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Abstract 

Background: Solid tumors are commonly heterogeneous because they consist 

of cancer cells with different aggressiveness. In quantitative cancer imaging, 

such as magnetic resonance imaging (MRI), the heterogeneity will not be 

reflected in mean tumor values. The aim of this project was to develop a 

quantitative image-based tool that reflects tumor heterogeneity by using a 

machine learning approach with cluster analysis of MR images (T2-weighted 

and diffusion-weighted (DW) images) of 79 rectal cancer patients.  

Materials and methods: The K-means algorithm is an unsupervised machine 

learning method that groups the pixel intensities based on similarity. In this 

project, a K-means clustering algorithm was applied to T2-weighted and DW 

MR images of malignant rectal tumors. The tumors were defined by 

delineations performed by two radiologists in the T2-weighted images. 

Associations between the resulting clusters and a set of tumor- and patient 

characteristics were investigated with the Wilcoxon rank-sum test. Progression 

free survival (PFS) was estimated to identify whether the presence of a certain 

cluster was linked to patient outcome. Differences in the results between the 

tumor delineations by the two radiologists were investigated.  

Results: The results from the clusters defined based on T2-weighted images 

showed statistical significance (p<0.05) for the parameters from the “TNM” 

staging system. The assessed extent of the primary tumor and the regional 

lymph nodes after the CRT treatment. (p/ypT, p/ypN) and the difference in 

staging before and after CRT (ΔT) were correlated with the presence of some 

clusters. The DW images with b-values of 50, 100 and 500 s/mm2 

demonstrated a significant association between clusters and tumor regression 

grade (TRG), which is a parameter reflecting the pathologic response to 

chemoradiotherapy. In the survival analyses, the DW images with b-value = 

1000 s/mm2 showed that the most dominant cluster (largest homogenous 
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region in the tumor) was related to poor survival. The combined data from the 

T2-weighted and DW images also indicated a significant association with PFS. 

Conclusion: This project showed that K-means clustering of T2-weighted and 

DW MR images is a promising method to extract quantitative properties of 

tumor heterogeneity in rectal cancer. The results showed correlation to both 

pathologic treatment response and long-term survival.  The combination of 

data from both T2-weighted and DW images improved the predictability of the 

outcome, so future studies may investigate different combinations of MR 

sequences for further improvements. 
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Rectal cancer is a form of colorectal cancer, where the primary tumor is 

confined to the lower 15 centimeters of the rectum [1]. Colorectal cancer is the 

fourth most common cancer worldwide with an incidence rate of 19.7 per 100 

000 population at risk. However, the incidence rate in Norway is two times 

higher than the median (42.9) which ranks it as the fourth country with highest 

rate of colorectal cancer.  The International Agency for Research on Cancer at 

the World Health Organization predicts 39.7 percent increase in the number of 

incidence cases with rectal cancer by 2040 (compared to the baseline of 2018 

for both sexes, at all ages) [2]. 

If the patient is diagnosed with rectal cancer at an early stage, the most 

common strategy is to surgically remove the cancerous tissue. When the 

primary tumor has grown through the rectal wall and started to invade the 

surrounding organs, it is considered locally advanced. The standard treatment 

procedure for these cases is radiotherapy combined with chemotherapy in 

order to shrink and downstage the tumor and enable subsequent surgical 

removal of the remaining tumor components. Although the mortality rate has 

been reduced by half compared to the 1990s, nowadays the major challenge 

is that patients develop metastasis and the main cause of death is metastatic 

disease. Improving the therapeutic strategies could increase the current 68 

percent five-year survival for these patients [3]. 

Rectal cancer is a solid tumor and the solid tumor microenvironment is known 

to be spatially heterogeneous, which means that it constitutes of different cells 

with distinct morphologic and phenotypic features. These features are also 

heterogeneous between tumors of different patients although their diagnosis 

is the same [4]. The response to treatment varies individually and it is largely 

contingent on the aggressiveness of the tumor, hence directly dependent on 

the heterogeneity of the tissue itself. This is a consequence from a multitude 

1 Introduction 



Chapter 1 Introduction 
 

16 
 

of reasons, among them the different radiosensitivity which cancer cells 

demonstrate. Locally advanced tumors are generally larger in size, so they can 

have higher degree of heterogeneity, which gives even more diverse 

radioresistance in the tumor tissue. 

If we can identify, characterize and understand tumor heterogeneity we could 

contribute to solve one of the key challenges in oncology for designing effective 

therapeutic and monitoring strategies. Currently, biopsies are used to probe 

only part of the tumors and they do not necessarily reflect the tumor 

heterogeneity [5]. Additional techniques using non-invasive quantitative 

cancer imaging, such as magnetic resonance imaging (MRI), is a potential 

approach for comprehensively detecting, depicting and quantifying local 

variations in tumor morphology and function [4]. However, the mean tumor 

values commonly extracted from the quantitative MRI do not reflect the 

heterogeneity, so in order to effectively assess it we need to use other 

statistical measures. This could help us to recognize patterns which can be 

associated with tumor aggressiveness, radiotherapy response and prognosis. 

The potential outcome from such analyses could be used to evaluate 

heterogeneity as a biomarker for grading the tumor. Regions that are known 

to show higher treatment resistance can be found and for instance used for 

escalating the radiotherapy dose so that treatment outcome can be improved 

in patients having tumors with low radiosensitivity. Also, it can be useful to 

identify candidates for more intensive treatments, as a high-risk biomarker to 

recognize patients with high risk for developing metastasis (and death) [6]. 

This project uses T2-weighted and diffusion-weighted MR images of 79 rectal 

cancer patients at the time of diagnosis. It utilizes image analysis with 

MATLAB® (MathWorks, Natick, Massachusetts - version R2018a) and K-means 

clustering which is an unsupervised machine learning method. The obtained 

results are correlated with data from cancer staging prior and after treatment 

and survival analyses are conducted based on a five-year follow-up period. The 

main aims are to: 

• Investigate tumor heterogeneity by identifying different regions (clusters) 

in the tumor with similar properties.  
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• Investigate if  cluster characteristics (for instance size) are related to the 

treatment outcome. 

The thesis begins with a description of the theory used in the project, including 

MRI, machine-learning and rectal tumor biology, followed by the materials and 

methods used in Chapter 3. The results are presented in Chapter 4 and 

discussed followed by the conclusion of the project. In addition, the appendices 

contain code used for the analyses. 

 



 

2 Theory 

This chapter describes cancer biology by focusing on metastatic conditions as 

one of the most dominant challenges in treatment planning. Subsequently 

rectal solid tumors are explained, and a short overview of the treatment 

strategies is provided. A brief theoretical background of magnetic resonance 

imaging with an emphasis on T2-weighting and diffusion-weighting describes 

the basic physics behind the used images. The section concludes with 

explanation of machine learning and K-means clustering which are the 

essential tools for the analyses in the next chapters. 

2.1 Cancer 

Cancer is a term used to describe a heterogeneous group of disorders that are 

characterized with uncontrolled cell growth and cell spreading that produces 

abnormal cells [7]. If such excessive cell proliferation of abnormal cells does 

not invade neighboring tissues, it is called a benign tumor. On the other hand, 

if these cells can spread to surrounding tissues and/or break away to enter the 

lymphatic system or bloodstream, they are classified as malignant tumors 

(usually referred to as ‘cancers’). There is a general distinction between tumors 

depending on whether they are present in body tissues or fluids, as solid or 

liquid. In the scope of this thesis we look at solid tumors, which are discrete 

masses made of epithelial or stromal cells that do not contain cysts or liquid 

areas. [8] 

2.1.1 Cancer biology 

Solid tumors at the first site of malignancy are considered primary tumors. 

They tend to grow and become locally advanced as they invade the adjacent 

organs until a certain time point is reached, when a process known as 

metastasis occurs. During metastasis secondary tumors start to form at distant 

sites in the body and gradually invade other organs. This includes several steps 
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which the metastatic cells undergo with the purpose of reaching successful 

spreading (Figure 2.1). First, they have to get detached from the primary 

tumor by reducing the adhesion to neighboring cells and generate a path for 

migration into local blood or lymph vessels. Then by invading the basal 

membrane of these vessels (intravasation) they enter and circulate the 

bloodstream until a secondary site is reached. An inverse process 

(extravasation) occurs followed by migration in the host’s tissue with the 

purpose of surviving and proliferating to form a secondary tumor. [9] 

Metastatic conditions are lethal because of their complexity and the difficulty 

to identify cancer spreading through magnetic resonance imaging. Also, the 

treatment strategies become imposed with the additional burden of eliminating 

secondary sites in addition to the primary tumor [10].  Up to 50% of patients 

diagnosed with colorectal cancer die from metastatic disease and the overall 

5-year survival for patients diagnosed when the primary tumor has already 

spread is below 10% [11]. The major site of metastasis is in the liver (up to 

70% of patients) and the lungs (up to 20%) [10]. This emphasizes the 

importance of early detection and treatment of the primary tumor, especially 

in patients that have already developed locally advanced tumor which increases 

the risk of metastasis occurrence. 

Figure 2.1 Metastatic process. Metastatic cells detach from the primary tumor and enter the vessels 
through intravasation. When the secondary site is reached, extravasation and migration help the 
cells in penetrating the host tissue where they need to survive and proliferate by generating a 
secondary tumor. [9] 
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Tumors are considered monoclonal, which means that they are composed of 

cells that derive from a single starting cell.  However, this should not misguide 

to the conclusion that all tumor cells are the same and it has to be noted that 

solid tumors are heterogenous (Figure.2.2). [8] There are three levels of 

heterogeneity depending on the scale of observance: intratumor, intertumor 

and interpatient. Interpatient refers to differences among tumors within 

different patients and intertumor differentiates tumors of the same type found 

in one patient. [11] The most important for this topic is intratumor 

heterogeneity which describes the morphological differences within a single 

tumor that can be further divided at two levels. The first level looks at 

monoclonal tumor cells and various unrelated cells that have infiltrated the 

tumor from the surrounding environment. They have become part of its 

microenvironment by being redirected to support tumor activities. The second 

level defines the phenotypical and molecular distinction between the malignant 

cells. Various genetic and epigenetic changes can occur and contribute towards 

cancerous tissues with complicated functional architecture. This gives different 

asynchronous cell cycles, indicating versatile radioresistance within the solid 

tumor. [9] 

(A)                                                                                       (B) 

Figure.2.2 Tumor heterogeneity. (A) Dynamic tumor microenvironment at first level of intratumor 
heterogeneity with tumor cells and unrelated cells that have been redirected to support tumor 
activities. (B) Second level of intratumor heterogeneity with distinct tumor subclones. The cells 
within subclones can intermix (subclones 1 and 2) or be spatially separated (subclone 3) in some 
cases by physical barriers (ex. blood vessels). [8] 
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2.1.2 Rectal cancer 

The rectum is the final straight portion of the large intestine that terminates at 

the anus, with an average length of 12 centimeters. Rectal cancer is a form of 

colorectal cancer, where the primary tumor is confined to the lower 15 

centimeters of the rectum [1]. Most of the cells in our body do not divide 

actively, but certain types of cells have high turnover, especially in the 

gastrointestinal tract. The tissues that have more actively dividing cells tend to 

have higher risk of developing tumors because of the higher rate of mutations 

caused by errors in DNA replication and DNA repair. The colon has one of the 

highest rates with 15-20% of the epithelial cells dying and being replaced every 

day, which yields larger proneness to tumorigenesis contributing to high 

colorectal cancer rates. [8] 

Rectal cancer can be detected at different stages of growth, which require 

different treatment strategies. The main treatment options include surgery, 

radiotherapy and chemotherapy depending on the circumstances and disease 

development. If the patient is diagnosed with rectal cancer at an early stage, 

the most common strategy is to surgically remove the cancerous tissue. 

Additional radiation therapy is used after the surgery to diminish tumor cells 

that could remain in the area after the operation. On the other hand, in cases 

where there is locally advanced rectal cancer (LARC), neoadjuvant therapy is 

prescribed. This approach combines pre-surgery radiation (usually combined 

with chemotherapy) aimed at shrinking the cancer, so that surgical removal 

could be performed. However, there are cases where operational interventions 

are not possible, so chemoradiotherapy (CRT) is the only option, but in such 

conditions the survival is significantly lower. [13] 

Surgery is most commonly used in rectal cancer treatments, but the type of 

operation depends on the extent and location of the cancer. In cases where the 

cancer is localized well above the anus, low anterior resection (LAR) is 

performed. If the tumor is close to the anus, the only option is to undergo 

abdominoperineal resection (APR). In this procedure the anus is removed, 

which significantly decreases the patient’s quality of life because a replaceable 

bag that encloses the colostomy must be worn. There are novel interventions, 
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such as local excision that allows preservation of the anus, but this can only be 

applied to small cancers that lie close (within 5 centimeters) to it. Otherwise, 

for smaller incisions further up on the rectum a transcoccygeal excision is 

applied. [13] This leads to the conclusion that patients can get better life 

quality, if the tumor is detected earlier or if efficient CRT shrinks the LARC to a 

size acceptable for the elaborated techniques.  

2.2 Magnetic Resonance Imaging 

One of the most powerful medical imaging techniques today is the Magnetic 

Resonance Imaging, which provides good contrast resolution and great 

versatility. A full comprehension of the physical principles in MRI is demanding 

and would require lengthy elaborations, so this thesis will focus only on aspects 

relevant to the topic. For details, the reader is referred to Magnetic Resonance 

Imaging: Physical Principles and Sequence Design [16]. 

2.2.1 Basic MRI principles 

If not otherwise stated, information in this section is based on [13]. MRI is a 

non-invasive imaging technique based on an interaction known as nuclear 

magnetic resonance. The core of this interaction is a linear dependence 

between the static magnetic flux density (magnetic field – B0) experienced by 

a nucleus and the resulting angular frequency of rotation ω0 of the nuclear 

spin: 

 ω0 =  γ B0 (2.1) 

where γ is the gyromagnetic ratio which is a constant for every nuclear isotope 

that has a spin. In the current clinical practice MRI is based on proton NMR, for 

which we have γ ≈ 2.68 x 108 rads−1T−1 and the angular frequency is referred to 

as Larmor frequency  ωL. 
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Figure 2.3: The magnetic moment 𝐌𝐌���⃗  is rotates around B0 at the Larmor frequency. In equilibrium 
𝐌𝐌���⃗  coincides with 𝐌𝐌���⃗ 𝒛𝒛.[14] 

The Bloch equation is used to describe the behavior of the macroscopic 

magnetization vector under the magnetic interactions that were described: 

 dM
dt =  γ (M x B) (2.2) 

where B is the external magnetic field, and in the presence of two fields B = B0 

+ B1 [15]. In clinical MRI, B1 has a rotational frequency in the radiofrequency 

(RF) range, therefore it is called an RF pulse. The angle of rotation induced by 

this pulse with time of rotation  trf is given by: 

 α =  γ B1 trf (2.3) 

The angle can be adjusted to 90° or 180°, for which the RF pulses are named 

according to the value respectively. 

If we observe the induced electrical signal due to the generated Mxy component 

of the macroscopic magnetization, it will be notable that the signal quickly 

decays to zero. This is caused by proton relaxation as a repercussion of the 

proton interactions which lead to exchange and loss of the excitation energy 

and additionally by the influence of B0. The process of relaxation where the 

protons shift from high-energy states to low-energy states can occur through 
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spontaneous or stimulated emission. In terms of MRI, we are only interested 

in stimulated emission and this requires a fluctuating magnetic field with a 

frequency equal or near to the Larmor frequency. Looking at the magnetization 

vector it will be possible to detect gradual loss of the Mxy component and 

increase of the Mz component until M = Mz is reached. In reference to the 

decrease in Mxy and Mz increase, there are two types of relaxation processes: 

longitudinal and transverse respectively.  

Longitudinal relaxation (also called T1 or spin-lattice relaxation) (Figure 2.5) 

depicts the macroscopic effect of the energy transition that is caused by the 

stimulated emission from the gradual recovery of the z-component in the 

magnetization, after the RF pulse. The recovery rate for Mz is characterized 

with a time constant T1 – relaxation time. The relaxation rate R1 is an inverse 

of the relaxation time (1/T1). In MRI, pulse sequences that are sensitive to the 

variations in T1 are utilized for getting image contrast, as different tissues show 

variations of several seconds to milliseconds in relaxation times. In the case of 

longitudinal relaxation these pulse sequences are called T1-weighted 

sequences. Considering M0 as the initial longitudinal magnetization before the 

Figure 2.4: The RF pulse excites the magnetic moment 𝐌𝐌���⃗  at an angle 𝛂𝛂 which can be adapted to 
required values [14]. 
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excitation (at equilibrium), we can quantify this relaxation type with the 

following: 

 dMz
dt

= 1
T1

(M0 − Mz)  [14]  (2.4) 

Transverse relaxation (also called T2 or spin-spin relaxation) (Figure 2.5) 

describes the transverse component of the magnetization Mxy after the 

excitation pulse. Following the same principle explained above, T2 and R2 are 

defined as relaxation time and relaxation rate. Counterintuitively, the 

transverse component of the magnetization decays at a faster rate compared 

to the relaxation of the longitudinal component (except in pure water). This is 

caused by additional relaxation effects which affect the total magnetization in 

the x-y plane. In vivo, T2 has higher values for fluids compared to solids, so 

the changes in T2 can be valuable when assessing tissue pathology considering 

that a lot of pathological conditions are related to changes in the tissue water 

content. This form of relaxation is described with the equation: 

 dMxy

dt
= − 1

T2
Mxy  [15] (2.5) 

Considering (2.4) and (2.5), we can obtain a different form of the Bloch 

equation (2.2): 

 dM
dt = γM x B +

1
T1

(M0 − Mz)z −
1
T2

Mxy (2.6) 

Figure 2.5: Transverse and longitudinal relaxation caused by the induced RF pulse 
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2.2.2 Image generation 

In clinical MRI there is usually the need to selectively excite a certain part of 

the body and for such purpose selectivity is achieved with magnetic field 

gradients. They attain the Larmor frequency as function of the position by 

producing a spatially varying magnetic field. Figure 2.6 depicts the process of 

applying a gradient to a slice (5 x 5) in the z- and y-directions and the phase 

shift that occurs in each of the squares after a certain time [14]. 

The measured signals are stored as Fourier transform of the object in domain 

denoted as “k-space”. In order to access the stored signals and to obtain an 

image of the object, the acquired k-space needs to be inverse-Fourier 

transformed. For the purpose of generating an image with this modality, MRI 

sequence needs to be performed [16]. It can utilize different gradients and 

pulses in the process of acquiring the information that are necessary for the 

user. According to this, there are various combinations that give different 

sequences depending on the aim of the acquisition. Within the scope of this 

thesis, we will be looking at acquisition of T2-weighted and diffusion-weighted 

images (DWI). 

  

Figure 2.6: Transverse magnetization vector phase angles on a slice (5 x 5) a) before applying 
magnetic field gradient in the y-direction and b) after applying the gradient [14]. 
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2.2.3 T2-weighted MRI 

T2 – weighted magnetic resonance images are useful for depicting pathological 

and fluid changes in tissues, which makes them an important asset in 

visualizing anatomical abnormalities [17]. This type of images is obtained with 

contrast that depends on the T2 parameter and the acquisition process usually 

utilizes a spin echo (SE) sequence (Figure 2.7).  

The SE sequence can be explained through the following steps (Figure 2.8-9). 

First, the longitudinal magnetization is rotated with 90° pulse in the x-y plane, 

which causes precession under a gradient field where the frequency-encoding 

(read-out) direction is x and the phase-encoding direction is y. A second pulse 

of 180° rotates the magnetization around the x- (or y-axis) and the measuring 

gradient is switched on again. The precession continues in the same direction 

until the spins meet at the y-axis and form the maximum signal (“echo top”), 

at t = TE (TE = Echo Time) [14]. This process samples one line in k-space and 

in order to acquire more lines, the sequence needs to be repeated with a time 

interval between the pulses which is called repetition time (TR). The following 

relation can be used to explain the conditions for obtaining T2-weighted image: 

Figure 2.7: T2 – weighted MR image of rectal cancer patient from the OxyTarget study. The fatty 
tissue has longer relaxation time, so it appears brighter, opposed to the other tissues that contain 
more water resulting in short T2 (darker areas). 
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 MTE = M0 � 1 −  e
−TR
T1 � e

−TE
T2   [17] (2.7) 

The different relaxation times among the tissues will generate the contrast in 

the image, and considering the transverse relaxation rate, we need long TE 

and long TR in order to obtain images with enough information [16]. This can 

be explained through the factor 𝑒𝑒
−𝑇𝑇𝑇𝑇
𝑇𝑇2  that occurs due to T2 decay during the 

time delay between the excitation and the echo top. Since the factor is a 

function of T2, it is clear that it causes the weighting of the image.  

Figure 2.8: Steps of the spin-echo sequence a) rotation caused by 90° pulse in x-y plane b) 
precession, dephasing c) rotation around the x-axis from a 180° pulse d) precession, rephasing [15]. 
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In cases where TE << T2 the weighting will not be considerable because it will 

give approximately the same values for all tissues. On the other hand, when 

we have longer Echo Time (TE) the factor becomes heavily dependent on T2 

and we get more weighting which yields higher contrast. 

