
i

Problem Description

User-centric identity management (IdM) have several benefits compared to tra-
ditional service-centric IdM. Among them, OpenID allows a user to manage
own identities from a privately hosted OpenID Identity Provider (OP). That
way, information data associated with an identity is stored and governed at the
user’s discretion, thus eliminating dependencies on the alternative third party
OP. However, for the average user, the level of difficulty is too high for setting
up such an OP, something which limits most people to enjoy this feature. The
appearance and functionalities of modern smartphones have opened up new
possibilities of hosting such an OP as a native mobile application, making acqui-
sition and use very easy. Despite its simple use, the implementation itself needs
to deal with challenges such as the authentication method, network reachability,
security issues such as phishing and identity backup capabilities.

The master thesis will address the problem of hosting a private OP by imple-
menting it as a smartphone application. The work will be a continuation of an
in-depth study on OpenID and the resulting proposals to solve the network
reachability problem, that took place in the Fall semester of 2010. The work will
include user testing and analysis.

Assignment given:	 24.01.2011
Supervisor: 		 Do van Thanh

ii

iii

Summary

In the area of identity management OpenID is an identity system allowing users
to log in to OpenID-enabled web sites by proving ownership of an OpenID
Identifier by authenticating with its controlling OpenID Identity Provider. A
user can choose to host an OpenID Identity Provider herself or trust in existing
third-party providers such as Google. Technical skill is required for the former,
leaving it unavailable for the average user.

This thesis simplifies the matter by implementing an OpenID Identity Provider
as a smartphone application, making use of the traditional server-like features
inherent in such devices. New possiblities for authenticating the user arise as she
is enabled to physically interact with the OpenID Identity Provider, which in
the traditional scheme is performed through the web browser. As a result from
these new possiblities, phishing attacks are claimed to be avoided and identity
attributes are exempted from being controlled and possibly exploited by any
third-party.

One of several technical challenges include enabling the smartphone to receive
inbound connections as this is required by the OpenID Authentication protocol,
but restricted by telecom operators by default. Functionality must be in place
to backup identity repositories stored on the smartphone in order not to lose
possession of the established OpenID identities if the device becomes lost or
damaged. Lastly, focus is given to make the solution easily applicable for even
the novice consumer.

iv

v

Preface

The following Master Thesis is the result from five interesting and fun months
marking my final chapter of a five year study program in Communication Tech-
nology at the Department of Telematics at the Norwegian University of Science
and Technology (NTNU).

The thesis consists of two parts
1)  this report
2)  an archive file (i.e. zip-file) containing the implementations that makes up

the system
The greater part of the work has been spent on the actual implementation.

Acknowledgements

Firstly, I would like to thank my family and good friends for great support during
my years of study.

Secondly, I would like to thank my supervisor, professor Do van Thanh,
for giving me freedom to choose this topic within the identity management
domain, as well as his support.

Eirik Stien
June 2011

vi

vii

1. Introduction�� 1

2. Digital identity��3

2.1. Entity���3

2.2. Identity��3

2.3. Identifier���3

2.4. Digital Identity���3

2.5. Service Provider-Centric versus User-Centric Identity Management�������3

3. OpenID���7

3.1. Concept and Adoption���7

3.2. OpenID Framework���7

3.2.1. Entities���7

3.2.1.1. End User��8

3.2.1.2. OpenID Identifier��8

3.2.1.3. User Agent���8

3.2.1.4. Relying Party��8

3.2.1.5. OpenID Identity Provider��9

3.2.2. Authentication Protocol��9

3.2.2.1. OpenID Identity Provider Discovery���������������������������������10

3.2.2.2. Association��11

3.2.2.3. Authentication Request Message���12

3.2.2.4. Positive Assertion Message���13

3.2.2.5. Assertion Message Verification��14

3.3. Weaknesses���15

3.3.1. Phishing��15

3.3.2. Cross-Site Scripting��15

3.3.3. Denial of Service��16

3.3.4. Data Governance Issues��16

3.3.5. Feasibility of setting up a Private OpenID Identity Provider�������17

Contents

i.	 List of Figures���xi

ii.	 List of Tables��xv

iii.	List of Abbreviations��xvii

viii

4. Prior Work for enhancing OpenID Authentication������������������������������ 19

4.1. An OpenID Identity Provider based on SSL Smart Cards����������������������19

4.2. OpenID and SIM��20

5. mOpenID – Mobile OpenID Identity Provider����������������������������������� 21

5.1. Idea��21

5.2. Network Reachability Models���21

5.2.1. Port forwarding a Wi-Fi access point��21

5.2.2. Proxying through a Managed Server���22

5.2.3. Changing the Access Point Name��23

5.3. Methodology��24

5.4. Development Tools and Platforms��24

6. Analysis��� 25

6.1. Use Case Diagrams���26

6.1.1. End User - Smartphone Application Actions����������������������������������26

6.1.2. End User - Smartphone Application Mode Selection Actions�����27

6.1.3. Smartphone Application And Relying Party - mOpenID Server
Actions��28

6.1.4. User Agent and Relying Party - Smartphone Application Actions
��29

6.1.5. End User - Smartphone Application Identity Management
Actions��30

6.1.6. End User - Smartphone Application Authentication Actions������30

6.2. Functional Requirements���31

6.2.1. Smartphone Application Requirements��31

6.2.2. mOpenID Server Requirements��33

7. Design��� 35

7.1. Android Platform Characteristics���35

7.1.1. Activities���35

7.1.2. Services���35

7.1.3. Intents��35

7.1.4. Execution Environment��35

7.2. Collaboration Diagrams���35

7.2.1. Start Application in mOpenID Mode���36

ix

7.2.2. Creating a new OpenID in mOpenID Mode����������������������������������36

7.2.3. Associating with the mOpenID Server in mOpenID Mode���������37

7.2.4. Logging in while in mOpenID Mode���38

7.2.5. Start Application in Static IP Mode���39

7.2.6. Logging in while in Static IP Mode���40

7.3. Class Diagrams��41

7.3.1. Activity Classes���41

7.3.2. Webapp Servlet Class���41

7.3.3. Util Classes��42

7.4. Non-Functional Requirements��42

8. Implementation�� 43

8.1. Deployment��43

8.2. mOpenID Server��43

8.2.1. Database���44

8.2.2. mOpenID Configuration Web Service���45

8.2.3. mOpenID ID Page Web Service��46

8.3. mOpenID Application���47

8.3.1. Activity Overview���47

8.3.2. Maximizing Application Responsiveness��48

8.3.3. Obtaining a Public IP Address.��48

8.3.4. Database���48

8.4. mOpenID Webapp���49

8.4.1. Intent Communication��49

8.4.1.1. Static Mode Resolving���49

8.4.1.2. Authentication Request��50

8.4.1.3. After Login Complete��50

8.4.2. Ensure Identical Session on Login Complete����������������������������������50

9. Validation of Implementation�� 51

9.1. Start Application in mOpenID Mode��51

9.2. Create a new OpenID in mOpenID Mode��52

9.3. Associating with the mOpenID Server���54

9.4. Logging in when the SA is running mOpenID Mode������������������������������55

9.5. Logging in when the SA is running Static IP Mode����������������������������������57

9.6. Delete an OpenID Identifier���58

x

9.7. Exporting and importing OpenID Repositories��59

10. Limitations and Security Issues�� 61

10.1. External Technical Factors��61

10.2. Internal Technical Factors���62

10.3. Other Factors���63

11. Conclusion��� 65

References��� 67

xi

i. List of Figures

Figure 1:	 Example of an OpenID Identifier��8
Figure 2:	 OpenID Authentication Protocol 2.0 overview�������������������������������������9
Figure 3:	 Example of an Association Request message���������������������������������������11
Figure 4:	 Example of an Association Response message������������������������������������12
Figure 5:	 Example of an Authentication Request message���������������������������������13
Figure 6:	 Example of a Positive Assertion message���13
Figure 7:	 Malicious HTML code for realizing a CSRF attack�����������������������������15
Figure 8:	 Architecture when a Wi-Fi access point uses port forwarding

to make the OP accessible��22
Figure 9:	 Architecture when using an intermediary proxy between the

OP and UA and RP���23
Figure 10:	 Architecture when changing to an APN which allocates a

public IP address to the smartphone��23
Figure 11:	 The figure shows the interaction relationships between the

entities in the system���25
Figure 12:	 Use case showing application functionalities designated for the

End User���26
Figure 13:	 The figure shows the actions associated with Smartphone

Application mode selection��27
Figure 14:	 The above figure shows functionalities provided to the Relying

Party and Smartphone Application by the mOpenID server�������������28
Figure 15:	 Use case showing basic OpenID functionalities provided

by the Smartphone Application to the User Agent and the
Relying Party���29

Figure 16:	 The figure shows actions related to identity management by
the End User��30

Figure 17:	 The use case describes how the End User must authenticate
an OpenID Authentication Request Message received from an RP�30

Figure 18:	 End User starting the SA in mOpenID mode��������������������������������������36
Figure 19:	 End User creating a new OpenID using the SA which then

interacts with the mOpenID server��36
Figure 20:	 Association of an OpenID with the mOpenID server in

mOpenID mode��37
Figure 21:	 Showing a successful login in mOpenID mode and how the

entities interact���38
Figure 22:	 End User starting the SA in Static IP mode��39
Figure 23:	 Showing a successful login in Static IP mode and how the

entities interact���40
Figure 24:	 Above are the activity classes making up the front-end

mOpenID Application��41
Figure 25:	 Servlet class handling HTTP requests required as an OP�������������������41

xii

Figure 26:	 Util classes used by the activity classes in Figure 24����������������������������42
Figure 27:	 Deployment diagram of the various software pieces of the

solution��43
Figure 28:	 Structure of the table links��44
Figure 29:	 An OpenID Identifier having the id field’s value set to

“identifierexample”��44
Figure 30:	 Structure of the table active_links��44
Figure 31:	 HTML source code of an active ID page���46
Figure 32:	 XRDS document used for OP discovery if exercising the

Yadis protocol��47
Figure 33:	 Structure of the table links residing in the mOpenID Application�48
Figure 34:	 The Webapp requesting the mOpenID Application state by

sending an intent��49
Figure 35:	 The Webapp sending an authentication request intent to the

mOpenID Application��50
Figure 36:	 SelectMode activity showing a progress bar dialog immediately

after startup, making the network connection ready����������������������������51
Figure 37:	 SelectMode activity ready for the user to select which mode to

run the application in��51
Figure 38:	 SelectMOpenIDMode activity showing an empty OpenID list���������52
Figure 39:	 CreateNew activity ready for the user to type a desired

OpenID Identifier���53
Figure 40:	 The user have now entered a sufficiently long enough OpenID

Identifier, and can check its availability by pressing the button���������53
Figure 41:	 The response from the MS confirms that the queried OpenID

Identifier is available��53
Figure 42:	 After creation, the SelectMOpenIDMode activity contains the

newly established OpenID���53
Figure 43:	 The MOpenIDModeActivation activity initially associating

with the MS���54
Figure 44:	 MOpenIDModeActivation activity ready for an RP to request

authentication of the particular OpenID Identifier�����������������������������54
Figure 45:	 The newly inserted record in the active_links table in the MS

database���54
Figure 46:	 The RP login web page, where the user have entered its

OpenID Identifier���55
Figure 47:	 The confirmation dialog on whether to accept or reject the

Authentication Request message���56
Figure 48:	 The final confirmation dialog after the user have accepted the

request in Figure 47���56
Figure 49:	 Showing the HTML response received from the SA after

requesting the Authentication Request message�����������������������������������56
Figure 50:	 Showing the RP having accepted the authenticated OpenID

after receiving the Positive Assertion message from the SA��������������57

xiii

Figure 51:	 StaticIPModeActivation activity ready for Static IP mode
authentication���58

Figure 52:	 Context menu showing two ways of deleting an OpenID
Identifier��58

Figure 53:	 The SelectMode activity when the Android native menu
button is pressed��59

Figure 54:	 A dialog allowing the user to enter an encryption key during
the export procedure���59

Figure 55:	 Menu allowing to export the encrypted OpenID(s) to other
applications on the smartphone��60

Figure 56:	 Two ways of importing OpenIDs to the SA���60
Figure 57:	 Pasted encrypted text awaiting to be decrypted to one or more

OpenIDs���60
Figure 58:	 A dialog confirming a successful import of an OpenID��������������������60

xiv

xv

ii. List of Tables

Table 1:	 Discovered information to Positive Assertion Response message�������14
Table 2:	 Functional requirement specification for the Smartphone

Application���32
Table 3:	 Functional requirement specification for the mOpenID server�����������33
Table 4:	 Description of the behavior of exists.php���45
Table 5:	 Description of the behavior of associate.php���45
Table 6:	 Android activities and the functionalities they implement���������������������47

xvi

xvii

AES	 Advanced Encryption Standard

APN	 Access Point Name

CSRF	 Cross-Site Request Forgery

EAP-SIM	 Extensible Authentication Protocol Method for Global System
for Mobile Communications (GSM) Subscriber Identity Modules

EDGE	 Enhanced Data rates for GSM Evolution

GGSN	 Gateway GPRS Support Node

GUI	 Graphical User Interface

HTTP	 Hypertext Transfer Protocol

IdM	 Identity Management

JSON	 JavaScript Object Notation

MAC	 Message Authentication Code

MS	 mOpenID Server

OP 	 OpenID Identity Provider

PII	 Personal Identifiable Information

QoS	 Quality of Service

RP	 Relying Party

RSA	 Rivest, Shamir, and Adleman (public key encryption technology)

SA	 Smartphone Application

SAML	 Security Assertion Markup Language

SDK	 Software Development Kit

SHA	 Secure Hash Algorithm

SIM	 Subscriber Identity Module

SP	 Service Provider

SSL	 Secure Sockets Layer

SSO	 Single Sign-On

TLS	 Transport Layer Security

UA	 User Agent

UMTS	 Universal Mobile Telecommunications System

iii. List of Abbreviations

xviii

URL	 Uniform Resource Locator

USB	 Universal Serial Bus

Wi-Fi	 Wireless Fidelity

WS	 Web service(s)

XRDS	 Extensible Resource Descriptor Sequence

XRI	 eXtensible Resource Identifier

xix

xx

1

1. Introduction
Digital identity is a concept all Internet users touch upon, knowingly or not,
and in a larger or smaller scale. Most users register for various web services, and
during this process give up a lot of personal information required by the service
provider. As such information is stored with the service provider, it contributes
to a user’s identity for that service alone. Further, users have to authenticate
themselves, typically with a username and password, to the service provider in
order to access a particular service. As the list of service providers a user reg-
isters to grows, so does (or at least should) the list of different usernames and
passwords associated with different services. Unfortunately, users often tend to
use the same or tightly related usernames and passwords for new services they
sign up for, hence protection towards identity theft is weakened, among others
[23].

