
Jørgensen &
 K

vannli
Efficient G

eneration of P
arsons P

roblem
s for D

igital P
rogram

m
ing Exam

s in Inspera

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Jørgensen, Joachim William Hegvold
Kvannli, Simon

Efficient Generation of Parsons
Problems for Digital Programming
Exams in Inspera

Master’s thesis in Masters of Informatics
Supervisor: Sindre, Guttorm

June 2019

Jørgensen, Joachim William Hegvold
Kvannli, Simon

Efficient Generation of Parsons
Problems for Digital Programming
Exams in Inspera

Master’s thesis in Masters of Informatics
Supervisor: Sindre, Guttorm
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

For generations, programming exams at the Norwegian University of Science and
Technology (NTNU) have been performed using pen and paper. But recently,
digital exams were introduced by utilizing the Inspera Assessment platform, which
offers a number of new question types. However the creation of some of these
question types are not always as efficient or user friendly as the course supervisors
would prefer, which is what this thesis proposes a solution for.

The aim of this thesis was to design and create a prototype for efficient generation
of drag and drop Parsons problems for digital programming exams in the Inspera
Assessment platform. The thesis also evaluates the effect of this prototype, in
regards to usability, compared to the manual creation of said questions. The pro-
posed system aims to automate the task generation process, as a mean to increase
efficiency, effectiveness, and satisfaction.
The prototype was designed to generate drag and drop tasks using the IMS Ques-
tion and Test Interoperability specification (QTI) format version 2.1, as required by
Inspera to import external questions. QTI 2.1 is a standard format created to facil-
itate interoperability between systems, meaning that the work of this thesis is not
restricted to Inspera alone, but can also be applied to other platforms supporting
QTI 2.1.

Based on user testing, the proposed automation system showed significant im-
provements in all aspects of usability, meaning efficiency, effectiveness, and satis-
faction among the test participants. Overall, the system was highly preferred for
creating drag and drop Parsons problems instead of manually creating them using
Inspera.

iii

iv

Sammendrag

Programmeringseksamener ved Norges teknisk-naturvitenskapelige universitet
(NTNU) har tidligere blitt utført med penn og papir, men gjennom et sammarbeid
med Inspera Assesment har universitetet nå introdusert digitale eksamener, som
tilbyr et mangfold av flere nye oppgavetyper. Bakdelen med noen av disse opp-
gavetypene er at de kan være tidkrevende og lite brukervennlig for faglærere å lage.
Denne masteroppgaven presenterer en mulig løsning for denne problemstillingen.

Målet med denne masteroppgaven var å designe og utvikle en prototype for ef-
fektiv generering av dra og slipp Parsons problems for digitale programmeringsek-
samener i Inspera Assesment plattformen. Denne oppgaven evaluerer også effek-
ten av denne prototypen, med tanke på brukervennlighet, i forhold til den manuelle
prosessen med å lage disse oppgavene. Det foreslåtte systemet sikter på å automat-
isere deler av prosessen for å øke effektivitet og tilfredshet blant faglærere.
Prototypen var designet for å generere dra og slipp-oppgaver ved å bruke IMS
Question and Test Interoperability specification (QTI) format versjon 2.1, som
er påkrevd av Inspera for å importere eksterne oppgaver. QTI 2.1 er et stand-
ard format laget for å legge til rette for interoperabilitet mellom systemer, noe som
betyr at resultatet av denne masteroppgaven ikke er begrenset til bare Inspera, men
kan også brukes av andre plattformer som støtter QTI 2.1.

Basert på brukertester viste den foreslåtte prototypen signifikante forbedringer i
alle aspekter av brukervennlighet, altså effektivitet og tilfredstilhet blant testdeltagerene.
Alt i alt var systemet foretrukket framfor å manuelt lage dra og slipp Parsons prob-
lems i Inspera.

v

vi

Preface

This thesis concludes our five year journey at the Norwegian University of Sci-
ence and Technology (NTNU), at the Department of Computer Science (IDI). The
project was conducted during the fall of 2018 and spring of 2019, and is the final
submission for the degree of Masters of Informatics.

We would like to offer a big thank you to our supervisor, Professor Guttorm Sindre,
for providing valuable academic guidance and feedback throughout the project.
We would also like to extend our gratitude to Madeleine Lorås for insightful feed-
back on the report structure, and to the people who took time out of their busy
schedules to perform user tests of the prototype. And finally, we would like to
thank our families for their continuous support throughout the years.

Trondheim, June 2019

Joachim Jørgensen and Simon Kvannli

vii

viii

Contents

List of Tables xvi

List of Figures xx

Abbreviations 1

1 Introduction 3

1.1 Motivation . 3

1.2 Previous Work . 4

1.3 Research Questions . 4

1.4 Scope . 5

1.5 Contributions . 5

1.6 Thesis Outline . 6

2 Background 7

2.1 Parson’s Problem . 7

2.1.1 Good Coding Structure 8

2.1.2 Distractor Options . 8

2.1.3 Modified Parsons Problems 9

ix

x CONTENTS

2.1.4 Efficient Marking . 10

2.1.5 Cognitive Load . 11

2.2 E-learning and E-assessment . 12

2.2.1 QTI . 13

2.3 Inspera Assessment . 14

2.3.1 Drag and Drop . 16

2.3.2 Storage Persistence for Exercises 16

2.4 Drag and Drop Design in Inspera 16

2.4.1 Limitations . 16

2.4.2 Drag Area Anchor . 18

2.4.3 Design Options . 19

2.5 Creating Tasks Manually with Inspera 20

2.5.1 Create a New Task . 21

2.6 Automation . 24

2.7 Design . 25

3 Related Work 31

3.1 TAO . 31

3.2 ONYX Editor . 32

3.3 CORT . 33

3.4 JS-Parsons . 33

4 Research Methodology 35

4.1 Research Strategies . 35

4.1.1 Research Question 1 . 35

4.1.2 Research Question 2 . 37

4.2 Data Generation Methods . 43

CONTENTS xi

4.2.1 Data Generation Method for the Design and Creation Strategy 43

4.2.2 Data Generation Method for the Experiment Strategy . . . 44

4.3 Evaluation . 50

4.3.1 Research Question 1 . 50

4.3.2 Research Question 2 . 50

4.4 System Development Method . 56

4.4.1 Agile Software Development 56

4.4.2 Extreme Programming 58

4.4.3 Software Prototyping . 59

4.4.4 Kanban . 60

4.4.5 Testing . 60

5 Results 63

5.1 Design and Creation . 63

5.1.1 Iteration 0 . 64

5.1.2 Iteration 1 . 67

5.1.3 Iteration 2 . 69

5.1.4 Iteration 3 . 75

5.1.5 Iteration 4 . 79

5.1.6 Iteration 5 . 83

5.1.7 Permutations . 90

5.1.8 Technology Choices . 99

5.1.9 Design . 104

5.2 Experiment . 107

5.2.1 Quantitative Data . 107

5.2.2 Qualitative Data . 114

xii CONTENTS

6 Discussion 117

6.1 Design and Creation Discussion 117

6.1.1 Deciding What to Automate 118

6.1.2 Design, Evaluation Criteria & Priorities 120

6.1.3 Implementation & Testing 122

6.1.4 Other comments . 123

6.2 Experiment Discussion . 125

6.2.1 Quantitative Discussion 125

6.2.2 Qualitative Discussion 131

7 Conclusion and Future Work 135

7.1 Conclusion . 135

7.2 Future Work . 136

Appendix A Models 139

A.1 Activity Diagram . 140

A.2 Development View . 141

A.3 Logical View . 142

Appendix B User Manual 145

B.1 Parsons Generator . 145

B.1.1 Add New Task . 145

B.1.2 Navigate Tasks . 145

B.1.3 Edit Task . 147

B.1.4 Delete Task . 150

B.1.5 Export Task(s) . 150

B.1.6 Helper Icons . 151

B.2 Uploading to Inspera . 152

CONTENTS xiii

Appendix C Use Cases 153

C.1 Iteration 1 . 153

C.2 Iteration 2 . 154

C.3 Iteration 3 . 156

C.4 Iteration 4 . 158

C.5 Iteration 5 . 161

Appendix D Requirements 167

D.1 List of Requirements . 167

D.2 Non-functional Requirements . 169

D.3 Removed Requirements . 170

D.4 List of Improvements Discovered during User Testing 171

Appendix E Transcription Categories 177

E.1 Inspera . 177

E.1.1 Positive Categories . 177

E.1.2 Negative Categories . 178

E.2 IT artefact . 179

E.2.1 Positive Categories . 179

E.2.2 Negative Categories . 180

Appendix F The Keystroke-Level Model for User Performance Time 181

F.1 The Keystroke-Level Model using Inspera 181

F.1.1 Adding Drop Areas . 181

F.1.2 Adding Drag Areas . 183

F.2 The Keystroke-Level Model using IT Artefact 186

F.2.1 Adding a Task . 186

xiv CONTENTS

Appendix G Declaration of Consent 189

List of Tables

4.1 Original SUS statements compared to the modified SUS state-
ments used in the experiment. 47

4.2 Interview questions . 49

5.6 Web vs Desktop Application . 101

5.7 Pros and cons of frameworks . 103

5.8 Participant 1 data points . 108

5.9 Participant 2 data points . 108

5.10 Participant 3 data points . 108

5.11 Participant 4 data points . 108

5.12 Wilcoxon singed-rank test on time spent 113

5.13 Top 1 positive categories (only one entry in the table) from Inspera,
based on frequency. The complete table can be found in Appendix
E.1.1 . 116

5.14 Top 3 negative categories from Inspera, based on frequency. The
complete table can be found in Appendix E.1.2 116

5.15 Top 3 positive categories from the IT artefact, based on frequency.
The complete table can be found in Appendix E.2.1 116

xv

xvi LIST OF TABLES

5.16 Top 3 negative categories from the IT artefact, based on frequency.
The complete table can be found in Appendix E.2.2 116

List of Figures

2.1 An unfinished 2D Parsons problem with distractors. Source: js-
parsons (Ihantola and Karavirta, 2011; 2019) 10

2.2 A finished 2D Parsons problem with distractors. Source: js-parsons
(Ihantola and Karavirta, 2011; 2019) 10

2.3 Simple example of a QTI 2.2 file (IMS Global Learning Consortium) 14

2.4 Types of exercises available in Inspera Assessment 15

2.5 Short demonstration of Inspera 16

2.6 The drag area anchoring effect in Inspera 18

2.7 Initial Parsons problem design 19

2.8 Initial Parsons problem design preview 19

2.9 Initial design problem . 19

2.10 Final Parsons problem design in editor 20

2.11 Final Parsons problem design preview 20

2.12 A task impossible to complete 21

2.13 Small algorithm . 21

2.14 New drag and drop question . 22

2.15 New drag areas in Inspera . 23

2.16 New drop areas in Inspera . 23

xvii

xviii LIST OF FIGURES

2.17 Manually placed grid . 23

2.18 Manually placed grid result . 23

3.1 Match Interaction in ONYX Editor 32

3.2 Order Interaction in ONYX Editor 32

3.3 Code Restructuring Tool (CORT) (Garner, 2001) 33

3.4 An example of a 2D Parsons problem using the js-parsons program
(Ihantola and Karavirta, 2011) 34

4.1 Task 1 given during experiment 42

4.2 Task 2 given during experiment 42

4.3 Quantitative Model of Usability (Sauro and Kindlund, 2005) . . . 45

4.4 A comparison of mean System Usability Scale (SUS) scores by
quartile, adjective ratings, and the acceptability of the overall SUS
score (Bangor et al., 2008) . 48

5.1 System Architecture v1.0 . 64

5.2 Sequence Diagram . 65

5.3 Mock-up design from Iteration 0 66

5.4 Flowchart of QTI Converter in Iteration 1 68

5.5 Parsing the skeleton XML in JavaScript 68

5.6 Application after Iteration 2 . 73

5.7 Flowchart of QTI Converter in Iteration 2 74

5.8 System Architecture v2.0 . 75

5.9 Application after Iteration 3 . 77

5.10 Flowchart of QTI Converter in Iteration 3 78

5.11 Help popup for ’With indenting’ 81

5.12 Application after Iteration 4 . 82

5.13 Application after Iteration 5 . 88

LIST OF FIGURES xix

5.14 Flowchart of QTI Converter in Iteration 5 89

5.15 Unit tests for QTI Converter . 90

5.16 Run-time unit tests . 90

5.17 Code example . 91

5.18 Permutation . 91

5.19 Permutations represented in Inspera 91

5.20 All correct permutations of the given code example 92

5.21 Permutations represented in Inspera 92

5.22 All false positive permutations of the given code example 93

5.23 DAG indicating precedences among lines of code 94

5.24 Interface for creating a DAG . 94

5.25 Transitive closure . 95

5.26 Code line vertex with its preceding and following drop area posi-
tions. The code line is thus connected to the green drop areas in
Inspera. 96

5.27 Final implementation of permutations in the IT artefact 97

5.28 Code example . 97

5.29 Java code example . 98

5.30 Visualization of time spent with Inspera and the IT artefact 109

5.31 Calculated User Performance Time for both tasks using KLM . . . 110

5.32 The mean of some gathered data points 110

5.33 Task manually created by test participants in Inspera 111

5.34 System Usability Scores gathered from test participants 112

5.35 Mean SUS . 112

5.36 Transcription snippet with assigned categories, from one of the
interviews . 115

6.1 Considerations during the creation of a system for automation . . 118

xx LIST OF FIGURES

A.1 The activity diagram for the process of creating a task 140

A.2 Development view of the source code. The highlighted boxes are
files added after the user test . 141

A.3 The logical view of the source code before the user test (iteration 4) 142

A.4 The logical view of the source code after the user test (iteration 5) 143

B.1 Application Launch on launch 146

B.2 Application with a list of tasks 146

B.3 Application with an empty task (Top of the task page) 146

B.4 Application with an empty task (Bottom of the task page) 146

B.5 Permutations Settings for a task 149

B.6 Permutations w/ False Positives 149

B.7 Permutation warning . 149

B.8 Normal Parsons Problem . 150

B.9 Parsons 2D Problem . 150

B.10 Delete Task . 151

B.11 Export Task(s) . 151

B.12 Helper Functionality . 151

Abbreviations

Abbreviation Description
QTI Question & Test Interoperability
GUI Graphical User Inteface
SUS System Usability Scale
IT Information Technology
XML eXtensible Markup Language
HTML HyperText Markup Language
XHTML eXtensible HyperText Markup Language

1

2 LIST OF FIGURES

Chapter 1

Introduction

1.1 Motivation
Since its foundation in 1760, as Det Kongelige Norske Videnskabers Selskab, and
through its many fusions to eventually become what is now known as the Norwe-
gian University of Science and Technology (NTNU), written school exams have
mostly been performed using pen and paper. But even with the advances in inform-
ation and communication technologies during the last century, the exam environ-
ments themselves have not advanced. That is, until recently, when a partnership
with Inspera began, to commence the process of digitalizing the next generation of
exams at NTNU.

Digital exams provides a lot of opportunities (Sindre and Vegendla, 2015a), such
as automatic grading, mass generation of similar (but unique) questions, problem-
oriented or candidate-oriented grading, integration of relevant work tools, and new
question types. Advantages can span from saving costs and resources, to providing
a more reliable exam environment. By automating the exam process, time spent
administrating and grading can be spent elsewhere.
The possibility of generating enormous amounts of non-uniform exam questions
can help prevent cheating (Sindre and Vegendla, 2015b), as it to some degree re-
duces the benefit of glancing at the student on the next desk. When each exam set
is unique, cheating becomes more difficult, which in turn creates a more reliable
exam environment.
With the variety of question types, as introduced with digital exams, assessments
can be designed to best optimise students chances of achieving specific learning
outcomes, which better supports constructive alignment (Biggs, 2014).

3

4 Introduction

A specific question type made possible with the introduction of digital exams are
Parsons problems (Parsons and Haden, 2006). These are code completion prob-
lems, where one is asked to correctly place remaining lines of code in correct
order. Parsons problems are proven to be just as effective as code writing tasks,
while making it possible to make grading automatic and more efficient (Denny
et al., 2008).
There are numerous ways to create Parsons problems in Inspera, where each way
has their own advantages and disadvantages. One type of implementation, the one
used in this thesis, is by utilizing the drag and drop question type.

The main drawback with this task type is, currently, the amount of time and effort
it takes to create them. The drag and drop tasks require a lot of manual work to
be shaped into a Parsons problem, and due to this time-consuming process, they
are not utilized to their full potential. Creating a more efficient way to generate
these tasks for Inspera can make it more practical, profitable, and advantageous to
employ and exploit Parsons problem in different situations.
In broader terms, creating more efficient and effective ways to generate tasks for
Inspera can make it easier and faster for course supervisors to create exams and
assignments, reduce the number of human-made errors, and further support the
mass generation of similar tasks. In this thesis, an attempt to improve the creation
of drag and drop Parsons problems, in terms of usability, will be made by creating
a prototype that automates this process.

1.2 Previous Work
It is important to mention that the development of this IT artefact was a continu-
ation of a project already worked on by one of the researchers. The initial project
was a proof of concept / proof of principle demonstrating that the generation of
QTI for Inspera was possible and could potentially be used to generate multiple
tasks. This master’s thesis was thus created to further develop a usable prototype
focusing on the generation of drag and drop Parsons problems in Inspera. And
while the development of this IT artefact started from scratch, minor parts of the
proof of concept were re-used, specifically for parsing and handling XML objects.
So while the proof of concept motivated the master’s thesis itself, the impact the
proof of concept had on the current development, was minimal.

1.3 Research Questions
This section lists the research questions that guided the problem solving process.
Two research questions were defined, which both required different approaches in

1.4. Scope 5

terms of research strategies:

Research Question 1: How can one design and create a system for efficient gen-
eration of Parsons problems for digital programming exams in Inspera?

Research Question 2: What is the effect, in regards to usability, of using the IT
artefact to generate Parsons problems for digital programming exams in Inspera,
compared to the manual method?

1.4 Scope
With Inspera, the implementation of Parsons problems can be done in numerous
ways, with the use of different question types. They can be created using a set of
dropdown menus, pairing between code lines and line numbers, copy and paste a
given set of code lines into a code editor, or as a drag and drop exercise. Most
of these implementations have their own set of drawbacks, e.g. dropdown menus
covers following code lines when selected, pairing fails to present the code snippet
as a whole, and copy and paste are prone to typing errors. And while there exists
multiple ways of creating Parsons problem, a prerequisite for this master’s thesis
was to utilize the drag and drop question type to generate Parsons problems for
Inspera.

The IT artefact developed in conjunction with this thesis is a prototype, and not
a fully implemented end product. The reason for this, was that the goal of the IT
artefact, and the thesis, was to demonstrate that this domain, generating drag and
drop Parsons problems for Inspera, could be automated and made more efficient,
effective, and user friendly.

1.5 Contributions
The contributions of this master’s thesis is an IT artefact, which can be found
at https://github.com/joachimjorgensen/masteroppgave-js, that al-
lows for efficient generation of drag and drop Parsons problems in the QTI format.
The thesis proves that this process, generating drag and drop Parsons problems,
can be automated, which in turn can save time and resources.

The research is not limited to only NTNU and Inspera, as QTI is a standard format
for representation of assessment content and results. Thus, the IT artefact has po-
tential to be used in any platform that supports QTI, such as WiseFlow1, and at any

1https://europe.wiseflow.net/

6 Introduction

universities that uses Inspera or other QTI-supporting tools.

1.6 Thesis Outline
The thesis is structured as follows:

• Chapter 1 is the introduction of this thesis

• Chapter 2 introduces background theory, as well as an introduction to In-
spera

• Chapter 3 describes existing projects done regarding QTI generation and
Parsons problems

• Chapter 4 presents the research methodology utilized in this thesis

• Chapter 5 reveals the results of this thesis

• Chapter 6 discusses the revealed results

• Chapter 7 concludes this thesis and suggests future work

Chapter 2

Background

This chapter introduces background theory for topics associated with this thesis,
as well as an introduction to Inspera Assessment.

2.1 Parson’s Problem
Learning Computer Science can be a challenging and overwhelming process. Many
claims have been made about computer science being difficult to learn (Jenkins,
2002), which can result in high dropout and failure rates (Bergin and Reilly, 2005).
While multiple studies have been unable to find any alarmingly low pass rates in
introductory programming courses (Bennedsen and Caspersen, 2007, Watson and
Li, 2014), it is still a well-known fact that learning to program is difficult. B.
Du Boulay introduces many of the main difficulties encountered when learning
programming, such as understanding the machine itself, mastering syntax and se-
mantics, understanding the standard structures, and mastering the pragmatics of
programming (Du Boulay, 1986).

In first year programming courses today, there are a lot of tedious, repetitive exer-
cises that aims to teach syntactic and semantic rules. While this might be regarded
as good practice, they are often boring with little to no engagement (Parsons and
Haden, 2006). These types of exercises can be referred to as ’drill technique’ ex-
ercises, and have been part of the curriculum since the beginning of Computer
Science. Educators now days are looking for more fun and engaging ways of
teaching the rules and best practices of computer programming.

Parsons problems are puzzle tasks where one must choose and place mixed code
blocks in the correct order to form the solution (Parsons and Haden, 2006). Instead

7

8 Background

of writing code from scratch, Parsons problems reduces the cognitive load required
to solve coding tasks by offering completed code blocks, thus reducing some of the
complexity of the syntactic and semantic parts of the code (Ericson et al., 2017).
This in turn, makes it possible to focus solely on one part of code construction at a
time.

Using different types of Parsons problems as a methodology for teaching and test-
ing code understanding amongst students has proven to be just as efficient, but
more effective, than fixing and writing code from scratch (Ericson et al., 2017).
Parsons problems are a type of completion task, and completion tasks have proven
to be a good alternative to code generation tasks in reducing some of the cognitive
load while resulting in better learning outcomes (Van Merriënboer, 1990).

2.1.1 Good Coding Structure

Parsons problems usually consists of blocks of well-written code, which help
delineate good programming practices. The beginner programmer might not be
aware of the best ways to construct a sub routine or function, but their code might
still produce the correct results. For example, a student may be unnecessarily re-
peating parts of a sub routine, which instead could easily be extracted to a single
function. The student may never be aware of this unnecessary repetition, due to
the generation of correct output. To fight this sub-optimal way of coding, Parsons
problems exposes students to good programming practice.

Another side effect of having samples of well-written code is eliminating the pro-
cess of finding the correct logical or algorithmic approach to the problem (Parsons
and Haden, 2006). This might help students who are not as experienced in pro-
gramming to spend less time on aspects of the task that are not the target of the
exercise, and rather focus on what matters. This might help students in the lower
end of the brackets to score some points, even though they are not as good at pro-
gramming.

2.1.2 Distractor Options

Distractor options are redundant and incorrect inputs to a Parsons problem. They
are optional, and their sole purpose is to distract students from the correct solution
to the task at hand.
Adding distractors to a Parsons problem can have multiple purposes. First, they
can be used to target specific aspects of code syntax or common errors, by provid-
ing options that highlight these common mistakes. For example, if it is common
for students to confuse the functions ’x.length’, ’x.length()’ and ’len(x)’, the in-

2.1. Parson’s Problem 9

correct options could be included as distractors. Adding common errors like this is
also why, in most cases, the distractors are used as a tool to increase the difficulty
of a given Parsons problem.
Second, the distractors can also be used to make the same tasks look different for
different students. By using the same solution together with different distractors,
no task will look the same. This could in turn be a valuable tool to reduce cheating
during exams. For example, if one has a total of eight distractors in mind, and want
to include four of them in every task, the binomial coefficient states that 70 unique
tasks can be created:

(
n

k

)
=

n!

k!(n− k)!
=

8!

4!(8− 4)!
= 70 (2.1)

2.1.3 Modified Parsons Problems

There are numerous tricks and tweaks that can be applied to Parsons problems to
make them even more interesting, or to target a desirable difficulty for the problem.
This is proven to enhance learning outcome (Bjork, 2017) and should be of interest
to anyone interested in Parsons problems.

Two-dimensional Parsons problems adds another dimension to the puzzles, where
students are required to correctly indent coding blocks as well as placing them in
the correct order (Ihantola and Karavirta, 2011). This can be very effective in first
year programming courses, especially programming languages like Python, where
indentation is essential to a functional code snippet. Correct indentation of code
blocks also teaches students the importance of readable code, and good coding
practices. Figures 2.1 and 2.2 illustrates the use of a two-dimensional Parsons
problem. From this point on, two-dimensional Parsons problems are referred to as
2D Parsons problems, while Parsons problem (or 1D Parsons problem) refers to
the unmodified version.

Another modification one can add to the Parsons problem is having distractors
paired with correct code blocks. Paired Parsons Problems exposes students to a
binary choice, which can help simplify the task, but also highlight a particular
detail of interest. For example, to focus the attention of the task to the importance
of semi-colons in Java, one can have the distractor show an identical line of code,
except for the semi-colon at the end.

Dynamically adaptive Parsons problems are tasks where the difficulty is dynam-
ically adapted to the persons performance on previous tasks. For example if one

10 Background

fails on a task, the next problem can be an easier task or some blocks can automat-
ically be locked in to the correct position. These types of adaptive problems have
a significant increase in learning outcomes compared to non-adaptive problems, as
it keeps the learner in Vygotsky’s zone of proximal development (Ericson et al.,
2018).

Figure 2.1: An unfinished 2D Parsons problem with distractors. Source: js-parsons
(Ihantola and Karavirta, 2011; 2019)

Figure 2.2: A finished 2D Parsons problem with distractors. Source: js-parsons (Ihantola
and Karavirta, 2011; 2019)

2.1.4 Efficient Marking

Because Parsons problems are complete well-written code snippets, solving them
takes significantly less time than constructing the code from scratch. And the fact
that they are pre-constructed blocks of code, the process of marking and grading
them are easier and more reliable than traditional code writing tasks (Denny et al.,
2008). Parsons problems requires the same set of skills as traditional code writing

2.1. Parson’s Problem 11

exercises, and thus are a good alternative in both exam and regular learning prac-
tices.

2.1.5 Cognitive Load

When learning a new topic, the mind has to process the information being presen-
ted and save it to the long term memory. During this process, the cognitive load
required to handle the information can be split up into three categories (Paas et al.,
2003): intrinsic, extraneous, and germane cognitive load.

Let’s say the topic of interest is learning to play the piano. The intrinsic cognit-
ive load would be the inherent difficulty of the piece of music you are learning.
Learning to play Ludwig van Beethoven’s "Für Elise" is substantially easier than
learning Franz Liszt’s “La Campanella”. This difficulty is immutable, and cannot
be eased by any means; it is what it is.

The extraneous cognitive load is generated by the way the new information is
presented to the learner. This load can be altered by changing how the information
is processed. Back to the the case of learning to play the piano: if you were to learn
Beethoven’s "Moonlight Sonata", an instructor could tell you all the frequencies
of the song, which would increase the extraneous cognitive load, or simply present
how the piece should be played, which lessens the extraneous cognitive load.

The germane cognitive load is the process where information is constructed into
schemata to be stored in the long term memory (Garner, 2002b). Sweller describes
schemas as: "A schema can be anything that has been learned and is treated as
a single entity" (Sweller et al., 1998), and goes on to describe schema construc-
tion having two functions: storage and organization of information in long-term
memory, and a reduction of working memory load. Working memory is the part
of the mind that actively processes information, i.e. the consciousness.

Every person has a limited amount of resources to use for the cognitive load, which
all of the three parts above has to share. As the intrinsic part is said to be immut-
able, only the latter two can be altered towards our interest. When a task is difficult,
i. e. the intrinsic load is heavy, there is less space for the other two. Usually, we
want to lessen the extraneous load, and increase the germane load.
Garners says in his article "Reducing the Cognitive Load on Novice Programmers"
(Garner, 2002b), that the germane load can be increased by removing parts of the
solution, and let the students finish these incomplete examples. This encourages
schema creation in long term memory, and thus should help achieve a better learn-
ing outcome, which is why Parsons problems are a good alternative to traditional
coding exercises.

12 Background

2.2 E-learning and E-assessment
There are many definitions of e-learning, where most are either too broad and in-
clusive, or too specific (Piotrowski, 2009). By some authors, e-learning is defined
as the use of any electronic media in any learning scenario, but this broad definition
would even categorize the use of a laser pointer as e-learning. Tavangarian et al.
(Tavangarian et al., 2004) defines e-learning as all forms of electronic supported
learning and teaching that has a procedural character to aid individuals learning,
which again is a too specific definition for most cases. A more suiting definition
might be the one by Clark & Mayer (Clark and Mayer, 2016), which defines e-
learning as instructions delivered on a digital device that is intended to support
learning. These are devices such as desktop computers, laptops, tablets, smart
phones etc.
E-learning systems have the potential to create customized training and learning,
tailored content, instructional methods, and spark engagement (Clark and Mayer,
2016). Due to its scalability, organizations can use e-learning to save time and
costs when teaching and training students or employees. E-learning are used in
more and more types of formal education and is a great tool for both individual
learning and instructor-led learning. Piotrowski (Piotrowski, 2009) suggest six
activities that characterize and define an e-learning platform:

• Creation: The production of learning and teaching materials by instructors

• Organization: The arrangement of materials for educational purposes

• Delivery: The publication and presentation of the materials

• Communication: The computer-mediated communication between students
and instructors and among students

• Collaboration: Students or instructors jointly working on files or projects

• Assessment: The formative and summative evaluation of learning progress
and outcomes, including feedback

In educational use, e-learning platforms also allows for continuous monitoring and
assessment (formative assessment), instead of a single assessment at the end of a
course (summative assessment), which is preferable for both instructors and stu-
dents (Piotrowski, 2011). The usually time-consuming activities, such as assess-
ment, can be automated and made more efficient with computer-aided assessment,

2.2. E-learning and E-assessment 13

or e-assessment. Multiple-choice tests can, for example, be completely automatic-
ally assessed by the platform.

2.2.1 QTI

Creating platform independent tests promote reusability, longevity, and can mit-
igate costs of creation and ensure sustainability of intellectual assets (Lay, 2004,
Piotrowski, 2011). And to create platform independent tests, one needs a standard
and platform-neutral file format to create these tests with.

The IMS Question & Test Interoperability (QTI) specification describes a data
model for the representation of question and test data, and their corresponding res-
ults reports. The main purpose of the QTI specification is to "define an information
model and associated binding that can be used to represent and exchange assess-
ment items" (IMS Global Learning Consortium). This yields a standard format
and allows for assessment materials to be authored and delivered on multiple sys-
tems interchangeably. The QTI specification specifies a standard XML data format
(XML data binding) to represent assessment content and results. By agreeing to
one standard format, different systems and tools can import, export, and exchange
the same questions. This international e-learning technical standard defines a set
of interaction types which can be used to create different question types, such as
multiple-choice, filling in blank, matching, etc.

The QTI format focuses on features (as stated in (IMS Global Learning Consor-
tium)) such as:

• Interoperate: Exchanging a wide range of questions and tests. Enabling
testing from small quizzes to formal summative high-stakes tests.

• Accessible: Supports accessible assessments to accommodate users specific
presentation needs and preferences.

• Open: Open format gives users full ownership of their test content.

• Innovative content: Standard and custom item authoring.

• Test delivery: Accessible, adaptive assessments tailored to fit the needs of
the user with their range of access devices

• Repositories: Item/test banks and the collection of results for analytics.

The QTI format has multiple versions that support varying features and are built
on different models, which utilizes completely different XML structures. QTI 1.x

14 Background

are therefore completely incompatible with QTI 2.x (Lay, 2004). In this project,
the latter version was used, and an example of a QTI 2.2 file can be seen in Figure
2.3.

Figure 2.3: Simple example of a QTI 2.2 file (IMS Global Learning Consortium)

Piotrowski (Piotrowski, 2011) also discusses some of the main flaws with IMS
QTI. These are shortcomings such as the different QTI versions being incompat-
ible and not knowing which parts of the IMS QTI that is supported by a platform
(authoring, delivery of tests, assessment, etc.).

2.3 Inspera Assessment
Inspera Assessment (also referred to as just Inspera) is a system for digital as-
sessment of exams, home exercises, projects, bachelor projects, master theses, and
oral and practical exams. Inspera Assessment is a digital e-assessment tool that
not only supports assessment, but also creation, organization, delivery, commu-
nication and collaboration, as mentioned in Section 2.2. While it mainly is an
e-assessment tool, Piotrowskis (Piotrowski, 2009) definition would categorize In-
spera Assessment as an e-learning platform due to its support of the mentioned
features. Nevertheless, Insperas own definition is as follows (Inspera AS, 2019):

"Inspera Assessment is a cloud-based assessment platform supporting
the entire examination process, including planning, designing, deliv-
ering, invigilating, marking & annotating, sharing, and improving."

2.3. Inspera Assessment 15

Figure 2.4: Types of exercises available in
Inspera Assessment

Inspera supports a wide variety of
question types, such as multiple
choice, pairing, and drag-and-drop
tasks. Figure 2.4 shows an overview
of some of the supported tasks as of the
writing of this thesis. Here one can find
three categories of questions: Auto-
matically marked, manually marked,
and not marked. The automatically
marked questions all have the possibil-
ity to be automatically assessed by In-
spera, and in this category one can find
questions such as multiple choice and
drag and drop. The manually marked
questions has to be manually assessed
and consists of questions such as essay,
programming, and math working. The
final category lets the user add descriptive pages to a test, such as a background
history or introduction text, which expects no answer from the participants.

Inspera uses the IMS QTI 2.1 specification to model all their questions and tests.
By using this standard, Inspera can import and export tests from and to other as-
sessment and question bank systems.

Figure 2.5 shows a simple demonstration of how Inspera works. First, one can
see the question set, which contains one or more tasks. The question set can be
seen as a single test or an exam with multiple tasks, and this question set is what
students will be asked to solve. Second, the middle image of Figure 2.5 shows the
creation of a single multiple choice question in Insperas own task editor. While the
QTI specification supports more tasks and more options than Inspera, only features
supported by Inspera will work in their editor. This means that importing a mul-
tiple choice question with extra details or features, such as HTML styling, wont
necessarily be applied in Inspera unless their editor supports the feature. Once the
multiple choice task is created in the editor, it is ready to be used together with
the other tasks in the question set. In the last image, one can see the actual task
as it will appear for a student solving it. While this demonstration is extremely
simplified, it shows the main steps for creating tests in Inspera Assessment.

16 Background

Figure 2.5: Short demonstration of Inspera

2.3.1 Drag and Drop

As mentioned, Inpsera Assessment provides the possibility of creating drag and
drop tasks, which is one of the question types that can be automatically assessed.
A prerequisite for this research, was to use the drag and drop question type for
generating Parsons problems. While some of the other question types could be
implemented to create Parsons problems, the drag and drop type in Inspera has the
most features similar to those of the js-parsons program (Ihantola and Karavirta,
2011). The design and adaptation of this question type is further described in Sec-
tion 2.4.

2.3.2 Storage Persistence for Exercises

In Inspera, all exercises are saved and can be reused. This results in a pool of
exercises to choose from when creating question sets, making it possible for all
students to receive different subsets of exercises.