2.2.4 Diffusion – weighted MRI 

Diffusion is a natural process of mass transport that produces molecular and 

particle mixing without the need of bulk motion. In theory, this phenomenon 

would result in free molecular motion, but in practice the trajectories of the 

particles are hindered by restrictions caused from the surrounding particles 

(Figure 2.10). Diffusion-weighted MRI uses this principle to observe the 

movement of water molecules in tissues and their deviations due to influence 

from cell membranes, cytoskeleton and various other macromolecules [18]. By 

understanding the different features that contribute to the overall diffusion 

Figure 2.9: The spin-echo sequence as function of time following the steps depicted in 
Figure 2.8 [15]. 

Figure 2.10: Trajectory changes in particle movement caused by (a) surrounding cells in the 
extracellular matrix (b) cell membranes within the cell [19]. 
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process, we can observe complicated tissues by analyzing water molecules and 

drawing information about biological microstructure from their movement [19]. 

In order to explain the process of acquiring diffusion-weighted images, we need 

to briefly look at T2* - weighted MRI. What was previously discussed referred 

to the T2 time constant that describes transverse decay of the MR signal within 

a substance of interest. However, in practice the transverse magnetization 

decays at a quicker constant compared to the theoretically expected value 

because of inhomogeneities in the main magnetic field. The “observed” 

relaxation is represented as T2* and it is always smaller or equal to the “true” 

T2. The relation between these two constants is show in: 

 1
T2∗

=
1
T2

+
1
T2′

 (2.8) 

where 1/T2′=γΔB2
′  is relaxation rate from the inhomogeneities (ΔB2

′ ) in a voxel. 

Consequently, the process of acquiring T2* - weighted images is slightly 

different and it usually encompasses the gradient echo sequence, which varies 

from the spin-echo sequence, because this protocol does not compensate for 

the field inhomogeneities [17] 

Figure 2.11: Diffusion – weighted MR image of rectal cancer patient from the OxyTarget study. The 
tumor can be detected as a black area resulting from reduced water diffusion, opposed to the 
surrounding normal tissue which has higher ADC. 
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DWI uses the principle of attenuating the T2* signal to assess the diffusion of 

water molecules in a certain region. If a water molecule is able to diffuse (move 

further around in a sequence), then the initial T2* signal will be more 

attenuated, and that area will appear dark on the resulting image. Oppositely, 

when the trajectory of the water molecule is hindered by cell membranes there 

is less attenuation and these regions appear brighter. (In cases when a region 

has zero T2* value, it is not possible to observe its diffusion characteristics.) 

The process of acquiring diffusion information from a ROI starts with obtaining 

a T2* - weighted image with no attenuation, referred to as the b = 0 image. 

Then water diffusion is observed in a single direction by applying a strong 

gradient symmetrically on each side of the 180° pulse used in the gradient 

sequence. The combination of the area under diffusion gradients, the amplitude 

and duration of the gradient and the interval between the gradients generates 

a b-value, that describes the image. For higher b-values we have more 

pronounced diffusion-related signal attenuation. Water molecules which do not 

diffuse get the phase from the first gradient and after the 180° pulse they flip, 

but since their location was not changed the effect of the first gradient is 

reversed. This results in no attenuation of the T2* constant. In contrast, the 

moving water molecules get the phase from the first gradient and after the 

pulse, they are exposed to the second gradient since they change their location 

due to diffusion in the medium. The rephasing results in some loss of the signal 

depending of the level of movement, which gives higher attenuation of T2*. 

This process provides a set of images (b = 0 and minimum three diffusion-

weighted images for each of the directions) which contain T2* signal 

attenuation based on water diffusion. The next step utilizes arithmetical 

combinations of the images for generating ADC1 maps that do not contain 

directional information. The ADC maps are derived from the natural logarithm 

(ln) of the geometric means of the direction-specific images divided with T2* 

for b = 0 (Equation 2.10).[20] 

 

 

 
1 ADC – Apparent Diffusion Coefficient 
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The b-value is mathematically described with the following equation: 

 b = γ2 2δ2(Δ −
δ
3) (2.9) 

where G is the magnitude and δ is the width of the two balanced gradients 

which are symmetrically applied on each side of the 180° pulses. Δ is the time 

between the two gradient pulses. The apparent diffusion coefficient (ADC) is 

explained through the following formula: 

 ln � A(b)
A(b=0)� =  −b ADC [21] (2.10) 

As it was elaborated previously, ADC is correlated to the measured signal by 

utilizing A(b) which is the echo magnitude of the diffusion-weighted signal and 

A(b = 0) as the echo magnitude of the non-diffusion-weighed signal [20]. The 

relation demonstrates that issues which reduce diffusion of water molecules, 

such as tumors, will produce lower ADC values compared to normal tissues, 

resulting in clearer image of the region [22, 23]. 

2.3 Machine Learning 

The definition of Machine Learning (ML) can be vastly concatenated with 

different sub-sentences, but the simplest description distinguishes this 

discipline as a form of Artificial Intelligence (AI) that refers to automated 

learning from data [24]. It is a complex process of detecting meaningful 

patterns in various data sets, which has proven to be beneficial when in need 

of information extraction. Our society uses machine learning in many forms, 

such as detection of faces with digital cameras, optimization of search results 

in search engines, voice command recognition etc. Scientific applications are 

also notable in medicine, astronomy and bioinformatics. The main reason for 

its applicability, lies in the need for solving tasks which cannot be explicitly 

programmed in detail because of their complexity. It is based on the principle 

of learning which we use when acquiring and refining our skills through 

experience. [25] 

A notable difference between AI and ML should be emphasized, because the 

latter does not attempt to build automated imitation of intelligent behavior and 
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it only tries to use the strengths and special abilities of machines which are 

beyond human capabilities in order to complement them. This is the basic 

reason for developing machine learning programs and using them to detect 

patterns in enormous databases, which is not possible within the scope of 

human perception. [26] 

The accuracy of the process highly depends on the quality of the data. It is 

inevitably important that the data should be accurate and meaningful (trusted) 

so that the produced models are reliable and make sense. If the dataset is not 

big, the results might be misguiding or missing a pattern which would otherwise 

be detected. Big data is considered a source that has at least one of these four 

characteristics (Vs): 

- Extremely large volume 

- Ability to move data at high velocity 

- Ever-expanding variety of data sources 

- Veracity so that data sources are truthful. [24] 

ML differs from traditional statistics for several reasons, but one of the main 

differences is the “distribution-free” setting, where the computer assumes as 

little as possible about the nature of the data distribution. A learning algorithm 

has the task to define the best models which approximate the data-generating 

process, without any previous information. [27] 

Learning is defined as “the acquisition of knowledge or skills through study, 

experience, or being taught” by the Oxford dictionary [28]. So, in terms of AI 

we are looking at “teaching” the machine how to solve a task without 

programing its behavior in every possible variation. This process can occur as 

supervised or unsupervised according to the nature of interaction between the 

learner and the environment. We can explain the differences between the two, 

if we observe a large set of data that needs to be divided in two groups. [24] 

There are two more types of learning: reinforcement and deep learning, which 

are out of the scope of this topic, so a detailed explanation will not be provided 

[26]. We can observe learning as “using experience to gain expertise” where 

the form of experience creates a distinction between the two methods. For the 
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supervised learning approach, we would need to “feed” the learner (machine) 

with training data that helps it create a rule for labeling and dividing the data 

into two groups. In that case, the experience is provided through the training 

data. Contrary to this, in unsupervised learning there is no training data and 

the aim of the learner is to come up with a summary, without being taught 

through training. A typical example of such approach would be to cluster sets 

of data into subsets with objects that demonstrate similarity. [24] Essentially, 

the unsupervised learning attempts to label data, so that it would become 

supervised. Hence, we can use this approach as a first step, before proceeding 

with a supervised algorithm [28]. In terms of healthcare, the analysis of big 

amounts of data for a specific disease can be useful for the purpose of obtaining 

patterns of symptoms that would be related to outcomes in the patients. This 

has two main advantages: it takes less time for the machine to observe 

patterns than in the case of supervised learning and it could avoid guided 

results without the possibility to oversee certain patterns. [26] 

2.3.1 K-means clustering 

K-means is a type of unsupervised learning algorithm for clustering data. 

Clustering is a technique which groups objects based on their parameters, 

without previous labeling (hence the classification is unsupervised) [26]. The 

data is partitioned into k clusters, so that each point in a cluster is similar to 

points from its own cluster rather than with points from other clusters (Figure 

2.12). The input for the k-number that signifies the number of centroids is 

manual. The algorithm randomly generates the cluster centers and computes 

all point-to-centroid distances of all observations to each centroid. Every 

observation is assigned to the cluster with closest centroid. Then, the average 

of the observations is computed for obtaining k new centroid locations and the 

process is repeated until convergence is achieved with the purpose of 

minimizing total intracluster variance [46].  
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The K-means algorithm is easy to understand, fast and relatively efficient for 

clustering unlabeled data. However, this approach comes with a level of 

inaccuracy because it requires specification of the k-number (centroids) and a 

random selection can produce misleading results (Figure 2.13). Additionally, 

the Euclidian distance measuring can weigh some underlaying factors 

unequally and it can be problematic with ‘noisy’ data and in case of outliers2. 

[49] This potentiates the need for optimization in the process of selecting the 

cluster division which yields best results. 

 
2  An object differing from all other members of a particular group or set [47]. 

A)                                                    B) 

Figure 2.13 Example situations where the K-means algorithm can underperform: A)expected 
clustering results (left) and K-means grouping without enough iterations for the system to detect 
centroids correctly (right). B) expected clustering results (left) and under-partitioning because of 
inefficient choice of k value (right). Both can be resolved with enough iterations and optimization of 
the cluster number, respectively. [48]  

Figure 2.12 Example steps of the K-means algorithm applied on objects with two parameters 
(because of space limitation some steps are omitted without compromising clarity): step 0 – the 
data is unlabeled and no clustering is preformed; step 1 – the K value is inputted (in this case k=3) 
and the centroids are randomly dispersed; step 2-12 - every data point is classified by computing 
the distance between that point and each cluster center. Based on the classified points, the centroids 
are recomputed from the mean of all vectors in the clusters. The steps are repeated for a set number 
of iterations until convergence is reached and the group centers do not vary.[51] 
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3.1 Study population 

The patient data used in this thesis comes from the OxyTarget study which is 

aimed at investigating novel imaging biomarkers for improving CRT response 

and treatment outcome in rectal cancer [37]. The study included patients that 

underwent rectal cancer treatment at Akershus University Hospital from 2013 

until 2017. The patients agreed to participate in the study by signing a written 

informed consent according to the protocol approved by the Regional Ethics 

Committee. All of the 192 enrolled patients were above 18 years old and had 

not received prior rectal cancer treatment. [38] Seventy-nine patients from 

this study were chosen because of the adequacy to the scope of the thesis, 

encompassing various MRI sequences that provide data from a range of 

intratumoral characteristics important for observing tumor heterogeneity. 

3.1.1 Treatment regimens 

The patients in the analyzed group (Table 3.1) received surgery only (patients 

with localized disease) or one of three CRT regimens (patients with LARC). 

Three patients in the CRT group received radiotherapy without chemotherapy 

due to health conditions/age: 

Xeloda -Fluoropyrimidine carbamate that produces clinically active levels of 

5-fluoracil which generate a radiosensitising effect [39]. 

FLV -5-fluorouracil used to produce a radiosensitising effect [40]. 

3 Materials and Methods  
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FLOX -Flurouracil-leucovorin-oxaliplatin in combination with folinic acid 

that generates radiosensitising and neurotoxic effects. It is usually 

given combined with 5 x 5Gy radiotherapy regimen [45]. 

The radiotherapy was conducted with one of the two radiation regiments:  

5 x 5Gy -5 dose fractions of 5 Gy given in a period of five days, resulting 

in a total dose of 25 Gy 

25 x 2Gy -25 dose fractions of 2 Gy usually given in a period of five weeks, 

resulting in a total dose of 50 Gy 

Table 3.1: Information about the study population used in this thesis. The number of patients in 
each category is calculated in percentage and the age range is given from the youngest to the oldest 
patient in the group. 

Patients 
 

n (%) 
Median age 

(range) 
Female 26 (33%) 76 (47-80) 
Male 53 (67%) 64 (41-88) 
CRT 32 (40%) 60 (41-78) 
Female 8   (10%) 61 (49-73) 
Male 24 (30%) 60 (41-78) 
no CRT 47 (60%) 67 (47-88) 
Female 18 (23%) 76 (47-80) 
Male 29 (37%) 67 (47-88) 
Chemotherapy regime    
FLOX 4    (5 %) 54 (45-64) 
Xeloda 22 (28%) 69 (55-83) 
FLV 3     (4%) 64 (51-78) 
none 3    (4 %)  70 (63-78) 
Radiotherapy regime    
2 Gy x 25 26  (33%) 59 (41-78) 
5 Gy x 5 6     (7 %) 60 (45-75) 

3.1.2 Cancer staging 

In order to plan an effective treatment, it is vital that the extent of the cancer 

at the time of diagnosis is precisely defined. It is also important that the 

evaluation is standardized so that it would allow comparison between patients 

with the purpose of providing standard care around the world. There are 
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several staging systems and they are all periodically updated based on the 

advances in cancer prognosis relevant to the clinical practice. The OxyTarget 

study uses the TNM” system, which is maintained by the American Joint 

Committee on Cancer (AJCC) and the International Union for Cancer Control. 

With this approach, it is possible to stage three parameters: T – the extent of 

the primary tumor, N – the regional lymph nodes and M – distant metastases. 

A detailed classification used in TNM is provided in Table 3.3.[41] 

After the treatment (in the case of neoadjuvant CRT before surgery) a 

histopathological investigation on the subsequent resection specimen is 

performed and the effects of the neoadjuvant therapy are determined. This 

includes a tumor regression grading (TRG) based on the amount of induced 

fibrosis related to the residual tumor. There are several most commonly used 

TRGs and in this study the AJCC system is used. The grading includes four 

conditions, which are shown in Table 3.2. The TRG system is valuable for rectal 

cancer treatment because there is evidence that it can be used as an 

Figure 3.1: Examples of tissue with different tumor regression grades according to the TRG staging 
system: A) Complete regression (TRG0); B) Little residual tumor (TRG1); C) Fibrosis outgrows the 
residual tumor (TRG2); D) Minimal or no regression (TRG3) [42]. 
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independent predictor for survival. Patients graded as TRG0 have shown 

improved progression-free survival which generates higher survival rate. [42] 

The potential for influencing treatment outcome in rectal cancer, makes TRG 

important for examination in this thesis.  

Table 3.2: Grading of response to CRT in rectal cancer using the TRG system. The information in 
the table is extracted from [44]. 

Table 3.3: Different staging in rectal cancer using the TNM system. The information in the table is 
extracted from [43]. 

TRG (Tumor regression grade) 

TRG 0 No viable cancer cells 

TRG 1 Single cells or small groups of cancer cells 

TRG 2 Residual cancer outgrown by fibrosis  

TRG 3 Minimal or no tumor regression. Extensive residual cancer  

T – Primary tumor  N – Regional lymph nodes  M – Distant metastases 

T0 No evidence of primary 
tumor     N0 No regional lymph node 

metastasis M0 No distant metastasis  

T1 Tumor invades 
submucosa 

N1 Metastasis in 1-3 
regional lymph nodes  

M1 Distant metastasis 

T2 Tumor invades 
muscularis propria  

N2 Metastasis in 4 or 
more regional lymph 
nodes 

 
 

T3 Tumor invades through 
the muscularis propria 
into the pericolorectal 
tissues 

  

 

 

T4 Tumor penetrates to 
the surface of the 
visceral peritoneum or 
directly invades or is 
adherent to other 
organs and structures 
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Table 3.4 summarizes the general information about the study population 

included in this thesis. The prefix “mr” indicates that the assessment has been 

carried out using MRI before the treatment. The prefix “y” indicates that the 

assessment is completed after the CRT treatment and the prefix “p” refers to 

the use of pathological examination on a resected specimen. 

Table 3.4: Tumor characteristics in patients that received neoadjuvant CRT (left) and patients that 
only underwent surgery (right). The prefixes used in the TNM staging are explained in the text. 

CRT n (%) no CRT n (%) 
ypTN stage  pTN stage  
ypT0 4   (5%)   
ypT1 3   (4%) pT1 2    (2%) 
ypT2 3   (4%) pT2 15 (19%) 
ypT3 17 (21%) pT3 22 (28%) 
ypT4 3   (4%) pT4 1   (1%) 
ypN0 18 (23%) pN0 24 (30%) 
ypN1 6   (7%) pN1 10 (13%) 
ypN2 6   (7%) pN2 6   (7%) 
mrTNM stage  mrTNM stage  
mrT2  2   (2%) mrT2  15 (19%) 
mrT3  16 (20%) mrT3  26 (33%) 
mrT4  14 (18%) mrT4  6   (7%) 
mrN0  9 (11%) mrN0  27 (34%) 
mrN1  10 (13%) mrN1  15 (19%) 
mrN2  12 (15%) mrN2  5   (6%) 
TRG score    
TRG0 4   (5%)   
TRG1 7   (9%)   
TRG2 11 (14%)   
TRG3 9 (11%)   

3.2 Data analysis methods and software 

3.2.1 Acquisition of MR images 

The MR images of all patients in the study are obtained with Philips Achieva 

1.5 Tesla system (Philips Healthcare, Best, The Netherlands) with NOVA Dual 

HP gradients and a five-channel cardiac coil with parallel imaging capabilities. 

The T2-weighted images of the pelvic cavity and the rectum are obtained in the 
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sagittal and transversal planes with conventional high-resolution fast spin-echo 

sequence, where TR = 2386-4122 ms and TE = 80 ms in an acquisition matrix 

of 512x512 (slice thickness 2.5 mm). The DW MR images are acquired with 

fat-saturated single-shot spin-echo EPI sequence, where b={0, 25, 50, 100, 

500. 1000, 1300} s/mm2 in a matrix size of 128x128 with FOV = 160x160mm 

and slice thickness 4 mm. The obtained T2-weighted images are used for 

delineation of the tumors (ROIs) by two radiologists with 7 and 14 years of 

experience3.[45] 

3.2.2 Image Analysis 

The analyses on the images are performed with MATLAB® (MathWorks, Natick, 

Massachusetts - version R2018a) using the Image Processing Toolbox and the 

Tools for NIfTI and ANALYZE image toolbox. All the used scripts are included 

in Appendix A. 

The following is in reference to Appendix A.1. The T2-weighted images are 

stored in the DICOM file format (2D), so the first step of the analysis 

encompasses loading them into the MATLAB workspace, rescaling and sorting 

into a 3D matrix (x-, y- and z- direction). Sorting is done in the z-direction 

which is obtained from the DICOM info file. As it was explained in Chapter 

3.2.1, ROIs are delineated based on the T2-weighted images and stored in a 

file format called NIfTI (Neuroimaging Informatics Technology Initiative). 

Therefore, the NIfTI and ANALYZE image toolbox is used to load the ROI which 

denotes the tumor volume. Further on, after adjusting the ROI (flipping and 

rotating), it is used to obtain information from the T2-weighted images for the 

tumor region only (via logical indexing). The script in Appendix A.5. extracts 

the voxel coordinates for the ROI, based on the previous step. A generated 

table contains the spatial coordinates of the voxels and their corresponding 

intensity in the pixels from slices. The result is used as a base for all analyses 

concerning the heterogeneity of the tumor reflected in T2-weighted MR images 

(Appendix A.6). 

 
3 The radiologists are denoted with their initials - “an” and “shh” respectively. In further reading they will be 
referred to by these abbreviations.  
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Analogically, a similar procedure is applied on the DW MR images. The initial 

steps include loading and sorting by the z-direction, which is again obtained 

from the DICOM info file. However, as it was explained before, the acquisition 

matrix for the DW images is 128x128, which is different from the acquisition 

matrix for the T2-weighted images 512x512. Therefore, the DWI need to be 

interpolated to the T2-w images in order to be able to apply the ROI from the 

NIfTI file and extract the tumor information. In continuity, the same steps are 

applied, until we get another table with voxel coordinates and additional 

parameters (provided: ADC maps, D, D* and f) which is used for analyzing the 

tumor heterogeneity on the DW-MR images. 

A)                                      B)                                       C) 

Figure 3.3: Quick summary of the image analysis steps (on T2-w images): A) load from DICOM files 
and sort by z-direction. B) Load ROI drawn by a radiologist from a NIfTI file. C) Extract the ROI from 
the T2-w images with logical indexing for further extraction of the voxel coordinates. 

Figure 3.2: Example table with extracted data from the T2-w images, depicting the voxel 
coordinates and the intensity from their corresponding pixels. 
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3.2.3 Statistical analysis 

3.2.3.1  K-means clustering 

In continuity of what was discussed previously in Chapter 2.3.1, the K-means 

unsupervised learning algorithm was used for clustering the data from the 

obtained tables. In Appendix A.7 the script uses the built-in MATLAB® function 

‘kmeans’ from the Statistics toolbox. The input for the k-number that signifies 

the number of centroids is manual and values of 2 to 6 are observed. The 

purpose of this algorithm can be explained mathematically, if we denote the 

data from the fourth column in Figure 3.3 (Intensity) as 𝐼𝐼 = {125; 456; … ; 𝐼𝐼𝑛𝑛}, 

where each of the 𝑛𝑛 data points is a dimensional vector defined by the 

coordinates (columns 1-3). The cluster assignment is associated to each data 

point and when a data point 𝐼𝐼𝑖𝑖 belongs to cluster 𝑘𝑘 it is noted as 𝑧𝑧𝑖𝑖 = 𝑘𝑘. The 

number of observations assigned to a cluster 𝑘𝑘 is 𝑁𝑁𝑘𝑘 for 𝑘𝑘 ∈ {1; … ;𝐾𝐾} and the 

following objective function is used to find the minimum: 

 
E =  

1
2� � �|Ii − μk|�

2
2

i:zi=k

K

k=1

 (3.1) 

where 𝜇𝜇 are the cluster centroids and 1
2
�|. |�

2

2
 is the Euclidian distance measured 

as the sum of the square of differences of coordinates in each direction. The 

value of E cannot increase with each subsequent iteration and eventually it 

stops changing (therefore a high number of 30 iterations is used in the 

function) [48]. 

