned 
samples. Significant differences at similar conditions among different treatments are indicated by 
different lower-case letters. Significant differences at varying conditions within a certain treatment is 
indicated by different upper-case letters. 
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Figure 41. Applying a pressure of 100 MPa (HP100) during HPP pre-treatment of the MDCR samples 
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(HP200, HP400 and HP600) caused the initial soluble peptide content to significantly decrease as 

compared to the control, which indicates structural alterations of the proteins within the material. 

The general trend observed after 5 min of hydrolysis seems to be a reduction in the content of 

dissolved peptides for all HP treatments apart from HP600, which not was significantly different from 

the control despite the low peptide solubility observed after 0.5 min of hydrolysis. The protein 

concentration in HP200 was not significantly different to that in other treatments after 5 min of 

hydrolysis, while HP100 and HP400 displayed significantly lower protein concentrations when 

compared to the levels in the control. After 15 min of hydrolysis the only significant difference 

among treatments was observed for the higher protein concentration in HP600 samples as compared 

to that within HP100 samples, while all other treatments were statistically similar to these contents. 

When the hydrolysis time was further increased to 30 and 60 min, increased pressure during pre-

treatment seem to benefit the protein extraction. The HP400 samples displayed significantly higher 

content of solubilised proteins as compared to the control and lower pressures but presented 

significantly lower protein content than that of the HP600 samples. This was also observed after 30 

and 60 min of hydrolysis when these treatments were compared, but also for the 60 min final 

hydrolysis volume samples among the various treatments. Within HP600 samples there was a 

significant increase in solubilised peptides at each point of hydrolysis but also between the 60 min 

and 60 min final hydrolysis volume samples indicating the release of soluble proteins during enzyme 

inactivation. HP400 displayed a similar trend to that observed for HP600 except for the 0.5 and 5 min 

hydrolysis points having similar protein concentrations, indicating a slow initial rate of hydrolysis. 

Reducing the pre-treatment pressure to 200 MPa reduced the final protein concentrations seen for 

both the 60 min and 60 min final hydrolysis volume samples to levels similar that of HP100 and the 

control, but also reduced the significant difference between the 15 and 30 min of hydrolysis peptide 

content. Reducing the pre-treatment pressure further to 100 MPa created a protein concentration 

pattern similar to that of the control, except for the 0.5 and 5 min samples displaying statistically 

similar protein concentrations.  
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4.4.2 Phase contents obtained after enzyme inactivation of the final hydrolysis volume from 

samples pre-treated with HPP 
 

The particulate and solid phase content, the filtered aqueous phase content, the multicomponent 

and lipid phase content for the various HPP samples and the control is presented in Figure 42, Figure 

43 and Figure 44, respectively. There were no significant changes in particulate or solid phase 

content as the pressure applied during the pre-treatment was altered. 

 

Figure 42: The figure presents the particulate and solid phase contents from the control, HP100, 
HP200, HP400 and HP600 samples. Significant differences of similar phases among different 
treatments are indicated by different lower-case letters.  
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The filtered aqueous product / hydrolysate was significantly reduced when hydrolysis was conducted 

after applying pre-treatment pressures above 200 MPa when compared to the control and HP200. 

HP100 displayed no significant difference in aqueous phase content as compared to the other 

treatments.  

 

Figure 43: The figure presents the filtered aqueous phase/hydrolysate content for the control, HP100, 
HP200, HP400 and HP600 trials. Significant differences of similar phases among different treatments 
are indicated by different lower-case letters. 

 

 

a
ab

a

b
b

920

940

960

980

1000

1020

1040

Control HP100 HP200 HP400 HP600

P
h

as
e 

co
n

te
n

t 
[g

]

Treatment

Filtered aqueous phase



112 
 

The multicomponent phase content was significantly lower for HP600 when compared to HP400 and 

the control, but not different to the measured content of HP200 or HP100. This could indicate that 

lower pressures during pre-treatment, namely HP100 or HP200, could promote multicomponent 

phase formation when compared to the control, HP400 and especially HP600. Meanwhile the 

multicomponent phase contents measured for HP100 and HP200 were not significantly different that 

of HP600, HP400 and the control. The lipid fractions for HP400 and HP600 were similar but 

significantly greater than that of HP200, HP100 and the control. The lipid content of HP200 was 

significantly lower compared to that of the content of the control while the content from HP100 was 

statistically similar to both. The lipid phase + multicomponent phase content varied between certain 

treatments. HP400 presented a lipid phase + multicomponent phase content significantly higher than 

that of HP200 and the control but was statistically similar the content in HP100 and HP600. Besides, 

there was no statistical difference in the lipid phase + multicomponent phase content among the 

various treatment.  

 

 

Figure 44: The figure presents the contents of the lipid and multicomponent phases in addition to the 
sum of these phases for the control, HP100, HP200, HP400 and HP600 samples. Significant differences 
of similar phases among different treatments are indicated by different lower-case letters.   
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4.4.3 The DPPH radical scavenging activity observed in hydrolysates from samples pre-treated 

with HPP 
 

The DPPH radical scavenging activity of the hydrolysates from the control, HP100, HP200 and HP600 

with protein concentrations 0.5, 1, 2 and 4 mg/mL is presented in Figure 45. The DPPH radical 

scavenging activity for the control and HP100 was statistically similar at all concentrations. Changes 

were observed at certain peptide concentrations when pre-treatment pressure was increased 

further. Hydrolysates from HP200 and HP600 with concentrations 0.5 and 1 mg/mL displayed 

statistically similar scavenging activity as that measured in the hydrolysate of the control and HP100. 

However, the scavenging activity measured for the HP200 hydrolysate with a peptide concentration 

of 2 mg/mL was significantly lower than that seen for HP100 and control hydrolysates at the same 

concentration. When increasing the hydrolysate concentration to 4 mg/mL a significantly higher 

scavenging activity was observed for HP200 hydrolysates when compared to the control and HP100 

at the same concentration. HP600 generated a hydrolysate where protein concentrations of 0.5 and 

2 mg/mL yielded statistically similar DPPH radical scavenging. This scavenging activity was the lowest 

measured at a protein concentration of 2 mg/mL for any hydrolysate.  

 

Figure 45: The figure presents the DPPH radical scavenging activity for the control, HP100, HP200 and 
HP600 hydrolysates/filtered aqueous phases with protein concentration 0.5, 1, 2 and 4 mg/mL. 
Significant differences at similar conditions among different treatments are indicated by different 
lower-case letters. Significant differences at varying conditions within a certain treatment is indicated 
by different upper-case letters.  
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4.4.4 The relative protein solubility of hydrolysates from samples pre-treated with HPP 
 

The relative protein solubility of the hydrolysates from the control, HP200 and HP600 at pH 2, 4, 6 

and 11 is presented in Figure 46. The relative protein solubility of peptides originating from a 

hydrolysis where the MDCR was pre-treated with either HP200 or HP600 was significantly higher 

than that of the control over all pH investigated. In addition, the relative protein solubility of HP200 

samples was significantly greater than that of HP600 samples at pH 6. Else at pH 2, 4 or 11 there was 

no significant difference between the HP200 or HP600 samples.  

For HP200 the relative protein solubility was significantly higher at pH 11 and 6 as compared to the 

solubility measured at pH 2 and 4. At these two pH pairs there was no statistical difference in protein 

solubility. The relative solubility for HP600 hydrolysates was significantly higher at pH 11 as 

compared to the relative solubility at other pHs. Furthermore, hydrolysates from HP600 exhibited a 

solubility which was significantly higher at pH 6 relative to pH 4, but both were statistically similar to 

the relative solubility measured at pH 2.  

 

 

Figure 46: The figure presents the relative protein solubility at pH 2, 4, 6 and 11 for the 
hydrolysates/filtered aqueous phases from the control, HP200 and HP600 samples. Significant 
differences at similar conditions among different treatments are indicated by different lower-case 
letters. Significant differences at varying conditions within a certain treatment is indicated by 
different upper-case letters. 
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4.4.5 Discussion of the HPP results  
 

The increased protein concentrations observed at the end of the HP400 and HP600 hydrolyses 

indicates that the protein structures were modified such that certain peptide cleavage sites were 

available in a way that when acted upon by the enzymes, a higher mass of peptides were released, 

either through a higher number of peptides or heavier peptides. Another possibility is that the 

biomatrix structure was altered, such that bonds not available in the control or upon treatment by 

US or MW for that matter, were made accessible for the enzymes after the HP treatment. This could 

occur through disruption of muscular structures upon HPP, enhancing enzyme access within the 

matrix. Worth mentioning is that two opposing effects occurred during the pre-treatment and 

hydrolysis. HPP is known to contradict the thermal effect seen on compounds such as proteins 

through volume reduction, while thermal fluctuations increase volume (Fernandez-Martin 2007). 

Therefore, as the material was treated during HPP certain structural alteration would occur through 

reduced compound and protein volumes. The structures would upon exposure to the temperatures 

in the reactor initially offer a certain number of enzyme cleavage sites which were acted upon. 

However, the compressed proteins would after a certain time start to express the thermal effect 

from the reactor environment thus exposing new cleavage sites for the enzyme. While some proteins 

in the HP treated raw material could have been insoluble after the pre-treatment, the thermal effect 

could “revive” their interaction with water and thereby enable proteolysis and peptide release into 

the aqueous phase. In such a way, the number of enzymatic cleavage sites every protein exposed to 

the polar environment and the enzyme, could increase because of the duality of effects brought by 

HPP and the reactor temperature.  

 

While the duality of effects could have caused the overall protein extraction to increase, there are 

other possibilities for the observed increase in the final protein concentration as seen for HP400 and 

HP600. The peptides dissolved and enriching the aqueous phase for HP400 and HP600 must originate 

from a reduction in one of the other phases. However, as seen in Figure 42 there were no significant 

reductions in the solid or particulate phase contents. However, there were both reduced and 

elevated phase contents among the multicomponent, lipid and filtered aqueous phases indicating 

that the altered extraction yield could originate from these, maybe as new interactions between 

components were brought by HPP. The HP100 and HP200 samples exhibited gradually reduction in 

initial/0.5 min protein concentrations during hydrolysis and thus seem to offer alterations in protein 

confirmation which could benefit the formation of peptides able to form structures associated with 

the multicomponent phase. At the same time the lipid fraction gradually decreased indicating a 

possible entrapment of lipids in the multicomponent phase. Smith and Brekke (1985) found partially 
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proteolysis of myofibrils to generate peptides able to interact with both lipid and aqueous phases. 