All of the above resemble the traditional relation people have with using Inter-
net services. The problems are several. Seen from a user’s perspective it is in-
convenient to sign up for new services, where each are requiring registration of
the same or similar array of personal information, including a unique identifier
accompanied with a secret password. Scalability becomes a problem, as humans
are not capable of remembering an ever-growing list of identifiers and secure
passwords. Also, managing one’s identity seems unfeasible as one small change
in the identity characteristics must be manually updated at each account with the
service providers.

There have been several proposals to enhance usability and security with online
identity management in means of both simplifying the authentication process
and strengthening its security. Among others, OpenID is a highly user-centric
identity management solution, which has enjoyed widespread adoption since
its launch in 2005 [29]. This thesis aims to make possible some of the benefits
gained from using OpenID for a larger audience.

In OpenID identity management an End User needs only trust an OpenID
Identity Provider (OP) with her digital identity. Any OpenID-enabled service
provider (SP), henceforth a Relying Party (RP), will accept assurances from the
OP associated with a given OpenID Identifier. The End User presenting the
OpenID Identifier to the RP needs only authenticate with the OP, which makes
the details concerning this procedure irrelevant for the RP. The detailed func-
tioning of the protocol will be described in section 3.2.2.

A user can choose to trust any OP they wish, but in doing so the user must trust
the selected OP with a lot of personal identifiable information (PII). A more
demanding but user controlled solution is for an End User to implement and
manage an OP herself, as the OpenID protocol is an open specification allowing
for this. To achieve the OP setup the End User is must possess technical skills of
a certain degree, leaving it as too big of a challenge for the average Internet user.

This thesis will address the issue of the current procedures and technical dif-

2

ficulties associated with setting up private OPs. By making this setup procedure
simple enough for any average Internet user, one can achieve an enhanced user-
centric identity management (IdM) solution. This is argued as even the attributes
associated with a certain OpenID Identifier are entirely managed and stored by
equipment owned and physically carried by the user on a daily basis. By taking
advantage of the processing power, communication technologies, user friendli-
ness and increased adoption of modern smartphones, this thesis will suggest
and implement a solution that satisfies the necessary requirements for an OP.

This thesis will start by introducing the reader to the concept of digital identity.
Afterwards, a thorough study on the OpenID framework will be presented, as
well as an elaboration of current challenges and weaknesses. As the OpenID au-
thentication procedure and requirements are entirely left up to the OP to decide,
the thesis will study some authentication mechanisms suggested in previous
work. Based on the above this thesis will include the design and implementation
of a smartphone application fulfilling the requirements of a private OP. In the
end limitations and security issues of the solution will be discussed.

3

2. Digital identity
Since this thesis’s main concern revolves around digital identity management,
it is important to understand what digital identity is. This section, derived from
[38] and [10], defines different terms and properties that most commonly take
part in the concept of digital identity.

2.1. Entity

An entity constitutes the physical person or organization in an identity system
and is thus unique. It is typically who or what humans visualize as being in pos-
session of an identity. Shared entities may exist as well as e.g. a family can act as
one entity to an IdM system, but still consist of several individuals.

2.2. Identity

An identity acts as a representation of an entity in a specific application domain,
hence it must be unique within that domain. An entity can have several identities
both in one and across several domains. For instance can a person both study
and teach classes at a university, thus having two distinct identities registered in
the university’s IdM system.

2.3. Identifier

An identity consists of a set of attributes that are characteristic for the entity
such as gender, date of birth and home address. If these are unique and used for
identification purposes they are referred to as identifiers for a specific identity.
A home address counts as a characteristic for a person, but not as an identifier
as it may not be unique within the identity domain. On the other hand, a mobile
phone number or a social security number would due to their uniqueness apply
as an identifier for a person.

2.4. Digital Identity

Digital identity is defined as a traditional identity existing or being represented
in a computer network system such as the Internet or a corporate intranet [38].
These can be issued or certified by various parties such as governments or banks,
or they could be user generated, the latter being the most common approach.

2.5. Service Provider-Centric versus User-
Centric Identity Management

IdM systems can be split into two different categories, namely service provider-
centric and user-centric. Service providers (SPs) have traditionally positioned
themselves as both an identity and credential provider, as it allows for them to
enjoy reduced cost and complexity, and more control of their IdM systems. One
of the downsides from an SP’s perspective, although not highly significant, is
the absence of new user registrations due to human indolence. Of course, if the

4

service provided is valuable enough, a user will not hesitate creating yet another
account. However, the unavoidable problem seen from a user’s perspective, is to
remember all the identifiers and credentials issued or created for authenticating
with the various services.

Another aspect worth taking notice of is data governance, hence ultimately
identity governance. As users have to trust more SPs with personal characteris-
tics such as date of birth, address etc., the risks of such information being lost,
tampered with or leaked to undesired parties grow.

There are specifications in place to support identity federation between SPs. This
allows for a user to enjoy services from distinct SPs after only having signed in
with one of them beforehand. This concept is known as Single Sign-On (SSO)
and could be obtained using a variety of protocols and standards such as the
SAML protocol [27] and WS-* [41] specifications, respectively.

The fundamental difference between a user-centric IdM system and SP centric
ones, is that in the former it is required to ensure that the user is the same as the
one registered but not necessarily who she is, as in some SP centric IdM. User-
centric IdM is suitable for social communities and e-commerce but not secure
enough for banking, enterprise and government applications. A user-centric
IdM system allows for the user to have her identity located in and managed from
one centralized entity in the network, typically called the Identity Provider. From
here the user can, when authenticated,

•	 confirm a given identity to SPs

•	 manage and grant SP access to identity attributes

•	 revoke access given to SPs

•	 manage identity attributes
SSO is commonly achieved by keeping a session between the user and the Iden-
tity Provider. On a subsequent SP login, the existing session will relieve the user
from having to reauthenticate. A slightly different approach to SSO, although
user-centric, is promoted by Microsoft and termed Simplified Sign-On with Mi-
crosoft Cardspace (code named “InfoCard”) [3]. Its functioning minimizes user
intervention, whereas a digital identity card is presented to an SP for authentica-
tion, asserted by the user herself or a third party identity issuer.

SPs supporting user-centric IdM have a trust relationship to the Identity Pro-
vider in charge of a particular identity, be it the End User herself or a third party.
This way, a user needs only authenticate herself to her Identity Provider to prove
ownership of a claimed identity. This relieves the SPs from having to deal with
user management and authentication as this is completely decentralized and del-
egated to the Identity Provider.

The user-centric scheme benefits the user in both usability and security as it less-
ens the burden of having to manage or remember a multitude of usernames and
passwords. User familiarity with an Identity Provider’s visual interfaces contrib-
utes to increased security when authenticating. Having the possibility to transfer

5

the identity trust relationship to other Identity Providers is an additional advan-
tage.

6

7

3. OpenID
OpenID is one of several user-centric identity management systems freely avail-
able on today’s market. With its openness, flexibility and widespread adoption it
has risen to become one of the most popular decentralized IdM systems for the
consumer market. The current section of this thesis aims to give the reader a
good understanding of how the OpenID framework operates and how the dif-
ferent entities interact to provide the functionalities needed in an identity man-
agement system. Unfortunately as with any other data system human interaction
and dependence introduces security weaknesses to OpenID, which will also be
elaborated.

3.1. Concept and Adoption

One can gain several benefits by exploring and adopting the OpenID concept,
both as a user and as a service provider. The latter is more commonly, and for
the remainder of this thesis, referred to as a Relying Party (RP) in an OpenID
context. An interesting approach taken by OpenID benefits the users by letting
an already existing web site URL, in the user’s possession, act as their OpenID
Identifier. Moreover, a user can have any URL under her control to be consid-
ered as her digital identifier. If no such controlled URL exists, a user can register
with an OpenID Identity Provider (OP) to obtain one. OPs are freely available
on the Internet; myOpenID [25], claimID [5] and myID.net [24] are just a few of
the biggest ones. In fact, users might unknowingly have an OpenID already, as
both Google and Yahoo! are OPs themselves [1]. These two companies contrib-
ute to a large user base resulting in as many as 1 billion OpenID-enabled users
worldwide and more than 9 million RPs at the end of 2009 [18]. At the time of
writing this thesis the most recent significant example of adoption is for regis-
tration of a Flickr account using an existing Google account, made possible by
OpenID [19]. Even Facebook allows users to automatically sign in with OpenID
given that the web browser have an already authenticated session with the OP
associated with the Facebook account [35].

3.2. OpenID Framework

An OpenID Identifier can be presented to an RP for user registration or login,
whereas the subsequent authentication process is delegated to the OP by the
OpenID framework. The initiation of authentication follows the specifications
given by the OpenID 2.0 Authentication protocol [30], but the actual mecha-
nism itself is dictated by the OP currently in charge of confirming ownership
of an OpenID Identifier. Ultimately the mechanism is based on user preference
as she decides what OP to trust. Section 3.2.2. studies this in detail.

3.2.1. Entities

Next, with referral to Figure 2, a complete picture of the entities and their roles
in the OpenID framework will be presented.

8

3.2.1.1. End User

The End User is the physical human being in control over one or more OpenID
identities. Hence the End User corresponds to the entity described in section
2.1. It is the End User’s task to manage and maintain the OpenID identity in
means of granting or revoking access to RPs, as well as keeping identity attri-
butes updated. All of the previous actions require prior authentication of the
End User to the OP, which is normally done by providing a credential such as a
password. It has been done extensive work on finding ways for more secure and
easier authentication which the thesis will come back to later in section 4. The
End User is sometimes referred to as ‘the (female) user’ in this thesis.

3.2.1.2. OpenID Identifier

An OpenID Identifier is a unique string in the OpenID domain, acting as the
identifier an End User uses for logging in to an OpenID-enabled web site, i.e.
an RP, as shown in step 1 in Figure 2. It is used in the discovery phase by RPs,
with the goal of returning a pointer to the OP in charge of it. The particular
pointer is called the OP endpoint, and is the URL which accepts OpenID Au-
thentication Protocol messages. It is most often given in the form of an HTTP
or HTTPS URL as shown in Figure 1, where the latter severely reduces the risk
of a phishing or man-in-the-middle attack due to the strengths of X.509 cer-
tificates. Another option supported by the OpenID Authentication 2.0 protocol
[30] is the use of Extensible Resource Identifiers (XRI) [6] as identifiers, where
an XRDS document is used for OP discovery.

https://idexample.myopenid.com

Figure 1:  Example of an OpenID Identifier

3.2.1.3. User Agent

The User Agent (UA) is an Internet browser supporting the HTTP/1.1 protocol
specification. This entity works on behalf of the End User’s input and handles
requests, responses and redirects between both the RP and OP. SSL/TLS must
be supported if such is enforced either by the RP or the OP.

3.2.1.4. Relying Party

The Relying Party (RP) provides services to users and allows for authentication
through the OpenID Authentication 2.0 protocol. An RP is interchangeable
with a user-centric oriented service provider (SP), a term used previously in
this thesis. When the RP has been presented with the OpenID Identifier, it is
responsible for performing a discovery of the OP before redirecting the UA to
the discovered destination for authentication. The RP has an additional option
of establishing an association directly with the OP.

9

3.2.1.5. OpenID Identity Provider

The OpenID Identity Provider (OP) is an identity provider designed to host the
OpenID identity on behalf of the End User. A user can also trust the OP with
managing several OpenID identities. The OP must be able to authenticate a user
if one claims ownership of an OpenID Identifier, and relay assertions of this if
requested by an RP. How the authentication takes place is out of scope for the
OpenID Authentication 2.0 protocol, although an RP can enforce the OP to use
a policy extension known as OpenID Provider Authentication Policy Extension
1.0 [31], to ensure a certain level of authentication reliability.

3.2.2. Authentication Protocol

The authentication protocol’s goal is to prove to the RP that an End User con-
trols an OpenID Identifier. A small set of messages exchanged between the OP,
the UA and the RP realizes this goal given that the user successfully authenti-
cates with the OP. In the following, deducted from mainly [30] but also [20],
the various messages are explained as well as which underlying techniques and
protocols are used to make the OpenID protocol as solid and secure as possible.
Although there are more than one protocol version in use on the Internet today,
we will exclusively focus on the OpenID Authentication 2.0 protocol in this the-
sis, as this is the latest, thus proper version to be implemented.

User Agent

OpenID
Identity
Provider

4.
Auth

en
tic

ati
on

 R
eq

ue
st

1. Submit OpenID Identifier

2. OP endpoint
discovery

Relying
Party

3. Establish Association

5. End User Authentication

6. Assertion

7. Verification

End User

Figure 2:  OpenID Authentication Protocol 2.0 overview

As shown in Figure 2 there are mainly three entities involved in the authentica-
tion procedure; the User Agent (UA), the OpenID Identity Provider (OP) and
the Relying Party (RP). The UA is controlled by the End User and is usually a

10

web browser. In the following subsections the UA and the End User is inter-
changeable. The UA wishes to access some service provided by the RP, but
authentication is demanded by the latter. In step 1 the UA presents its OpenID
Identifier to the RP through an HTML form. The identifier is sent using HTTP
GET method and optionally encrypted using SSL/TLS.

3.2.2.1. OpenID Identity Provider Discovery

In step 2 the RP performs a discovery of the OP based on one of three different
discovery methods:

a)	 If the user has entered an eXtensive Resource Identifier (XRI) an eXten-
sive Resource Descriptor Sequence (XRDS) document will be used

b)	 If the user has entered an URL the Yadis protocol [21] will be used

c)	 If the user has entered an URL and there is lack of support for the Yadis
protocol, the HTML document at the given URL will be used

If none of the above are available the RP can not go through with the authenti-
cation protocol. In order to support former versions of the OpenID Authenti-
cation protocol the returned document from the OpenID Identifier can contain
pointers to multiple OPs running different protocol versions. Additional ben-
efits gained from this is load balancing, in the unlikely case where one of the
OPs in charge are unavailable.

In case a) when an XRI is used as an identifier, the RP performs a similar lookup
of the desired OP as done in a Domain Name System (DNS) resolution when
looking up IP addresses from domain names. An XRI is ultimately something
called an i-number, but can have several i-names which acts as long-lived (but
reassignable) identifiers for an i-number. An i-number is a permanent identifier
dedicated to a resource in a system be it e.g. a person, organization or an OP, but
distinguishes itself from an i-name in being less human readable as it consists of
a non-logical mix of numbers, symbols and letters. A typical i-name belonging
to a user could be =myself*username, and can be obtained for free from several
providers on the Internet. The submitted XRI is resolved to an XRDS docu-
ment which contains the pointers to the OP associated with the XRI.