Appendix A.7 shows the script used to optimize the k-value for each dataset. 

The mean intra-cluster distance and the minimum inter-cluster distance are 

used to generate a graph, which indicates the ideal cluster division. This is done 

by specifying how these two parameters change with k and by applying 

functions that generate over-partitioning (v0) and under-partitioning 

(vu) vectors respectively. Using the notation from before, for the cluster 

centroids we have a vector containing the centers μ = [ μ1 ,  μ2, …  μK]T and an 

under-partitioning function given by: 
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𝑣𝑣𝑢𝑢(𝐾𝐾,𝜇𝜇; 𝐼𝐼) =  

∑ 𝑀𝑀𝐷𝐷𝑘𝑘𝐾𝐾
𝑘𝑘=1

𝐾𝐾 =  
∑ ∑ ||𝐼𝐼𝑖𝑖 − 𝜇𝜇𝑘𝑘||

𝑁𝑁𝑘𝑘𝐼𝐼𝑖𝑖∈𝐶𝐶𝑘𝑘
𝐾𝐾
𝑘𝑘=1

𝐾𝐾  (3.2) 

where MDk is the mean intra-cluster distance (MICD) for the kth cluster. MICD 

helps define the under-partitioned states because it has high value when at 

least one of the clusters is under-partitioned, and it shows incident decrease in 

cases of over-partitioning. The inter-cluster minimum distance (ICMD) can be 

defined as: 

 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑛𝑛
𝑚𝑚 ≠ 𝑗𝑗 ��𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑗𝑗�� (3.3) 

When ICMD has a high value, the data can be under-partitioned or optimally 

partitioned, but in conditions where the inter-cluster minimum distance is very 

small it indicates that the data is over-partitioned (at least one of the clusters 

is subdivided). Considering Equation (3.3) we can obtain the over-partitioning 

function: 

 𝑣𝑣𝑜𝑜(𝐾𝐾, 𝜇𝜇) =  
𝐾𝐾

𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛
=  

𝐾𝐾
𝑚𝑚𝑚𝑚𝑛𝑛
𝑚𝑚 ≠ 𝑗𝑗 ��𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑗𝑗��

 (3.4) 

A parameter called ‘validity index’ (K*) is used to define the behavior of the two 

vectors and determine the optimal number of clusters. Equations (3.2) and 

(3.4) have low values for K = K*, so this property is used to obtain K*. The script 

in Appendix A.7 generates matrices containing the values of the two vectors: 

 vo = [vo(Kmin,μ), … , vo(Kmax,μ)] (3.5) 

 vu = [vu(Kmin,μ; I), … , vu(Kmax,μ; I)] (3.6) 

considering that in our case Kmin = 2 and Kmax = 6. These are then normalized 

to the range [0,1] based on their minimum and maximum values with the 

following functions: 

 vu∗(K,μ; I) =
vu(K,μ; I)

max
K = 2, … ,6 {vu(K, μ; I)}     −      min

K = 2, … ,6 {vu(K, μ; I)} 
 (3.7) 

 vo∗(K, μ) =
vo(K, μ)

max
K = 2, … ,6 {vo(K,μ)}     −      min

K = 2, … ,6 {vo(K,μ)} 
 (3.8) 
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The sum of the Equations (3.7) and (3.8) provides the validity index vector vsv: 

 vsv(K,μ; I) = vo∗(K, μ) + vu∗(K, μ; I) (3.9) 

where the smallest value is extracted and K* is obtained, which gives the 

optimal number of clusters for the data. [50] 

3.2.3.2  Cluster division 

The next step of the method uses the script from Appendix A.8. The number 

of voxels assigned to each cluster is counted and the cluster volume fractions 

(CVF) are calculated for each cluster in every patient: 

 CVF1 =
Voxels in cluster 1

Total number of voxels 
(3.10) 

Then, the median values of all CVFs are obtained with the purpose of dividing 

every cluster into high and low values above and below the median, 

respectively. The division of the clusters from every patient is inputted into a 

new matrix that contains two groups of voxels above and below median. The 

two groups are then used in both the statistical and survival analyses for 

observing if they are associated to the treatment outcomes. 

3.2.3.3  Parameter correlation 

The next step aims to investigate correlation between the parameters from the 

summarization in Table 3.4 and the two groups from each cluster. The obtained 

dataset of parameters that define the staging of the tumor is measured on a 

scale, which indicates that the data is continuous and two types of tests 

(parametric and non-parametric) can be used to evaluate the correlation. In 

order to find out which test would be better suited the distribution of the data 

needs to be probed with the Shapiro-Wilk (1965) normality test. 

This test is chosen because of its good power properties [62]. The original test 

from 1965 for an ordered random sample where we have y1<y2<...<yn, is given 

with: 

 
W =

(∑ aiyin
i=1 )2

∑ (yi − y�i)2n
i=1

 (3.11) 
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where yi is the ith order statistic,  𝑦𝑦� is the sample mean and a is defined by m 

which are the expected values of the order statistics. This form is limited to a 

sample size smaller than 50, so it has been continuously improved. The 

calculations in this thesis are based on the improved algorithm AS R94 which 

gives calculation power of 3 ≤ n ≤ 5000 [63] The test results are in Appendix E. 

In case of normal data distribution, a t-test is utilized. This is a parametric 

method which can be used when the samples satisfy the conditions of 

normality, equal variance and independence. There are two types of t-tests: 

independent (when the compared groups are independent of each other) and 

paired (when the two groups are dependent on each other). Considering that 

the parameters and the cluster groups are unpaired, in case of normal 

distribution, the optimal choice is «two independent samples t-test». This 

approach is suitable for the purpose of comparing a group treated with A and 

B components. Independent t test can provide intergroup comparison of postA 

and postB or preA and postA (Table 3.5).[64] 

Table 3.5: Example table indicating the potential of “Independent samples t-test” (patient: patient 
number; preA/B: parameter measured before treatment, postA/B: parameter measured after 
treatment). 

Treatment A  Treatment B  
patient  preA postA patient  preB postB 

1 2 1 2 3 0 
3 3 0 4 2 3 
4 2 0 13 1 2 
11 1 3 14 3 2 
13 3 2 22 2 1 
14 2 2 34 3 0 

If the data is not normally distributed a non-parametric test would yield more 

precise conclusions. In this case the Wilcoxon rank-sum test was chosen as it 

has some advantages over other methods, because it is more robust and will 

not detect significance based on outliers. Even if the data is normally 

distributed the Wilcoxon rank-sum is only 5% less efficient than the unpaired 

sample t-test (for large samples like our data).[65]  

The tests are conducted with two softwares: R console (version 3.5.3) and 

MedCalc® (version 14.8.1). Appendix A.12 shows the creation of tab delimited 
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text tables with the divided clusters based on the median, below (value “1”) 

and above (value “2”) and the corresponding parameters that grade the tumor. 

The .txt files are used by the script for the R console calculations (shown in 

Appendix B). For the control the data is rearranged into two columns containing 

the parameters corresponding to each group and inputted into the MedCalc® 

software. 

3.2.4 Survival analysis 

The survival analyses are performed with the software R (version 3.5.3) with 

the Survival package for computing and the Survminer package for visualizing 

the results. They are based on the survival data, which is obtained from the 

observed endpoints in the OxyTarget study. According to the NCI Dictionary of 

Cancer Terms an endpoint is referring to the outcome which can be measured 

objectively to determine if an intervention being studied is beneficial [52]. This 

indicates that the term does not always refer to death or survival, but it can 

evaluate various parameters according to the objective of the study. The 

patient data analyzed in this thesis has observed three endpoints for the 

purpose of determining progression free survival (PFS), which shows that the 

tumor has no signs of progression. They are: local recurrence (reappearance 

of the tumor near the place of the primary tumor), metastasis (metastasis to 

distant sites as described in Chapter 2.1.1) and death. The data from the study 

contains information about the date of occurrence for the three parameters 

and in cases where none of the endpoints were reached, the field is left empty 

(NaN). PFS shows the time interval between the inclusion in the study (at 

diagnosis) to reaching any of the endpoints.  The information contained in the 

distributed Excel file, is translated into a binary code which registers “an event” 

if at least one of the endpoints has occurred. Then for all events the PFS is 

calculated for the outcome which has been reached first (in cases where more 

than one endpoint is included). Table 3.7 displays a mock-up of PFS calculation 

for the survival analyses. 

Table 3.6 and Table 3.7 show that the analyzed cohort contains patients that 

have not reached an outcome in the follow-up time, which means that we do 

not know their true time to event (if it occurred). The lack of event in the 
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observed time frame, is called ‘censoring’ and it refers to the incomplete data. 

After the last time point at which the patient did not experience any of the 

outcomes, the information becomes censored. [53] Additionally, the PFS data 

is not normally distributed and it shows skewedness with many early events 

and relatively few late ones, which emphasizes the need of an adequate 

method for survival analyses [54]. 

Table 3.6: Example of data preparation for the statistical analyses, showing than an event is 
registered if a date input exists for any of the three endpoints, and PFS is calculated according to the 
first occurring event. 

Date of 
inclusion  

Date of local 
recurrence  

Date of 
metastasis Death  Event  PFS[days] 

04-11-14 10-02-16 15-11-16 NaN  1  455 

20-01-15 NaN 02-05-17 NaN  1  833 

27-01-15 NaN NaN NaN  0  NaN 

Table 3.7: Number of patients which have reached one of the three endpoints. For 45 patients an 
event is not registered within the time frame of the study, so they need to be censored. 

Patients  n (%) PFS median (range) 
[days] 

Events 34 (43%)  
Local recurrence   2   (2%) 547  (183-911) 
Metastasis 18 (23%) 453       (2-904)  
Death  14 (18%) 747  (40-1454) 
Non -events (censored) 45 (57%)  

The most commonly used approach for analyzing survival time in medical 

research is the Cox proportional hazards model [55]. It is a multivariate 

survival analysis regression model that uses the hazard function and relates it 

to a set of covariates (risk factors). A hazard is defined as the probability of 

occurrence of an individual observed event within a time frame centered 

around that event [56]. In terms of this topic, the hazard is described with 

value “1” in the “event” tab from Table 3.4. The Cox model can be expressed 

mathematically with the relation: 

 h(t) = h0(t) e{b1x1+ b2x2+⋯+bpxp} (3.12) 

where ( x1, … , xk) are a set of covariates, whose impact is measured by the 

coefficients (b1, … , bp).  h0(t) is the baseline hazard at time 𝑡𝑡, representing the 

hazard for a person with the value NaN for all predictor variables [53]. The 
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baseline hazard function is estimated non-parametrically, which means that 

the survival times are not assumed to follow a particular statistical distribution. 

If we divide both sides of Equation (3.11) and take natural logarithm (ln), we 

obtain the hazard ratio: 

 
HR = ln�

h(t)
h0(t)� =  b1x1 + b2x2 + ⋯+ bpxp (3.13) 

This shows that the Cox model basically is a multiple linear regression of the 

logarithm of the hazard on variables xi, where h0(t) could be referred to as the 

“intercept” term which varies with time. For two groups of patients k and k′ that 

have different covariates, their hazard functions (3.11) would be written as: 

 hk(t) = h0(t) e{b1x1+ b2x2+⋯+bpxp} (3.14) 

 hk′(t) = h0(t) e{b1x′1+ b2x′2+⋯+bpx′p} (3.15) 

which yields a hazard ratio for the two groups: 

 hk(t)
hk′(t) =

e�b1x1+ b2x2+⋯+bpxp�

e�b1x′1+ b2x′2+⋯+bpx′p�
 (3.16) 

From here, we can define the main assumption of this model, that the hazard 

of the event in any group is a constant multiple of the hazard in any other 

group and it does not depend on time. This explains why it is named 

“proportional hazards” and it shows that the curves of the groups are expected 

to be proportional and should not cross. [57] 

Appendix B.1 contains the script used in R, for computing the Cox regression. 

Based on Equation (3.11) the computer calculates the regression coefficients 

(b1, … , bp) and displays the hazard ratio exp (bi) for the second group relative to 

the first group in column “coef”. Therefore, an example coefficient of -0.5129 

would indicate that the second group of patients have lower risk of death (lower 

survival rates) than the first group. In case of a positive sign, the result would 

direct to higher risk of death which yields worse prognosis for the subjects of 

the second group. The results include “exp(coef)” which are the exponentiated 

coefficients that are also called ‘hazard ratios’ showing the size of effect from 

the covariate. Hence, in the example this means that the second group reduces 
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the hazard by a factor of 0.5988. An additional column displays the Wald 

statistic value calculated as ratio of the coefficient and its standard error: 

 z =
coef

se (coef) (3.17) 

This is the base for the Wald statistic test (also known as Wald Chi-squared 

test) which generates the p-value used as an indicator for assessing whether 

the difference between the two groups has statistical significance. A p-value 

defines the probability of finding an observed result when the null hypothesis 

is true [58]. In the case of comparing two groups of patients, we use this 

parameter to evaluate if the absolute value of the sample mean difference 

between the compared groups is greater or equal to the observed results [59]. 

The survival package in R, uses two alternative tests for calculating the overall 

significance of the model (p-value) besides the Wald statistical test: Likelihood-

ratio test and Log-rank statistics. For the sake of brevity, these tests will not 

be explained in detail. The three methods are asymptotically equivalent and 

for large data they give similar results, opposite to cases with smaller datasets 

where they can show some variation. [60] The likelihood-ratio test has been 

denoted as behaving better for smaller sample sizes, so it is generally preferred 

[59]. However, as it was previously stated in the Chapter 2.3, the unsupervised 

learning technique which we use requires extremely large volumes of data, and 

in this study the dataset is sufficiently big, so no variations are expected to be 

observed. The results where p < 0.05 are considered significant, otherwise the 

conclusion is that there is no important correlation [58].  

The results from the model are visualized with Kaplan-Meier plots that show 

the survivals of the two groups of patients (script for R console in AppendixB.1). 

The Kaplan-Meier plot is plotted between the estimated survival probability (on 

the y-axis) and the time past after the inclusion into the study (on x-axis). The 

result is horizontal and vertical lines that generate a stepping function for each 

group (Figure 3.4) [61]. Note that it is incorrect to join the calculated points 

by sloping lines [57]. As the Cox proportional hazard model maintains the 

proportionality between the groups, we can observe three possible relations 

between the plotted functions. If there is a vertical gap between the lines, this 
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means that at a specific time point one of the groups had a smaller fraction of 

surviving patients. Analogously, a horizontal gap would indicate that one group 

took longer time to experience a fraction of deaths. If there is no difference in 

the outcome between the two groups, then the lines would overlap. [61] 

Moreover, the censored patients are marked with ‘ | ’-sign on the graph.  

 

Figure 3.4: Example of a Kaplan-Meier plot from the results of the Cox proportional hazards model 
comparing two patient groups. The stepping functions are plotted against the survival probability (y-
axis) and the time after inclusion in the study (x-axis) (censored patients are denoted with ‘|’). The 
plot is taken from [61]. 



 

This chapter presents the results from the statistical and survival analyses. 

Figure 4.1 displays sorted T2-weighted images for one of the patients, with 

delineations of the tumor by the two radiologists («an» and «shh»). In this 

example the ROI is selected on a total of 24 slices, with varying difference in 

the detection. In some of the slides only one of the radiologists delineated 

presence of a tumor. 

4 Results 

Figure 4.1: Sorted T2-weighted images with superimposed delineations of the ROI by the two 
radiologists (“an” and “shh”), presented as two contours in cyan and red color respectively. 
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The visual inspection of the slices from the other patients showed that there is 

a noticeable difference in the delineations among all cases. The difference in 

the selected pixels, corresponds to different voxel coordinates in the tables, 

which ultimately leads to different clustering results. The analyses were 

performed on the ROIs from the radiologist «an», but for some cases which 

showed statistical significance, the delineations from the radiologist «shh» 

were probed too. 

4.1 Statistical analyses 

4.1.1 T2-weighted images 

4.1.1.1 Radiologist -an 

The obtained patient data with the voxel coordinates and the intensities of the 

corresponding pixels in the T2-weighted images were used to perform the k-

means clustering with the script from Appendix A.7. For the ROI from the 

radiologist “an” the optimal cluster number has been attained at k=4 (vsv =

0.63) and the analyses have been conducted according to this grouping factor 

(Figure 4.3). The resulting clustered data with the corresponding cluster 

centers is shown in Table 4.1 and Figure 4.2. The results indicate statistical 

significance (p<0.05) for Cluster 2 in relation to the parameters “p/ypT” and 

“ΔT” and Cluster 3 related to “p/ypT”. 

Table 4.1: Table displaying the values of the cluster centers and the median volume fractions for 
each cluster in data from T2-weighted images (radiologist – an). 

Cluster number  Intensity  
(cluster center)  

Median volume fraction  
(CVF) 

1 448 29.9% 
2 640 44.4% 
3 849 19.5% 
4 1344 6.2% 

Figure 4.2: Tumor cluster affiliation based on K-means clustering of the intensity parameter for k=4 
from the T2-weighted images (radiologist – an). Clustering is based on all patient’s voxels. The cluster 
centers are marked by the corresponding cluster number. 

pixel intensity value 

4 3 2 1 
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Table 4.2: P-values from the Wilcoxon rank-sum test on the two groups (above and below median) 
for each of the specified parameters that investigate statistical significance in the difference between 
the two groups. (T2-weighted images (radiologist – an)) 

T2 (an ) m rT p / ypT ΔT m rN p / ypN ΔN TRG 

Cluster 1 0.8678 0.1460 0.1805 0.4947 0.6035 0.9842 0.1902 
Cluster 2 0.1804 0.0235 0.0429 0.7821 0.2576 0.6168 0.8906 
Cluster 3 0.7429 0.0475 0.2000 1.0000 0.1653 0.8897 0.9190 
Cluster 4 0.3237 0.7932 0.1639 0.4148 0.8767 0.3662 0.3226 

4.1.1.2 Radiologist – shh 

Table 4.3: Table displaying the values of the cluster centers and the median volume fractions for 
each cluster in data from T2-weighted images (radiologist – shh). 

Cluster number  Intensity  
(cluster center)  

Median volume fraction  
(CVF) 

1 446 24.0% 
2 624 50.0% 
3 837 17.8% 
4 1212 3.1% 

 

Figure 4.3: Plot of the normalized values of the over-partitioned and under-partitioned vectors with 
the validity index vector (𝐯𝐯𝐬𝐬𝐯𝐯). The minimal value of 𝒗𝒗𝒔𝒔𝒗𝒗 defines the optimal number of clusters. 
𝐯𝐯𝐮𝐮(𝐊𝐊𝐦𝐦𝐦𝐦𝐦𝐦,𝛍𝛍; 𝐈𝐈) = 0 (normalized), because the clustering is done for 𝐊𝐊𝐦𝐦𝐦𝐦𝐦𝐦 = 𝟔𝟔 clusters. (T2-weighted 
images (radiologist – an)) 

4 

Figure 4.4: Tumor cluster affiliation based on K-means clustering of the intensity parameter for k=4 
from the T2-weighted images (radiologist – shh). Clustering is based on all patient’s voxels. The 
cluster centers are marked by the corresponding cluster number. 

3 2 1 
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For the ROI from the radiologist “shh” the optimal cluster number has been 

attained at k=4 (vsv = 0.67)(Figure 4.5). The resulting clustered data with the 

corresponding cluster centers are shown in Table 4.3 and Figure 4.4. The 

results indicate statistical significance (p<0.05) for Cluster 1 and Cluster 2 in 

relation to the parameters “p/ypT” and “TRG” and Cluster 1 for “ΔT” and 

“p/ypN”. 

Table 4.4: P-values from the Wilcoxon rank-sum test on the two groups (above and below median) 
for each of the specified parameters that investigate statistical significance in the difference between 
the two groups. (T2-weighted images (radiologist – shh)) 

T2 (shh) m rT p / ypT ΔT m rN p / ypN ΔN TRG 

Cluster 1 0.7259 0.0220 0.0387 0.6372 0.0301 0.9690 0.0027 

Cluster 2 0.8646 0.0492 0.2895 0.8646 0.0685 0.5000 0.0553 

Cluster 3 0.4197 0.3334 0.4214 0.7937 0.0614 0.7311 0.7311 
Cluster 4 0.6494 0.7026 0.3198 0.6283 0.1105 0.8054 0.8054 

  

Figure 4.5: Plot of the normalized values of the over-partitioned and under-partitioned vectors with 
the validity index vector (𝒗𝒗𝒔𝒔𝒗𝒗). The minimal value of 𝒗𝒗𝒔𝒔𝒗𝒗 defines the optimal number of clusters for 
the T2-weighted images (radiologist – shh) 
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4.1.2 Diffusion-weighted images 

4.1.2.1 b=0 s/mm2 

The same script as in Chapter 4.1.1 is applied to the diffusion-weighted images 

and the procedure is repeated. For the images with b=0 s/mm2 the optimal 

cluster number is defined at k=4 (vsv = 0.58) (Figure 4.6), with the cluster 

centers and median volume fractions displayed in Table 4.5 and Figure 4.7. 

