
Evaluation of a Scenario-Based
approach to Systems Engineering

June 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Kristoffer Berg Rønning

2019
Kristoffer Berg Rønning

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

De
pa

rt
m

en
t o

f M
ec

ha
ni

ca
l a

nd
 In

du
st

ria
l E

ng
in

ee
rin

g

Evaluation of a Scenario-Based approach
to Systems Engineering

Kristoffer Berg Rønning

Reliability, Availability, Maintainability and Safety (RAMS)
Submission date: June 2019
Supervisor: Antoine Rauzy, MTP

Norwegian University of Science and Technology
Department of Mechanical and Industrial Engineering

i

Preface

This master’s thesis was carried out during the spring of 2019 at the Department of Mechanical
and Industrial Engineering, Norwegian University of Science and Technology. It is a part of a
two-year international master’s program in RAMS (Reliability, Availability, Maintainability and
Safety). There is no assumed background of the readers of this report, other than to have some
knowledge about RAMS, modelling and system terminology.

Trondheim, 11-06-2019

Kristo�er Berg Rønning

ii

Acknowledgment

I would like to thankmy supervisor, Professor Antoine Rauzy, for his great help during the writing
of this master’s thesis. I would like to thank him for always being available for meetings and for
his quick feedback to my questions.

K.B.R.

iii

Abstract

The increasing emergence of complexity in engineering systems requires good interaction be-
tween the involved stakeholders. Systems engineering is an interdisciplinary approach to develop
balanced system solutions that meets diverse stakeholders needs. It is a practice that addresses
complex and technologically challenging problems.

Model based systems engineering is an emerging approach to systems engineering where the
model of a system is the center of all system engineering activities. The bene�ts of this approach
are many. However, even though most systems are complex and dynamic, there exists fewmodels
that are complex or dynamic. They are mostly simple and static. This thesis is focused around
ScOLa, a domain speci�c modelling language that is created with the intention of supporting
system architecture studies and make it possible to describe and play scenarios. ScOLa has been
conducted to an existing level crossing system, to form an impression and evaluate the bene�ts
and usefulness of this type of modelling.

Through the project and the experiment, knowledge about ScOLa has been acquired. The dis-
cussion is focused around what ScOLa o�ers compared to other types of models in system archi-
tecture studies.

iv

Sammendrag

Den økende forekomsten av kompleksitet i tekniske systemer krever godt samspill mellom de in-
volverte interessentene. Industrielt systemdesign (systems engineering) er en tverrfaglig tilnærm-
ing til utvikling av balanserte systemløsninger som oppfyller ulike interessenters behov. Det er
en praksis som prøver å løse komplekse og teknologisk utfordrende problemer.

Modellbasert industrielt systemdesign (model-based systems engineering) er en voksende tilnærm-
ing til industrielt systemdesign hvor modellen av et system er sentrum for alle aktiviteter. Forde-
lene med denne tilnærmingen er mange. Selv om de �este systemer er komplekse og dynamiske,
�nnes det imidlertid få modeller som er komplekse eller dynamiske. For det meste er de enkle
og statiske. Denne oppgaven er fokusert rundt ScOLa, et domenespesi�kt modelleringsspråk som
er opprettet med formålet om å støtte systemarkitekturstudier, og gjøre det mulig å beskrive og
spille scenarier. Modellering i ScOLa har blitt utført på en eksisterende planovergang for å danne
et inntrykk og vurdere fordelene og nytten av denne typen modellering.

I løpet av dette prosjektet har kunnskap om ScOLa blitt tilegnet. Diskusjonen i slutten av opp-
gaven er fokusert på hva ScOLa tilbyr sammenlignet med andre typer modeller i systemarkitek-
turstudier.

Contents

Preface . i
Acknowledgment . ii
Abstract . iii
Sammendrag . iv

1 Introduction 1
1.1 Background . 1
1.2 Problem Formulation . 2
1.3 Objectives . 2
1.4 Limitations . 2

2 Systems Engineering 3
2.1 Systems Engineering . 3
2.2 The use of Systems Engineering . 4
2.3 Model-Based Systems Engineering . 6

3 ScOLa 8
3.1 Introduction to ScOLa . 8
3.2 ScOLa Wizard . 14

4 Experimental Study 17
4.1 The System . 17
4.2 Modelling with ScOLa . 20

4.2.1 Version 1 . 20
4.2.2 Version 2 . 23

4.3 Version 3 . 27

5 Summary 32
5.1 Summary . 32
5.2 Discussion . 33
5.3 Recommendations for Further Work . 34

v

CONTENTS vi

Bibliography 35

A Acronyms 37

B BPMN 38

C Scola Codes 40
C.1 Water Faucet Model . 40
C.2 Version 1 . 41
C.3 Version 2 . 43
C.4 Version 3 . 45

List of Figures

2.1 Committed LCC against time . 5

3.1 Hierarchy of blocks . 9
3.2 ScOLa model of a water faucet system . 10
3.3 ScOLa code of the system . 11
3.4 States in ScOLa . 11
3.5 Scenario in the water faucet model . 13
3.6 Output window in ScOLa Wizard . 14
3.7 Process window in ScOLa Wizard . 15
3.8 System window in ScOLa Wizard . 16
3.9 History window in ScOLa Wizard . 16

4.1 The crossing system . 18
4.2 The system architecture for version 1 . 20
4.3 The �rst four steps of the process in the scenario. (Version1) 21
4.4 Example of a choice-gateway. 22
4.5 The history of a successful scenario. 22
4.6 The railway track divided into �ve positions. 23
4.7 Domains for each component in version 2 . 23
4.8 The system architecture in version 2 . 24
4.9 Example of a movable block. 25
4.10 Example of a movable block in the middle of a scenario. 26
4.11 Example of a movable block at the terminal state. 26
4.12 The system architecture in version 3 . 28
4.13 Example of a split-gateway. 29
4.14 The updated system architecture for version 3 in the middle of a scenario. 31