In case b) the document returned from the URL could either be the XRDS
document containing the necessary information about the OP, or it could be an
HTML document with a header link to the sought after XRDS document. In the
latter, the RP needs to perform an additional HTTP request using the provided
link. The link should be found inside a HTML meta tag having the http-equiv at-
tribute set to X-XRDS-Location and the value of the content attribute set to the
location of the XRDS document. When the RP has received the XRDS docu-
ment, the Yadis protocol has completed.

In case c) neither an XRDS or a link to an XRDS document is returned. In
order for the given URL to be a valid OpenID URL the returned HTML docu-
ment must contain links to the OP allowing the RP to perform HTML-Based
Discovery. To achieve this, an HTML link tag containing the correct attributes

11

must be placed within the HTML head tag. The rel attribute must be set to
openid2.provider and the href attribute must be set to the OP endpoint URL.
Some OPs implement backward compatibility supporting the older OpenID
Authentication 1.1 protocol by adding an alternative link tag pointing to the
desired OP.

After successful discovery, the RP is ready to initiate communication with the
OP to complete the authentication protocol.

3.2.2.2. Association

Step 3 in Figure 2 establishes an association between the RP and the OP. In the
figure it is shown as a dashed line meaning that it is optional. An example of an
Association Request message is shown in Figure 3. The association allows for
the generation of a shared secret key used for message encryption in subsequent
communication between the two parties. It is an optional but recommended
feature to implement at OPs, as its use benefits from not having to generate
new keys for every authentication request. Additionally, the assertion message
returned in step 6 can be verified locally at the RP without an extra request to
the OP.

The two parties collaborate to establish a shared secret using the Diffie-Hellman
Key Agreement Method [33]. The RP sends an Association Request message
directly to the OP. This message, as well as all the others, are using HTTP as an
application layer transport protocol. The use of Transport Layer Security (TLS)
or Secure Sockets Layer (SSL) will strengthen the protocol in terms of secu-
rity, but will also have some influence on a specific parameter in the messages
exchanged in the OpenID protocol. The Association Request message has the
form AssocReq(t,s,p,g,DHRP), where t is the preferred association type describ-
ing what algorithm to be used to sign subsequent messages, s is the preferred
session type describing how or if to encrypt the MAC key in transit, p and g is the
modulus prime number and generator, respectively, used in the Diffie-Hellman
algorithm, and DHRP is the RP’s public key. If using “no-encryption” as session
type it is required to use transport layer security to prevent the MAC key from
being transmitted in the clear.

POST /mopenid/server HTTP/1.1
HOST: 188.32.23.359:8080
Content-Type: application/x-www-form-url-encoded
Content-Length: 341

openid.ns=http://specs.openid.net/auth/2.0
&openid.mode=associate
&openid.assoc_type=HMAC-SHA256
&openid.session_type=DHSHA256
&openid.dh_modulus=p
&openid.dh_gen=g
&openid.dh_consumer_public=#DHRP#

Figure 3:  Example of an Association Request message

The OP answers with the Association Response message which has the form

12

AssocRes(AH,t,s,n,h,DHOP). An example of an Association Response message
is shown in Figure 4. AH is the association handle which both the RP and the
OP should use as a key to refer to the association in subsequent message ex-
changes, t and s are the same values for the association type and session type,
respectively, as was in the request. The n parameter is the association’s lifetime
in seconds and DHOP is OP’s public key. h is either the shared secret in plain text
or the secret encrypted by XORing the MAC key with the secret Diffie-Hellman
value, depending on the session type. If either of t or s is unsupported by the OP
a unsuccessful response message is sent to the RP.

HTTP/1.1 200
Content-Type: text/plain
Content-Length: 172

ns:http://specs.openid.net/auth/2.0
assoc_handle:2j30f9j3ffa
assoc_type:HMAC-SHA256
session_type:DHSHA256
expires_in:n
enc_mac_key:#MAC_key XOR secret_DH#
dh_server_public:#DHOP#

Figure 4:  Example of an Association Response message

3.2.2.3. Authentication Request Message

Step 4 in Figure 2 shows the Authentication Request message, which differs
from the association messages in that the OP is indirectly rather than directly
requested by the RP, through the UA. This is accomplished by using the HTTP
status code 302 Found in the response packet returned to the UA after the initial
request in step 1, which is a HTTP redirect packet with the OP endpoint as des-
tination. An example of this message is shown in Figure 5. The Authentication
Request message has the form AuthReq(m,AH,cID,ID,rt,r) where m is the re-
quest mode deciding whether any user interaction with the OP should be possi-
ble or not1, AH is the association handle that is subject to have been established
between the RP and the OP in step 3, and cID is the OpenID Identifier the user
claims to be in control of. If delegation is used, the ID is the OP-local identifier,
otherwise it is the same as the claimed identifier. Also, setting the ID to the spe-
cial value http://specs.openid.net/auth/2.0/identifier_select the OP is
expected to choose the OpenID Identifier that belongs to the End User. The rt
parameter is the return to destination where the RP wants the OP to redirect the
UA after the authentication process. At last the r parameter is the URL pattern,
or realm, the OP asks the End User to trust. At the moment the RP sends the
Authentication Request it also stores the rt and cID values to be able to lookup
the request when the Assertion message is received in step 5, as described next.

1	 If not then a asynchronous JavaScript typically performs this request

13

HTTP/1.1 302 Found
Location:http://188.32.23.359:8080/mopenid/server
?openid.ns=http://specs.openid.net/auth/2.0
&openid.mode=checkid_setup
&openid.claimed_id=https://mopenid.item.ntnu.no/id/idexample
&openid.identity=https://mopenid.item.ntnu.no/id/idexample
&openid.assoc_handle=2j30f9j3ffa
&openid.return_to=http://rp.example.com/signin
&openid.realm=http://rp.example.com

Figure 5:  Example of an Authentication Request message

3.2.2.4. Positive Assertion Message

Step 5 in Figure 2 is out of scope of the OpenID protocol. The details and
requirements on how the user proves ownership of a claimed OpenID Iden-
tifier is entirely left up to the OP. Say that the user authenticates successful-
ly with the OP, then a Positive Assertion message is sent indirectly to the RP,
through the UA, as shown in step 6. The Positive Assertion message has the
form PosAssert(m,OP,cID,ID,rt,n,AH,{s},s) and sent as an HTTP 302 Found
message to the UA with the OP as destination. m is the mode parameter with
its value set to id_res and OP is the URL of the originator of the message. cID
and ID must either be both present or absent. The value of the former is the
claimed identifier or optionally the OP-local identifier. The latter’s value is the
OP-local identifier, thus possibly equal to the cID. The rt parameter is an exact
copy of the rt parameter in the Association Request message. The n parameter is
a response nonce formatted in a particular way, containing the OP’s current date
and time, appended by a random string aiming to make the nonce unique. The
AH parameter is the association handle identifier used for signing the assertion
message. The {s} parameter is a comma-separated list of certain parameter val-
ues part of this message which are signed. The s parameter holds the resulting
signature in the format decided by the association type in the Authentication
Request message. An optional parameter can be sent, namely the invalidate handle
indicating to the RP that its value, i.e. handle, should be considered invalid for
future interactions.

HTTP/1.1 302 Found
Location:http://rp.example.com/signin
?openid.ns=http://specs.openid.net/auth/2.0
&openid.mode=id_res
&openid.op_endpoint=http://188.32.23.359:8080/mopenid/server
&openid.identity=https://mopenid.item.ntnu.no/id/idexample
&openid.claimed_id=https://mopenid.item.ntnu.no/id/idexample
&openid.return_to=http://rp.example.com/signin
&openid.responce_nonce=2010-11-21T21:12:30ZD3R6F%
&openid.assoc_handle=2j30f9j3ffa
&openid.signed=op_endpoint,return_to,responce_nonce,claimed_
id,identity
&openid.sig=#signature#

Figure 6:  Example of a Positive Assertion message

14

3.2.2.5. Assertion Message Verification

Assertion message verification happens in one of two ways. Either the RP can
use the already negotiated MAC key which can be indexed using the association
handle, or the RP can send an additional direct message to the OP requesting
verification of the Positive Assertion message. The latter case is illustrated in
step 7 in Figure 2. The RP needs to verify several of the returned parameters
in the Positive Assertion message against parameters originally sent in the Au-
thentication Request message. The rt parameter needs to match the URL of the
current request. Further, all the information gathered in the discovery process in
step 2 needs to be verified by checking certain parameters in the Positive Asser-
tion message. Table 1 shows the mapping between the discovered values and the
fields returned in the assertion message, which are required to have equal values
for the RP to approve the login.

Discovered value Response field

Claimed Identifier openid.claimed_id

OP-Local Identifier openid.identity

OP Endpoint URL openid.op_endpoint

Protocol Version openid.ns

Table 1:  Discovered information to Positive Assertion Response message [30]

Further, if the Association Request message delegated to the OP to choose an
identifier for the user, the Positive Assertion message will contain this identifier
on return. In this case the RP must perform discovery on the returned identifier
to make sure that the same OP controls it. The nonce must be checked to verify
its uniqueness among nonces returned from the specific OP. To ensure that no
values have been tampered with on the way, the signature should be checked. If
an association exists between the OP and the RP verification is easily performed
using the pre-negotiated key and the format specified as the association type. If
no association exists the RP needs to request the OP to verify the positive as-
sertion message by sending a direct message to the OP. The message is a copy
of the Positive Assertion message received, with mode parameter altered to the
value check_authentication. The OP returns a message containing two param-
eters, openid.is_valid and openid.invalidate_handle. The first parameter is set to true
if the signature is correct and false otherwise. The second and last parameter
is optional, but if included the given association handle should not be used by
the RP anymore.

All of the above messages contain a common parameter which specifies the
protocol version of which the contents are formatted by. This is the openid.ns
parameter and is set to http://specs.openid.net/auth/2.0 stating that only
the 2.0 specification of the OpenID Authentication protocol is respected.

15

3.3. Weaknesses

There are arguably weaknesses to the OpenID Authentication 2.0 protocol if
the necessary precautions are not being taken. Some of the major weaknesses
and recommended steps to prevent them are presented in the end of the proto-
col specification [30]. There have been several independent analysis performed
on the overall security of OpenID which in some cases have revealed security
threats [8] [20]. We will in the following subsections look into some of these.

3.3.1. Phishing

A phishing attack involves tricking an End User into giving up her credentials
for some protected resource to some perceived trusted entity in a network [23].
Such an attack requires no more than a rogue RP and lack of user attention. The
essential step of this attack is to redirect the UA to a malicious OP with similar
or identical visual looks as the genuine OP. A low-observant user miss to see
that the URL she has been redirected to does not match the URL belonging to
the genuine OP. Perceived to authenticate with the real OP, the user instead re-
veals her credentials to the fake OP, leaving its owner capable of controlling the
OpenID identity managed by the genuine OP. The attack can be avoided if the
user is more aware of where she is being redirected to, and optionally choosing
an OP with SSL/TLS support for server authentication purposes. Additionally,
the user can initiate an authenticated session with the OP before trying to log in
with RPs. When the UA is redirected in step 4 in Figure 2 it will use the session
it already shares with the OP, thus there is no need to once again authenticate by
e.g. entering a password. However, user knowledge about unnecessary reauthen-
tication when a session already exists is needed.

3.3.2. Cross-Site Scripting

Cross-site Request Forgery (CSRF) is a type of cross-site scripting and a po-
tential attack given that the user already has an authenticated session with the
OP. If the UA encounters malicious HTML code as shown in Figure 7 at some
visited website, unwanted actions could take place. The code exploits the ex-
isting session between the OP and the UA, triggering the UA to send certain
HTTP requests to other RPs without the user knowing. If the user already has
an account with a given RP, the code can log in the user and, secretly, perform
harmful actions [39].

<iframe id=”login”
src=”http://bank.com/login?openid_url=http://idexample.myopenid.
com” width=”0” height=”0”></iframe>
...
<iframe id=”transfer”
src=”http://bank.com/transfer_money?amount=100&to=attacker”
width=”0” height=”0”></iframe>

Figure 7:  Malicious HTML code for realizing a CSRF attack. Source: [39]

16

3.3.3. Denial of Service

The OP is subject to a denial of service attack if a malicious RP, or another en-
tity in the network, decides to launch a large batch of association, authentication
or verification requests at it [30]. The most severe threat happens in the case of
an association request as this forces the OP to perform a discrete exponentiation
based on parameters received from the attacker. No built-in protection from this
attack is provided by the OpenID protocol.

3.3.4. Data Governance Issues

An End User needs to fully trust its OP. But how does a user know that the
information stored with the OP is safe and treated as careful as required with
respect to security. [43] states that
“Data governance is the term used for knowing what happens to the data that is stored, par-
ticularly when that data has any PII (personally identifiable information), which the OpenID
IdP does.”

Not only does the user allow for the OP to store PII such as date of birth, name,
e-mail address and other contact information, but she also lets the OP manage
the list of approved services associated with the OpenID identity. Usage pat-
terns can easily be derived from observation. As an End User, one have the
option of trusting third party OPs or host one yourself. Concerning the former,
which by far is the most common approach, how certain can a user be that the
PII is kept secret or that credentials are stored in an absolute secure manner,
e.g. that they are stored as hashed values rather than plain text? Is the PII that
is stored with the OP encrypted? If no, consequences are big if the system is
breached or the disk containing the database physically stolen, as it allows the
intruders to access and exploit sensitive information.

Having an account with an OP is usually provided at no cost to End Users,
which leads to the question of how OP administrators make enough money to
cover the expenses associated with providing the service. OP service require-
ments are, among others, high availability and strong security, something which
does not come for free, rather the opposite. The Privacy Policy page belonging
to the OP myid.net [24] states the following about how personal information is
used:
“In connection with the delivery of our services, we may share the Personal Information with
third-party partners or vendors who help deliver or administer the services, but they are only
permitted to use the information in connection with the delivery or administration of our
services.”

The current practices differ between various OPs of course, but there is a reason
to believe that the above condition allows for the OP to make profit from e.g.
selling customized advertisements based on the information shared to third par-
ties, as the term service is rather ambiguous.

OpenID is referred to as a highly user-centric IdM solution, but the user identity
is, however, in most cases managed from a trusted third party. Presenting an
even more user-centric solution is the purpose of this thesis, which allows more

17

control to the users who simply do not want third parties controlling their PII
and access to services using OpenID.