Table 4.5: Table displaying the values of the cluster centers and the median volume fractions for 
each cluster in data from diffusion-weighted images with b-value of 0 s/mm2. 

Cluster number  Intensity  
(cluster center)  

Median volume fraction  
(CVF) 

1 401 16.8% 
2 687 36.1%  
3 989 24.9% 
4 1453 4.1% 

Figure 4.6: Plot of the normalized values of the over-partitioned and under-partitioned vectors with 
the validity index vector (𝒗𝒗𝒔𝒔𝒗𝒗). The minimal value of 𝒗𝒗𝒔𝒔𝒗𝒗 defines the optimal number of clusters for 
the diffusion-weighted images with b=0 s/mm2. 

Figure 4.7: Tumor cluster affiliation based on K-means clustering of the intensity parameter for 
k=4 from the diffusion-weighted images. Clustering is based on all patient’s voxels. The cluster 
centers are marked by the corresponding cluster number. 
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There is no significant difference between the two groups in the clustered data 

for the DW images with b=0 s/mm2 (Table 4.6). 

Table 4.6: P-values from the Wilcoxon rank-sum test on the two groups (above and below median) 
for each of the specified parameters that investigate statistical significance in the difference between 
the two groups (DWI; b=0 s/mm2). 

b=0 
[s/mm2] mrT p/ypT ΔT mrN p/ypN ΔN TRG 

Cluster 1 0,0972 0,6569 0,6555 0,2116 0,2336 0,9338 0,4804 

Cluster 2 0,1298 0,3211 0,1981 0,3490 0,1362 0,9313 0,5866 

Cluster 3 0,5104 0,0992 0,5235 0,8902 0,2360 0,3281 0,4078 

Cluster 4 0,3237 0,3383 0,2448 0,4894 0,8517 0,5631 0,8252 

4.1.2.2 b=25 s/mm2 

Table 4.7: Table displaying the values of the cluster centers and the median volume fractions for 
each cluster in data from diffusion-weighted images with b-value of 25 s/mm2. 

Cluster number  Intensity  
(cluster center)  

Median volume fraction  
(CVF) 

1 421 16.7% 
2 684 35.9% 
3 970 24.9% 
4 1381 4.2% 

There is no significant difference between the two groups in the clustered data 

for the DW images with b=25 s/mm2 (Table 4.8). 

Figure 4.8: Plot of the normalized values of the over-partitioned and under-partitioned vectors with 
the validity index vector (𝒗𝒗𝒔𝒔𝒗𝒗). The minimal value of 𝒗𝒗𝒔𝒔𝒗𝒗 defines the optimal number of clusters for 
the diffusion-weighted images with b=25 s/mm2. 
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Table 4.8: P-values from the Wilcoxon rank-sum test on the two groups (above and below median) 
for each of the specified parameters that investigate statistical significance in the difference between 
the two groups (DWI; b=25 s/mm2). 

b=25 
[s/mm2] mrT p/ypT ΔT mrN p/ypN ΔN TRG 

Cluster 1 0.1013 0.2507 0.6001 0.1650 0.2019 0.5599 0.1335 

Cluster 2 0.4963 0.0988 0.5993 0.8941 0.3732 0.1682 0.1473 

Cluster 3 0.3292 0.6944 0.7046 0.3607 0.7778 0.9055 0.1116 

Cluster 4 0.1780 0.6761 0.5299 0.4530 0.1414 0.5032 0.0852 

4.1.2.3 b=50 s/mm2 

Table 4.9: Table displaying the values of the cluster centers and the median volume fractions for 
each cluster in data from diffusion-weighted images with b-value of 50 s/mm2. 

Cluster number  Intensity  
(cluster center)  

Median volume fraction  
(CVF) 

1 420 22.4% 
2 683 38.2% 
3 969 22.6% 
4 1380 3.9% 

Figure 4.9: Plot of the normalized values of the over-partitioned and under-partitioned vectors with 
the validity index vector (𝒗𝒗𝒔𝒔𝒗𝒗). The minimal value of 𝒗𝒗𝒔𝒔𝒗𝒗 defines the optimal number of clusters for 
the diffusion-weighted images with b=50 s/mm2. 

Figure 4.10: Tumor cluster affiliation based on K-means clustering of the intensity parameter for 
k=4 from the diffusion-weighted images. Clustering is based on all patient’s voxels. The cluster 
centers are marked by the corresponding cluster number. 
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There is a significant difference between the two groups in the clustered data 

for the DW images with b=50 s/mm2 (“an”) for the ‘p/ypN’ parameter in Cluster 

3 and the ‘TRG’ parameter in Cluster 1 and Cluster 2. (Table 4.12). 

Table 4.10: P-values from the Wilcoxon rank-sum test on the two groups (above and below median) 
for each of the specified parameters that investigate statistical significance in the difference between 
the two groups (DWI; b=50 s/mm2). 

b=50 
[s/mm2] mrT p/ypT ΔT mrN p/ypN ΔN TRG 

Cluster 1 0.4200 0.1135 0.2647 0.8209 0.8885 0.6961 0.0393 

Cluster 2 0.1443 0.8085 0.09304 0.1572 0.1592 0.0739 0.0406 

Cluster 3 0.0966 0.4455 0.6987 0.7451 0.0493 0.6164 1.0000 

Cluster 4 0.4763 0.3216 0.7360 0.9214 0.9258 0.3990 0.4454 

 

4.1.2.4 b=50 s/mm2 (shh) 

 

Figure 4.12: Plot of the normalized values of the over-partitioned and under-partitioned vectors 
with the validity index vector (𝒗𝒗𝒔𝒔𝒗𝒗). The minimal value of 𝒗𝒗𝒔𝒔𝒗𝒗 defines the optimal number of clusters 
for the diffusion-weighted images with b=50 s/mm2 (shh). 

Figure 4.11: Tumor cluster affiliation based on K-means clustering of the intensity parameter for 
k=4 from the diffusion-weighted images. Clustering is based on all patient’s voxels. The cluster 
centers are marked by the corresponding cluster number. 

1 2 3 4 

pixel intensity value 



Chapter 4 Results 
 

60 
 

Table 4.11: Table displaying the values of the cluster centers and the median volume fractions for 
each cluster in data from diffusion-weighted images with b-value of 50 s/mm2 for ROI delineated by 
radiologist “shh”. 

Cluster number  Intensity  
(cluster center)  

Median volume fraction  
(CVF) 

1 356 20.2% 
2 593 37.0% 
3 846 22.9% 
4 1227 3.7% 

There is significant difference between the two groups in the clustered data for 

the DW images with b=50 s/mm2 (“shh”) for the “p/ypT” parameter in Cluster 

2 and Cluster 4 and the ΔT parameter for Cluster 4. (Table 4.12). 

Table 4.12: P-values from the Wilcoxon rank-sum test on the two groups (above and below median) 
for each of the specified parameters that investigate statistical significance in the difference between 
the two groups (DWI; b=50 s/mm2 (shh)). 

b=50 (shh) 
[s/mm2] mrT p/ypT ΔT mrN p/ypN ΔN TRG 

Cluster 1 0.0691 0.9392 0.2539 0.5542 0.7671 0.8935 0.9500 

Cluster 2 0.1297 0.0394 0.5501 0.5774 0.9874 0.1924 0.4723 

Cluster 3 0.1895 0.6770 0.2539 0.3590 0.6290 0.4980 0.8801 

Cluster 4 0.4790 0.0451 0.0413 0.9806 0.3776 0.8000 0.6968 

 

4.1.2.5  b= 100 s/mm2 

Table 4.13: Table displaying the values of the cluster centers and the median volume fractions for 
each cluster in data from diffusion-weighted images with b-value of 100 s/mm2. 

Cluster number  Intensity  
(cluster center)  

Median volume fraction  
(CVF) 

1 420 22.2% 
2 682 38.2% 
3 968 22.6% 
4 1378 3.9% 

Figure 4.13: Tumor cluster affiliation based on K-means clustering of the intensity parameter for 
k=4 from the diffusion-weighted images. Clustering is based on all patient’s voxels. The cluster 
centers are marked by the corresponding cluster number. 
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There is a significant difference between the two groups in the clustered data 
for the DW images with b=100 s/mm2 (Table 4.14) for the ‘TRG’ parameter in 
Cluster 1 and Cluster 2. 

Table 4.14: P-values from the Wilcoxon rank-sum test on the two groups (above and below median) 
for each of the specified parameters that investigate statistical significance in the difference between 
the two groups (DWI; b=100 s/mm2). 

b=100 
[s/mm2] mrT p/ypT ΔT mrN p/ypN ΔN TRG 

Cluster 1 0.4200 0.1135 0.2647 0.8209 0.8499 0.9000 0.0393 

Cluster 2 0.1443 0.8085 0.0930 0.1572 0.2413 0.2001 0.0406 

Cluster 3 0.0966 0.4455 0.7634 0.7451 0.0734 0.2284 0.9827 

Cluster 4 0.4763 0.3216 0.7360 0.9214 0.8488 0.6765 0.4454 

  

Figure 4.15: Plot of the normalized values of the over-partitioned and under-partitioned vectors 
with the validity index vector (𝒗𝒗𝒔𝒔𝒗𝒗). The minimal value of 𝒗𝒗𝒔𝒔𝒗𝒗 defines the optimal number of clusters 
for the diffusion-weighted images with b=100 s/mm2. 

Figure 4.14: Tumor cluster affiliation based on K-means clustering of the intensity parameter for 
k=4 from the diffusion-weighted images. Clustering is based on all patient’s voxels. The cluster 
centers are marked by the corresponding cluster number. 
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4.1.2.6 b=500 s/mm2 

Table 4.15: Table displaying the values of the cluster centers and the median volume fractions for 
each cluster in data from diffusion-weighted images with b-value of 500 s/mm2. 

Cluster number  Intensity  
(cluster center)  

Median volume fraction  
(CVF) 

1 410 22.8% 
2 676 38.9% 
3 963 22.9% 
4 1374 3.7% 

There is significant difference between the two groups in the clustered data for 

the DW images with b=500 s/mm2 (Table 4.16) for the parameter ‘TRG’ in 

Cluster 1 and Cluster 2. 

Figure 4.16: Plot of the normalized values of the over-partitioned and under-partitioned vectors 
with the validity index vector (𝒗𝒗𝒔𝒔𝒗𝒗). The minimal value of 𝒗𝒗𝒔𝒔𝒗𝒗 defines the optimal number of clusters 
for the diffusion-weighted images with b=500 s/mm2. 

Figure 4.17: Tumor cluster affiliation based on K-means clustering of the intensity parameter for 
k=4 from the diffusion-weighted images. Clustering is based on all patient’s voxels. The cluster 
centers are marked by the corresponding cluster number. 
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Table 4.16: P-values from the Wilcoxon rank-sum test on the two groups (above and below median) 
for each of the specified parameters that investigate statistical significance in the difference between 
the two groups (DWI; b=500 s/mm2). 

b=500 
[s/mm2] mrT p/ypT ΔT mrN p/ypN ΔN TRG 

Cluster 1 0.5154 0.1657 0.2997 0.6026 0.6243 0.6089 0.0252 

Cluster 2 0.0990 0.7436 0.2267 0.0819 0.2777 0.0912 0.0422 

Cluster 3 0.0964 0.3755 0.7634 0.9631 0.1398 0.2284 0.9015 

Cluster 4 0.4667 0.2530 0.5851 0.8469 0.7209 0.7219 0.5623 

 

4.1.2.7 b=1000 s/mm2 

Table 4.17: Table displaying the values of the cluster centers and the median volume fractions for 
each cluster in data from diffusion-weighted images with b-value of 1000 s/mm2. 

Cluster number  Intensity  
(cluster center)  

Median volume fraction  
(CVF) 

1 402 17.2% 
2 674 35.2% 
3 962 24.6% 
4 1373 4.3% 

For the images with b=1000 s/mm2 the optimal cluster number is defined at 

k=4 (vsv = 0.57) (Figure 4.18), with the cluster centers and median volume 

fractions displayed in Table 4.17 and Figure 4.19.There is no significant 

Figure 4.18: Plot of the normalized values of the over-partitioned and under-partitioned vectors with 
the validity index vector (𝐯𝐯𝐬𝐬𝐯𝐯). The minimal value of 𝐯𝐯𝐬𝐬𝐯𝐯 defines the optimal number of clusters for the 
diffusion-weighted images with b=1000 s/mm2. 
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difference between the groups in the data for the DW images with b=1000 

s/mm2 (Table 4.18). 

Table 4.18: P-values from the Wilcoxon rank-sum test on the two groups (above and below median) 
for each of the specified parameters that investigate statistical significance in the difference between 
the two groups (DWI; b=1000 s/mm2). 

b=1000 
[s/mm2] mrT p/ypT ΔT mrN p/ypN ΔN TRG 

Cluster 1 0,0979 0.8494 0,5239 0,2116 0,2342 0,9335 0,7531 

Cluster 2 0,8714 0,1357 0,4010 0,8902 0,2360 0,3272 0,3816 

Cluster 3 0,3939 0.2848 0,2217 0,3480 0,9919 0,5120 0,5645 

Cluster 4 0,2351 0,3469 0,2815  0,7126 0,3092 0,8552 0,4735 

 

4.1.2.8 ADC maps 

For the ADC maps the optimal cluster number is defined at k=2 (vsv = 0.4112) 

(Figure 4.20), with the cluster centers and median volume fractions displayed 

Figure 4.20: Plot of the normalized values of the over-partitioned and under-partitioned vectors with 
the validity index vector (𝒗𝒗𝒔𝒔𝒗𝒗). The minimal value of 𝒗𝒗𝒔𝒔𝒗𝒗 = 𝟎𝟎.𝟒𝟒𝟒𝟒𝟔𝟔 defines the optimal number of clusters 
for the ADC maps from the diffusion-weighted images. 

Figure 4.19: Tumor cluster affiliation based on K-means clustering of the intensity parameter for 
k=4 from the diffusion-weighted images (b=1000 s/mm2). Clustering is based on all patient’s 
voxels. The cluster centers are marked by the corresponding cluster number. 
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in Table 4.19 and Figure 4.21.There is no significant difference between the 

groups in the data for the ADC maps.(Table 4.20) 

Table 4.19: Table displaying the values of the cluster centers and the median volume fractions for 
each cluster in data from the ADC maps of the diffusion-weighted images. 

Cluster number  Intensity  
(cluster center)  

Median volume fraction  
(CVF) 

1 1093 69.6% 
2 1746 30.4% 

Table 4.20: P-values from the Wilcoxon rank-sum test on the two groups (above and below median) 
for each of the specified parameters that investigate statistical significance in the difference between 
the two groups (ADC maps). 

ADC mrT p/ypT ΔT mrN p/ypN ΔN TRG 

Cluster 1 0.5756 0.6744 0.3191 0.7118 0.1372 0.2468 0.3060 

Cluster 2 0.3841 0.4456 0.2900 0.7981 0.5334 0.8392 0.2341 

  

Figure 4.21: Tumor cluster affiliation based on K-means clustering of the intensity parameter for 
k=4 from the ADC maps from the diffusion-weighted images. Clustering is based on all patient’s 
voxels. The cluster centers are marked by the corresponding cluster number. 
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4.1.3 T2-weighted and diffusion-weighted images 

Figure 4.23: Plot of the normalized values of the over-partitioned and under-partitioned vectors 
with the validity index vector (𝐯𝐯𝐬𝐬𝐯𝐯). The minimal value of 𝐯𝐯𝐬𝐬𝐯𝐯 = 𝟎𝟎.𝟒𝟒𝟕𝟕𝟕𝟕𝟕𝟕 defines the optimal number of 
clusters of k=5 for the combined data of diffusion-weighted images with b=50 s/mm2 and T2-
weighted images where the ROI has been delineated by radiologist “shh”. 

Figure 4.22: Tumor cluster affiliation based on K-means clustering of the intensity parameter for 
k=5 from the combined data of DWI (b=50 s/mm2) and T2-weighted images from radiologist “shh”. 
Clustering is based on all patient’s voxels and plotted against the two parameters. The cluster centers 
are marked by the corresponding cluster numbers. 
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For the combined data from the T2-weighted images and the diffusion-weighted 
images with b=50 s/mm2 the optimal cluster number is defined at k=5 (vsv =
0.7118) (Figure 4.23). The cluster centers with the median volume fractions are 
plotted against the two parameters (T2 on the x-axis and DWI on the y-axis) 
displayed in Figure 4.22. 

Table 4.21: Table displaying the values of the cluster centers and the median volume fractions for 
each cluster in data from combined diffusion-weighted images with b-value of 50 s/mm2 and T2-
weighted images for ROI delineated by radiologist “shh”. 

Cluster number  Intensity  
(cluster center)  

Median volume fraction  
(CVF) 

1 {428; 487} 27.6% 
2 {724; 617} 39.6% 
3 {445; 772} 12.4% 
4 {1125;700} 5.9% 
5 {864;1106} 3.6% 

There is no significant difference between the two groups in the clustered data 
from the combined DW images with b=50 s/mm2 and the T2-weighted images 
with the ROI delineated by radiologist “shh”. (Table 4.22) 

Table 4.22: P-values from the Wilcoxon rank-sum test on the two groups (above and below median) 
for each of the specified parameters that investigate statistical significance in the difference between 
the two groups (combined DWI (b=50 s/mm2(shh)) and T2 (shh)). 

T2+DWI 
(b=50 s/mm2) 

(shh) 
mrT p/ypT ΔT mrN p/ypN ΔN TRG 

Cluster 1 0.4231 0.3215 0.6796 0.7218 0.9317 0.8491 0.3856 

Cluster 2 0.5237 0.1863 0.1315 0.2491 0.0893 0.3784 1.0000 

Cluster 3 0.5001 0.2931 0.1425 0.7767 0.3707 0.8329 0.5173 

Cluster 4 0.4162 0.2788 0.2768 0.6582 0.3698 0.8102 0.4647 

Cluster 5 0.4958 0.4122 0.8066 0.6905 0.6128 0.5688 0.7728 
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4.2 Survival analyses 

4.2.1 T2-weighted images 

4.2.1.1 Radiologist – “an” 

Table 4.23: P-values for the comparison of the two patient groups from the Cox-regression analysis 
(based on Wald test with MedCalc®) and the three tests of the Cox regression with R console for the 
T2-weighted images (radiologist-“an”). 

T2(an) Cox regression Likelihood ratio test Wald test Log-rank test 

Cluster 1 0.844 0.832 0.822 0.812 

Cluster 2 0.834 0.821 0.811 0.823 

Cluster 3 0.909 0.900 0.912 0.901 

Cluster 4 0.530 0.522 0.532 0.500 

Figure 4.24: Kaplan-Meier plots for the survival difference between the two patient groups in cluster 
1 (A), cluster 2 (B), cluster 3 (C) and cluster 4 (D) from the T2-weighted images (radiologist -an), 
divided by the median volume with Cox regression analysis (Plotted with MedCalc®). The investigated 
endpoints are local recurrence, metastasis or death. Survival is indicated in the portion of patients 
with progression-free survival (PFS). The estimated difference in the two groups results in p-values 
shown in Table 4.23 (For all clusters there is no significant difference at the selected significance 
level p=0.05) 
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4.2.1.2 Radiologist – “shh” 

Table 4.24: P-values for the comparison of the two patient groups from the Cox-regression analysis 
(based on Wald test with MedCalc®) and the three tests of the Cox regression with R console for the 
T2-weighted images (radiologist – “shh”). 