B.1 BPMN . 39

C.1 Scola Code - Water Faucet . 40

vii

LIST OF FIGURES viii

C.2 Scola Code - Version 1 . 42
C.3 Scola Code - Version 2 . 44
C.4 Scola Code - Version 3 . 51

List of Tables

3.1 Base types for ports . 9

4.1 Design structure matrix for the crossing system . 30

ix

Chapter 1

Introduction

1.1 Background

The challenges of the 21st century is met by more e�ective use of science and technology. Science
provides the insight to understand the world, while engineering uses technology to build the sys-
tems that meets our needs. The systems must work as they are intended to, be built in time and
within a budget, while also being safe and reliable. As the problems are becoming more complex,
so are the engineered systems. It is impossible to design one part of a system in isolation without
considering the problem and its solution as a whole. (Freng and Freng, 2007) Traditional engi-
neering disciplines do not provide the necessary education and experience to ensure a successful
development of large, complex system from initiation to operational use. (Kossiako� et al., 2008)

The �eld of systems engineering (SE) aims to deal with the modern complex and multidisciplinary
systems by concentrating on the system as a whole. Model-based systems engineering (MBSE) is
an emerging approach to systems engineering, where the model is the center of all the systems
engineering activities. The bene�ts of using a model-based approach are many, and includes re-
duced development time, improved analysis capability, and increased potential for reuse. (Ramos
et al., 2012) (Holt et al., 2015) However, even thoughmost systems are complex and dynamic, there
are not many models that are complex or dynamic. They are mostly simple and static. (Dekker,
2011)

1

CHAPTER 1. INTRODUCTION 2

1.2 Problem Formulation

ScOLa (Scenario-Oriented Language) is a domain speci�c modelling language created by Profes-
sor A. Rauzy. It is created with the intention of supporting system architecture studies and make
it possible to describe and play scenarios. (Rauzy, 2018)

Unlike most existing models that describes system architecture statically, is ScOLa a dynamic
model that o�ers the possibility to change the system’s structure as scenarios are played. The
purpose of this thesis is to form an impression of the bene�ts and the usefulness of the scenario
based approach, ScOLa, to systems engineering.

1.3 Objectives

The thesis is divided in the following way: Firstly, a theoretical background is presented where
systems engineering and model based systems engineering is explained. The strengths and weak-
nesses of di�erent types of models are also discussed. Then, ScOLa is introduced and applied to
an existing system for an architectural study to acquire knowledge about ScOLa. The models are
described as they are made. Lastly, the results are summarized from the experimental study, and
the �ndings are discussed. The reason for doing the mentioned, is to be able to answer the main
objective of this thesis:

• Evaluate ScOLa for its ability to support system architecture studies.

1.4 Limitations

There are limitations to this thesis. ScOLa has only been applied to one concrete system, and has
not been studied in detail at a component level. The thesis have been performed by a student, and
the background knowledge about the models are based on study context, not from experience in
development of systems. The thesis is also based on the student’s ability of using ScOLa, and it
might not have been used to its optimality. Although, it gives a certain indication of the di�culties
in the learning of the modelling language.

Chapter 2

Systems Engineering

This chapter introduces systems engineering, the use of it, andmodel-based systems engineering.

2.1 Systems Engineering

To de�ne systems engineering, it is necessary to �rstly de�ne what a system is. ISO 15288:2015
(2015) describes a system as a "combination of interacting elements organized to achieve one or more
stated purposes." They are also clari�ed as "man-made, created and utilized to provide products or
services in de�ned environments for the bene�t of users and other stakeholders."

Systems engineering (SE) is an interdisciplinary approach to develop balanced systems solutions
to meet diverse stakeholders needs. It is a practice that addresses complex and technologically
challenging problems. The SE process includes activities to establish top-level goals that a sys-
tem must support, specify the system requirements, synthesize alternative system designs and
evaluate the alternatives. The process also includes allocation of requirements to the compo-
nents, integrating the components into the system, and verifying that the system requirements
are satis�ed. Having Interdisciplinary teams is an essential part of systems engineering. This is
necessary to address the diverse stakeholder perspectives and technical domains to achieve a suc-
cessful solution. The practice of SE continues to evolve with a focus on dealing with systems as
a part of a larger whole. The SE practices are therefore becoming codi�ed in di�erent standards.
This is essential to advance and institutionalize the practice across industry domains. (Friedenthal
et al., 2012)

3

CHAPTER 2. SYSTEMS ENGINEERING 4

The systems engineering perspective is based on systems thinking. Systems thinking recognizes
the importance of the whole system, and the importance of the relation of the interrelationships
of the system elements to the whole. A systems thinker understands how systems �ts into a larger
context, how they behave, and how to manage them. Systems thinking arises through discovery,
learning, modeling, sensing and talking, to better understand, de�ne and work with systems. (IN-
COSE, 2015)

Since systems engineering is based on a systems thinking perspective, it di�ers from other tradi-
tional engineering disciplines in several ways. Systems engineering is focused on the system as a
whole and its interactions with its environment and other systems. It is not only focused on the
engineering design of the system, but also with the external factors. These factors includes the
identi�cation of customer needs, the system’s operational environment, interfacing systems, and
other factors that must be accurately re�ected in system requirements documents and accommo-
dated in the system design. (Kossiako� et al., 2008)

A system engineer is responsible for leading the concept development stage. Critical design de-
cisions in the development stage cannot be based entirely on quantitative knowledge, as in tradi-
tional engineering disciplines, but instead, must often rely on qualitative judgements balancing a
variety of quantities, and make use of experience from a variety of disciplines. (Kossiako� et al.,
2008)

Systems engineering works as a bridge between the traditional engineering disciplines. The dif-
ferent engineering disciplines needs to be involved in the design and development of the large
diversity of elements in a complex system. Each element in the system must function properly in
combination with the other elements for the system to perform correctly. The various elements
in a system cannot be engineered independently, and then be assembled together to produce a
working system. The systems engineers must guide and coordinate the design of each element
to assure that the interactions and interfaces between the elements are compatible and support-
ing. Coordination of elements is especially important when individual elements are designed and
supplied by di�erent organizations. (Kossiako� et al., 2008)