3.3.5. Feasibility of setting up a Private
OpenID Identity Provider

The OpenID Foundation web site [29] motivates advanced users to set up and
host their own private OPs. A number of libraries on the foundation’s developer
web site are listed and available for supporting OP (and RP) implementations on
various platforms written in different programming languages. A great deal of
technical insight, time, server access with administrative rights, and not to men-
tion motivation is required in order for an End User to host the OP herself. How
feasible is this for the average user? Obviously, not very. But should the lack of
technical skill and interest keep those users incapable of enjoying the control
and security of hosting their own private OP? In modern times, relatively cheap
consumer electronics, possessing the necessary hardware and software support,
are available, namely smartphones. With this in mind, a solution to solve this
problem is presented in section 5.

18

19

4. Prior Work for enhancing
OpenID Authentication
As we have learned from last section, the implementation and process of the
authentication between the OP and the user is out of scope of the OpenID
Authentication protocol. Based on what the user prefers she selects the OP
with the adequate authentication mechanisms. Some of the weaknesses facing
OpenID have been tried to dealt with through various enhancements of the au-
thentication procedure between the OP and the End User. The implementation
in this thesis introduces new possibilities for enhancing this process, but we will
first look into some of the work that previously has been done in this area. The
following subsections describe two distinct authentication techniques between
an OP and an End User.

4.1. An OpenID Identity Provider
based on SSL Smart Cards

A proposal for a stronger authentication solution using SSL smart cards is sug-
gested in [40]. It does so by enforcing mutual authentication between the user
and the OP using X.509 certificates on both ends. The smart card is plugged in a
USB key also holding a flash drive, which together constitute the authentication
token. While the flash drive includes a small piece of software used for proxying
HTTP messages between the token and the OP through the UA, the smart card
holds the RSA private key and the X.509 certificate associated with the OpenID
identity. The user experience is argued to be hassle free as most of the setup
and communication is performed under the hood, moreover anonymously, to
the user. The idea is to relieve the user of having to remember a username and a
password at all, which is traditionally used for authentication in OpenID. How-
ever, if the user is to lose the authentication token, or lack administrative rights
on a public computer needed to run the small piece of software on the flash
drive, limitations to this solution is evident.

20

4.2. OpenID and SIM

A solution for how telecommunication companies can participate as facilitators
for the adoption of OpenID for their already existing subscribers is proposed
in [2]. The solution seems profitable for the mentioned companies as it requires
the ubiquitous SIM as a key part in the authentication procedure. The OP is
operated by and located at the telecom operator, and is tightly connected with
an authenticator which receives and handles EAP-SIM [13] over HTTP mes-
sages from the user as part of the authentication scheme. On the user side a
Java Applet running in an Internet browser is able to communicate with both
the SIM through a USB dongle or a Bluetooth capable mobile phone, and the
server-side authenticator, thus fulfilling the EAP-SIM over HTTP authentica-
tion messages required from the user side as defined in the paper. The strength
of this authentication scheme relies on the cryptographic algorithms and shared
secret keys stored in both the SIM and with the authenticator. Benefits are that
the user does not need to remember a traditional user name and password at all,
as the SIM handles the authentication requirements by itself, thus eliminating the
potential insecure passwords that users tend to have. However, the drawbacks
are the needs for the user to have software installed to support the Java Applet,
not to mention the possibility to connect through a USB or Bluetooth interface
for communicating with the SIM. Although both of the communication inter-
faces are common on most laptop and desktop computers today, it should not
be taken for granted that the user have sufficient permissions to use them or
even run the Java Applet if using a different computer than her own. In addi-
tion, trusting a third party, in this case the telecom operator, to manage a user’s
OpenID identity and make it reliant on a SIM, counteracts the goal to further
enhance the user-centric approach for managing digital identities.

In this context a similar, but not identical solution has in fact recently been
implemented by the largest mobile operator in Japan, NTT docomo. Essentially,
the implementation allows for their subscribers to use their issued subscription
ID as an OpenID identity as well [34]. The company subscribes approximately
50% of Japan’s population, which amounts to over 55 million OpenID-enabled
customers. This clearly illustrates the power certain companies with a large user
base possess in regards to increasing use of identity management frameworks
such as OpenID, and should inspire other telecom operators to do the same.

21

5. mOpenID – Mobile OpenID
Identity Provider

5.1. Idea

As discussed previously in section 3.3. OpenID although popular, suffers from
weaknesses. One of the most severe is the data governance insecurities related
to the identity data being stored by an OP. The OP dictates the various privacy
policies in which the user has no other option than to accept. Furthermore,
the user may experience unexpected withdrawal of services or policy changes
decided by third parties. Last but not least there is overall weak security due to
authentication through the UA as phishing attacks may occur. To remedy these
weaknesses the following work presents the implementation of a private OP
running on a smartphone, named the Mobile OpenID Identity Provider application.
The solution will address the technical challenge of setting up and hosting a pri-
vate OP and introduce new and arguably easier and more secure authentication
possibilities.

5.2. Network Reachability Models

There are certain constraints that apply when introducing reliance on a smart-
phone to host an OP rather than confessing to the traditional fixed server. One
big challenge is to enable inbound TCP/IP connections to the smartphone, as
this is required for any OP. IP connectivity between a mobile phone and the
Internet is made possible by the gateway GPRS support node (GGSN) in the
GPRS core network infrastructure, which handles functions including access
point name (APN) processing, IP address allocation, tunneling technologies, and
QoS management [4]. In most cases, inbound data traffic is disabled by default
by the network operator’s GGSN firewall. In the following subsections three
network architectures are presented to enable for a connection to be established
with a smartphone from either the UA or the RP.

5.2.1. Port forwarding a Wi-Fi access point

Most Wi-Fi access points provide port forwarding functionality as a standard
feature. By connecting the smartphone to an access point in possession of a
public IP and routing the incoming traffic on a given port on the access point
to the smartphone, one can access the OP running on the smartphone from
the Internet. Figure 8 illustrates how the OP is made accessible on port 8080
of the public IP address belonging to the Wi-Fi access point. This might come
in handy for testing purposes during application development. However, as it
brings configuration demands on the End User, it increases the solution’s com-
plexity, which in turn violates the core purpose of this thesis, namely making
the solution applicable for the novice user. Lastly, always having to depend on
a Wi-Fi access point being accessible when desiring to log in with OpenID is
inappropriate.

22

User Agent

OpenID
Identity
Provider

Relying
Party

LAN IP address:
192.168.1.3

InternetLocal Area Network

OP public IP address:
87.163.143.102:8080

Public IP address: 87.163.143.102

Incoming traffic routing table:
Port 8080 192.168.1.3

Wi-Fi Access Point

Figure 8:  Architecture when a Wi-Fi access point uses port forwarding to make
the OP accessible

5.2.2. Proxying through a Managed Server

Another solution is to introduce a controlled server acting as an intermediary
between the cellular network connected OP and the RP and UA, which together
make up the entities in the OpenID framework. The controlled server is shown
in Figure 9 as the OpenID Proxy entity and has the URL https://op-proxy.com.
The appended /userid string is unique to a given OP that connects to and
initializes with the OpenID Proxy, which happens at the moment the OP ap-
plication is launched. The initialized session is maintained between the OP and
OpenID Proxy, making the OP reachable for any User Agent or Relying Party
by having the proxy forward to it any Authentication or Association messages
requested to the URL https://op-proxy.com/userid. Likewise, the OP re-
sponds with the correct protocol messages to the proxy, which in turn ensures
final delivery to the initial requester. Note that the URL acts as, and in fact is,
the OpenID Identifier. Thus, yet another dependence is introduced to the solu-
tion, namely having to rely on the OpenID Proxy server. A problem arises in the
initialization phase between the OP and the OpenID Proxy server as authentica-
tion between the two has to be realized in some way to prevent a rogue party
from stealing control of the OpenID identity. Thus, this solution suffers from
increased complexity and inconvenience as all messages must go through an
intermediate server not managed by the End User. Despite these disadvantages,
it is a plausible solution to be realized.

23

User Agent

OpenID
Identity
Provider Relying

Party

InternetGSM/UMTS Network

e.g. https://op-proxy.com/userid

GGSN

OpenID Proxy

Figure 9:  Architecture when using an intermediary proxy between the OP and
UA and RP

5.2.3. Changing the Access Point Name

Every smartphone connected to the mobile data network are subscribed to one
or more access point names (APNs), which act as reference points for other In-
ternet nodes communicating with the smartphone [4]. If the smartphone have
subscribed to an APN that allows for inbound TCP/IP connections it can be
accessed directly by other Internet nodes as shown in Figure 10. Hence, the OP
application needs to configure the smartphone on runtime to use the particular
APN offered by the operator supporting this scheme, if such exists. For security
reasons the OP application should revert to the initial APN settings on shut-
down, in order to minimize the time period for which it is allocated a public IP
address. This final architecture is made use of in the ultimate implementation.

User Agent

OpenID
Identity
Provider Relying

Party

InternetGSM/UMTS Network

GGSN
IP address:

87.163.143.102

IP address:
87.163.143.102

Figure 10:  Architecture when changing to an APN which allocates a public IP
address to the smartphone

24

5.3. Methodology

The three subsequent sections comprising the analysis, design and implementa-
tion phases are carried out according to the ADPO Development Methodology
[37]. Initially, use case diagrams are created and explained to capture the func-
tional requirements of the system. In the consecutive design phase, collabora-
tion diagrams are established illustrating how various entities in the system inter-
act to achieve the defined functional requirements. The collaboration diagrams
illustrate the order of execution, hence the same as sequence diagrams would
do. Consequently sequence diagrams are omitted. Class diagrams are defined
next, creating the basis for the following implementation. The implementation
is documented by showing how key functionalities are realized and which Ope-
nID constraints that need to by taken into consideration and why. Lastly, the
implementation is validated by going through and visualizing each of the func-
tionalities.

A moderate amount of time has been spent getting familiar with existing frame-
works, both the Android operating system itself and other packages used in the
implementation. To obtain a public IP address for the smartphone a special SIM
was initially acquired from Telenor R&D and tested. As the SIM did not work
as expected, unforeseen research on how to obtain a public IP address arose.
Before the eventual solution was discovered, work was done on how alternative
realizations was to be designed and implemented.

5.4. Development Tools and Platforms

The development of the Smartphone Application was done in Eclipse aided by
the Android Development Tools (ADT) plugin [12]. The HTC Desire smart-
phone running Android version 2.2 was used during the implementation phase,
while the final application also was successfully tested and run on both the Sam-
sung Galaxy S and the Sony Ericsson Xperia X10. Certain parts of the Smart-
phone Application was compiled using Apache Maven. Netbeans was used for
implementing the webservices that is part of mOpenID server.

25

6. Analysis
From the gained understanding of the OpenID entities and protocol, use case
diagrams are constructed to derive the functional requirements for the system.
To successfully understand each part of the use case diagrams, Figure 11 gives
more information about the entities needed to realize the system, and their in-
teraction.

For convenience the abbreviation SA will be used as a single term for the Smart-
phone Application and the OpenID Identity Provider combined. These entities
are essentially the same entity in the system. The abbreviation MS is used for
mOpenID server.

User Agent

Smartphone
Application Relying

Party

mOpenID
server

End User

Figure 11:  The figure shows the interaction relationships between the entities
in the system. All the entities (except the End User of course) are connected to
the Internet

As illustrated in Figure 11 the End User has physical interaction with both the
SA and the User Agent. As later described in section 6.1.2., the End User can
choose between two different modes when using the SA. The interaction be-
tween the MS and both the SA and RP is only realized when run in mOpenID
mode, which is assumed to be the most frequently used mode.

26

6.1. Use Case Diagrams

6.1.1. End User - Smartphone Application Actions

Smartphone application

End User

Start application

Authenticate

Manage
identities

Shutdown
application

Mode selection <uses>

<extends>

Figure 12:  Use case showing application functionalities designated for the End
User

The above use case diagram briefly shows the application functionalities that
must be provided to the End User in order to perform a login with OpenID.
Obviously, the application must be started before use – an action that includes
obtaining a public IP address if not possessed already. On shutdown, the phone’s
configuration state prior to application launch must be restored if changed.
When started, the End User must select between two different modes, each pro-
viding distinct variants of logging in with OpenID. More about this is presented
in the more detailed diagram in Figure 13. The authentication functionality pro-
vides the End User the possibility to approve or reject authentication requests
of a particular OpenID Identifier. Finally, management of identities include cre-
ation and deletion of identities as well as export and import options. Exporting,
i.e. backing up the identity repository created in the SA saves the End User from
losing possession of the identities in case the smartphone is e.g. lost or damaged.

27

6.1.2. End User - Smartphone Application
Mode Selection Actions

Smartphone application

End User

Mode selection

Use Static IP
mode

Use
mOpenID

mode

Select
identity

Associate with
mOpenID server

<uses>

<extends>

Figure 13:  The figure shows the actions associated with Smartphone
Application mode selection

When using the system for OpenID login, the End User can choose between
two different modes, namely mOpenID mode and Static IP mode. mOpenID mode
is reliant on the mOpenID server (MS) to administer the OpenID Identifier, and
when selected an association with the MS is created. Static IP mode is only sup-
posed to be used if the End User possess a special SIM that, when connected to
the mobile data network, always is issued the same IP address (hence static). This
makes the mode capable of operating without dependence to an extra third-party
entity on the Internet (the MS). On the other hand, it makes the OpenID Identifier
less human readable as it essentially is the smartphone’s IP address concatenated
with the “http://” prefix (e.g. http://188.23.21.6:8080/mopenid/server).

28

6.1.3. Smartphone Application And Relying
Party - mOpenID Server Actions

mOpenID server

Smartphone
application

Authentication
and Access

Control

Register new
OpenID

Delete existing
OpenID

Associate
existing OpenID

Disassociate
existing OpenID

Relying
Party

Discover OP endpoint
(smartphone)

<uses>

<extends>

Check if
OpenID exists

Figure 14:  The above figure shows functionalities provided to the Relying Party
and Smartphone Application by the mOpenID server

When the SA is run in mOpenID mode, the mOpenID server play a vital role.
Specifically, it administers and stores all the OpenID Identifiers registered and
managed by SA users. Its main responsibility is allowing Relying Parties to dis-
cover the OP endpoint in charge of a particular OpenID Identifier, as described
previously in section 3.2.2.1. As for the SA, functionalities must be provided for
registering, deleting and associating OpenID Identifiers, the latter being config-
uring an OpenID Identifier to point to the SA in charge of authentication when
used for a login. Also, when a user want to register a particular OpenID Identi-
fier, a functionality must be provided to check if the desired identifier is already
taken. As seen in the figure, the use cases where the SA is involved, requires
authentication and access control to prevent incorrect configuration of OpenID
Identifiers administered by the MS.