T2 (shh) Cox regression Likelihood ratio test Wald test Log-rank test 

Cluster 1 0,765 0.799 0.802 0.786 

Cluster 2 0,702 0.733 0.720 0.705 

Cluster 3 0,937 0.947 0.935 0.923 

Cluster 4 0,952 0.969 0.989 0.956 
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Figure 4.25: Kaplan-Meier plots for the survival difference between the two patient groups in cluster 
1 (A), cluster 2 (B), cluster 3 (C) and cluster 4 (D) from the T2-weighted images (radiologist – “shh”), 
divided by the median volume with Cox regression analysis (Plotted with MedCalc®). The investigated 
endpoints are local recurrence, metastasis or death. Survival is indicated in the portion of patients 
with progression-free survival (PFS). The estimated difference in the two groups results in p-values 
shown in Table 4.24 (For all clusters there is no significant difference at the selected significance 
level p=0.05) 
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4.2.2 Diffusion-weighted images 

4.2.2.1 b=0 s/mm2 

Table 4.25: P-values for the comparison of the two patient groups from the Cox-regression analysis 
(based on Wald test with MedCalc®) and the three tests of the Cox regression with R console for the 
diffusion-weighted images (b=0 s/mm2). 

b=0 
[s/mm2] 

Cox regression Likelihood ratio test Wald test Log-rank test 

Cluster 1 0.350 0.367 0.354 0.378 

Cluster 2 0.469 0.476 0.477 0.452 

Cluster 3 0.937 0.934 0.922 0.944 

Cluster 4 0.720 0.724 0.735 0.722 
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Figure 4.26: Kaplan-Meier plots for the survival difference between the two patient groups in cluster 
1 (A), cluster 2 (B), cluster 3 (C) and cluster 4 (D) from the diffusion-weighted images (b=0 s/mm2), 
divided by the median volume with Cox regression analysis (Plotted with MedCalc®). The investigated 
endpoints are local recurrence, metastasis or death. Survival is indicated in the portion of patients 
with progression-free survival (PFS). The estimated difference in the two groups results in p-values 
shown in Table 4.25 (For all clusters there is no significant difference at the selected significance level 
p=0.05) 
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4.2.2.2 b=25 s/mm2 

Table 4.26: P-values for the comparison of the two patient groups from the Cox-regression analysis 
(based on Wald test with MedCalc®) and the three tests of the Cox regression with R console for the 
diffusion-weighted images (b=25 s/mm2). 

b=25 
[s/mm2] 

Cox regression Likelihood ratio test Wald test Log-rank test 

Cluster 1 0.350 0.364 0.352 0.363 

Cluster 2 0.720 0.733 0.725 0.729 

Cluster 3 0.469 0.478 0.470 0.466 

Cluster 4 0.937 0.942 0.939 0.940 

Figure 4.27: Kaplan-Meier plots for the survival difference between the two patient groups in cluster 
1 (A), cluster 2 (B), cluster 3 (C) and cluster 4 (D) from the diffusion-weighted images (b=25 s/mm2), 
divided by the median volume with Cox regression analysis (Plotted with MedCalc®). The investigated 
endpoints are local recurrence, metastasis or death. Survival is indicated in the portion of patients 
with progression-free survival (PFS). The estimated difference in the two groups results in p-values 
shown in Table 4.26 (For all clusters there is no significant difference at the selected significance level 
p=0.05) 
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4.2.2.3 b=50 s/mm2 

Table 4.27: P-values for the comparison of the two patient groups from the Cox-regression analysis 
(based on Wald test with MedCalc®) and the three tests of the Cox regression with R console for the 
diffusion-weighted images (b=50 s/mm2). 

b=50 
[s/mm2] 

Cox regression Likelihood ratio test Wald test Log-rank test 

Cluster 1 0,843 0.847 0.838 0.854 

Cluster 2 0,123 0.122 0.131 0.128 

Cluster 3 0,705 0.711 0.708 0.700 

Cluster 4 0,684 0.690 0.688 0.680 

 

Figure 4.28: Kaplan-Meier plots for the survival difference between the two patient groups in cluster 
1 (A), cluster 2 (B), cluster 3 (C) and cluster 4 (D) from the diffusion-weighted images (b=50 s/mm2), 
divided by the median volume with Cox regression analysis (Plotted with MedCalc®). The investigated 
endpoints are local recurrence, metastasis or death. Survival is indicated in the portion of patients 
with progression-free survival (PFS). The estimated difference in the two groups results in p-values 
shown in Table 4.27 (For all clusters there is no significant difference at the selected significance level 
p=0.05) 
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4.2.2.4 b=50 s/mm2 (shh) 

Table 4.28: P-values for the comparison of the two patient groups from the Cox-regression analysis 
(based on Wald test with MedCalc®) and the three tests of the Cox regression with R console for the 
diffusion-weighted images (b=50 s/mm2 – radiologist “shh”). 

b=50 (shh) 

[s/mm2] 
Cox regression Likelihood ratio test Wald test Log-rank test 

Cluster 1 0,021 0.031 0.029 0.020 

Cluster 2 0,695 0.700 0.698 0.693 

Cluster 3 0,134 0.144 0.130 0.140 

Cluster 4 0,682 0.691 0.684 0.681 

 

Figure 4.29: Kaplan-Meier plots for the survival difference between the two patient groups in cluster 
1 (A), cluster 2 (B), cluster 3 (C) and cluster 4 (D) from the diffusion-weighted images (b=50 s/mm2 
– radiologist “shh”), divided by the median volume with Cox regression analysis (Plotted with 
MedCalc®). The investigated endpoints are local recurrence, metastasis or death. Survival is indicated 
in the portion of patients with progression-free survival (PFS). The estimated difference in the two 
groups results in p-values shown in Table 4.28 (For Cluster 1 there is significant difference at the 
selected significance level p=0.05) 
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4.2.2.5 b=100 s/mm2 

Table 4.29: P-values for the comparison of the two patient groups from the Cox-regression analysis 
(based on Wald test with MedCalc®) and the three tests of the Cox regression with R console for the 
diffusion-weighted images (b=100 s/mm2). 

b=100 
[s/mm2] 

Cox regression Likelihood ratio test Wald test Log-rank test 

Cluster 1 0,705 0.721 0.708 0.701 

Cluster 2 0,123 0.134 0.128 0.122 

Cluster 3 0,684 0.690 0.686 0.679 

Cluster 4 0,843 0.854 0.849 0.844 

 

Figure 4.30: Kaplan-Meier plots for the survival difference between the two patient groups in cluster 
1 (A), cluster 2 (B), cluster 3 (C) and cluster 4 (D) from the diffusion-weighted images (b=100 s/mm2), 
divided by the median volume with Cox regression analysis (Plotted with MedCalc®). The investigated 
endpoints are local recurrence, metastasis or death. Survival is indicated in the portion of patients 
with progression-free survival (PFS). The estimated difference in the two groups results in p-values 
shown in Table 4.29 (For all clusters there is no significant difference at the selected significance level 
p=0.05) 
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4.2.2.6 b=500 s/mm2 

Table 4.30: P-values for the comparison of the two patient groups from the Cox-regression analysis 
(based on Wald test with MedCalc®) and the three tests of the Cox regression with R console for the 
diffusion-weighted images (b=500 s/mm2). 

b=500 
[s/mm2] 

Cox regression Likelihood ratio test Wald test Log-rank test 

Cluster 1 0,558 0.589 0.563 0.560 

Cluster 2 0,870 0.923 0.890 0.873 

Cluster 3 0,123 0.134 0.128 0.122 

Cluster 4 0,387 0.410 0.392 0.390 

 

Figure 4.31: Kaplan-Meier plots for the survival difference between the two patient groups in cluster 
1 (A), cluster 2 (B), cluster 3 (C) and cluster 4 (D) from the diffusion-weighted images (b=500 s/mm2), 
divided by the median volume with Cox regression analysis (Plotted with MedCalc®). The investigated 
endpoints are local recurrence, metastasis or death. Survival is indicated in the portion of patients 
with progression-free survival (PFS). The estimated difference in the two groups results in p-values 
shown in Table 4.30 (For all clusters there is no significant difference at the selected significance level 
p=0.05) 
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4.2.2.7 b=1000 s/mm2 

Table 4.31: P-values for the comparison of the two patient groups from the Cox-regression analysis 
(based on Wald test with MedCalc®) and the three tests of the Cox regression with R console for the 
diffusion-weighted images (b=1000 s/mm2). 

b=1000 
[s/mm2] 

Cox regression Likelihood ratio test Wald test Log-rank test 

Cluster 1 0.348 0.356 0.349 0.344 

Cluster 2 0.083 0.095 0.084 0.083 

Cluster 3 0.031 0.050 0.043 0.030 

Cluster 4 0.850 0.867 0.855 0.849 

Figure 4.32: Kaplan-Meier plots for the survival difference between the two patient groups in cluster 
1 (A), cluster 2 (B), cluster 3 (C) and cluster 4 (D) from the diffusion-weighted images (b=1000 
s/mm2), divided by the median volume with Cox regression analysis (Plotted with MedCalc®). The 
investigated endpoints are local recurrence, metastasis or death. Survival is indicated in the portion 
of patients with progression-free survival (PFS). The estimated difference in the two groups results in 
p-values shown in Table 4.31 (For Cluster 3 there is significant difference at the selected significance 
level p=0.05) 
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4.2.2.8 ADC maps 

 

 

 

 

 

 

 

 

 

 

Table 4.32: P-values for the comparison of the two patient groups from the Cox-regression analysis 
(based on Wald test with MedCalc®) and the three tests of the Cox regression with R console for the 
ADC maps. 

ADC Cox regression Likelihood ratio test Wald test Log-rank test 

Cluster 1 0.598 0.612 0.600 0.599 

Cluster 2 0.687 0.703 0.693 0.788 

  

Figure 4.33: Kaplan-Meier plots for the survival difference between the two patient 
groups in cluster 1 (A) and cluster 2 (B) from the ADC maps, divided by the median 
volume with Cox regression analysis (Plotted with MedCalc®). The investigated 
endpoints are local recurrence, metastasis or death. Survival is indicated in the 
portion of patients with progression-free survival (PFS). The estimated difference 
in the two groups results in p-values shown in  
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4.2.3 T2-weighted and diffusion-weighted images 

Figure 4.34: Kaplan-Meier plots for the survival difference between the two patient groups in cluster 
1 (A), cluster 2 (B), cluster 3 (C), cluster 4 (D) and cluster 5 (E) for the combined data from diffusion-
weighted images (b=25 s/mm2) and T2-weighted images based on the delineation by radiologist - 
“shh” divided by the median volume with Cox regression analysis (Plotted with MedCalc®). The 
investigated endpoints are local recurrence, metastasis or death. Survival is indicated in the portion 
of patients with progression-free survival (PFS). The estimated difference in the two groups results in 
p-values shown in Table 4.33 (For Cluster 2 there is significant difference at the selected significance 
level p=0.05) 
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Table 4.33: P-values for the comparison of the two patient groups from the Cox-regression analysis 
(based on Wald test with MedCalc®) and the three tests of the Cox regression with R console for the 
combined data from diffusion-weighted images (b=25 s/mm2) and T2-weighted images (radiologist 
– “shh”). 

T2+DWI 
(b=50 s/mm2) 

(shh)   
Cox regression Likelihood ratio test Wald test Log-rank test 

Cluster 1 0.696 0.710 0.703 0.699 

Cluster 2 0,021 0.031 0.027 0.022 

Cluster 3 0,774 0.798 0.780 0.777 

Cluster 4 0,856 0.887 0.867 0.858 

Cluster 5 0,963 1.000 0.974 0.972 
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In this chapter we look at the limitations and strengths of the applied methods, 

followed by the discussion of the obtained results. The chapter ends with the 

implications of the conclusions and the potential for future work. 

5.1 Materials and Methods 

47 patients did not receive CRT and only underwent surgery, while the other 

40% of the studied cohort received CRT (Table 3.1). However, some of the 

patients with LARC did not receive CRT because they were too sick or too old. 

Although it is impossible to assess, there might be a possibility that these 

patients would have responded differently if they were treated with the 

standard regime. This could indicate different results, but because only 4% of 

the LARC patients did not undergo CRT, the effect on the overall results is 

considered to be negligible. 

The ideal prognostic system is expected to provide homogeneity in the same 

stage, good discrimination between different stages and monotonicity of the 

gradients that predict survival outcomes which are consistent with the severity 

of the cancer staging. However, there is some research indicating that the 

current TNM staging system by AJCC gives unsatisfactory gradient 

monotonicity. Although this might be problematic and influence the clinical 

implications of the results, there is a lack of understanding in the causes for 

defects in gradient monotonicity, so the matter will not be further discussed 

within the scope of this thesis.[66] 

The acquisition of the MR images from the patients in the study group had 

included several sequences, which increase the probability of movement 

because of the required extended period inside the scanner. Additionally, bowel 

movements are difficult to annulate and they can cause motion artefacts. In 

5 Discussion  
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order to reduce these movements, peristaltic agents were used. They act 

directly on the muscles of the intestinal wall and result in slowed intestinal 

motility [69] 

There is a high degree of uncertainty related to the tumor volume. In 

radiotherapy, one of the main challenges is the delineation of the tumors 

(ROIs). In clinical practice the current contouring of the target volumes is based 

on the guidelines by the International Commission on Radiation Units and 

Measurements (ICRU). However, there is a significant interobserver variability 

in tumor delineation which is influenced by different factors such as imaging 

modality and the technique. Considering the context of this thesis (the 

delineations were drawn on the same images by two radiologists) the biggest 

source of variability comes from the observer’s specialty, training and personal 

bias.[67] A study by Weiss and Hess [68] based on interobserver variability 

suggests that “the contouring of a target volume is influenced to a large extent 

by the observer’s subjective interpretation of what he or she sees on the 

images”. They also emphasize the important contributions to variations by 

difference in training and the instructions for contouring, as well as experience. 

Generally (although speculative) it is reported that less experienced 

radiologists contour larger tumor volumes. [68] It is important to note that in 

some cases the normal tissue might have been included in the regions of 

interest while excluding the tumor in other cases. Such divergences will affect 

correlation with the parameters because the analyses are based on the pixels 

from each slice. A visual comparison of the variation is shown in Figure 4.1 

where it is possible to observe the ROIs by the radiologist “shh” are significantly 

larger. This delineation difference needs to be considered in the interpretation 

of the results.  

The ROIs are delineated on the T2-weighted images which have 512x512 

pixels. Therefore, the image analyses need to include manual interpolation of 

the diffusion-weighted images (128x128), which is an essential rescaling 

process required for applying the ROIs on the DWI. However, this can give rise 

to inaccuracies caused by movement between the two imaging sequences as 

described before, differences in the slice selections and/or errors in the 
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rescaling. These discrepancies would mainly be indicated in extreme pixel 

values which require some correction. On the other hand, the K-means 

algorithm is based on medians, so we do not have to implement such 

corrections. Additionally, irregularities resulting from errors in the interpolation 

are investigated visually for each patient and in some cases the ROIs from the 

NIfTI files are manually adjusted to match the direction and orientation of the 

images. 

The choice of the optimal clustering number is very important for avoiding 

over- or under-partitioning of the data. The method used for defining k, 

explained in Chapter 3.2.3.1, is robust and efficient, but there are also other 

more complex methods that could have been used if the time frame of the 

project had been longer. 

The number of the studied patients is relatively limiting, so in some endpoints 

the groups have a low number of patients. This has been taken into 

consideration by choosing the Wilcoxon rank-sum test as an optimal option 

which does not require normally distributed data. 

The survival analyses include only the patients that reached one of the 

endpoints within the latest follow-up. Nevertheless, some of the patients have 

been included in the study group at the earliest (2013) and some have joined 

at the latest (2017). This indicates different follow-up times depending on the 

date of inclusion, so a degree of uncertainty is expected to arise. The patients 

which have been followed the least have not completed the five-year following 

period and we do not know if they will reach one of the endpoints. Further on, 

if a patient has not reached any of the endpoints it is censored and not included 

in the analyses. The effect can be remedied by examining multiple survival 

endpoints at different times (ex. six months, one year, two years) or by using 

the time component as a grouping factor in the Cox proportional-hazards 

analysis.  
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5.2 Results 

5.2.1 Statistical analyses 

5.2.1.1 T2-weighted images 

The correlation of the pre-treatment and post-treatment parameters is different for the 

ROIs by the two radiologists “an” and “shh”. The comparison of the results shows that 

the cluster centers are relatively unchanged. This is expected since the delineations are 

based on the same MR images. However, there is a median difference of 2.4% between 

the median CVFs of the two different ROIs which makes Cluster 2 the most dominant 

(Figure 5.1). This is a consequence of the variation in the delineations which is caused by 

the subjective interpretation as discussed in Chapter 5.1. 

The results indicate higher correlation sensitivity to the parameters for the 

delineation by “shh”. Cluster 1 shows statistical significance in the difference 

between the two patient groups for the parameters p/ypT, ΔT, p/ypN and TRG, 

while Cluster 2 is corelated to p/ypT and TRG. Although it is difficult to assess 

the sensitivity of correlation with the parameters, it is possible to conclude that 

larger ROIs provide clustering that yields improved association to the 

parameters in the case of T2-weighted images. We could explain the increased 

sensitivity, if we consider that larger delineations can include portions of the 

Cluster 1 Cluster 2 Cluster 3 Cluster 4

an 

shh 

an 

shh 

an 

an 

shh 

shh 

Figure 5.1: Median cluster volume fractions (%) for each cluster for the two delineations drawn by 
radiologist “an” and “shh” respectively. The median change in the fractions is 2.4%. For the ROIs 
from “shh” the median cluster fraction in Cluster 2 increases, while decreasing in the other clusters. 
(The dotted contours indicate statistical significance in the difference between the two groups for the 
cluster with the correlated parameter(s) at the top) 
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normal tissue. The K-means algorithm is provided with data from a larger area 

where it has a wider range of pixel intensities, which make it easier to provide 

improved separation of the clusters. This allows higher precision in the 

distinguishment of the regions and therefore it can improve the investigation 

of potential correlation with the parameters. 

5.2.1.2 Diffusion–weighted images 

An overview of the results from the six b-values of the DW images (b={0; 25; 

50; 100; 500; 1000}) shows that the highest correlation with the parameters 

can be obtained for b=50 s/mm2.  

There is a significant difference between the two groups in the clustered data 

for the DW images with b=50 s/mm2 (radiologist - “an”) for the ‘p/ypN’ 

parameter in Cluster 3 and the ‘TRG’ parameter in cluster 1 and cluster 2. 

(Table 4.12). For b=100 s/mm2 (Table 4.14) there is correlation with the ‘TRG’ 

parameter in cluster 1 and cluster 2. For b=500 s/mm2 (Table 4.16) the 

difference in the groups is within the significance limit also for the parameter 

‘TRG’ in cluster 1 and cluster 2. For b=0 s/mm2, b=25 s/mm2 and b=1000 

s/mm2 there is no correlation between the clusters and the parameters. 

Figure 5.2: : Median CVFs (%) for each cluster for the values of b={0, 25, 100, 500, 1000} 
(radiologist “an”). (The dotted contours indicate statistical significance in the difference between the 
two groups for the cluster with the correlated parameter at the top) 
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The lack of correlation with the parameters for the low b-values is because 

these images do not contain enough diffusion signal which would help the K-

means algorithm to produce effective differentiation of the clusters. In the 

higher b-values, on the other hand, there is too much diffusion which decreases 

the SNR as the noise is increased, so the algorithm becomes “confused” and 

cannot provide correct distinguishment. This results in poor clustering, which 

is not efficiently reflecting the different tumor regions, hence a correlation 

cannot be established. 

The results demonstrate that for cluster 1 and cluster 2 from the DW images 

there is a strong correlation between the two patient groups (above/below the 

median volume) and the TRG. Therefore, the presence of a certain tumor 

properties illustrated through similar pixel intensities in the DW images can be 

used as an indicator for the expected grading of the tumor after the treatment 

(with neoadjuvant CRT and surgery). So, we can observe that the clustering 

approach used in this thesis shows strong evidence of a connection that will 

directly reflect the outcome of the treatment. Additionally, we can consider the 

evidence that TRG can be used as an independent predictor for survival 

(because patients graded with TRG0 have shown improved progression-free 

survival) (Chapter 3.1.2)[42]. This would amplify the drawn conclusion and we 

can go a step further by saying that the clustering based on pixel intensities 

for DW images can indicate the patient’s survival. This has the potential to 

become a very powerful tool for assessing the patient’s condition and for 

developing different treatment strategies in cases where the predicted outcome 

is expected to be negative. 

In comparison, the DW images with b=50 s/mm2 where the delineation has 

been performed by the radiologist - “shh” give results which show correlation 

to “p/ypT” for cluster 2 and “ΔT” and “p/ypT” for cluster 4. In this case, the 

connection with “TRG” is not visible in the results, which indicates that the 

larger ROIs are inefficient at providing precise data for better clustering. On 

the other side, the correlation with “p/ypT” is not present in the previous 

results, which could be a direct consequence of the smaller delineation, which 

does not include normal tissue to a significant extent. Therefore, further 
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analyses are needed, aimed at comparing all images with the two ROIs where 

a more precise conclusion might be drawn. 

The data clustering from the ADC maps is attained at an optimal cluster number 

k=2. This is lower than the previous divisions where k=4, so an underlaying 

reason could be the lack of detail compared to the anatomical T2-weighted 

images and the DW images. The ADC maps represent only the diffusion, which 

is reflected in limited pixel intensity divergence. Such inability to truly reflect 

the distinction of the tumor regions results in poor correlation with the 

parameters. From this, we can conclude that the ADC maps are not suitable 

for clustering and cannot be used for further analyses.  

5.2.1.3 T2-weighted and diffusion weighted 

The project examines the possibility of combining data from the T2-weighted 

and the DW images. The T2-w images with the delineation which shows higher 

correlation to the parameters (radiologist –“shh”) are combined with the DW 

images with b-value that provides optimal results (b=50 s/mm2; radiologist – 

“shh”)4. The script for defining the cluster number calculates k=5, which is 

higher than the cluster number when the images are analyzed separately 

(k=4). The results cannot detect a connection between the clusters. One 

 
4 Note that T2-w and DW images can be combined only for the same delineation (ROI), as the clustering tables 
contain voxel coordinates that correspond to that delineation only. 
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Figure 5.3: Median CVFs (%) for each cluster for the two delineations drawn by radiologist “an” and 
“shh” respectively for b=50 s/mm2. The median change in the fractions is 0.97% which demonstrates 
a very small difference in the clustered results. (The dotted contours indicate statistical significance 
in the difference between the two groups for the cluster with the correlated parameter at the top) 
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reason for the poor outcome can be the combination of different information 

from the two sequences which “confuse” the algorithm. It becomes difficult to 

make a distinction between the tumor regions. However, this seems 

counterintuitive, so further studies would have to confirm if a combination of 

this type would be beneficial for the correlation with the parameters.  