2.2 The use of Systems Engineering

The need for systems engineering is increasing as the complexity in system design is escalating.
Kossiako� et al. (2008, p.3) de�nes the function of systems engineering to be to "guide the engineer-
ing of complex systems." Reducing risk associated with new systems or modi�cation to complex
systems is still one of the primary goals of systems engineers. (INCOSE, 2007)

CHAPTER 2. SYSTEMS ENGINEERING 5

The Defense Acquisition University performed a statistical analysis on projects in the US Depart-
ment of Defense. They reported that the life cycle cost (LCC) is highly determined by decisions in
the earlier phases of a project. Fig 2.1 shows that the design phase of a new system averages 15% of
the total LCC. The curve for committed cost illustrates that when 15% of the actual cost has been
accrued, 70% of the total LCC have been determined. Errors are less expensive to deal with in the
earlier phases, which demonstrates the consequences of taking decisions without the necessary
information and analysis. Systems engineering increases the e�ort performed in the concept and
design phase to exceed the percentages in the cumulative step-curve. Thereby, reducing the risk
of commitments without the su�cient study. The execution of the various life cycle phases is not
linear as illustrated, but the consequences of the decisions is the same. (INCOSE, 2007)

Figure 2.1: Committed LCC against time. (INCOSE, 2007, p.2.6)

Another factor to why systems engineering is necessary, is that the time from prototype to market
penetration of new products has dropped signi�cantly in the last 50 years. The reason for this is
that complexity has an impact on innovation and that there are fewer new product inventions.
The products and services are rather a result of incremental improvement, which means that
the life cycle of products and services is longer and exposed to increasing uncertainty. Systems
engineering processes are crucial to establish and maintain a competitive edge. (INCOSE, 2007)

CHAPTER 2. SYSTEMS ENGINEERING 6

2.3 Model-Based Systems Engineering

The increase of complexity in systems is demanding more rigorous and formalized systems en-
gineering practices. In response to this demand, the practice of systems engineering undergoes a
fundamental transition from a document-based approach to a model-based approach. The atten-
tion is shifted from producing and controlling documentation about the system, to producing an
controlling a coherent model of the system. Model-based systems engineering (MBSE) can help
with managing complexity, improve design quality, improve communications among a diverse
development team, and facilitate knowledge capture and design evolution. (Friedenthal et al.,
2012)

Systems Modeling Language (OMG SySML™)1 is a general-purpose modelling language that sup-
ports the speci�cation, design, analysis and veri�cation of systems that includes hardware, soft-
ware, data, personnel, procedures and facilities. It is a graphical modelling language with a se-
mantic foundation that represents the requirements, behaviour, structure and properties of the
system and its components. It is intended to model systems from nearly every industry domains.
(Friedenthal et al., 2012)

Models and diagramming techniques have been used in the document-based systems engineering
approach for years. However, the use of the models has been limited to support speci�c types
of analysis or selected aspects of system design. The respective models have not been integrated
into a coherent model of the whole system. Neither have the modelling activities been integrated
into the systems engineering process. The transition from document-based SE to MBSE is a shift
in emphasis form controlling documentation about the system, to controlling the model of the
system. (Friedenthal et al., 2012)

A model is a representation of one or more concepts that can be realized or exists in the physical
world. It describes a domain of interest. A model is an abstraction that does not contain every
detail of the modeled entities within the domain of interest. Models can be abstract mathematical
and logical representations, or concrete physical prototypes. The abstract representation may be
a combination of graphical symbols. Such as nodes and arcs on a graph or geometric representa-
tions, or text as in a programming language. An example of a model is a blueprint of a building
and a prototype physical model. The blueprint is a speci�cation for one or more buildings that
are built. It is an abstraction that does not contain all the detail of the building, such as detailed
characteristics of its materials. (Friedenthal et al., 2012)

1OMG SySML™includes nine types of diagrams. They will not be discussed individually since it is not the scope
of this thesis. This also applies to other types of models.

CHAPTER 2. SYSTEMS ENGINEERING 7

A model expressed in SysML is comparable to a building blueprint that speci�es a system to
be implemented. Rather than a geometric representation of the system, the SysML model rep-
resents the behaviour, properties, structure, constraints and requirements of the system. SySML
has a semantic foundation. It speci�es the types of model elements and the relationships that can
appear in the model. The model elements are stored in a model repository and can be represented
graphically. (Friedenthal et al., 2012)

Modelling can support many purposes, such as representing a system concept or specifying sys-
tem components. A satisfying model meets its intended purpose within the resource constraints
of the modelling e�ort. (Friedenthal et al., 2012)

There exist di�erent type of models, at di�erent levels of abstraction, in di�erent modelling for-
malisms. It is possible to divide the models in two fundamental categories. Pragmatic models, that
primarily supports the communication between stakeholders, and formal models that primarily
aims at calculating, simulate or generate artifacts such as computer codes or physical objects.
SysML-models written in graphical notation are pragmatic models. As mentioned, their purpose
is to facilitate communication, and therefore they keep implicit a lot of knowledge and take a
broad outlook on the system under study. Formal models encodes and organizes mathematical
equations. The models make everything explicit, by focusing on some speci�c feature of the sys-
tem under study. (Rauzy and Haskins, 2018)

The two categories can easily be separated by obfuscation. If the elements in a pragmatic model
is renamed to something abstract as X, Y, Z, the model is not understandable, because the model
has to refer to the system under study. Stakeholders that share a common knowledge about the
system will now struggle with the understanding of the model, since its components have been
renamed. By making the same obfuscation for a formal model, nothing changes. The calculations
performed on the model will give the same result. Formal models have semantics, meaning that
they are interpreted as mathematical objects. Unlike pragmatic models, that are interpretations
of the "real" or "physical" world. Pragmatic and formal models have di�erent purposes, but both
are useful in system engineering processes. (Rauzy and Haskins, 2018)

Chapter 3

ScOLa

This chapter describes what ScOLa is, what to include in the making of a successful scenario, and
an example. The chapter is based on the PowerPoint-presentation, "Scola: a scenario-oriented
language. (2018)", made by Professor Antoine Rauzy.