29

6.1.4. User Agent and Relying Party -
Smartphone Application Actions

Smartphone application

User
Agent

Relying
Party

OpenID
Association

service

OpenID
Verification

service

OpenID
Authentication /

Assertion service

Discover OP endpoint

Figure 15:  Use case showing basic OpenID functionalities provided by the
Smartphone Application to the User Agent and the Relying Party

The use cases shown in Figure 15 are all required functionalities of any OP
supporting the OpenID Authentication 2.0 Protocol [30], with exception of
the Discover OP endpoint functionality used by the RP actor. This use case is
needed in the case when the SA is run in Static IP mode and an ID page needs to
be rendered on request by an RP. The ID page contains a pointer to where the
OP endpoint is, which in Static IP mode is the very same location as the Ope-
nID Identifier URL.

30

6.1.5. End User - Smartphone Application
Identity Management Actions

Smartphone application

End User

Manage
identities

Export
identity

Import
identity

Create
identity

List
identities

Activate

Associate
with mOpenID

server

Encryption
service

Decryption
service

Delete
identity

<uses>

<extends>

Figure 16:  The figure shows actions related to identity management by the End
User

The management of OpenID identities is all done from the SA by the End User.
The SA must support creating, deleting, exporting and importing an OpenID
identity, if requested by the End User. If one have multiple OpenID identities, a
list must first be presented to the End User before selecting which one of them
that should be activated for use when performing an OpenID login. All of the
actions in Figure 16 is only current when the SA is running in mOpenID mode.

6.1.6. End User - Smartphone Application
Authentication Actions

Smartphone application

End User

Authenticate

Reject

Accept

<uses>

<extends>

Figure 17:  The use case describes how the End User must authenticate an
OpenID Authentication Request Message received from an RP

The SA must provide an interface allowing the End User to accept or reject

31

received OpenID Authentication Requests from RPs as presented in section
3.2.2.3.

6.2. Functional Requirements

Based on the use case diagrams in the previous section, we get the following two
tables specifying the functional requirements of the SA and the MS.

6.2.1. Smartphone Application Requirements

ID Abbreviation Description

SA-1 Start The user must be able to start the application. In this
step, the application will automatically obtain a public
IP address and turn off the Wi-Fi connection. If the
application is not able to perform the initial setup, an
error message will be displayed.

SA-2 Shutdown When the application is shut down, it must restore its
initial settings prior to first launch. This includes mak-
ing its IP address non-public and turning the Wi-Fi
connection back on again if it was on initially.

SA-3 ModeSelec-
tion

The user must be able to select which mode to use
when a login with OpenID is desired. The modes
must show appropriate functionalities when selected,
e.g. list the current OpenID identities stored in the
application if mOpenID mode is selected.

SA-4 Authenticate A user wishing to authenticate an OpenID Authen-
tication Request Message must be allowed to do so
from a GUI. Accept and reject buttons are required.

SA-5 OpenID2.0 The application must support requests and responses
in accordance to the OpenID Authentication 2.0 pro-
tocol. Hence, support must exist for interacting with
both a User Agent and a Relying Party.

SA-6 Manage The application must support a various number of
ways to manage OpenIDs when running in mOpe-
nID mode, as detailed in the following sub require-
ments.

SA-6.1 IDcreate The application must provide a way for a user to eas-
ily create new OpenIDs. The OpenID Identifier is
constrained by a minimum character length of five,
and must only contain letters and numbers. Security
tokens proving ownership of the created OpenID
must be securely stored in the application for later as-
sociation with the mOpenID server. The application
must check if a desired OpenID already is taken by
someone else on the mOpenID server.

32

ID Abbreviation Description

SA-6.2 IDdelete The application must provide a way to easily delete
an OpenID and any traces of it, both locally and on
the mOpenID server. The identities are deleted either
completely (remotely too) or only locally. Deletion of
a particular OpenID is initiated by long-pressing on
it when the list over stored SA OpenID identities is
shown.

SA-6.3 IDassociate When in mOpenID mode, the functionality to associ-
ate with the mOpenID server must exist. The result-
ing effect of this should leave a particular OpenID
Identifier residing on the mOpenID server to point
to the smartphone’s current IP address where the
OpenID Identity Provider is running and awaiting
to either reject or accept an OpenID Authentication
Request received from an RP.

SA-6.4 IDdisassoci-
ate

Once a OpenID Authentication Request has been ei-
ther rejected or accepted, the application must disas-
sociate itself with the mOpenID server.

SA-6.5 IDexport Whenever the user wants to backup its currently
stored identities, the application must support this.
Encryption must be used so that the exported identi-
ty repository can not be read. It should be possible to
share the encrypted file to other application installed
on the smartphone such as an e-mail application or
Dropbox [9].

SA-6.6 IDimport The application must support importing previously
exported identity repositories. The correct decryp-
tion key must be provided by the user for a successful
import. If some of the identities being imported is al-
ready present in the application, they will be skipped.

SA-6.7 IDlist The SA must be able to show a list over the OpenIDs
stored in the SA application. These are either created
using SA-6.1, or imported using SA-6.6.

SA-7 Discover When the application is run in Static IP mode, it
needs to host an identity page itself, containing
pointers to where the OP endpoint is. Generation of
an XRDS document used for the Yadis protocol is
included.

Table 2:  Functional requirement specification for the Smartphone Application

33

6.2.2. mOpenID Server Requirements

ID Abbreviation Description

MS-1 IDexists This functionality is used by the SA to check if a
particular OpenID identifier is already registered.
Verification of allowed characters is also included in
this step.

MS-2 IDregister Provides the SA the functionality to register a particu-
lar OpenID identifier. A randomly generated security
token must be created by the mOpenID server and
shared with the SA. The functionality is typically
preceded by the MS-1 functionality. Verification of
allowed characters is also included in this step.

MS-3 IDremove Provides the SA the functionality to remove (delete) a
particular OpenID. This will only be performed if the
parameterized security token is correct.

MS-4 IDass This is the association action. The SA uses this func-
tionality prior to an OpenID login. The mOpenID
server should activate the ID page of the particular
OpenID identifier and initialize the necessary point-
ers to point to the SA, i.e. the OP endpoint. This
will only be performed if the parameterized security
token is correct.

MS-5 IDdisass This is the disassociation action. The SA will not use
this functionality unless an association has been es-
tablished already. It is used to close the identity page
and remove any trace of the IP where the SA appli-
cation is located. This is essentially a functionality to
disable the OpenID after a successful or unsuccessful
login attempt.

MS-6 OPDiscover This is the discover action performed by the RP prior
to when the OpenID Authentication Protocol is ex-
ercised. This is only a functionality needed when the
SA runs in mOpenID mode. Essentially, it provides
a web page to the RP containing pointers to where
the OP endpoint is located. Generation of an XRDS
document must be supported as well.

Table 3:  Functional requirement specification for the mOpenID server

34

35

7. Design

7.1. Android Platform Characteristics

The SA is developed to run on the Android operating system [11], and the fol-
lowing creation of collaboration and class diagrams bear resemblances of this
fact. Hence, some key characteristics of the Android framework are worth high-
lighting first and is done over the next subsections.

7.1.1. Activities

An Android application is built up of one or more activities, each run and being
active one at a time. An activity provides functionalities for the user and handles
all user input performed on the smartphone, as well as providing the GUI. The
SA to be developed is going to have multiple activities, each providing different
functionalities to the End User, e.g. the functionality to create a new OpenID
Identifier.

7.1.2. Services

A service is started (and stopped) from an activity and is capable of operating in
the background of any running activity. The service can do just about anything
an activity can do, except displaying GUI or handling direct user input. Activities
can communicate with services through intents.

7.1.3. Intents

Intents are messages broadcasted internally across a running Android operating
system. These are sent and received by activities, services and other parts of the
operating system. An intent can trigger actions if any receiver is listening for the
given intent. Intents provide a way of communicating between different parts of
the system, and is frequently used in the SA.

7.1.4. Execution Environment

As for application’s execution environment, Android provides a dedicated Java
Virtual Machine for any running application. This increases security as applica-
tion code runs in isolation from the code of all other applications running on a
smartphone.

7.2. Collaboration Diagrams

To understand how the entities in the system interact with each other to achieve
a particular goal, key collaboration diagrams are constructed next. As every col-
laboration diagram explain the order of message execution, sequence diagrams
are not constructed as they would describe the exact same interaction.

36

7.2.1. Start Application in mOpenID Mode

:End User

1: Start application :SelectMode
<<Activity>>

3: Select mOpenID mode

:SelectMOpenIDMode
<<Activity>>

4: Launch
mOpenID

mode

2: Obtain
public IP
address

5: Display OpenIDs

Figure 18:  End User starting the SA in mOpenID mode

The collaboration diagram in Figure 18 shows the course of action when the
End User starts the SA and selects mOpenID mode.

7.2.2. Creating a new OpenID in mOpenID Mode

:End User

1: Create new :SelectMOpenIDMode
<<Activity>>

:CreateNew
<<Activity>>

2: Launch
create screen3: Type A:OpenID

:mOpenID server
<<webservice>>

4: Is available
A:OpenID

5: Available

6: Available

7: Create

8: Register
A:OpenID

9: Registered OK
A:Security Token

Figure 19:  End User creating a new OpenID using the SA which then interacts
with the mOpenID server

Creation of a new OpenID using the SA, first requires interaction with the mO-
penID server in order to verify that the desired OpenID Identifier is available as
shown in step 3-6. Lastly, as shown in step 7-9, the OpenID is established. On
creation, the mOpenID server generates a security token that is sent to the SA,

37

which is stored and later used to administer the OpenID from the SA.

7.2.3. Associating with the mOpenID
Server in mOpenID Mode

:SelectMOpenIDMode
<<Activity>>

:MOpenIDModeActivation
<<Activity>>

:mOpenID server
<<webservice>>

:End User 1: Use A:OpenID

3: Associate (A:OpenID,
A:IPaddress,

A:Security Token)

2: Activate A:OpenID

4: Assocation OK

5: Ready

Figure 20:  Association of an OpenID with the mOpenID server in mOpenID
mode

Say that an OpenID (A:OpenID) has already been created on the SA. If an End
User would like to log in with this particular identifier, the SA needs to associate
this OpenID with the mOpenID server, resulting the mOpenID server to point
to the SA as the OP endpoint. In step 3, the mOpenID server is provided with
the smartphone’s IP address as well as the correct security token required to
perform the pointer configuration.

38

7.2.4. Logging in while in mOpenID Mode

:Smartphone Application

:mOpenID server
<<webservice>>

:End User

:Relying Party
<<website>>

:User Agent
<<browser>>

1: Login
A:OpenID

2: Login
A:OpenID

3: Discover A:OpenID

4: Pointer A:OpenID,
A:IPaddress

5: OpenID Association
Step

6: Redirect
A:Authentication

Request

7: Prompt
A:Authentication

Request

8: Accept
A:Authentication

Request

9: Redirect
A:Positive
Assertion

Figure 21:  Showing a successful login in mOpenID mode and how the entities
interact

The procedure in Figure 21 takes place right after where Figure 20 leaves off, as
an association with the mOpenID server must be existing at the time of login.
The message flow is initiated by the End User providing an RP with the associ-
ated OpenID through an HTML form (1). On submission through the User
Agent (2), the RP discovers the OP endpoint by requesting the mOpenID server
for the particular OpenID (3), resulting in the IP address of the SA (4). With
the returned information about the OP in charge of the OpenID Identifier, the
RP can optionally initiate an OpenID association (5) with the SA (i.e. OP) as
described in section 3.2.2.2. Note that this association is different from the as-
sociation described in section 7.2.3. The HTTP response to the User Agent is a
302 Found message forwarding an Authentication Request Message to the await-
ing OP running as part of the SA (6). Next, the End User will be prompted with
information about the Authentication Request Message (7) on the SA. At the
same time an HTML response is sent to the UA, including a button that when
clicked will trigger a last request to the SA, although this is not illustrated in the

39

figure. As the End User accepts the request (8) on the SA and clicks the button
shown in the UA, the Positive Assertion Message is created by the SA and sent
back through the User Agent to the RP (9). If step 5 was skipped by the RP, a
verification of the received message is it this point performed directly between
the RP and the OP, although not illustrated in the figure. This completes a suc-
cessful OpenID login in mOpenID mode.

7.2.5. Start Application in Static IP Mode

:End User

:SelectMode
<<Activity>>

:StaticIPModeActivation
<<Activity>>

5: Ready

1: Start application

4: Launch Static
IP mode

2: Obtain public
IP address

3: Select Static
IP mode

Figure 22:  End User starting the SA in Static IP mode

The steps of procedure are similar to what is shown in section 7.2.1. The dif-
ference is only that the End User selects Static IP mode instead of mOpenID
mode, and that no list of OpenIDs is displayed to the user (5). This is self-
explanatory since the (static) IP address assigned to the smartphone, is function-
ing as the OpenID Identifier, hence no option for selecting a particular one is
provided.

40

7.2.6. Logging in while in Static IP Mode

:Smartphone Application

:End User

:Relying Party
<<website>>

:User Agent
<<browser>>

1: Login
A:OpenID

2: Login
A:OpenID

3: Discover A:OpenID

4: Pointer A:OpenID,
A:IPaddress

5: OpenID Association
Step

6: Redirect
A:Authentication

Request

7: Prompt
A:Authentication

Request

8: Accept
A:Authentication

Request

9: Redirect
A:Positive
Assertion

Figure 23:  Showing a successful login in Static IP mode and how the entities
interact

The login process is as always initiated by the End User who provides the Ope-
nID Identifier through her UA, which in turn submits it to the RP (1-2). The
discovery step (3) is, different from what happens in mOpenID mode, directed
to the SA itself, hence dependence to any third party server is eliminated. The
remaining steps are equal to those described in section 7.2.4. and Figure 21.

41

7.3. Class Diagrams

The next subsections describe what classes that are needed to implement the SA.

7.3.1. Activity Classes

 no.ntnu.item.mopenid.app

android.app.Activity

AbstractActivation

StaticIPModeActivationmOpenIDModeActivation

SelectMode SelectOpenIDMode CreateNew

Figure 24:  Above are the activity classes making up the front-end mOpenID
Application

The activity classes do not provide any functionality to any of the other classes,
hence no methods are visible in the class diagram in Figure 24. Instead, they
use functionality provided by other classes in the no.ntnu.item.mopenid.util
package in addition to interacting with other components through intents, as
both listeners and broadcasters. Each activity class provide a GUI and triggers
actions based on user input. Some of the class names can be recognized in some
of the previously described collaboration diagrams.