2.4 Drag and Drop Design in Inspera
In this section, the actual design of the drag and drop tasks as Parsons problems
in Inspera will be introduced. The general design of a task in Inspera is concerned
with the actual look and behavior of the task. The creation and evaluation of the
task design itself is not a part of this research, and was already predefined when
the research started. This introduction gives a better understanding as to why the
tasks look the way they do, and some of the general problems with using Insperas
drag and drop tasks to create Parsons problems.

2.4.1 Limitations

To understand some of the reasoning behind the design decisions, one must first
address a few features and limitations Inspera has. It is also important to note that
the limitations mentioned here are present during the writing of this thesis, and
might be up for change in future versions of Inspera.

2.4. Drag and Drop Design in Inspera 17

In Inspera, all question areas have a fixed with of 600 pixels. The reasoning behind
this is probably to make sure all screens can in some way support the digital exam.
But this 600px width can be a rather cumbersome limitation when working with
code, since longer lines of code often occurs. The height of the drag and drop
questions can be customized, but the width is fixed. The main problem that occurs
because of this, is that the drag areas (elements to be dragged by the user to a
destination) can not be moved outside of the question area by a user. This means
that, if one has a 600px wide drag area, it will have no horizontal wiggle-room.
And as one can see in Section 2.4.2, horizontal movement might be necessary to
properly place the anchor over the correct drop area (the destination where drag
areas are to be placed).

A solution to longer lines of code could be to reduce the text size, but Inspera
currently supports no styling or resizing of text inside a drag area. This text can
be changed when generating the QTI, but Inspera will simply undo all additional
HTML styling once it is imported and changed in their editor. So when generating
tasks for Inspera, any additional HTML, both styling and functionality that is not
already supported by Inspera, will be removed once you edit the task. This means
that tasks generated can not bring any additional perks or extra features to Inspera
that they do not already support.

The text inside each drag area is also centered, which is quite unusual when work-
ing with code. And as one can see in Figure 2.8, centered text makes it harder
to align the text with the correct indention as in source code editors. One of the
solutions to the centered text problem, and the solution applied, was to find the
length of each line of code as the drag areas were generated, and properly adjust
the width of the drag area to the exact length of the text. This way, the text would
take up the entire drag area and the text would be properly aligned at each column
(indention level). This can be seen in Figure 2.11.

It is also important to note that Inspera has no support for giving different drag and
drop pairs different amounts of rewarded points. With most Parsons problems, it
would be desirable to give different lines of code different points to better match
the difficulty of placing that line correctly. But with Inspera, correctly placing a
function declaration, which usually is at the top left corner and seen as an easy
thing to do, is just as much worth as any other piece of the code.

When manually grading a Parsons problem, one could also award a few points to a
student if they did some minor mistakes, such as forgetting a single indention, but
with Inspera there is no way of giving partial points if such mistakes occurs. The
line of code and indention-level must both be correct to receive points. These lim-
itations makes it impossible to create a point system for marking Parsons problems

18 Background

as recommended by Denny, Luxton-Reilly, and Simon (Denny et al., 2008). They
also show that Parsons problems are quicker to grade, and result in more consistent
grades between markers than code writing.

2.4.2 Drag Area Anchor

The drag area anchor is the point Inspera uses to register whether a drag area is
inside a drop area or not. This means that if the anchor point of a drag area is
inside the drop area, they are registered as an answered pair. In Inspera, this point
is positioned in the middle of the drag area, as illustrated in Figure 2.6. So if the
middle of the drag area (regardless of mouse position) is inside a drop area, they
are registered as a pair chosen by the user.

Figure 2.6: The drag area anchoring effect in Inspera

Inspera gives the option to turn off and on "Free placing drag areas". With this
option turned off, a drag area will snap to the drop area that the drag area anchor
is currently above when released. The snapping simply means that the drag area
will be automatically re-positioned to where the left sides of the two areas are
aligned. Meanwhile, if the option is turned on, the drag area will not move once it
is released by the user.

At this point in time, Inspera has only one type of anchor for the drag and drop
questions. There are multiple alternative anchoring rules that might have been
better for Parsons problems such as:

• Having the anchor be where the mouse is positioned. If the drag area is to
snap to the drop area, it will then move to the drop area which the mouse is
hovering when the drag area is released.

• Having the anchor on the far left of the drag area. This might be more

2.4. Drag and Drop Design in Inspera 19

intuitive since code is usually left aligned.

• Remove the anchor point, and pair the areas that overlap the most (And
maybe with a small bias towards the middle of the drag area).

• Having the drag area paired up with the drop area closest to the middle
anchor.

These alternative anchoring rules might also be assumptions students have when
solving the Parsons problems. If it is not clearly explained how the particular an-
choring in Inspera works, this could cause a lot of confusion for the users.

2.4.3 Design Options

The initial design of the Parsons problems are shown in Figures 2.7 and 2.8. This
design was first created to clearly differentiate between the indentations levels.

Figure 2.7: Initial Parsons problem design
Figure 2.8: Initial Parsons problem design
preview

The main problem with this design is that it has poor support of longer lines of
code. As mentioned, Inspera has a maximum width of 600px for the drag and
drop questions, which in the case of four indent layers create a width of maximum
600/4 = 150px for each line of code. One could, of course, create drop areas
of varying size to better accommodate longer lines of code, but this would give
substantial hints for the students as to where the drag area should be placed. Thus,
one is forced to make drop areas of the same width at all times, even though the
lines of code might vary.

Figure 2.9: Initial design problem

In Figure 2.9, one can see the problem
that occurs with longer lines of code.
This problem would get even worse if
the algorithm had even more indenta-
tion levels. An algorithm of, say 8 in-

20 Background

dentation levels, would require each line of code to fit inside a 75px wide block,
and with no options to change text size, the block would become a nuisance to read.

Chosen Design

The best solution found, as seen in Figures 2.10 and 2.11, was to create a grid
of smaller, fixed drop area sizes. The width of the drag areas on the other hand,
was dynamically based on the length of the text inside each drag area. With this
solution, the drag areas overflowed the drop areas when placed, which was seen as
a benefit as there would be no indication as to which drop area belonged to which
drag area, based on the size of the areas. The drawback of this solution, though,
was that the anchor points of the drag areas were even more unforgiving. With the
smaller drop area sizes, the anchor points in the middle of the drag areas had to
be located above the smaller drop areas when dropped, making the position of the
drop area somewhat counter-intuitive.

Figure 2.10: Final Parsons problem design
in editor

Figure 2.11: Final Parsons problem design
preview

Another disadvantage with this design, was problems with drop areas close to the
edge of the question area. With longer lines of code, and the fact that the anchor
point is in the middle of the drag area, drag areas would become too wide to be
placed on certain drop areas. And as mentioned, the reason for this is that drag
areas can not be moved outside the question area, which would in some cases res-
ult in a task impossible to complete. Figure 2.12 shows an example of this problem.

2.5 Creating Tasks Manually with Inspera

2.5. Creating Tasks Manually with Inspera 21

Figure 2.12: A task impossible to complete

Figure 2.13: Small algorithm

This section provides an overview of
how drag and drop Parsons problems
are manually created with Inspera,
which should give a better understand-
ing to where and how the IT artefact
will change the current process, and
potentially improve efficiency, effect-
iveness, and overall usability. In addi-
tion, this section also highlights some
of the shortcomings of Inspera.

Lets now assume there is a short code snippet that should be created as a drag and
drop task for the exam, and Figure 2.13 shows this code snippet.

2.5.1 Create a New Task

To begin with, one must create a new question set, which in Inspera is equivalent
to the exam document itself. A question set can consist of multiple questions of
different types. With an empty question set, the first question can be created.

Inspera provides multiple question types to choose from (see Figure 2.4), and in
this case, the drag and drop question type is chosen to create the Parsons problem.
The drag and drop type is one of many question types labeled as ’automatic marks’
in Inspera, which is one of the most important aspects we want to capitalize on by
creating drag and drop questions for the programming exams.

The drag and drop question types in Inspera is in no way tailored for Parsons

22 Background

problems, but rather created and used for e.g. questions where one has to place a
Latin name in the correct position on an anatomy image. This, of course, makes it
a challenge to create programming tasks that works like the open-source js-parsons
project (Ihantola and Karavirta, 2011).

Figure 2.14: New drag and drop question

In Figure 2.14, one can see a
newly created drag and drop
task with some Lorem Ipsum1

dummy text added as the task
description. A new task ini-
tializes with two drag and drop
pairs, and requires the user to
manually add additional drag
and drop areas as seen neces-
sary.

The user first has to add
each line of code as drag
areas, which in itself is eas-
ily done, but as one can
see in Figure 2.15, it creates
areas that manually has to be
re-positioned and changed to
fit the text. Inspera offers
quite intuitive and clear ac-
tions, which makes it easy to

understand how to create new drag and drop questions, but it is still a time-
consuming and manual process.

In this example, a 2D Parsons problem is to be created with the code from Figure
2.13, which requires the user to create multiple columns of drop areas for each
line of code to properly check if the student has understood indentation. The code
snippet in this example consists of six lines of code, and has a maximum of four
indents, which means the task should have a total of 6 ∗ 4 = 24 drop areas. In
Figure 2.16 one can see some of the drop areas being created, which then needs to
be resized and positioned correctly by the user. In Section 2.4.3, a few 2D Parsons
problem design options in Inspera are discussed, but this example implements the
chosen design for drag and drop tasks from that section.

In Figure 2.17, the drop areas have been correctly placed and connected with the
correct drag areas. The biggest challenge regarding the manual placement of the

1https://www.lipsum.com/

2.5. Creating Tasks Manually with Inspera 23

Figure 2.15: New drag areas in Inspera Figure 2.16: New drop areas in Inspera

drop areas is simply to get every area to an equal size with the same distance from
each other. The drop areas also have a tendency to snap to a different pixel value
once you save the task, resulting in a change in both size and position. The process
of resizing and aligning the drop area grid is definitely the most time-consuming
aspect of manually creating a drag and drop question in Inspera. Figure 2.18 also
shows how uneven the manually created grid becomes. One has to spend a lot of
time carefully placing the grid, reviewing how the pixels will change when saving,
then reiterating to end up with a somewhat symmetrical grid.

Figure 2.17: Manually placed grid Figure 2.18: Manually placed grid result

Inspera also offers a snap-to-grid functionality that helps the user create more
evenly sized drop areas, which has potential to create a more aesthetic grid. The

24 Background

drawback of this functionality is that the spaces between the drop areas are too
large, which increases the probability of misplacing a drag area between two drop
areas. At the same time, it is important to mention that having some space between
drop areas is a necessity to create the grid effect and make a distinction between
drop areas. As a result, the space between the drop areas has to be fine tuned to
a size somewhere between zero and the minimum width of the snap-to-grid func-
tionality.

After having created this drag and drop task there are still more features one can
customize, such as minimum and maximum points the question can give, but the
steps highlighted here were the main steps the artefact aimed to automate.

2.6 Automation
New technology makes it possible to introduce automation into an increasing num-
ber of situations and processes. Parasuraman et al. (Parasuraman et al., 2000)
discusses the different impacts automation can have in modern systems, and pro-
poses a four-stage model of human-automation interaction with automation, along
with distinct evaluation criteria. For this thesis, the most relevant aspects was the
automation of information analysis, decision and action selection, and action im-
plementation. Some of the main evaluation criteria for automation is as follows:

• Mental Workload: Well-designed automation should reduce human oper-
ator mental workload. Although automation does not always reduce mental
workload and improve human productivity and efficiency, this should be one
of the main criteria.

• Situation Awareness: User should have a good ’picture’ of what is happen-
ing.

• Complacency: Users might overly trust the automation. The automation
should thus be reliable, or at least provide good ways to monitor the process
so failures are detected.

• Skill degradation: Automation can make human operators not as skilled in
performing the functions that has been automated. Automation must be de-
signed to ensure that reduced situational awareness, complacency and skill
degradation does not occur.

It is also difficult to predict how humans will use the automation systems (Paras-
uraman and Riley, 1997). Discovering the differences between intended and actual

2.7. Design 25

use is important to further improve the automation tool. Automation systems can,
for example, lead to over-reliance on automation, underutilization of automation,
or implementation without regard for consequences for human performance and
operator’s authority. Parasurman et al. (Parasuraman and Riley, 1997) also pro-
pose multiple strategies to better design and manage automation, such as:

• Better operator knowledge of how the automation works results in more ap-
propriate use of automation.

• Feedback about the automation’s states, actions, and intentions must be
provided, and it must be salient enought to draw operator attention when
he or she is complacent and informative enough to enable the operator to
intervene effectively.

• The impact of automation failures, such as false alarm rates, on subsequent
operator reliance on the automation should be considered as a part of the
process of setting automation performance requirements, otherwise, operat-
ors may grow to mistrust the automation and stop using it.

• The operator’s roles should be defined based on the operator’s responsibil-
ities and capabilities, rather than as a by-product of how the automation is
implemented

• Designers of automated systems should consider using alarms that indicate
when a dangerous situation is possible ("likelihood" alarms), rather than
encouraging the operator to rely on the alarm as the final authority on the
existence of a dangerous situation.

Rovira et al. (Rovira et al., 2007) also find that if automation is performing reliably,
complacency is increased, which can lead to more detrimental effects when and if
the automation actually fails. This comes from a combination of users simply
trusting the automation too much and becoming less trained at fixing or spotting
failures. The main point is thus to provide users with good tools for feedback,
inspection, and analysis of the automation process if fully reliable decision auto-
mation is not guaranteed.

2.7 Design
The aesthetic-usability effect states that designs that are more aesthetic, or pret-
tier, are perceived as more user friendly than less aesthetic designs (Kurosu and

26 Background

Kashimura, 1995, Lidwell et al., 2010), even if the usability in reality is no differ-
ent. This is only one of many reasons design needs focus during system develop-
ment.

There are five common design principles: visibility, feedback, constraints, consist-
ency, and affordance (Preece et al., 2015). These will be described in the following
sub chapters, as well as the topics color, confirmation, and user input.

Visibility

When designing a system, visibility refers to the exposure of functions and op-
erations available. Being forced to make an effort to locate desired operations
can lead to frustration and dissatisfaction (Preece et al., 2015). For this reason,
a software system should make an effort to explicitly display functionality. For
example, if it is expected that something should happen when a user clicks on the
word ’save’, the system has to make this visible. To do that, the word ’save’ could
be transformed into a button with the label ’save’, which makes the save function
visible to the user and, with the correct design, easy to find. An example of bad
visibility would be to hide the ’save’ button in plane sight by not decorating the
text whatsoever, making it look like just another fragment of text.

There are several ways to improve visibility, such as reducing the number of hy-
perlinks to navigate an application (not hiding features on other pages), and high-
lighting interactive elements. For instance, if everything is located on one page (a
single page application), and all actionable elements are transformed to buttons,
the application use will most likely be more apparent.

Feedback

If nothing immediately happens when a user clicks on a button, they might become
uncertain whether they actually clicked the button or if it is defect. Either way, it
stops the users flow through the program, as they have an unexpected stop and get
distracted. To combat this, systems should offer feedback whenever an action is
made (Preece et al., 2015). Be it either an input field immediately displaying key
strokes, a button press activating a loading animation, or an error causing a dialog
box.

Constraints

To prevent incorrect user input, a system should utilize constraints to deactivate
certain functionalities or operations. For example, when filling out a form, there

2.7. Design 27

might be required fields that disables the submit button until they are filled.

Consistency

Keeping a consistent interface, where there are no surprises, makes the system
more user friendly and easier to learn (Preece et al., 2015). Consistency entails
mapping the same patterns to the same functionalities, e.g. uniform button design,
right clicking the mouse button revealing a context menu, and/or clicking on a
company logo redirects the user to the homepage.

Affordance

Affordance is a term conceived by the perceptual psychologist J.J. Gibson (James,
1979), and refers to what the environment can offer an actor (human or animal).
The ground offers support for standing, a chair offers sitting capabilities, and a
light switch offers toggling.
When discussing affordances in the software realm, Norman (Norman, 1999) dif-
ferentiates between "real" affordance and "perceived" affordance. The former case
refers to the affordances of peripherals in the physical world, and should not be
confused with the perceived affordances. Keyboards, mice, and monitors, they all
might have different affordances, but they are out of the control of a software de-
signer. Instead, a software system can offer perceived affordance, which are the
actions the user perceives to be possible. Take the cursor for instance: even though
it might change icon from a pointer to a hand when hovering a button on the screen,
this change is not what makes a mouse click possible. The mouse is clickable re-
gardless of the position of the cursor, but the user perceives that something is only
going to happen when clicking the mouse when hovering a button on the screen.
This is a perceived affordance, and not a real one. A real affordance would be, for
example, if the mouse had a cover of some sort, preventing a mouse click when
not hovering a button on the screen.

Color

The color palette is an important aspect of any design process, as it communic-
ates the ambitions of the software system. Generally, desaturated2 light colors are
perceived as more friendly and professional, while desaturated dark colors more
serious and professional. Even though there are no rules regarding color design,
there are guidelines worth considering. First, using more than five colors for the

2Saturation describes the intensity of a color, and a fully saturated color is considered to be the
purest (or truest) version of that color (e.g the base colors red, blue and yellow)

28 Background

palette might not be advantageous, as humans can only process so many colours
at one glance (Lidwell et al., 2010). Second, choosing color combinations that fit
well together is favourable, which can be achieved by for example choosing col-
ors adjacent (analogous) or opposing (complementary) on the color wheel. Third,
saturated colors are good for grabbing attention. Fourth, cooler colors are more
suitable for the background palette, while warmer colors are better for the fore-
ground.

About eight percent of males and .4 percent of females are affected by color vision
impairment. The most frequent form of color-blindness is "red-green blindness"
which affects the red to green spectrum. The reason for the blindness lies in the
cones in the eyes that responds to the light entering. A functional eye has three
types of cones, L-, M-, and S-cones, whereas people with color blindness suffers
from a complete absence, or dysfunction, of the L- and M-cones (Jenny and Kelso,
2007). When designing software systems, it is important to realize that a signi-
ficant part of the user base might suffer from this visual impairment, and design
with that in mind. Some colors are best to avoid using together, like red and green
and purple and blue. This might not always be possible, due to different require-
ments, conventions, customer preferences etc., which can be met with the addition
of visual clues like annotations, shapes, and/or patterns.

Confirmation

Confirmations in software design is a technique to ensure that critical errors are
not made. There are two basic types of confirmations: dialog and two-step con-
firmation. In software design, the former type is mostly utilised, while the latter
is more related to hardware design. Dialogs are feedback from the application,
waiting for a user response (or confirmation). An example of this is the standard
pop-up window, prompting the user to answer ’yes’, ’no’, or ’ok’. When designing
such a pop-up dialog, it is important to keep the confirmation message concise, as
this is not a dialog that should be cognitive challenging. Overuse of confirmations
should be avoided, as repeated exposure lessens its value of importance and they
might be ignored (Lidwell et al., 2010).

User Input

Usually, a software system offers interaction, enriching the user experience. Thus,
user input is an important part of the interface design. There are no rules when
it comes to designing user input, but there are clear guidelines to achieve the best
user experience possible. Smith and Mosier (Smith and Mosier, 1986) recom-

2.7. Design 29

mends a set of guidelines to achieve the best design for data entry. While they
have hundreds of painfully explicit guidelines, only some are taken directly into
consideration in this IT artefact:
First of all, duplicate work done by the user should be avoided. Reason being
that if the user is required to enter the same data multiple times, the possibility
of erroneous input increases. In addition, users lose focus doing repetitive work.
Therefore, users should enter data only once, and then the system should re-use
this data whenever necessary. Going even further, associated data entries should
be displayed so that users stays a maximum of one click away from all related data
entries.
Second, data entries should have well defined areas, so that its functionality is ap-
parent. This entails form fields, check boxes, and buttons.
Lastly, upon completion of data entries, the system should provide explicit feed-
back, either confirming a successful completion, or displaying an error message.

30 Background

Chapter 3

Related Work

This chapter describes a few existing projects concerned with generating tasks in
the QTI format or generating Parsons problems. There are several studies and re-
search papers regarding Parsons problems, but they typically cover the pedagogical
aspects (formulation of questions, learning effect, etc.), and some of these studies
are already covered in Section 2.1, but this section focuses specifically on related
tools and projects concerned with the creation and generation of tasks.

3.1 TAO
TAO1 is a test authoring tool developed by Open Assessment Technologies (OAT),
which uses the QTI standard for E-test development. It is a commercial-grade
open source software, which allows for a wide range of potential customizations.

TAO provides support for most question types in the QTI format, such as choice in-
teraction, slider interaction, text entry interaction, and many more. It also provides
some question types in the drag and drop format, e.g. associate interaction, gap
match, and order interaction. But even though TAO supports a great deal of ques-
tion formats, they suffer the same shortcoming as Inspera: the support for Parsons
problems as drag and drop exercises is not satisfactory. The common gap match
question type allows for drag and drop exercises with distractors, but is unable to
create drop areas without a connecting drag area, which makes it unable to gen-
erate 2D Parsons problems. The graphic gap match question type, on the other
hand, allows for drop areas without a connecting drag area. But this question type
requires all drag areas to be images, which means that all code lines would have to

1https://www.taotesting.com/

31

32 Related Work

be separate images. In addition, all drop areas must be manually sized, which in
most cases would result in an uneven grid.
The remaining drag and drop question types in TAO were less applicable than the
two mentioned above, and will therefore not be discussed.

3.2 ONYX Editor
ONYX Editor2 is an online authoring tool for creating quizzes and interactive as-
sessments with a standard compliant to QTI v2.1. It offers an item (question) bank,
and allows for creation of many question types, such as text entry interaction, mat-
rix interaction, choice interaction, just to mention a few. It also supports two types
of drag and drop questions: match interaction and order interaction, as seen in Fig-
ures 3.1 and 3.2. The first one offers a two column drag and drop question type,
where elements from the left column are to be place correctly in the right column.
The latter question type offers the possibility to drag elements into correct order,
again with only two columns.

This editor provides the possibility to create numerous question types compatible
with the QTI format, but the support for creating drag and drop Parsons problems
is very limited. For one, code lines has to be manually typed into each drag area,
and second, as there are only two columns (one reserved for drag areas and one for
drop areas), there is no way of creating 2D Parsons problems.

Figure 3.1: Match Interaction in ONYX Ed-
itor

Figure 3.2: Order Interaction in ONYX Ed-
itor

2https://www.onyx-editor.org

3.3. CORT 33

3.3 CORT
Prior to his studies regarding the reduction of cognitive load on novice program-
mers, Garner (Garner, 2002b) created the Code Restructuring Tool (CORT) (Garner,
2001) for completion of part-complete programming solutions (later known as Par-
sons problems). The tool was utilized in introductory programming courses at
Edith Cowan University, Australia (Garner, 2002a).

CORT is split up into two windows, as seen in Figure 3.3. The left hand window
containing code lines and distractors to possibly be moved over to the right hand
window, and the right hand window containing the part-complete solution.

Figure 3.3: Code Restructuring Tool (CORT) (Garner, 2001)

3.4 JS-Parsons
Js-parsons3, created by Ihantola and Karavirta (Ihantola and Karavirta, 2011), is a
JavaScript library for creating and solving Parsons problems. This tool supports
features such as 2D Parsons problems, adding distractors, and variables inside
statements. In addition, js-parsons supports two modes, one for rearrangements
of code lines (only), and another for drag and drop from one area to another (see
Figure 3.4).

3https://js-parsons.github.io/

34 Related Work

Figure 3.4: An example of a 2D Parsons problem using the js-parsons program (Ihantola
and Karavirta, 2011)

Chapter 4

Research Methodology

This chapter covers the research methodology chosen for this project. This in-
cludes research strategies, data generation methods, data evaluation and analysis
methods, and system development methodology. Section 4.1 covers the main re-
search strategies chosen for the two research questions and why. Section 4.2 covers
the data generation methods used for the research strategies. Section 4.3 describes
how the gathered data was to be evaluated and analyzed, and section 4.4 discusses
the chosen system development methodology.

4.1 Research Strategies
This section covers the research strategies chosen for both research questions and
describes the reasoning behind these choices. Oates (Oates, 2005) defines six re-
search strategies as overall approaches to answer research questions.

4.1.1 Research Question 1

The first research question was concerned with developing and creating a new
software application for efficient generation of Parsons problems, and therefore it
would be a natural choice to use the design and creation research strategy. This
strategy focuses on the development of new IT products, or IT artefacts as defined
by March & Smith (March and Smith, 1995). There are several types of IT arte-
facts, including: constructs, models, methods, and instantiations. The IT artefact
developed in conjunction with this thesis falls mainly into the category of the latter
type, instantiations, which is defined as the realization of information systems in
its environment as well as the tools used to design the system. In addition, this

35

36 Research Methodology

thesis provides models such as architectural views, activity diagram, and sequence
diagrams to describe the design and creation of the IT artefact, which can be found
in Appendix A. The system development methodology chosen for the design and
creation strategy is described in Section 4.4

When using the design and creation strategy, it is important to separate between
regular design and creation versus design and creation research (Oates, 2005).
The former is the standard industry-based design and creation process, where less
changes, less knowledge gained, and less backtracking is seen as a success. The
latter, the one used in this research, considers risk taking, backtracking, and know-
ledge gained as a positive outcome. For this reason, the design and creation was
aimed at exploring ideas and features for the proposed IT artefact, and contribute
to knowledge by automating a new domain. Research Question 2, described in
Section 4.1.2, was used to see if this automation improved the usability or not.

With the design and creation strategy, Oates (Oates, 2005) separates between eval-
uating IT artefacts where the main objective is to show ’proof of concept’, ’proof by
demonstration’ or ’real-world evaluation’. Since this research aims at testing the
IT artefact on the actual end-users, rather than students or other users, the evalu-
ation of the IT artefact was expected to undergo ’real-world evaluation’. The real-
ity was that the evaluation ended up somewhere between ’real-world evaluation’
and ’proof by demonstration’. The testing itself was completed in a somewhat
restricted context where all the participants were given the same specific tasks to
create, instead of real-world use where they would be able to create tasks for their
own needs. This was to simulate its use in real-life context while still gathering
good empirical data. The reason behind the simulation and this context-restriction
was also that the actual real-life use of the IT artefact were incredibly specific and
highly dependent on when exams were created by the people in charge of these
exams. To properly complete empirical evaluation in a real-life context, the re-
searchers would have to find users in charge of creating exams or other Inspera
exercises, figure out if Parsons problems would be relevant for their needs in this
particular case, and figure out exactly when they would be interested in creating
these Parsons problems, all while making sure the IT artefact worked perfectly.
This approach would also lack data one could compare the new process with and
it would be hard to pull off when the development method was expected to follow
an iterative process with the testing of an incomplete IT artefact. Due to these
complications, the researchers chose to restrict the context of use and the tasks
enough to gather comparable data while letting the real end-users get a proper test
of how the IT artefact was to be used. This combination of using real end-users
while still performing the testing in a somewhat restricted context made the eval-
uation something in between the two mentioned categories. The consequences of

4.1. Research Strategies 37

having real-world evaluation of the IT artefact was that one then needs a separate
research strategy dedicated for evaluation (Oates, 2005). This is to properly re-
cognize the need for empirical evaluation in a real-life context, even though this
might be somewhat simulated in this research. Since Research Question 1 mainly
focuses on the development of the IT artefact, all the evaluation is left to Research
Question 2. While a distinction is made between these two research questions, it is
important to remember that they complement each other, because while Research
Question 1 focuses more on design decisions, initial requirements, and the actual
creation of the IT artefact, Research Question 2 focuses on the usability evaluation
of the IT artefact from the end-users perspective.

4.1.2 Research Question 2

Alongside the design and creation strategy, where the IT artefact was the main
contribution to knowledge, the experiment research strategy was utilized for the
second research question. This was to investigate how the new IT artefact was
used and perceived in a real-life context by the users. The experiment strategy
was a natural follow-up to better understand and evaluate the real-world use of the
system.

The experiment strategy was chosen to make the research focus on measuring out-
comes and changes made by the manipulation of the independent variable. A case
study has too much focus on insight in the IT artefacts’ real-life context and does
not test hypotheses. This would potentially work if the research only focused on
detailed analysis of the IT artefact in use, but since exploring a single instance is
not substantial enough to prove if a new tool can improve the current process, a
case study was discarded. A survey strategy could potentially be a good choice to
get a lot of data in a short time and at a low cost, but due to its focus on breadth
of coverage instead of depth, the experiment strategy was seen as a better option.
It would also be hard to get useful results out of a survey if the respondents did
not fully understand the questions asked. A survey asking lots of people if the cre-
ated prototype is useful would be difficult since it requires familiarity with Parsons
problems, Inspera, and exam creation.

The action research strategy was highly considered instead of experiment strategy
due to its concentration on changing and improving a practical issue and its iterat-
ive cycle of plan-act-reflect. These iteration cycles would fit well with the iterative
improvement of the IT artefact and the focus on creating and refining a system
or problem-solving method would work well with this thesis. Action research
is also better for exploratory research, especially if there are no precise research
questions created. Even though action research could have been the designated

38 Research Methodology

strategy for this research, the experiment strategy was chosen to clearly separate
between creation and evaluation and focus more on the causal relationship between
the variables.

Hypothesis: The IT artefact improves usability for generating drag and drop Par-
sons problems for Inspera, compared to the current manual process.

The experiment process intended to first observe and measure the manual cre-
ation of Parsons problems in Inspera, introduce the IT artefact, then re-observe
and re-measure the new process. The independent variable in the experiment was
therefore the creation process of a Parsons problem for Inspera. The researchers
introduced a new generation process with the IT artefact, and the Parsons problems
to create was the same for both processes, making this the controlled variable. The
dependent variables are the variables being tested and measured to see the effect
of the process change. The dependent variables are listed here as the observations
and measurements of the experiment.

The observations and measurements for this research project will be described in
more detail in Section 4.2, but mainly included:

• Project data: Time to completion

• Self-report responses: Subjective assessment of usability with the aspects
of effectiveness (successfully meeting objectives), efficiency (amount of ef-
fort and resources used to meet objectives) and satisfaction (personal exper-
ience).

• Behavioural counts: Number of times test participants asked for or needed
help, number of system errors, number of user errors made, and number of
inaccuracies in the created solutions.

The pre-test consisted of the participant trying to manually create two Parsons
problems in Inspera. The entire process was recorded by video to help the re-
searchers accurately measure the data after the observation, and to have the raw
data available for later use. Parts of the observation schedule was filled out by the
researchers during the experiment, while more detailed measurements and tracking
was done afterwards by using the video tape. It was important to hide the notes
from the participant during the experiment to avoid having them alter behavior
once they saw that, for example, every question was counted. After the pre-test, a
questionnaire was conducted to map the perceived usability from the participant.
Next, the independent variable was introduced and the participant would have to
create the same Parsons problems with the new process. This was the post-test, and

4.1. Research Strategies 39

once it was done, the same questionnaire was given. After the pre- and post-tests,
an interview was conducted to gather and discover additional ideas, feedback, or
requirements. More information about the observation process, interviews and
measurements can be found in Section 4.2.2.

All test participants were handed two declarations of consent that disclosed the im-
plications of being a part of this experiment and how the data would be stored and
processes. The consent forms signed by all participants can be found in Appendix
G.

During the experiment, the participants were given two tasks that they had to create
both with Inspera and with the IT artefact. These two programming tasks were
already created by the researchers. The idea behind the already created tasks was
to simulate that the course-supervisor already had created two decent tasks and to
be able to give every participant the same tasks. The actual process behind creating
an exam task is much more comprehensive, and the way of working might vary
both individually between course supervisors, and also depending on the nature of
the task. For example, one way of working might be to (i) decide what to ask about
on a high level (e.g., which knowledge and skills to test, what difficulty, etc.), then
(ii) do some coding and test a model solution to see if it has the intended level of
difficulty, (iii) implementing the task in Inspera, (iv) polishing the question text to
make it precise and understandable, then (v) have another teacher quality assure
the task. The important thing to note here, is that IT artefact being created here is
only trying to support step (iii), while the other tasks are outside the scope of this
thesis. This also makes it natural to give the test persons pre-defined tasks where
the correctly running code is already made, so only step (iii) is in focus during the
experiment.
These pre-defined tasks were both programming tasks written in Python. The size
of these tasks had to be somewhat fair, since its obvious that longer lines of code
would be much worse for the course-supervisors to manually create in Inspera than
shorter ones. If they were to create a 15 line code segment that had a maximum of 5
indentation levels, they would have to manually create, resize, and position 75 drop
areas in Inspera. So to avoid fatiguing the participants, the given tasks had to be
large enough to give good measurements, but still small enough to complete within
a reasonable time-frame. The two tasks were sent to the participants computer as
two separate python files to simulate how they would be created by the course-
supervisors in real-life.

Since this experiment mainly compares two processes for creating the same tasks,
it is important to try to only measure the aspects of the tests that are different for
each process. Since the test subjects naturally gets better with practice, overlapping
actions or tasks are better to avoid if possible, since they might skew the results.

40 Research Methodology

To better see the results of the independent variable, it is important to remove as
many other factors as possible that might influence the results. Here is a list of the
main factors and conditions changed or eliminated to improve the internal validity
of the experiment:

• The creation of a task description for Norwegian Bokmål, Norwegian Nyn-
orsk, and English would be required in a real-world case, but since the pro-
cess was the exact same with and without the independent variable during
the experiment, this was eliminated from the experiment.

• The main time measurements were tracked from when the actual creation
of the drag and drop task was started until it was saved and closed or pre-
viewed. The main idea was to not include the extra time it took to navigate
around in Inspera, since this could potentially take a while if the participant
had no previous experience with it, and since it was irrelevant for the process
this research proposes to change.

• The participants were recommended to perform the experiment on their own
computers. This was to make them more comfortable, and to avoid any addi-
tional time or frustrations caused by an unfamiliar environment. This would
also test if the IT artefact worked as intended on different computers.

• To single out the process of actually implementing the tasks in Inspera, the
participants were given images of the exact Parsons problems they were sup-
posed to create. This removed any additional time or stress from trying to
figure out how the Parsons problems should be designed. This also meant
that the participants did not have to come up with their own code. Figures
4.1 and 4.2 shows the two tasks given during the experiment.

• A single test subject got to perform both the pre-test and the post-test. An
alternative could be to do a static group comparison, where half the parti-
cipants gets to do the manual process, while the other half gets to try the
IT artefact. This could eliminate the concern that the participants might get
better at Inspera or at the IT artefact in between the different tests and ex-
periment iterations. But for this experiment, the overlap in knowledge from
the pre- and post-tests were minimal, making it acceptable to have each par-

4.1. Research Strategies 41

ticipant perform both tests.

• The pre-test was, as previously mentioned, the participants making two drag
and drop tasks manually, but to improve the validity of the measurements,
one can randomly choose whether the IT artefact or the manual process
should be the pre-test and which of the given tasks are to be performed first.
In other words, the order of the given assignments during the experiment
were rearranged to improve validity. If the two tests have any dependent
factors influencing the measurements, such as getting better at how Inspera
works, this shuffling can reduce or eliminate the error in the measurements.