3.1 Introduction to ScOLa

ScOLa is a domain speci�c modelling language and is an acronym for Scenario-oriented language.
It is a textual language that aims at supporting systems architecture studies, by giving the archi-
tecture the possibility to describe and play scenarios. Any text editor can be used in the making
of the models. (Rauzy, 2018)

ScOLa consists of three important concepts (Rauzy, 2018):

• Systemarchitecture, which is the decomposition of a system into a hierarchy of connected
components.

• Scenarios, which are the sequences of actions that is performed on the system, and may
reconstruct the system architecture.

• Processes, which is the execution of the scenarios.

The model itself is made of two parts. It is a description of the functional or physical decomposi-
tion of the system, and a description of scenarios applying on this system. Rauzy (2018)

8

CHAPTER 3. SCOLA 9

System architecture The description of the system consists of a hierarchy of blocks, where
the top-most block represent the system. Every block can compose any number of sub-blocks as
graphically shown in Figure 3.1. (Rauzy, 2018)

Figure 3.1: Hierarchy of blocks.

Each block can include ports and assertions. A port is a holder for an atomic value (Boolean, inte-
ger, symbol, string etc.), and an assertion is an instruction that updates the values of these ports.
Every block, port and assertion can be dynamically created, moved and removed. (Rauzy, 2018)

The included base types for ports in ScOLa are Boolean, integers, reals, symbols and strings (See
Table 3.1). Rauzy (2018)

Base Type Description
Boolean True/False
Integer Any number that can be written without a fractional component
Real Any non-imaginary number
Symbol Any symbol (the symbol must belong to a de�ned domain)
String A set of characters. Typically used to represent text

Table 3.1: Base types for ports

Note that the symbolic base type is restricted by declaring domains. The value of the symbolic
port can only be set to a value included in the domain. For example, for the domain "UnitState"
as shown below, the value can be set as either WORKING, FAILED or REPAIR. (Rauzy, 2018)

domain UnitState WORKING, FAILED, REPAIR

CHAPTER 3. SCOLA 10

The assertions that can be included in the blocks make it possible to describe the connections
existing between a system’s components. For example energy or �ow of matters. The assertions
are instructions that updates the values of ports after executions of tasks. (Rauzy, 2018)

A small system consisting of a water supply and a faucet is modelled in ScOLa to show the blocks,
ports and assertions. Figure 3.2 shows two screenshots of this model. The blocks are as mentioned
representing the system and sub-systems/components. From this point on, every sub-system that
is listed as the bottom-most block, will be referred to as a component. Here, the top-most block
(the whole system) consists of two sub-blocks, which are the water supply and the water faucet.
The water supply block consists of a port with a Boolean base type. It is dependent on whether
there is an out�ow of water from the tank or not (true or false). The water faucet block consists of
three ports. One port with a symbolic base type that de�nes if the water faucet is open or closed,
and two ports with Boolean base types that de�nes the �ow of water. The included assertions
make it possible to describe the connections and dependability of the system’s components. For
example, the in�ow to the water faucet is dependant on the out�ow from the water supply. An-
other example is the out�ow from the water faucet which is dependant on both the in�ow of the
faucet and the state of the faucet.

(a) Screenshot of the model with a closed faucet. (b) Screenshot of the model with an open faucet

Figure 3.2: Two screenshots of the water faucet model.

Figure 3.3 shows the code that de�nes the system1. The �rst line de�nes the domain of the faucet,
which can be set to either OPEN or CLOSED. Line 3-18 describes the system and its components.
The assertion within the water faucet block (line 11-13) describes the connections within this
block. The assertion at line 15-17 describes the connections between the blocks. The ports are
selected by stating which block, and then which port, separated by a dot.

1The screenshot of the code only shows the system architecture. The code also includes a scenario which is
executed by a process, but it is not shown in this �gure. The full code can be found in Appendix C.1

CHAPTER 3. SCOLA 11

Figure 3.3: ScOLa code of the water faucet system.

Scenarios Every scenario can compose any number of sub-scenarios. The scenarios are made
of states, tasks and gateways. The states primarily works as the initiator and the completer of
scenarios, and can be categorized into three types. Looking at a scenario with a timeline from left
to right, they can be described as: (Rauzy, 2018)

• Initial states, which are the states that do not occur as the right member of a next directive.
• Terminal states, which are the states that do not occur as the left member of a next direc-
tive.

• Intermediate states, which are the other states.

The states in ScOLa are graphically represented as circles as shown in Figure 3.4. The initial and
terminal states are important to include in ScOLa since they de�ne the start and the end of the
scenarios. The intermediate states are not necessary to include, but they may contribute to a more
clearly scenario. (Rauzy, 2018)

Figure 3.4: States in ScOLa (Picture retrieved from (Rauzy, 2018, p.26))

CHAPTER 3. SCOLA 12

The tasks are containers of instructions in the scenarios, that can modify the system description.
Instructions are used in both tasks and assertions, and can be divided into two groups: (Rauzy,
2018)

• Instructions that are set to assign, instructions that are conditional and blocks of instruc-
tions. (Can be used both in tasks and assertions)

• Instructions that create, remove and move components.
(Can only be used in tasks)

A gateway in ScOLa is a choice maker in the scenarios, which makes it possible to de�ne the path
of the process. ScOLa provides seven di�erent types of gateways that o�ers di�erent possibilities:
(Rauzy, 2018)

• Test - This gateway can have any number of output branches. A process located on the test-
gateway can only move forward if one and only one of the conditions labeling the branches
is veri�ed.