7.3.2. Webapp Servlet Class

 no.ntnu.item.mopenid.webapp

HttpServlet

+doGet(HttpServletRequest,HttpServletResponse)
+handleAssociationRequest()
+handleCheckIdSetup()
+handleCheckIdImmediate()
+handleCheckAuthentication()
+printLoginForm()

OpenIDServlet

Figure 25:  Servlet class handling HTTP requests required as an OP

42

As an OP needs to support HTTP requests and responses, a web server is re-
quired to run as part of the SA. Java Servlet Technology [14] will be used for
this to process the HTTP requests. Figure 25 shows the OpenIDServlet class
which will respond to HTTP requests according to the OpenID Authentication
protocol. The servlet will interact with the activity classes shown in Figure 24
through intents whenever user interaction is required, e.g. when an Authentica-
tion Request Message from an RP must be approved or rejected.

7.3.3. Util Classes

 no.ntnu.item.mopenid.util

+registerNewID(OpenID)
+deleteId(OpenID)
+idAlreadyExists(OpenID)
+associateOpenID(OpenID)
+disassociateOpenID(OpenID)
+setApnAsPublic()
+setInitialApnState()

-MOPENID_WEBSERVICE_URL
-MAX_NUMBER_OF_IDS

Utils

+encryptOpenIds(EncryptionKey)
+decryptOpenIds(DecryptionKey)

BackupUtils

-identifier
-lastUsed
-securityToken

OpenID

Figure 26:  Util classes used by the activity classes in Figure 24

The classes in the no.ntnu.item.mopenid.util package provide useful func-
tionalities for the activity classes described in Figure 24. The fields and methods
in the Utils and BackupUtils classes are all defined static, hence they can be used
instantly from any other class. As the method names are reasonably descriptive,
no further elaboration is given. The OpenID class is a data container containing
important values such as the OpenID Identifier and the security token used for
configuring the MS when in mOpenID mode.

7.4. Non-Functional Requirements

As with any software system, certain non-functional requirements must be met.
Current for this system are the requirements listed below

•	 Any sensitive data of an OpenID created on the SA must be securely
stored

•	 The system must be easy to use

•	 The application responsiveness must be good

•	 The application must not use more resources than necessary as battery life
is a constraint

43

8. Implementation

8.1. Deployment

The deployment diagram in Figure 27 shows how the different software pieces
run on various hardware and in which way they communicate with each other.
Note that the Relying Party is not implemented as part of the system, but is in-
cluded in the diagram to clarify interaction with the MS and the SA.

:Relying Party
<<Web Site>>

:mOpenID
server

{OS=Linux}

mOpenID
configuratiion
webservice
<<PHP>>

OpenID and
association
database

<<MySQL>>

mOpenID ID page
webservice
<<PHP>>

:Smartphone
{OS=Android}

:I-Jetty Web
Server

<<Service>>

mOpenID
webapp

<<Servlet>>

:mOpenID
application
<<APK>>

OpenID database
<<SQLite>>

<<Intents>>

<<HTTP>>

<<HTTP>>

<<JSON>>

User interface
<<Activity>>

:I-Jetty
<<APK>>

Figure 27:  Deployment diagram of the various software pieces of the solution

8.2. mOpenID Server

The mOpenID Server (MS) is only in use when the SA is running in mOpe-
nID mode. It is basically a dedicated Ubuntu (v10.04.1) server running Apache
(v2.2.14), PHP (v5.3.5) and MySQL (v5.1.41). The domain name for this server
decides the prefix of the OpenID Identifiers obtainable through use of the SA.
For this thesis the domain name is mopenid.item.ntnu.no. The Apache server
is equipped with a valid X509 certificate, allowing for encrypted communica-
tion between the server and both the SA and RPs. There are two independent
web services running on the server; “mOpenID configuration web service” and
“mOpenID ID page web service”. They both share the same database contain-
ing information about the OpenIDs registered through the SA. These three
components are described in the following subsections.

44

8.2.1. Database

The MS uses the database to store all the OpenIDs registered from user’s SAs
as well as to keep track of active associations at the time a particular OpenID is
used for logging in at an RP. Two tables are needed for this.

+----------------+--------------+------+-----+-------------------+
| Field | Type | Null | Key | Default |
+----------------+--------------+------+-----+-------------------+
id	varchar(30)	NO	PRI	NULL
security_token	varchar(200)	NO		NULL
enabled	tinyint(2)	NO		1
created	timestamp	NO		CURRENT_TIMESTAMP
ip	varchar(20)	YES		NULL
+----------------+--------------+------+-----+-------------------+

Figure 28:  Structure of the table links

The table shown in Figure 28 holds all the necessary information about the
OpenID identifiers registered by users of the SA. The id field stores the post-
fix value of the OpenID Identifier, hence it must be unique. Figure 29 shows
how the value is used to construct the OpenID Identifier that applies when
running in mOpenID mode.

https://mopenid.item.ntnu.no/id/identifierexample

Figure 29:  An OpenID Identifier having the id field’s value set to
“identifierexample”

The security_token field stores a random string generated by the MS when
creating a new OpenID using an SA. The correct value is required for admin-
istering the OpenID at the MS. The enabled field tells if particular OpenID is
enabled or not. The last two fields, created and ip, tells when and from which
IP address the OpenID was created, respectively.

+--------------+--------------+------+-----+-------------------+
| Field | Type | Null | Key | Default |
+--------------+--------------+------+-----+-------------------+
id	int(11)	NO	PRI	NULL
identifier	varchar(30)	NO		NULL
destination	varchar(255)	NO		NULL
active	tinyint(4)	NO		1
last_updated	timestamp	NO		CURRENT_TIMESTAMP
+--------------+--------------+------+-----+-------------------+

Figure 30:  Structure of the table active_links

The above table contains records of all the active associations between an Ope-
nID Identifiers and the SAs in control of them. Rows are inserted by providing
the correct security token and IP address, as demonstrated in step 3 in Figure
20. The id field is an auto incremented integer for each row inserted into the
table, while the identifier corresponds to the particular OpenID Identifier
for which the row applies. The destination field contains the URL of the OP
endpoint, i.e. the location to where the RPs can find the OP in charge of this
particular OpenID Identifier. It always points to a running instance of the SA

45

when the active field is set to 1. Finally, the last_updated field contains the
timestamp when the record was last modified.

8.2.2. mOpenID Configuration Web Service

The mOpenID configuration web service provides the functionalities MS-1 to
MS-5 listed in Table 3. The SA triggers these functionalities via HTTP GET
requests, which are handled by scripts written in PHP running on the MS. The
responses returned from the requests are JSON [7] formatted messages indicat-
ing whether a request was successful or not. Two PHP files are used for this
purpose, exists.php and associate.php, and behaves as follows.

Functionality Request JSON response

Check if an
OpenID Identifier
already exists.

exists.php?
id=exampleidentifier

if exists: {“message”:”yes”}
if not exists: {“message”:”no”}

Table 4:  Description of the behavior of exists.php

The simple code of exists.php makes sure to strip the id value of any harmful
characters, before performing a lookup in the database to see if the OpenID
Identifier already has been registered. The appropriate JSON response is re-
turned as shown in Table 4.

Functionality Request JSON response

Register a new
OpenID Iden-
tifier

associate.php?a=1
&id=exampleidentifier

{“message”:”inserted”,
“security_token”:
“examplesecuritytoken”}

Delete an
OpenID Iden-
tifier

associate.php?a=2
&id=exampleidentifier
&st=examplesecuritytoken

{“message”:”ok”}

Associate an
OpenID Iden-
tifier

associate.php?a=3
&id=exampleidentifier
&st=examplesecuritytoken
&d=exampleOPendpoint

{“message”:”
Link associated”}

Disassociate
an OpenID
Identifier

associate.php?a=4
&id=exampleidentifier
&st=examplesecuritytoken

{“message”:” Link disasso-
ciated”}

Table 5:  Description of the behavior of associate.php

From the first row in Table 5 one can see that the MS responds with a security
token generated for the particular registration request. This is used in subse-
quent actions for controlling the OpenID Identifier, as seen in the three remain-
ing rows. The security token value sent to the SA is merely a seeded SHA-512
hash digest of the generated value. This way, the security token stored in the
SA is somewhat shorter as well as not identical to the one stored at the MS.

46

Note the d parameter (destination) in the association request which specifies
where the OP endpoint is located in terms of an IP address with the http://
prefix. In case any of the requests fail, the MS will return the JSON response
{“message”:”failed”}.

8.2.3. mOpenID ID Page Web Service

The ID page is the web page returned when submitting a regular HTTP GET
request on an OpenID Identifier (Figure 29) when running in mOpenID mode.
Whether a valid ID page is displayed on request or not depends on if the par-
ticular OpenID Identifier exists and is currently activated from a controlling
SA. An OpenID Identifier is activated if it has an association record in the
active_links table (Figure 30). When activated, the MS will generate an ID
page as an HTML document with the necessary head tags pointing to the SA (i.e.
the OP endpoint) in charge of the requested OpenID Identifier. This way, an RP
will during the discovery phase (step 2 in Figure 2) find out which network entity
(i.e. SA) to continue the OpenID Authentication protocol with.

<html>
<head>
 <link rel=”openid2.provider” href=”http://
188.149.199.175:8080/mopenid/server”>
 <link rel=”openid.server” href=”http://188.149.199.175:8080/
mopenid/server”>
 <meta http-equiv=”X-XRDS-Location” content=”https://mopenid.
item.ntnu.no/userXrds/exampleidentifier” />
 <meta http-equiv=”cache-control” content=”no-cache” />
</head>
<body>
 This is the identity page for the user
<code>exampleidentifier</code>.
</body>
</html>

Figure 31:  HTML source code of an active ID page

The first link tag in Figure 31 points to where the RPs exercising version 2.0 of
the OpenID Authentication Protocol can find the OP in charge of the current
OpenID Identifier. The second link tag does the same for RPs only supporting
the older 1.1 version of the protocol. If the RP applies the Yadis protocol when
performing OP endpoint discovery, it will read the XRDS document by request-
ing the URL pointed to in the first meta tag (X-XRDS-Location). The returned
document is shown in Figure 32. The second meta tag enforces requesters not
to cache the document, as an outdated document can contain faulty OP end-
point URLs.

47

<?xml version=”1.0” encoding=”UTF-8”?>
<xrds:XRDS
 xmlns:xrds=”xri://$xrds”
 xmlns=”xri://$xrd*($v*2.0)”>
 <XRD>
 <Service priority=”0”>
 <Type>http://specs.openid.net/auth/2.0/signon</Type>
 <Type>http://openid.net/signon/1.1</Type>
 <URI>http://188.149.199.175:8080/mopenid/server</URI>
 </Service>
 </XRD>
</xrds:XRDS>

Figure 32:  XRDS document used for OP discovery if exercising the Yadis
protocol

The mOpenID ID page web service fulfills the necessary functionalities for the
MS-6 requirement in Table 3. For complete implementation details, the attached
code coming with this report should be studied. The ID page and XRDS docu-
ment generation has been somewhat aided by the Apache 2.0 licensed frame-
work, PHP OpenID [16].

8.3. mOpenID Application

The mOpenID Application is an Android application, hence written in the Java
programming language. It consists of Android activities, each providing a set of
functionalities in order to fulfill the requirements in Table 2, with the exception
of SA-5 as this is covered by the mOpenID Webapp as described in section 8.4.
Over the next subsections, key implementation details are described. The full
implementation details are included in the attached code that comes with this
report.

8.3.1. Activity Overview

Table 6 shows the activities and how the functionality implementation is distrib-
uted between them.

Activity name Functionalities implemented

SelectMode Start (SA-1), Shutdown (SA-2), ModeSelection
(SA-3), IDexport (SA-6.5), IDimport (SA-6.6)

SelectMOpenIDMode IDlist (SA-6.7), IDdelete (SA-6.2)

CreateNew IDcreate (SA-6.1)

MOpenIDModeActivation Authenticate (SA-4), IDassociate (SA-6.3), ID-
disassociate (SA-6.4)

StaticIPModeActivation Authenticate (SA-4), Discover (SA-7)

Table 6:  Android activities and the functionalities they implement

48

8.3.2. Maximizing Application Responsiveness

In order to make the application behave as smooth as possible, all of the I/O
calls for the MS interaction and other computational demanding work is done
asynchronous to the UI thread. This is achieved by extending and tailoring task-
specific classes from the android.os.AsyncTask class included in the Android
Java library.

8.3.3. Obtaining a Public IP Address.

The process of obtaining a public IP address for the SA is of highest impor-
tance for the OP to function. The solution to this problem was presented in
section 5.2.3. and the smartphone is configured as follows:

1)	 Disable the Wi-Fi connectivity by turning it off

2)	 Change the Access Point Name (APN) used for connecting to the Inter-
net through the mobile network to one that does not restrict incoming
connections. Moreover, the new APN must not include the standard fire-
wall protection and allocate a public IP address to the smartphone.

Disabling the Wi-Fi is performed easily when starting the application and the
SelectMode activity is launched. In this same start-up procedure, the application
switches the current APN to a public one (if it is supported) after first saving
the initial APN configuration. The current implementation of the SA only sup-
ports one APN name, namely “internet”. This APN has been tested to work
across the main Norwegian telecom operators. Obtaining a public IP address
is achieved by appending the string “.public” to the APN name. The resulting
“internet.public” APN allocates the smartphone a public IP address on the net-
work, making the SA ready for use. The described functionality is implemented
in the no.ntnu.item.mopenid.util.Util class, illustrated by the class diagram
in Figure 26. When shutting down the application, the initial configuration is
restored.

8.3.4. Database

An SQLite database is used for storing the either created or imported OpenIDs
in the mOpenID Application. The structure is presented in Figure 33.

+----------------+-------+------+-----+-------------------+
| Field | Type | Null | Key | Default |
+----------------+-------+------+-----+-------------------+
_id	text	NO	PRI	NULL
security_token	text	NO		NULL
description	text	YES		NULL
created	text	NO		CURRENT_TIMESTAMP
last_used	text	YES		NULL
+----------------+-------+------+-----+-------------------+

Figure 33:  Structure of the table links residing in the mOpenID Application

The _id field stores the postfix of the OpenID Identifier, hence it is defined as
the primary key of the table. The security_token field stores the hashed digest

49

received from the MS when creating an OpenID. This value is regarded as the
most sensitive attribute as it essentially controls to which OP endpoint the Ope-
nID Identifier residing on the MS should point. The description field could
contain textual information about a particular OpenID (e.g. areas of use, confi-
dentiality level) but is not used in this thesis. The field created and last_used
contains the timestamp for when a particular OpenID was created and last used
for authentication, respectively.