5.2.2 Survival analyses 

The investigation of the PFS in the survival analyses for the T2-weighted images 

does not show any correlation for the clustered data. 

In the DW images with b=1000 s/mm2 the most dominant cluster (cluster 2 

with median CVF=35,2%) demonstrates that PFS can be indicated directly from 

the clustering. Although, higher b-values are expected to provide lower SNR 

and result in poor correlation with the statistical parameters, this result shows 

the opposite in the case of investigating PFS. The advantage comes from the 

higher diffusion in the image, which causes a certain property of the tumor to 

become more visible. Then the K-means algorithm is able to distinguish this 

property (in this case a dominant region of the tumor) and directly connect its 

presence with a treatment outcome. Further studies would have to investigate 

how this relation can be defined more precisely and whether even higher b-

values could provide correlation for smaller regions (clusters with lower median 

volume fractions). 

For the data of the DW images with b=50 s/mm2, where the ROIs have been 

drawn by the radiologist “shh” a statistical significance for p<0.05 shows that 

cluster 1 can predict the treatment outcome. Once more, this can be explained 

with the larger delineation which in some cases can include normal tissue. Such 

conditions are beneficial for the algorithm as they provide higher contrast in 

the pixel intensities and the grouping can be performed more precisely. 

A combination of the T2-weighted images and the DW images, as discussed in 

Chapter 5.2.1.3 (T2-w (“shh”) and DW (b=50 s/mm2 (“shh”)), is investigated 

for the survival analyses. The results indicate that the most dominant group 

(cluster 2 with median CVF of 39.6%) can be related with PFS. In this case, 

the largest area with similar pixel intensities (corresponding to a certain 



Chapter 5 Discussion 
 

88 
 

approximately homogenous tumor region) is detected. This confirms the 

previous speculation that further investigation is in order, based on the 

expected increase in sensitivity due to the combined data. From the result we 

can observe that the joint information from the two sequences can help the 

algorithm in identifying tumor regions with similar properties, which directly 

influence the outcome of the treatment. Additionally, it is expected that this 

approach can be improved and extended for detecting correlation in smaller 

regions if more data is provided. Furthermore, this finding suggests a potential 

in combining data from different sequences and modalities to “feed” the 

algorithm with enough information for providing the required feedback. 

5.3 Clinical implications 

The traditional morphological imaging mainly provides information about the 

size and the staging of the tumor but lacks quantitative information. The main 

aim of this thesis is to investigate predictive markers for the response to the 

treatment in rectal cancer patients. This would enhance the visual inspection 

with measurable quantities that reflect the heterogeneity of the tumor and can 

be compared for different patients. By introducing individualization in the 

treatment approach, it is possible to adjust the treatment and avoid surgery, 

use more aggressive CRT and/or intensify the follow-ups. The clustering 

technique is used for identifying tumor regions that are expected to yield a 

certain treatment outcome. For example, if the expected survival rate is high, 

based on the model’s prediction, it would be possible to avoid surgical 

interventions which have their adverse risks. Otherwise, if the analysis 

suggests high risk of developing distant metastases, then a more aggressive 

CRT can be utilized, and early detection can be obtained by increasing the 

number of follow-ups. 

The results indicate that the survival of the patients can be directly predicted 

from DW images with higher b-values (investigated for b=1000 s/mm2) and 

indirectly predicted (b=50 s/mm2) through the TRG parameter as TRG0 is 

known to be correlated with PFS.[44] After more detailed analysis the outcome 

has the potential to be used in clinical practice for treatment prediction and 
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consequent treatment adjustment. That would require a program that will 

execute a combined and refined version of the scripts from the Appendices. 

Another option is to write a script for a toolbox for the MATLAB® directory, but 

this would require the user to have a certain knowledge in scripting for 

manually inserting the data. However, the approach currently has drawbacks, 

as it requires a powerful computer and long time for the image sorting and 

interpolation, coordinate extraction, clustering for different k-values and 

running the analyses. 

5.4 Future work 

The MRI scanners used in the Oxy-target study use a magnetic field (B0) with 

strength 1,5 Tesla. If we consider an increase in the field strength, we would 

get a higher excess in the α population of the two eigenstates, which yields 

higher sensitivity. This would provide better SNR that could have been useful 

for more precise delineation and staging of the tumors. However, that would 

also increase the sensitivity to movement and susceptibility artefacts. As a 

result, a trade-off has to be made for the optimal choice of field strength, but 

other datasets can investigate if a stronger field would improve the correlation 

results.  

As the analysis indicated that an increase in ROI area could provide improved 

separation of the pixels, it can be expected that an increased sensitivity would 

give better distinguishment as well. Additionally, there can be investigations of 

less precise delineations where larger portions of the normal tissue are 

included. It is expected that the algorithm would then easily identify the normal 

tissue and create a cluster corresponding to its properties. This indicates that 

the precision of the ROI is not as important in the cluster analyses, as it is for 

the radiotherapy in dose distribution calculations, and it could even be more 

beneficial for less precise delineations. However, within the scope of the “Oxy-

target” dataset, this could be investigated in future studies by clustering for all 

images for the larger delineations drawn by radiologist “shh”. 

Based on the explained uncertainty in Chapter Error! Reference source not 

found. from the period of inclusion in the study and the time for follow-up for 
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the calculation of PFS, a future study could investigate multiple survival 

endpoints at different times. If the PFS is probed for one and/or two years 

additionally and the results indicate relation between the clusters and the 

survival, then it would be possible to confirm the findings with less uncertainty. 

Otherwise, it is possible to complement the Cox-proportional hazards 

regression with an additional covariate – “time” and get the same effect.  

The combination of the two sequences improves the predictability of the 

treatment outcome, but within the time frame of this project only one 

combination was probed. Future work could investigate other (if not all) 

combinations.  
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6 Conclusion 

 

In this project, T2-weighted, DW MR images and patient data from 79 rectal 

cancer patients were analyzed. The results show that it is possible to identify 

different regions in the tumors based on the K-means clustering technique. The 

statistical analyses indicate that the relative size of several of the identified 

regions can be correlated to pre- and post-treatment parameters. The survival 

analyses showed strong link between the largest region (dominant cluster) and 

the outcome of the treatment for a larger b-value (b=1000 s/mm2) when using 

DW MR images as input to the analysis. This can be beneficial in clinical practice 

as it introduces quantitative properties based on clustering based on images 

routinely acquired in clinical practice. Individualization of the assessment can 

provide valuable information about the expected outcome so that the 

treatment can be adjusted and better results can be obtained. 

A strong correlation between the DW MR images (b=50 s/mm2) and the TRG 

parameter show that this approach can be a powerful tool for assessing 

response to CRT in patients with LARC. A combination of T2-weighted and DW 

images demonstrates more efficient clustering which reflects the tumor 

heterogeneity more precisely and gives better conditions for assessing the 

treatment results. This could also be considered as a potential pointer that 

combined data from different MR sequences could give even more information 

to the algorithm and result in improved clustering. 

This approach is highly dependent on the delineation of the tumor. However, 

the results indicate that a larger ROI where some portions of the normal tissue 

might be included are beneficial for improved distinction of the tumor regions. 

A comparison between the ROIs drawn by two radiologists where the first case 

is more precise and the other is larger, showed that the latter yields better 
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results. This is based on the improved clustering which gives better reflection 

of the distinguishment in the relatively homogenous tumor regions. 

Future studies could investigate other datasets for confirming if the results are 

reproducible and for determining which tumor property is an indicator for 

predicting a certain treatment outcome. 

Another point that could be studied further is the spatial distribution of the 

clusters. Appendix C.2 shows a script for visualizing the cluster distribution and 

Appendix C.3 displays tumor median sections with different outcomes. The 

spatial distribution analyses could be performed visually for the clusters that 

have shown correlation with the outcomes in the statistical analysis. This 

approach can provide information about the spatial characteristics of the 

grouped voxels. For the purpose of better observation, the median slices where 

the tumor is most advanced should be selected for each patient. 
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A1: Image sorting  

function data = loadAndSortDICOM(patientFolder, imgType) 

    %%%%%%%%%%%%%% 

%     %%Test inputs 

%     clearvars 

%     patientFolder = 'C:/Users/HP/Desktop/Master_Thesis/Data/'; 

%     imgType = 'DWI'; % or 'T2' 

    %%%%%%%%%%%%%% 

 

    %%This script works for both image types, T2 and DWI 

    %%(as the T2 images have all DiffusionBValue = 0) 

 

    % List all image files and count them 

    imList = dir(fullfile(patientFolder, imgType, '*#*.dcm')); 

    nIm = size(imList,1); 

 

    % read all headers, store the needed information 

    for imgNr = nIm : -1 : 1 % loop backwards to do preallocation 

        info(imgNr) = dicominfo(fullfile(patientFolder, imgType, imList(imgNr).name)); 

    end 

 

    % Extract the information needed to sort the images 

    % get list with b-values 

    bValue = [info.DiffusionBValue]'; 

 

    % get a list with the patient position 

    IPP = [info.ImagePositionPatient]'; 

    zValue = IPP(:,3); % extract the z-Value 

 

    % Determine how to sort the images 

    sortInd = table( zValue, bValue ); % combine both sort-variables in a table 

    sortInd.fileName = {info.Filename}'; % add the file name to the table; 

 

    [~,~, sortInd.zValueIndex] = unique(sortInd.zValue); 

    [~,~, sortInd.bValueIndex] = unique(sortInd.bValue); 

 

    % Add the info needed to scale the image 

    sortInd.RescaleIntercept = [info.RescaleIntercept]'; 

    sortInd.RescaleSlope     = [info.RescaleSlope]'; 

 

    % Load the images in a sorted way 

    nSlices = length(unique(zValue)); % number of slices 

    nbv     = length(unique(bValue)); % number of b-values 

    data.img = nan(info(1).Height, info(1).Width, nSlices, nbv); % Preallocate 

Appendix A 
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    for zValueIndex = 1:nSlices 

        for bValueIndex = 1:nbv 

            % find image with the correct idxSlice and bValueIndex 

            imgInfo = sortInd(sortInd.zValueIndex == zValueIndex & ... 

                                sortInd.bValueIndex == bValueIndex,:); 

            % load the image and sale it 

            data.img(:,:,zValueIndex, bValueIndex) = ... 

                    double(dicomread( imgInfo.fileName{1})) * imgInfo.RescaleSlope + 

imgInfo.RescaleIntercept; 

        end 

    end % All images are read 

 

    % also store the b values 

    data.bValue = unique(sortInd.bValue); 

 

    % Save the spatial information (needed to determine the image grid) 

    data.ImageOrientationPatient = info(1).ImageOrientationPatient; 

    data.PixelSpacing            = info(1).PixelSpacing; 

 

 

    % save the Image position patient 

    % ( it is the same for all b values, so only store b=0) 

    for zValueIndex = 1:nSlices 

        data.ImagePositionPatient(zValueIndex,:) = IPP(... 

                                sortInd.zValueIndex == zValueIndex & ... 

                                sortInd.bValue == 0, :); 

    end 

end 

A2: Grid coordinates 

function grid = getGridCoordinates(imgData) 

 

% function to get the grid coordinates for an image, requires as input the 

% data form loadAndSortDicom.m 

 

%%%%%%%%%%% 

%     %%Test input 

%     clearvars 

%     imgData = load('C:/Users/HP/Desktop/Master_Thesis/Data/Oxytarget_103 

PRE/DWI/ImgData.mat'); 

%%%%%%%%%%% 

 

% Set up the coordinates 

xq = zeros( size(imgData.img(:,:,:,1)));% % preallocate empty matrix, use only the spatial 

dimensions 

yq = xq; 

zq = xq; 

 

 

Xq      = imgData.ImageOrientationPatient(1:3)';      % row values 

Yq      = imgData.ImageOrientationPatient(4:6)';      % collumn values 

dimPix  = imgData.PixelSpacing(1);                    % in mm 
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idx = double(0:size(imgData.img,1)-1); 

[cMat,rMat] = meshgrid(idx,idx); 

 

PatientsPosition = imgData.ImagePositionPatient; 

 

% Get voxel coordinates 

for k_idx = 1:size(imgData.img,3) 

     S = PatientsPosition(k_idx,:); 

     xq(:,:,k_idx) = (Xq(1)*rMat+Yq(1)*cMat)*dimPix + S(1); 

     yq(:,:,k_idx) = (Xq(2)*rMat+Yq(2)*cMat)*dimPix + S(2); 

     zq(:,:,k_idx) = (Xq(3)*rMat+Yq(3)*cMat)*dimPix + S(3); 

end 

 

%combine grid coordinates 

grid.x = xq; 

grid.y = yq; 

grid.z = zq; 

 

end 

A3: Interpolate DWI to T2-weighted image 

function intImg = interpolateToGrid(dataT2, dataDWI) 

 

posq = [dataDWI.grid.x(:), dataDWI.grid.y(:), dataDWI.grid.z(:)]; %DWI 

pos  = [dataT2.grid.x(:), dataT2.grid.y(:), dataT2.grid.z(:)]; % T2 

 

% prepare empty image to save the result 

intImg = zeros([size(dataT2.img), size(dataDWI.img,4)]); 

 

% Loop over all images in 3d (-> different b values) 

for idx = 1:size(dataDWI.img,4) 

    % Get corresponding image; 

    Vq = dataDWI.img(:,:,:,idx); 

 

    % interpolate the image 

    % (Use linear interpolation between sample points, set outside values 

    % to NaN); 

    F = scatteredInterpolant(posq, Vq(:), 'linear', 'none'); 

 

    % get values of the image for the coordinates of the T2 image' 

    V = F(pos); 

 

    % rearange from vector to matrix 

    intImg(:,:,:,idx) = reshape(V, size(dataT2.img)); 

end 

 

% display the result to check 

view3dgui(interpolatedDWI(:,:,:,3)) 

 

% save the result 

save([patientFolder '/InterpolatedDWI.mat']); 
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A4: Extract pixel intensity for ROI 

% This script demonstrates a simplified extraction for one b-value of the DWI 

% but it can be used for all b-values and the T2-weighted images 

 

% Load Region of Interest (Load NIfTI file) 

 filePath = 'C:/Users/HP/Desktop/Master_Thesis/Data/'; 

 

 patientList = [24 48 49 50 51 52 55 56 57 58 59 61 64 65 67 68 69 72 74 ... 

    77 78 79 80 83 85 87 88 89 90 91 94 95 96 99 103 110 113 115 116 118 ... 

    120 121 122 123 125 127 128 131 133 134 138 143 144 145 146 148 149  ... 

    150 153 154 155 156 157 160 163 164 165 166 170 171 172 173 174 175  ... 

    177 176]; 

 

 n = length(patientList); 

 

 %Create a loop that will read the ROIs for the analyzed patients 

 for patient = 1:n 

 

     patientNr = patientList(patient); 

     patientNr = int2str(patientNr); 

 

     %Load the saved matrices from the previous step 

     load([filePath 'Oxytarget_' patientNr ' PRE/InterpolatedDWI.mat']); 

 

     %Load the ROI from the NIfTI file 

     nifty = load_untouch_nii([filePath 'Oxytarget_' patientNr... 

         ' PRE/binary/an/tumour.nii']); 

     info = niftiinfo([filePath 'Oxytarget_' patientNr... 

         ' PRE/binary/an/tumour.nii']); 

 

     % Check if z-axis needs to be inverted 

     [~,~,z1] = transformPointsForward(info.Transform,1,1,1); 

     [~,~,z2] = transformPointsForward(info.Transform,1,1,100); 

     neededInversion = (z2-z1)<0; 

 

     % Modify to match with T2 

     ROI = nifty.img; 

     ROI = imrotate(flip(ROI), -90)>0; 

     if neededInversion 

         ROI = ROI(:,:,size(ROI,3):(-1):1); 

     end 

 

     % Visual inspection 

     figure 

     view3dgui(imT2) 

 

     % Extract pixel intensity for the ROI only 

     b0_all = interpolatedDWI(:,:,:,1); 

     b0 = b0_all(ROI); 

 

     save([filePath 'Oxytarget_' patientNr ... 

         ' PRE/ROI.mat'],'ROI'); 

     save([filePath 'Oxytarget_' patientNr ... 

         ' PRE/DWI_b0.mat'],'b0'); 

 end 
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A5: Extract voxel coodrinates for ROI 

clear all 

 

 filePath = 'C:/Users/HP/Desktop/Master_Thesis/Data/'; 

 

 patientList = [24 48 49 50 51 52 55 56 57 58 59 61 64 65 67 68 69 72 74 ... 

    77 78 79 80 83 85 87 88 89 90 91 94 95 96 99 103 110 113 115 116 118 ... 

    120 121 122 123 125 127 128 131 133 134 138 143 144 145 146 148 149  ... 

    150 153 154 155 156 157 160 163 164 165 166 170 171 172 173 174 175  ... 

    177 176]; 

 

 n = length(patientList); 

 

 %Create a loop that will read the ROIs for the analyzed patients 

 for patient = 1:n 

 

     patientNr = patientList(patient); 

 

     %Load the saved matrices from the previous steps 

     load([filePath 'Oxytarget_' int2str(patientNr)... 

        ' PRE/imT2.mat']); 

     load([filePath 'Oxytarget_' int2str(patientNr)... 

        ' PRE/ROI.mat']); 

 

     % List the image files 

     imList = dir([filePath 'Oxytarget_' int2str(patientNr) ' PRE/T2/*#*']); 

     nSlicesT2 = length(imList); 

 

     for imageNr = 1:nSlicesT2 

 

         info = dicominfo([filePath 'Oxytarget_' int2str(patientNr) ... 

             ' PRE/T2/' imList(imageNr).name]); 

 

         % Set up coordinates 

         x = zeros(info.Width, info.Height, nSlicesT2); 

         y = x; 

         z = x; 

 

         X = info.ImageOrientationPatient(1:3)';      % row values 

         Y = info.ImageOrientationPatient(4:6)';      % collumn values 

         dimPix = info.PixelSpacing(1);               % in mm 

 

         % idx  = double(1:info.dimSlice); 

         idx = double(0:info.Width-1); 

         [cMat,rMat] = meshgrid(idx,idx); 

 

         % Define 'PatientsPosition' as a 26x3 double containing x, y, 

         % and z coordinates of the upper left corner of each image slice 

         PatientsPosition = ones(nSlicesT2,3); 

 

         for position = 1:3 % Extract information for x, y, and z 

             PatientsPosition(imageNr,position) = ... 

                 info.ImagePositionPatient(position); 

         end 

     end 
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     % Get voxel coordinates 

     for k_idx = 1:nSlicesT2 

         %if imT2(512,512,k_idx) == 1 

         S = PatientsPosition(k_idx,:); 

         x(:,:,k_idx) = (X(1)*rMat+Y(1)*cMat)*dimPix + S(1); 

         y(:,:,k_idx) = (X(2)*rMat+Y(2)*cMat)*dimPix + S(2); 

         z(:,:,k_idx) = (X(3)*rMat+Y(3)*cMat)*dimPix + S(3); 

     end 

 

     % Logical indexing to get coordinates for ROI only 

     X = x(ROI); 

     Y = y(ROI); 

     Z = z(ROI); 

 

     % Save the coordinates for each patient in the corresponding folder 

     save([filePath 'Oxytarget_' int2str(patientNr) ... 

         ' PRE/ROI_coordinates.mat'],'X','Y','Z') 

 end 

A6: Create matrix for K-means clustering 

% Create cell arrays to store the values of all patients 

 Xn = cell(n,1); 

 Yn = Xn; 

 Zn = Xn; 

 

 for patient = 1:n 

 

     patientNr = patientList(patient); 

 

     load([filePath 'Oxytarget_' int2str(patientNr) ... 