• Choice - This gateway can have any number of output branches. A process located on the
choice-gateway can move forward on any of the output branches.

• Fork - This gateway can have any number of output branches. If a process is located on the
fork-gateway, the process is deactivated, and new processes is created on each the branches.
The new processes are not related to the previous process that created them.

• Join - This gateway can have any number of input branches. It does the opposite of a
fork-gateway. When there is a process in each of the input branches, the join-gateway
can advance. The processes are then deactivated, and a new process is created. If several
processes are arriving on an input branch, they are stored into a queue. The �rst one in,
will be the �rst one out.

• Split - This gateway can have any number of output branches. The split-gateway is similar
to a fork-gateway since new processes are started on each branch. However, the split-
gateway stores the deactivated process (parent process) and links it to the created processes
(children processes).

• Merge - This gateway can have any number of input branches. It does the opposite of a
split-gateway. The processes that arrives on the input branches are stored. When every
children process of a parent process is located at themerge-gateway, they can advance. The
children processes are then deactivated and the parent process from the split-gateway is
reactivated.

• Meet - This gateway can have any number of branches. Both input and output branches.
The gateway manages incoming processes �rst, and store them in queues. First one in, is
�rst one out. When there is a process in each input branch, the processes can advance. The
processes are then moved to a new location of output branches.

CHAPTER 3. SCOLA 13

Process The scenarios are executed by processes. A process always starts at the initial state of
the scenario and then moves on through the scenario performing every task and gateways until
it reaches the terminal state (if there is one). The process can perform a task if it can execute all
the instructions of the task. The instructions are performed completely without interruption.

Figure 3.3 shows the scenario of the water faucet system described earlier in this chapter. In
the scenario, there are included an initial state and two tasks. The tasks includes an instruction to
open (or close) the faucet handle. Line 29-31 shows how the process moves through the scenario.
Next couples states, tasks and gateways together. The process starts at the initial state and moves
to the task OpenHandle, which performs the instruction. The process then moves to the next task
which is CloseHandle and performs the instruction. Note that the scenario does not include a ter-
minal state, and the scenario therefore never has an ending. The process only switches between
the two tasks.

Figure 3.5: Scenario in the water faucet model

CHAPTER 3. SCOLA 14

3.2 ScOLa Wizard

ScOLa Wizard is the software that displays the models. It consists of four windows; output, pro-
cesses, system and history. The water faucet model described in chapter 3.1 is being used.

Output This window shows which model that is being displayed, if the simulation has started
or stopped, and possible errors. Figure 3.6 shows the layout of the output-window. It shows that
the water faucet model is being displayed and that there are zero errors. It also shows that the
simulation has started at the initial state.

Figure 3.6: Output window in ScOLa Wizard

Processes This window shows where the process(es) is/are located in the scenario. Figure 3.7
shows the initial state of the scenario, and the �rst task which is OpenHandle. The process is
moved by the use of the next-button on the bottom of the screen. If an error is made, it is possible
to go back with the back-button. The number at the bottom indicates which process is chosen.
If a model has several processes, each process has their own number, and it will be possible to
choose between them.

CHAPTER 3. SCOLA 15

Figure 3.7: The process window in ScOLa Wizard. The �rst picture shows the initial state. The second
picture shows the next step of the process in the scenario, which is the task to open the handle.

CHAPTER 3. SCOLA 16

System This window shows the system architecture. The architecture might change if a sce-
nario is played. It is decided by the position of the process in the scenario. Figure 3.8 shows the
water faucet system with a closed faucet.

Figure 3.8: System window in ScOLa Wizard. It shows the whole system and its components, repre-
sented by blocks.

History This window shows the history of each step of the process(es). See Figure 3.9. The
history has greater importance when the scenario includes more than only two tasks.

Figure 3.9: History window in ScOLa Wizard. It shows the whole history of the scenario that has
been played, i.e. each step of the process.

Chapter 4

Experimental Study

This chapter describes a level crossing systemmodelled with ScOLa. The same system is described
throughout the whole chapter, but is gradually changed into more complex versions. This is done
with the intention of making it easier for the reader to understand ScOLa and the system itself.
The level crossing described in this chapter is based on one of the barrier crossing systems from
ORR (2011). Small changes have been done to �t the Norwegian right hand tra�c.

4.1 The System

A level crossing is a crossing point between railway tra�c and regular road tra�c (cars, pedes-
trians etc.) To ensure a safe interaction for the stakeholders at the level crossing, there exists a
safety system. This safety system makes sure that when a train approaches the level crossing, no
other tra�c is able to cross until the train has passed.

The safety system that enables this safe interaction is here called a crossing system, and con-
sists of light signals for road tra�c, an audible warning, four barriers, an obstacle detector and
light signals for the railway tra�c. Figure 4.1 shows an image of the crossing system. The num-
bers shows the order of which the events of the system reacts, and are described in detail under
the �gure.

17

CHAPTER 4. EXPERIMENTAL STUDY 18

Figure 4.1: Crossing system with numbers (Picture retrieved from (IHI, 2018))

The scenario and the order of events of the crossing system are as following: (A BPMN of the
same scenario is included in Appendix B for a graphical view.)

• Detection of train (nr.1); start sequence of events to close road tra�c.
• Tra�c lights in both directions switches to amber light, and the audible warning begins
(nr.2). The light shows for approximately 3 seconds.

• Immediately after the amber light are extinguished, the red light shows.
• Approximately 4 to 6 seconds later, the right hand barriers should start to descend (nr.3).
The barriers reach the lowered position in 6 seconds.

• After the right hand barriers are lowered, a scan of the crossing area is performed by the

CHAPTER 4. EXPERIMENTAL STUDY 19

obstacle detector (nr.4). If the crossing is clear, the left hand barriers will begin to descend
immediately (nr.5). If an obstacle is detected, there will be an interval before the left hand
barriers starts to descend.