Factors and conditions to improve the external validity of the experiment:

• Using the real end-users of the IT artefact as test subjects made sure that the
participants were representative of the wider population of end-users. The
most important factor to improve the statistical significance and generaliz-
ability of the research was to increase the number of participants used, but
this is discussed further in Section 4.2.

• Perform the experiment one-on-one at the participants own office, making
the environment as comfortable and familiar as possible. This natural setting
still gives good control over the different variables in the experiment. One
could argue that the experiment itself then becomes a quasi-experiment, but
since the experiment itself does not take place over a longer period of time
in the real-world situation, the experiment still becomes a true experiment
where instead of a laboratory, it takes place in the participants own offices.
This was also a true experiment due to it being performed in a controlled
environment, activities being controlled and the random elements added for
internal validity.

Figures 4.1 and 4.2 shows the two tasks every participant were given during the
experiment. As previously mentioned, the order of these tasks were randomized
and mixed during testing.

42 Research Methodology

Figure 4.1: Task 1 given during experiment Figure 4.2: Task 2 given during experiment

4.2. Data Generation Methods 43

4.2 Data Generation Methods

4.2.1 Data Generation Method for the Design and Creation Strategy

For the design and creation strategy, the data generation method used was inter-
views. The main goal of the interviews was to gather end-user requirements, spe-
cifications, and design briefs. Since evaluation of the IT artefact was a separate re-
search strategy, the only focus of these interviews was to gather this initial inform-
ation for the creation of the IT artefact. Gathering and discussing requirements
is a complex process, so to delve deeper into specific subjects, a semi-structured
interview type was chosen (Oates, 2005). Other data generation methods such as
questionnaires could possibly be considered instead of interviews, but the depth
and details they generate was unsatisfactory. One-on-one interviews was conduc-
ted, instead of group-interviews, to get more honest ideas and opinions, while
being free to ask follow-up questions.

When conducting the interview, one researcher took notes while the other focused
on the conversation. Audio tape recordings were considered since it is better for
’discovery’ and reduces misunderstandings, but due to its time-consuming nature,
live transcribing was enough to extract the main requirements from the interviews.
To check if the notes and understandings were correct, a summary of the notes was
read back to the participant at the end of the interview. This way the interviewee
could add further details, change, or clear up any misunderstandings.

The main shortcoming of the data gathering was that the initial list of requirements
was based on two interviews with course supervisors at NTNU in charge of creat-
ing digital programming tasks and exams with Inspera. This might seem like an
extremely low number of people, and it is not enough to make larger generaliza-
tions of what all course supervisors want from the IT artefact. The main reason
no further people was interviewed for the initial requirements was that a long and
detailed list of ranked requirements was already in place after these interviews.
Another reason was that, although Parsons problems have received attention inter-
nationally since its initial release, it was quite new at NTNU, at least in an exam
context following the transition to digital exams. This meant that maybe few teach-
ers had even considered using this problem type yet. The two people interviewed
had a lot of domain knowledge, ideas, opinions, and love for the field, making the
information gathered here more than enough to get started. One could question
the validity of these requirements, but since an agile development methodology
was deployed, there was little benefit to spending too much time gathering initial
requirements. The main idea was to conduct more interviews regarding the pro-
totype using the experiment strategy, making these interviews somewhat different,
as discussed in Section 4.2.2.

44 Research Methodology

The interviews themselves were performed in the course supervisors own offices in
the hopes they would be as comfortable as possible and for their own convenience.
Another shortcoming of the semi-structured interview was that the initial ques-
tions that was asked during the interview could themselves have been biased or
leading. An example is the question: "Would automatically generated distractors
suggestions be desirable?", which inserts ideas the interviewee wouldn’t necessar-
ily come up with themselves. The common answer to such leading questions was
"I am not sure, but I guess that would be a nice feature.", showing that questions
like this in no way leads to proper discovery of that persons real requirements. And
it is important not to lead the witness.

The gathered notes was then structured into a table of functional and non-functional
requirements, and all requirements gathered from both these initial interviews and
later feedback can be found in Appendix D. These tables also provide information
on when the specific requirements were added.

4.2.2 Data Generation Method for the Experiment Strategy

Since the main goal of this research was to compare the usability of the new IT
artefact compared to the current process of generating Parsons problems, general
usability evaluations and metrics were deployed. Usability with its dimensions is
defined as (ANSI, 2001):

"The extent to which a product can be used by specified users to
achieve specified goals with effectiveness, efficiency and satisfaction
in a specified context of use."

Effectiveness metrics relate to percent of task completion, number of errors, num-
ber of questions asked, and assistance needed. Efficiency is measured by the mean
time to completion and resources expended. And satisfaction focuses on the users
subjective opinions of the product with measurements such as satisfaction, useful-
ness, and ease of use (ANSI, 2001).

Representing these dimensions as a single value for usability is a difficult matter
and there have been many attempts to create such a measure (Sauro and Kindlund,
2005). Studies have also shown that the three aspects of usability have a weak
correlation and recommends measuring and considering each aspect independently
(Frøkjær et al., 2000). So to avoid making additional claims or risky assumptions
about the usability, these aspects was considered separately and independently in
this research.

4.2. Data Generation Methods 45

Figure 4.3: Quantitative Model of Usability (Sauro and Kindlund, 2005)

Effectiveness, was measured by looking at the quality of the solution (inaccuracies
in the solution), the number of errors made during the process and the number of
questions asked / assistance needed.

Efficiency, was measured by task completion time.

Satisfaction, was measured using the System Usability Scale (SUS) questionnaire
and a short interview.

The usability and its dimensions was gathered using the following data generation
methods

Observation
Note that observations are in effect a survey (Oates, 2005). The survey strategy
highlights some additional concerns that researchers using the observation data
generation method must take into account. First of all, it is important to clearly
define a sampling frame and sampling technique. The sampling frame of relev-
ant people to observe using the IT artefact was course supervisors or professors
at NTNU previously or currently in charge of creating digital programming tasks
and exams with Inspera. The main idea behind this narrow sampling frame was to
ensure real-world evaluation of the prototype, making the real end-users the best
candidates for testing. One could argue that anyone with programming expert-
ise might be relevant for testing the IT artefact, but this requires extensive intro-
ductions to Inspera before one could properly compare the two procedures. The
course supervisors also have more domain knowledge within the field of creating
tasks and exams, and can give feedback most people would not even consider.
The requirements concerning the IT artefact was simply too specific to let other
individuals than course supervisors decide what should and should not be imple-
mented, improved, or changed.

The technique used to select course supervisors from the sampling frame was the
non-probabilistic Snowball sampling technique. While the Snowball sampling
technique has some deficiencies, such as problems with sampling principles and

46 Research Methodology

engaging with respondents as informal research assistants, the technique is still
considered economical, efficient, and good for accessing hidden or unknown pop-
ulations (Atkinson and Flint, 2001). The supervisor of this master thesis was able
to suggest relevant people to the research who would be considered as an end-user
of the IT artefact. The sampling frame was the main criteria used when asking for
test subjects. The main benefit of this sampling technique was that the researchers
could be led directly to the relevant test subjects by taking advantage of the social
networks of the identified respondents.

The sampling size was set to around five users, since more elaborate usability tests
are often seen as a bad investment of resources in regards to usability problems
found. Nielsen & Lauder finds that almost 80% of all usability problems can be
found with only five test users (Nielsen and Landauer, 1993).

All of the observations were overt, and while this might trigger the Hawthorne
Effect (Adair, 1984), it lets the researchers ask more questions and together with
the end-users find the solutions to potential problems or misunderstandings.

The observation also consisted of the Verbal protocol analysis or "think aloud"
method. This method consists of asking the participant to talk and think aloud
during the test (Oates, 2005). "The process of verbalization reveals the assump-
tions, inferences, misconceptions and problems that the users face while solving
problems or performing tasks" (Benbunan-Fich, 2001). By gathering deeper in-
formation as the user is performing the tasks, one avoids the problems where
people forget their experiences or justify their actions in retrospective data gath-
ering methods. The subjects should thus make comments while performing the
given tasks, which makes it easier for the researchers to understand the users cog-
nitive model, expectations, and misinterpretations of the system (Benbunan-Fich,
2001). Compared to other process tracing techniques, the verbal protocol analysis
is likely the most informative and the richest technique (Todd and Benbasat, 1987).

Questionnaires

During the observation process, to map efficiency, effectiveness, and satisfaction
of the IT artefact, two questionnaires inspired by the system usability scale (SUS)
were conducted. The SUS is a survey scale developed by Brook (Brooke et al.,
1996) to give a global view of subjective assessments of a system. The SUS is
a mature, robust, and well-established tool that, in this case, is effective for com-
paring competing implementations of a system and to compare different interfaces
(Bangor et al., 2008). It is important to note that the SUS used in this research was
slightly modified and adapted to clarify which aspect of the systems and process

4.2. Data Generation Methods 47

that was relevant for the questions, as shown in Table 4.1. The first question in
both the pre-test and post-test was extra detailed, while the other questions were
more similar to the original SUS statements. This was to let the first question set
the frame of mind so the participant knew what aspects of the system that was in
question.

Calculating the SUS score is done by following these rules:
"For items 1,3,5,7 and 9 the score contribution is the scale position minus 1. For
items 2,4,6,8 and 10, the contribution is 5 minus the scale position. Multiply the
sum of the scores by 2.5 to obtain the overall value of SU. SUS scores have a range
of 0 to 100." (Brooke et al., 1996)

Original SUS Statements
Pre-test Modified SUS
Statements

Post-test Modified SUS
Statements

I think that I would like to use this
system frequently

I think that I would like to use In-
spera frequently to manually cre-
ate drag-and-drop tasks

I think that I would like to use
this system frequently to generate
drag-and-drop tasks

I found the system unnecessarily
complex

I found that Inspera was unneces-
sarily complex

I found the system unnecessarily
complex

I thought the system was easy to
use I thought Inspera was easy to use I thought the system was easy to

use

I think that i would need the sup-
port of a technical person to be
able to use this system

I think that i would need the sup-
port of a technical person to be
able to use Inspera

I think that i would need the sup-
port of a technical person to be
able to use this system

I found the various functions in
this system were well integrated

I found the various functions in In-
spera were well integrated

I found the various functions in
this system were well integrated

I thought there was too much in-
consistency in this system

I thought there was too much in-
consistency in Inspera

I thought there was too much in-
consistency in this system

I would imagine that most people
would learn to use this system
very quickly

I would imagine that most people
would learn to use Inspera very
quickly

I would imagine that most people
would learn to use this system
very quickly

I found the system very cumber-
some to use

I found Inspera very cumbersome
to use

I found the system very cumber-
some to use

I felt very confident using the sys-
tem I felt very confident using Inspera I felt very confident using the sys-

tem

I needed to learn a lot of things
before I could get going with this
system

I needed to learn a lot of things be-
fore I could get going with Inspera

I needed to learn a lot of things
before I could get going with this
system

Table 4.1: Original SUS statements compared to the modified SUS statements used in the
experiment.

Figure 4.4 shows a general overview of what passes as an acceptable SUS score for
a given system (Bangor et al., 2008), but it is important to note that only evaluating
the SUS score in isolation gives little information about the "goodness" of the IT

48 Research Methodology

artefact or Inspera. The main source of data therefore comes from comparing the
pre- and post-test SUS scores.

Figure 4.4: A comparison of mean System Usability Scale (SUS) scores by quartile,
adjective ratings, and the acceptability of the overall SUS score (Bangor et al., 2008)

As mentioned, the questionnaire was given to the participant during the observa-
tion process as a follow up to the pre- and post-test, making it closer to a self-
administered questionnaire than a researcher-administrated one. The researchers
did not ask the questions themselves, but simply handed the participant a sheet to
fill out while they prepared the next part of the experiment. By handing the par-
ticipant a piece of paper, the researchers avoids having the tone of voice or body
language effect the answers. The questionnaire is used to gather standardized data
and consists only of closed opinion typed questions. Since the questionnaire works
as a supplement to the interview, all open questions are left to the interview sec-
tion. The response format of the questions follow the ’Likert scale’ where one fills
out to what degree one agrees or disagrees with the given statement (Brooke et al.,
1996). Since the SUS itself is a tried and tested set of questions, the researchers
did not have to go through any additional pre-tests or piloting of the questionnaire.

Interviews

As a follow up to the questionnaire during the experiment, an interview was con-
ducted to gather more detailed feedback and better explore feelings, improvement
ideas, and pain points. The interview had the goal of generating more feedback as
well as discovering any additional requirements the participants had in mind. This
was performed as a semi-structured interview where the researchers had the fol-
lowing questions prepared while being prepared to add follow up questions. The
main questions for the semi-structured interview can be seen in Table 4.2.

The interview was, together with the rest of the experiment, video recorded to bet-
ter capture the entire conversation. The interview was then transcribed into notes
after the experiment, and the main findings was sent by email back to the parti-

4.2. Data Generation Methods 49

Nr Question
1 What are your first thoughts about the proposed system?

2
What was the best part of creating drag-and-drop questions in In-
spera?

3
What was the worst part of creating drag-and-drop questions in In-
spera?

4
What was the best part of creating drag-and-drop questions with the
new system?

5
What was the worst part of creating drag-and-drop questions with
the new system?

6 Do you feel the system made you more productive?
7 What do you think of the systems GUI?
8 What additional features would you like to see in the new system?

9
What needs to be done for this system to be used regularly by you
and other course supervisors?

10 How could the system be made easier to learn and use?
11 What aspects of the system was the most confusing?
12 How could the system make you even more productive and efficient?

13
Do you think there is a difference in the quality of the two solutions
you created?

14
Is there anything else you would like to mention or comment regard-
ing the system?

Table 4.2: Interview questions

cipant to check if anything was misunderstood or if they would like to add any ad-
ditional information. As previously discussed for the design and creation strategy,
interviews are a better way to discover information regarding requirements rather
than ordinary questionnaires, and was thus chosen as a supplement to the already
performed observation.

One of the drawbacks of such an interview is that the interview, transcribing, and
analysis can be quite time consuming for the researchers. The questions can also
be misleading and the answers given can also be misunderstood by the researchers.
The questions were created to be as open-ended as possible and to start a conversa-
tion rather than creating consistent and direct answers. By accommodating to the
abstract nature of a semi-structured interview, one might discover more and new
ideas.

Another problem with the interview was that due to it being video recorded, its

50 Research Methodology

intrusive nature might make the situation somewhat stressful for the participants
and inhibit honest answers. By conducting these interviews in the participants
own offices, the environment could hopefully make room for a more comfortable
experience. The video recording might also make some people too uncomfortable
to accept an invitation to participate. Since the entire experiment process with
observations, questionnaires and interviews took about 45-60 minutes to complete,
the duration itself could make the participants tired, annoyed, or inclined not to
participate in the experiment.

When conducting an interview, the researchers have to pay attention when the
users actions do not conform to their feedback. Reasons for this might be that
the user feels pressured to comment, obliged to be nice, or the aesthetic-usability
effect (Lidwell et al., 2010). To combat these biases, the interview setting has to
be addressed. To begin with, it is important to set the atmosphere as comfortable
as possible, and emphasise that the user takes his or her time, and only ask open
ended questions if necessary. Second, the researchers should try to distance them-
selves from the independent variable as much as possible. This entails keeping
emotional responses to a minimum, and ensuring the users that none of their re-
sponses will hurt any feelings. Lastly, to combat the aesthetic-visibility effect, the
researchers might have to ask the users to comment beyond the visual features of
the independent variable. However it is important not to ask leading questions, but
rather open questions.

4.3 Evaluation
This section discusses the main ways the generated data was evaluated and ana-
lysed in the research.

4.3.1 Research Question 1

As discussed in Section 4.1.1, Research Question 1 does not focus on the actual
evaluation of the IT artefact since this is the main focus of Research Question 2.
The design and creation of the IT artefact still require some iterative evaluation of
the development choices made, and this is shown and discussed in Section 5.1.

4.3.2 Research Question 2

This section shows how the different data from Research Question 2, in regards
to the evaluation of the IT artefact, was evaluated and analysed in the research.
As previously mentioned, the effectiveness of the new proposed system was meas-

4.3. Evaluation 51

ured by comparing the quality of solutions, number of errors made, and questions
asked/assistance needed. The efficiency was measured by comparing the task com-
pletion time of the pre- and post-tests, and the satisfaction was measured using the
SUS questionnaire and a short interview. The quantitative data gathered is here
separated from the qualitative data to give a better overview of the different data
gathered and how they were evaluated separately.

The null hypothesis stated for this research was:
H0: The efficiency, effectiveness, and satisfaction scores will be no different between
the existing (Inspera) and the new process (IT artefact).

Quantitative data
All of the data mentioned below are measured once during the pre-test and once
during the post-test.

System Usability Scale (SUS):
The SUS questionnaire gathers ordinal data with the use of Likert scale-based
questions where numbers are assigned the responses "Strongly disagree"(1) - "Strongly
agree"(5). As mentioned in Section 4.2.2, Brook (Brooke et al., 1996) provides a
set of rules to calculate a single number between 0-100 representing the overall
usability. It is important to view this single number of ordinal data with a critical
eye, since there are no way of knowing exactly how much better a score of 80 is
than a score of 70.

Errors made:
From the observation, the number of errors made was counted and compared
between the pre- and post-test. With this type of data, the number of errors clearly
show that 1 error compared to 2 errors is the same as 3 compared to 4, giving
a scale with consistent intervals. In the data, 0 errors also have a clear mean-
ing, making this ratio data. A small problem with this ratio data is that it in no
ways describe the size of the errors and how severe they are. One large error will
still be seen as better than 3 small ones, even though this might not be true. But
since categorizing what goes as severe errors or minor errors are highly subjective,
the researchers did not find it necessary to reflect the severity of the errors in the
quantitative data gathered. But since the consequences of the errors could be quite
severe, they were all noted down in detail as qualitative data, so a proper subjective
evaluation could be made. The most important thing was to get rid of any critical
errors for the final prototype version.

52 Research Methodology

Deciding what goes as an error can be quite difficult to establish, but it is important
to clearly define the different kind of errors and inaccuracies that were supposed
to be tracked during the testing. The main categories used during the testing was:

• Errors made during testing (by user) - These were errors where the par-
ticipant was in fault and caused an error. These are cases where the user
clearly forgot to do something or expected something different to happen.
These errors were counted even if the test subject fixed the error at a later
point. The reason these errors were counted was to get a better understand-
ing with how easy and how many times misunderstandings occurred. An
example of an error when creating a drag and drop task in Inspera would be
to forget to pair up a drag area and a drop area.

• Errors made during testing (by system) - It is important to distinguish
between the errors caused by the user and errors caused by the system in use.
This category focuses on bugs, where the software system causes an error,
failure, or fault. These errors are also counted when the system produces
incorrect or unexpected results and when the system behave in unintended
ways. An example could be when the user expects the system to support
copy-paste functionality, but it does not. Since such functionality is to be
expected by most systems, this is categorized as an error by the system, and
not by the user.

• Errors in solution - These were errors that were present when the test sub-
ject stated they were completely finished with the given task. So these are
errors that were unknown to the participant and that were not fixed during
the test. An example would be to create a 2D Parsons problem without
turning on the snap functionality (Turning off "Free placing drag areas") in
Inspera as mentioned in Section 2.4.2. Another example would be the lack
or misplacing of solution links between drag and drop areas, so that students
with a working solution might get points deducted.

• Inaccuracies - Inaccuracies was created as its own category to better distin-
guish between errors in the solution and situations where the functionality
was mostly correct, but the visuals were incorrect. A good example of an
inaccuracy would be to create a grid of drop-areas where some areas over-
lapped and some had different sizes. This is not an error, since the grid
would still work as intended, but it would be a lot harder for a student to
know where to place the drag-area and more visually unpleasant to com-
plete the task. So these were situations where the created solution did not
look like intended according to the task sheet the participants were given. A

4.3. Evaluation 53

problem with measuring inaccuracies was that it required a lot of subject-
ive assessment to, for example, decide if an inaccurate drop area grid would
count as one single inaccuracy or 30 (one for each drop area). By choosing
the latter option, the researchers could potentially cheat their way to better
results. So instead of counting every specific inaccuracy incident, the re-
searchers counted the number of inaccuracy categories. This means that the
researchers counted a single incident of "Inaccurate drop area sizes" instead
of 30 specific incidents of inaccurate drop area sizes. To better strengthen
the validity of this measure, all the inaccuracy categories were predefined
here:

– Inaccurate drop area positioning and alignment
– Inaccurate drop area sizes
– Inaccurate drag area positioning
– Inaccurate drag area sizes

Questions asked/assistance needed:
As with the errors made, this data is also categorized as ratio data. It also has
the same shortcomings as the error data. During the testing, the participants were
asked to think aloud and to ask questions if they had any. These questions were
noted and counted. It was important to distinguish between questions concerning
the actual process that was being tested and the questions that did not. A small
question such as "I was supposed to create all these drag areas, right?", would
not be counted since the question itself was directed to the understanding of the
test, and not the process of creating Parsons problems in either Inspera or with the
proposed IT artefact. The questions tracked were questions like "How do I connect
this drag area with the drop area?", since these questions were related to the actual
systems and processes being tested.

The number of times assistance was needed was also counted, and assistance was
only given at times where the participants were completely stuck. Assisting the
participants without them asking for help was seen as a last resort and was to avoid
if possible during the testing. It was critical to let the participant ask for help before
the researchers started intervening, and this was to give the participants a chance
to figure it out by themselves, but in some extreme cases, unprovoked assistance
would still be needed. An example would be when a participant got completely
stuck inside their own file explorer since they did not remember to close or finish
the already opened file explorer. The participant thought the entire system crashed
and was about to close the system, so in this case the researchers decided to inter-
vene and count this as ’assistance needed’.

54 Research Methodology

Task completion time:
The data gathered from measuring the time it takes to complete a given task have
a proportionate interval and a true zero, making this ratio data. The time was only
measured during the most relevant and non-overlapping parts of the two processes.
As previously mentioned, things such as navigating around in Inspera to get started
with the task was not measured.
Since the researchers focused on performing verbal protocol analysis while the
participants were performing their tasks, the measured time could be highly in-
fluenced by their aloud thinking. It was very likely that the time measurements
would be different if a participant were sitting alone and trying to solve the tasks
in silence. The verbal protocol analysis leads to extra discussion during the exper-
iment as well as additional feedback regarding improvements and bad practices.
When a participant sees or misunderstands something, they spend extra time ex-
plaining what is wrong and how it could be improved. This additional time means
that the actual task completion time might not reflect ’normal use’, but since the
verbal protocol analysis influences both the IT artefact tasks and the Inspera tasks
somewhat equally, the time measurements was still considered a decent compar-
ison between the two processes.

Qualitative data
The verbal protocol analysis and the interviews held at the end of each observation,
as mentioned in Section 4.2.2, was the main source of quantitative data gathered
for the evaluation of the IT artefact. Since the entire experiment was taped, video
was the main tool for gathering the raw data. The video tape consisted of the users
performing their given tasks in the two systems, as well as an interview at the end
of the experiment.

From the first part of the video tape, where the users would try to create Parsons
problems manually in Inspera and with the IT artefact, any important or unex-
pected behavior was noted. It is extremely difficult to subjectively decide what is
noteworthy and what is not, but in this context, any deviations from the expected
behavior or anything that the researchers found interesting was noted. Examples
of what counted as interesting was things such as small pauses where the user was
waiting for something to happen or got confused as to what a button did. While
this kind of evaluation might be inaccurate, the consequences of this inaccuracy
was tolerable for this research. It was more important to find the main and the
most visible deviations instead of every single one. These unexpected behaviors
could then be used as guidance to where additional improvements should be made.
If the users showed uncertainty as of what a button would do, the researchers got a
good indication that the button needed a more descriptive text, a new icon, better

4.3. Evaluation 55

feedback, or some other informative feature.

The users verbalizations during the test and their activities was recorded using
video tapes and a full transcript of the session was made after the testing. Both the
verbalizations and the actions they performed were transcribed together to form a
complete episode of what was going on.

After the experiment, the entire video would be transcribed and segmented into
units. These units would thus consist of verbal protocol analysis episodes, action
descriptions, interviews, and other comments. These units were paragraphs in the
transcribed texts, and the paragraphs themselves were created with the research-
ers subjective opinion as to where the answer to a question or a topic ended. To
properly perform data analysis, the first step was to identify the key themes in the
data. The created units would first have to be duplicated in a new document and
placed into a table with two columns. All segments that had no relation to the
overall research purpose was discarded in this first step. All remaining segments
was given their own row in the table. The remaining units would then be subjec-
ted to a theme analysis (Oates, 2005), where each unit or episode were labeled,
or coded, with one or more categories and descriptions of the theme presented by
in the unit. This made it easier to see which categories and descriptions that were
repeated or emphasized by the participants. To properly analyse quantitative data,
it is important to look for themes and patterns, and by looking at the connotations,
i.e. the values and ideas expressed, and finding what categories and descriptions
are repeated, one get a better understanding of what might be considered as im-
portant. To develop these categories/coding schemes, one can choose between a
deductive approach and an inductive approach. With the deductive approach, one
develops the categories beforehand and create these categories based on literature
or theories. For verbal protocol analysis, deductive a priori coding schemes are re-
commended to facilitate efficient analysis of the data (Todd and Benbasat, 1987).
The inductive approach, on the other hand, lets the researchers find the categories
from the data itself as one goes through the material. In this research, the latter
was chosen to avoid committing too much to already created theories. An induct-
ive approach might be somewhat better for discovery and might make it easier to
avoid overlooking new and other themes in the data. A problem with the inductive
approach is that the categories may be highly influenced by the researchers pre-
vious thoughts and experiences, but completely avoiding this kind of subjective
prejudices can be difficult in quantitative analysis, and to avoid researchers bias,
the coding should preferably not be performed by the researchers themselves at
all. Since the research already consists of other predefined scoring schemes in the
quantitative data gathering, the inductive a posteriori coding scheme was chosen
for the interviews and verbal protocol analysis. While this might be more time-

56 Research Methodology

consuming and be influenced by researcher bias, acknowledging the shortcomings
might help the researchers approach the categories a bit more open minded. Since
the quantitative data focused more on discovery, the categories created by the re-
searchers naturally focused on the more negative aspects of the feedback in order
to find where improvements could be made.

As mentioned, the goal of the interview and the verbal protocol analysis evaluation
was to discover additional feature requests or shortcomings and to better under-
stand how the IT artefact was perceived by the users. Together with the categories
created, the feature requests mentioned by the participants during the testing and
interviews was grouped together and sorted by how frequently they were men-
tioned during the testing. This list was the main source for further development of
the IT artefact.

4.4 System Development Method
This section discusses the system development method used in the development
process of this IT artefact.

4.4.1 Agile Software Development

Because the domain of creating exams was fairly unknown to the researchers, and
since the initial requirements were somewhat flexible, a plan-driven development
method like the waterfall model would not be appropriate. Rather, it was natural to
implement an incremental, agile systems development method to get continuous
feedback and build domain knowledge.
Agile development methods embraces change, and thrives in small development
teams developing small or medium-sized products (Sommerville, 2011). As the
initial requirements were expected to change throughout the project, and the de-
velopment team consisted of two programmers, the agile methodology was seen
as the best fit. In addition, the thesis supervisor could arguably be seen as the pro-
ject customer, such that customer involvement in most of the development process
could be guaranteed, which is highly appreciated in agile development methods.

There are many iterative models available, of which many would have been a good
choice, but due to the small size of the development team, it was not seen as ne-
cessary to adhere one specific model. With two developers developing side by side
throughout the entire project, communication was considered to be highly efficient,
which opened for the possibility of using elements from different methodologies
that best suited the development process.
It was decided to utilise agile elements from the Extreme Programming, Prototyp-

4.4. System Development Method 57

ing, and Kanban methods. The development cycle was to have an initial stage of
requirement gathering, iterations to incrementally improve a prototype, and use the
final prototype as a release version. The release cycle from Extreme Programming,
combined with prototyping, was seen a good fit for the incremental development.
In addition, pair programming was utilised from Extreme Programming, and the
kanban board from the Kanban development method.

Development Structure

An overview of the development process was as follows:

1. Identify basic requirements

2. Initial design of architecture

3. Continuously develop a prototype through iterations until satisfactory end
product

• User testing in Iteration 4

4. Final release

Before the iterations commenced, an initial set of requirements were gathered,
which would allow for an initial design of the application architecture. As this was
a preface to the first iteration, it was labeled as Iteration 0 to emphasize that this
was done prior to any development on the IT artefact.

When an initial architectural design had been provided, the first iteration could
commence. Incrementally, each iteration cumulatively build on the prototype until
a satisfactory version of the IT artefact was produced.
In Iteration 4 it was scheduled to do user testing of the IT artefact. For this reason,
it was important that a testable prototype with the most valuable features was ready.

After the final iteration, the IT artefact was seen as ready to be released.

Iteration Structure

The iteration structure was based on the release plan provided by the Extreme
Programming method (see Subsection 4.4.2). At the beginning of every iteration,
requirements were picked and broken down into smaller tasks. The requirement
were gathered from the initial list of requirements, feedback from user testing, and
decisions made by the developers themselves. The reason for breaking down the

58 Research Methodology

requirements into smaller tasks was to have more specific targets to work towards.
Additionally, smaller tasks were easier to describe with a ’definition of done’.

After each iteration, the IT artefact was evaluated by doing an assessment of its
worth and deviations from expectations. The research questions of the thesis were
concerned with how to create and design a system for efficient generation of Par-
sons problems, and the effects of using it - compared to the manual method. For
that reason, the evaluation criteria was mainly usability, functionality, and aesthet-
ics.

4.4.2 Extreme Programming

Extreme Programming (XP), created by Kent Beck (Beck and Gamma, 2000),
takes iterative development to ’extreme’ levels, and provides useful techniques for
development. In particular, two elements from XP were included in this develop-
ment process: the release plan and pair programming.

The release plan is broken into six phases that are looped until a satisfactory
product is produced (Sommerville, 2011): select user stories, break down user
stories into tasks, plan release, development, release, and evaluate. For the devel-
opment process of this IT artefact, the release plan was tweaked a bit. There were
no user stories, instead tasks were broken down from requirements. The reason for
this was that the thesis supervisor (the customer) had great technical knowledge,
and therefore technical requirements sufficed. At the end of each iteration, the
prototype was presented to the supervisor for feedback, and thereafter evaluated.

The steps of the implemented release plan were as follow:

1. Select requirements for the iteration

2. Break the requirements down into tasks

3. Develop the prototype

4. Supervisor feedback

5. Evaluate the prototype

Pair Programming was utilised throughout the development process, as it entails
benefits like collective ownership of code, fewer bugs, and sharing of knowledge
(Williams et al., 2000). But there are also pitfalls to be wary about - for example
troubles with team pairing and difference in skill level. Some of the challenges
can be traced back to communication. But in this case, communication was not

4.4. System Development Method 59

seen as a challenge, but rather a strength. The developers had worked together on
several projects in the past, and were situated on a desk next to each other, which
makes for a perfect opportunity for pair programming.

4.4.3 Software Prototyping

In combination with the release cycle from XP, it was natural to use the prototype
method for developing the IT artefact. The reason for this was that prototypes are
useful when the end product is not clearly stated, especially when it comes to the
user interface. Prototypes allows for exploration of feature possibilities, which was
highly beneficial as the requirements were somewhat flexible.

When prototyping, there are two dimensions in regards of development (Nielsen,
1994): Horizontal prototyping and vertical prototyping. The horizontal dimension
focuses development on all features and branches at the same time, while the ver-
tical dimension focuses on fully implementing one feature at a time.
Developing the IT artefact, it was decided to opt for the horizontal prototyping
dimension. As there was a lack of requirements for the user interface, it was not
given which features were to be implemented. Therefore, it would be most bene-
ficial to implement many features, and reducing the level of functionality of each
feature, to see how they play together as a whole. If one were to go for the vertical
dimension, where entire features are implemented with functionality, there was a
risk that some of the implemented features would not make it to the final version
of the prototype, and time would be wasted. Opting for the horizontal dimension
was considered safer, and it allowed for the whole system to be tested from the
very beginning, resulting in earlier feedback on the system as a whole.

There are several models one can adhere to when prototyping: Throwaway pro-
totyping, evolutionary prototyping, or operational prototyping (Davis, 1992). Be-
cause of the length of the development period (two semesters), it allowed for the
evolutionary prototyping model. This way of prototyping involves continuously
developing one prototype throughout the development process, instead of discard-
ing prototypes after each iteration.
As the prototype evolved through the iterations, the final prototype was a result of
continuous refinement and improvement of source code, and was therefore con-
sidered to be a complete, final version of the IT artefact.

A disadvantage with evolutionary prototyping is attachment to the prototype. When
spending a great deal of time on a prototype or feature, it is easy to get overly
attached to that particular subject, and as a result include features that are not
necessary. This was something that the developers had to keep in mind during de-

60 Research Methodology

velopment.

4.4.4 Kanban

Supplementing the software development process, it was decided to utilise a kan-
ban board from the lean development method Kanban (Sugimori et al., 1977).
Having columns for each stage of implementation, visualisation of the overall pro-
cess of development was made easy. Kanban boards play well with the horizontal
approach to prototyping, as it is easy to get lost when you have many irons in the
fire at the same time. Trello1 was chosen as the tool for implementing the kanban
board.

4.4.5 Testing

The process of creating exams have to be reliable. If the tasks generated by the IT
artefact have incorrect solutions, students who answer correctly will not be awar-
ded points, and student answering incorrectly might be. If tasks are not generated
as intended by the end-users, tasks might end up making no sense, be insolvable,
or in conflict with Inspera. If the IT artefact encounters bugs during use, tasks
might not be generated correctly. To prevent these situations, and reinforce reliab-
ility, the IT artefact had to be properly tested.
Over the course of development, three stages of testing were implemented: devel-
opment testing, system testing, and user testing. The goals of the testing was to
demonstrate that the IT artefact met its requirements, and to discover situations
in which the behaviour of the IT artefact was incorrect, undesirable, or did not
conform to its specifications (Sommerville, 2011).

The development testing was carried out during the development of the IT artefact
and consisted of unit testing. As the essence of the IT artefact was the back-end of
the code (the QIT Converter), it was the focus of testing, and required the widest
test coverage.

The system testing was carried out by doing a set of use cases, where each use
case had an expected outcome. This stage was mainly done after implementations
of each requirement, before the user testing stage, and before the final release of
the IT artefact. The use cases were annotated with steps for execution, and the
expected result for verification. The goal of the system testing was to demonstrate
that components worked together as expected, which entailed both testing com-
ponents within the IT artefact and testing the interaction between the IT artefact

1https://trello.com/

4.4. System Development Method 61

and Inspera.

The user testing stage was responsible for validating the IT artefact. That is, mak-
ing sure that the system provided expected behaviour, and conformed to user ex-
pectation. In addition, user testing allowed for discovery of situations where the
behaviour of the IT artefact was incorrect and/or undesirable, and provided a basis
for feedback on future improvements. User testing is further described in Section
4.2.2.