8.4. mOpenID Webapp

As argued in section 7.3.2., a vital functionality of an OpenID Identity Provider
is to be able to receive and produce responses to HTTP requests. For this, a
web server must run on the smartphone at the time when an End User needs to
authenticate a particular OpenID Identifier. The I-Jetty Web Server [15], a light-
weight, open source web server ported from the original Jetty Web Server [22]
to the Android platform, is used for this purpose. It supports the deployment
and running of webapps, which are allowed access to the Android API. The
Webapp implementation will use a third-party Java library called OpenID4Java
[28], which provides functionalities required as an OpenID Identity Provider.
Both I-Jetty and OpenID4Java are open source projects carrying the Apache
Licence 2.0.

8.4.1. Intent Communication

As described in Figure 27 the Webapp communicates with the mOpenID Ap-
plication through intents, allowing it to modify the latter’s application state. This
happens in the occasions described in the following subsections.

8.4.1.1. Static Mode Resolving

To find out if the mOpenID Application is running in Static IP mode or mOpe-
nID mode, the Webapp sends the following intent to the mOpenID Application.

private static final String INTENT_ACTION_SET_STATIC_IP_MODE_
REQUEST = “no.ntnu.item.mopenid.ACTION_STATIC_IP_MODE“;
...
Intent intent = new Intent(INTENT_ACTION_SET_STATIC_IP_MODE_
REQUEST);
androidContext.sendBroadcast(intent);

Figure 34:  The Webapp requesting the mOpenID Application state by sending
an intent

The mOpenID Application returns an intent with a boolean value confirming
the current application state, which is read by the Webapp. The Webapp needs
to be aware of the application state in order to produce (or not produce) a local
ID page if receiving a discovery request from an RP.

50

8.4.1.2. Authentication Request

When receiving an Authentication Request Message, login approval or rejection
by the End User is needed. To display a dialog asking for this, an intent is sent
from the Webapp to the mOpenID Application, containing the current OpenID
Identifier and RP realm that is requested.

private static final String INTENT_ACTION_SEND_AUTH_REQUEST =
“no.ntnu.item.mopenid.ACTION_AUTH_REQUEST“;
...
Intent infoIntent = new Intent(INTENT_ACTION_SEND_AUTH_REQUEST);
infoIntent.putExtra(“openid.realm”, request.
getParameterValue(“openid.realm”));
infoIntent.putExtra(“openid.claimed_id”, request.
getParameterValue(“openid.claimed_id”));
androidContext.sendBroadcast(infoIntent);

Figure 35:  The Webapp sending an authentication request intent to the
mOpenID Application

As the End User accepts or rejects the request, the mOpenID will respond to
the Webapp with another intent containing the result.

8.4.1.3. After Login Complete

The Webapp convey the mOpenID Application information regarding whether
a login attempt was successful or not through two additional intents. One of
them is used by the mOpenID Application to update the last_used field in the
links table belonging to the particular OpenID that is being authenticated. The
final intent is used to close the running activation activity and trigger the smart-
phone to go to its initial network configuration state. Details are not described
here, but can be found by studying the code that comes with this report.

8.4.2. Ensure Identical Session on Login Complete

When the End User has approved (or rejected) the request on the SA, her final
step is to press the “Complete login” button showing in the UA. This request
will trigger the SA to produce the Positive Assertion message (given that the user
has accepted the request) and return it indirectly to the RP through the UA as an
HTML 302 Found message. The Positive Assertion message is only produced
and returned if the SA receives a request with the identical HTTP session that
was current in the Authentication Request message. This is an extra security
check to prevent an attacker from obtaining the Positive Assertion message by
session hijacking [32].

51

9. Validation of Implementation
In this section the work will be validated by showing how the implementation
fulfill the functional requirements defined in section 6.2. The first five subsec-
tions demonstrate how a corresponding collaboration diagram from section 7.2.
is carried out. The last subsections describe how management functions of the
stored OpenIDs are applied.

9.1. Start Application in mOpenID Mode

In the following, a test on how to start the SA in mOpenID mode is performed.
The application’s starting point is as if it just has been installed. Moreover, no
OpenIDs have been created beforehand using the particular SA. When an End
User starts the SA by clicking its application icon, the SelectMode activity is
launched as shown in Figure 36.

Figure 36:  SelectMode activity
showing a progress bar dialog

immediately after startup, making the
network connection ready

Figure 37:  SelectMode activity ready
for the user to select which mode to

run the application in

In Figure 36 the SA tries to obtain a public IP address indicated by the dialog
box. Performed in the background, the Wi-Fi connection is being turned off
and the APN name changed to one that will allocate a public IP address. The
procedure will fail if it has not succeeded within 18 seconds, or if the initial
APN name is unsupported by default. Note that nor a Wi-Fi or mobile data
network connectivity icon is shown in the status bar (top). If the procedure is
successful the progress dialog will disappear and the SelectMode activity screen
in Figure 37 is shown, ready for user input.

52

Figure 38:  SelectMOpenIDMode activity showing an empty OpenID list

Next, when the user presses the mOpenID mode button displayed in Figure 37
the activity switches to the SelectMOpenIDMode activity displayed in Figure 38.
Note the I-Jetty icon in red and green in the top left corner of the figure, as the
SelectMOpenIDMode activity starts the mOpenID Webapp (the web server) on
creation. Since no OpenIDs have been established yet, the list supposed to show
the stored OpenIDs is empty. The next procedure will explain how creation of
a new OpenID is carried out when the user presses “Create new”.

The described procedure satisfy the SA-1 and SA-3 requirements.

9.2. Create a new OpenID in mOpenID Mode

Shown in Figure 39 is the CreateNew activity awaiting for the user to input text
to produce a desired OpenID Identifier. As soon as the user starts typing, the
red text above the input field switches color to orange, indicating that the current
OpenID Identifier is too short. Immediately when the user have entered five or
more characters, the orange OpenID Identifier turns yellow at the same time as
the “Check availability” button is enabled. When the button is pressed a request
is made to the MS to find out whether the desired OpenID Identifier is available
or not. Figure 41 shows that a requested OpenID Identifier is available and ready
to register, and as the user presses the register button a final registration request
is sent to the MS. The security token is extracted from the successful response
and stored in the SA’s database. Finally, the CreateNew activity is closed and the
SelectMOpenIDMode activity is shown, presenting the newly created OpenID.

53

Figure 39:  CreateNew activity
ready for the user to type a desired

OpenID Identifier

Figure 40:  The user have now
entered a sufficiently long enough

OpenID Identifier, and can check its
availability by pressing the button

Figure 41:  The response from the MS
confirms that the queried OpenID

Identifier is available

Figure 42:  After creation, the
SelectMOpenIDMode activity
contains the newly established

OpenID

The described procedure satisfy the SA-6.1, SA-6.7, MS-1 and MS-2 require-
ments.

54

9.3. Associating with the mOpenID Server

The first step of a login process is to select the desired OpenID. This is done by
choosing from the OpenID list shown in Figure 42 (only “idexample” showing).
This will bring up the MOpenIDActivation activity, initially showing a progress
dialog while associating, or linking, the particular OpenID with the MS as shown
in Figure 43.

Figure 43:  The
MOpenIDModeActivation activity

initially associating with the MS

Figure 44:  MOpenIDModeActivation
activity ready for an RP to request

authentication of the particular
OpenID Identifier (green)

After the association step has finished, the SA shows the MOpenIDModeAc-
tivation activity as presented in Figure 44. At this point of time, the MS will
generate the correct ID page if the OpenID Identifier is requested by an RP,
containing a pointer to the SA as its controlling OP endpoint. A record has been
inserted into the active_links table in the database that is part of the MS as
shown in Figure 45.

+----+------------+--+
| id | identifier | destination |
+----+------------+--+
| 46 | idexample | http://188.149.192.182:8080/mopenid/server |
+----+------------+--+

Figure 45:  The newly inserted record in the active_links table in the MS
database

This record is used in building the ID page when the OpenID Identifier is re-
quested by an RP, in order to point to the controlling OP, namely the associated
smartphone running the SA. At this point the SA is ready to be used for authen-
ticating the particular OpenID Identifier.

55

The described procedure satisfy the SA-6.3 and MS-4 requirements.

9.4. Logging in when the SA is
running mOpenID Mode

It is time to perform the actual login process by using the OpenID at a Rely-
ing Party. For this example Stack Overflow [36], a highly regarded and serious
questions and answers web site for computer programming, will be used as the
Relying Party.

Figure 46:  The RP login web page, where the user have entered its OpenID
Identifier

Before pressing the login button shown in Figure 46 it is evident that the SA
is awaiting an Authentication Request message as indicated in Figure 44. When
the button is pressed the RP performs discovery on the user-provided OpenID
Identifier to locate which OP that controls it. The MS renders the ID page for
the particular OpenID Identifier, which contain a pointer to the current control-
ling SA. This pointer, or URL, is used by the RP to route the UA to the SA with
the Authentication Request message. As the SA receives the message, a dialog
is shown with the options to either confirm or reject the request as shown in
Figure 47. Concurrently, the SA responds with the web page shown in Figure 49
to the UA.

56

Figure 47:  The confirmation dialog
on whether to accept or reject the
Authentication Request message

Figure 48:  The final confirmation
dialog after the user have accepted

the request in Figure 47

Figure 49:  Showing the HTML response received from the SA after requesting
the Authentication Request message

57

Figure 50:  Showing the RP having accepted the authenticated OpenID after
receiving the Positive Assertion message from the SA

After the user confirms the login request on the SA, and presses the “Complete
login” button in the UA shown in Figure 49, the Positive Assertion message is
generated at the SA and responded to the RP through the UA. Figure 50 shows
the RP having approved the login of the provided OpenID Identifier. Mean-
while, the SA has disassociated the OpenID Identifier with the MS, restored the
smartphone’s initial network configuration, shutdown the local web server and
returned to the SelectMode activity. This concludes the login procedure when
running the SA in mOpenID mode.

The described procedure satisfy the SA-2, SA-4, SA-5, SA-6.4, MS-5 and MS-6
requirements.

9.5. Logging in when the SA is running Static IP Mode

The steps in this procedure are almost identical to those applied in the previous
section. Only the minor differences are presented next.

By selecting “Static IP mode” button when the SelectMode activity is showing,
the StaticIPModeActivation activity is started as displayed in Figure 51. From
the figure one can see the OpenID Identifier derived from the static IP address
assigned to the SIM. Additionally, the running web server knows that it is run-
ning in Static IP mode, hence it will generate an ID page locally when the Ope-
nID Identifier is requested by an RP in the discovery phase.

The functionality provided fulfills the SA-2, SA-3, SA-4, SA-5 and SA-7 require-
ment.

58

Figure 51:  StaticIPModeActivation activity ready for Static IP mode
authentication

9.6. Delete an OpenID Identifier

When the list over OpenIDs is showing in the SelectMOpenIDMode activity, a
user can long-press any of them in order to delete it. The context menu in Fig-
ure 52 shows two options for deleting the OpenID “idexample”. One can either
delete the OpenID completely, removing both the local instance as well as the
instance stored on the MS, or it can be deleted locally only. The latter is mostly
used for testing related to the export and import functionalities, as it simulates a
loss of OpenID control.

Figure 52:  Context menu showing two ways of deleting an OpenID Identifier

59

The functionality to delete an OpenID fulfills the SA-6.2 and MS-3 requirement.

9.7. Exporting and importing OpenID Repositories

The export functionality comes in handy in order to backup the established
OpenIDs on the SA to prevent loss of authority over the OpenID Identifiers
stored on the MS. The user can bring up the export and import options by press-
ing the Android native menu button on the smartphone from the SelectMode
activity as displayed in Figure 53. If pressing the “Export OpenID(s)” button,
an encryption key (“secret”) must be provided by the user as displayed in Figure
54.

Figure 53:  The SelectMode activity
when the Android native menu

button is pressed

Figure 54:  A dialog allowing the user
to enter an encryption key during the

export procedure

The OpenIDs are encrypted using AES-128 encryption and saved by default
as plain text on the external storage medium of the smartphone. Additionally,
the user is asked to export the encrypted file to other applications on the smart-
phone which accepts the text/plain application type. Figure 55 shows the
particular menu for this functionality, having the Dropbox application selected.

When importing an encrypted OpenID repository this can be performed in two
ways as displayed in Figure 56. One can either import the encrypted file from
a URL, be it a local file URL or one resolving to an Internet location, or one
can paste the contents of the decrypted file in a text field provided by the SA.
In both cases the correct decryption key must be provided for the import to be
successful.

60

Figure 55:  Menu allowing to export
the encrypted OpenID(s) to other
applications on the smartphone

Figure 56:  Two ways of importing
OpenIDs to the SA

Figure 57:  Pasted encrypted text
awaiting to be decrypted to one or

more OpenIDs

Figure 58:  A dialog confirming a
successful import of an OpenID

The described export and import functionalities fulfill the final SA-6.5 and SA-
6.6 requirements.

61

10. Limitations and Security Issues
Just as any other software system, the implementation suffers from security is-
sues and limitations. As the software solution, from its own perspective, depends
on both external and internal variables, the report will elaborate on drawbacks
split into two categories. Firstly, the external technical factors embracing the
SA, such as cellular network availability, will be presented. Secondly, the internal
technical factors of the application, such as weaknesses related to the actual
implementation, will be addressed. Finally, a few other limitation inadequate to
be placed in the former two categories are briefly discussed.

10.1. External Technical Factors

The external technical factors are those factors independent of the application
itself. Moreover, they are thought of as the embracing entities, environment and
processes outside of the application code’s domain, which operation are purely
limited by themselves or other entities they have a relation to.

Firstly, a security issue with using a smartphone application as an OP, is ad-
dressed. The benefit of allowing smartphone owners to install third party ap-
plications such as the proposed OP application, has a counteractive side effect
as well. Other applications can be installed on the smartphone, also those with
malicious purposes. Imagine the threat a malicious application could pose if
it unconditionally responds positively to any Authentication Request message
received. The execution of this application could happen unknowingly to the
smartphone user, and concurrent or separate to the execution of the genuine
OP application. If carrying out the OpenID Authentication protocol correctly,
it would go ahead and authorize any RP authentication request sent to the re-
portedly legit OP running on the smartphone. The described situation is not
particularly feasible if the OP was running on a closed system or server such as
in traditional schemes.