• The audible warning should stop after all the barriers are lowered.
• The crossing is scanned again to check whether the crossing is clear.
• Railway signals gives signal to the train that the passage is clear.
• Barriers rises after the train has passed, and the red light is extinguished as the barriers rise.

CHAPTER 4. EXPERIMENTAL STUDY 20

4.2 Modelling with ScOLa

This section describes the modelling of the crossing system with ScOLa. The model is updated
along with the versions to include a larger amount of components and functions. This means
that the �rst versions does not include every aspect possible in ScOLa, however, they describe the
system in a good way.

4.2.1 Version 1

The �rst version of the model1 includes the crossing system components and a train. This version
can be compared to a BPMN, however, instead of a static graphical view, this version shows a
dynamic textual description. The system in this model consists of seven blocks (see �gure 4.2).
Each block represents a component of the system. The crossing system (whole system) is the
the top-most block, while the six other components are sub-blocks, and consists of the train2,
light signals, audible warning, barriers, obstacle detector and railway signals. Figure 4.2 shows a
picture of the system architecture in ScOLa and the hierarchy of nested blocks.

Figure 4.2: System architecture of the crossing system.

1The ScOLa code can be found in Appendix C.2
2It is not entirely correct that the train is a part of the crossing system. It should instead be listed as another

system that interacts with the crossing system. In version 2 and 3, the train is an interacting system.

CHAPTER 4. EXPERIMENTAL STUDY 21

Since the system architecture is de�ned, it is possible to construct scenarios. The scenarios can
then be executed, step by step in ScOLa. The following �gures shows the execution of the success-
ful passing of a train as described in chapter 4.1. It is possible to play other scenarios as well, but
they are not included in this version. The scenario is named TrainPassing3 and consist of several
sub-scenarios, which are the scenarios of each component. The sub-scenarios are named after the
components, but with a following -Lane at the end. For example, the sub-scenario of the train
is named TrainLane. This is done with the intention of making the model similar to BPMN. The
BPMN of the same scenario can be found in appendix B. The Lane-name can be can be compared
to the lanes in the BPMN.

The scenario is executed as mentioned in chapter 3.2 by using the next-button. Figure 4.3 shows
the initial state, and the three following tasks of the scenario. It is possible to read from steps that
the light signals switches to amber light after the train has passed a certain point along the tracks.

Figure 4.3: The process’ �rst four steps in the scenario.

Step four is a choice-gateway, where several (in this case two) paths in the scenario are possi-
ble. The choice that the process has to take here, is whether or not the amber lights have been
shown for three seconds.

3The name of the scenario (and sub-scenarios) can be set to what is desired.

CHAPTER 4. EXPERIMENTAL STUDY 22

The choice is taken by the use of the yes/no-button as shown in Figure 4.4. If the process follows
the wrong path, it is possible to go back with the use of the back-button and chose another path.

Figure 4.4: When a gateway is reached in a scenario, there is possible to chose a path. In this case,
there are two paths possible, dependent on whether or not the amber lights have been shown for three
seconds.

The history of the scenario of the successful passing of the train is shown in Figure 4.5. Comparing
it to the BPMN in appendix B, shows the similarity. The ScOLa model described the scenario
dynamically step by step, while the BPMN shows the whole scenario graphically with one picture.

Figure 4.5: History of a successful train passing scenario.

CHAPTER 4. EXPERIMENTAL STUDY 23

4.2.2 Version 2

The second version of the model introduces two other functions of ScOLa. The �rst function is
the possibility of having mobile components, that can be moved from one place to another in the
model. The other function is the possibility of updating the states of the components. To display
these functions in a proper way, the railway track is now divided into �ve parts. See Figure 4.6.
The crossing system is placed at the level crossing (coloured rectangle).

Figure 4.6: The railway track divided into �ve parts with the level crossing in the middle.

In this version, the train is placed outside the crossing system and works as an interacting sys-
tem, contrary to version 1, where it was placed inside. The train’s initial position is in Position 1
and follows the direction of the arrow through the level crossing until it reaches Position 5. The
position of the train determines how the crossing system reacts, and updates the states of each
component throughout the scenario. The states of the components are determined by ports with a
symbolic base type, and the values included in the domains can be seen in �gure 4.7. For example,
the domain for the light signals have three values. NONE, AMBER and RED.

Figure 4.7: The domains for each component in version 2.

CHAPTER 4. EXPERIMENTAL STUDY 24

The system architecture for the components of the crossing system in version 2 (See Figure 4.8) is
equal to the one in version 1. However, instead of being sub-blocks of the crossing system, they
are now ports of the crossing system block. The barriers have also been divided into right hand
barriers and left hand barriers. The crossing system is now positioned at the correct place, which
is at the level crossing.

Figure 4.8: The system architecture in version 2

CHAPTER 4. EXPERIMENTAL STUDY 25

In this version it is more interesting to see the evolution of the system architecture as the train
moves through the positions. Figure 4.9 shows that the train has moved from Position 1 to Position
2 and the values of the light signals and the audible warner have been updated.

Figure 4.9: The train at Position 2.

In �gure 4.10, the process have been moved further, which have resulted in the train being located
inside the level crossing. Figure 4.11 shows the terminal state, and the train being located at
Position 5. The ports of the level crossing have now been changed back to their initial value.

CHAPTER 4. EXPERIMENTAL STUDY 26

Figure 4.10: The train placed inside the level crossing.

Figure 4.11: The train at position 5.

CHAPTER 4. EXPERIMENTAL STUDY 27

4.3 Version 3

The third version includes assertions and several gateways. It also includes a power supply, and
the possibility of adding and removing (create and destroy) trains in the model. Figure 4.12 shows
the initial system architecture. The system has three sub-blocks that describes the power supply,
the crossing system, and the train position, respectively. The power supply and the crossing sys-
tem includes their own sub-blocks with assertions. It is the assertions that makes it possible to
describe the connections between the components.