Thus, potentially could peptides have been formed which associate with lipids and thereby increased 

the multicomponent phase, as observed for both HP100 and HP200 samples. However, this might 

also be due to less lipids actually released from the matrix which would explain lower content of 

lipids as these were entrapped in protein structures not affected by the enzymes, as mentioned by 

Bruno, Kudre et al. (2019).  

The results obtained for HP400 and HP600 suggest something not seen before in the present work. 

Especially should it be noted that while the multicomponent phase content of HP400 samples was 

statistically similar to that of the control, the lipid phase content was significantly higher than that of 

the control. This could suggest a lipid phase enriched with hydrophobic peptides. While formation of 

emulsions often requires certain peptide size, it is suggested that smaller peptides might form upon 

higher DH% and could efficiently absorb to liquid-oil-interphases if containing certain amino acids 

(Pacheco-Aguilar, Mazorra-Manzano et al. 2008). Such peptides might have accompanied the lipid 

phase of HP400. But because there in addition was an increased protein concentration after 60 min 

of hydrolysis, it suggests that both lipids and proteins suddenly were present at levels higher than for 

HP100, HP200 and the control samples. The increase in lipid phase and final protein concentration 

seen for pressures above 200 MPa were accompanied by a significant reduction of aqueous product 

phase. This suggests that the structures responsible for the elevated lipid and dissolved protein 

contents originated from this phase and because it seemingly elevated lipid and protein levels, it is 

believed to be protein-lipid structures. These structures could be disrupted by the two highest 

pressures applied during pre-treatments and could possibly dissociate further during the enzyme 

inactivation. However, as this release of lipid and proteins was not observed through an elevated 

lipid fraction or an elevated 60 min final hydrolysis volume peptide concentration for the control, 

HP100 or HP200, it seems certain that pressure-induced destabilization was required to separate the 

components within these complexes. However, because the difference between the 60 min and 60 

min final hydrolysis volume protein concentrations seemed to decrease upon elevated pressures 

applied during the pre-treatment, this could indicate that gradually less proteins were solubilised 

during the enzymatic inactivation and because collagen is reportedly unaffected by high pressure 

treatments (Gekko and Koga 1983), suggestions are that the proteins released during enzymatic 

inactivation were species affected by pressure, thus not of a collagenous type as indicated earlier in 

the present work. Chapleau, Mangavel et al. (2004) investigated how high-pressure treatments (10 

min; 100,200, 300, 400, 500 and 600 MPa; 20 ℃) affected the structure of myofibrils. Interestingly, 

two groups of proteins were affected by increasing pressure levels. Applying 100 MPa increased the 

size of both the two protein structures compared to the control (one originally large and one 

originally small structure), further increasing the pressure (200 MPa) decreased the size of the 
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originally largest protein structure until it disappeared for pressures above 200 MPa. The originally 

smallest structure displayed a steady increase in size as pressure was increased from 0.1-600 MPa. 

The disappearance of the largest structure mentioned by Chapleau, Mangavel et al. (2004) might be 

due to disruption of similar structures as those seemingly affected in the present work which thus 

would seem to be myofibrillar structures possibly containing entrapped lipids. Meanwhile, the 

smallest structure which gradually displayed an increasing size in the work of Chapleau, Mangavel et 

al. (2004) could be the structure mentioned by Hsu, Hwang et al. (2007) and Ma and Ledward (2004). 

Namely a heat labile structure (transition temperature close to 50 ℃) seemingly formed by 

aggregated myosin and actin through S-S and hydrogen bonds and not hydrophobic interactions. 

 

Applying HP as a pre-treatment was found to both reduce and increase the DPPH radical scavenging 

activity relative to the control. A suggestion for the reduction in the DPPH radical scavenging activity 

within each treatment/control as protein concentration increased is given in Section 4.2.5 but will be 

repeated briefly for convenience. A high content of charged residues within a peptide is believed to 

interact unfavourably to the solvent applied (ethanol) during radical scavenging activity 

investigations, these groups are in general believed to present low DPPH radical scavenging activity 

and might exaggerate this effect by precipitating and absorbing light at the wavelength applied 

during the trials (Dávalos, Miguel et al. 2004, Dissanayake, Ramchandran et al. 2013) (Cumby, Zhong 

et al. 2008, Yoshikawa, Hirano et al. 2012). First, HP100 seemed to enhance the association between 

lipid and peptides. However, this might be due to the formation of protein structures entrapping 

lipids as an increased content of the large myofibrillar derivates was reported by Chapleau, Mangavel 

et al. (2004) when treating myofibrils with 100 MPa. The size of the mentioned structure seemed to 

gradually decrease when exposed to pressures above 100 MPa and disappeared when exposed to 

pressures higher than 200 MPa. However, such structures might explain the increased 

multicomponent phase content, at least for the HP100 samples. The course of protein solubilisation 

throughout the hydrolysis for HP100 exhibited variations from the control at 0.5 and 5 min of 

hydrolysis, however there were no differences at later stages of the hydrolysis. This indicates slight 

changes in parental protein structures. These structural alterations were not accompanied by any 

changes in the DPPH radical scavenging activity as compared to the control. The absence of effect on 

DPPH radical scavenging activity could be as the peptides present in the aqueous product of HP100 

were similar to those present in the control. When the pre-treatment pressure was elevated further 

to 200 MPa, there was observed significant changes in the course of protein solubilisation during the 

enzymatic hydrolysis, suggesting further parental protein denaturation. While there were no changes 

in the solid contents, there seemingly was for the other phases. First to note is that the lipid phase 

seemingly decreased, suggesting that pure lipids could associate with the multicomponent phase. 
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However, there was no change in the multicomponent phase content as compared to what was 

observed for the HP100 samples. This could partially be explained if less proteins were needed to 

stabilize the certain amount of lipids within the multicomponent phase, but also due to what seemed 

to be an increase in the aqueous product content. As already mentioned, when applying pressures 

above 200 MPa during the pre-treatment, protein-lipid structures seemed to be destabilised and 

fractionated. However, for HP200 the opposite seemed to occur. An explanation for the observed 

increases in aqueous phase contents could be disruption of cellular membranes. Mammalian cell 

membranes are comprised of a double layer mainly composed of phospholipids and cholesterol 

(Spector and Yorek 1985). Upon hydrolysis of similar raw materials formation of emulsions has for 

example been associated to the presence of triglycerides while phospholipids mainly are located in 

the protein containing fractions (Slizyte, Nguyen et al. 2004). Thus, if the pre-treatment were to 

disrupt such structures, could the liberation of phospholipids contribute to the increase of lipid 

species present in the hydrolysate and thereby explain the increased content of aqueous phase for 

HP200 samples. Meanwhile, at higher pressures interactions might occur which favour the presence 

of phospholipids within either the multicomponent or the lipid phase. This as the aqueous phase 

decreases. But as mentioned, this decrease could be due to the disruption of such interactions 

already present irrespective of the pre-treatment. It would seem as such structures were present 

within the aqueous phase of the control, which was demonstrated by the HP600 samples (increase in 

protein concentration and lipid content on behalf of aqueous phase content), and it seems likely that 

certain pre-treatment conditions (HP200) could promote further formation of these.  

The peptides able to form such associations could be responsible for the peculiar DPPH radical 

scavenging activity seen for HP200, where radical scavenging both increased and decreased 

significantly at certain protein concentrations as compared to the control. Such behaviour could be 

explained by peptides relatively unstable in ethanol while simultaneously displaying relatively high 

DPPH radical scavenging activity. More precisely, the peptides could display both hydrophilic and 

hydrophobic properties. This could also explain what seemed to be properties enabling firm 

association with lipid components as observed in the reduced lipid content for HP200, stable 

multicomponent phase and seemingly an elevated aqueous product. Xue, Xu et al. (2018) treated 

myofibrils with high pressure (9 min; 200 MPa; 25 ℃) and found the treatment to increase protein 

solubility, surface hydrophobicity and reactive -SH content. A parental protein presenting such 

properties would possibly enable formation of peptides which in fact could interact with both the 

aqueous and lipid phase and could therefore explain the results observed in the present work for 

HP200 samples. However, when the pre-treatment pressure was increased to 600 MPa in the 

present work, these properties seemed absent. For the HP600 samples the solubilisation during the 

hydrolysis occurred efficiently (significantly increased) between each time step, which could indicate 
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a high presence of low molecular weight species which easily were solubilised by the enzymes. This 

would further allow the formation of peptides with a high content of charges per peptide chain 

length. The DPPH radical scavenging activity for HP600 supports the presence of peptides of a highly 

hydrophilic nature, as unfavourable interaction with the solvent seemed to occur and the DPPH 

radical scavenging was low.  

 

Both the HP200 and HP600 samples presented significantly increased relative protein solubilities 

over the investigated pH interval when compared to the control samples. Regarding the significant 

difference of the solubility observed at pH 6 between HP200 and HP600 could this originate from 

peptides released from the protein-lipid structure seemingly dissociated by pressures higher than 

200 MPa. This could introduce species to the HP600 hydrolysate which exhibit lower peptide 

solubility at pH 6. The fact that both HP200 and HP600 hydrolysates contained peptides with 

relatively high solubility at pH 2, 4, 6 and 11 as compared to the control samples is probably due to 

structural alterations by the pre-treatment exposing more cleavage sites and thus increasing DH%. 

Elevated DH% has been associated with elevated peptide solubility (Halim, Yusof et al. 2016). For the 

HP600 samples, the hydrolysates seemed to exhibit relatively similar properties to that obtained for 

the HP200 samples, which might suggest that the increased pressures merely enhance accessibility 

within the matrix to similar cleavage sites. However, when observing the DPPH radical scavenging 

activity or the ability to form multicomponent phases, it would seem to not be the case.  