         ' PRE/ROI_coordinates.mat']); 

 

     % Read in the coordinates for each patient into the array 

     Xn{patient} = X; 

     Yn{patient} = Y; 

     Zn{patient} = Z; 

 

     % Generate an array with the patients numbers 

     patient_ = cell(length(X),1); 

     patient_(:,1) = {patientNr}; 

     patient_ = cell2mat(patient_); 

     patients{patient} = patient_; 

 end 

 

 % Convert to matrix 

 Xn = cell2mat(Xn); 

 Yn = cell2mat(Yn); 

 Zn = cell2mat(Zn); 

 Patient_number = cell2mat(patients); 

 

 % Generate a table to check the data 

 T_patient = table(Xn,Yn,Zn); 

 % Check with a small preview 

 T_preview = head(T_patient) 
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 % Create a matrix to be used for the k-means analysis 

 b0_k = [Xn Yn Zn b0]; 

 

 save([filePath 'b0_k.mat'],'b0_k') 

A7: K-means clustering 

clear all 

 

filePath = 'C:/Users/HP/Desktop/Master_Thesis/Data/CODE/'; 

 

load([filePath 'ROI_voxel_coordinates_b2_shh.mat']); 

 

% Run k-means and perform partition calculations 

% K-means ++ is the default algorithm for initial cluster division 

% The square of euclidean distance is the default distance target 

 

% Save output to command window in a text file: 

diary ('KmeansResults'); 

 

% Run k-means with k = 2 clusters: 

rng (1); % Used so that the results can be reproducible 

[idx2, C2, sumd2, D2] = kmeans (T2_k_4, 2, 'MaxIter', 500, 'Display', 'final','Replicates', 

30); 

 

% Count the number of data points belonging to cluster 1 and 2 respectively: 

N21 = sum (idx2 (:) == 1); 

N22 = sum (idx2 (:) == 2); 

 

% Calculate MD21 and MD22 (average distance between observations and 

% center): 

MD21 = (sumd2 (1, 1)) / N21; 

MD22 = (sumd2 (2, 1)) / N22; 

 

% Calculate the subdivision target Vu2 for k = 2 clusters: 

Vu2 = (MD21 + MD22) / 2; 

 

% Find dmin2 (for k = 2 clusters, there's only one possibility): 

dmin2 = pdist (C2); 

 

% Calculate the target of overpartition Vo2 for k = 2 clusters: 

Vo2 = 2 / dmin2; 

 

% Run k-means with k = 3 clusters: 

rng (1); 

[idx3, C3, sumd3, D3] = kmeans(T2_k_4, 3, 'MaxIter', 500, 'Display','final', 'replicates', 

30); 

 

% Count the number of data points belonging to clusters 1, 2 and 3: 

N31 = sum (idx3 (:) == 1); 

N32 = sum (idx3 (:) == 2); 

N33 = sum (idx3 (:) == 3); 
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% Calculate MD31, MD32 and MD33: 

MD31 = (sumd3 (1, 1)) / N31; 

MD32 = (sumd3 (2, 1)) / N32; 

MD33 = (sumd3 (3, 1)) / N33; 

 

% Calculate the subdivision target Vu3 for k = 3 clusters: 

Vu3 = (MD31 + MD32 + MD33) / 3; 

 

% Find dmin3 for k = 3 clusters: 

dmin3 = min (pdist (C3)); 

 

% Calculate the target of overpartition Vo3 for k = 3 clusters: 

Vo3 = 3 / dmin3; 

 

% Run k-means with k = 4 clusters: 

rng (1); 

[idx4, C4, sumd4, D4] = kmeans(T2_k_4, 4, 'MaxIter', 500, 'Display', 'final','Replicates', 

30); 

 

% Count the number of data points belonging to clusters 1, 2, 3 and 4: 

N41 = sum (idx4 (:) == 1); 

N42 = sum (idx4 (:) == 2); 

N43 = sum (idx4 (:) == 3); 

N44 = sum (idx4 (:) == 4); 

 

% Calculate MD41, MD42, MD43 and MD44: 

MD41 = (sumd4 (1, 1)) / N41; 

MD42 = (sumd4 (2, 1)) / N42; 

MD43 = (sumd4 (3, 1)) / N43; 

MD44 = (sumd4 (4, 1)) / N44; 

 

% Calculate the subdivision target Vu4 for k = 4 clusters: 

Vu4 = (MD41 + MD42 + MD43 + MD44) / 4; 

 

% Find dmin4 for k = 4 clusters: 

dmin4 = min (pdist (C4)); 

 

% Calculate target of overpartition Vo4 for k = 4 clusters: 

Vo4 = 4 / dmin4; 

 

% Run k-means with k = 5 clusters: 

rng (1); 

[idx5, C5, sumd5, D5] = kmeans (T2_k_4, 5, 'MaxIter', 500, 'Display', 'final', 'replicates', 

30); 

 

% Count the number of data points belonging to clusters 1, 2, 3, 4 and 5: 

N51 = sum (idx5 (:) == 1); 

N52 = sum (idx5 (:) == 2); 

N53 = sum (idx5 (:) == 3); 

N54 = sum (idx5 (:) == 4); 

N55 = sum (idx5 (:) == 5); 

 

% Calculate MD51, MD52, MD53, MD54 and MD55: 

MD51 = (sumd5 (1, 1)) / N51; 

MD52 = (sumd5 (2, 1)) / N52; 

MD53 = (sumd5 (3, 1)) / N53; 

MD54 = (sumd5 (4, 1)) / N54; 

MD55 = (sumd5 (5,1)) / N55; 



 Appendix A 
 

 

 

% Calculate the subdivision target Vu5 for k = 5 clusters: 

Vu5 = (MD51 + MD52 + MD53 + MD54 + MD55) / 5; 

 

% Find dmin5 for k = 5 clusters: 

dmin5 = min (pdist (C5)); 

 

% Calculate the target of overpartition Vo5 for k = 5 clusters: 

Vo5 = 5 / dmin5; 

 

% Runs k-means with k = 6 clusters: 

rng (1); 

[idx6, C6, sumd6, D6] = kmeans (T2_k_4, 6, 'MaxIter', 500, 'Display', 'final','Replicates',30) 

 

% Count the number of data points belonging to groups 1, 2, 3, 4, 5 and 6: 

N61 = sum (idx6 (:) == 1); 

N62 = sum (idx6 (:) == 2); 

N63 = sum (idx6 (:) == 3); 

N64 = sum (idx6 (:) == 4); 

N65 = sum (idx6 (:) == 5); 

N66 = sum (idx6 (:) == 6); 

 

% Calculate MD61, MD62, MD63, MD64, MD65 and MD66: 

MD61 = (sumd6 (1, 1)) / N61; 

MD62 = (sumd6 (2, 1)) / N62; 

MD63 = (sumd6 (3, 1)) / N63; 

MD64 = (sumd6 (4, 1)) / N64; 

MD65 = (sumd6 (5, 1)) / N65; 

MD66 = (sumd6 (6, 1)) / N66; 

 

% Calculate the subdivision target Vu6 for k = 6 clusters: 

Vu6 = (MD61 + MD62 + MD63 + MD64 + MD65 + MD66) / 6; 

 

% Find dmin6 for k = 6 clusters: 

dmin6 = min (pdist (C6)); 

 

% Calculate the target of overpartition Vo6 for k = 6 clusters: 

Vo6 = 6 / dmin6; 

 

% Create vectors with sub and overlay functions respectively 

% k = 2,3,4,5,6: 

 

Vuvector = [Vu2; Vu3; Vu4; Vu5; Vu6]; 

Vovektor = [Vo2; Vo3; Vo4; Vo5; Vo6]; 

 

% Find max and min for Vu: 

maxVu = max (Vuvector); 

minVu = min (Vuvector); 

 

% Normalize Vuvector to enter values in range [0, 1]: 

Vunorm = (Vuvector - minVu) / (maxVu - minVu); 

 

% Find max and min for Vo: 

maxVo = max (Vovektor); 

minVo = min (Vovektor); 

 

% Normalize Vovector to enter values in range [0, 1]: 

Vonorm = (Vovektor - minVo) / (maxVo - minVo); 
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% Add Vunorm and Vonorm: 

Vsv = Vunorm + Vonorm; 

 

% Find minimal Vsv: 

minVsv = min (Vsv); 

 

% Save all variables: 

save  'Results K-means from T2.mat'; 

 

% Plot normalized vectors to inspect the value of the optimal cluster number 

figure 

plot(Vsv,'-O','MarkerSize',4,'LineWidth',1.3) 

ylabel('Normalized partitioning') 

set(gca,'YTick',(0:0.2:1)) 

xlabel('Number of clusters') 

xlim([1 5]) 

set(gca,'XTick',(1:1:6)) 

xticklabels({'2','3','4','5','6'}) 

hold on 

plot(Vunorm,'--O','MarkerSize',3,'LineWidth',1) 

plot(Vonorm,'--O','MarkerSize',3,'LineWidth',1) 

hold off 

legend('Vsv=Vo*+Vu*','Vu*=normalized subdivision vector','Vo*=normalized overpartition 

vector') 

A8:Calculation of Cluster Volume Fraction (CVF) 

clear all 

 

filePath = 'C:/Users/HP/Desktop/Master_Thesis/Data/'; 

 

% Generate groups of patients median volume fraction for 

% each cluster for the defined optimal cluster number - k 

 

% Load the matrix from the previous step 

load ([filePath 'Results K-means from T2.mat)']); 

 

patientList = [24 48 49 50 51 52 55 56 57 58 59 61 64 65 67 68 69 72 74  ... 

    77 78 79 80 83 85 87 88 89 90 91 94 95 96 99 103 110 113 115 116 118 ... 

    120 121 122 123 125 127 128 131 133 134 138 143 144 145 146 148 149  ... 

    150 153 154 155 156 157 160 163 164 165 166 170 171 172 173 174 175  ... 

    177 176]; 

 

n = length(patientList); 

 

% Get idx4 in an array for each patient separately (in this case k=4) 

result = cell(n,1); 

k = 1; 

for patient = 1:n 

    patientNr = patientList(patient); 

 

    % Load the saved coordinates from the previous step 

    load([filePath 'Oxytarget_' int2str(patientNr) ... 

        ' PRE/T2/ROI_coordinates.mat']); 
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    result{patient} = idx4(k:(k+length(X)-1)); 

    k = k + length(X); 

end 

 

% Counts the number of voxels with values 1, 2 and 3 for each patient: 

cluster1 = cellfun( @(x) sum( x == 1, 1 ), result, 'UniformOutput', 0); 

cluster2 = cellfun( @(x) sum( x == 2, 1 ), result, 'UniformOutput', 0); 

cluster3 = cellfun( @(x) sum( x == 3, 1 ), result, 'UniformOutput', 0); 

cluster4 = cellfun( @(x) sum( x == 4, 1 ), result, 'UniformOutput', 0); 

 

% Clusters 1,2 and 3 are concenated into a matrix 

clusters = cell2mat (horzcat (cluster1, cluster2, cluster3, cluster4)); 

 

% Total number of voxels with values 1, 2, 3 and 4 for each tumor(patient) 

% (the sum is along the rows (second dimension)) 

clusters(:, 5) = sum (clusters, 2); 

 

% Generate matrices for the results 

% (CVF = Cluster Volume Fraction) 

CVF1 = zeros(n,1); 

CVF2 = zeros(n,1); 

CVF3 = zeros(n,1); 

CVF4 = zeros(n,1); 

 

 

% Calculate the volume fraction of clusters 1,2 and 3 for each patient 

for patient = 1:n 

    CVF1(patient, 1) = clusters(patient, 1)/clusters(patient, 5); 

    CVF2(patient, 1) = clusters(patient, 2)/clusters(patient, 5); 

    CVF3(patient, 1) = clusters(patient, 3)/clusters(patient, 5); 

    CVF4(patient, 1) = clusters(patient, 4)/clusters(patient, 5); 

end 

 

% Find the median value for each cluster 

medianCVF = [median(CVF1); median(CVF2); median(CVF3); median(CVF4)]; 

 

% Group patients in two groups above and below the median volume 

% for each cluster (if CVF > median the value is stored % in column 2 

% if CVF < median the value is stored in column 3) 

 

% Cluster 1: 

for patient = 1:n 

    if CVF1(patient,1) > median(CVF1(:,1)); 

        CVF1(patient,2) = CVF1(patient,1); 

    elseif CVF1(patient,1) < median(CVF1(:,1)); 

        CVF1(patient,3) = CVF1(patient,1); 

    end 

end 

 

% Cluster 2: 

for patient = 1:n 

    if CVF2(patient,1) > median(CVF2(:,1)); 

        CVF2(patient,2) = CVF2(patient,1); 

    elseif CVF2(patient, 1) < median(CVF2(:,1)); 

        CVF2(patient,3) = CVF2(patient,1); 

    end 

end 
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% Cluster 3: 

for patient = 1:n 

    if CVF3(patient,1) > median(CVF3(:,1)); 

        CVF3(patient,2) = CVF3(patient,1); 

    elseif CVF3(patient, 1) < median(CVF3(:,1)); 

        CVF3(patient,3) = CVF3(patient,1); 

    end 

end 

 

% Cluster 4: 

for patient = 1:n 

    if CVF4(patient,1) > median(CVF4(:,1)); 

        CVF4(patient,2) = CVF4(patient,1); 

    elseif CVF4(patient, 1) < median(CVF4(:,1)); 

        CVF4(patient,3) = CVF4(patient,1); 

    end 

end 

 

 

% Cluster 1 

% Find row number and value for CVF1>median 

[row11, ~, v11] = find (CVF1 (:, 2)); 

% Find row number and value for CVF1<median 

[row12, ~, v12] = find (CVF1 (:, 3)); 

% Store new array for CVF1>median (h = high) and CVF<median (l=low) 

GhCVF1 = [row11, v11]; 

GlCVF1 = [row12, v12]; 

 

% Cluster 2 

% Find row number and value for CVF1>median 

[row11, ~, v11] = find (CVF2 (:, 2)); 

% Find row number and value for CVF1<median 

[row12, ~, v12] = find (CVF2 (:, 3)); 

% Store new array for CVF1>median (h = high) and CVF<median (l=low) 

GhCVF2 = [row11, v11]; 

GlCVF2 = [row12, v12]; 

 

% Cluster 3 

% Find row number and value for CVF1>median 

[row11, ~, v11] = find (CVF3 (:, 2)); 

% Find row number and value for CVF1<median 

[row12, ~, v12] = find (CVF3 (:, 3)); 

% Store new array for CVF1>median (h = high) and CVF<median (l=low) 

GhCVF3 = [row11, v11]; 

GlCVF3 = [row12, v12]; 

 

% Cluster 4 

% Find row number and value for CVF1>median 

[row11, ~, v11] = find (CVF4 (:, 2)); 

% Find row number and value for CVF1<median 

[row12, ~, v12] = find (CVF4 (:, 3)); 

% Store new array for CVF1>median (h = high) and CVF<median (l=low) 

GhCVF4 = [row11, v11]; 

GlCVF4 = [row12, v12]; 

 

save ('CVF data for K-means with T2 for k = 4.mat'); 
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A9: Extract parameter data from Excel for statistical analyses 

The recorded data for the tumor staging from the study is provided in an Excel file. The 

following script extracts the a column that is relevant for the analysis. The same code 

applies for all other parameters in the statistical analysis of this project. 

% Load data from excel 

 

 clear all 

 

 filePath = 'C:/Users/HP/Desktop/Master_Thesis/Data/'; 

 

 patientList =[24 48 49 50 51 52 55 56 57 58 59 61 64 65 67 68 69 72 74  ... 

    77 78 79 80 83 85 87 88 89 90 91 94 95 96 99 103 110 113 115 116 118 ... 

    120 121 122 123 125 127 128 131 133 134 138 143 144 145 146 148 149  ... 

    150 153 154 155 156 157 160 163 164 165 166 170 171 172 173 174 175  ... 

    177 176]; 

 

 n = length(patientList); 

 

 % Read in patients numbers from first column in the sheet 

 [num,patient] = xlsread([filePath 'Outcome_data.xlsx'],'A1:A193'); 

 patient=regexp(patient,'\d+(\.)?(\d+)?','match'); 

 patient=str2double([patient{:}]); 

 patient(~ismember(patient,patientList))= 0; 

 patient = patient(:); 

 

 % Read in column containing p/yPT 

 out = xlsread('Outcome_data.xlsx','AK1:AK193'); 

 

 % Eliminate patients which have not been analyzed in the previous steps 

 ypN = [patient,out]; 

 indices = find(ypN(:,1)==0); 

 ypN(indices,:) = []; 

 

 % Remove NaN values 

 ypT(any(isnan(ypT),2),:) = []; 

 

 % Save as a matrix 

 save ([filePath 'patients_ypN'], 'ypN'); 

A10: Extract parameter data from Excel for survival analyses 

The Progression Free Surival (PFS) needs to be calculated from the provided Excel data 
based on the three endpoints with the following script. 

clear all 

 

 filePath = 'C:/Users/HP/Desktop/Master_Thesis/Data/'; 

 

 patientList =[24 48 49 50 51 52 55 56 57 58 59 61 64 65 67 68 69 72 74  ... 

    77 78 79 80 83 85 87 88 89 90 91 94 95 96 99 103 110 113 115 116 118 ... 
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    120 121 122 123 125 127 128 131 133 134 138 143 144 145 146 148 149  ... 

    150 153 154 155 156 157 160 163 164 165 166 170 171 172 173 174 175  ... 

    177 176]; 

 

 n = length(patientList); 

 

 % Read in patients numbers from first column in the sheet 

 [num,patient] = xlsread([filePath 'Outcome_data.xlsx'],'A1:A201'); 

 patient=regexp(patient,'\d+(\.)?(\d+)?','match'); 

 patient=str2double([patient{:}]); 

 patient(~ismember(patient,patientList))= 0; 

 patient = patient(:); 

 

 % Read in columns containing time difference from 

 % events and time of inclusion in the study 

 out = xlsread('Outcome_data.xlsx','DF:DH'); 

 out(out<0)=0; 

 

 % Eliminate patients which have not been analyzed in the previous steps 

 patient1 = [patient,out]; 

 indices = find(patient1(:,1)==0); 

 patient1(indices,:) = []; 

 

 % Estimate the min time between inclusion and first event 

 patient1(patient1 == 0) = inf; 

 min_time = min(patient1(:,2:4),[],2); 

 

 % Add column to the existing matrix 

 patient1 = [patient1, min_time]; 

 patient1(patient1 == inf) = 0; 

 

 % Generate Progression Free Survival (PFS) column 

 m = size(patient1,1); 

 for i = 1:m 

     if patient1(i,5) > 0 

         patient1(i,6) = 1; 

     else patient1(i,6) = 0; 

     end 

 end 

 

 % Generate columns for better overview of the contained data 

 Columns = {'Patient number', 'Local reccurence [days]', 'Metastasis [days]' ... 

     'Death [days]','Min time to first event', 'PFS'}; 

 

 save('patient_PFS.mat'); 

A11: Create datasets for the statistical/survival analyses 

The following script can be used for generating datasets for the survival analyses, by 
importing the obtained PFS parameter from A10: Extract parameter data from Excel for 
survival analyses. The same script is used for the datasets in the statistical analyses with 
the parameters from A9: Extract parameter data from Excel for statistical analyses. 
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  filePath = 'C:/Users/HP/Desktop/Master_Thesis/Data/'; 

 

 % Load matrix with data extraxted from excel 

 load('patients_ypT'); 

 % Load CVF matrix from previous step 

 load('CVF data for K means with T2 for k = 4.mat'); 

 

 % Add ypT value to the 6 patient groups 

 GlCVF1 (:, 3) = param ((GlCVF1 (:, 1))', [2]); 

 GhCVF1 (:, 3) = param ((GhCVF1 (:, 1))', [2]); 

 GlCVF2 (:, 3) = param ((GlCVF2 (:, 1))', [2]); 

 GhCVF2 (:, 3) = param ((GhCVF2 (:, 1))', [2]); 

 GlCVF3 (:, 3) = param ((GlCVF3 (:, 1))', [2]); 

 GhCVF3 (:, 3) = param ((GhCVF3 (:, 1))', [2]); 

 GlCVF4 (:, 3) = param ((GlCVF4 (:, 1))', [2]); 

 GhCVF4 (:, 3) = param ((GhCVF4 (:, 1))', [2]); 

 % The first column is transposed because it contains the patient number 

 % so the correct rows can be extracted from the data. 

 

 % Remove NaN values 

 GlCVF1(any(isnan(GlCVF1),2),:) = []; 

 GhCVF1(any(isnan(GhCVF1),2),:) = []; 

 GlCVF2(any(isnan(GlCVF2),2),:) = []; 

 GhCVF2(any(isnan(GhCVF2),2),:) = []; 

 GlCVF3(any(isnan(GlCVF3),2),:) = []; 

 GhCVF3(any(isnan(GhCVF3),2),:) = []; 

 

 % Give group numbers for low CVF (1) and high CVF (2) so that 

 % the data fits the survival analysis 

 GlCVF1 (:, 4) = 1; GlCVF2 (:, 4) = 1; GlCVF3 (:, 4) = 1; GlCVF4 (:, 4) = 1; 

 GhCVF1 (:, 4) = 2; GhCVF2 (:, 4) = 2; GhCVF3 (:, 4) = 2; GhCVF4 (:, 4) = 2; 

 

 % Columns for overview: 

 Columns = {'Patient row', 'CVF', 'ypN', 'Group in R'}; 

 % Store data sets for ypT for each cluster. 