The power supply exists of two sub-systems and has a standby redundancy. The emergency
power is the standby element, and will only be activated if the main power fails. If the emergency
power also fails, the crossing system will have no power source. Every component in the crossing
system will then enter a failed state.

The crossing system looks similar to the crossing system in version 2 (�gure 4.8). However, now
the crossing system block consists of sub-blocks instead of only ports. The sub-blocks have their
own ports that are dependent on the power.

The train position block is still divided into �ve parts, but includes the possibility of adding trains.
There are no trains included at the initial position of the process.

CHAPTER 4. EXPERIMENTAL STUDY 28

Figure 4.12: The system architecture in version 3.

CHAPTER 4. EXPERIMENTAL STUDY 29

In this version it is possible to de�ne the states of the crossing system before they are introduced.
Firstly, the power supply is de�ned. If the main power is chosen as working, the process continues
to de�ning the crossing system states. If the main power is chosen as failed, the state of the emer-
gency power has to be chosen. The same choice applies here. If the emergency power is chosen
as working, the process continues to de�ning the crossing system states. If the emergency power
also is chosen as failed, all the components in the crossing system fails, since they are dependent
of power.

When the power supply state has been de�ned, the process is deactivated and six new processes
are created. One for each component of the crossing system. Here, the states of the components
are chosen. Some of the components are dependent of each other for safety reasons. For example,
if the right barriers are in a failed state, the left barriers also enters a failed state. If a car is able
to enter the level crossing, there should not be a barrier that disables the car from leaving the
crossing area. A few other components also have dependencies, and are described in a design
structure matrix (Table 4.1).

Figure 4.13: The split-gateway deactivates the parent process (but stores it), and activates six new
processes. One for each component of the crossing system. The list of numbers allows the user of the
software to change between the processes. After the states of every component has been de�ned, the
children processes are deactivated, and the parent process is reactivated.

CHAPTER 4. EXPERIMENTAL STUDY 30

DSM 6 1 2 3 4 5 6
Light Signals 1 x x x x x
Audible Warning 2
Right Barriers 3 x
Left Barriers 4
Obstacle Detector 5 x
Railway Signals 6

Table 4.1: Design structure matrix for the crossing system.

Table 4.1 shows the dependencies between the components in the crossing system. Especially
one component; the light signals, have a lot of dependencies. If the light signals fail, all the other
components enters a failed state for safety reasons. It is seen as safer to have no crossing system,
than to have a crossing system without light signals. For example, a barrier should not start to
descend when a driver is about to enter level crossing.

Even though the crossing system has been modelled to satisfactory accuracy, some assumptions
have been made:

• There exists a sign next to the railway signals, that tells the train driver to drive a certain
speed if the railway signals are in a failed state. If the speed of the train is reduced due to a
system/component failure, the possibility of a collision is decreased. This also allows trains
to pass even if there is a failure. There also exists a sign next to the light signals that tells
the driver to give way for the trains.

• If there exist more than one train in the model at the same time, the following train(s) are
not allowed to enter Position 2 before the foremost train has passed Position 4.

• After the state of the system has been de�ned, no failure can happen.

Figure 4.14 shows the state of the system in the middle of a scenario. The system is de�ned as
powered by the emergency power, and that the obstacle detector and the left hand side barriers
are in a failed state. Two trains are positioned in the model, at Position 2 and Position 5. From the
integer number, it is possible to see that it is train number 6 and 7 that has passed the de�ned
railway distance under study.

CHAPTER 4. EXPERIMENTAL STUDY 31

Figure 4.14: The updated system architecture for version 3 in the middle of a scenario.

Chapter 5

Summary and Recommendations for
Further Work

This chapter concludes the thesis, and proposes some recommendations for future work.

5.1 Summary

In this thesis, a scenario based approach to modelling in systems engineering was conducted to
form an impression of the bene�ts and usefulness of this type of modelling. Firstly, in chapter
2, theoretical background about systems engineering and model based systems engineering was
described. This was done to gain knowledge about the systems engineering �eld and why there
is a need for it. Another reason for its included purpose, was to acquire knowledge about the
di�erent existing types of models that could be compared to ScOLa. Chapter 3 introduced ScOLa
by explaining the di�erent concepts of ScOLa, and how the modelling language is built in order
to make it possible to play scenarios and change the systems architecture by the execution of
processes. The chapter also included a small guide of how to understand and operate in the layout
of the software, ScOLa Wizard. The following chapter, (chapter 4), introduced a level crossing
system that was modelled with ScOLa in three di�erent versions. The reasons for dividing it into
three versions was the intention of introducing the various possibilities of ScOLa in parts. Each
version of the model was reviewed based on the chosen scenario and the included function(s).
The �ndings and the acquired knowledge from the experimental study laid the foundation for the
discussion in chapter 5.2.

32

CHAPTER 5. SUMMARY 33

5.2 Discussion

Many models used in MBSE (mainly OMG SySML™) are pragmatic models. Their purpose is to
facilitate communication, keep a lot of information and take a broad outlook on the system under
study. These kind of models use graphical notation and works excellent for their purpose, but lack
information when it comes to focusing on details of the system components and the behaviour of
the system. The formal (or semantic) model, ScOLa, provides the possibility to model the system
architecture and its response to di�erent scenarios, and also to see the behaviour of its connected
components.

However, ScOLa should be complemented by another graphical model that also describes the
system to fully understand the system under study. It is complicated to interpret a system based
on only the textual information ScOLa provides. In some cases, a graphical model might also be
needed in the making of a model in ScOLa.

Another point important to mention, is the modelling language itself. For a person with lim-
ited knowledge about programming, there might be some issues. The modelling is relatively easy
to understand when it comes to making a system with few sub-blocks, a gateway and a couple
of transitions between the states and tasks. The problem arises when trying to include several
sub-blocks of sub-blocks and the assertions between these. The assertions might also be depen-
dent on di�erent operators that is di�cult to decipher without any programming background.
ScOLa Wizard gives an indication of which line the error is in, but even then, it can be di�cult to
detect it. The author of this thesis has only one point of view on this matter and cannot therefore
conclude with the opinion of others.