These variations could be due to the presence of different peptides in the respective hydrolysates. 

Possibly from the protein structures apparently disrupted by pressures above 200 MPa, or from 

further denaturing of the same parental proteins, or a combination of both these factors.  

Jung, de Lamballerie-Anton et al. (2000) presented results were high-pressure treated myofibrils 

displayed significantly enhanced solubility when exposed to pressures of 300 MPa and higher, which 

coincides with the size reduction and eventually disappearance of large myofibrillar structures 

observed by Chapleau, Mangavel et al. (2004). This enhanced solubility seemed to originate 

especially from low molecular weight species namely myosin light chains. This together with the 

gradual increase of low molecular weight species generated from sarcoplasmic proteins upon 

increasing treatment pressure, as mentioned by Villamonte, Pottier et al. (2016), could contribute to 

the effective protein solubilisation observed in the present work, for HP400 and HP600 samples. This 

would introduce species which originally displayed low molecular weight and upon enzymatic 

hydrolysis would yield short chained peptides, thus high solubility across pH and low DPPH radical 

scavenging activity due to high charge content and unfavourable ethanol interaction. In addition, the 

significant disruption of myofibrillar structures observed by Jung, de Lamballerie-Anton et al. (2000) 



120 
 

could increase the extraction of such species from the earlier enclosed organelles. Such disruption 

could also explain the increase in lipid content as these structures could hold entrapped oil. 

Meanwhile, the disappearance of the large myofibrillar protein structures mentioned by Chapleau, 

Mangavel et al. (2004) was accompanied by the gradual size increase of another. Investigations done 

by Hsu, Hwang et al. (2007) discovered that high pressure treatments above a certain threshold 

altered the native actomyosin structure and formed aggregates seemingly stabilised by S-S bonds. 

These complexes appeared to present structures which, even though aggregated, were 

scattered/spread and could possibly allow increased enzyme accessibility. Jung, de Lamballerie-

Anton et al. (2000) treated meat in vacuum-sealed bags and exposed the samples to high pressure 

(260 s; 0.1-600 MPa; 10 ℃). Pressures above 130 MPa significantly increased the surface area of the 

myofibrils, which could correspond to the state of the scattered aggregates mentioned by Hsu, 

Hwang et al. (2007). Angsupanich, Edde et al. (1999) reported that aggregated structures of 

myofibrils were stabilised by hydrogen and S-S bonds, and seemingly heat labile compared to the 

native thermal stability of the respective constituents. This was in accordance with the work of Ma 

and Ledward (2004), who treated beef with high pressure (0.1-800 MPa; 20-70 ℃; 20 min) and found 

the actin and myosin structure modified at 200 MPa (20 ℃) and the actin structure gone after 

treatment at 400 MPa (20 ℃). In the work of Ma and Ledward (2004) a new structure/aggregate was 

reported to occur after treatment at 200 MPa (20 ℃) with thermal transition temperature of 50.1 ℃. 

The same was seen in pure myofibrils where actin and myosin were exposed to 400 MPa which 

seemed to fully alter their native structure into this new complex/aggregate, which further was 

stable up to 800 MPa. The gradual introduction of such an aggregate which seemingly present a 

structure with increased surface area could potentially benefit a subsequent hydrolysis. In addition, it 

would seem as aggregation occur through S-S and hydrogen bonds and not hydrophobic interactions 

might benefit a subsequent hydrolysis. This gradual alteration of the major MDCR constituents could 

potentially explain the differences and similarities observed among the HP200 and HP600 samples in 

the present work. However, it was probably accompanied by the release of smaller molecular weight 

proteins as described above. This would lead to both increased solubility over pH, with variations due 

to different extents of these phenomena, but also alterations in the DPPH radical scavenging activity 

due to the same reason. 

 

Kim, Son et al. (2016) investigated how proteolytical degradation of fish powder proteins were 

affected by simultaneously applying high pressure (0.1 and 300 MPa; 50 ℃; 1 h). The hydrolysates 

produced at 300 MPa presented a content were most peptide species had a molecular mass lower 

than 5 kDa. It should be mentioned that HP might have a direct effect on the enzyme activity, thus 

reducing the comparability to the present work (Hendrickx, Ludikhuyze et al. 1998). Meanwhile, the 
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work done by Kim, Son et al. (2016) seemed to offer observations from the pressure-region which in 

the present work seemed to initiate the increased protein concentration seen after 60 min of 

hydrolysis. This was also observed by Kim, Son et al. (2016) through increased TSS (total soluble 

solids) and TWSN (total water soluble nitrogen) when conducting the hydrolysis at 300 MPa. This was 

observed for all the different combinations of enzymes applied. In addition was a considerable 

increase in DH% observed for the various enzyme combinations (the increase ranging between a 12-

21 %) which indicates considerable increase in peptide bond exposure, which together with the high 

content of low molecular weight components would increase the charge content for the peptides in 

the hydrolysate and in such way could explain the increasing hydrophilic properties which seemed to 

dominate the hydrolysates obtained from the highest pressure treatments in the present work.  
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7 Conclusions  
 

The results of this study indicate a gradual increase in protein denaturation with increasing MW pre-

treatment time, which caused protein aggregation at the later stages of hydrolysis for samples 

subject to 10 min pre-treatments (MW10). For samples undergone 1 min MW pre-treatments 

(MW1), a significant increase in the multicomponent phase content was observed as compared to 

the samples pre-treated for 5 and 10 min (MW5 and MW10). Both MW1 and MW10 hydrolysates 

presented significant increases in protein solubility over pH as compared to the control samples. No 

significant increase in the DPPH radical scavenging activity was observed when samples were pre-

treated with MW1 or MW10 and pre-treatment times longer than 10 min should be avoided. 

However, MW1 presents a rapid pre-treatment strategy for increased protein solubility over pH and 

might display desirable functional properties as interaction with lipids seemingly occur when low pre-

treatment times are applied. 

The results of this study indicate that the properties of the protein hydrolysates were gradually 

altered as US power was increased during the pre-treatment. The various powers (300 W, 600 W, 

900 W; US300, US600, US900) applied increased the multicomponent content. Else, the amount of 

the different phases varied with US power. Applying the highest US power significantly reduced the 

protein concentration after 60 min of hydrolysis as compared to that of the control. On the other 

hand, the DPPH radical scavenging activity increased with increasing power. While the US300 

samples displayed a reduced DPPH radical scavenging activity compared to that of the control, the 

US900 samples presented a significantly increased DPPH radical scavenging activity when compared 

to the control samples. The effect US posed on the raw material seemed to affect specific 

constituents, as protein solubility increased significantly independently of US power at pH 6 and 11, 

increased significantly dependant of US power at pH 4 (for US300), and was unaffected by US power 

at pH 2. Based on the findings in the present work, high power (900 W) US holds great potential as a 

pre-treatment technology prior to enzymatic hydrolysis for production of highly active DPPH radical 

scavenging hydrolysates without reducing the overall extraction yield. Moreover, low to medium 

power (300-600 W) US pre-treatments seem to favour the formation of peptides able to associate to 

lipids.  

The effect of exposing the raw material to high pressure during the pre-treatments caused different 

effects on the measured properties depending on the pressure applied. The effects observed when 

exposing the samples to 100 MPa (HP100) during the pre-treatment were not significant as 

compared to the control. However, when applying higher pressures, significant changes in the 

hydrolysate properties were observed. A pre-treatment at 200 MPa (HP200) increased the aqueous 
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and multicomponent phase contents while it reduced the lipid phase content. Applying 200 MPa 

further increased the protein solubility over pH and the DPPH radical scavenging activity as 

compared to the control samples. At 600 MPa (HP600) the properties of the hydrolysates seemed to 

change, resulting in a significantly increased protein concentration in the final hydrolysis volume, 

increased protein solubility over pH, but reduced DPPH radical scavenging activity. Samples pre-

treated at 400 MPa (HP400) also presented increased protein concentration in the final hydrolysis 

volume compared to the control, but not compared to the HP600 samples. The elevated protein 

content in the hydrolysates of samples pre-treated with pressures equal to 400 MPa and higher also 

displayed elevated lipid phase contents accompanied by reductions in the aqueous phase, suggesting 

disruption of certain protein-lipid structures causing the increase observed for the mentioned 

properties. This was observed simultaneously as the multicomponent phase decreased when 

pressure was increased from 400 to 600 MPa, possibly as lipid-protein structures was further 

disrupted. HPP is therefore found to present several potential advantages for pre-treatment of 

MDCR. Applying low pressures during the pre-treatment (200 MPa) result in peptides with increased 

solubility over pH, increased DPPH radical scavenging activity and with the potential ability to 

associate to lipids. Applying higher pressures (600 MPa) maintained high protein solubility and 

increased protein concentration in the final hydrolysis volume but presented low lipid association 

and DPPH radical scavenging properties.  
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8 Future work  
 

In the present work the potential for valorising MDCR has been confirmed. Among the various 

technologies there are indications of enhanced protein extraction, antioxidant properties, lipid 

interactions and solubility over pH. However, undesirable interactions between certain components 

were observed after enzyme inactivation. Ideally, pure fractions of the aqueous product containing 

the product peptides, lipid phase and solids are obtained after the hydrolysis. This was however not 

the case as interactions between peptides and lipids formed structures affecting the multicomponent 

phase content. Thus, reducing the extraction of peptides with potentially desired properties, but also 

reducing the purity of the lipid phase itself. Thus, investigations should be conducted on the 

separation of the protein and lipid components within the raw material. This such that a treatment 

could be developed achieving full exploitation of both lipids and peptide fractions from the MDCR. 

Future investigations should also investigate further upon the properties of the lipid components 

within the MDCR as their exploitation would contribute toward economic viability. If a desirable 

fractionation of lipids and the proteinaceous components are achieved either prior to the hydrolysis, 

avoiding significant protein denaturation, or after the hydrolysis, the targeting of process conditions 

is still required in order to optimize the desired peptide properties. The results obtained in the 

present work offer good starting points for further investigation and optimization of the various 

properties obtained within the hydrolysate.  