Even though the IT artefact was thoroughly tested, there are still no guarantees
that all bugs and inconsistencies were found. For this reason, we emphasise that
end-users verifies the generated tasks in Inspera before any use.
As Edsger Dijkstra stated in his article "The Humble Programmer" (Dijkstra, 1972):

"Program testing can be a very effective way to show the presence of
bugs, but it is hopelessly inadequate for showing their absence."

62 Research Methodology

Chapter 5

Results

In this chapter, the results obtained will be revealed. First, the results from the
design and creation strategy, with iterations and the topics permutations, techno-
logy choices, and design are displayed. Second, the quantitative and qualitative
results from the experiment strategy are presented.

The resulting IT artefact can be found at
https://github.com/joachimjorgensen/masteroppgave-js.

5.1 Design and Creation
Research Question 1 was concerned with the design and creation of an IT artefact
for efficient generation of Parsons problems for digital programming exams. In
this section, the results regarding Research Question 1 is outlined. The section is
separated into subsections for every iteration, to display the evolution of the IT
artefact throughout the project, and subsections for Technology Choices, Permuta-
tions, and Design. The development of the IT artefact spanned five iterations, and
corresponding subsections (except Iteration 0) are structured as follows:

Goals: Provides a list of the main requirements that was worked on during that
period, the specific tasks created from these requirements, and the overall goals of
the iteration. The tasks are specified separately from the requirements since they
were the more specific assignments from the developers kanban board.

Implementation: Discusses how the requirements, tasks, and features were im-
plemented and why.

63

64 Results

Testing: Discusses the testing stages of the iteration, and lists the use cases per-
formed for system testing.

Evaluation and feedback: Provides an overview of the feedback gathered from
each iteration, as well as an evaluation of the iteration and the implemented fea-
tures.

5.1.1 Iteration 0

Iteration 0 was defined as the pre-development stage, and mainly consisted of gath-
ering information and planning. The main goals of this iteration was to identify
requirements for the IT artefact, design models of the architecture, and get a better
understanding of what to create.

How the end-user requirements were gathered is described in Section 4.2.1, and a
complete list of the gathered requirements, as well as the non-functional require-
ments, can be found in Appendix D.

When developing the initial architecture of the IT artefact, it was still somewhat
unclear what technologies to utilize. Section 5.1.8 describes the thought process
behind the choices made in regards to which technologies to utilize. At this time
in the development process (Iteration 0), it was decided that creating a desktop
application using Electron would be the best solution. The front-end of the applic-
ation was to be written in pure JavaScript, while the back-end consist of a Flask
API connected to a QTI generator (Hereinafter referred to as QTI Converter) writ-
ten with Python.

Figure 5.1: System Architecture v1.0

Figure 5.1 shows the main relations between the initial components, and Figure
5.2 shows the sequence diagram for the IT artefact. In its simplest form, the user

5.1. Design and Creation 65

Figure 5.2: Sequence Diagram

should be able to upload their code snippet to the IT artefact, and thereafter export
it as a zip-file that can be uploaded to Inspera as a drag and drop task. This zip-
file should require no extra modifications and be ready for use. The sequence
diagram and the system architecture are both quite simplistic, and this simplicity
was valuable when creating a prototype that required testing as soon as possible.
The entire project was now clearly structured into the creation of a GUI that let
the users upload code and fill out the required settings, and a QTI Converter that
could create tasks ready to be uploaded to Inspera. In Appendix A Section A.1,
one can also see an activity diagram of the assumed activities at this point. The
clear separation between front-end and back-end also made it possible to develop
these parts in parallel. Single requirements or tasks could then be implemented in
the GUI and the QTI Converter at the same time.

Immediately following the gathering of requirements, the next step was to create
a simple mock-up of the GUI of the IT artefact. This gave a better understanding

66 Results

of what the different requirements would require of the application, and creating
a mock-up lets you quickly test out multiple design options. Figure 5.3 shows the
first application concept with its minimal design, only taking core functionality
into consideration. The design was created in Photoshop1 for easy manipulation
of ideas and suggestions that came to mind. Design theory is described in Section
2.7, and will be further discussed in Section 5.1.9.

Figure 5.3: Mock-up design from Iteration 0

The idea behind the first mock-up was to segregate the different tasks by imple-
menting a tab functionality, rendering navigation self-evident. Assigning each tab
a number at the bottom of the application, in ascending order, made for easy track-
ing of all tasks.

The task page was initially built up of three components: a file uploader, source
code editor, and distractor input. The file uploader was placed top left, because it is
advantageous for the user to notice this functionality before the source code editor,
to avoid possible duplicate input. Below the file uploader, the source code editor
was placed, as this was naturally the second functionality of focus. The source
code editor was utilized with a point marker for each line of code, to support a
point scheme for each task. Lastly, the distractor input was placed to the right of
the source code editor, to suggest a connection between them.

1https://www.adobe.com/no/products/photoshop.html

5.1. Design and Creation 67

5.1.2 Iteration 1

Goals

Functional Requirements for Iteration 1

ID Title Description

6
Generate Inspera
supported QTI

The Parsons problem to be generated by the IT arte-
fact must be generated in a QTI format that is sup-
ported by Inspera

Tasks for Iteration 1

Title Definition of done
Initialise Electron
Application

Create an empty Electron Application ready for use.

Initialise Flask API Create an empty Flask API ready for use.

Create QTI Con-
verter

Create the first version of a Python program that uses
the QTI skeleton code and adds the required fields for
creating a drag and drop task.

The focus of this iteration was to develop a working version of the QTI Converter
seen in the back-end section of Figure 5.1, while getting started with the initial
setup of the Electron application. More precisely, the main goal was to be able to
generate a working drag and drop task with the QTI-format, compatible with In-
spera. This functionality was the essence of this IT artefact, and therefore, setting
up this core functionality as quickly as possible was paramount.

Implementation

At this point it is important to mention that Inspera supports both the importing
and exporting of questions in QTI format. This meant that instead of building the
entire QTI file from scratch, and risk forgetting some required XML fields, one
could export an empty drag and drop task from Inspera and use this as a skeleton
for all future task to be generated. The QTI Converter was at this point written
in Python, which has multiple libraries for parsing and working with XML, mak-
ing it easy to add additional fields to the mentioned skeleton. Figure 5.5 shows
the function that parsed the XML skeleton string (but here written in JavaScript).
The long XML file was formatted to a single-lined string to save space. While us-
ing this skeleton XML made the initial development easier, it could lead to some
unnecessary complications in the future. If Inspera at a later point updated to a
another version of QTI or changed the requirement of some specific fields, it could

68 Results

Figure 5.4: Flowchart of QTI Converter in Iteration 1

be harder to debug and fix the skeleton code than if the entire XML was built from
scratch. Since the main focus during this iteration was to make the task generation
work, these ’shortcuts’ were acceptable.

Figure 5.5: Parsing the skeleton XML in JavaScript

To keep it simple, the program was executed through a command line interface
where it read a single Python file as raw text and created the drag and drop task.
A flowchart of the initial QTI Converter code can be seen in Figure 5.4. The idea
was to create working versions of each module in the architecture before trying
to connect them. So while the first version of the QTI Converter was created, the
Electron application and Flask API was initialised.

5.1. Design and Creation 69

Testing

As this was the first iteration of development, not too much functionality could
be tested. The Electron application and the Flask API had no extra functionality
other than what was included in the setup guides, while the development of the
QTI Converter was still in the stages of figuring out the correct way of creating
the exported files. For this reason, use cases were mainly used for testing the QTI
Converter, instead of using unit tests, since the exported files had to be manually
tested against Inspera.

Use cases can be found in Appendix C.1.

Evaluation and feedback

At the end of Iteration 1, the first version of the QTI Converter successfully gener-
ated a simple drag and drop task given text from a single Python file. At this point
it generated a 2D Parsons problem consisting of a grid of drop areas and drag areas
placed at fixed coordinates. These results were presented to the thesis supervisor
at the end of the iteration. Since there existed a detailed course of action, the feed-
back given proposed no changed to scheduled plan, current implementation, or
requirements.

This iteration proved that the proposed system could work as intended, and could
be further developed. There were no unexpected happenings or difficulties that
occurred during this iteration. The iteration was concluded as a success.

5.1.3 Iteration 2

Goals

Functional Requirements for Iteration 2
(Note that these are the new requirement added for this iteration. Previous require-
ments were still relevant)

ID Title Description

1
Desktop applica-
tion

The IT artefact should be a desktop application
providing the users with a GUI where one can per-
form all necessary actions to properly generate Par-
son problems

70 Results

2

Parsons prob-
lems and 2D
Parsons prob-
lems

The IT artefact has to support the generation of both
1D Parsons problems as well as 2D Parsons prob-
lems

3 Upload file
Users should be able to upload any code file to the
IT artefact, such that this code can be used as the
basis for the Parsons problem to be generated

4
Copy and paste
source code

Users should be able to copy and paste source code
into the IT artefact and use this source code as the
basis for the Parsons problem to be generated

5
Write and edit
source code

Users should be able to write and edit source code
in the IT artefact and use this source code as the
basis for the Parsons problem to be generated

7
Parsons prob-
lems design

The Parsons problems to be generated by the IT
artefact must follow the predetermined design of
how Parsons problems should be created in Inspera
using drag and drop tasks

11
Export all and
Export single

When creating multiple tasks, the user should be
able to export both a single task and all tasks (Focus
on exporting a single task this iteration)

14
Export destina-
tion

The user should be able to select the exact folder the
exported task should be placed in when exporting
from the IT artefact

5.1. Design and Creation 71

Tasks for Iteration 2

Title Definition of done

Add code editor
Add a code editor to the Electron application, making
it possible to write, copy and paste code

Upload file Make it possible to upload a file
Display content of
uploaded file

The uploaded content should be transferred to the code
editor in the Electron application

Export task
A user should be able to export/download the generated
task (.zip-file) through the GUI

Export destination
Make it possible to choose the name and folder destin-
ation for the generated task (.zip-file)

Continuous saving
Instead of a designated Save button, make the Electron
application save its current state on change

Random drag area
placement

Make the generated drag areas appear in a random order
in Inspera

Normal Parsons
problem and 2D
Parsons problem

Make the QTI Converter support the generation of both
2D Parsons problem and normal Parsons problem

Connect front-end
to back-end

Have the front-end send its state to the Flask API,
which in turn makes the QTI Converter generate a zip-
file

Packaging/build
Electron applica-
tion

Create a release build of the Electron application with
all the components in the architecture that is executable
for both Windows and Mac OS

The goal of Iteration 2 was to have a minimalistic, functioning user interface com-
municating with the back-end. For this reason, the apparent design aspect was not
highly prioritised, but rather the inherent usability. Additionally, the QTI Con-
verter was expanded to support the generation of 1D Parsons problems as well as
2D Parsons problems.

At the beginning of this iteration, some functional requirements were discarded
and some were added. Appendix D Table D.3 shows some of the removed require-
ments, where many were removed during this iteration. Table D.3 ID 1 (Suggest
distractors) was discarded due to the IT artefact being an offline desktop applic-
ation. The idea was to use machine learning or some predefined set of rules to
generate distractor suggestions for each line of code given by a user, but without
a connection to the Internet, the provided value from this feature would be low
compared to the effort of implementing it. Table D.3 ID 2 (Comment syntax) were
mentioned quite a lot during the initial requirement gathering, but during this itera-

72 Results

tion it was decided to only create a GUI instead of having to support multiple ways
to perform the same actions. Using a GUI instead of a comment syntax could also
support scalability, ease of use, and usability since it can provide better feedback,
tutorials, and help methods. Table D.3 ID 3 (Score allocation) was also discarded
because it was discovered that these kinds of score allocations was impossible to
create with Inspera.

During Iteration 2, some new requirements were added to the list as well. The new
requirements are shown in Appendix D Table D.1. Table D.1 ID 13 (Preview) was
added as a feedback mechanism that could help the user visualise and understand
what kind of task that would be generated before exporting it. Without a preview
function, the user would not see if an error had been made before exporting the task
from the IT artefact, uploading it to Inspera, and previewing it there. Table D.1 ID
14 (Export destination) was a small and obvious feature previously overlooked and
simply forgotten to specify. Table D.1 ID 15 (Help functions) was added to the list
of requirements to help new users of the IT artefact learn and understand it.

Implementation

Adding a code editor to the Electron application was easily done by utilising
CodeMirror2, which is a JavaScript component providing a code editor for the
browser. With its extensive API, uploading files and displaying the code in the
editor could easily be handled as well. During this iteration, an option to toggle
the 2D Parsons setting was implemented, which was done through a simple toggle
button with a label. The tab system mentioned in the mock-up was not yet im-
plemented, only making it possible to create one task at a time. The Electron
application GUI for the second iteration can be seen in Figure 5.6.

The front-end had its own internal state, structured as a JSON object, that could
easily be transported as a payload to the back-end when exporting the task. The
internal state was updated by multiple onChange-methods and saved after every
action that provided new information to be stored. The main idea behind this
continuous preservation of the internal state was to better accommodate for the tab
system mentioned in the mock-up that was to be implemented at a later point and
the live updating of the preview.

Making the QTI Converter create both 2D Parsons problems and 1D Parsons prob-
lems required some restructuring of the initial code, but was in general easily im-
plemented. The main difference between creating these two task types were that
the 1D Parsons problems only consisted of drag and drop area pairs. This means

2https://codemirror.net/

5.1. Design and Creation 73

Figure 5.6: Application after Iteration 2

that every drop area has a drag area connected to it, while the 2D Parsons problems
has to generate a drop area grid where many of the areas do not have a connec-
tion to a drag area. Supporting the random placement of drag areas, on the other
hand, was not as easy to implement. It was not possible to have fixed positions that
could be randomly distributed to the drag areas since the width of each area varied
greatly. Since the QTI Converter created the drag and drop pair sequentially for
each line of code, the specific coordinates for the drag areas had to be determined
before creating the pair. The solution was to have a separate function generate all
starting positions for the drag areas and place these coordinates in a dictionary that
could be used when creating the drag and drop pair. To place the drag areas as
close to each other as possible, one also had to calculate the exact length of each
drag area using specific font metrics and margins from Inspera. Figure 5.7 shows
the updated flowchart of the QTI Converter code. The QTI Converter was also
updated to support additional metadata such as canvas height, so longer Parsons
problems could be created, and title, so a task name could be set in the IT artefact.

During Iteration 2, the Flask API successfully connected the front-end to the back-
end. The internal state of the front-end got transferred to the Flask API, which in

74 Results

Figure 5.7: Flowchart of QTI Converter in Iteration 2

turn called the proper function from the QTI Converter. But once this functional-
ity was implemented, packaging the IT artefact into a desktop application proved
to be more problematic than anticipated. The initial idea of separating front-end
and back-end code, and have them communicate, required the IT artefact to open
a port and listen for incoming messages (acting like a server). Doing this in de-
veloper mode was not an issue, but once the program was packaged to a release
build, using Electron, access to the underlying system proved to be troublesome.
In addition, running Python scripts from the Electron environment was not an easy
task. After some time trying to fix these issues, the developers decided to change
and rewrite the entire back-end functionality to JavaScript (which is what Electron
expects) instead of Python. This removed the server behaviour entirely, and had
the front-end communicate with the back-end directly through function calls. The
updated system architecture in Figure 5.8 shows that the Flask API was removed
and pure JavaScript was now used in the entire desktop application.

Testing

As the second iteration progressed, more code was added to the project, ready for
testing. Back-end code was tested with automated unit tests (development testing),
while front-end features and requirements were tested with use cases (system test-
ing). Use cases were also used to make sure communication between the front-end
and back-end was correctly executed, and that the correct tasks for Inspera were

5.1. Design and Creation 75

Figure 5.8: System Architecture v2.0

generated.

There were troubles passing the use case regarding the packaging of the applic-
ation, as the application had problems running the Python Flask server from an
executable file. To pass the use case, the application was rewritten in JavaScript,
and the Flask server was discarded, as stated in the previous subsection.

Use cases can be found in Appendix C.2.

Evaluation and feedback

Most features were successfully implemented during Iteration 2. And while the
packaging issues resulted in having to completely rewrite the back-end, the IT
artefact worked perfectly after the change was made. The current prototype was
presented to the thesis supervisor for feedback. The feedback was mostly positive
and few changes were made to the existing plan, list of requirements, and im-
plemented features. It was during this evaluation meeting the requirements from
Table D.3 ID 1 (Suggest distractors) and ID 2 (Comment syntax) were removed,
while the idea of having multiple help functions (Table D.1 ID 15) were added.

The second iteration was overall a success, as all goals of the iteration were ful-
filled to a satisfactory level.

5.1.4 Iteration 3

Goals

Functional Requirements for Iteration 3
(Note that these are the new requirement added for this iteration. Previous require-
ments were still relevant)

76 Results

ID Title Description

10
Generate mul-
tiple tasks

The IT artefact should be able to generate multiple
tasks (of different algorithms) at the same time. It
should be possible to create, edit, and delete these
tasks

11
Export all and
Export single

When creating multiple tasks, the user should be
able to export both a single task and all tasks

Tasks for Iteration 3

Title Definition of done

Improve design
Improve the overall design and aesthetics of the GUI
(Need not be fully done, as the design will be updated
over all iterations)

Task tabs Create a tab system for changing between tasks
Edit, create and de-
lete multiple tasks

During the life cycle of the application, one should be
able to add, delete, and edit tasks

Generate mul-
tiple tasks in one
Question set

The QTI Converter should be able to receive multiple
tasks in one payload, generate them all, and place them
in the same Question set

The main goal of Iteration 3 was to be able to generate multiple tasks at once. This
required the addition of the tabular functionality showed in the initial mock-up
from Iteration 0 and some restructuring of the QTI Converter.

Implementation

The IT artefact had a major uplift design wise from Iteration two to three. A tab
system was implemented to keep track of the different tasks that a user created,
but instead of following the initial mock-up design, the tabs were placed vertically
on the left hand side of the GUI. The reason for this, was that each task had the
option to be assigned a title, making it even easier differentiating them. In addition,
in the event of an enormous amount of tasks, it is easier to scroll vertically, than
horizontally. See Figure 5.9. Creating a new task would simply create a new
object for the internal state of the front-end, and the IT artefact would either send
the single object or all task objects when the user pressed ’Download Task’ or
’Download All’.

The GUI for each task were divided into two sections (The top and bottom sec-
tion seen in Figure 5.9), the top section for main task activities such as title, file

5.1. Design and Creation 77

Figure 5.9: Application after Iteration 3

upload, source code editor, parsons 2D toggle, and a container for an eventual
preview functionality. The bottom section was reserved for distractors, but the in-
ternal structure was not yet decided. And since both the preview and the distractor
functionality was not to be implemented yet, the GUI were simply given empty
sections where these features would be placed in the future.

The color scheme changed from the mock-up as well, so that the tab system to the
left was decorated with a dark background color, and the task background white.
This to make a definitive border between the two functionalities. The overall color
theme was also changed to a lighter combination instead of the dark and gloomy
color theme from the mock-up. More information regarding the design can be
found in Section 5.1.9.

The QTI Converter had to handle receiving both single task objects and objects
consisting of multiple task objects. To handle the generation of multiple tasks, the
QTI Converter had to generate an XML file for each task and make the appropriate
changes to the manifest file for them to be generated as a single question set. The
updated flowchart for the QTI Converter in Iteration 3 can be seen in Figure 5.10.

Discovering and learning what fields and functions to add or change in the XML

78 Results

Figure 5.10: Flowchart of QTI Converter in Iteration 3

when adding new functionality, was difficult to do efficiently. The most efficient
way found, was to first manually create the wanted behavior using Inspera, export
this task or question set and compare the given XML to the currently generated
XML. The main reason this method was used, was that the QTI format itself sup-
ported several features that Inspera did not. Having to look through and test all
QTI features, fields, and functions in the hope of them being supported by Inspera
would be much more time consuming than simply creating the wanted behavior
in Inspera, and manually see how these changes were reflected in the XML. This
method was still quite time-consuming since the generated XML files could be ex-
tremely large, but it made certain that all fields added or changed in the generated
XML were fully supported by Inspera.

During the iteration, nothing more than minor bugs and challenges were encountered.
These were bugs such as the front-end updating the wrong state object and the QTI
Converter not properly updating the manifest when multiple tasks were generated.
All these bugs were fixed during the iteration and everything worked as intended
in the end.

5.1. Design and Creation 79

Testing

Testing wise, the iteration had no difficulties. Unit tests were added while devel-
oping, and use cases were tested whenever features were implemented.

Use cases can be found in Appendix C.3.

Evaluation and feedback

Both the developers and the thesis supervisor were satisfied with the new proposed
design of the IT artefact. The creation of multiple tasks also worked as expected.
A user could now create and edit multiple tasks at the same time, and export both
a single and all tasks to a zip-file. There were still no need to manually save
the progress while using the IT artefact, since all changes made in the GUI were
instantly saved to the front-ends internal state.

Iteration 3 was concluded a success.

5.1.5 Iteration 4

Goals

Functional Requirements for Iteration 4
(Note that these are the new requirement added for this iteration. Previous require-
ments were still relevant)

ID Title Description

8
Support distract-
ors

The user should be able to add distractors to the Par-
sons problems

15 Help functions
The IT artefact should provide the user with inform-
ative and detailed help functions to clearly commu-
nicate what features do and how things work

17
Confirmation,
warning and
error messages

The IT artefact should provide the user with proper
confirmation, warning and error messages. For ex-
ample, when deleting a task, a confirmation box
should be displayed to avoid extra work if the but-
ton was pressed by accident

80 Results

Tasks for Iteration 4

Title Definition of done

Add distractors
A user should be able to add and remove distractors to
every task using the GUI

QTI Converter dis-
tractors

The QTI Converter should randomly place the distract-
ors together with the other drag areas without connect-
ing them to any drop area

Delete tasks
A user should be able to delete a task in the GUI
(Provide a warning message before deleting)

Confirmation,
warning and error
messages

The IT artefact should provide the user with a confirm-
ation message once the exported tasks has been zipped
and placed in the destination folder, or an error message
if something goes wrong

Help functions

Create a main Help window showing the main steps
through the IT artefact. Add additional hoverable help
functions for headlines that might be difficult to under-
stand with no previous experience

Name zip-file
After pressing the download button, in the file dialog,
one should be able to name the zip-file to be generated

Ready for testing
The IT artefact should have all the necessary function-
alities implemented and ready for user testing

Package/build
release versions

The IT artefact must be packaged/built into a working
release build for both Windows and Mac OS

The main goal for Iteration 4 was to have a prototype ready for more comprehens-
ive user testing. It was at the end of this iteration the main experiment discussed in
this thesis (Section 4.1.2) was scheduled. This required extra focus on improving
the IT artefacts ease of use and feedback from actions, such that new users could
easily understand and learn how to use it. More information regarding the sched-
uled experiment can be found in Section 4.1.2, 4.2.2 and 4.3.2.

Implementation

Getting the IT artefact ready for proper user testing also required the removal of
features not yet implemented or that were not going to get implemented during
this iteration, such as the empty section reserved for the task preview. Preparing
for user testing was quite time-consuming, and required both planning of the actual
test process and fine-tuning of the IT artefact.

Deciding how to implement distractors for the front-end required some extra thought

5.1. Design and Creation 81

since it could be done in multiple ways. The three main options were either to (1)
have a separate code editor where each line of code would become a distractor in
the task, (2) have a designated input-field where one can add one distractor at a
time, and (3) create a commenting syntax for distractors in the existing code ed-
itor. The commenting syntax was discarded as it was not considered especially
user friendly, as the user would have to learn and adhere to the specific syntax for
this IT artefact. The two remaining options were considered to be equally viable
options, and in the end, the designated input-field for the distractors was the chosen
solution. In Figure 5.12 one can see the distractor input-field at the right side of the
source code editor. When added, the distractors would then appear in a list below
the input-field.

In Figure 5.12, one can also see that ’?’-signs were added behind some headers
and text-fields. These were hoverable icons that displayed a help popup providing
some more information about the specific features. For example, when hovering
the question mark icon behind ’With indenting’, Figure 5.11 would pop up to give
the user a better understanding of the feature. It was later discovered that some
of these popups were not as helpful as expected, and this will be discussed later.

Figure 5.11: Help popup
for ’With indenting’

As mentioned, it was crucial to make sure that all im-
plemented features of the IT artefact were ready for
user testing during the iteration. One of the obstacles
encountered was that when packaging and building a
release version of the IT artefact, multiple errors re-
lated to the file pathing appeared. It was discovered
that file pathing was completely different for Windows
and MacOS, and completely different for the develop-
ment build and the release build of the application. The
build version of an Electron application, with all its re-
lations and dependencies, were by default structured
completely different than the development version. Ini-
tially, the feature regarding choosing a file to upload or
export had to be implemented differently for these ver-
sions, but after switching from the standard HTML file
input style to Electrons build in file input, the imple-
mentation of both the build version and release version
were same. The difference in pathing styles in the operation systems were still
an issue, which was solved by making all paths change based on a conditional
statement checking for operating system type.

During Iteration 4, no large changes were made to the flowchart of the QTI Con-

82 Results

verter from Figure 5.10. The main difference was that when adding the drag and
drop pairs, all distractors were added as well.

The user testing was conducted at the end of Iteration 4 and the results from the
user testing can be found in Section 5.2.

Figure 5.12: Application after Iteration 4

Testing

As this iteration focused on preparing the IT artefact for user testing, and only two
major features were implemented, the need for extensive addition of unit tests was
not needed. These features, distractor additions and helper text, were tested by
doing use cases, and adding unit tests to the QTI Converter.

In addition to the unit and system testing stage, the user testing stage was per-
formed during this iteration. This stage is discussed in Section 5.2.

Use cases can be found in Appendix C.4.

5.1. Design and Creation 83

Evaluation and feedback

Since the main focus of this iteration was to prepare for and perform user testing,
not too much development was conducted. The user tests generated a substan-
tial amount of feedback, which is discussed in Section 5.2. The main points and
feedback discovered during the testing can also be found in Table D.4. This feed-
back was further discussed and examined together with the thesis supervisor to
plan how to proceed. Taking into consideration the time left, and apart from fix-
ing minor bugs and improvements, it was decided to focus on and implement four
major features during the last iteration. These features were permutations, task de-
scription, preview, and the generation of multiple tasks using the same algorithm,
and these will be discussed further in the next iteration. With these remaining
features, the IT artefact would be ready for real-world use.

To conclude the iteration, the developers felt that the development done was satis-
factory and that the feedback gathered from the user tests was extremely informat-
ive and helpful.

5.1.6 Iteration 5

Goals

Functional Requirements for Iteration 5
(Note that these are the new requirement added for this iteration. Previous require-
ments were still relevant)

ID Title Description

9

Generate mul-
tiple unique tasks
(w/ different
distractors)

The IT artefact should be able to use a subset of the
given distractors to generate multiple unique tasks
(of the same algorithm) with different distractors

12

Task description
in English, Nor-
wegian and Nyn-
orsk

The IT artefact should support the creation of a
task description in English, Norwegian and Nyn-
orsk. (This can be done in Inspera itself rather than
in the IT artefact, but might be problematic if many
tasks are to be generated)

13 Preview

The IT artefact should show the user a preview of
the task to be generated so potential errors are dis-
covered as early as possible (before exporting and
uploading the task to Inspera)

84 Results

19 Permutations

The IT artefact should support code permutations
to avoid incorrect grading if students find other cor-
rect rearrangements of the code. The generated
task must make sure that all correct permutations
are properly represented. The IT artefact should
also provide proper warnings if there exists any per-
mutations that count as false positives

Tasks for Iteration 5

Title Definition of done
Add preview Create a preview in the GUI with live updating
Improve help-
functions

Add additional information to the help popups that the
preview does not improve understanding for

Fix file-chooser
bugs

1) Make the file chooser a modal, to force the end-user
to make an action before moving on
2) When exporting, a check should be carried out to
make sure the filename doesn’t already exist. If it does,
ask the end-user if it should be overwritten.

Improve width ac-
curacy of generated
drag areas

Find exact font-metrics to accurately calculate width of
each drag area when generating them

Move ’Delete task’
button

Move the ’Delete task’ button from the top right corner
to the tab system (task overview). The delete button
should appear as a cross button when hovering over a
task. Add a confirmation box before deleting the task
as well

Add task descrip-
tion

Add task description with tabs for Norwegian, English
and Nynorsk.

Convert HTML text
to XHTML

The task description will be received as HTML, and
must be converted to XHTML for Inspera

Enable/disable per-
mutations function-
ality

Make it possible to enable and disable permutations
functionality. Provide warning message that permuta-
tions cannot be implemented in a 2D Parsons problem

DAG GUI
Create a user interface that makes it possible to easily
create a DAG indicating precedence of code lines

Permutations
preview

Make a preview window for the generated permutations

5.1. Design and Creation 85

False positive
permutations indic-
ation

Clearly indicate what permutations are false positives

Implement topolo-
gical sort

Implement a topological sort function that can receive
a DAG and return all topological sorts

Implement transit-
ive closure

Implement a transitive closure function that can receive
a matrix and find all transitive closures

Find all Inspera per-
mutations based on
transitive closure

Create a function that uses the transitive closure to find
all permutations Inspera will deem completely correct

Calculate distractor
subsets

The front-end has to calculate the number of possible
subsets that can be created based on the given number
of distractors the user wants included in each task (This
has to be the max number of tasks possible to generate)

Implement dis-
tractor subsets

The back-end not only has to calculate the number of
subsets, but also find them all and add them to the spe-
cific tasks the user wants to generate

Make identical drag
areas connected to
same drop areas

All identical drag areas has to be connected to the same
drop areas in the generated task

Minor fixes

- Move ’Add’ button for distractors behind the input-
field
- Write ’Enter text here...’ to clarify input fields
- Move ’Export task’ button to the bottom right to bet-
ter indicate its the last step to perform
- Fix the copy paste bug (copy pasting worked in de-
velopment builds, but was forgotten to implement in
release builds)
- Fix grammatical errors (’Indentation’, not ’Indent-
ing’)

The goal of the final iteration was mainly to deal with the feedback gathered from
the experiment, but also to implement the final necessary requirements. These
requirements were chosen to make sure the final release of the IT artefact had the
most important features implemented and to make sure it was ready for real-world
use. Together with the supervisor, it was established that the main requirement that
was missing during Iteration 4, was the ability to generate multiple tasks from a
single algorithm, using subsets of distractors. As mentioned in Section 2.1.2, being
able to generate multiple tasks can work as an effective tool against cheating, and

86 Results

can also help support formative assessment. And if the IT artefact was to support
the generation of multiple tasks, it would also require the implementation of a
task description. Previously, the IT artefact only generated a single task, and a
user could then just as easily write the task description in Inspera, but this was
no longer an option. The addition of permutation support was also highly desired
by the thesis supervisor since manually finding and adding permutations could
quickly become a difficult and tedious task.

After iteration four, a lot of useful feedback was gathered from the user testing.
Even though the users seemed satisfied with the IT artefact, each test participant
had something to share in regards of possible improvements on the IT artefact. The
feedback from all of these individuals accumulated to a long list of functionalities
to be implemented, adjusted, or removed.

Implementation

The first addition to the IT artefact, was the task description box, which supported
three languages. Users felt that having to do additional work in Inspera to complete
the task was unnecessary and annoying, especially if one were to generate multiple
tasks. The user wanted the possibility to create an entire task using the IT artefact,
which included adding a description. The task description was implemented using
NicEdit3, which is a JavaScript inline content editor.

One of the guidelines for uploading your own QTI to Inspera, is to make sure In-
spera supports the features you upload. In regards to the task description, Inspera
had no support for changing font type, font size or color, and this meant that the
IT artefact could not support these features either. Because if one uploads a highly
formatted text, Inspera will not remove the unsupported formatting. And it is un-
certain how the unsupported formatting will eventually affect the uploaded tasks,
which might pose additional risks for exam questions. So to minimise this risk,
the IT artefact task description should try to only support the same formatting and
features as the Inspera task description does. In Figure 2.14 one can see Insperas
task description toolbar with all its supported features. By using NicEdit, it was
possible to disable the unwanted formatting features, but it was still possible for
a user to copy and paste in formatted text to the editor. If a user were to do this,
the IT artefact does not provide impenetrable validation of the given text, which
means that the formatted text might be uploaded to Inspera. As a side note, the
given HTML must be converted to XHTML to be properly placed in the XML
files. And the IT artefact would give an error message if it found out that the given
HTML had too much formatting to be converted to XHTML, but did not provide

3http://nicedit.com/

5.1. Design and Creation 87

any additional HTML validation. This was one of the drawbacks with the imple-
mentation, but further validation of the given HTML was seen as future work and
is also mentioned in Section 7.2.

An explanation of, and motivation behind the support for permutations, the differ-
ent implementation options and the final implementation of permutations are all
discussed in Section 5.1.7.

A preview of the final task was added to show the user how the task would end
up in Inspera. The reason for this was two-fold, (1) to highlight the functionality
of the 2D Parsons toggle, and (2) give a better picture of what kind of task the IT
artefact was creating. The user feedback revealed that users did not understand
what the 2D Parsons toggle did or meant. The easiest way to accommodate this
problem, was to explicitly show through a preview what the toggle does, giving
the user immediate feedback. The feedback also revealed that users not always
understood the connection between Inspera and the IT artefact, making the entire
task creation process a bit confusing. By adding the preview, users might be more
aware of what is being created.

During this iteration, task settings were also added to the IT artefact, where num-
ber of tasks to create, number of distractors to include, and a 2D Parsons toggle
was options to be decided. Having added a number of distractors, and deciding to
include only a subset of those distractors, the IT artefact was able to create a num-
ber of unique tasks. The upper limit of unique tasks was decided by the binomial
coefficient. The settings area was placed beside the preview to highlight the effects
of each setting. Toggling the 2D Parsons changed the drop areas in the preview
from a single column to multi column grid, as it would in the task to generate.
Adding more or less distractors to be included in the task also changes the number
of distractors in the preview. Distractors in the preview were masked (named ’Ran-
dom Distractor’) to differentiate them from the correct code lines and to highlight
that a random subset of the distractors would be added to each generated task.

Some additional bug fixes and minor changes were made to the IT artefact as well.
For instance, because of the program sequence (glance sequence), the first action
of the application should be placed in the top left corner, and the last action in the
bottom right, as users naturally wants to start top left and work his/hers way down
right (Kurosu and Kashimura, 1995). For this reason, the ’Export Task’ button
was moved to the bottom right corner, as this is the last performed action in the
application.
The rest of these minor fixes can be seen in the Task Overview for Iteration 5 and
do not require additional discussion here. Figure 5.14 shows the final flowchart of
the QTI Converter, while Figure 5.13 shows the final GUI of the IT artefact.

88 Results

Figure 5.13: Application after Iteration 5

5.1. Design and Creation 89

Figure 5.14: Flowchart of QTI Converter in Iteration 5

Testing

There were many features added during this iteration, which resulted in many new
test cases. The user interface, with its additional functionality, was substantially
tested with use cases, and the back-end was tested with both unit tests and use
cases. Even though not every code path had its own unit test, every function in the
QTI Converter had one or more unit tests.