Secondly, unfavorable implications arise from being dependent on yet another
network entity, namely the MS. As the mOpenID mode is likely to be the most
used mode, the solutions is useless if the MS becomes inaccessible, as SAs are
unable to configure their OpenID Identifiers for logging in at an RP. In addi-
tion to this, if the database residing on the MS is compromised, all its controlled
OpenID Identifiers can be configured to point to any OP owned by an attacker.
Also, if using mOpenID mode the user must trust the owner of the MS.

Thirdly, the proposed solution will be useless in the rare case when lacking a cel-
lular network supporting data traffic. This will fail because the OP application
has no way of communicating with Internet nodes to carry out the OpenID
Authentication protocol.

Fourthly, successful administering of the OP application involves that proper
routines are maintained for backing up its identity repository. This must be per-
formed manually, hence it relies on the user to remember to do so. But failing to

62

do so has consequences in the case when the End User either loses her phone
or has her identity repository accidentally deleted. Any relation between the lost
OpenID identity and authorized RPs is hard to reestablish as the security tokens
are lost.

Fifthly, there is an odd occasion when an RP could fail in interacting with the OP
due to the following occurring steps:

1.	 Association is performed between the SA and the MS
2.	 The smartphone is allocated a new IP address due to e.g. switching from

GRPS to UMTS
3.	 RP-OP interaction fails as the RP does not find a valid OP endpoint at the

outdated IP address retrieved from the MS in the discovery phase

This clarifies the weakness of using the SA in mOpenID mode when a change
of IP address is likely to occur.

Lastly, common external factors exists. Among these, insufficient battery life-
time will limit the operation of the OP. Further, the smartphone’s operating sys-
tem and hardware may not be able to provide the OP application the necessary
system resources to either operate or even be installed at all.

All of the above constitute limitations hindered by external technical factors for
the implemented system to fully, or in part, fulfill the necessary functioning as
valid entities in the OpenID framework.

10.2. Internal Technical Factors

The internal technical factors are interchangeable with the factors of the ap-
plication’s internal components, processes or functionalities. During the system
development process decisions have been made that reduces system security.
However, these are acknowledged in the following and should in further work
be dealt with orderly.

Firstly, the SA stores sensitive information about each established OpenID
Identifier in an insecure manner, as the database which keeps system critical
values such as the security token is left unencrypted. However, some security
constraints exist by default as only the application process itself is allowed to
read and write from the file that constitute the database. If rooting the smart-
phone users and applications are allowed privileged control within Android’s
Linux subsystem [42]. If such conditions apply, other applications can access the
private folder structure allocated to the SA, possibly revealing the security token
used to control the identity. A simple solution to this could be to temporary de-
crypt the database file using a user-provided decryption key while the application
is open. However, problems arise if the application is closed in an unexpected
way leaving the temporary decrypted file persistent in the memory of the smart-
phone. A more advanced and highly secure solution would be to store the keys
in hardware such as a smart card chip inherent in the smartphone designed for

63

the purpose. An example of such a chip is the PN65K from NXP which in ad-
dition to triggering a self-destruction mechanism if it is tampered with, provides
secure storage of sensitive data [26].

Secondly, the interaction between the SA and the MS when establishing new
OpenID Identifiers and associating existing ones is performed using JSON/
HTTP. Most preferably, this should happen through an encrypted channel such
as HTTPS. However, when this was tried in the implementation phase, the Java
SSLException: Not trusted server certificate was thrown. The outcome
from strenuous debugging was unsuccessful.

Further, having the possibility of starting and stopping the SA on demand has
until now been presented purely as beneficial. However, as OpenID supports
Single Sign-On (SSO) by keeping an authenticated HTTP session between the
End User and the SA, this session will be destroyed should the End User shut
down the SA. Obviously, the destruction of the session is done for increased
security so that no undesired person could exploit the previously authenticated
session between a UA and the SA, if the concerned person gain control of the
smartphone. The point is however, that the capability of shutting down the SA
limits the End User to enjoy the benefits of SSO.

There are drawbacks using intents for interaction between the Webapp and the
mOpenID Application as these are broadcasted throughout the Android oper-
ating system. The intents are subject to be sent and picked up by other applica-
tions installed on the smartphone, hence undesired SA behavior could occur.
Preferably, the Webapp and mOpenID Application should be implemented as
one single entity.

This thesis have previously studied existing work on how to enhance authenti-
cation between an OP and an End User. Besides the possession of the smart-
phone, the implementation lacks an actual authentication before allowing a user
to approve the Authentication Request messages. However, it is believed that
despite its simplicity the implementation should eliminate the risks of phishing
attacks, at least when compared to the way attacks are carried out when authen-
ticating purely through a web browser. Although not implemented in the final
solution, little work must be carried out for a minimal authentication feature to
be realized.

These are probably not all internal technical factors that bring about security
issues and limitations to the solution. In software development, weaknesses are
identified over time, which likely will happen if the work is studied and by third-
parties

10.3. Other Factors

Non-technical factors such as economical measures may put limitations on the
End User preventing her from taking use of mOpenID.

64

As argued in section 6.1.2. a special SIM is required for the Static IP mode to
function. Naturally, this comes as an expense to the End User, as the issuing
telecom operator is likely to charge money for the service. Hence, limitations on
economical grounds might prevent a user to utilize the solution.

65

11. Conclusion
The purpose of the previous work has been to make the OP setup procedure
simple enough to be performed by even the novice user. The work has made
possible an enhanced user-centric approach of utilizing the login functionalities
provided by the OpenID identity system. Not only is private control of an OP
made possible for an increased number of users, but more secure authentication
can be performed enabled by the phishing-resistant, out-of-band and physical
interaction with the OP. As the product of this thesis is merely a proof of con-
cept, further work should look into applying more advanced authentication of
the user managing OpenID logins through the SA.

Weaknesses and security issues concerning the solution have been identified and
discussed. Although they vary in gravity, many of them are believed solvable if
spending more time and gaining experience with the Android operating system.
Should the area of application enabled by obtaining a public IP address be in-
spiring to others, application developers must possess a good understanding of
the risks involved with publicly exposing a smartphone on the Internet.

The most recent statistics published by OpenID Foundation in 2009 counts
over 9 million Relying Parties on the Internet. The SA that is implemented as
part of this thesis is believed to add a new and interesting approach to how regu-
lar users can sign in to these web sites using their smartphone.

66

67

References
[1]	 Allen, T. (2009, September 25). OpenID: Now more powerful and easier

to use! Retrieved February 11, 2011, from OpenID web site: http://
openid.net/2009/09/25/more-powerful-and-easier-to-use/

[2]	 Bakken, E., Jørstad, I., Eliasson, C., Fielder, M., & Thanh,
D. v. (2009). Releasing the potential of OpenID and SIM.
In: Proceedings of the 11th International Conference on Intelligence
in Next Generation Networks (ICIN 2009). IEEE Press.

[3]	 Chappell, D. (2006, April). Introducing Windows CardSpace. Retrieved
February 11, 2011, from Microsoft Developer Network web site:
http://msdn.microsoft.com/en-us/library/aa480189.aspx

[4]	 Chen, Y.-K., Lin, Y.-b. (2005, February). IP connectivity for gateway GPRS
support node. Wireless Communications, IEEE , vol.12, no.1, pp. 37- 46.
Retrieved May 23, 2011, from IEEE Xplore web site: http://ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=1404571&isnumber=30466

[5]	 claimID. (2010). claimID.com – Manage your online identity. Retrieved
February 11, 2011, from claimID web site: http://claimid.com

[6]	 Cordance, D., & Epok, D. (2005, November 14). Extensible Resource
Identifier (XRI) Syntax V2.0. Retrieved April 22, 2011, from XRI
Syntax Specification web site: http://www.oasis-open.org/
committees/download.php/15376/xri-syntax-V2.0-cs.html

[7]	 Crockford, D. (2006). The application/json Media Type for
JavaScript Object Notation (JSON). Retrieved May 15, 2011, from
IETF web site: http://www.ietf.org/rfc/rfc4627.txt

[8]	 Delft, B. v., & Oostdijk, M. (2010). A Security Analysis
of OpenID. POLICIES AND RESEARCH IN
IDENTITY MANAGEMENT, 343, 73-84.

[9]	 Dropbox. (2010). Online backup, file sync and sharing made easy. Retrieved
April 2, 2011, from Dropbox web site: https://www.dropbox.com

[10]	 Glässer, U., & Vajihollahi, M. (2010). Identity Management Architecture.
Security Informatics, Annals of Information Systems, 9, pp. 97-116.

[11]	 Google. (2010, December 7). The Developer’s Guide. Retrieved May 2,
2011, from Android web site: http://developer.android.com/guide

[12]	 Google. ADT Plugin for Eclipse. Retrieved May 30, 2011, from Android
web site: http://developer.android.com/sdk/eclipse-adt.html

[13]	 Haverinen, H., & Salowey, J. (2006, January). Extensible Authentication
Protocol Method for Global System for Mobile Communications (GSM) Subscriber
Identity Modules (EAP-SIM) RFC 4186. Retrieved February 11, 2011,
from IETF web site: http://datatracker.ietf.org/doc/rfc4186/

68

[14]	 Hunter, J., Crawford, W. (2001). Java servlet programming.
Sebastopol, CA: O’Reilly Media.

[15]	 I-Jetty. (2008, January 5). i-jetty: webserver for the android mobile
platform. Retrieved April 21, 2011, from Project Hosting on
Google Code web site: http://code.google.com/p/i-jetty/

[16]	 JanRain Inc (2011). PHP OpenID library. Retrieved May 15, 2011, from
their GitHub web site: https://github.com/openid/php-openid

[17]	 Jøsang, A., & Pope, S. (2005). User Centric Identity Management.
AusCERT Conference 2005. Brisbane: Proceedings of AusCERT 2005.

[18]	 Kissel, B. (2009, December 19). OpenID 2009 Year in Review.
Retrieved May 5, 2011, from OpenID Foundation web site: http://
openid.net/2009/12/16/openid-2009-year-in-review/

[19]	 Leung, D. (2010, October 28). Sign up for Flickr with your
Google Account! Flickr Blog. Retrieved February 12, 2011, from
Flickr Blog web site: http://blog.flickr.net/en/2010/10/28/
sign-up-for-flickr-with-your-google-account/

[20]	 Lindholm, A. (2009). Master of Science Thesis: Security Evaluation of the
OpenID Protocol. KTH Royal Institute of Technology, School of Computer
Science and Communication. Stockholm: Royal Institute of Technology.

[21]	 Miller, J. (2006, March 18). Yadis 1.0. Retrieved February 12, 2011,
from Yadis.org web site: http://yadis.org/wiki/Yadis_1.0_(HTML)

[22]	 Mort Bay Consulting. (2011). jetty - Jetty Webserver. Retrieved May 25, 2011,
from codehaus foundation web site: http://jetty.codehaus.org/jetty/

[23]	 Myers, S., & Jakobsson, M. (2006). Phishing and
Countermeasures: Understanding the Increasing Problem of
Electronic Identity Theft. Wiley-Interscience.

[24]	 myID.net. (2010). myID.net – OpenID Service. Retrieved February
11, 2011, from myID.net web site: http://www.myid.net/

[25]	 myOpenID. (2008). Welcome to myOpenID. Retrieved April 15,
2011, from myOpenID web site: https://www.myopenid.com

[26]	 NXP. (2006, October 26). PN65K Objective short data sheet.
Retrieved June 2, 2011, from AdvanIDe web site: http://
www.advanide.com/datasheets/sfs_pn65k_rev1_3.pdf

[27]	 OASIS Standard. (2005, March 15). SAML Specifications.
Retrieved October 5, 2010, from SAML XML.org web
site: http://saml.xml.org/saml-specifications

[28]	 OpenID4Java Library. (2011). openid4java - OpenID 2.0 Java
Libraries. Retrieved May 23, 2011, from Project Hosting on Google
Code web site: http://code.google.com/p/openid4java/

69

[29]	 OpenID Foundation. Retrieved May 25, 2011, from
OpenID Foundation web site: http://www.openid.net

[30]	 OpenID Foundation. (2007, December 5). OpenID Authentication 2.0
- Final. Retrieved February 15, 2011, from OpenID Foundation web
site: http://openid.net/specs/openid-authentication-2_0.html

[31]	 OpenID Foundation. (2008, December 30). OpenID Provider
Authentication Policy Extension 1.0. Retrieved April 19, 2011,
from OpenID.net web site: http://openid.net/specs/openid-
provider-authentication-policy-extension-1_0.txt

[32]	 OWASP. (2009, May 27). Session hijacking attack. Retrieved June 2,
2011, from The Open Web Application Security Project web site:
https://www.owasp.org/index.php/Session_hijacking_attack

[33]	 Rescorla, E. (1999, June). Diffie-Hellman Key Agreement Method.
Retrieved March 2, 2011, from The Internet Engineering Task
Force web site: http://www.ietf.org/rfc/rfc2631.txt

[34]	 Sakimura, N. (2009, March 9). NTT docomo is now an OpenID Provider.
Retrieved February 11, 2011, from OpenID Foundation web site: http://
openid.net/2010/03/09/ntt-docomo-is-now-an-openid-provider/

[35]	 Shepard, L. (2009, May 18). Facebook Supports OpenID for Automatic
Login. Retrieved May 29, 2011, from Facebook developer web
site: https://developers.facebook.com/blog/post/246/

[36]	 Stack Overflow. Retrieved May 20, 2011, from Stack Overflow
website: http://stackoverflow.com/users/login

[37]	 Thanh, D. v. (2000). ADPO Project Development
Methodology. R&D Telenor, Oslo.

[38]	 Thanh, D. v., Jørstad, I. (2007). The Ambiguity of
Identity. Telektronikk , 103 (3/4), 3-10.

[39]	 Tsyrklevich, E., & Tsyrklevich, V. (2007). OpenID –
Single Sign-On for the Internet: A Security Story. Blackhat
Conference 2007. Las Vegas: Blackhat USA.

[40]	 Urien, P. (2010). An OpenID Provider based on SSL
Smart Cards. Consumer Communications and Networking
Conference (CCNC) (pp. 1-2). Las Vegas: IEEE

[41]	 Wikipedia. (2010, October 25). List of web service specifications.
Retrieved May 14, 2011, from Wikipedia web site: http://
en.wikipedia.org/wiki/List_of_Web_service_specifications

[42]	 Wikipedia. (2011, May 15). Rooting (Android OS).
Retrieved May 29, 2011, from Wikipedia web site: http://
en.wikipedia.org/wiki/Rooting_(Android_OS)

70

[43]	 Wood, L. (2009, September 21). Sun’s OpenID IdP: Data Governance.
Retrieved February 11, 2011, from Anyway – meandering
thoughts from Lauren Wood web site: http://www.laurenwood.
org/anyway/2007/09/suns-openid-idp-data-governance/