As previously specified, the investigation done in the present work on lipid-protein associations could 

be initial indicators for e.g. emulsifying properties or oil-binding properties. However, the methods 

applied are on the simple side, therefore a more thorough investigation on process conditions and 

their effect on such properties should be conducted. This also holds for antioxidant properties, and at 

least two different methods are often recommended in order to say anything certain about the 

inherent antioxidant properties of a material. As mentioned earlier in this work, scavenging of the 

ATBS radical is often associated with antioxidant peptides also displaying a hydrophilic character, and 

together with the DPPH radical investigation could these methods give an appropriate indication on 

the antioxidant properties of the hydrolysate. The investigations regarding the relative protein 

solubility in this work was conducted using the liquid aqueous phase containing some particulate. 

However, this states nothing about the overall protein solubility of the material. Therefore, further 

investigations on the protein solubility is recommended done using a certain content of hydrolysate 

powder (freeze-dried aqueous phase for example) which is dissolved in a certain amount of water 

before manipulating the pH. However, it should be emphasised that the results obtained in the 

present work is believed to display good indications on the general solubility properties of the 
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hydrolysates produced.  

 

The pre-treatment conditions applied in the present work were compiled based on their reported 

effect on the major protein components within the MDCR raw material. Thus, other materials 

comprised of similar components would be receptive in a similar way upon similar conditions. An 

important advantage is that the applied conditions presented what seemed to be a gradual 

modification of the product properties, thus where the conditions neither to mild nor to severe. 

Regarding other major protein components within this raw material, especially collagen, will the 

enzymatic extraction of such a constituent require specific enzymes, namely collagenases. Other 

possibilities would be to achieve extraction through the pre-treatments and subsequent exposure in 

the thermal environment of the reactor. However, none of the applied pre-treatment technologies 

and their effects (except heat associated to microwave exposure) are reported to present extracting 

effects on collagen. Meanwhile, this is slightly debated as there are reports on collagen being both 

insensitive to pressure (Suzuki, Watanabe et al. 1993) and responsive (Potekhin, Senin et al. 2009, 

Nan, Zou et al. 2018). Thus, HPP might affect the thermal stability of the collagen molecules and 

presents another possibility for future investigations.  

 

As mentioned in the introductions of the various technologies, the treatments might also be applied 

during the enzymatic hydrolysis. As the effect associated with the microwave treatment is thermal 

(at least), there would during simultaneous application be a compromise between the impact on 

enzyme and substrate. On the one hand the enzyme exhibits optimum activity at a certain 

temperature, this while the complex mixture of proteinaceous substrates responds differently at 

such a temperature. Certain combinations of enzyme and raw material might present desirable 

compromises, while other do not. In any case, such relationships would be highly specific and not 

dwelled upon further. Another possibility could be to apply an enzyme mixture with a broad 

temperature spectrum for optimum activity, and steadily increase the temperature in the hydrolysis 

reactor. In such a way would the gradual denaturation of each component (responding differently to 

a certain temperature) within the raw material be acted upon continuously and possibly benefit the 

extraction yield, while other specific properties are neglected. Simultaneous application of US and 

HPP are also options. In such cases must also compromises be expected, as both these technologies 

would pose different effects on the enzyme and the various proteinaceous substrates. However, 

certain combinations of enzyme, substrate and treatment condition might generate synergetic 

phenomena where enzyme activity is enhanced while denaturation of certain protein substrates 

occur in such a way that peptides with desirable properties are formed at high rates. However, as 

this would be highly dependent on enzyme and substrate, it will not be dwelled further upon in this 
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work but mentioned as a possibility.  

 

As a final remark within this section will the issue on myofibrillar solubility be noted. These structures 

are reportedly insoluble at low ionic strength. As these structures might be sources to antioxidant 

and functional peptides, it would seem beneficial to increase their solubility throughout the 

treatment. Thus, in order to test whether the pre-treatment (and subsequent hydrolysis) increase 

the solubility of these constituents and their derivatives, one could perform the pre-treatment and 

then check the protein solubility in pure water. Next, one could filter out the insoluble (solids) 

content and check the solubility of this fraction in a solution with ionic strength reported to solubilise 

myofibrillar proteins. These fractions could further be investigated through SDS-PAGE as pre-

treatment severity is gradually changed. This in order to investigate which parental proteins are 

affected and discover which structures are solubilised (in water) by the certain pre-treatments. 

Furthermore, the hydrolysates originating from samples pre-treated might also be investigated with 

SDS-PAGE in order to evaluate which of the structures are degradable for the applied enzyme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



127 
 

Bibliography 
 

Alemán, A., et al. (2011). "Enzymatic hydrolysis of fish gelatin under high pressure treatment." 
International Journal of Food Science & Technology 46(6): 1129-1136. 

  
Ali and E. Pappa (, 2011). Understanding structural changes in global meat sector: a comparative 
analysis across geographical regions. 

  
Aluko, R. (2018). Food protein-derived peptides: Production, isolation, and purification. Proteins in 
food processing, Elsevier: 389-412. 

  
Angsupanich, K., et al. (1999). "Effects of high pressure on the myofibrillar proteins of cod and turkey 
muscle." Journal of agricultural and food chemistry 47(1): 92-99. 

  
Apfel, R. E. and C. K. Holland (1991). "Gauging the likelihood of cavitation from short-pulse, low-duty 
cycle diagnostic ultrasound." Ultrasound in medicine & biology 17(2): 179-185. 

  
Aspevik, T., et al. (2017). Valorization of proteins from co-and by-products from the fish and meat 
industry. Chemistry and Chemical Technologies in Waste Valorization, Springer: 123-150. 

  
Aubourg, S. P. (2018). "Impact of high‐pressure processing on chemical constituents and nutritional 
properties in aquatic foods: a review." International Journal of Food Science & Technology 53(4): 
873-891. 

  
Baiano, A. (2014). "Recovery of biomolecules from food wastes—a review." Molecules 19(9): 14821-
14842. 

  
Berbel, J. and A. Posadillo (2018). "Review and analysis of alternatives for the valorisation of agro-
industrial olive oil by-products." Sustainability 10(1): 237. 

  
Bernal, V. and D. Stanley (1986). Thermal denaturation characteristics of beef muscle endomysium, 
perimysium and epimysium collagen, Paper. 

  
Blayo, C., et al. (2016). "Effects of high pressure processing (hydrostatic high pressure and ultra-high 
pressure homogenisation) on whey protein native state and susceptibility to tryptic hydrolysis at 
atmospheric pressure." Food Research International 79: 40-53. 

  
Bohr, H. and J. Bohr (2000). "Microwave-enhanced folding and denaturation of globular proteins." 
Physical Review E 61(4): 4310. 

  
Boland, M. J., et al. (2013). "The future supply of animal-derived protein for human consumption." 
Trends in Food Science & Technology 29(1): 62-73. 



128 
 

  
Bolumar, T. and S. Toepfl (2016). Application of shockwaves for meat tenderization. Innovative food 
processing technologies, Elsevier: 231-258. 

  
Borawska, J., et al. (2016). "Antioxidant properties of carp (Cyprinus carpio L.) protein ex vivo and in 
vitro hydrolysates." Food chemistry 194: 770-779. 

  
Brandelli, A., et al. (2015). "Microbial enzymes for bioconversion of poultry waste into added-value 
products." Food Research International 73: 3-12. 

  
Bruno, S. F., et al. (2019). "Impact of pretreatment‐assisted enzymatic extraction on recovery, 
physicochemical and rheological properties of oil from Labeo rohita head." Journal of Food Process 
Engineering: e12990. 

  
Buckow, R., et al. (2013). "Effect of high pressure on physicochemical properties of meat." Critical 
reviews in food science and nutrition 53(7): 770-786. 

  
Cai, L., et al. (2018). "Denaturation kinetics and aggregation mechanism of the sarcoplasmic and 
myofibril proteins from grass carp during microwave processing." Food and Bioprocess Technology 
11(2): 417-426. 

  
Canelón, S. P. and J. M. Wallace (2016). "β-Aminopropionitrile-induced reduction in enzymatic 
crosslinking causes in vitro changes in collagen morphology and molecular composition." PloS one 
11(11): e0166392. 

  
Centenaro, G. S., et al. (2014). "Fractionation of protein hydrolysates of fish and chicken using 
membrane ultrafiltration: investigation of antioxidant activity." Applied biochemistry and 
biotechnology 172(6): 2877-2893. 

  
Chandrasekaran, S., et al. (2013). "Microwave food processing—A review." Food Research 
International 52(1): 243-261. 

  
Chang, H.-J., et al. (2012). "Effects of characteristics changes of collagen on meat physicochemical 
properties of beef semitendinosus muscle during ultrasonic processing." Food and Bioprocess 
Technology 5(1): 285-297. 

  
Chang, H., et al. (2011). "Effect of heat-induced changes of connective tissue and collagen on meat 
texture properties of beef semitendinosus muscle." International Journal of Food Properties 14(2): 
381-396. 

  
Chang, H. J., et al. (2015). "Effects of ultrasound treatment on connective tissue collagen and meat 
quality of beef semitendinosus muscle." Journal of Food Quality 38(4): 256-267. 

  



129 
 

Chapleau, N., et al. (2004). "Effect of high‐pressure processing on myofibrillar protein structure." 
Journal of the Science of Food and Agriculture 84(1): 66-74. 

  
Cheftel, J. C. and J. Culioli (1997). "Effects of high pressure on meat: a review." Meat science 46(3): 
211-236. 

  
Chen, L.-F., et al. (2004). Microwave electronics: measurement and materials characterization, John 
Wiley & Sons. 

  
Cheng, Y., et al. (2017). "Improving the enzymolysis efficiency of potato protein by simultaneous 
dual-frequency energy-gathered ultrasound pretreatment: thermodynamics and kinetics." 
Ultrasonics sonochemistry 37: 351-359. 

  
Clemente, A. (2000). "Enzymatic protein hydrolysates in human nutrition." Trends in Food Science & 
Technology 11(7): 254-262. 

  
Collins, J. and M. d. Elzinga (1975). "The primary structure of actin from rabbit skeletal muscle. 
Completion and analysis of the amino acid sequence." Journal of biological chemistry 250(15): 5915-
5920. 