To fully unit test all functions in the back-end code, two separate testing stages had
to be done. The first stage, as seen in Figure 5.15, was done before run-time, while
the second stage, as seen in Figure 5.16, was done during run-time. The reason
for this was that the part of the back-end dealing with XML parsing required a
running browser to be tested, which the developers were unable to do with the
testing framework used. The solution was to manually write tests asserting in run-
time, and logging to the console, for unit tests regarding XML parsing, while the
rest of the back-end was tested with the testing framework Mocha4.

Use cases can be found in Appendix C.5.

4https://mochajs.org/

90 Results

Figure 5.15: Unit tests for QTI Converter Figure 5.16: Run-time unit tests

Evaluation and feedback

As this was the last iteration, and after the user testing phase, the only feedback
received was from the supervisor. The final version of the prototype was shown to
him, and he was satisfied with the end result.

To conclude all of the iterations, the developers were satisfied with the final out-
come of the prototype. A few major features were implemented in the last iteration,
all of which achieved a satisfactory level of done. As this was a prototype, there
were additional features and ideas that could be potentially implemented, all of
which are discussed in Section 7.2 (Future Work).

5.1.7 Permutations

Introduction and Motivation

Permutations are in this context defined as the rearranging or reordering of code
lines. When the IT artefact is given a code snippet by the user, there might exist
rearrangements of the given code lines that result in different, but completely cor-
rect and legitimate code snippets. Figure 5.17, 5.18, and 5.19 shows a permutation
of a short code example and how this kind of permutations must be represented in
Inspera.

Although this example is extremely easy, it shows how some code snippets might
have rearrangements of code lines, which result in the same wanted functionality
as the original code. From the code example in Figure 5.17 there exists a total
of 3! = 6 code line permutations, where Figure 5.17 and 5.18 show the only two
permutations that results in the wanted functionality, from this point on referred to
as ’correct permutations’. So the correct permutations are rearrangements of the

5.1. Design and Creation 91

Figure 5.17: Code example Figure 5.18: Permutation

Figure 5.19: Permutations represented in Inspera

code that result in equivalent behavior.

When creating exam questions for Inspera, it is extremely important to find and
take these correct permutations into account to avoid falsely failing students that
happen to find one of the correct permutations. In larger algorithms, manually find-
ings these permutations can be quite difficult and time-consuming, and being able
to automatically find these permutations could be of great value. And since not
supporting correct permutations of an algorithm when generating exam question
can have serious consequences, this feature was decided to be of great importance
to the IT artefact. Together with the quantitative data gathered from the user test-
ing, this feature was added to the list of improvements, as seen in Appendix D
Table D.4.

As one finds all the correct permutations of a code snippet and implements these
permutations in Inspera, one also runs the risk of creating answers that are ’false
positives’. Since the tasks created in Inspera has no conditional logic or control of
the preceding or following code lines, all logic regarding the permutations has to
be represented simply by having a drag area go to multiple drop areas. In Figure
5.19 one can see that the ’x = 1’-drag area can go to drop area 1 and 2. In more
advanced algorithms, these simple connections between a drag area and multiple
drop areas can allow for incorrect permutations that Inspera will deem completely

92 Results

correct.

In the following example, Figure 5.20 shows all correct permutations of a new
code example. These 5 code lines have a total of 5! = 120 permutations, where
this figure show the six correct permutations that result in the exact functionality
we want.

Figure 5.20: All correct permutations of the given code example

With these correct permutations, the following task has to be created in Inspera, as
shown in Figure 5.21. Here one can see all the connections between the given drag
and drop areas.

Figure 5.21: Permutations represented in Inspera

But it is from these ’simple’ connections the possibility for false positives also
arises. For example, one can see that the code line print(y) can be placed at line
number 2, but it can only be placed here correctly if the code line y = 2 is at line
number 1. But this kind of conditional logic cannot be represented with these
connections, which means that the following permutations shown in Figure 5.22
will be deemed correct by Inspera, while these in reality are incorrect permutations.
These permutations are the false positives.

The false positive permutations shown in Figure 5.22 show the combinations that
will give a student full score on the Inspera task, but there will also exist other
rearrangements or incomplete answers that wont necessarily give full score, but
still give more points than it should.

5.1. Design and Creation 93

Figure 5.22: All false positive permutations of the given code example

As one can see here, knowing all the correct permutations and knowing if there
exists any false positive permutations can be extremely important, at least when
creating exam questions.

Implementation

To properly support permutations and finding false positives, the IT artefact should
preferably discover these automatically, simply by being given the initial code.
This would require some logic to figure out and find all correct permutations. As 8
lines of code would generate 8! = 40320 permutations, one possibility is to have
each of these permutations go through a compiler to see if the given arrangement
still give the same results. Trying to find, create, and use one or multiple compilers
to support all kinds of code snippets, faulty permutations, and inputs in multiple
programming languages is an incredible comprehensive and extensive thing to do,
and would most likely require a lot of time, and result in a flawed and incomplete
solution given the time-frame of this thesis. Trying to use a compiler to find the
correct permutations was therefore discarded.

The main goal was then to find a way to generate all the permutations without
having to understand the code. The next idea was to treat this problem as an
ordering problem, where the solution would be to find all possible orders given
some constraints to keep the code snippet correct. By using constraints or rules
between each line of code, one could end up with a partial order that could generate
all possible total orders. And this could be obtained by using topological sorting.
Topological sorting is also known as a restricted permutation problem (Atkinson,
1999), which focuses on finding permutations that are consistent with the given
set of restrictions. Topological sorting requires a directed acyclic graph (DAG)
indicating precedences among events, or in this case, lines of code, to create a
linear ordering where all its directed edges uv, u comes before v in the ordering
(Cormen et al., 2009). Kalvin & Varol (Kalvin and Varol, 1983) compares different
algorithms for finding all topological sortings, and by implementing the Knuth–
Szwarcfiter Algorithm (Knuth and Szwarcfiter, 1974) one is able to generate all
topological sorting arrangements with a time complexity of O(m + n) for each
solution generated. Note that without any edges in the DAG, the worst-case time

94 Results

complexity becomes O(n!).

Figure 5.23: DAG indicating precedences
among lines of code

A DAG showing all precedences
among lines of code means that a dir-
ected edge between y = 2 and print(y)
is equal to stating that y = 2 must come
before print(y) in the code. If a com-
plete DAG is given to a topological
sorting algorithm, one would be able
to generate all topological sorts, which
in other terms are all the correct per-
mutations of the code.

Given the little time that was left of this project, having the user manually create
the DAG was seen as the best solution. An advantage of this is that a DAG can
create all possible topological sorts, so that further analysis of the code itself is not
necessary to find all correct permutations. The disadvantage is that this manual
process can be time-consuming and prone to user errors.
A better solution, might have been to fully, or partially, automate this process. To
achieve this, one could for example do a syntax analysis of the code, given some
predetermined rules such as variables appearing on the right hand side of a ’=’
must be preceded by a declaration of said variable.

Figure 5.24: Interface for
creating a DAG

To manually create a DAG, the interface shown in Fig-
ure 5.24 was implemented in the IT artefact. The main
idea here was to first choose a line number from the
top drop-down menu, followed by checking off which
lines of code that has to come after it. So Figure 5.24
shows how the top left edge in Figure 5.23 is created in
the IT artefact by the user. By filling out which lines
must precede every other line, the IT artefact can now
automatically generate all correct permutations simply
by running topological sort on the given edges.

While the correct permutations can now be found, it
still remains to find all false positive permutations that
will be generated due to the ’simple’ connections In-
spera creates. Here one can simulate the logic created
in Inspera by finding the transitive closure of the given
DAG. A transitive closure algorithm takes a directed graph given in the form of an
adjacency matrix and determines whether the graph contains a path from vertex i
to j or not (Cormen et al., 2009). By running a transitive closure algorithm, the

5.1. Design and Creation 95

returned adjacency matrix shows all reachable vertices from the given vertex. Fig-
ure 5.25 shows the corresponding adjacency matrix given the DAG from Figure
5.23. The transitive closure algorithm simply adds new edges from vertices to any
additional transitively reachable vertices.

Figure 5.25: Transitive closure

Looking at row 0 in Figure 5.25, which represents code line 0 (x = 1), the transitive
closure of the given adjacency matrix shows that vertex 0 (code line 0) can reach
vertex 2 and 4. With each row in the new adjacency matrix one can find the number
of outgoing edges from that particular vertex by calculating the sum minus 1. The
sum of each column minus 1 also shows the number of incoming edges to that
particular vertex. And the interesting property of this new adjacency matrix, is
that the number of outgoing edges correspond to the number of vertices that must
come after the given vertex in all its rearrangements. Similarly, the number of
incoming edges correspond to the number of vertices that must come before the
given vertex in all its rearrangements. Figure 5.26 show how a vertex with one
incoming edge and two outgoing edges in a code example of 5 lines will find its
correct positions.

In broader terms, this ’Code line’-vertex in Figure 5.26 says that it can be placed
wherever, as long as there is at at least one vertex preceding it and at least two
vertices after it. This is the exact same logic that Inspera will follow with its
connections. In Inspera this ’Code line’-vertex will be connected to the green
drop areas (2 and 3). So by using the transitive closure and finding the incoming
and outgoing edges of all vertices, one knows which drop areas each line of code
will be connected to, which in Figure 5.26 are marked green. Thus, by using
the transitive closure algorithm to find all connections, we properly simulate how
Inspera will treat the task.

96 Results

Figure 5.26: Code line vertex with its preceding and following drop area positions. The
code line is thus connected to the green drop areas in Inspera.

Since we now know all the placements Inspera will deem correct for each line
of code, the next step is to find all possible permutations of the algorithm given
these connections. Looking back at Figure 5.25 one can see that vertex 0 and
1 has two outgoing edges, which means they can be placed wherever, except at
the two bottom lines. By running a recursive algorithm, one can find all possible
permutations that follows the rules given by the transitive closure algorithm. One
then ends up with a set of permuations that all will be deemed completely correct
by Inspera. If we call the the permutation set created by the topological sorting,
set A, and the permutation set created by the transitive closure, set U , the set
difference of U and A (that is, U \ A) are the false positive permutations the task
will contain.

The number of correct permutations and the number of false positive permutations
are good indications of the quality of the task itself as well. If a task has many
correct and false positive permutations, one should probably re-evaluate the task
in its entirety. In this case, a user could choose to properly address the issue by
changing the code, choosing another task, or simply discarding it. Section 7.2
(Future Work) also discusses some other possibilities and features that could help
users reduce the number of permutations created by a task, but that has not been
implemented yet.

Since the calculation of these permutations can be quite demanding with larger
algorithms, both the topological sorting (which has a worst-case time complexity
of O(n!)) and the transitive closure algorithm (which has a worst-case time com-
plexity of O(n3)) was implemented with kill-switches that stops the algorithms at
a certain cutoff. If the DAG has no edges, the topological sort will have to find n!
permutations where n is the number of vertices. To avoid this kind of scaling, the

5.1. Design and Creation 97

cutoff was set to 1000 permutations.

The next issue was to find a way to properly communicate these permutations with
the user of the IT artefact so one could clearly see what correct permutations would
be generated, as well as all the false positives. Giving as much information to the
user as possible is extremely important, such that nothing unexpected is generated
and added to a task for an exam. Figure 5.27 shows the final implementation of
the permutation support in the IT artefact. By first selecting that one wants to
include permutations in the task, one then has to fill out the DAG and click the
’Update Permutations’ button. All the correct permutations and false positives, as
discussed above, are then found and displayed in the Permutations Preview section.
This preview lets the user go through all the permutations as well as the false
positives. This kind of preview is also necessary to double check if there exists
any correct permutations that should not be correct, which might come from a lack
of information in the DAG. As discussed in Section 2.6, proper feedback about the
automation states, actions and intentions must be provided to give the user good
situational awareness (Parasuraman and Riley, 1997)(Parasuraman et al., 2000).

Figure 5.27: Final implementation of permutations in the IT artefact

Limitations

Figure 5.28: Code example

As previously mentioned, one of the limitations
of this implementation is that the user has to
spend some time manually creating the DAG,
but since this input makes it possible to prop-
erly find all permutations, it was considered to
be a worthy investment and use of time.

98 Results

The greatest limitation of this implementation was that the researchers were unable
to accurately find and add the logic required to make the permutation support work
for 2D Parsons problems. A lot of time was spent trying to find rules that could
help the algorithm understand where new indentation levels would be needed and
where one can remove them, but no global rules was found. One example of a
more difficult case to create indentation rules for can be seen in Figure 5.28. Here,
one can see that line number 4 (x = 3) simply has to be declared before print(x),
but with Python, it is completely correct to give line number 4 both one and two
additional indentation levels. These additional indentations would of course lead
to a worse solution since the same variable would be declared multiple times, but
this example illustrates the complications that might occur when supporting per-
mutations with indentation. Finding and creating logic to support these kinds of
legal, but different, indentation levels is largely dependent on the programming
language as well, since different languages have different rules of where and how
things must be declared. Since no proper logic for handling indentation levels was
found, permutations was not implemented for 2D Parsons problems. If users create
a 2D Parsons problem, they can still create a DAG and see the permutation pre-
views shown in Figure 5.27 to evaluate the quality of the task. But the IT artefact
will also display a warning message letting the users know that these permutations
will not be implemented in the task generated.

Figure 5.29: Java code example

Another limitation was that the permutations
did not account for lines of code that were
similar, for example end-brackets in Java (}).
Therefore, when calculating the number of
correct and false positive permutations in the
GUI, the IT artefact might show two or more
permutations that look completely identical
to each other, but in reality is not since the
identical lines are rearranged. To make sure
this limitation only affected the GUI, and not
the actual generation of the QTI, additional lo-

gic was implemented to make sure that all similar drag areas were connected to
the same drop areas in the generated task. This logic is extremely important, at
least for programming languages such as Java, where there might exist multiple
end-brackets, as seen in Figure 5.29. Since identical lines in a drag and drop task
is impossible to distinguish from each other, one must make sure all identical lines
can be placed at the same positions. In the case of Figure 5.29, one must make
sure that all starting-brackets can be placed on the same positions, and that all the
end-brackets can be placed on the same positions.

5.1. Design and Creation 99

5.1.8 Technology Choices

Deciding on which technologies to use is a cumbersome process. There are pros
and cons for each framework, programming language, and technology which has
to be assessed and thoroughly worked through. For this thesis, the technological
topics discussed were web framework vs. desktop application, framework to use
(if any), and programming language.

Web Application vs. Desktop Application

Complexity and Maintenance
The focus of this thesis was not centered around the application itself, but rather the
effect of such an application. For this reason, creating an application with as little
complexity as possible would be beneficial, as this would reduce development and
maintenance time substantially when creating prototypes and proof of concepts.

Web applications usually have a more divisive architecture than desktop applica-
tions, making the border between front-end and back-end more clear. This helps
reduce the overall complexity of the application, but introduces the need for com-
munication between server and client.
Desktop applications on the other hand, introduces the problem of keeping an up-
dated and maintained version of the application at all times. With a web applica-
tion, the latest code is pushed to the server, and all clients have access. A desktop
application requires the user to download the newest version each time a revision
is done, which is not necessarily in the interest of a user.

Not having the latest specs is a problem that might occur in both instances. A web
application can be restricted by browser versions, and a desktop application might
require the user to download the latest version of tools like Java. The operative
system is also something that has to be taken into consideration, as the application
has to be functional on Microsoft Windows5 and MacOS6.

Internet Access
Having the application connected to the world wide web gives arise to several
advantages such as immediate updates (as discussed in previous section), possib-
ilities of enhanced machine learning, and easier access. A web framework is, of
course, connected to the web, which makes internet access a requirement. Today,
this should not be problematic, but is still something that has to be taken into con-
sideration. A desktop application might also be connected to the web, but this is

5https://www.microsoft.com/en-us/windows
6https://www.apple.com/lae/mac/

100 Results

not a requirement, making offline use possible.
One advantage of having the application connected to the web is the possibility
of machine learning on a greater scale. The application can collect information
from multiple sources (application instances), and thus gather more training data
for machine learning.

Performance and Design
Design wise, there are libraries for both web applications and desktop applications
that are undoubtedly good enough for our purposes. Today, there is a wide variety
of modules and extensions that allows for web frameworks to operate on desktop
applications, and thus, deciding on the correct design libraries is not of import-
ance. Earlier, one had to take into consideration which operating system that the
application had to support, but with the extensions that exist today (e.g. Electron7),
this is not something that has to be taken into consideration.

Performance wise, the desktop application has the advantage of not relying on
network speed. The application back-end is integrated directly with the front-
end, and the payloads between them are transferred with negligible delay. A web
application is reliant on the internet connection, and thus, poor or no connectivity
can create problems and/or user dissatisfaction.

Another advantage of the desktop application is the possibility of local persistence,
making it possible to exit the application and then resume at the same instance later
on. This is of course possible on a web application as well, but requires the addi-
tion of a login system, which increases the complexity of the application.

Cost
A web application requires hosting on a server, and a domain name. A desktop
application on the other hand, has no hosting cost.
A potential database setup would require additional hosting expenses.

Security
With web applications, a security breach is more likely to happen than on an offline
desktop application. When payloads are sent over the web, the possibility of pack-
age sniffers are existent. And since the data contains information regarding exams,
security is of utmost importance. In addition, a web framework might make use of
Single Sign On (SSO) connections and online storing of information in databases,
making security breaches catastrophic.

7https://electronjs.org/

5.1. Design and Creation 101

In an offline desktop application, the most imminent security risk is someone hav-
ing access to the computer, which is not something that this application can pre-
vent. The desktop application can be equipped with a login system, but this would
not be a priority.

Summary of Web vs. Desktop Application

Web Application Desktop Application

Complexity
and Mainten-
ance

Pros:
- Live updates

Cons:
- Must be compatible with all browsers

Pros:
- No need for communication with a
server

Cons:
- New versions must be downloaded
- Need versions for all operating systems

Internet
Access

Pros:
- Possibilities for easier accessibility
- Possibilities for enhanced machine
learning

Cons:
- Require internet connection

Pros:
- Does not require internet connection

Cons:

Performance
and design

Pros:
- Good support for libraries

Cons:
- Relies on network connection
- Persistence requires added complexity

Pros:
- Good support for libraries
- Negligible transfer time of payloads
- Possibility of local persistence

Cons:

Cost

Pros:

Cons:
- Requires a server for hosting
- Requires a domain name
- A database would require hosting

Pros:
- Requires no hosting expenses

Cons:

Security

Pros:

Cons:
- Security breach is a potential risk
- Package sniffing is a threat

Pros:
- Nothing is sent/stored online

Cons:

Table 5.6: Web vs Desktop Application

102 Results

Framework

Java with JavaFX
Java8 and JavaFX9 are both widely used in application development because of
their robustness and soundness. But these attributes attracts more complex code,
which is not ideal for an application striving to be as easily developed and main-
tained as possible. Java code can be quite verbose, making the simplest of func-
tions unnecessary long, compared to e.g. Python.

JavaFX was released in 2008, and even though it looks modern and clean, it does
not really provide a native look and feel on a desktop application.

Python with Tkinter and Flask
Python10 shines where Java does not; The language is succinct and compact, ad-
vocating for smaller applications. And Python supports an enormous library of
modules, rendering a developers life easier. But even with such a wast library,
there are not really any good modules for creating desktop user interfaces. One
of the contenders is Tkinter11, which does not have a large active user community
and have not really been updated in recent years, making it difficult to work with,
compared to other user interface tools.

If one were to split up an application, using Python for back-end, and some other
framework/language for the front-end, there is a necessity of opening a port for
communication between the two parts. For this, Flask12 is an excellent Python
module. It is a lightweight web framework with minimal amount of dependen-
cies on external libraries and it can thus operate as an API for the back-end. The
drawback of this, is that the (desktop) application has to pack the Flask module
into the release build, and then on application start, a port has to be opened in the
background to allow for communication between front- and back-end. This would
cause unnecessary complexion for a simple application.

Electron with JavaScript
Electron13 is a software framework developed and maintained by GitHub14, and

8https://www.oracle.com/java/
9https://wiki.openjdk.java.net/display/OpenJFX/Main

10https://www.python.org/
11https://wiki.python.org/moin/TkInter
12http://flask.pocoo.org/
13https://electronjs.org/
14https://github.com/

5.1. Design and Creation 103

is used for development of desktop applications. It utilizes Node.js15(Tilkov and
Vinoski, 2010) for back-end and Googles16 Chromium17 for front-end. As a result,
the entire application can be written in JavaScript, which excels in both front-end
and back-end.
Through NPM packages18, Electron supports deployment to all the major oper-
ating systems, which makes it easier to create and deploy an application quickly
in an iterative development process. Having the application not platform specific,
makes it easier to test on a wide range of users and get fast feedback.

With the use of JavaScript, the support for web frameworks are also present.
Electron allows for the integration of frameworks like Facebooks19 React20 and
Googles Angular21. This would be beneficiary for a larger desktop application,
but using a framework was initially considered overkill for this IT artefact. The
consequences of not using a framework is further discussed in Section 6.1.

Summary of Java vs. Python vs. Electron

Pros Cons

Java with
JavaFX

- Robust
- Looks modern and clean
- Enormous package library

- Verbose code
- Not a native look and feel

Python with
Tkinter and
Flask

- Succinct and compact language
- Enormous package library

- Tkinter is outdated
- Difficult to package Flask

Electron with
JavaScript

- Enormous package library
- Supports web frameworks

Table 5.7: Pros and cons of frameworks

Final Decision

One of the goals of the development process was to choose an environment with
as little complexity as possible, and focus on the support of a fast and iterative
process. For this reason, the researchers found that building a desktop application,

15https://nodejs.org/en/
16https://www.google.com/
17https://www.chromium.org/
18https://www.npmjs.com/
19https://www.facebook.com/
20https://reactjs.org/
21https://angular.io/

104 Results

using Electron, would be the best course of action.

5.1.9 Design

During the entire design process, several design topics were taken into consider-
ation, such as affordances, feedback, colors, and user input. To optimise the user
experience, it was important to create a system that was efficient, intuitive, and
aesthetic. And the design choices greatly affect those parameters. This section
refers to the implementation of the design theory discussed in Section 2.7.

Visibility

Visibility refers to the exposure of functions and operations available. Accommod-
ating visibility, the task page of the application had all functionalities displayed on
one page, such that there were no need for hyperlinks to navigate around each
task. All operations and functions were intentionally visible all the time, with the
exception of permutations, so that users would not have to spend time locating de-
sired features. The reason permutations were hidden when not selected, was to not
confuse users whether this feature was selected or not.

Feedback

To satisfy the user flow, all actions made by the user were to have some kind
of feedback. Buttons either added/removed elements from the user interface, or
opened a file dialog. Hovering the question marks immediately displayed an in-
formation box. And toggles provided immediate updates in the user interface. All
of these feedback elements were meant to help the user through the application
flow, and make for a smooth experience.

The most considerable feedback provided by the application was the preview win-
dow, which was updated whenever a user made an action. This feature provided a
real time feedback on every decision, and reflected how the task would be presen-
ted in Inspera.

Constraints

The application did not pose many constraints on the user interface, as most fea-
tures were optional. One of two constraints implemented was the inability to add
an empty distractor to the input field. The other constraint provided was in regards
to permutations, where code lines were not selectable to depend on each other.

5.1. Design and Creation 105

That is, if code line 1 was selected to ’Must come before’ code line 2, the opposite
selection was disabled.

Consistency

Consistency is important for a user friendly system, allowing for few surprises.
Having all buttons colored green (with the exception of buttons with delete func-
tionality), using the same design for all helper icons, and using the same font for
all text provided a recognisable pattern easy to learn and understand.

In addition, consistent with the reading conventions of western cultures, the ap-
plication was designed with the glance sequence from top left to bottom right in
mind. The initial button, "Add Task", was placed in the top left corner, as this is
usually the first place a user glances when opening an application. Moreover, the
flow of creating tasks went from top to bottom, from left to right. And finally,
signaling the end of the user sequence, at the bottom right corner the export button
was placed.

Affordance

It is important that the perceived affordance of elements corresponds to their in-
tended functions, as this will improve the efficiency of the design and ease of use
(Lidwell et al., 2010).

To give buttons the perceived affordance of clicking, the cursor changed pointer
to a hand when hovering a button, in addition to the button itself decreasing the
saturation of its background color. This affords the notion that something will
happen when it is clicked.
The preview, on the other hand, was meant to have no interaction at all. For this
reason, there were no changes when the cursor hovered the preview, affording the
notion that nothing would happen if it was clicked.

The need for an integrated development environment (IDE)-like coding window
was seen as necessary to afford the writing of code in the source code editor.
Normal text editors have the perceived affordance of writing normal text, while
a source code editor needs the perceived affordance of writing source code.

Color

The color palette chosen for the IT artefact consisted mainly of four colors: light
blue, green, red, and grey. Red and green are complementary, and green and light

106 Results

blue are analogous. Buttons were made fully saturated red or green, as they were
to grab the attention of the user to be something clickable. The background colors
of the IT artefact consisted of white and different shades of grey, which are cool
and neutral, and would not interfere with the user attention.

Considering people affected by color vision impairment, the IT artefact was de-
signed with as few colors from the red and green spectrum as possible. But, due
to cultural conventions, this was not always the case. Delete buttons are, by con-
vention, red and the most suitable color for download buttons are green. To com-
pensate for this, the buttons were annotated either by a descriptive text or an icon.

Confirmation

The most critical and irreversible function a user could do with the application
was to delete a task. In such a case, the user would have to re-upload the code
file, add all distractors again, configure permutation options (if any), and tune task
settings. This would be a great annoyance, and therefore the application provides
a confirmation message whenever a task is about to be deleted.

Another confirmation, was the popup window whenever a user tries to export the
task(s) with a file name that already exists in the target directory. Instead of im-
mediately overwriting the existing file, the application asks for a conformation on
this action.

User Input

To avoid duplicate work, and decrease possibilities of erroneous input, application
input was reused whenever possible. For example, having the user type code into
the source code editor (or upload a file), the IT artefact extracted information such
as code lines, number of code lines, and indentations from the source code editor
for re-use.

Input fields throughout the application was designed to provide definitive borders,
prompt text, and color indicators on hover. All of these attributes strengthened the
input functionality, and made them more apparent.

Lastly, upon completion of data entries, the system provided explicit feedback.
Whenever task title changed, the title updated in the list of tasks. When distractors
were added, they appeared in the list of distractors. And when the export button
was clicked, and the task was successfully exported, a confirmation box appeared.

5.2. Experiment 107

5.2 Experiment

5.2.1 Quantitative Data

In this section an overview of the quantitative data gathered will be presented.
This data was gathered from the experiment conducted on the real-life users of
the IT artefact. As previously mentioned, the experiment consisted of observation
of the user-tests, a SUS questionnaire, and an interview. Among these three data
generation methods, the quantitative data resulting from the observation and the
questionnaire will be presented here.

The experiment was conducted with five participants in total. The following tables
show the raw quantitative data gathered from these experiments. Participant 1-4
all completed the experiment as planned by the researchers, while participant 5
did not complete the given tasks and canceled the Inspera part of the experiment
in frustration. After spending 18 minutes on Task 1 in Inspera, and still only be
half done, participant 5 asked if they could skip the remaining parts of Inspera and
instead describe what they theoretically would do next. Due to this cancellation in
the experiment, some of the gathered data from participant 5 will not be presented.
This person still completed the given tasks with the IT artefact, but since the num-
bers can not be properly compared to the Inspera process, the data is defective.
The SUS and the qualitative data gathered from participant 5 was still used in the
analysis.

While the performed tasks are all presented in the same order in these tables, the
order was randomized during the experiments, as discussed in Section 4.1.2. The
data is also just presented in this section, and will be discussed further in Chapter
6.

108 Results

Participant 1 Time spent (sec) User-Errors Inaccuracies Questions System-Errors
Task 1 Inspera 620 1 2 0 1
Task 2 Inspera 1055 2 0 1 1
Total Inspera 1675 3 2 1 2
Task 1 App 70 0 0 0 0
Task 2 App 201 0 0 0 2
Total App 271 0 0 0 2

Table 5.8: Participant 1 data points

Participant 2 Time spent (sec) User-Errors Inaccuracies Questions System-Errors
Task 1 Inspera 796 2 2 1 1
Task 2 Inspera 444 1 2 1 0
Total Inspera 1240 3 4 2 1
Task 1 App 111 0 0 0 1
Task 2 App 71 1 0 0 1
Total App 182 1 0 0 2

Table 5.9: Participant 2 data points

Participant 3 Time spent (sec) User-Errors Inaccuracies Questions System-Errors
Task 1 Inspera 893 1 4 5 0
Task 2 Inspera 627 2 3 0 1
Total Inspera 1520 3 7 5 1
Task 1 App 179 0 0 0 1
Task 2 App 175 1 0 0 0
Total App 354 1 0 0 1

Table 5.10: Participant 3 data points

Participant 4 Time spent (sec) User-Errors Inaccuracies Questions System-Errors
Task 1 Inspera 885 4 3 3 0
Task 2 Inspera 550 1 2 2 0
Total Inspera 1435 5 5 5 0
Task 1 App 189 0 0 1 1
Task 2 App 129 0 0 0 1
Total App 318 0 0 1 2

Table 5.11: Participant 4 data points

5.2. Experiment 109

The following figures uses the same data as the tables above, but visualizes the
mean data. Since the sample size was so small, the researchers saw no need for ad-
ditional quantitative data analysis to visualize or represent further findings. Figure
5.30 shows the main data, and visualizes the differences in the two processes.

Figure 5.30: Visualization of time spent with Inspera and the IT artefact

With the 4 participants, the time spent in Inspera and time spent with the IT artefact
are quite similar between the participants. Figure 5.30 shows every participants’
total time spent in Inspera and total time spent in the IT artefact when solving
the two tasks given in the experiment. The standard deviation of all time spent in
Inspera was at 181 seconds and with the IT artefact it was 74 seconds. The most
important aspect of this data is how in every case, the IT artefact was one fourth
as time-consuming as Inspera. A much larger sample size and more in-depth data
analysis would perhaps be necessary if the accumulated data had not shown such
clear differences, but in this case, simply using common sense is enough to suggest
that the IT artefact is more efficient. It is important to remember that none of the
participants had any prior knowledge to the IT artefact, and most had not tried to
manually create such a drag and drop task in Inspera either.

To better supplement the results regarding time spent creating the two tasks, the
user performance time using the keystroke-level model (KLM) was calculated as
well (Card et al., 1980). The actual calculation using the KLM and the results can
be found in Appendix F, but the main results are visualised in Figure 5.31. Based
on the Mean time spent from Figure 5.30, the ratio between time spent during user
testing was exactly 1467/281 = 5.22, while the ratio between time spent from
the KLM calculation was 617/128 = 4.82. These two ratios are fairly similar to
each other, reducing the likelihood that the measurements from the user testing
was generated by chance.

110 Results

Figure 5.31: Calculated User Performance Time for both tasks using KLM

Figure 5.32: The mean of some gathered data points

Figure 5.32 shows the additional data points gathered during the user testing.
These show that while the IT artefact still had some bugs and system-errors dur-
ing the testing, the overall process proved to be more intuitive, with less questions

5.2. Experiment 111

Figure 5.33: Task manually created by test participants in Inspera

112 Results

and user-errors, while the final results had no design inaccuracies compared to the
given tasks.

Figures 5.33 shows the outcomes of the participants manually creating Task 1 us-
ing Inspera. The resulting tasks are both inconsistent and different from the given
task design they were asked to create, as shown in Figure 4.1.

SUS

The SUS questionnaire was filled out by all participants and calculated into a
single score, represented in Figures 5.34 and 5.35. Using the SUS Score categories
and acceptability ranges from Figure 4.4, the values established in the experiment
places the perceived usability of manually creating Parsons problems in Inspera
close to the adjective rating WORST IMAGINABLE with a mean of 28. This rating
is well within the NOT ACCEPTABLE acceptability range. The IT artefact, on the
other hand, with a mean score of 86, had an adjective rating of EXCELLENT and
an acceptability range of ACCEPTABLE. The low standard deviation scores of the
SUS scores also show that there was a general agreement between the participants.

Figure 5.34: System Usability Scores gathered from test
participants

Figure 5.35: Mean
SUS

Wilcoxon signed-rank test

Since it is not possible to check if the gathered data is normally distributed with
this few data points, a non-parametric statistical hypothesis test had to be utilized
instead. To check if the differences in time spent and SUS scores found were due
to chance or not, the Wilcoxon signed-rank test (Wilcoxon, 1945) was employed.
If there were no difference in the two compared data sets, the chances of getting
the "+" or the "-" sign should, based on the null hypothesis stated in Section 4.3.2,
be p = 1/2. Using this we get the following calculations.

5.2. Experiment 113

Wilcoxon signed-rank test App (Time spent) Inspera (Time spent) Sign
Participant 1 Task 1 70 620 +
Participant 1 Task 2 201 1055 +
Participant 2 Task 1 111 796 +
Participant 2 Task 2 71 444 +
Participant 3 Task 1 179 893 +
Participant 3 Task 2 175 627 +
Participant 4 Task 1 189 885 +
Participant 4 Task 2 129 550 +

Table 5.12: Wilcoxon singed-rank test on time spent

p(x) =

(
N

x

)
px(1− p)N−x (5.1)

p = 1/2 (5.2)

p(x) =

(
N

x

)
1

2N
(5.3)

Time spent:

Since time spent was gathered for each participant and for each task completed,
the individual tasks were compared in the Wilcoxon signed-rank test, as seen in
the Table 5.12.

With a dataset of size N = 8 and x = 8 where x is the number of positive signs,
the final calculation is seen in Equation 5.4.

p(8) =

(
8

8

)
1

28
≈ 0.004 (5.4)

This means that there was a 0.4% likelihood that the differences found between
the time spent was due to chance. Using the common statistical significance level
of p < 0.05, the result of p = 0.004 can with confidence reject the null hypothesis.

SUS:

114 Results

Using the SUS scores from Figure 5.34, with a dataset of size N = 5 and x = 5
where x is the number of positive changes, the final calculation is seen in Equation
5.5.

p(5) =

(
5

5

)
1

25
≈ 0.03 (5.5)

This also means that the differences found in the SUS scores had a 3% likelihood
of being due to chance. This makes it possible to reject the null hypothesis when
using the statistical significance level of p < 0.05.

5.2.2 Qualitative Data

The experiment phase yielded well over five hours of footage with raw data ready
for qualitative data analysis. For more information about the gathered qualitative
data, see Section 4.2.2. Before commencing the analysis, the footage was tran-
scribed as a mean to ease the process of working through the data. Using the tran-
scriptions, the data was divided into units of texts, where each unit was assigned
one or more categories in an inductive approach (see Figure 5.36).

The categories were refined until a well defined list of categories emerged, which
can be found in Appendix E. Then, the frequency of each category was calculated,
so that the categories could be ordered by this frequency. It is important to note
that these frequencies did not define the importance of each category, rather they
just gave an incentive to which categories to focus on.
After the categories and frequencies were counted and added, the list was divided
into two: Categories for Inspera, and categories for the IT artefact. The reason for
this, was that the categories regarding Inspera was not really of interest for further
development of the IT artefact.