 % Cluster 1: 

 ypN_cluster1 = vertcat (GlCVF1 (:, [3,4]), GhCVF1 (:, [3,4])); 

  % Cluster 2: 

 ypN_cluster2 = vertcat (GlCVF2 (:, [3,4]), GhCVF2 (:, [3,4])); 

 % Cluster 3: 

 ypN_cluster3 = vertcat (GlCVF3 (:, [3,4]), GhCVF3 (:, [3,4])); 

 % Cluster 4: 

 ypN_cluster4 = vertcat (GlCVF4 (:, [3,4]), GhCVF4 (:, [3,4])); 

 

 % Remove rows of NaNs from the datasets (for patients with unknown survival time) 

 % Cluster 1: 

 ypN1 = ypN_cluster1 (~ any (isnan (ypN_cluster1), 2), :); 

 % Cluster 2: 

 ypN2 = ypN_cluster2 (~ any (isnan (ypN_cluster2), 2), :); 

 % Cluster 3: 

 ypN3 = ypN_cluster3 (~ any (isnan (ypN_cluster3), 2), :); 

 % Cluster 4: 

 ypN4 = ypN_cluster4 (~ any (isnan (ypN_cluster4), 2), :); 

 

 save ([filePath 'Survival data T2_parameter ypT.mat']'ypN1', 'ypN2', 'ypN3','ypN4'); 
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A12: Create delimiter tables in .txt to be used for R-console 

clear all 

 

% Load the datasets from the previous step 

load ('Survival data T2_parameter ypT.mat'); 

 

% For Cluster 1: 

CVFhl=ypN1(:,2); % Cluster Volume Fraction: high - low 

ypN = ypN1(:,1); % ypT value 

for i = 1:length(ypN1(:,1)) 

group{i,1}=sprintf('%.1f',CVFhl(i)); 

group{i,2}=ypN(i); 

end 

table1 = cell2table(group); 

%%Modify variable names in table 

table1.Properties.VariableNames = {'median' 'ypN'}; 

writetable(table1,'ypN1.txt','Delimiter','\t','WriteRowNames',true); 

 

% For Cluster 2: 

CVFhl=ypN2(:,2); % Cluster Volume Fraction: high - low 

ypN = ypN2(:,1); % ypT value 

for i = 1:length(ypN2(:,1)) 

group{i,1}=sprintf('%.1f',CVFhl(i)); 

group{i,2}=ypN(i); 

end 

table2 = cell2table(group); 

%%Modify variable names in table 

table2.Properties.VariableNames = {'median' 'ypN'}; 

writetable(table2,'ypN2.txt','Delimiter','\t','WriteRowNames',true); 

 

% For Cluster 3 

CVFhl=ypN3(:,2); % Cluster Volume Fraction: high - low 

ypN = ypN3(:,1); % ypT value 

for i = 1:length(ypN3(:,1)) 

group{i,1}=sprintf('%.1f',CVFhl(i)); 

group{i,2}=ypN(i); 

end 

table3 = cell2table(group); 

%%Modify variable names in table 

table3.Properties.VariableNames = {'median' 'ypN'}; 

writetable(table3,'ypN3.txt','Delimiter','\t','WriteRowNames',true); 

 

% For Cluster 4 

CVFhl=ypN4(:,2); % Cluster Volume Fraction: high - low 

ypN = ypN4(:,1); % ypT value 

for i = 1:length(ypN4(:,1)) 

group{i,1}=sprintf('%.1f',CVFhl(i)); 

group{i,2}=ypN(i); 

end 

table4 = cell2table(group); 

%%Modify variable names in table 

table4.Properties.VariableNames = {'median' 'ypN'}; 

writetable(table4,'ypN4.txt','Delimiter','\t','WriteRowNames',true);
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R scripts 

B1: Cox proportional-hazards regression 

library("survival") 

library("survminer") 

 

PFS1 <- read.table (file = file.choose (), header = T) 

 

Rescox <- coxph(Surv(time, event) ~ group, data=PFS1) 

summary(Rescox) 

 

# Create the new data 

group_df <- with(PFS1,data.frame(group = c(1, 2))) 

group_df 

 

# Survival curves 

fit <- survfit(Rescox, newdata = group_df, data=PFS1) 

ggsurvplot(fit, conf.int = TRUE, palette = c("blue", "red"), 

           legend.labs=c("Volume share <median", "Volume share >median"), 

           ggtheme = theme_minimal()) 

B2: Wilcoxon rank-sum test 

data <- read.table (file = file.choose (), header = T) 

 

# Testing normal distribution of the data 

# Shapiro-Wilk normality test for below ypN 

with(data, shapiro.test(param[median == "1"])) 
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# Shapiro-Wilk normality test for above ypN 

with(data, shapiro.test(param[median == "2"]))  

 

res <- wilcox.test(param ~ median, data = data, 

                   exact = FALSE) 

res 
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Cluster distribution 

C1: Matlab script for voxel coordinates of tumor median sections 

clear all 

 

filePath = 'C:/Users/HP/Desktop/Master_Thesis/Data/'; 

 

patientList = [24 48 49 50 51 52 55 56 57 58 59 61 64 65 67 68 69 72 74  ... 

    77 78 79 80 83 85 87 88 89 90 91 94 95 96 99 103 110 113 115 116 118 ... 

    120 121 122 123 125 127 128 131 133 134 138 143 144 145 146 148 149  ... 

    150 153 154 155 156 157 160 163 164 165 166 170 171 172 173 174 175  ... 

    176 177 179]; 

 

n = length(patientList); 

 

% Load x, y and z coordiantes in one cell 

xyzdata = cell(n,1); 

 for patient = 1:n 

 

     patientNr = patientList(patient); 

 

     % Load the saved coordinates from the previous step 

     load([filePath 'Oxytarget_' int2str(patientNr) ... 

         ' PRE/Coordinates.mat']); 

 

     % Read in the coordinates for each patient into the array 

     xyzdata{patient}(:,1) = X; 

     xyzdata{patient}(:,2) = Y; 

     xyzdata{patient}(:,3) = Z; 

 end 

 

% Load previous results 

load([filePath 'Results K-means from T2.mat']); 

 

% Add the cluster number to each voxel: 

k = 1; 

for I = 1 : n 

    xyzdata {I} (:,4) = idx4(k: (k + length (xyzdata{I}) - 1)); 

    k = k + length (xyzdata{I}); 

end 

% idx4 contains the voxel cluster number for k = 4 clusters. 

% Number of clusters. 

k = 4; 

 

% Duplicate cell array before pre-loop 

data = xyzdata; 
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% Add data for the median section of each tumor in the cell array data: 

for I = 1: n 

    for i = 1: length (xyzdata {I}) 

        if xyzdata {I} (i, 3) == median (xyzdata {I, 1} (:, 3)) 

            data {I} (i, :) =xyzdata {I} (i, :); 

        else data {I} (i, :) = nan; 

        end 

    end 

end 

% Everything other than median section is now set equal to nan in data. 

 

% Find the xy coordinates of the center of the median section for each tumor: 

center = cellfun(@nanmean, data, 'UniformOutput', 0); 

 

% Calculate the distance to the mass center provided that the voxel belongs to the median cut: 

for I = 1: n 

     for i = 1: length (data {I}) 

         if ~isnan (data {I} (i, 1)) 

             data {I} (i, 5) = sqrt (((data {I} (i, 1) - center {I} (1,1)) ^ 2 ) + ((data {I, 

1} (i, 2) - center {I} (1,2)) ^ 2)); 

         end 

     end 

 end 

 

 % Sort the distance calculations by cluster affiliation: 

    distance = cell (n, 1); 

 % Make empty cell array before the pre-loop. 

    for I = 1: n 

        for i = 1: length (data {I}) 

            if data {I} (i, 4) == 1 

                distance {I} (i, 1) = data {I} (i, 5); 

            else distance {I} (i, 1) = 0; 

            end 

        end 

 

        for l = 1:3 

            if data {I} (i, 4) == 2 

                distance {I} (i, 2) = data {I} (i, 5); 

            else distance {I} (i, 2) = 0; 

            end 

        end 

 

        for l = 1:3 

            if data {I} (i, 4) == 3 

                distance {I} (i, 3) = data {I} (i, 5); 

            else distance {I} (i, 3) = 0; 

            end 

        end 

    end 

 

    % Column 1 now contains the distance to the center of the cluster 1. 

    % Column 2 now contains the distance to the center of the cluster 2. 

    % Column 3 now contains the distance to the center of the cluster 3. 

    % Set all rows except median sections equal to nan in cell the array distance: 

    for I = 1: n 

        for i = 1: length (distance {I}) 

            for j = 1: k 
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                if distance{I}(i, j) == 0 

                    distance {I} (i, j) = nan; 

                end 

            end 

        end 

    end 

 

    % Calculate the average distance to the center of the median section for each 

    % patient for cluster 1,2,3: 

    incisionpass = cell2mat (cellfun(@nanmean, distance, 'UniformOutput', 0)); 

 

    save([filePath 'xyzdata from T2.mat'],'xyzdata'); 

C2: Matlab script for displaying cluster distribution 

This script uses the results from the previous step and displays the distribution of the 

clusters in the median sections of the tumors.  

clear all 

 

filePath = 'C:/Users/HP/Desktop/Master_Thesis/Data/'; 

 

% Load results from the K-means 

load([filePath 'Results K-means from T2.mat']); 

 

patientList = [24 48 49 50 51 52 55 56 57 58 59 61 64 65 67 68 69 72 74 ... 

    77 78 79 80 83 85 87 88 89 90 91 94 95 96 99 103 110 113 115 116 118 ... 

    120 121 122 123 125 127 128 131 133 134 138 143 144 145 146 148 149  ... 

    150 153 154 155 156 157 160 163 164 165 166 170 171 172 173 174 175  ... 

    177 176]; 

 

n = length(patientList); 

 

% Load x, y and z coordiantes in one cell 

xyzdata = cell(n,1); 

mask_median = cell(n,1); 

mask_tomedian = cell(n,1); 

points_median = cell(n,1); 

points_tomedian = cell(n,1); 

 

 for patient = 1:n 

     patientNr = patientList(patient); 

 

     % Load the saved matrices from the previous step 

     load([filePath 'Oxytarget_' int2str(patientNr) ... 

         ' PRE/imgT2.mat']); 

 

     % calculate number of pixels in the median section 

     nSliceT2_2 =round(nSlicesT2 / 2); 

     mask_median{patient} = ROI(:,:,nSliceT2_2); 

     points_median{patient} = sum(sum(mask_median{patient}>0,2)); 

 

     % calculate number of pixels to the median section 

     mask_tomedian{patient} = ROI(:,:,[1:nSliceT2_2]); 
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     points_tomedian{patient} = 

sum(sum(sum(mask_tomedian{patient,1}(:,:,[1:nSliceT2_2])>0,2))); 

 

      % Load the saved coordinates from the previous step 

     load([filePath 'Oxytarget_' int2str(patientNr) ... 

         ' PRE/Coordinates.mat']); 

 

     % Read in the coordinates for the pixel interval corresponding to the median section 

     xyzdata{patient}(:,1) = X([points_tomedian{patient}:(points_tomedian{patient} + 

points_median{patient})],1); 

     xyzdata{patient}(:,2) = Y([points_tomedian{patient}:(points_tomedian{patient} + 

points_median{patient})],1); 

     xyzdata{patient}(:,3) = Z([points_tomedian{patient}:(points_tomedian{patient} + 

points_median{patient})],1); 

     xyzdata{patient}(:,4) = idx4([points_tomedian{patient}:(points_tomedian{patient} + 

points_median{patient})],1); 

 

 end 

 

 % Plot cluster distribution in median section 

 figure1 = figure(1); 

 l=gscatter(xyzdata{patient,1}(:,1),xyzdata{patient,1}(:,2),xyzdata{patient,1}(:,4),'gryb',8); 

 legend({'Cluster1','Cluster2','Cluster3','Cluster4'},'Location','southeast') 

 set(gca,'visible','off') 

 rotate(l,[0 0 1], -90); 

 saveas(figure1,'Median.png') 

C3: Cluster distribution in median tumor sections 

 

Figure C3.1: Intensity-based voxel clusters in the central slice of tumors from three different 
patients. The treatment for these patients resulted in local recurrence (A), metastasis (B) or 
progression-free survival (C). 

A) B) C) 
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Kaplan-Meier plots 
The calculations in the survival analyses with the Cox proportional-hazards regression 
were controlled with Kaplan-Meier plots in the R console and MedCalc®. 

 

A) B) 

D) C) 

Figure D.1: Kaplan-Meier survival plot for the survival difference between the two patient groups 
in cluster 1 (A), cluster 2 (B), cluster 3 (C) and cluster 4 (D), divided by the median volume with 
log-rank test. The investigated endpoints are local recurrence, metastasis or death. Survival is 
indicated in the portion of patients with progression-free survival (PFS). 
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Normality tests 
The following tables show the results from Saphiro-Wilk normality tests performed on the 

data. Only in several outliers the results indicated p-values higher than 0.05, which showed 

that the data is not normally distributed. Consequently the Wilcoxon rank-sum test was 

chosen for the statistical analyses. 

T2(shh) mrT  p/ypT  ΔT m rN p / ypN ΔN TRG 

Cluster 1 1.175e-05 6.088e-06 1.539e-05 3.197e-06 9.418e-06 1.225e-07 9.464e-06 1.764e-05 4.248e-07 1.616e-05 2.593 e-04 2.707 e-04 0.03487 4.506e-06 

Cluster 2 1.061e-05 1.682e-05 5.401e-05 5.456e-07 8.635e-07 7.417e-06 1.061e-05 1.682e-05 7.623e-07 4.053e-06 9.416 e-04 1.051 e-04 0.01128 3.423e-06 

Cluster 3 1.609e-05 1.118e-05 1.082e-05 2.791e-06 4.468e-08 5.636e-05 7.029e-06 4.939e-06 1.117e-06 5.329e-06 3.286 e-04 1.886 e-04 0.0003286 1.886e-04 

Cluster 4 1.636e-05 4.255e-06 1.786e-04 7.131e-07 2.319e-06 1.471e-06 1.578e-06 1.251e-05 3.356e-07 3.557e-06 5.408e-04 1.334e-05 5.408e-04 1.334e-05 

 

b=0 
[s/mm2] m rT p / ypT ΔT m rN p / ypN ΔN TRG 

Cluster 1 1.437e-05 8.787e-06 0.000243 3.397e-07 4.876e-07 3.126e-05 4.020e-06 2.461e-05 1.172e-07 2.267e-06 0.0004142 0.0004954 0.04808 0.01786 

Cluster 2 1.907e-05 1.162e-05 3.626e-05 2.111e-05 2.352e-06 4.575e-06 7.256e-07 8.779e-05 3.407e-08 7.813e-06 1.185e-05 0.0010050 0.004826 0.04285 

Cluster 3 2.766e-05 1.130e-05 0.0003881 1.657e-06 2.159e-07 7.284e-06 4.275e-05 2.985e-06 2.481e-06 2.609e-07 0.001490 6.679e-05 0.00728 0.01210 

Cluster 4 2.111e-05 1.525e-05 1.765e-06 0.000103 8.326e-05 4.222e-08 6.633e-06 1.297e-05 1.150e-06 5.397e-07 0.003613 1.032e-05 0.01210 0.00324 

 

b=25 
[s/mm2] m rT p / ypT ΔT m rN p / ypN ΔN TRG 

Cluster 1 8.787e-06 2.114e-05 3.207e-05 5.327e-05 6.314e-06 3.299e-06 1.583e-05 4.080e-06 7.623e-07 1.334e-06 3.74oe-04 3.881e-04 0.0007407 6.878e-05 

Cluster 2 1.127e-05 1.829e-05 1.461e-06 7.374e-05 3.03e-06 6.612e-06 3.605e-05 2.687e-06 9.076e-07 6.619e-07 0.0003294 0.0001708 0.0083650 3.894e-05 

Cluster 3 2.620e-05 1.007e-05 1.984e-05 2.226e-05 1.447e-04 2.548e-07 1.087e-05 4.782e-06 1.901e-07 3.413e-06 0.0004564 0.0003487 0.0016630 5.072e-05 

Cluster 4 1.907e-05 7.475e-06 1.859e-06 4.005e-05 1.652e-06 4.28e-06 4.182e-06 1.177e-05 1.233e-07 6.510e-06 0.0006348 0.0002052 0.069660 6.578e-06 

 

b=50 
[s/mm2] m rT p / ypT ΔT m rN p / ypN ΔN TRG 

Cluster 1 1.907e-05 1.162e-05 3.626e-05 2.111e-05 2.352e-06 4.575e-06 7.256e-07 8.779e-05 3.407e-08 1.614e-06 1.185e-05 0.000445 0.0048260 0.042850 

Cluster 2 2.766e-05 1.130e-05 0.0003881 1.657e-06 2.159e-07 7.284e-06 4.275e-05 2.985e-06 2.481e-06 8.674e-08 0.001490 4.788e-05 0.0072890 0.012100 

Cluster 3 2.111e-05 1.525e-05 1.765e-06 0.000103 8.326e-05 4.222e-08 6.633e-06 1.297e-05 1.150e-06 1.819e-07 0.003613 1.187e-05 0.090410 0.003243 

Cluster 4 1.437e-05 8.787e-06 0.0002434 3.397e-07 4.876e-07 1.767e-05 4.020e-06 2.461e-05 1.172e-07 3.613e-07 0.0004142 0.000402 0.0480800 0.011850 
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b=50 
[s/mm2] 

(shh) 
mrT  p/ypT  ΔT m rN p / ypN ΔN TRG 

Cluster 1 5.310e-06 1.867e-05 1.578e-05 7.374e-05 4.011e-06 4.178e-06 4.433e-06 2.213e-05 4.482e-07 1.354e-06 0.000266 0.000266 0.063520 0.015570 

Cluster 2 3.622e-05 1.376e-05 0.000234 1.939e-05 1.409e-05 1.368e-07 1.897e-05 3.770e-06 5.408e-07 2.221e-06 0.000245 0.002649 0.008319 0.006740 

Cluster 3 2.246e-05 4.853e-06 1.634e-05 7.566e-05 7.566e-07 2.159e-05 7.144e-06 1.290e-05 5.397e-07 3.045e-06 0.000634 0.000456 0.009565 0.003747 

Cluster 4 1.489e-05 2.451e-05 6.180e-05 9.365e-05 2.159e-05 7.566e-0 1.778e-05 3.572e-06 5.842e-07 2.320e-06 0.000611 0.000789 0.002293 0.005944 

 

b=100 
[s/mm2] m rT p / ypT ΔT m rN p / ypN ΔN TRG 

Cluster 1 1.437e-05 8.787e-06 0.000243 3.397e-07 4.876e-07 3.126e-05 4.020e-06 2.461e-05 1.172e-07 2.267e-06 0.0004142 0.0004954 0.04808 0.01786 

Cluster 2 1.907e-05 1.162e-05 3.626e-05 2.111e-05 2.352e-06 4.575e-06 7.256e-07 8.779e-05 3.407e-08 7.813e-06 1.185e-05 0.0010050 0.004826 0.04285 

Cluster 3 2.766e-05 1.130e-05 0.0003881 1.657e-06 2.159e-07 7.284e-06 4.275e-05 2.985e-06 2.481e-06 2.609e-07 0.001490 6.679e-05 0.00728 0.01210 

Cluster 4 2.111e-05 1.525e-05 1.765e-06 0.000103 8.326e-05 4.222e-08 6.633e-06 1.297e-05 1.150e-06 5.397e-07 0.003613 1.032e-05 0.09041 0.00324 

 

b=500 
[s/mm2] m rT p / ypT ΔT m rN p / ypN ΔN TRG 

Cluster 1 1.144e-05 1.344e-05 0.000113 8.352e-06 4.876e-07 3.126e-05 5.534e-06 2.461e-05 2.679e-07 2.267e-06 0.000414 0.000495 0.041490 0.012560 

Cluster 2 2.111e-05 1.344e-05 1.765e-06 6.681e-05 8.326e-05 7.363e-08 6.633e-06 1.965e-05 6.277e-07 1.648e-06 0.006019 8.258e-06 0.096410 0.003243 

Cluster 3 1.525e-05 1.162e-05 1.084e-05 4.851e-05 4.116e-06 3.381e-06 3.720e-07 0.000116 3.407e-08 7.941e-06 4.279e-06 0.001130 0.0053030 0.033530 

Cluster 4 4.94e-05 7.469e-06 0.000563 1.800e-06 2.510e-07 4.032e-06 7.513e-05 1.252e-06 3.560e-06 1.670e-07 0.002975 0.000259 0.005815 0.012100 

 

b=1000 
[s/mm2] m rT p / ypT ΔT m rN p / ypN ΔN TRG 

Cluster 1 1.175e-05 6.088e-06 1.539e-05 3.197e-06 9.418e-06 1.225e-07 9.464e-06 1.764e-05 4.248e-07 1.616e-05 2.593 e-04 2.707 e-04 0.03487 4.506e-06 

Cluster 2 1.061e-05 1.682e-05 5.401e-05 5.456e-07 8.635e-07 7.417e-06 1.061e-05 1.682e-05 7.623e-07 4.053e-06 9.416 e-04 1.051 e-04 0.01128 3.423e-06 

Cluster 3 1.609e-05 1.118e-05 1.082e-05 2.791e-06 4.468e-08 5.636e-05 7.029e-06 4.939e-06 1.117e-06 5.329e-06 3.286 e-04 1.886 e-04 0.0003286 1.886e-04 

Cluster 4 1.636e-05 4.255e-06 1.786e-04 7.131e-07 2.319e-06 1.471e-06 1.578e-06 1.251e-05 3.356e-07 3.557e-06 5.408e-04 1.334e-05 5.408e-04 1.334e-05 

 

DWI + T2 
(b=50 s/mm2) 

(shh)   
m rT p / ypT ΔT m rN p / ypN ΔN TRG 

Cluster 1 9.794e-06 2.601e-05 6.155e-05 3.549e-05 1.395e-06 4.832e-06 1.536e-05 3.924e-06 5.365e-06 6.435e-08 0.002198 5.471e-05 0.008864 0.078620 

Cluster 2 6.646e-06 2.252e-05 2.469e-07 0.000710 9.104e-07 2.967e-05 4.239e-06 9.557e-06 1.344e-06 1.117e-06 0.000251 9.493e-05 0.020080 0.010620 

Cluster 3 2.223e-05 2.100e-05 3.511e-05 0.000177 5.568e-05 2.207e-07 2.133e-05 2.808e-06 5.408e-07 1.127e-06 0.000981 0.000885 0.007322 0.003978 

Cluster 4 2.035e-05 5.31e-06 0.0004252 2.729e-06 1.652e-06 1.613e-05 1.922e-06 1.778e-05 2.855e-07 3.045e-06 0.001465 0.000252 0.002371 0.000871 
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