  
Crum, L. (1984). "Acoustic cavitation series: part five rectified diffusion." Ultrasonics 22(5): 215-223. 

  
Cumby, N., et al. (2008). "Antioxidant activity and water-holding capacity of canola protein 
hydrolysates." Food chemistry 109(1): 144-148. 

  
Dahiya, S., et al. (2018). "Food waste biorefinery: sustainable strategy for circular bioeconomy." 
Bioresource technology 248: 2-12. 

  
Damm, M., et al. (2012). "Can electromagnetic fields influence the structure and enzymatic digest of 
proteins? A critical evaluation of microwave-assisted proteomics protocols." Journal of proteomics 
75(18): 5533-5543. 

  
Dávalos, A., et al. (2004). "Antioxidant activity of peptides derived from egg white proteins by 
enzymatic hydrolysis." Journal of food protection 67(9): 1939-1944. 

  
Davis, P. and S. Williams (1998). "Protein modification by thermal processing." Allergy 53: 102-105. 

  
de la Hoz, A., et al. (2005). "Microwaves in organic synthesis. Thermal and non-thermal microwave 
effects." Chemical Society Reviews 34(2): 164-178. 

  
Delgado, A., et al. (2012). Novel Thermal and Non-Thermal Technologies for Fluid Foods, Academic 
Press, New York. 

  



130 
 

Diniz, F. and A. Martin (1997). "Effects of the extent of enzymatic hydrolysis on functional properties 
of shark protein hydrolysate." LWT-Food Science and Technology 30(3): 266-272. 

  
Directorate-General, E. C. E. (2010). Being wise with waste: the EU's approach to waste management, 
Publication Office of the European Union. 

  
Dissanayake, M., et al. (2013). "Denaturation of whey proteins as a function of heat, pH and protein 
concentration." International dairy journal 31(2): 93-99. 

  
Duerkop, M., et al. (2018). "Impact of cavitation, high shear stress and air/liquid interfaces on protein 
aggregation." Biotechnology journal 13(7): 1800062. 

  
Edwards, D. and T. Daniel (1992). "Environmental impacts of on-farm poultry waste disposal—A 
review." Bioresource technology 41(1): 9-33. 

  
Engel, J. and H. P. Bächinger (2005). Structure, stability and folding of the collagen triple helix. 
Collagen, Springer: 7-33. 

  
Feng, D., et al. (2017). "Effects of microwave radiation and water bath heating on the 
physicochemical properties of actomyosin from silver carp (Hypophthalmichthys molitrix) during 
setting." Journal of Food Processing and Preservation 41(4): e13031. 

  
Fernandez-Martin, F. (2007). "Bird muscles under hydrostatic high-pressure/temperature 
combinations: A DSC evaluation." Journal of Thermal Analysis and Calorimetry 87(1): 285-290. 

  
Fonkwe, L. and R. Singh (1996). "Protein recovery from mechanically deboned turkey residue by 
enzymic hydrolysis." Process Biochemistry 31(6): 605-616. 

  
Fratzl, P. (2008). Collagen: structure and mechanics, an introduction. Collagen, Springer: 1-13. 

  
Frenkel, V., et al. (2000). "Ultrasound-induced intercellular space widening in fish epidermis." 
Ultrasound in medicine & biology 26(3): 473-480. 

  
FUSIONS, E. (2016). "Estimates of European food waste levels." Διαθέσιμο στο: http://www. 
eufusions. org/phocadownload/Publications/Estimates% 20of% 20European% 20food% 20waste 2. 

  
Gatellier, P. and V. Santé-Lhoutellier (2009). "Digestion study of proteins from cooked meat using an 
enzymatic microreactor." Meat science 81(2): 405-409. 

  
Gbogouri, G., et al. (2004). "Influence of hydrolysis degree on the functional properties of salmon 
byproducts hydrolysates." Journal of Food Science 69(8): C615-C622. 

  

http://www/


131 
 

Gekko, K. and Y. Hasegawa (1986). "Compressibility-structure relationship of globular proteins." 
Biochemistry 25(21): 6563-6571. 

  
Gekko, K. and S. Koga (1983). "The effect of pressure on thermal stability and in vitro fibril formation 
of collagen." Agricultural and Biological Chemistry 47(5): 1027-1033. 

  
George, D. F., et al. (2008). "Non‐Thermal effects in the microwave induced unfolding of proteins 
observed by chaperone binding." Bioelectromagnetics: Journal of the Bioelectromagnetics Society, 
The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics 
Association 29(4): 324-330. 

  
Ghaly, A., et al. (2013). "Fish Processing Wastes as a Potential Source of Proteins." Amino Acids and 
Oils: A Critical Review, J. Microb. Biochem. Technol 5(4): 107-129. 

  
Girotto, F., et al. (2015). "Food waste generation and industrial uses: a review." Waste management 
45: 32-41. 

  
Grasso, S., et al. (2014). "Healthy processed meat products–Regulatory, reformulation and consumer 
challenges." Trends in Food Science & Technology 39(1): 4-17. 

  
Grune, T., et al. (2004). "Decreased proteolysis caused by protein aggregates, inclusion bodies, 
plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease." The 
international journal of biochemistry & cell biology 36(12): 2519-2530. 

  
Halim, N., et al. (2016). "Functional and bioactive properties of fish protein hydolysates and peptides: 
A comprehensive review." Trends in Food Science & Technology 51: 24-33. 

  
Han, Z., et al. (2018). "Effects of electric fields and electromagnetic wave on food protein structure 
and functionality: A review." Trends in Food Science & Technology. 

  
Hancock, H. A., et al. (2009). "Investigations into pulsed high-intensity focused ultrasound–enhanced 
delivery: preliminary evidence for a novel mechanism." Ultrasound in medicine & biology 35(10): 
1722-1736. 

  
Hatanaka, S.-i., et al. (2001). "Quenching mechanism of multibubble sonoluminescence at excessive 
sound pressure." Japanese Journal of Applied Physics 40(5S): 3856. 

  
Hawkins, C. L. and M. J. Davies (1997). "Oxidative damage to collagen and related substrates by metal 
ion/hydrogen peroxide systems: random attack or site-specific damage?" Biochimica et Biophysica 
Acta (BBA)-Molecular Basis of Disease 1360(1): 84-96. 

  
Hendrickx, M., et al. (1998). "Effects of high pressure on enzymes related to food quality." Trends in 
Food Science & Technology 9(5): 197-203. 

  



132 
 

Heremans, K. (1982). "High pressure effects on proteins and other biomolecules." Annual review of 
biophysics and bioengineering 11(1): 1-21. 

  
Hodnett, M., et al. (2007). "Towards a reference ultrasonic cavitation vessel. Part 1: Preliminary 
investigation of the acoustic field distribution in a 25 kHz cylindrical cell." Ultrasonics sonochemistry 
14(1): 29-40. 

  
Hodnett, M. and B. Zeqiri (2008). "Toward a reference ultrasonic cavitation vessel: Part 2-
Investigating the spatial variation and acoustic pressure threshold of inertial cavitation in a 25 kHz 
ultrasound field." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 55(8). 

  
Hsu, K.-C., et al. (2007). "Changes in conformation and in sulfhydryl groups of actomyosin of tilapia 
(Orechromis niloticus) on hydrostatic pressure treatment." Food chemistry 103(2): 560-564. 

  
Içier, F. and T. Baysal (2004). "Dielectrical properties of food materials—1: Factors affecting and 
industrial uses." Critical reviews in food science and nutrition 44(6): 465-471. 

  
InnovasjonNorge, P. o. (2018). Økt foredling av sjømat og restråstoff i Norge - en analyse av 
muligheter barrierer og lønnsomhet. 

  
Izquierdo, F. J., et al. (2005). "Effects of high pressure and microwave on pronase and α-chymotrypsin 
hydrolysis of β-lactoglobulin." Food chemistry 92(4): 713-719. 

  
Jadhav, S. H. and P. R. Gogate (2014). "Intensification in the activity of lipase enzyme using ultrasonic 
irradiation and stability studies." Industrial & Engineering Chemistry Research 53(4): 1377-1385. 

  
Jain, S., et al. (2017). "Bioprocessing of Chicken Meat and Egg Processing Industries' Waste to Value‐
Added Proteins and Peptides." Food Processing By‐Products and their Utilization: 367-394. 

  
Jayathilakan, K., et al. (2012). "Utilization of byproducts and waste materials from meat, poultry and 
fish processing industries: a review." Journal of food science and technology 49(3): 278-293. 

  
Jung, S., et al. (2000). "Modifications of ultrastructure and myofibrillar proteins of post-rigor beef 
treated by high pressure." LWT-Food Science and Technology 33(4): 313-319. 

  
Kanerva, M. (2013). "Meat consumption in Europe: Issues, trends and debates." 

  
Kang, D.-c., et al. (2017). "Effects of ultrasound on the beef structure and water distribution during 
curing through protein degradation and modification." Ultrasonics sonochemistry 38: 317-325. 

  
Kang, D.-c., et al. (2016). "Effects of power ultrasound on oxidation and structure of beef proteins 
during curing processing." Ultrasonics sonochemistry 33: 47-53. 

  



133 
 

Kangsanant, S., et al. (2014). "Antioxidant and nitric oxide inhibitory activities of tilapia (O reochromis 
niloticus) protein hydrolysate: effect of ultrasonic pretreatment and ultrasonic‐assisted enzymatic 
hydrolysis." International Journal of Food Science & Technology 49(8): 1932-1938. 

  
Kerth, C. R. (2013). The science of meat quality, John Wiley & Sons. 

  
Ketnawa, S. and A. M. Liceaga (2017). "Effect of microwave treatments on antioxidant activity and 
antigenicity of fish frame protein hydrolysates." Food and Bioprocess Technology 10(3): 582-591. 

  
Khan, M., et al. (2017). Effect of novel technologies on polyphenols during food processing. 

  
Khantaphant, S., et al. (2011). "The effects of pretreatments on antioxidative activities of protein 
hydrolysate from the muscle of brownstripe red snapper (Lutjanus vitta)." LWT-Food Science and 
Technology 44(4): 1139-1148. 