To better distinguish categories, they were again divided into two sub groups, one
for positive categories and one for negative. With this division, it was easier to dis-
tinguish between praise and constructive feedback. The positive categories were
taken to heart, while the constructive feedback was used to construct a list of pos-
sible improvements of the IT artefact, which can be found in Appendix D.4. While
not all of the possible improvements were doable within the scope of this thesis,
e.g. ’Want to be able to generate other task types as well’, the most important ones
were added as tasks for the iteration following the user test. In Section 6.2.2, the
qualitative results are discussed.

The three most prominent categories, in terms of frequency, for Inspera can be

5.2. Experiment 115

Figure 5.36: Transcription snippet with assigned categories, from one of the interviews

found in Tables 5.13 and 5.14, and for the IT artefact in Tables 5.15 and 5.16.

From Table 5.14 (Negative Categories Inspera), it is clearly evident that users gen-
erally felt frustration towards Inspera when solving the given tasks. Outbursts like
’There has to be a better way of doing this?’ and ’This makes no sense to me’
were quite common during the user tests. Moreover, there was only one positive
category that emerged from the use of Inspera, which was their preview function-
ality. These results clearly indicates that the process of creating Parsons problems
in Inspera is not optimal.

When it comes to the categories of the IT artefact, the results where fairly fifty-
fifty, with an edge towards negative categories. Most of these negative categories
were in regards to features not being intuitive enough. These categories were taken

116 Results

into consideration, and created tasks for in the proceeding iteration.

Positive Categories Inspera

ID Category Frequency
01 Bruker forhåndsvisning 1

Table 5.13: Top 1 positive categories (only one entry in the table) from Inspera, based on
frequency. The complete table can be found in Appendix E.1.1

Negative Categories Inspera

ID Category Frequency
02 Generell irritasjon/frustrasjon på Inspera (ikke intuitivt) 21

03
Vanskelig å manipulere posisjon, høyde og bredde til dra-
og slippområder

9

04
Ikke intuitivt hvordan man kobler sammen dra og slip-
pområde

8

Table 5.14: Top 3 negative categories from Inspera, based on frequency. The complete
table can be found in Appendix E.1.2

Positive Categories IT Artefact

ID Category Frequency
17 Ser nytteverdi av appen 7
18 Utnytter / liker hjelpefunskjon 7
19 Add task og Choose file er intuitiv 6

Table 5.15: Top 3 positive categories from the IT artefact, based on frequency. The com-
plete table can be found in Appendix E.2.1

Negative Categories IT Artefact

ID Category Frequency
26 ’With indenting’-toggle er utydelig og lite intuitiv 11
27 Ønsker copy paste i appen 9
28 Bruker ’Add’-knapp før input-felt 8

Table 5.16: Top 3 negative categories from the IT artefact, based on frequency. The
complete table can be found in Appendix E.2.2

Chapter 6

Discussion

In this chapter, the design and creation and experiment strategy with their results
will be discussed. For reference, the research questions for this thesis were:

1. How can one design and create a system for efficient generation of Parsons
problems for digital programming exams in Inspera?

2. What is the effect, in regards to usability, of using the IT artefact to generate
Parsons problems for digital programming exams in Inspera, compared to
the manual method?

6.1 Design and Creation Discussion
The main focus of this section is to highlight what was learned during the design
and creation process on how one can design and create a system for efficient gen-
eration. The content of this section is thus based on what the researchers found,
and any other insights that emerged from the process. The goal of these insights
is to possibly help or contribute to others looking to create systems for efficient
generation of QTI-based tasks.
The applicability of these findings can, of course, be limited, due to the narrow
focus of this thesis. While the main focus of the design and creation process was
to try to efficiently generate Parsons problems as drag and drop tasks for Inspera,
others creating similar systems for automation and mass generation might gain ad-
ditional insight. Since efficiency was, as mentioned in Section 4.2.2, measured by
time used, the goal was to generate these tasks with a minimum amount of waste
or unnecessary effort.

Figure 6.1 shows a proposed model that provides an overview of some of the most

117

118 Discussion

important aspects to consider during the different stages of creating a system for
automation. The model combines some of the key elements from Section 2.6
(Automation) and Section 2.7 (Design), together with the findings of this design
and creation process.

Figure 6.1: Considerations during the creation of a system for automation

6.1.1 Deciding What to Automate

These points focus on what must be examined and contemplated when deciding
what to automate. These considerations can help understand which of the four-
stage model of human information processing the different automation functions
should be applied to (Parasuraman et al., 2000). For example, by exploring these
factors, one can learn that a function originally thought of as requiring action auto-
mation, might require more decision support or analysis automation. But the main
goal of these objectives is to support system developers find out if, how, and why
different functions should be automated or not.

When creating a system in general, there are often specific requirements and re-
strictions that create a framework which one has to operate within. For this thesis,
one of the main requirements and restrictions were to specifically generate and
automate the process of creating Parsons problems for Inspera, using the drag
and drop question type. As with most software development processes, properly
gathering and specifying as many requirements and restrictions as possible, is ex-
tremely important to avoid wasting time and resources. Finding, analyzing, and
documenting requirements are known as requirements engineering (RE) (Som-
merville, 2011), and should be focused to get a good understanding of what the

6.1. Design and Creation Discussion 119

system should provide and what restrictions must be considered.

Creators of an automation system should also focus on getting a good understand-
ing of the function one is trying to automate, as well as finding the optimal solu-
tions the function should output. The optimal solutions are more concerned with
learning and understanding what specifies an optimal solution within the domain.
For example, for this thesis, the optimal solutions would be in regards to how the
drag and drop tasks had to be designed to look like a Parsons problem. In other
words, the optimal solutions specifies what must be created, and by considering
the ideal ways of creating this, one can better evaluate to what extend it can be
automated.
For this thesis, the design (look and behavior) of the tasks to generate was pre-
determined, as mentioned in Section 2.4. This made it possible to clearly define
the least amount of input required by a user. Generating lots of tasks efficiently
means that the end-user should do as little work as possible, or reduce human oper-
ator mental workload (Parasuraman et al., 2000), and let the IT artefact do the rest.
If possible, the tasks to generate should therefore be as optimal and clearly defined
as possible. Spending time figuring out the best possible design for these tasks be-
fore creating a system for mass generation is therefore preferable. Another option
is, of course, to improve the task design iteratively together with the development
of the IT artefact. An iterative improvement might also work better with agile soft-
ware development methods. The process of finding the optimal solutions were, as
mentioned, out of the scope for this thesis, but the requirements regarding task
design and optimal solutions are, for others creating similar systems, extremely
important to efficiently generate useful tasks. So to understand how and what has
to be automated, one must understand and know what output is expected from the
function.

Having a clear overview of as many aspects of the task creation as possible is
essential to properly understand and evaluate what aspects of the process can be
automated and not. Finding the activities that causes the highest mental workload,
and check if these can be automated, is one of the main criteria to improve human
productivity and efficiency (Parasuraman et al., 2000). During our development,
the permutation dilemma was not discovered until Iteration 4, as seen in Section
5.1.9. This was also found to be an extremely critical feature, and if it had not been
implemented, the significance of the IT artefact would have been greatly reduced in
the sense that many code snippets could not have been generated correctly with the
IT artefact. Manually finding permutations also requires a high mental workload
once the code snippets become more complicated. Thus, gathering requirements
and insight from as many sources as possible can therefore help discovering the
most critical features as soon as possible, and this can also be done iteratively.

120 Discussion

The drawback of gathering requirements from multiple sources, is that the needs
of each individual can be remarkably diverse. Finding the smallest set of the most
critical requirements is, as found during this process, one of the greatest difficulties
when creating useful and efficient mass generation of tasks. One would optimally
like to implement all gathered requirements and suggested features, but in reality,
this would simply increase the IT artefacts complexity and lower efficiency.

The cost of outcomes and skill degradation are both mentioned and discussed by
Parasuraman et al. (Parasuraman et al., 2000). Cost of outcomes mainly looks at
the risk or errors associated with different outcomes and how automation might
reduce the risk, while skill degradation is concerned with the skills the human
operators forget when a function is automated. Lastly, maintainability must be
considered to better understand if the automated function is sustainable in the long
run. For example, if the QTI-format used by Inspera was continuously updated
and changed, the created IT artefact would require a lot of maintenance as well.
And since the IT artefact works more like a plug-in and a tool used for a much
larger system, it must continuously heed to the rules and constraints of Inspera.
The maintainability must thus be considered to understand how many resources
the automated function will require down the road.

6.1.2 Design, Evaluation Criteria & Priorities

These points from Figure 6.1 focus on different criteria and priorities that must be
established for the design of the automation system. These considerations mainly
help determine what features one would like to concentrate on and what should be
established as the most important. Thus, these points should give a good checklist
over the different aspects that should be given some thought when designing the
system.

The first three points are the subcategories of usability, as discussed in Section
4.1. The main thing to consider here is to what extend each of these should be
satisfied. Is efficiency the main aspect of the automation? Or is the goal the reduc-
tion of human made errors? While efficiency, effectiveness, and satisfaction might
overlap in the sense that a more efficient system, for example, might cause more
satisfaction among the users, the overall correlation is found to be weak (Frøkjær
et al., 2000). All these points are here to help illustrate what the system needs, in
terms of the most important features. For example, extra focus on efficiency might
require a reduction of required human actions or inputs in the system, an optimized
algorithm, or an investigation of which manual functions are the real bottlenecks.
Effectiveness might require the developers to focus more on learning where most
errors occur and how they can be removed by automation. Lastly, improving sat-

6.1. Design and Creation Discussion 121

isfaction might involve more focus on how to create a user-friendly and intuitive
system.

Another important reason to clearly define to what degree these should be satisfied,
is that they might have distinct effects on other aspects. During this research, it
was found that improving efficiency comes at the expense of customizability. The
final IT artefact only supported two different design options (2D and 1D Parsons
problems), but during the development process, multiple other needs and design
suggestions surfaced, as seen in Appendix D.4. Many of these suggestions would
clearly require much more functionality and options in the IT artefact, which would
influence the time spent. For example, the addition of permutation support almost
doubled the amount of input a user had to make. This led to the quite obvious
conclusion that when automating a process, efficiency comes at the expense of
customizability.

As stated in Research Question 1, the goal of the thesis was to create a system for
efficient generation of Parsons Problems. For this reason, it was decided to priorit-
ize efficiency over customizability. Less required user input, less options and less
customizability helps improve the ease of use, learnability, and intuitiveness of the
IT artefact since there is less things to learn and more information given about the
remaining features. During user testing, one of the participants said the following:
"I greatly prefer systems that performs one specific task incredibly well, instead of
a system that tries and fails to do multiple things at once". The researchers believe
this quote clearly reflects how one needs to approach the creation of an efficient
system. Efficiently generating tasks also means that the end-user should not spend
unnecessary time with the IT artefact.
Since an end-user is assumed to only use the IT artefact a handful of times during
a year, it is extra important that it is intuitive and easy to use. Here comes the
concept of considering the frequency of use in a system. In more complex and
larger systems, one can expect the user to spend additional time learning how to
operate it, but in this situation, the IT artefact should optimally work as an efficient
tool that can be used when needed. And in this case, the system must be designed
so one can easily understand how to operate it again after a year without use.

Considering the skills of the users also help define how much explanation is needed
to the different actions being performed by the system. For example, for this IT
artefact, the end-users were highly competent course-supervisors that have decent
knowledge of Inspera and programming exams. One can in this case, for example,
assume that a directed acyclic graph (DAG) does not need to be explained to the
users. Clearly defining and recognizing the target audience might help improve all
aspects of the system.

122 Discussion

Parasuraman et al. also discusses how reliability, complacency, and situational
awareness must be considered when automating a function (Parasuraman et al.,
2000).

6.1.3 Implementation & Testing

The final considerations in Figure 6.1 gives an overview of a few tools that can be
used to adjust or include some of the previously discussed points. For example, to
increase reliability, one can include more system, acceptance, integration, or unit
tests. And to improve efficiency, improving or reducing the number of user actions
and inputs might help. Proper feedback on states, actions, and intentions also help
improve the situational awareness of the user and might reduce skill degradation
(Parasuraman and Riley, 1997). All these considerations were used and discovered
during this thesis, and while they are in no way revolutionary, they might provide
additional understanding or an overview of how things can be implemented.

Since the expected frequency of use for this IT artefact was low, learnability and
ease of use had to be focused. To achieve this, a description or help function
was implemented for multiple features to eliminate any source of confusion as of
what a feature did. In addition, providing detailed and immediate feedback when
performing actions in the IT artefact greatly improved users understanding. In
general, the user testing showed that the IT artefact lacked some initial feedback
to properly show the test participants what was going on and what different ac-
tions did. Some had problems understanding what was being generated and how
it was connected to Inspera. As mentioned, providing situational awareness (Para-
suraman et al., 2000) and proper feedback about the automation’s states, actions,
and intentions (Parasuraman and Riley, 1997) is crucial. The feedback should give
good indications as to what will be generated by the IT artefact, making it possible
for users to test out different actions and see what happens. This can greatly in-
fluence the perceived ease of use, as well as reducing errors when one can clearly
see what will be generated. For example, during the initial user testing, the lack
of feedback from the 2D Parsons checkbox caused multiple participants to forget
this aspect of the task. With the implementation of a task preview, one could now
discover such overlooked features much easier and earlier than before.

Proper warning messages or alarms is also important when a dangerous situation
or errors occur (Parasuraman and Riley, 1997), and this was implemented to a cer-
tain degree. For example by providing error messages if the task text description
had too much formatted text, if too many permutations could be generated, or if
something went wrong during the task generation. There could still be added more
warning and error messages to properly cover everything that could go wrong, but

6.1. Design and Creation Discussion 123

the current level of messages was satisfactory for a prototype.

6.1.4 Other comments

A drawback of having to create an automated process is the need for domain know-
ledge, at least during the initial requirement gathering. Great effort has to be put
in to automating a process, and having domain knowledge can greatly reduce the
work and time spent developing such an artefact. Designing optimal Parsons prob-
lems for Inspera requires deep insight and knowledge of what is supported by
Inspera, and what is optimal and intuitive for students. The generation of QTI also
requires knowledge of its rules and features, and what Inspera supports here as
well. The advantage of the automation, is that this domain knowledge is needed in
a much less degree after the initial development of the generation tool. By having
experts within the field determine how things should be generated, future users do
not have to spend extra time trying to learn and find optimal ways of creating these
tasks. But as mentioned, this might also cause skill degradation (Parasuraman
et al., 2000), since course supervisors no longer has to think of how to design their
exam questions. Skill degradation could also come in the form of not knowing how
to manually create tasks in Inspera, at least if the IT artefact is further developed
into a more comprehensive system for generation of tasks for Inspera. But as of
now, the researchers do not consider it a big problem if a course supervisor forgets
how to manually create drag and drop tasks, since this can be easily learned again
with Inspera.

There are some shortcomings and flaws connected with the created IT artefact
that can potentially reduce the usefulness and value it brings to the end-users.
While the IT artefact supports the creation of both 2D and 1D Parsons problem, the
permutations were only implemented for the latter task type. The consequences of
this is that users might feel restricted to only create 1D Parsons problems, because
of the value that comes with the implementation of permutations. The IT artefact
still provides a preview of permutations when a 2D Parsons problem is selected,
but these permutations will not be implemented in the generated task. This makes
it possible to still get a good indication of the soundness of the task. But not
having proper support for permutations in a 2D Parsons problem can decrease the
IT artefacts value. Another problem is that a user is able to copy paste highly
formatted text to the task description, which can have unknown consequences for
Inspera. Other, undiscovered bugs might also have severe consequences if the
users develop too much complacency and does not check the generated tasks. So
while efficiency was the main focus when creating the IT artefact, providing good
test coverage, properly implemented features, and as few bugs as possible is still
essential to the overall usefulness of the system. One can not simply focus on

124 Discussion

efficiency, since there are many other non-functional requirements that must be
considered while developing an IT artefact.

Initially, there was thought to be few features in the application, and as a result
pure JavaScript was used in development. Later, as the number of features ex-
panded substantially, it is obvious that having a framework would have been more
beneficial. One thing is having cleaner/better structured code, but another benefit
would be the ease of testing. Frameworks usually provides testing frameworks
made for them, making the testing process much easier.
In addition, frameworks are usually easier to scale than pure JavaScript code. With
the continuous growth of features, the source code got a bit more unstructured for
each feature added. With a framework, such as React, the addition of features
would mean the addition of more components, which accommodate scaling. Writ-
ing pure JavaScript, new features meant that the entire source code had to be re-
visited to be sure all relations were still intact. In our case, since the IT artefact
was developed as a prototype, the scalability aspect was not a part of the initial re-
quirements. But for further development of this IT artefact, or for others planning
to create similar systems, it is necessary to spend some time to properly plan out
the actual scale of the system and how that influences technology choices and code
architecture.

Another concern regarding maintainability was the QTI Converters dependency
on the skeleton obtained from Inspera. If Inspera at a point in the future decides
to alter the structure of the QTI version, add features, or remove features, the IT
artefact will be rendered useless, or non-compatible with Inspera, if it is not main-
tained and updated to reflect said changes. During the development, the research-
ers also encountered some of the IMS QTI shortcomings mentioned by Piotrowski
(Piotrowski, 2011). This was mainly at the beginning of the development, when
the developers first tried to learn and understand which of the IMS QTI features
were supported by Inspera. Although Inspera supports IMS QTI v2.1, it does not
support all available features, making it difficult to clearly find the ones that are
truly supported. This was mainly why the developers chose to reverse engineer
the XML files Inspera generated and use those as skeleton code instead. The lack
of proper interoperability using IMS QTI, at least with Inspera, was also evident
when the developers tried to create drag and drop questions using TAO from Sec-
tion 3 (Related Work) and upload this question to Inspera. The uploaded question
could not be opened in Inspera at all, for unknown reasons, even though they used
the exact same IMS QTI versions. So based on the design and creation of this
IT artefact, the developers recognize and agree with many of the shortcomings
mentioned by Piotrowski.

Overall, the crated IT artefact shows that the domain of generating multiple QTI-

6.2. Experiment Discussion 125

based tasks for digital programming exams, can be highly automated. Not only
does the IT artefact efficiently generate multiple tasks, but the user-testing shows
that it generates single tasks more efficiently as well. The automation also reduced
the possibility of human errors when creating the tasks. Highly repetitive work,
that is, creating tens or hundreds of tasks, have a higher probability of human er-
ror. Such accidents can have severe consequences, which automation can reduce
the possibility of. But as mentioned in Section 2.6, a seemingly reliable auto-
mation system can quickly lead to too much complacency (Rovira et al., 2007).
While the IT artefact might reduce the amount of human errors made, it might not
be completely free from bugs or errors, which can cause undiscovered failures.
To properly address this issue, the IT artefact should be tested to a much greater
degree by more people and supplemented with more integration, unit, system, and
acceptance tests. This will be further discussed in Section 7.2 (Future Work).

6.2 Experiment Discussion
In this section, quantitative and qualitative data will be discussed and interpreted
in light of the research questions for this thesis. It is important to note that one of
the largest drawback of the data gathered from the experiment, is that the data not
necessarily reflects the IT artefact in its latest version. The experiment was con-
ducted at the end of Iteration 4, as discussed in Section 5.1, and several features
were changed or added after this iteration. The IT artefact withstood extensive
changes during Iteration 5, which means that the data discussed in this section
only reflects the initial user testing conducted in Iteration 4.

6.2.1 Quantitative Discussion

In this section, the quantitative data results from the experiment will be discussed
and interpreted with regards to Research Question 2. Before these data points are
discussed, some of the main flaws must be acknowledged. The created user testing
was, as mentioned in Section 4.1, conducted in a simulated and context-restricted
environment. The tasks to complete were also created by the researchers, who
knew the IT artefact would generate these tasks correctly. Comparing the inac-
curacies in the different solutions, for example, can therefore be seen as a meas-
urement highly stacked against Inspera. The IT artefact was prepared to handle
these test cases, knowing the tasks would only require what it was able to create.
In real-world situations, tasks with different features and details might be desir-
able, meaning the IT artefact might be incapable of creating them. The image we
get from the gathered data points, does therefore not necessarily reflect the real-
world use of the IT artefact. But the created tasks were developed together with the

126 Discussion

thesis supervisor, and assumed to be authentic and reflect expected use as closely
as possible. So while the tasks might properly reflect most use cases, some course
supervisors still might have different expectations regarding the IT artefact.

In general, it is important to make sure that the desired features and details regard-
ing a task to be generated is clearly defined, at least when one is trying to automate
the generation of said tasks. In this research, the final look of the tasks to generate
was clearly defined, as shown in Section 2.4. The IT artefact could then focus on
generating the tasks based on these requirements instead of having to accommod-
ate for further customizability. Mainly, the quantitative data gathered only reflect
the reality as long as the generated tasks are relevant and exactly as an end-user
wants them. During the user testing, these needs and wants were in a sense forced
on the participants when they were given the pre-defined tasks. Thus, the gathered
data assumes that this pre-defined design of a task reflect future end-users require-
ments as well.

The quantitative data gathered was also based on few test participants, which ques-
tions the validity of all generalizations drawn from this data. One can from this
data primarily see indications of what effects the use of the IT artefact will have
when generating Parsons problems. To draw more legitimate conclusions, more
user testing has to be performed.

The data can not be generalized to cover other tasks in Inspera either. The creation
of Parsons problems in Inspera using a drag and drop task is quite distinctive,
meaning that other task types in Inspera not necessarily share the same usability
effects of being automatically generated. Since other task types than drag and drop
is out of the scope of this thesis, no further analysis will be made regarding other
tasks. But it is still important to note that these findings does not reflect all tasks
in Inspera, and that they would require their own examination.

Time spent

As seen in Figure 5.30, time spent solving the tasks using the IT artefact was
at approximately one fifth of the time spent using Inspera. More accuratly, the
mean time spent in Inspera and in the IT artefact had the ratio of 5.22, which were
extremely close to the KLM calculations (4.82) as well. The KLM calculations
show that by objectively looking at the process (by simply counting the number
of keystrokes and buttons that has to be pressed), one can see that the created IT
artefact will be more efficient than manually creating the same task in Inspera. The
same results were found during the actual user testing, even though the test parti-
cipants spent a substantial amount of time figuring out what to do next and how

6.2. Experiment Discussion 127

to achieve the wanted results. All of the participant had some previous experience
with Inspera, but no one had experience creating a drag and drop task. The previ-
ous experience was though to be a small advantage for Inspera, but based on the
results, any small advantage that might have existed does not seem to be of any
importance regarding the time spent.

As one can also see from the Wilcoxon signed-rank test, the difference in time
spent rejected the null hypothesis with a p = 0.004 and a significance level of
p < 0.05. While this signed-rank test does not consider to what extent the data
differs, it only checks to see if the data differs, and in what direction. But these
measurements mean that one can with high likelihood say that there will be an
improvement in efficiency when using the IT artefact instead of Inspera. And in
relation to Research Question 2, this gives a good indication that one of the effects
of using this IT artefact, is an improvement in time spent when creating the same
tasks. It is still important to remember that the validity of these p-values can be
questioned due to the low number of participants. The difference in time spent
will also be highly dependent on the size of the tasks given. For example, a task
with just three lines of code would probably generate less time-difference than a
task with 10. And if a task was small enough, one might encounter less time spent
using Inspera. So the gathered data might be a result of the size of the tasks given
and the low number of participants. But during this research, both these aspects
were considered to be representative of the real-world tasks and users of the IT
artefact, and to properly eliminate or resolve these concerns, further testing should
be conducted.

The differences found in time spent are clearly evident, but still considered to
reflect the effect of the IT artefact in a considerably small scale. As mentioned
in the introduction of this section, the data gathered during the experiment only
reflected the state of the IT artefact during Iteration 4, as seen in Section 5.1. In
Iteration 5, the IT artefact was capable of generating multiple unique tasks given
the same algorithm, using different subsets of distractors. This additional feature
of generating multiple unique tasks at the same time would greatly change the
time differences between the two processes. The user testing simply compared
the processes in a 1-to-1 manner, by creating two task in Inspera and two tasks
in the IT artefact, but the additional feature of generating multiple tasks would
greatly skew the ratio. Using the IT artefact, only one task has to be created to
generate hundreds of unique tasks (given enough distractors), while in Inspera all
tasks must be generated manually. It is possible to create dupliactes of a task in
Inspera as well, but the user still has to open each task and manually change the
correct distractors to another unused subset of all distractors. This means that the
results found during the experiment only shows the least amount of time the IT

128 Discussion

artefact will save an end-user, while any further generation of tasks will increase
time saved.

During Iteration 5, the permutation support was added as well, which could further
influence time spent in the IT artefact. Although this was not tested and validated,
the assumption was that the time it takes to create a DAG to make the IT artefact
generate all possible permutations takes much less time than trying to find and
implement all these permutations manually. In general, the new features imple-
mented in Iteration 5 are all assumed to improve the efficiency and effectiveness
of the IT artefact, but it is important to mention that this is not verified and should
be tested in the future (See Future Work 7.2).

Research Question 2 looks at the effect of the IT artefact, in regards to usability.
But as stated in Section 4.2.2, the time spent (efficiency) can not represent usability
by itself. The effectiveness and satisfaction must also be taken into consideration
before one can get a clear understanding of the IT artefacts usability compared to
Inspera. But the efficiency aspect of the usability can with certainty be seen as a
obvious and evident improvement. With the Wilcoxon signed-rank test, one can
with confidence see that the IT artefact will decrease the time required to create
a task. And although there were quite few data points, the discovered time spent
ratio of 5.22 between the IT artefact and Inspera also give an indication to the im-
provements extent. In a broader sense, this shows that the generation of multiple
tasks has the potential to be highly automated and and time-saving as long as the
generated task design correctly reflect an end-users requirements.

User-Errors, Inaccuracies, Questions and System-Errors

In this section, the data points from Figure 5.32 from Section 5.2.1 are examined.
A flaw with some of these data points, is that the user-errors and questions might
simply reflect initial confusion regarding Inspera and the IT artefact, and not ne-
cessarily be accurate once a test participants learns the basics. In that case, these
data points simply reflect the initial ease of use and how intuitive the two systems
are.

Section 4.3 gives a definitions of how these data points were defined and gathered.
All of these data points, except the System-Errors, had clear improvements when
using the IT artefact. Research Question 2 focuses on the effects of the IT artefact
regarding usability, and these data points reflect the effectiveness aspect of the
usability. The inaccuracies show the quality of the solution itself, while the other
measurements are based on the process of creating the tasks.

As mentioned in Section 4.3, the counted inaccuracies was defined as one or more

6.2. Experiment Discussion 129

of the following categories:

• Inaccurate drop-area positioning and alignment

• Inaccurate drop-area sizes

• Inaccurate drop-area sizes

• Inaccurate drag-area positioning and inaccurate drag-area sizes

These inaccuracies are better shown in the Figure ??, ??, 5.33, and ??, which are
the screenshots of every Task 1 that was manually created during the user-tests.
The correct look of Task 1 can be seen Figure 4.1. This clearly shows that none
of the created solutions actually looked like the given task, so even though it took
the participants more than 4 times longer to complete the tasks, the results were
still sub-par and not fit for use in an exam. The test participants were aware of the
inaccuracies, but were not willing to improve the results further. This was usually
due to frustration and fatigue. The frustration with Inspera was evident during the
testing, and is described in more detail in Section 6.2.2. But all the data points
from Figure 5.32 can give a good indication as of where some of the frustration
and fatigue originated.

The data show the initial and potential errors and confusion an automation of this
domain can remove. Automating a domain is generally known to reduce errors and
make results more predictable, and the gathered data points here support this fact.
The most time-consuming and ’brainless’ work of creating a Parsons problem in
Inspera is the re-positioning and re-sizing of drag and drop fields, which are all
automated using the IT artefact.

The system-error count was slightly higher with the IT artefact, which mainly came
from bugs not discovered by the developers. For example, even though it worked
in the development build, the release build of the IT artefact did not support copy
paste functionality. This was because the developers had forgotten to explicitly
define it. The bugs and system-errors encountered were all fixed after the testing.
There still might exist undiscovered bugs in the IT artefact, which potentially could
affect several generated Parsons problems, but given the unit tests and passed use
cases, the number of bugs was hopefully kept to a minimum. Since a small bug
can potentially affect many generated tasks and potential exams, providing good
test coverage of this automation is extremely important. During the development
of this prototype, testing was focused on, but if the goal would be to create an end-
product, testing should play a much larger part of the development. Creating an
end-product and assuring an error-free IT artefact was not the goal of this thesis,

130 Discussion

but can still be seen as one of the main limitations of the current IT artefact. As
the research questions state, the main goals was to see how a system for efficient
generation would be created, and the effect of this system.

Given these data points, it is clear that the use of the IT artefact improves the ef-
fectiveness aspect of usability, by lowering the number of errors and inaccuracies
made by the user, and questions asked. Even if these measurements might only
reflect the behavior of novice users in both systems, it still gives good indications
regarding differences in intuitiveness, ease of use, and learnability. Based on this
user testing, the indicated effect of using the IT artefact, with respect to the effect-
iveness aspect of usability, was the following:

• Consistency in results was improved, with less inaccuracies made to the
actual look and feel of the created task.

• Less confusion and less question asked when a system specializes in the
automation of the specific tasks.

• Less human errors made and less domain knowledge needed since IT arte-
fact presumably generates ’optimal’ task design (which was pre-defined for
this thesis) based on other expert decision makers.

• Bugs might influence more tasks and is thus more critical to find and elim-
inate.

SUS

The final aspect of usability focuses on satisfaction, which during the experiment
was measured using the System usability scale. This section references Figure
5.34 from Section 5.2.1. These results were fairly consistent among all test parti-
cipants and both systems. They also greatly reflect the observed frustration with
Inspera during the testing. With this data, there was no doubt that having a specific
IT artefact generating Parsons problems was highly preferred compared to having
to create the same tasks manually. The Wilcoxon signed-rank test also resulted in
a p = 0.03, which rejected the null hypothesis when using a statistical significance
level of p < 0.05. This makes it possible to say there will with a very high likely-
hood be an improvement in perceived usability when using the IT artefact instead
of Inspera.

The main threat to validity regarding the SUS scores is possibly that all the test
participants tried both Inspera and the IT artefact before answering the question-
naire. This means that the SUS scores might reflect the IT artefact in comparison to
Inspera, instead of reflecting the IT artefact independently. The IT artefact might

6.2. Experiment Discussion 131

have gotten much worse SUS scores if the test participants had not tried the even
’worse’ alternative. For future testing of the IT artefact, one should thus consider
using two separate test groups for testing the IT artefact and Inspera.

The actual design of the tasks to generate was pre-determined, as previously men-
tioned in Section 2.4. It is of course, possible that the confusion and frustration
evident from the test participants was not only due to Insperas’ user interface, but
due to the pre-determined task design. The time-consuming nature of creating
these tasks might be due to misuse of Insperas’ drag and drop task type. If the drag
and drop tasks type was created for completely different use, it can of course be
problematic to force them to fit and work as Parsons problems. The main problem
might therefore come from the attempt to adapt an unfit task type to a Parsons
problem. It is also important to remember that these ratings does not mean that
Inspera in its entirety deserves such a SUS score, but simply the process of creat-
ing these pre-defined Parsons problems in Inspera is extremely frustrating for the
users.

The frustration evident in the SUS data does still give good evidence that the cre-
ated IT artefact has clear effects on perceived usability. The automation of this
specific domain greatly eliminates frustration, annoyance, errors, inaccuracies, and
time-consuming work that must be performed in Insperas’ user interface to obtain
the same results.

6.2.2 Qualitative Discussion

In this section, the qualitative data gathered from the experiment will be discussed.
The goal of the qualitative data was twofold, (1) to find and gather more require-
ments and find possible improvements, and (2) to get a better understanding of
the perceived efficiency and usability of the IT artefact. Since the main results
gathered after processing the raw data was a list of categories together with a de-
scription, the most important categories will be discussed here, together with the
overall themes that emerged.

Delving into the categories, the one that stood out the most (twice the frequency
of the next on the list) was the overall dissatisfaction and frustration with Inspera.
Over the course of all the experiments, a trend emerged where all of the parti-
cipants, with no exception, demonstrated some sort of irritation or confusion to-
wards Inspera. This, alone, made it evident that the need and desire for either an
improvement of Inspera, or an automated process, existed. Based on this frustra-
tion, it was clear that creating Parsons problems using the drag and drop question
type manually, was extremely undesirable.

132 Discussion

There were several functions that were not intuitive, e.g. how to connect drag
and drop areas, adjust the size of the task window, and fill in text into the drag
areas. All of these struggles accumulated into an overall dissatisfaction and irrit-
ation with Inspera. Some users had to spend time playing around with the func-
tionalities, feeling they wasted time. Initially, the ’generally annoyed/frustrated
with Inspera’ category was split up into smaller categories such as ’finding Inspera
cumbersome’, ’expressing frustration’, and ’feeling waste of time’, but Inspera it-
self was not the focus of this experiment, and therefore the specific annoyances
was not of great importance.

Using the IT artefact, on the other hand, the participants felt a sense of efficiency.
All of the tasks were completed without any irritating events. Even though there
were some bugs in the IT artefact, the stress level did not come near the process of
using Inspera. The test participants still provided a great deal of feedback regard-
ing the IT artefact and did not hesitate to comment if something was confusing.
The feedback gathered during the experiment were extremely helpful and led to a
long and detailed list of further improvements.

Once participants had tried both processes, they immediately appreciated the value
of the IT artefact. Not only did the time spent favour the IT artefact, but the ease
of use as well. After trying both methods, all participants expressed satisfaction of
using the IT artefact over Inspera. If they were to create Parsons problems for an
exam, they all said they would prefer to use the IT artefact. It is important to re-
member that the positive feedback received could also come from the Hawthorne
effect (Adair, 1984) and how the test participants wants to be friendly to the re-
searchers and their project.

Overall, most of the data gathered from the qualitative data generation are repres-
ented as requirements and discovered improvements in Appendix D. And most of
the categories discovered for the IT artefact was concerned with specific improve-
ment that could be made, and needs no further discussion here.

During the experiment, all test participant tried both the IT artefact and Inspera,
and as mentioned, this could possibly have negative effects on the results. The IT
artefact might have gotten more positive feedback and higher perceived usability
than it deserved, since it constantly was compared to a much worse process. An-
other option, that could have avoided this problem, was to test the two processes
on two completely different test groups. But since this would require more test
participants, it was not done in this experiment.
Another problem with the perceived value, is that it was only based on the specific
tasks they were given during the testing process. The perceived value and usabil-
ity of the IT artefact could have gotten different results if the participants were to

6.2. Experiment Discussion 133

come up with their own exam questions to be generated. The fundamental require-
ments for the Parsons problems were in this case formulated by the researchers,
and not by the actual test participants. Once the end-users spend more time think-
ing about what tasks they want to create, a lot of new and different requirements
might come up. For example, maybe the need for partially solved task proves to
be much higher than assumed during this research. So mainly, it is possible that
a large amount of requirements were undiscovered or ignored since the test parti-
cipants were given specific tasks to create. The data gathered is thus only based on
these tasks, and since the test participants was not given a chance to come up with
their own exam questions, this data does not necessarily reflect the actual needs of
the end-users.