The objective for this thesis was to "Evaluate ScOLa for its ability to support system architec-
ture studies." (chapter 1.3) To answer this question, it is necessary divide it into two perspectives.
Does ScOLa contribute to a better understanding of the system architecture? Yes, it clearly does,
since it o�ers something di�erently compared to the popular models used in MBSE. However, in
a competitive market, where the focus is on delivering solutions at the lowest possible cost, and at
the shortest possible time, there is a question about the gain vs. the work load. Creating a model
in ScOLa for simple systems might be easy, but it provides information that can be extracted from
other models. It is in complex systems that ScOLa o�ers the most, since it is hard to understand
the system architecture and its behaviour. The development of models by the use of ScOLa are
di�cult when they become complex, and the time spent here might not be cost e�cient.

CHAPTER 5. SUMMARY 34

5.3 Recommendations for Further Work

The recommendations for further work have been divided into two groups; recommendations for
further work and recommendations for inclusions in ScOLa.

Recommendations for further work

• It is possible to make the system even more complex, at a much more detailed component
level. The scalability of ScOLa should therefore be tested to check its ability to comprehend
additional work load.

• It can be interesting to make a test project where engineers working with system design
tests ScOLa in a work context. Engineers that have worked with designing of systems have
a completely di�erent view of how things work, since they have practical knowledge. Also,
the test subjects should be divided into two groups; one group where all the subjects have
background related to programming, and one group where the subjects have none. This
makes it possible to state whether or not the language is too complicated.

Recommendations for ScOLa

• One thing encountered while working with ScOLa, was the di�culties with the controlling
of assertions. For example, the assertions between the components in version 3 (chapter
4.3). Here, the desirable transition when one of the components failed, was not for the other
components to enter a failed state. Instead, they should be turned o�. When working with
a port with a symbolic base type with >2 values, the assertions were hard to control, since
di�erent scenarios should make di�erent transitions. An assertion that makes a transition
based on what the previous state was, is desirable. (See next paragraph).

In retrospective, the desired transition might have been possible if a third port was added and
were dependent on both the port with the symbolic base type and the port with the Boolean base
type.

Bibliography

Dekker, S. (2011). Drift into Failure, From Hunting Broken Components to Understanding Complex
Systems. Ashgate Publishing Limited.

Freng, C. E. and Freng, P. D. (2007). RAE Report Web. (293074).

Friedenthal, S., Moore, A., and Steiner, R. (2012). A Practical Guide to SysML The Systems Modeling
Language. Morgan Kaufmann, 225 Wyman Street, Waltham, MA 02451, USA, 2nd edition.

Holt, J., Perry, S., Payne, R., Bryans, J., Hallerstede, S., and Hansen, F. O. (2015). A model-based
approach for requirements engineering for systems of systems. IEEE Systems Journal, 9(1):252–
262.

IHI (2018). IHI’s technologies adopted for cold, snowy regions. Intelligent InformationManagement
Headquarters of IHI Corporation.

INCOSE (2007). SYSTEMS ENGINEERING HANDBOOK A GUIDE FOR SYSTEM LIFE CYCLE
PROCESSES AND ACTIVITIES. INCOSE SYSTEMS ENGINEERING HANDBOOK, version 3.1.

INCOSE (2015). About systems engineering.

ISO 15288:2015 (2015). Systems and software engineering - System life cycle processes. Standard,
International Organization for Standardization, Geneva, CH.

Kossiako�, A., N. Sweet, W., J. Seymour, S., and Biemer, M. (2008). Systems engineering principles
and practice, volume 20. Wiley, 2nd edition.

ORR (2011). Level crossings : A guide for managers , designers and operators Railway Safety
Publication 7. Regulation, (December).

Ramos, A. L., Ferreira, J. V., and Barceló, J. (2012). Model-based systems engineering: An emerg-
ing approach for modern systems. IEEE Transactions on Systems, Man and Cybernetics Part C:
Applications and Reviews, 42(1):101–111.

Rauzy, A. (2018). Scola: a scenario-oriented language. Norges teknisk-naturvitenskapelige univer-
sitet.

35

BIBLIOGRAPHY 36

Rauzy, A. B. and Haskins, C. (2018). Foundations for model-based systems engineering andmodel-
based safety assessment. Department of Mechanical and Industrial Engineering, Norwegian Uni-
versity of Science and Technology (NTNU).

Appendix A

Acronyms

BPMN Business Process Model and Notation

DSM Design Structure Matrix

MBSE Model-Based Systems Engineering

SE Systems engineering

RAMS Reliability, Availability, Maintainability, and Safety

ScOLa Scenario-Oriented Language

37

Appendix B

BPMN

A BPMN of the scenario described in chapter 4.1 is shown on the following page.

38

APPENDIX B. BPMN 39

Figure B.1: BPMN

Appendix C

Scola Codes

This appendix shows every Scola code that has been discussed through this thesis, and are listed
in the same order as presented in the thesis.

C.1 Water Faucet Model

Figure C.1: Scola Code - Water Faucet

40

APPENDIX C. SCOLA CODES 41

C.2 Version 1

APPENDIX C. SCOLA CODES 42

Figure C.2: Scola Code - Version 1 (divided into three �gures)

APPENDIX C. SCOLA CODES 43

C.3 Version 2

APPENDIX C. SCOLA CODES 44

Figure C.3: Scola Code - Version 2 (divided into �ve �gures)

APPENDIX C. SCOLA CODES 45

C.4 Version 3

APPENDIX C. SCOLA CODES 46

APPENDIX C. SCOLA CODES 47

APPENDIX C. SCOLA CODES 48

APPENDIX C. SCOLA CODES 49

APPENDIX C. SCOLA CODES 50

APPENDIX C. SCOLA CODES 51

Figure C.4: Scola Code - Version 3 (divided into 14 �gures)