  
Kholimatussadiah, S. and T. A. Prijo (2018). "A portable and low-cost parallel-plate capacitor sensor 
for alkali and heavy metal ions detection." Journal of Advanced Dielectrics 8(04): 1850026. 

  
Kijowski, J. and M. Mast (1988). "Thermal properties of proteins in chicken broiler tissues." Journal of 
Food Science 53(2): 363-366. 

  
Kijowski, J. and A. Niewiarowicz (1985). "A method of protein extraction from chicken bone residue 
and the chemical and electrophoretic characteristics of the extract." International Journal of Food 
Science & Technology 20(1): 43-49. 

  
Kim, N., et al. (2016). "Enzymatic hydrolysis of anchovy fine powder at high and ambient pressure, 
and characterization of the hydrolyzates." Journal of the Science of Food and Agriculture 96(3): 970-
978. 

  
Knorr, D., et al. (2006). "High pressure application for food biopolymers." Biochimica et Biophysica 
Acta (BBA)-Proteins and Proteomics 1764(3): 619-631. 

  
Kong, F., et al. (2008). "Thermal effects on chicken and salmon muscles: Tenderness, cook loss, area 
shrinkage, collagen solubility and microstructure." LWT-Food Science and Technology 41(7): 1210-
1222. 

  
Konno, K., et al. (2000). "Early structural changes in myosin rod upon heating of carp myofibrils." 
Journal of agricultural and food chemistry 48(10): 4905-4909. 

  
Kristinsson, H. G. and B. A. Rasco (2000). "Biochemical and functional properties of Atlantic salmon 
(Salmo salar) muscle proteins hydrolyzed with various alkaline proteases." Journal of agricultural and 
food chemistry 48(3): 657-666. 

  



134 
 

Kristinsson, H. G. and B. A. Rasco (2000). "Fish protein hydrolysates: production, biochemical, and 
functional properties." Critical reviews in food science and nutrition 40(1): 43-81. 

  
Lafarga, T. and M. Hayes (2014). "Bioactive peptides from meat muscle and by-products: generation, 
functionality and application as functional ingredients." Meat science 98(2): 227-239. 

  
Lai, W. T., et al. (2017). "A review: Modified agricultural by-products for the development and 
fortification of food products and nutraceuticals." Trends in Food Science & Technology 59: 148-160. 

  
Landbruksdirektoratet (2018). Vurdering av markedene for norske landbruksvarer. 
Landbruksdirektoratet. 

  
Lee, J., et al. (2018). "Quantification of cavitation activity by sonoluminescence to study the 
sonocrystallization process under different ultrasound parameters." Crystal Growth & Design 18(9): 
5108-5115. 

  
Leighton, T. G. (2007). "What is ultrasound?" Progress in biophysics and molecular biology 93(1-3): 3-
83. 

  
Li‐Chan, E., et al. (1984). "Hydrophobicity and solubility of meat proteins and their relationship to 
emulsifying properties." Journal of Food Science 49(2): 345-350. 

  
Lillestøl, E., et al. (2006). Generell fysikk for universiteter og høgskoler: Varmelære og 
elektromagnetisme. Bind 2, Universitetsforl. 

  
Lin, C. S. K., et al. (2013). "Food waste as a valuable resource for the production of chemicals, 
materials and fuels. Current situation and global perspective." Energy & Environmental Science 6(2): 
426-464. 

  
Lin, T. M. and J. W. Park (1996). "Extraction of proteins from Pacific whiting mince at various washing 
conditions." Journal of Food Science 61(2): 432-438. 

  
Lin, T. M. and J. W. Park (1998). "Solubility of salmon myosin as affected by conformational changes 
at various ionic strengths and pH." Journal of Food Science 63(2): 215-218. 

  
Liu, X., et al. (2014). "Hydrogen peroxide-induced degradation of type I collagen fibers of tilapia skin." 
Food Structure 2(1-2): 41-48. 

  
Lowry, O. H., et al. (1951). "Protein measurement with the Folin phenol reagent." Journal of 
biological chemistry 193: 265-275. 

  
Ma, H.-J. and D. Ledward (2004). "High pressure/thermal treatment effects on the texture of beef 
muscle." Meat science 68(3): 347-355. 



135 
 

  
Ma, H., et al. (2011). "Effect of energy-gathered ultrasound on Alcalase." Ultrasonics sonochemistry 
18(1): 419-424. 

  
Ma, J., et al. (2010). "Ultrasound-assisted microwave preparation of Ag-doped CdS nanoparticles." 
Ultrasonics sonochemistry 17(3): 534-540. 

  
Ma, X., et al. (2015). "Properties and structures of commercial polygalacturonase with ultrasound 
treatment: role of ultrasound in enzyme activation." RSC Advances 5(130): 107591-107600. 

  
Maehashi, K. and L. Huang (2009). "Bitter peptides and bitter taste receptors." Cellular and molecular 
life sciences 66(10): 1661-1671. 

  
Marciniak, A., et al. (2018). "Enhancing enzymatic hydrolysis of food proteins and-production of 
bioactive peptides using high hydrostatic pressure technology." Trends in Food Science & 
Technology. 

  
Martinez-Monteagudo, S. I. and M. D. Saldaña (2014). "Chemical reactions in food systems at high 
hydrostatic pressure." Food Engineering Reviews 6(4): 105-127. 

  
Mazinani, S. A. and H. Yan (2016). "Impact of microwave irradiation on enzymatic activity at constant 
bulk temperature is enzyme-dependent." Tetrahedron Letters 57(14): 1589-1591. 

  
McCarthy, A., et al. (2013). "Protein hydrolysates from agricultural crops—bioactivity and potential 
for functional food development." Agriculture 3(1): 112-130. 

  
McCurdy, S. M., et al. (1986). "Laboratory and pilot scale recovery of protein from mechanically 
separated chicken residue." Journal of Food Science 51(3): 742-747. 

  
Meinlschmidt, P., et al. (2017). "High pressure processing assisted enzymatic hydrolysis–An 
innovative approach for the reduction of soy immunoreactivity." Innovative Food Science & Emerging 
Technologies 40: 58-67. 

  
Meredith, R. J. (1998). Engineers' handbook of industrial microwave heating, Iet. 

  
Miller, D. L. (1985). "Microstreaming shear as a mechanism of cell death in Elodea leaves exposed to 
ultrasound." Ultrasound in medicine & biology 11(2): 285-292. 

  
Miller, M. W., et al. (1996). "A review of in vitro bioeffects of inertial ultrasonic cavitation from a 
mechanistic perspective." Ultrasound in medicine & biology 22(9): 1131-1154. 

  
Min, S., et al. (2010). "Compressibility and density of select liquid and solid foods under pressures up 
to 700 MPa." Journal of food engineering 96(4): 568-574. 



136 
 

  
Misir, G. and S. Koral (2019). "EFFECTS OF ULTRASOUND TREATMENT ON STRUCTURAL, CHEMICAL 
AND FUNCTIONAL PROPERTIES OF PROTEIN HYDROLYSATE OF RAINBOW TROUT (ONCORHYNCHUS 
MYKISS) BY-PRODUCTS." Italian Journal of Food Science 31(2). 

  
Mohr, V. (1980). "Enzymes technology in the meat and fish industries." Process Biochem. 15: 18-21. 

  
Monboisse, J. and J. Borel (1992). Oxidative damage to collagen. Free Radicals and Aging, Springer: 
323-327. 

  
Morzel, M., et al. (2006). "Chemical oxidation decreases proteolytic susceptibility of skeletal muscle 
myofibrillar proteins." Meat science 73(3): 536-543. 

  
Murphy, R. and B. Marks (2000). "Effect of meat temperature on proteins, texture, and cook loss for 
ground chicken breast patties." Poultry science 79(1): 99-104. 

  
Nan, J., et al. (2018). "Effect of ultra-high pressure on molecular structure and properties of bullfrog 
skin collagen." International journal of biological macromolecules 111: 200-207. 

  
Nations, F. a. A. O. o. t. U. (2017). The future of food and agriculture - Trends and challanges. Rome. 

  
Nguyen, E., et al. (2017). "Impact of microwave-assisted enzymatic hydrolysis on functional and 
antioxidant properties of rainbow trout Oncorhynchus mykiss by-products." Fisheries science 83(2): 
317-331. 

  
Nguyen, T. T., et al. (2016). "Microwave-intensified enzymatic deproteinization of Australian rock 
lobster shells (Jasus edwardsii) for the efficient recovery of protein hydrolysate as food functional 
nutrients." Food and Bioprocess Technology 9(4): 628-636. 

  
O’Brien Jr, W. D. (2007). "Ultrasound–biophysics mechanisms." Progress in biophysics and molecular 
biology 93(1-3): 212-255. 

  
Okamoto, M., et al. (1990). "Application of high pressure to food processing: textural comparison of 
pressure-and heat-induced gels of food proteins." Agricultural and Biological Chemistry 54(1): 183-
189. 

  
OLIVEIRA, M. S. R. d., et al. (2015). "Use of proteolytic enzymes for the production of protein 
hydrolysates from manually deboned chicken carcasses." Brazilian Journal of Food Technology 18(3): 
199-210. 

  
Onuh, J. O., et al. (2014). "In vitro antioxidant properties of chicken skin enzymatic protein 
hydrolysates and membrane fractions." Food chemistry 150: 366-373. 

  



137 
 

Osepchuk, J. M. (2002). "Microwave power applications." IEEE Transactions on Microwave Theory 
and Techniques 50(3): 975-985. 

  
Owens, C. M., et al. (2000). Poultry meat processing, CRC Press. 

  
Pacheco-Aguilar, R., et al. (2008). "Functional properties of fish protein hydrolysates from Pacific 
whiting (Merluccius productus) muscle produced by a commercial protease." Food chemistry 109(4): 
782-789. 

  
Panyam, D. and A. Kilara (1996). "Enhancing the functionality of food proteins by enzymatic 
modification." Trends in Food Science & Technology 7(4): 120-125. 

  
Park, D., et al. (2007). "Concentration effects of hydroxyl radical oxidizing systems on biochemical 
properties of porcine muscle myofibrillar protein." Food chemistry 101(3): 1239-1246. 