As previously mentioned, Inspera with its drag and drop tasks were not made spe-
cifically for Parsons problems. Inspera is a big environment, and supporting every
kind of task would most likely require too many resources. The IT artefact is
designed specifically for creating Parsons problems using the drag and drop ques-
tion type, and then it would only be natural that such a specific application would
outperform Inspera. The experiment also simply compares Inspera with the IT
artefact, while there might exist other environments where one could create drag
and drop tasks and export them as QTI. Since none of the systems found in Section
3 (Related Work) generated drag and drop tasks better suited for Parsons problems
or more efficiently than Inspera, this aspect was ignored during the experiment.

During the experiment, some participants also expressed a concern regarding the
usefulness of Parsons problems as drag and drop tasks over other, simpler task
types. Section 2.1 discusses and show that Parsons problems are just as effective,
but more efficient than regular code writing tasks (Ericson et al., 2017). And the
main concern from the test participants were not the Parsons problems themselves,
but the use of the drag and drop question type in Inspera. The test participants
found the question type unfit due to some of the inconveniences already mentioned
in Section 2.1, such as the unintuitive anchor of a drag area, no feedback when
hovering a drop area with a drag area, and no good support for longer lines of code.
Since using the drag and drop question type was a prerequisite for this research,
this concern will be discussed further in Section 7.2 (Future Work).

134 Discussion

Chapter 7

Conclusion and Future Work

7.1 Conclusion
With the introduction of Inspera and digital programming exams at NTNU, the
use of Parsons problems have become more appealing, with benefits such as auto-
matic assessment. These Parsons problems can be created using the drag and drop
question type, and make it possible to utilize automatic assessment. This thesis
proposes an IT artefact that tries to automate the generation of these Parsons prob-
lems to improve usability and make the process of creating the tasks more efficient
for the course supervisors. This thesis also looks at the effects the proposed IT
artefact has on usability compared to manually creating Parsons problems using
Inspera.

Research Question 1: How can one design and create a system for efficient gen-
eration of Parsons problems for digital programming exams in Inspera?

Together with the proposed IT artefact, the researchers have developed a model
(Figure 6.1) summarizing the main considerations and factors found for designing
and creating an automation system to, for example, improve efficiency. These
factors were discovered during this research and placed in a model to provide
an overview of the aspects the researchers recommend other developers consider
when trying to create similar systems. The developed IT artefact also proposes a
solution to efficiently generate Parsons problems for Inspera. Through multiple
iterations with development, user testing, and feedback, a functional prototype
was created by the researchers, and to assess its efficiency, it was evaluated with
an experiment strategy.

135

136 Conclusion and Future Work

Research Question 2: What is the effect, in regards to usability, of using the IT
artefact to generate Parsons problems for digital programming exams in Inspera,
compared to the manual method?

To evaluate the effect of the IT artefact in regards to usability, the researchers com-
pared the process of creating specific Parsons problems using the IT artefact and
using Inspera with five test participants within the sampling frame. The data gener-
ation methods used was observations, interviews, and questionnaires, which made
it possible to perform both quantitative and qualitative data analysis. Although
the low number of participants had its implications in regards to the validity of the
data, the IT artefact showed evident improvements in both efficiency, effectiveness,
and perceived satisfaction among the test participants. In regards to efficiency, the
time spent using Inspera was, for every single participant, over 4 times more than
with the IT artefact. The number of errors made and inaccuracies in the created
solutions were also drastically reduced using the IT artefact. Lastly, Inspera re-
ceived a mean satisfaction score of 28/100, while the IT artefact received a score
of 86/100. So when comparing these two processes for creating the same Parsons
problems, the IT artefact resulted in an improvement in all mentioned aspects of
usability.
While the qualitative data gathered provided valuable feedback and ideas to fur-
ther improve the IT artefact, it also captioned the frustration emerging when parti-
cipants used Inspera, which further emphasized the need for the IT artefact. Over-
all, the test participants expressed a positive attitude towards the proposed IT arte-
fact while the qualitative data also indicated positive changes in usability.

7.2 Future Work
During the course of this thesis, the researchers learned a great deal about the do-
mains of digital exam creation, Parsons problems, and application development.
Unfortunately, because of time limitation, not all aspects could be pursued fully
and are therefore left for future work. Below are possible areas of future work
described.

Generation of other tasks

The IT artefact could be expanded to generate more than just Parsons problems.
One could potentially add the generation of other task types for programming ex-
ams, such as multiple choice or matching/pairing questions for Inspera. Additional
task types should be investigated and evaluated properly to assess if further auto-
mation of their creation process would be beneficial or not.

7.2. Future Work 137

Improve Permutations

As mentioned in Section 5.1.7, the chosen design of the user interface for letting
users create a DAG was based on the little amount of time left of the project. Given
more time, a more user friendly and intuitive interface might have emerged.

Currently, also mentioned in Section 5.1.7, the IT artefact does not support per-
mutations for 2D Parsons problems. This is certainly a feature that would improve
the usefulness of the IT artefact, and worth looking into.

Variations of the Tasks Produced by the IT Artefact

There are a few variations of the drag and drop Parsons problems produced by
the IT artefact that is worth looking into in future work. For example partial code
completion tasks, where parts of the problem solution is given, or multiple code
lines per drag area, where two or more code lines are merged into one drag area.
These variations can have several benefits, like removing "free" points and/or re-
ducing the number of permutations of code lines. "Free" points refers to code lines
that are obvious where to place, e.g. function definitions or return statements. And
having code lines locked into a position, or having two code lines merged together,
reduces the number of drag areas to be placed by the user, which in turn reduces
the number of permutations possible for the task.

Parsons problems With Other Task Types

As mentioned in Section 6.2.2, some users expressed a concern regarding the use-
fulness of Parsons problems as a drag and drop task, over other task types like
for example dropdown menus or copy and paste a given set of code lines into a
code editor. The drag and drop variation was a prerequisite for this thesis, but the
researchers believe that other variations are also worth looking into. For instance,
a new question type named ’Inline Gap Match’ was released in Inspera during the
development of the IT artefact, which might prove useful in the future.

Validation and Feedback

Future work on the IT artefact should consider improving validation done and
feedback given by the IT artefact. As this was only a prototype, not all aspects of
these areas were fully implemented.
As mention in Section 5.1.6, the IT artefact allows for formatted text to be pas-

138 Conclusion and Future Work

ted into the task description of each task. A future version of the prototype should
either remove the unwanted formatting, or display an error message whenever such
formatting is present.
Additionally, feedback in the form of error messages should be more user friendly
in future versions of the prototype. Currently, some of these messages are prin-
ted in the console log in the developer window of the application, but this should
preferably be moved to the application itself so that users are aware of any errors,
which can provide more insight and situational awareness.

More Testing

As mentioned in Section 6.1.4, the IT artefact should be tested to a much greater
degree by more people and supplemented with more integration, unit, system, and
acceptance tests to avoid having complacency lead to undiscovered errors (Rovira
et al., 2007). A possible solution to this would be to migrate the code to a frame-
work, which might support a better testing environment.

Additionally, another round of user testing should be performed in the future, as
features introduced after iteration 4 have not gone through proper user testing.

Other Improvements

In the list of requirements (Table D.1) and list of improvements (Table D.4) in Ap-
pendix D, one can find additional features that was not implemented during this
research, but that can be made to further improve the IT artefact. The researchers
suggest using these neglected features and requirements as the basis for any future
work on the IT artefact, since these are already based on feedback from end-users.
Alternatively, one could also choose to gather new and updated requirements. The
most prominent features among the remaining ones, might be the addition of per-
sistent storage or a tutorial.

Appendix A

Models

139

140 Models

A.1 Activity Diagram

Figure A.1: The activity diagram for the process of creating a task

A.2. Development View 141

A.2 Development View

Figure A.2: Development view of the source code. The highlighted boxes are files added
after the user test

142 Models

A.3 Logical View

Figure A.3: The logical view of the source code before the user test (iteration 4)

A.3. Logical View 143

Figure A.4: The logical view of the source code after the user test (iteration 5)

144 Models

Appendix B

User Manual

This user manual describes how to use the Parsons Generator application and how
to upload tasks to Inspera.

B.1 Parsons Generator

B.1.1 Add New Task

On application launch, an empty window without any tasks will be loaded. There
are only two actions available: ’Add task’ and ’Export All’. ’Export All’ will be
explained in Section B.1.5.

The button ’Add Task’ (refer to 1 in Figure B.1) instantiates a new task, and the
newly created task will be displayed in the application. If a task is already dis-
played, ’Add Task’ will display the newly created task.

B.1.2 Navigate Tasks

On the left hand side of the application a list of all created tasks are displayed (refer
to 1 in Figure B.2). If no tasks are created, the list will be empty. If there are one
or more tasks, the currently selected task is highlighted and a light blue decorator
appended.

To select and view another task, click on a task in the task list.

145

146 User Manual

Figure B.1: Application Launch on launch Figure B.2: Application with a list of tasks

Figure B.3: Application with an empty task
(Top of the task page)

Figure B.4: Application with an empty task
(Bottom of the task page)

B.1. Parsons Generator 147

B.1.3 Edit Task

Add Task Title

At the top of the task page, there is placed an input field to set the task title (refer
to 1 in Figure B.3).

If a task title is set, this will be set as the task title in Inspera as well. If the task
title is omitted, an UUID (Universal Unique Identifier) is generated and set as task
title in Inspera.

Add Task Description

A description can be added to the task with the rich text editor (refer to 3 in Figure
B.3). The description can be written in Bokmål, English, and/or Nynorsk with the
help of the tab system for the description (refer to 2 in Figure B.3).

NB! It is possible to paste in formatted text to the task description, but this might
cause errors when exporting the task. We advice you not to paste formatted text,
since this might cause problems with Inspera.

Upload File

To upload a code snippet to the application, click the ’Choose File’ button (refer
to 4 in Figure B.3).

Source Code Editor

To manually type a code snippet in the application, use the source code editor
(refer to 5 in Figure B.3).

Add Distractors

To add distractors, use the input field to the right of the source code editor (refer to
6 in Figure B.3).

Distractors are incorrect alternatives to the solution, which sole purpose is to dis-
tract the user. There is no upper limit to how many distractors that can be added.

To delete a distractor, hover the item in the list of distractors, and click the red ’x’
that appears.

148 User Manual

Include Permutations

To include permutations for the task, toggle the ’Include Permutations’ checkbox
(refer to 1 in Figure B.4).

’Include Permutations’ refers to finding all correct permutations of the given code
lines. This is beneficial for discovering dependencies in the code snippet, and
create tasks that have more than one solution.

To find all permutations, a Directed Acyclic Graph (DAG) has to be provided. This
is done by stating which code lines must come before other code lines (refer to 2
and 3 in Figure B.5). For each line in the dropdown menu, state which lines must
come after this line by checking the checkboxes.
For example, if Line 1 has to come before Line 3 (that is, Line 3 depends on Line
1), then you select Line 1 in the dropdown menu (refer to 2 in Figure B.5) and then
check the checkbox for Line 3 in the list below (refer to 3 in Figure B.5). NB: If
Line 1 must come before Line 3, and this is stated in the application, the opposite
pairing (Line 3 must come before Line 1) is disabled.

Because of the time effort in finding permutations, an ’Update Permutations’ but-
ton has to be clicked whenever the permutations have been altered (refer to 1 in
Figure B.5).

To the right of the DAG creation section, a Permutations Preview section is dis-
played (refer to 4 and 5 in Figure B.5). This section gives a preview of all the
permutations that were found, number of false positives, and the probability of
guessing a correct solution based on luck.

Using the preview box (refer to 5 in Figure B.5), one can navigate through all the
permutations found, and see if everything is correct.
In some cases, there will be generated false positives, which are solutions not
logically correct, but which Inspera will deem correct anyway. These will be high-
lighted with a red warning in the preview box (refer to 1 in Figure B.6).

Permutations are only supported for normal Parsons problems, and not 2D Parsons
problems. For this reason, if the ’Include Permutations’ checkbox is on while a 2D
Parsons task is being created (refer to 1 and 2 in Figure B.7), an error message will
be displayed in the ’Include Permutations’ section.

Inspera Preview

A preview of how the task will look like in Inspera is shown at the bottom of the
task page (refer to 2 in Figure B.4 and 1 in Figure B.9).

B.1. Parsons Generator 149

Figure B.5: Permutations Settings for a task Figure B.6: Permutations w/ False Positives

Figure B.7: Permutation warning

150 User Manual

Settings

The task has three settings at the bottom of the task page (refer to 3 in Figure B.4):

1. ’With indentation (Parsons 2D)’ decides whether the task should be a stand-
ard Parsons problem or a 2D Parsons problem (refer to 1 and 2 in Figure B.8
and Figure B.9).

2. ’Number of distractors in each task’ sets the number of distractors to include
in the task. The distractors are chosen from the pool of distractors added
earlier in the task (refer to 6 in Figure B.3).

3. ’Number of tasks to create (max: #)’ sets the number of unique tasks to
generate. The uniqueness comes from each task having a unique subset of
distractors, and thus there is an upper limit on the number of unique tasks
possible to create.

Figure B.8: Normal Parsons Problem Figure B.9: Parsons 2D Problem

B.1.4 Delete Task

To delete a task, hover the task in the task list at left hand side of the application,
and a red button with an ’x’ will appear behind the task title (refer to 1 in Figure
B.10). Click this button to delete the task.

If the task to be deleted is currently displayed, the user will be redirected to the
first task in the task list upon deleting the current task.

B.1.5 Export Task(s)

To export a single task, click the button ’Export Task’ at the bottom of the task
page (refer to 1 in Figure B.11). A file dialog will appear, and let you name the file

B.1. Parsons Generator 151

and decide export destination.

To export a set of multiple tasks, click the button ’Export All’ at the bottom of the
task list (refer to 2 in Figure B.11). A file dialog will appear, and let you name the
file and decide export destination.

Figure B.10: Delete Task Figure B.11: Export Task(s)

B.1.6 Helper Icons

Throughout the application there are helper icons (question mark inside a circle)
that will display help dialogs on hover (refer to 1 in Figure B.12).

Figure B.12: Helper Functionality

152 User Manual

B.2 Uploading to Inspera
Once you have exported one or more tasks, they are ready to be uploaded to In-
spera. Inspera provides a tutorial for this process on their web site: https://

inspera.atlassian.net/wiki/spaces/KB/pages/153813089/QTI+2.1+

Export+and+Import+questions (Accessed: 08/05/19)

Appendix C

Use Cases

C.1 Iteration 1
The use cases for iteration 1 were as follows:

Steps of Execution Expected Result

1. Execute QTI Converter manu-
ally through terminal (which
includes hard coded path to a
Python file)

Generate folder with XML content
based on Python file

1. Execute QTI Converter manu-
ally through terminal (which
includes hard coded path to a
Python file)

2. Compress generated folder
(create a zip-file)

3. Upload compressed folder to
Inspera

Get a functional task in Inspera with
the same code lines as the initial Py-
thon file

153

154 Use Cases

1. Open the terminal

2. Navigate to the source folder of
the project

3. Execute ’npm start’

An empty Electron application should
open

1. Open the terminal

2. Navigate to the source folder of
the project

3. Execute ’flask run’

Flask should run on
http://127.0.0.1:5000/, which should
be confirmed in the terminal

C.2 Iteration 2
For all of the use cases regarding the user interface, it is assumed that the applica-
tion is already running. The use cases performed and passed in this iteration were:

Steps of Execution Expected Result

1. Type source code (or any text)
in the source code editor

Internal state of the application
should be updated (can be checked
with console.log())

1. Copy source code (or any text)
and paste it in the source code
editor

Internal state of the application
should be updated (can be checked
with console.log())

1. Click the ’Upload File’ button

2. Select and open a code file (or
any other text file)

Internal state of the application
should be updated, and the source
code editor should represent the con-
tents of the opened file

C.2. Iteration 2 155

1. Populate the source code editor
with source code (or any other
text)

2. Select file destination

3. Press the ’Download’ button

The application should generate a
zip file at given destination, and the
server should respond with a confirm-
ation (in the GUI)

1. Populate the source code editor
with source code (or any other
text)

2. Export task and upload to In-
spera

The drag areas should be placed in a
random order

1. Populate the source code editor
with source code that has in-
dentations

2. Check 2D Parsons checkbox

3. Export task and upload to In-
spera

The drop areas should have multiple
columns corresponding to number of
max indentations (Drop area grid).
Code lines should connected to cor-
rect row and column

1. Populate the source code editor
with source code that has in-
dentations

2. Uncheck 2D Parsons checkbox

3. Export task and upload to In-
spera

The drop areas should have one single
column. Code lines should be con-
nected to correct row

156 Use Cases

1. Package the application using
macOS (create a build version
for macOS)

2. Package the application using
Windows (create a build ver-
sion for Windows)

3. Run the executable application
file on macOS

4. Run the executable application
file on Windows

The application should be executable
on both macOS and Windows, with
all current features included

C.3 Iteration 3
For all of the use cases regarding the user interface, it is assumed that the applic-
ation is already running, and for each use case the application is reset. The use
cases performed and passed in this iteration were:

Steps of Execution Expected Result

1. Click the button ’Add Task’
An empty task should appear in the
application

1. Click the button ’Add Task’
twice

An empty task should appear in
the application. Additionally, there
should be two tasks in the list of tasks,
where the second task is currently se-
lected and displayed

1. Click the button ’Add Task’
twice

2. Click on the first task in the list
of tasks

The first task should be displayed

C.3. Iteration 3 157

1. Click the button ’Add Task’

2. Edit the task title to ’Test task
1’

In the task list, ’Task 1’ should be up-
dated to ’Test task 1’

1. Click the button ’Add Task’
twice

2. Edit the current tasks title to
’Test task 2’

3. Click on the first task in the list
of tasks

4. Edit the current tasks title to
’Test task 1’

5. Got back to the second task (by
clicking on ’Test task 2’ in the
list of tasks)

Task 2 should be displayed with a title
of ’Test task 2’

1. Click the button ’Add Task’
twice

2. Add code to source code editor
in ’Task 1’

3. Change tabs to ’Task 2’

4. Add code to source code editor
in ’Task 2’

5. Change tabs to ’Task 1’

’Task 1’ should still display the code
added for this task. Correct internal
state management and addition can
also be controlled with console.log of
internal state

158 Use Cases

1. Create multiple tasks

2. Change between tabs and make
changes multiple times

All changes made should be stored in
the internal state for the correct task
object

1. Create multiple tasks with dif-
ferent code

2. Press ’Export All’ button

3. Upload zip-file to Inspera

All created tasks should appear in the
same question set with the correct
data

C.4 Iteration 4
For all of the use cases regarding the user interface, it is assumed that the applic-
ation is already running, and for each use case the application is reset. The use
cases performed and passed in this iteration were:

Steps of Execution Expected Result

1. Click the button ’Add Task’

2. Click the button ’Delete Task’

The task should be deleted, rendering
the task list and task page empty

1. Click the button ’Add Task’

2. Add the title ’Use case test 1’
to the task

3. Click the button ’Delete Task’

4. Click the button ’Add Task’
again

An empty task page should be dis-
played in the application (with no title
set)

C.4. Iteration 4 159

1. Click the button ’Add Task’
twice

2. Click the button ’Delete Task’

The second task should be deleted,
and the task page should update to
display Task 1. The task list should
now only contain Task 1

1. Click the button ’Add Task’

2. Write a distractor in the dis-
tractor input field

3. Click the ’Add’ button next to
said input field

The distractor should be added to a
list of distractors below the input field

1. Click the button ’Add Task’

2. Write a distractor in the dis-
tractor input field

3. Press the Enter key on the key-
board

The distractor should be added to a
list of distractors below the input field

1. Click the button ’Add Task’

2. Write a distractor in the dis-
tractor input field

3. Click the ’Add’ button next to
said input field

4. Write another distractor in the
distractor input field

5. Click the ’Add’ button next to
said input field

Both distractors should be added to
the list of distractors below the input
field

160 Use Cases

1. Click the button ’Add Task’

2. Write a distractor in the dis-
tractor input field

3. Click the ’Add’ button next to
said input field

4. Hover the distractor in the list
of distractors, and press the red
button containing an ’x’

The distractor list should be rendered
empty when the distractor is deleted

1. Click the button ’Add Task’

2. Write a distractor in the dis-
tractor input field

3. Click the ’Add’ button next to
said input field

4. Write another distractor in the
distractor input field

5. Click the ’Add’ button next to
said input field

6. Hover the first distractor in the
list of distractors, and press the
red button containing an ’x’

The list of distractors should now
contain only the second distractor

1. Click the button ’Add Task’

2. Add multiple distractors

3. Delete some of the distractors

The removed distractors should also
be removed from the internal state

C.5. Iteration 5 161

1. Click the button ’Add Task’

2. Click the button ’Export Task’

The application should display a file
dialog, where it is possible to name
the exported file

1. Click the button ’Add Task’

2. Click the button ’Export Task’

3. Choose export destination

The application should display a con-
firmation message saying that the task
was successfully exported

1. Click the button ’Add Task’

2. Hover the help button on the
top right of the application

On hover, it should appear helper text
describing how to use the application

1. Click the button ’Add Task’

2. Write code in the source code
editor

3. Add multiple distractors

4. Export and upload task to In-
spera

All the given distractors should be
their own drag areas placed in a ran-
dom order together with the other
lines of code. The distractor drag
areas should not be connected to any
drop area

C.5 Iteration 5
For all of the use cases regarding the user interface, it is assumed that the applic-
ation is already running, and for each use case the application is reset. The use
cases performed and passed in this iteration were:

Steps of Execution Expected Result

162 Use Cases

1. Click the button ’Add Task’
three times

2. Hover the second task in the
task list, and press the red box
with an ’x’ (Delete the task)

The second task should be deleted.
The task list should now contain two
elements: Task 1 and Task 3

1. Click the button ’Add Task’
three times

2. Go to task 2

3. Hover the second task in the
task list, and press the red box
with an ’x’ (Delete the task)

The second task should be deleted,
and the task page should update to
display Task 1. The task list should
now contain two elements: Task 1
and Task 3

1. Click the button ’Add Task’

2. Paste highly formatted text into
the task description

3. Click the button ’Export Task’

4. Choose export destination

The application should display an er-
ror message saying that the format-
ted description is not supported by In-
spera

1. Click the button ’Add Task’

2. Write text in task description
for all languages

3. Export and upload to Inspera

The Inspera task should display the
same task description in the same
format as written in the IT artefact for
the correct languages

C.5. Iteration 5 163

1. Click the button ’Add Task’

2. Enable permutation support

Display the DAG creation (dropdown
menu with checkboxes), permuta-
tion options and permutation preview.
Also display a warning message if 2D
Parsons is checked

1. Click the button ’Add Task’

2. Write code in source code ed-
itor

3. Enable permutation support

4. Create a DAG for the code

5. Click the ’Update permuta-
tions’ button

See the number of correct permuta-
tions as well as the number of false
positives. All these permutations
should also be displayed in the per-
mutations preview

1. Click the button ’Add Task’

2. Write code in source code ed-
itor

3. Enable permutation support

4. Create a DAG for the code

5. Click the ’Update permuta-
tions’ button

6. Export and upload to Inspera

All permutations previewed in the IT
artefact should be represented in In-
spera by the use of multiple connec-
tions between drag and drop areas

164 Use Cases

1. Click the button ’Add Task’

2. Write over 10 lines of code in
source code editor

3. Enable permutation support

4. Do not fill out any information
in the DAG

5. Click the ’Update permuta-
tions’ button

See a warning message letting the
user know there exists too many per-
mutations and that the DAG needs ad-
ditional information or the task itself
should be changed

1. Click the button ’Add Task’

2. Add y number of distractors

3. Set ’Number of distractors in
each task’ to x

The max number of tasks to create
should be set to the binomial coeffi-
cient of x over y. The user should not
be able to set the ’Number of tasks
to create’ to any higher number than
the binomial coefficient and no lower
than 1

1. Click the button ’Add Task’

2. Add 5 distractors

3. Set ’Number of distractors in
each task’ to 2

4. Set ’Number of tasks to create’
to 10

5. Export and upload to Inspera

The generated question set should
consist of 10 tasks that all have two
different distractors implemented

C.5. Iteration 5 165

1. Click the button ’Add Task’

2. Add code to source code editor

3. Make sure two or more lines
of code are identical (identation
levels does not matter, just the
text)

4. Export and upload to Inspera

All equal lines of code should be con-
nected to the exact same drop areas

166 Use Cases

Appendix D

Requirements

D.1 List of Requirements

ID Title Description Iteration
added

1
Desktop Applic-
ation

The IT artefact should be a desktop applic-
ation providing the users with a GUI where
one can perform all necessary actions to
properly generate Parson problems

1

2
Parsons Prob-
lems and 2D
Parson problems

The IT artefact has to support the genera-
tion of both unmodified Parson problems
as well as 2D Parson problems

1

3 Upload file

Users should be able to upload any code
file to the IT artefact, such that this code
file can be used as the basis for the Parson
problem to be generated

1

4
Copy and paste
source code

Users should be able to copy and paste
source code into the IT artefact and use
this source code as the basis for the Parson
problem to be generated

1

5
Write and edit
source code

Users should be able to write and edit
source code in the IT artefact and use this
source code as the basis for the Parson
problem to be generated

1

167

168 Requirements

6
Generate Inspera
supported QTI

The Parson problem to be generated by
the IT artefact must be generated in a QTI
format that is supported by Inspera

1

7
Parsons prob-
lems design

The Parsons problems to be generated by
the IT artefact must follow the predeter-
mined design of how Parsons problems
should be created in Inspera using drag and
drop tasks

1

8
Support distract-
ors

The user should be able to add distractors
to the Parson problems

1

9

Generate mul-
tiple unique tasks
(w/ different
distractors)

The IT artefact should be able to use a sub-
set of the given distractors to generate mul-
tiple unique tasks (of the same algorithm)
with different distractors

1

10
Generate mul-
tiple tasks

The IT artefact should be able to generate
multiple tasks (of different algorithms) at
the same time. It should be possible to cre-
ate, edit and delete these tasks

1

11
Export all and
Export single

When creating multiple tasks, the user
should be able to export both a single task
and all tasks

1

12

Task description
in English, Nor-
wegian and Nyn-
orsk

The IT artefact should support the creation
of a task description in English, Norwe-
gian and Nynorsk. (This can be done in
Inspera itself rather than in the IT artifact,
but might be problematic if many tasks are
to be generated)

1

13 Preview

The IT artefact should show the user a pre-
view of the task to be generated so poten-
tial errors are discovered as early as pos-
sible (before exporting and uploading the
task to Inspera)

2

14
Export destina-
tion

The user should be able to select the exact
folder the exported task should be placed
in when exporting from the IT artefact

2

15 Help functions

The IT artefact should provide the user
with informative and detailed help func-
tions to clearly communicate what features
do and how things work

2

D.2. Non-functional Requirements 169

16 Tutorial

The IT artefact should provide the user
with proper tutorial showing the workflow,
how things work, and why the IT artefact
is useful

4

17
Confirmation,
warning and
error messages

The IT artefact should provide the user
with a proper confirmation, warning, and
error messages. For example, when delet-
ing a task, a confirmation box should be
displayed to avoid extra work if the button
was pressed by accident

4

18 Persistent storage
The IT artefact should support persistent
storage of the tasks so a user can save, quit
and resume a session

4

19 Permutations

The IT artefact should support code per-
mutations to avoid incorrect grading if stu-
dents find other correct rearrangements of
the code. The generated task must make
sure that all correct permutations are prop-
erly represented. The IT artefact should
also provide proper warnings if there exists
any permutations that count as false posit-
ives

4

D.2 Non-functional Requirements

ID Title Description Iteration
added

1 Performance
All actions should have a response time of
less than 2 seconds

1

2 Availability
The IT artefact should be available on
Windows and MacOS

1

3 Security
The IT artefact has to make sure all created
tasks are as safe as any other exam ques-
tion created by a user on their computer

1

4 Usability

The usability of the IT artefact in regards
to efficiency, effectiveness, and satisfac-
tion should be better than the creating of
the same tasks in Inspera

1

170 Requirements

5 Reliability

The IT artefact should never generate
faulty tasks without proper warnings and
error messages. A user should not have to
double check the generated task in Inspera
to see if everything is correct

1

6 Ease of use

The IT artefact should be as intuitive to
use, understand, and learn as possible. One
can also assume some given domain know-
ledge given the expected users of the sys-
tem. The IT artefact should also have focus
on design, aesthetics and UX to improve
ease of use and satisfaction

1

7 Feedback

The IT artefact should provide the user
with clear and detailed feedback and in-
formation regarding the consequences of
each action

1

8 Maintenance
The written code should be well docu-
mented to support future maintenance and
development

1

9
Inspera support
features

The Parson problems to be generated can
only consist of features already supported
in Inspera. Adding any additional features
in the QTI that is not supported by Inspera
is against their uploading rules

1

D.3 Removed Requirements

ID Title Description

Iteration
added
/ re-
moved

1
Suggest distract-
ors

The IT artefact should suggest distractors
that seem fitting to the given task

1 / 2

2 Comment syntax

Instead of having to use a GUI, the user
should be able to comment source code
with a specific syntax and achieve the same
functionality as they would with the GUI

1 / 2

D.4. List of Improvements Discovered during User Testing 171

3 Score allocation

The IT artefact should support different
score allocations for each line of code in
a task, so a user can give the most diffi-
cult parts of the algorithm more allocated
points than the easier parts

1 / 2

D.4 List of Improvements Discovered during User Test-
ing

Title Description

Help-functions
are good, but can
still be improved

Most participants used the help-functions multiple
times to better understand the application, but many
still did not understand what ’With indenting’ and ’Dis-
tractors’ ment. The general flow and relation between
the app and Inspera was also unclear even after using
the help-functions

Trouble with file-
chooser

1) File-chooser can get hidden behind the application
2) One can open multiple file-choosers, which makes
them all nonfunctional
3) System crash after a task is deleted and one tries to
upload a new file with ’Choose file’
4) When the zip-file is exported, it’s missing a "file-
name already exists. Do you want to overwrite?"-popup
if the name already exists

’With indenting’-
toggle is not
intuitive and
not clearly
understood

1) Not clear what its purpose
2) Expects something to happen when you press the
toggle-button. Currently, no feedback is given when
pressed
3) Easy to overlook or forget. Should be more clear and
visible
4) It is unclear that this function only affects the gener-
ated Inspera task, and nothing in the app itself
5) Text, toggle-box, and help-function does not seem to
be connected or related (Too far apart)
6) The help-function did not necessarily give a better
understanding of its purpose

172 Requirements

Uses ’Add’-
button before
filling out input-
field

The input-field is currently placed on the right side of
the ’Add’-button, something that goes agains the ’left-
to-right flow’ a user typically has. Many pressed the
’Add’-button first and expected an input-field to appear.
At the moment, this is not what happens. The user is ex-
pected to type in their distractor in the input-field first,
and then press ’Add’

Unclear/vague
input-fields

The title and distractor input-fields are somewhat vague
(some participants thought they were headers)

Uncertainty
around the name
’Distractors’

Not everyone knows what a ’Distractor’ is (or means)

Uncertainty and
doubt around
Parsons Prob-
lems as a task
type in Inspera

Parsons Problems in Inspera can be difficult for stu-
dents to complete, and thus, might not be suited for tests
and exams in many cases

Does not like
the code editor
theme

Many are not used to the chosen code editor theme
and would like the possibility to choose their own pre-
ferred editor theme. Some also mentioned that there
was not much to be gained by improving the code ed-
itor (with multiple themes, shortcuts, compilation etc.)
since most users would want to write all the code in
their own text editor, and not in the application

Width of drag-
areas generated
by the applica-
tion should be
minimal

Since the text in each drag-area is centered, the width
of the drag-area has to be exactly the length of the text
to avoid extra spacing within a drag-area. This kind of
spacing might look like indentation when working with
code. The generated drag-areas has some inaccuracies
regarding the width of the area compared to the text
itself. By using specific font-metrics one should be able
to calculate the exact length of each line of code

D.4. List of Improvements Discovered during User Testing 173

’Delete task’-
button is missing
coherence

’Delete task’-button is placed at the top right corner to-
gether with the ’Export task’-button. This placement
makes it look like the two buttons are connected and
has some kind of coherence, when in reality, they dont.
An option was to place the ’Delete task’-buttons in the
task-overview in the left margin (maybe as an X in each
task in the list)

Unexpected
placement of
’Export task’-
button

The ’Export task’-button is placed at the top right
corner, but should be at the bottom right corner since
this is the final step a user performs in the application

Uncertainty
regarding the
link between the
application and
Inspera

The connection and flow between the application, the
zip-file, and Inspera is not necessarily intuitive. What
happens after one presses the ’Export task’-button is
also unclear. One should show how everything is con-
nected and how the application actually contributes to
the process. There was also some uncertainty around
exactly when the user was done with the application
and was supposed to start using Inspera

Missing tutorial

The connection and flow between the application, the
zip-file, and Inspera is not necessarily intuitive. The
usefulness of the application is not too clear either if
one has not already used Inspera to create drag and drop
tasks. A tutorial could help showing how things actu-
ally work and how the application is useful

Usefulness not
intuitive

The usefulness of the application isnt too clear either
if one has not already used Inspera to create drag and
drop tasks and knows how time-intensive the process is.
Without this knowledge, it was difficult to know what
the application did and why. One should try to better
show how the application is connected with Inspera and
what it actually does

174 Requirements

Wants copy paste
functionality in
the application

Copy pasting in the application did not work during
testing (due to a small bug), and this is both expected
and should actually work

Wants a preview

To better understand and see what the application does,
a preview could solve a lot of the uncertainty. Actually
having to upload the task to Inspera before one sees a
result was not optimal. With a preview one could also
better see what the ’With indenting’ function does, see
how the grid layout will become and choose their own
drop-area width

Wants zoom
functionality

For those with larger screens, the application and the
text became quite small. Some tried to zoom in on the
application to solve this, but zooming is not supported

Wants a confirm-
ation box before
deleting a task

When one presses the ’Delete task’-button, the task in-
stantly disappears. There should be a confirmation box
before it is deleted to avoid extra work if the button was
pressed by accident

Wants to edit dis-
tractors

The distracors are added to a list, and multiple parti-
cipants tried to press the list item in order to edit the
distractor. This is currently not supported by the ap-
plication

Wants the option
to use a script
or the command-
line

Since the GUI does not have too much functionality (at
the time of the user testing), some would like to use the
command-line instead of the GUI. Both the GUI and
a command-line should work, so the user can choose
between them both

Wants the pos-
sibility to upload
images in the ap-
plication

Some would like to generate their own images with spe-
cial characters, formulas, or fonts. They would then
want to upload these images to the application to gen-
erate drag and drop tasks with these images instead of
code

D.4. List of Improvements Discovered during User Testing 175

Wants the possib-
ility to use their
own editor for
both the code and
the distractors.