  
Pauzi, N., et al. (2017). "Microwave Technology: Niche Market in Enzymatic Reaction Systems." 
Journal of the Chemical Society of Pakistan 39(4). 

  
Pereira, R. and A. Vicente (2010). "Environmental impact of novel thermal and non-thermal 
technologies in food processing." Food Research International 43(7): 1936-1943. 

  
Pérez-Andrés, J. M., et al. (2018). "Chemical Modifications of Lipids and Proteins by Nonthermal Food 
Processing Technologies." Journal of agricultural and food chemistry 66(20): 5041-5054. 

  
Pérez Cesaretti, M. D. (2012). General effective medium model for the complex permittivity 
extraction with an open-ended coaxial probe in presence of a multilayer material under test, alma. 

  
Piazza, F. and Y.-H. Sanejouand (2008). "Discrete breathers in protein structures." Physical biology 
5(2): 026001. 

  
Pieczywek, P. M., et al. (2017). "Changes in cell wall stiffness and microstructure in ultrasonically 
treated apple." Journal of food engineering 197: 1-8. 

  
Pingali, P. (2007). "Westernization of Asian diets and the transformation of food systems: 
Implications for research and policy." Food policy 32(3): 281-298. 

  
Pingret, D., et al. (2013). "Degradation during application of ultrasound in food processing: A review." 
Food control 31(2): 593-606. 

  
Pojić, M., et al. (2018). "Eco-innovative technologies for extraction of proteins for human 
consumption from renewable protein sources of plant origin." Trends in Food Science & Technology 
75: 93-104. 

  



138 
 

Poppe, J. (1992). Gelatin. Thickening and gelling agents for food, Springer: 98-123. 

  
Potekhin, S., et al. (2009). "High pressure stabilization of collagen structure." Biochimica et 
Biophysica Acta (BBA)-Proteins and Proteomics 1794(8): 1151-1158. 

  
Pu, Y., et al. (2017). "Molecular weight kinetics and chain scission models for dextran polymers 
during ultrasonic degradation." Carbohydrate polymers 156: 71-76. 

  
Qi, W. and Z. He (2006). "Enzymatic hydrolysis of protein: mechanism and kinetic model." Frontiers 
of Chemistry in China 1(3): 308-314. 

  
Qian, F., et al. (2017). "Experimental and Modelling Study of the Denaturation of Milk Protein by Heat 
Treatment." Korean journal for food science of animal resources 37(1): 44. 

  
Raghavan, S. and H. G. Kristinsson (2014). "Influence of processing on lipids and lipid oxidation in 
aquatic foods." Antioxidants and Functional Components in Aquatic Foods: 43. 

  
Rehman, M. U., et al. (2016). "Comparison of free radicals formation induced by cold atmospheric 
plasma, ultrasound, and ionizing radiation." Archives of biochemistry and biophysics 605: 19-25. 

  
Rejasse, B., et al. (2007). "Influence of microwave irradiation on enzymatic properties: applications in 
enzyme chemistry." Journal of Enzyme Inhibition and Medicinal Chemistry 22(5): 519-527. 

  
Ricce, C., et al. (2016). "Ultrasound pre-treatment enhances the carrot drying and rehydration." Food 
Research International 89: 701-708. 

  
Rustad, T. (2003). "Utilisation of marine by-products." Electronic Journal of Environmental, 
Agricultural and Food Chemistry 2(4): 458-463. 

  
Ryynänen, S. (1995). "The electromagnetic properties of food materials: a review of the basic 
principles." Journal of food engineering 26(4): 409-429. 

  
Saiga, A., et al. (2003). "Antioxidant activity of peptides obtained from porcine myofibrillar proteins 
by protease treatment." Journal of agricultural and food chemistry 51(12): 3661-3667. 

  
Serpen, A., et al. (2012). "Total antioxidant capacities of raw and cooked meats." Meat science 90(1): 
60-65. 

  
Shahidi, F., et al. (1995). "Production and characteristics of protein hydrolysates from capelin 
(Mallotus villosus)." Food chemistry 53(3): 285-293. 

  
Shamis, Y., et al. (2012). "Review of the specific effects of microwave radiation on bacterial cells." 
Applied microbiology and biotechnology 96(2): 319-325. 



139 
 

  
Shimada, K., et al. (1992). "Antioxidative properties of xanthan on the autoxidation of soybean oil in 
cyclodextrin emulsion." Journal of agricultural and food chemistry 40(6): 945-948. 

  
Sikes, A., et al. (2010). "A proposed mechanism of tenderising post-rigor beef using high pressure–
heat treatment." Meat science 84(3): 390-399. 

  
Silvestre, M. (1997). "Review of methods for the analysis of protein hydrolysates." Food chemistry 
60(2): 263-271. 

  
Singh, A. and H. S. Ramaswamy (2014). "Effect of high‐pressure treatment on trypsin hydrolysis and 
antioxidant activity of egg white proteins." International Journal of Food Science & Technology 49(1): 
269-279. 

  
Siro, I., et al. (2008). "Functional food. Product development, marketing and consumer acceptance—
A review." Appetite 51(3): 456-467. 

  
Skaara, T. and J. Regenstein (1990). "The structure and properties of myofibrillar proteins in beef, 
poultry, and fish." Journal of Muscle Foods 1(4): 269-291. 

  
Šližyte, R., et al. (2005). "Yield and composition of different fractions obtained after enzymatic 
hydrolysis of cod (Gadus morhua) by-products." Process Biochemistry 40(3-4): 1415-1424. 

  
Slizyte, R., et al. (2004). "Hydrolysis of Cod (Gadus morhud) By-Products: Influence of Initial Heat 
Inactivation, Concentration and Separation Conditions." Journal of Aquatic Food Product Technology 
13(2): 31-48. 

  
Smith, D. M. and C. J. Brekke (1985). "Enzymic modification of the structure and functional properties 
of mechanically deboned fowl proteins." Journal of agricultural and food chemistry 33(4): 631-637. 

  
Souissi, N., et al. (2007). "Biochemical and functional properties of sardinella (Sardinella aurita) by-
product hydrolysates." Food technology and biotechnology 45(2): 187-194. 

  
Spector, A. A. and M. A. Yorek (1985). "Membrane lipid composition and cellular function." Journal of 
lipid research 26(9): 1015-1035. 

  
Stehle, R., et al. (2009). "Insights into the kinetics of Ca 2+-regulated contraction and relaxation from 
myofibril studies." Pflügers Archiv-European Journal of Physiology 458(2): 337-357. 

  
Sun, W., et al. (2010). "Effect of Maillard reaction products derived from the hydrolysate of 
mechanically deboned chicken residue on the antioxidant, textural and sensory properties of 
Cantonese sausages." Meat science 86(2): 276-282. 

  



140 
 

Sutkar, V. S. and P. R. Gogate (2009). "Design aspects of sonochemical reactors: techniques for 
understanding cavitational activity distribution and effect of operating parameters." Chemical 
Engineering Journal 155(1-2): 26-36. 

  
Suzuki, A., et al. (1993). "Effects of high-pressure treatment on the ultrastructure and thermal 
behaviour of beef intramuscular collagen." Meat science 35(1): 17-25. 

  
Suzuki, S., et al. (1991). "Alterations in cardiac contractile proteins due to oxygen free radicals." 
Biochimica et Biophysica Acta (BBA)-General Subjects 1074(1): 95-100. 

  
Thiansilakul, Y., et al. (2007). "Antioxidative activity of protein hydrolysate from round scad muscle 
using alcalase and flavourzyme." Journal of food biochemistry 31(2): 266-287. 

  
Thiansilakul, Y., et al. (2007). "Compositions, functional properties and antioxidative activity of 
protein hydrolysates prepared from round scad (Decapterus maruadsi)." Food chemistry 103(4): 
1385-1394. 

  
Tornberg, E. (2005). "Effects of heat on meat proteins–Implications on structure and quality of meat 
products." Meat science 70(3): 493-508. 

  
Tveit, G. M. (2014). Enzymatic hydrolysis of chicken rest raw material, Institutt for bioteknologi. 

  
Udenigwe, C. C. and A. Howard (2013). "Meat proteome as source of functional biopeptides." Food 
Research International 54(1): 1021-1032. 

  
Uluko, H., et al. (2013). "Effects of microwave and ultrasound pretreatments on enzymolysis of milk 
protein concentrate with different enzymes." International Journal of Food Science & Technology 
48(11): 2250-2257. 

  
Uluko, H., et al. (2015). "Effects of thermal, microwave, and ultrasound pretreatments on 
antioxidative capacity of enzymatic milk protein concentrate hydrolysates." Journal of Functional 
Foods 18: 1138-1146. 

  
Union, E. (2017). 

  
Union, I. (2019). "Report from the Commission to the European Parliament, the Council, the 
European Economic and Social Committee and the Committee of the Regions on the implementation 
of the circular economy action plan."  202020. 

  
Villamonte, G., et al. (2016). "Influence of high-pressure processing on the physicochemical and the 
emulsifying properties of sarcoplasmic proteins from hake (Merluccius merluccius)." European Food 
Research and Technology 242(5): 667-675. 

  



141 
 

Vlaisavljevich, E., et al. (2015). "Effects of ultrasound frequency and tissue stiffness on the histotripsy 
intrinsic threshold for cavitation." Ultrasound in medicine & biology 41(6): 1651-1667. 

  
Von der Ecken, J., et al. (2015). "Structure of the F-actin–tropomyosin complex." Nature 519(7541): 
114. 

  
Wang, A., et al. (2018). "Changes in calpain activity, protein degradation and microstructure of beef 
M. semitendinosus by the application of ultrasound." Food chemistry 245: 724-730. 

  
Wang, D., et al. (2018). "Ultrasound promotes enzymatic reactions by acting on different targets: 
Enzymes, substrates and enzymatic reaction systems." International journal of biological 
macromolecules. 

  
Wang, J.-y., et al. (2017). "Effects of pulsed ultrasound on rheological and structural properties of 
chicken myofibrillar protein." Ultrasonics sonochemistry 38: 225-233. 