A normal workflow consisted of the user creating both
the code and the distractors in their own text editor, and
therefore wanted to copy paste or upload everything dir-
ectly to the application. A simpler way to add distract-
ors was preferable. Filling in one by one was a tedious
task for some. Creating their own "distractor syntax"
could also let users write the distractors directly in the
code, and let the application automatically extract all
distractor once the code is uploaded

Wants support
for special char-
acters in the
editor (Sigma,
delta, etc.)

By supporting latex in the editor, the user can create
tasks with special characters

Some sort of
persistence of
tasks. Down-
loaded zip-file
could potentially
be able to be
uploaded to the
application for
further editing
(instead of other
kinds of storage
functionality)

The application should probably support some kind of
persistence, so that it is possible to edit and work on
the tasks sometime later without creating them from
scratch again.
One kind of persistence could be uploading the gener-
ated zip file to the application again. It was also men-
tioned that, since the export format is somewhat im-
practical (Inspera specific), it might be a good idea to
define a persistence format and an explicit export (and
import))

Want to be able
to generate other
task types as well

Being able to generate other types of tasks than drag-
and drop tasks would be nice. This is because some
people are not sure of the legitimacy of Parsons Prob-
lems as a type of task in Inspera

Option to set the
size of drop areas

Would be nice to be able to define the width of each
drop area, and the distance between each area.

176 Requirements

Users might want
to type task de-
scription in the
application

Would be nice to create the entire task in the applica-
tion, instead of doing the leftover work after generating
the task. This has to support Norwegian, ’Nynorsk’ and
English

It’s called "in-
dentation", not
"Indenting"

Grammatical error

Option to choose
toggle between
Norwegian and
English

Would like to toggle between the language used (for the
task) in the application

Support permuta-
tion

In an algorithm there are many cases where some lines
of code can be placed in different positions and still
work. If the app does not support such rearranged po-
sitions where the code would still work, the tasks may
result in incorrect grading

Different tabs

If different tab standards (2 spaces, 4 spaces, 1 tab) are
used in the same algorithm, the task generator will not
understand how to properly add indentation. Providing
a warning or some check for this could help

Appendix E

Transcription Categories

E.1 Inspera

E.1.1 Positive Categories

ID Category Frequency
01 Bruker forhåndsvisning 1

177

178 Transcription Categories

E.1.2 Negative Categories

ID Category Frequency
02 Generell irritasjon/frustrasjon på Inspera (ikke intuitivt) 21

03
Vanskelig å manipulere posisjon, høyde og bredde til dra-
og slippområder

9

04
Ikke intuitivt hvordan man kobler sammen dra og slip-
pområde

8

05 Irritasjon (default plassering av nye felter) 6
06 Misfornøyd med sluttresultatet (estetisk sett) 6
07 Prøver å forstå Inspera 5
08 Vil skrive tekst direkte i editoren, ikke på høyresiden 4
09 Ønsker copy paste av dra- og slippområder 3
10 Bruker mangler forventet funksjonalitet i løsningen 2
11 Hvordan forstørre oppgavefeltet? 2
12 Bruker finner ikke ønsket funksjonalitet 2
13 Vil heller bruke LaTeX 1
14 Ønsker å skrive distraktorer i egen editor 1
15 Ønsker left align av tekst i draområder 1
16 Ønsker box alignment i Inspera 1

E.2. IT artefact 179

E.2 IT artefact

E.2.1 Positive Categories

ID Category Frequency
17 Ser nytteverdi av appen 7
18 Utnytter / liker hjelpefunskjon 7
19 Add task og Choose file er intuitiv 6
20 Lett å lære 5
21 Liker ’Enter’-knapp for å legge til distraktor 5
22 Export all er intuitiv 3
23 Export task er intuitiv 1
24 Forstår sammenkobling mellom appen, zip og inspera 1
25 Fornøyd med GUI 1

180 Transcription Categories

E.2.2 Negative Categories

ID Category Frequency
26 ’With indenting’-toggle er utydelig og lite intuitiv 11
27 Ønsker copy paste i appen 9
28 Bruker ’Add’-knapp før input-felt 8

29
Ønsker å ha mulighet til å bruke egen editor til både
kildekode og distraktorer

6

30 Usikkerhet rundt kobling mellom app og Inspera 4
31 Ønsker forhåndsvisning 4
32 Trøbbel med filbehandler 3
33 Utydelig input-felt 3
34 Usikker på Parsons Problems som oppgavetype 3
35 Liker ikke editor theme 3
36 Delete task mangler samhørighet 3
37 Usikkerhet rundt navnet distraktor 2

38
Bredde på draområder generert av appen bør være min-
imal

2

39 Nytteverdi ikke intuitiv 2
40 Ønsker confirmation box når en sletter task 2
41 Ønsker å edite distraktor 2
42 Ønsker å ha mulighet til å bruke script/kommandolinje 2
43 Ønsker å ha muligheten til å laste opp bilder i appen 2
44 Uventet plassering av ’Export’-knapp 1
45 Mangler tutorial 1
46 Ønsker zoom funksjonalitet 1

47
Ønske for støtte av spesielle tegn i editoren (Sigma, delta
etc)

1

48
Nedlastet zip fil bør kunne lastes opp i appen og endres
videre (i stedet for annen storage funksjonalitet)

1

49 Ønske om å kunne generere andre oppgavetyper også 1
50 Vil selv velge størrelse på slippområder 1
51 Brukere vil kanskje skrive oppgavetekst i applikasjonen 1

Appendix F

The Keystroke-Level Model for
User Performance Time

F.1 The Keystroke-Level Model using Inspera
Calculating user performance time using the keystroke-level model (Card et al.,
1980). Averaged skilled typist (55 wpm) is assumed in the following calculations.

F.1.1 Adding Drop Areas

Step Description Operator Duration
(sec)

1
Mentally prepare for getting started by
Heuristic Rule 0

M 1.35

2
Move cursor to ’Drop areas’ dropdown (no
M by Heuristic Rule 1)

P 1.1

3
Click mouse button (no M by Heuristic
Rule 0)

K 0.2

4
Mentally prepare for adding a drop area
field

M 1.35

5
Move cursor to ’Add drop area’ button (no
M by Heuristic Rule 1)

P 1.1

6
Click mouse button (no M by Heuristic
Rule 0)

K 0.2

7
Mentally prepare for replacing new drop
area

M 1.35

181

182 The Keystroke-Level Model for User Performance Time

8
Move cursor to new drop area (no M by
Heuristic Rule 1)

P 1.1

9
Click mouse button (no M by Heuristic
Rule 0)

K 0.2

10
Drag cursor to new correct placement of
drop area (no M by Heuristic Rule 1)

P 1.1

11
Release mouse button (no M by Heuristic
Rule 0)

K 0.2

12
Mentally prepare for resizing of new drop
area

M 1.35

13
Move cursor to corner of drop area (no M
by Heuristic Rule 1)

P 1.1

14
Click mouse button (no M by Heuristic
Rule 0)

K 0.2

15
Move cursor correct resize position (no M
by Heuristic Rule 1)

P 1.1

16
Release mouse button (no M by Heuristic
Rule 0)

K 0.2

Creating first drop area (Step 1-16)
4∗M+6∗P+6∗K = 4∗1.35+6∗1.1+6∗0.2 = 5.4+6.6+1.2 = 13.2seconds

Adding subsequent drop areas (Repeat step 4-16 for every new drop area)
3∗M+5∗P+5∗K = 3∗1.35+5∗1.1+5∗0.2 = 4.05+5.5+1 = 10.55seconds

F.1. The Keystroke-Level Model using Inspera 183

F.1.2 Adding Drag Areas

The average word count of each line of code in Task 1 and Task 2 is 14.

Step Description Operator Duration
(sec)

1
Mentally prepare for getting started by
Heuristic Rule 0

M 1.35

2
Move cursor to ’Drag areas’ dropdown (no
M by Heuristic Rule 1)

P 1.1

3
Click mouse button (no M by Heuristic
Rule 0)

K 0.2

4
Mentally prepare for adding new drop area
by Heuristic Rule 0

M 1.35

5
Move cursor to ’Add drag area’ button (no
M by Heuristic Rule 1)

P 1.1

6
Click mouse button (no M by Heuristic
Rule 0)

K 0.2

7
Mentally prepare for writing drag area text
by Heuristic Rule 0

M 1.35

8
Move cursor to new drag area input field
(no M by Heuristic Rule 1)

P 1.1

9
Click mouse button (no M by Heuristic
Rule 0)

K 0.2

10
Write new 14-letter word (Average word
count of Task1 and Task2)(no M by Heur-
istic Rule 0)

14K 2.8

11
Mentally prepare for replacing the new
drag area Heuristic Rule 0

M 1.35

12
Move cursor to new drag area (no M by
Heuristic Rule 1)

P 1.1

13
Click mouse button (no M by Heuristic
Rule 0)

K 0.2

14
Drag cursor to new correct placement of
drag area (no M by Heuristic Rule 1)

P 1.1

15
Release mouse button (no M by Heuristic
Rule 0)

K 0.2

16
Mentally prepare for resizing of new drag
area

M 1.35

184 The Keystroke-Level Model for User Performance Time

17
Move cursor to corner of drag area (no M
by Heuristic Rule 1)

P 1.1

18
Click mouse button (no M by Heuristic
Rule 0)

K 0.2

19
Move cursor correct resize position (no M
by Heuristic Rule 1)

P 1.1

20
Release mouse button (no M by Heuristic
Rule 0)

K 0.2

21
Mentally prepare for connecting drag area
to correct drop area

M 1.35

22
Move cursor to drag area (no M by Heur-
istic Rule 1)

P 1.1

23
Click mouse button (no M by Heuristic
Rule 0)

K 0.2

24
Move cursor to drop area (no M by Heur-
istic Rule 1)

P 1.1

25
Click mouse button (no M by Heuristic
Rule 0)

K 0.2

Creating first drag area (Step 1-25)
6∗M+9∗P+23∗K = 6∗1.35+9∗1.1+19∗0.2 = 8.1+9.9+3.8 = 22.6seconds

Adding subsequent drag areas (Repeat step 4-25 for every new drag area)
5 ∗M + 8 ∗ P + 22 ∗K = 5 ∗ 1.35 + 8 ∗ 1.1 + 18 ∗ 0.2 = 6.75 + 8.8 + 3.6 =
19.95seconds

Adding subsequent distractor drag areas (Repeat step 4-20 for every new dis-
tractor)
4∗M+6∗P +20∗K = 4∗1.35+6∗1.1+20∗0.2 = 5.4+6.6+4 = 16seconds

Task 1 has 8 lines of code to add. 4 correct lines of code and 4 distractors, and
a total of 4 indentation levels since it was to be created as a 2D Parsons problem.
Task 1 thus required a 4*4=16 drop area grid.
Task 2 has 12 lines of code to add. 7 correct lines of code and 5 distractors, and a
total of 1 indentation level since it was to be created as a normal Parsons problem.
Task 2 thus required a 7*1=7 drop area grid.

Total time required for Task 1
(Step 1-16) + 15*(Step 4-16) + (Step 1-25) + 3*(Step 4-25) + 4*(Step 4-20) = 13.2
+ 15*10.55 + 22.6 + 3*19.95 + 4*16 = 317.9 seconds

F.1. The Keystroke-Level Model using Inspera 185

Total time required for Task 2
(Step 1-16) + 6*(Step 4-16) + (Step 1-25) + 6*(Step 4-25) + 5*(Step 4-20) = 13.2
+ 6*10.55 + 22.6 + 6*19.95 + 5*16 = 298.8 seconds

186 The Keystroke-Level Model for User Performance Time

F.2 The Keystroke-Level Model using IT Artefact
Calculating user performance time using the keystroke-level model (Card et al.,
1980). Averaged skilled typist (55 wpm) is assumed in the following calculations.

F.2.1 Adding a Task

Step Description Operator Duration
(sec)

1
Mentally prepare for getting started by
Heuristic Rule 0

M 1.35

2
Move cursor to ’Add Task’ button (no M
by Heuristic Rule 1)

P 1.1

3
Click mouse button (no M by Heuristic
Rule 0)

K 0.2

4
Mentally prepare for writing code by
Heuristic Rule 0

M 1.35

5
Move cursor to code editor (no M by Heur-
istic Rule 1)

P 1.1

6
Click mouse button (no M by Heuristic
Rule 0)

K 0.2

7
Mentally prepare for writing new word by
Heuristic Rule 0

M 1.35

8
Write new 14-letter word (Average word
count of Task1 and Task2)(no M by Heur-
istic Rule 0)

14K 2.8

9
Mentally prepare for writing distractors by
Heuristic Rule 0

M 1.35

10
Move cursor to distractor input field (no M
by Heuristic Rule 1)

P 1.1

11
Click mouse button (no M by Heuristic
Rule 0)

K 0.2

12
Write new 14-letter word (Average word
count of Task1 and Task2)(no M by Heur-
istic Rule 0)

14K 2.8

13
Click enter to add distractor (no M by
Heuristic Rule 0)

K 0.2

14
Mentally prepare for choosing 2D Parsons
or not by Heuristic Rule 0

M 1.35

15
Move cursor to 2D Parsons checkbox (no
M by Heuristic Rule 1)

P 1.1

F.2. The Keystroke-Level Model using IT Artefact 187

16
Click mouse button (no M by Heuristic
Rule 0)

K 0.2

17
Mentally prepare for exporting task by
Heuristic Rule 0

M 1.35

18
Move cursor to ’Export Task’ button (no M
by Heuristic Rule 1)

P 1.1

19
Click mouse button (no M by Heuristic
Rule 0)

K 0.2

20
Mentally prepare for deciding folder des-
tination by Heuristic Rule 0

M 1.35

21
Move cursor to file chooser window (no M
by Heuristic Rule 1)

P 1.1

22
Click mouse button (no M by Heuristic
Rule 0)

K 0.2

23
Move cursor to ’Save’ button (no M by
Heuristic Rule 1)

P 1.1

24
Click mouse button (no M by Heuristic
Rule 0)

K 0.2

25
Mentally prepare for confirmation mes-
sage by Heuristic Rule 0

M 1.35

26
Move cursor to confirmation message (no
M by Heuristic Rule 1)

P 1.1

27
Click mouse button (no M by Heuristic
Rule 0)

K 0.2

Task 1 has 8 lines of code to add. 4 correct lines of code and 4 distractors.
Task 2 has 12 lines of code to add. 7 correct lines of code and 5 distractors.

Step 7 must be repeated for every line of code to add
Step 8-12 must be repeated for every distractor to add

Total time required for Task 1
(Step 1-6) + 4*(Step 7-8) + 4*(Step 9-13) + (Step 14-27) = 5.3 + 4*4.15 + 4*5.65
+ 10.55 = 55.05 seconds

Total time required for Task 2
(Step 1-6) + 7*(Step 7-8) + 5*(Step 9-13) + (Step 14-27) = 5.3 + 7*4.15 + 5*5.65
+ 10.55 = 73.15 seconds

188 The Keystroke-Level Model for User Performance Time

Appendix G

Declaration of Consent

189

Vil du delta i forskningsprosjektet

 ”Effektiv generering av Parsons problems for digitale
programmerings-eksamener i Inspera”?

Dette er et spørsmål til deg om å delta i et forskningsprosjekt hvor formålet er å evaluere effekten av et
program som automatisk genererer dra-og-slipp oppgaver i Inspera, framfor å manuelt utvikle slike
oppgaver. I dette skrivet gir vi deg informasjon om målene for prosjektet og hva deltakelse vil
innebære for deg.

Formål
NTNU bruker nå nettsiden Inspera for å utvikle digitale programmerings-eksamener. Ett av
oppgavtypene som professorer lager til eksamenene er dra-og-slipp oppgaver (Parsons problems).
Disse må i dag lages manuelt og kan være en tidkrevende prosess. I vår forskning tilbyr vi et program
som automatisk genererer slike dra-og-slipp oppgaver for Inspera. Forskningen vår går derfor ut på å
se om dette programmet gjør prosessen mer effektivt eller ikke. Dette vil gjøres gjennom å observere
prosessen mens forsøkspersonene prøver den manuelle og automatiske prosessen, og dermed intervjue
de om opplevelsen etter eksperimentet.

Research question:
What is the effect of using this IT artefact to generate Parsons Problems for digital programming
exams in Inspera, compared to the manual method?
To what degree does this IT artefact improve the efficiency of generating Parsons Problems for the
course supervisor, and how user-friendly is this process?

Denne forskningen er en del av en masteroppgave og all innsamlet data vil kun bli brukt til dette
prosjektet.

Hvem er ansvarlig for forskningsprosjektet?
Institutt: NTNU IDI (Institutt for datateknologi og informatikk)
Prosjektansvarlige:

- Joachim Jørgensen
- Simon Kvannli
- Veileder til masteroppgave: Guttorm Sindre

Hvorfor får du spørsmål om å delta?
Utvalgskriteriene for denne forskningen er faglærere og professorer med erfaring, ansvar eller
interesse i å utvikle digitale programmerings-oppgaver eller eksamener i Inspera.
Dette utvalget gjøres ved anbefalinger om relevante forsøkspersoner (Snowball sampling technique)
originalt fra veileder av masteroppgaven.

190 Declaration of Consent

Hva innebærer det for deg å delta?
Hvis du velger å delta i prosjektet, innebærer det at vi avtaler et møte hvor vi gir deg noen dra-og-slipp
oppgaver som du skal lage i Inspera med og uten vårt program. Vi observerer og gjør et videoopptak
av prosessen. Etter du har prøvd programmet vil vi gjennomføre et intervju angående din opplevelse
av programmet og andre tilbakemeldinger. Hele prosessen vil ta deg ca. 30 minutter.

Det er frivillig å delta  
Det er frivillig å delta i prosjektet. Hvis du velger å delta, kan du når som helst trekke samtykke tilbake
uten å oppgi noen grunn. Alle opplysninger om deg vil da bli anonymisert. Det vil ikke ha noen
negative konsekvenser for deg hvis du ikke vil delta eller senere velger å trekke deg.

Ditt personvern – hvordan vi oppbevarer og bruker dine opplysninger
Vi vil bare bruke opplysningene om deg til formålene vi har fortalt om i dette skrivet. Vi behandler
opplysningene konfidensielt og i samsvar med personvernregelverket.

• Behandlingsansvarlige vil være studentene Simon Kvannli og Joachim Jørgensen, med veileder
Guttorm Sindre.

• For å sikre personopplysningene vil alle videopptak lagres på private og låste maskiner hvor
ingen andre enn behandlingsansvarlige har tilgang.

Ingen deltakere vil kunne gjenkjennes i masteroppgavens publikasjon. Ingen private opplysninger
annet enn navn, stilling og selve videoopptaket vil brukes i forskningen, men ikke publiseres.

I den publiserte masteroppgaven vil kun utvalgskriteriene være tilgjengelig.

Hva skjer med opplysningene dine når vi avslutter forskningsprosjektet?
Prosjektet skal etter planen avsluttes 1. juni 2019. All innsamlet data som videoopptak og notater vil
da slettes når prosjektet er avsluttet.

Dine rettigheter
Så lenge du kan identifiseres i datamaterialet, har du rett til:

- innsyn i hvilke personopplysninger som er registrert om deg,
- å få rettet personopplysninger om deg,
- få slettet personopplysninger om deg,
- få utlevert en kopi av dine personopplysninger (dataportabilitet), og
- å sende klage til personvernombudet eller Datatilsynet om behandlingen av dine

personopplysninger.

Hva gir oss rett til å behandle personopplysninger om deg?
Vi behandler opplysninger om deg basert på ditt samtykke.

På oppdrag fra NTNU IDI har NSD – Norsk senter for forskningsdata AS vurdert at behandlingen av
personopplysninger i dette prosjektet er i samsvar med personvernregelverket.

Hvor kan jeg finne ut mer?
Hvis du har spørsmål til studien, eller ønsker å benytte deg av dine rettigheter, ta kontakt med:

• NTNU IDI
o Student: Simon Kvannli (simonkvannli@gmail.com)

191

o Veileder: Guttorm Sindre (guttorm.sindre@ntnu.no)
• NSD – Norsk senter for forskningsdata AS, på epost (personvernombudet@nsd.no) eller

telefon: 55 58 21 17.

Med vennlig hilsen

Guttorm Sindre Joachim Jørgensen og Simon Kvannli
(Forsker/veileder) (Masterstudentene)

Samtykkeerklæring
Samtykke kan innhentes skriftlig (herunder elektronisk) eller muntlig. NB! Du må kunne dokumentere at du har
gitt informasjon og innhentet samtykke fra de du registrerer opplysninger om. Vi anbefaler skriftlig informasjon
og skriftlig samtykke som en hovedregel.

- Ved skriftlig samtykke på papir, kan du bruke malen her.
- Ved skriftlig samtykke som innhentes elektronisk, må du velge en fremgangsmåte som gjør at du kan

dokumentere at du har fått samtykke fra rett person (se veiledning på NSDs nettsider).
- Hvis konteksten tilsier at du bør gi muntlig informasjon og innhente muntlig samtykke (f.eks. ved

forskning i muntlige kulturer eller blant analfabeter), anbefaler vi at du tar lydopptak av informasjon og
samtykke.

Hvis foreldre/verge samtykker på vegne av barn eller andre uten samtykkekompetanse, må du tilpasse
formuleringene. Husk at deltakerens navn må fremgå.

Tilpass avkryssingsboksene etter hva som er aktuelt i ditt prosjekt. Det er mulig å bruke punkter i stedet for
avkryssingsbokser. Men hvis du skal behandle særskilte kategorier personopplysninger og/eller de fire siste
punktene er aktuelle, anbefaler vi avkryssingsbokser pga. krav om eksplisitt samtykke.

Jeg har mottatt og forstått informasjon om prosjektet (sett inn tittel), og har fått anledning til å stille
spørsmål. Jeg samtykker til:

å delta i (sett inn aktuell metode, f.eks. intervju)
å delta i (sett inn flere metoder, f.eks. spørreskjema) – hvis aktuelt
at lærer kan gi opplysninger om meg til prosjektet – hvis aktuelt
at mine personopplysninger behandles utenfor EU – hvis aktuelt
at opplysninger om meg publiseres slik at jeg kan gjenkjennes (beskriv nærmere) – hvis aktuelt
at mine personopplysninger lagres etter prosjektslutt, til (beskriv formål) – hvis aktuelt

Jeg samtykker til at mine opplysninger behandles frem til prosjektet er avsluttet, ca. (oppgi tidspunkt)

--
(Signert av prosjektdeltaker, dato)

192 Declaration of Consent

Tillatelse til å behandle opplysninger på private enheter
Ved å signere på dette dokumentet godkjenner du at all datainnsamling kan oppbevares på private
lagringsenheter. Disse private enhetene er passordbeskyttet.
Behandlingsansvarlig institusjon er NTNU IDI (Institutt for datateknologi og informatikk).

Ditt personvern – hvordan vi oppbevarer og bruker dine opplysninger
Vi behandler opplysningene konfidensielt og i samsvar med personvernregelverket.

• Behandlingsansvarlige vil være masterstudentene Simon Kvannli og Joachim Jørgensen,
med veileder Guttorm Sindre.

• For å sikre personopplysningene vil alle videopptak lagres på private og låste maskiner hvor
ingen andre enn behandlingsansvarlige har tilgang.

Ingen deltakere vil kunne gjenkjennes i masteroppgavens publikasjon. Ingen private opplysninger
annet enn navn, stilling og selve videoopptaket vil brukes i forskningen, men ikke publiseres.

I den publiserte masteroppgaven vil kun utvalgskriteriene være tilgjengelig.

Hva skjer med opplysningene dine når vi avslutter forskningsprosjektet?
Prosjektet skal etter planen avsluttes 1. juni 2019. All innsamlet data som videoopptak og notater vil
da slettes når prosjektet er avsluttet.

Dine rettigheter
Så lenge du kan identifiseres i datamaterialet, har du rett til:

- innsyn i hvilke personopplysninger som er registrert om deg,
- å få rettet personopplysninger om deg,
- få slettet personopplysninger om deg,
- få utlevert en kopi av dine personopplysninger (dataportabilitet), og
- å sende klage til personvernombudet eller Datatilsynet om behandlingen av dine

personopplysninger.

Hva gir oss rett til å behandle personopplysninger om deg?
Vi behandler opplysninger om deg basert på ditt samtykke.

På oppdrag fra NTNU IDI har NSD – Norsk senter for forskningsdata AS vurdert at behandlingen
av personopplysninger i dette prosjektet er i samsvar med personvernregelverket.

Hvor kan jeg finne ut mer?
Hvis du har spørsmål til studien, eller ønsker å benytte deg av dine rettigheter, ta kontakt med:

• NTNU IDI
o Student: Simon Kvannli (simonkvannli@gmail.com)
o Veileder: Guttorm Sindre (guttorm.sindre@ntnu.no)

• NSD – Norsk senter for forskningsdata AS, på epost (personvernombudet@nsd.no) eller
telefon: 55 58 21 17.

193

Med vennlig hilsen

Guttorm Sindre Joachim Jørgensen og Simon Kvannli
(Forsker/veileder) (Masterstudentene)

--

194 Declaration of Consent

Bibliography

Adair, J. G. (1984). The hawthorne effect: a reconsideration of the methodological artifact.
Journal of applied psychology, 69(2):334.

ANSI (2001). Common industry format for usability test reports.

Atkinson, M. D. (1999). Restricted permutations. Discrete Mathematics, 195(1-3):27–38.

Atkinson, R. and Flint, J. (2001). Accessing hidden and hard-to-reach populations: Snow-
ball research strategies. Social research update, 33(1):1–4.

Bangor, A., Kortum, P. T., and Miller, J. T. (2008). An empirical evaluation of the system
usability scale. Intl. Journal of Human–Computer Interaction, 24(6):574–594.

Beck, K. and Gamma, E. (2000). Extreme programming explained: embrace change.
Addison-Wesley Professional.

Benbunan-Fich, R. (2001). Using protocol analysis to evaluate the usability of a commer-
cial web site. Information & management, 39(2):151–163.

Bennedsen, J. and Caspersen, M. E. (2007). Failure rates in introductory programming.
ACM SIGcSE Bulletin, 39(2):32–36.

Bergin, S. and Reilly, R. (2005). The influence of motivation and comfort-level on learning
to program.

Biggs, J. (2014). Constructive alignment in university teaching. HERDSA Review of higher
education, 1(5):5–22.

Bjork, R. (2017). Creating desirable difficulties to enhance learning. Best of the Best:
Progress.

Brooke, J. et al. (1996). Sus-a quick and dirty usability scale. Usability evaluation in
industry, 189(194):4–7.

195

196 BIBLIOGRAPHY

Card, S. K., Moran, T. P., and Newell, A. (1980). The keystroke-level model for user
performance time with interactive systems. Communications of the ACM, 23(7):396–
410.

Clark, R. C. and Mayer, R. E. (2016). E-learning and the science of instruction: Proven
guidelines for consumers and designers of multimedia learning. John Wiley & Sons.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
algorithms. MIT press.

Davis, A. M. (1992). Operational prototyping: A new development approach. IEEE
software, 9(5):70–78.

Denny, P., Luxton-Reilly, A., and Simon, B. (2008). Evaluating a new exam question:
Parsons problems. In Proceedings of the fourth international workshop on computing
education research, pages 113–124. ACM.

Dijkstra, E. W. (1972). The humble programmer. Communications of the ACM,
15(10):859–866.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational
Computing Research, 2(1):57–73.

Ericson, B. J., Foley, J. D., and Rick, J. (2018). Evaluating the efficiency and effective-
ness of adaptive parsons problems. In Proceedings of the 2018 ACM Conference on
International Computing Education Research, pages 60–68. ACM.

Ericson, B. J., Margulieux, L. E., and Rick, J. (2017). Solving parsons problems versus
fixing and writing code. In Proceedings of the 17th Koli Calling Conference on Com-
puting Education Research, pages 20–29. ACM.

Frøkjær, E., Hertzum, M., and Hornbæk, K. (2000). Measuring usability: are effectiveness,
efficiency, and satisfaction really correlated? In Proceedings of the SIGCHI conference
on Human Factors in Computing Systems, pages 345–352. ACM.

Garner, S. (2001). A tool to support the use of part-complete solutions in the learning of
programming. In Proceeding de conférence, pages 222–228. Citeseer.

Garner, S. (2002a). The learning of plans in programming: A program completion ap-
proach. In Computers in Education, 2002. Proceedings. International Conference on,
pages 1053–1057. IEEE.

Garner, S. (2002b). Reducing the cognitive load on novice programmers. In EdMedia:
World Conference on Educational Media and Technology, pages 578–583. Association
for the Advancement of Computing in Education (AACE).

Ihantola, P. and Karavirta, V. (2011). Two-dimensional parson’s puzzles: The concept,
tools, and first observations. Journal of Information Technology Education, 10:119–
132.

BIBLIOGRAPHY 197

Ihantola, P. and Karavirta, V. (2019). js-parsons github. [Online]. Available from: https:
//js-parsons.github.io/. [Accessed 7th March 2019].

IMS Global Learning Consortium. IMS Question and Test Interoperability (QTI): Over-
view Version 2.2. [Online]. Available from: http://www.imsglobal.org/
question/qtiv2p2/imsqti_v2p2_oview.html. [Accessed 3rd September
2018].

Inspera AS (2019). Inspera AS home page. [Online]. Available from: http://www.
inspera.com/. [Accessed 5th March 2019].

James, G. (1979). The ecological approach to visual perception. Dallas: Houghtom
Mifflin, pages 127–137.

Jenkins, T. (2002). On the difficulty of learning to program. In Proceedings of the 3rd An-
nual Conference of the LTSN Centre for Information and Computer Sciences, volume 4,
pages 53–58. Citeseer.

Jenny, B. and Kelso, N. V. (2007). Color design for the color vision impaired. Carto-
graphic perspectives, (58):61–67.

Kalvin, A. D. and Varol, Y. L. (1983). On the generation of all topological sortings.
Journal of Algorithms, 4(2):150–162.

Knuth, D. E. and Szwarcfiter, J. L. (1974). A structured program to generate all topological
sorting arrangements. Information Processing Letters, 2(6):153–157.

Kurosu, M. and Kashimura, K. (1995). Apparent usability vs. inherent usability: experi-
mental analysis on the determinants of the apparent usability. In Conference companion
on Human factors in computing systems, pages 292–293. ACM.

Lay, S. (2004). Question and test interoperability: introducing version 2 of the ims qti
specification.

Lidwell, W., Holden, K., and Butler, J. (2010). Universal principles of design, revised and
updated: 125 ways to enhance usability, influence perception, increase appeal, make
better design decisions, and teach through design. Rockport Pub.

March, S. T. and Smith, G. F. (1995). Design and natural science research on information
technology. Decision support systems, 15(4):251–266.

Nielsen, J. (1994). Usability engineering. Elsevier.

Nielsen, J. and Landauer, T. K. (1993). A mathematical model of the finding of usability
problems. In Proceedings of the INTERACT’93 and CHI’93 conference on Human
factors in computing systems, pages 206–213. ACM.

Norman, D. A. (1999). Affordance, conventions, and design. interactions, 6(3):38–43.

Oates, B. J. (2005). Researching information systems and computing. Sage.

198 BIBLIOGRAPHY

Paas, F., Renkl, A., and Sweller, J. (2003). Cognitive load theory and instructional design:
Recent developments. Educational psychologist, 38(1):1–4.

Parasuraman, R. and Riley, V. (1997). Humans and automation: Use, misuse, disuse,
abuse. Human factors, 39(2):230–253.

Parasuraman, R., Sheridan, T. B., and Wickens, C. D. (2000). A model for types and
levels of human interaction with automation. IEEE Transactions on systems, man, and
cybernetics-Part A: Systems and Humans, 30(3):286–297.

Parsons, D. and Haden, P. (2006). Parson’s programming puzzles: a fun and effective
learning tool for first programming courses. In Proceedings of the 8th Australasian
Conference on Computing Education-Volume 52, pages 157–163. Australian Computer
Society, Inc.

Piotrowski, M. (2009). Document-oriented e-learning components.

Piotrowski, M. (2011). Qti: A failed e-learning standard? In Handbook of Research on
E-Learning Standards and Interoperability: Frameworks and Issues, pages 59–82. IGI
Global.

Preece, J., Rogers, Y., and Sharp, H. (2015). Interaction design: beyond human-computer
interaction. John Wiley & Sons.

Rovira, E., McGarry, K., and Parasuraman, R. (2007). Effects of imperfect automation on
decision making in a simulated command and control task. Human Factors, 49(1):76–
87.

Sauro, J. and Kindlund, E. (2005). A method to standardize usability metrics into a single
score. In Proceedings of the SIGCHI conference on Human factors in computing sys-
tems, pages 401–409. ACM.

Sindre, G. and Vegendla, A. (2015a). E-exams and exam process improvement. In NIK.

Sindre, G. and Vegendla, A. (2015b). E-exams versus paper exams: A comparative ana-
lysis of cheating-related security threats and countermeasures. In Norwegian Informa-
tion Security Conference (NISK), volume 8, pages 34–45.

Smith, S. L. and Mosier, J. N. (1986). Guidelines for designing user interface software.
Technical report, Citeseer.

Sommerville, I. (2011). Software engineering 9th Edition. Addison-Wesley Publishing
Company.

Sugimori, Y., Kusunoki, K., Cho, F., and Uchikawa, S. (1977). Toyota production system
and kanban system materialization of just-in-time and respect-for-human system. The
international journal of production research, 15(6):553–564.

Sweller, J., Van Merrienboer, J. J., and Paas, F. G. (1998). Cognitive architecture and
instructional design. Educational psychology review, 10(3):251–296.

BIBLIOGRAPHY 199

Tavangarian, D., Leypold, M. E., Nölting, K., Röser, M., and Voigt, D. (2004). Is
e-learning the solution for individual learning?. Electronic Journal of E-learning,
2(2):273–280.

Tilkov, S. and Vinoski, S. (2010). Node. js: Using javascript to build high-performance
network programs. IEEE Internet Computing, 14(6):80–83.

Todd, P. A. and Benbasat, I. (1987). Process tracing methods in decision support systems
research: Exploring the black box. Mis Quarterly, 11(4):493–512.

Van Merriënboer, J. J. (1990). Strategies for programming instruction in high school: Pro-
gram completion vs. program generation. Journal of educational computing research,
6(3):265–285.

Watson, C. and Li, F. W. (2014). Failure rates in introductory programming revisited. In
Proceedings of the 2014 conference on Innovation & technology in computer science
education, pages 39–44. ACM.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics bulletin,
1(6):80–83.

Williams, L., Kessler, R. R., Cunningham, W., and Jeffries, R. (2000). Strengthening the
case for pair programming. IEEE software, 17(4):19–25.

Jørgensen &
 K

vannli
Efficient G

eneration of P
arsons P

roblem
s for D

igital P
rogram

m
ing Exam

s in Inspera

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Jørgensen, Joachim William Hegvold
Kvannli, Simon

Efficient Generation of Parsons
Problems for Digital Programming
Exams in Inspera

Master’s thesis in Masters of Informatics
Supervisor: Sindre, Guttorm

June 2019