  
Wu, T. and L. Mao (2008). "Influences of hot air drying and microwave drying on nutritional and 
odorous properties of grass carp (Ctenopharyngodon idellus) fillets." Food chemistry 110(3): 647-
653. 

  
Wu, Y., et al. (2011). "Preparation of microporous starch by glucoamylase and ultrasound." Starch‐
Stärke 63(4): 217-225. 

  
Xue, S., et al. (2018). "Effects of high-intensity ultrasound, high-pressure processing, and high-
pressure homogenization on the physicochemical and functional properties of myofibrillar proteins." 
Innovative Food Science & Emerging Technologies 45: 354-360. 

  
Yang, X., et al. (2017). "Effects of ultrasound pretreatment with different frequencies and working 
modes on the enzymolysis and the structure characterization of rice protein." Ultrasonics 
sonochemistry 38: 19-28. 

  
Yang, X., et al. (2017). "Effects of multi-frequency ultrasound pretreatment under low power density 
on the enzymolysis and the structure characterization of defatted wheat germ protein." Ultrasonics 
sonochemistry 38: 410-420. 

  
Yang, X., et al. (2018). "Effects of ultrasound-assisted α-amylase degradation treatment with multiple 
modes on the extraction of rice protein." Ultrasonics sonochemistry 40: 890-899. 

  
Yannas, I. (1972). "Collagen and gelatin in the solid state." Journal of Macromolecular Science—
Reviews in Macromolecular Chemistry 7(1): 49-106. 

  
Yoshikawa, H., et al. (2012). "Mechanistic insights into protein precipitation by alcohol." International 
journal of biological macromolecules 50(3): 865-871. 

  



142 
 

YOWELL, K. and W. H. FLURKEY (1986). "Effect of freezing and microwave heating on proteins from 
codfish fillets: Analysis by SDS polyacrylamide gel electrophoresis." Journal of Food Science 51(2): 
508-509. 

  
Yu, Z.-L., et al. (2016). "Effect of ultrasonic pretreatment on kinetics of gelatin hydrolysis by 
collagenase and its mechanism." Ultrasonics sonochemistry 29: 495-501. 

  
Zhang, L. and S. Barbut (2005). "Rheological characteristics of fresh and frozen PSE, normal and DFD 
chicken breast meat." British poultry science 46(6): 687-693. 

  
Zhang, M., et al. (2019). "Improvement of thermal, microwave and ultrasonication pretreatment on 
the production of antioxidant peptides from sweet potato protein via in vitro gastrointestinal 
digestion." International Journal of Food Science & Technology. 

  
Zhang, Y., et al. (2015). "Effects of ultrasound pretreatment on the enzymolysis and structural 
characterization of wheat gluten." Food biophysics 10(4): 385-395. 

  
Zhang, Y., et al. (2013). "Effect of pretreatment on enzymatic hydrolysis of bovine collagen and 
formation of ACE-inhibitory peptides." Food chemistry 141(3): 2343-2354. 

  
Zhang, Z. H., et al. (2018). "Non‐thermal technologies and its current and future application in the 
food industry: a review." International Journal of Food Science & Technology. 

  
Zou, Y., et al. (2018). "Effects of different ultrasound power on physicochemical property and 
functional performance of chicken actomyosin." International journal of biological macromolecules 
113: 640-647. 

  
Zou, Y., et al. (2018). "Rapid tenderizing of goose breast muscle based on actomyosin dissociation by 
low-frequency ultrasonication." Process Biochemistry 65: 115-122. 

  

 

 

 

 

 

 

 



143 
 

Appendix  
 

A. Data for temperature development and heat absorption during the MW pre-

treatments 
 

The figures in the following subsections presents the temperature development recorded in the 

parallels of the various MW pre-treatments. Sensor 1 indicates the temperature development closest 

to the sample edge, sensor 2 the temperature development in the sample centre and sensor 5 

indicates the temperature at a position in between sensor 1 and 2. This is further described in the 

materials and methods section. Average temperature of the three sensors is also presented in each 

Figure. 

 

MW10 replicates 
 

 

Figure 47: The figure illustrates the temperature development for pre-treatment MW10 replicate 1. 
Energy absorbed during the pre-treatment: 87.6 kJ. An average temperature of 40 ℃ was reached 
after 170 s.  
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Figure 48: The figure illustrates the temperature development for pre-treatment MW10 replicate 2. 
Energy absorbed during the pre-treatment: 84.8 kJ. An average temperature of 40 ℃ was reached 
after 164 s.   

 

 

 

 

Figure 49: The figure illustrates the temperature development for pre-treatment MW10 replicate 3. 
Energy absorbed during the pre-treatment: 95.9 kJ. An average temperature of 40 ℃ was reached 
after 190 s. 
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MW5 replicates 
 

 

Figure 50: The figure illustrates the temperature development for pre-treatment MW5 replicate 1. 
Energy absorbed during the pre-treatment: 84.2 kJ. An average temperature of 40 ℃ was reached 
after 176 s.  

 

 

Figure 51: The figure illustrates the temperature development for pre-treatment MW5 replicate 2. 
Energy absorbed during the pre-treatment: 76.1 kJ. An average temperature of 40 ℃ was reached 
after 183 s. 
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Figure 52: The figure illustrates the temperature development for pre-treatment MW5 replicate 3. 
Energy absorbed during the pre-treatment: 82 kJ. An average temperature of 40 ℃ was reached after 
177 s. 
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MW1 replicates 
 

 

Figure 53: The figure illustrates the temperature development for pre-treatment MW1 replicate 1. 
Energy absorbed during the pre-treatment: 74.5 kJ. An average temperature of 40 ℃ was reached 
after 154 s. 

 

 

Figure 54: The figure illustrates the temperature development for pre-treatment MW1 replicate 2. 
Energy absorbed during the pre-treatment: 74.6 kJ. An average temperature of 40 ℃ was reached 
after 164 s. 
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Figure 55: The figure illustrates the temperature development for pre-treatment MW1 replicate 3. 
Energy absorbed during the pre-treatment: 75.5 kJ. An average temperature of 40 ℃ was reached 
after 175 s. 

 

 

Energy absorbed during the MW pre-treatments 
 

Table 8: The table present the energy absorbed during the various MW pre-treatment replicates, the 
average within each type MW pre-treatment, and the associated standard deviation. Significant 
differences are indicated by differing superscript letters. 

Treatment Parallel 1 Parallel 2 Parallel 3 Avg StD 

 [kJ] [kJ] [kJ] [kJ] [kJ] 

MW1A 74,5 74,6 75,4 74,83 0,49 

MW5AB 84,2 76,1 82,0 80,76 4,19 

MW10B 87,6 84,8 95,9 89,43 5,77 
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B. Data for pressure and temperature development during the HPP pre-

treatments 
 

The figures in the following subsections presents the temperature and pressure development 

recorded in the replicates of the various HPP pre-treatments. Both TOP and MID temperature are 

measured within the pressure chamber and no temperature set-point was applied. Else is the 

pressure set-point illustrated with a black graph and the actual pressure within the chamber with a 

red graph.  

 

HP100 replicates 

 

Figure 56: The figure illustrates the set-point and actual development of the pressure within the 
pressure-chamber of the HPP apparatus for HP100 replicate 1. In addition, two recordings of 
temperature within the pressure-chamber is illustrated through MID and TOP temperature.  
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Figure 57: The figure illustrates the set-point and actual development of the pressure within the 
pressure-chamber of the HPP apparatus for HP100 replicate 2. In addition, two recordings of 
temperature within the pressure-chamber is illustrated through MID and TOP temperature. 
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Figure 58: The figure illustrates the set-point and actual development of the pressure within the 
pressure-chamber of the HPP apparatus for HP100 replicate 3. In addition, two recordings of 
temperature within the pressure-chamber is illustrated through MID and TOP temperature. 
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HP200 replicates 
 

 

Figure 59: The figure illustrates the set-point and actual development of the pressure within the 
pressure-chamber of the HPP apparatus for HP200 replicate 1. In addition, two recordings of 
temperature within the pressure-chamber is illustrated through MID and TOP temperature. 
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Figure 60: The figure illustrates the set-point and actual development of the pressure within the 
pressure-chamber of the HPP apparatus for HP200 replicate 2. In addition, two recordings of 
temperature within the pressure-chamber is illustrated through MID and TOP temperature. 
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Figure 61: The figure illustrates the set-point and actual development of the pressure within the 
pressure-chamber of the HPP apparatus for HP200 replicate 3. In addition, two recordings of 
temperature within the pressure-chamber is illustrated through MID and TOP temperature. 
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HP400 replicates 

 

 

Figure 62: The figure illustrates the set-point and actual development of the pressure within the 
pressure-chamber of the HPP apparatus for HP400 replicate 1. In addition, two recordings of 
temperature within the pressure-chamber is illustrated through MID and TOP temperature. 
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Figure 63: The figure illustrates the set-point and actual development of the pressure within the 
pressure-chamber of the HPP apparatus for HP400 replicate 2. In addition, two recordings of 
temperature within the pressure-chamber is illustrated through MID and TOP temperature. 
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Figure 64: The figure illustrates the set-point and actual development of the pressure within the 
pressure-chamber of the HPP apparatus for HP400 replicate 3. In addition, two recordings of 
temperature within the pressure-chamber is illustrated through MID and TOP temperature. 
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HP600 replicates 
 

 

Figure 65: The figure illustrates the set-point and actual development of the pressure within the 
pressure-chamber of the HPP apparatus for HP600 replicate 1. In addition, two recordings of 
temperature within the pressure-chamber is illustrated through MID and TOP temperature. 
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Figure 66 The figure illustrates the set-point and actual development of the pressure within the 
pressure-chamber of the HPP apparatus for HP600 replicate 2. In addition, two recordings of 
temperature within the pressure-chamber is illustrated through MID and TOP temperature. 
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Figure 67: The figure illustrates the set-point and actual development of the pressure within the 
pressure-chamber of the HPP apparatus for HP600 replicate 3. In addition, two recordings of 
temperature within the pressure-chamber is illustrated through MID and TOP temperature. 
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