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A B S T R A C T

The increasing demand of electric vehicles creates challenges for the electric grid both on the transmission level
and distribution level. Charging sites in particular will have to face strong challenges especially in those
countries where a massive penetration of electric vehicles happened in the last years and even more is expected
in the forthcoming future. Such an increased forecast demand will lead to a capacity lack within the existing
charging sites, therefore new investments in design and expansion have to be planned. We propose the so called
SMACS MODEL that stands for Stochastic Multihorizon Approach for Charging Sites Management, Operations,
Design and Expansion under Limited capacity conditions. The model is built to analyse critical decisions in terms
of transformer expansion, grid reinforcements, renewable installation and storage integration, over a time
horizon of 10 years, with a particular focus on the long term uncertainty in the price variations of the available
resources. Long term investment decisions and short term operational decisions are addressed simultaneously in
a holistic approach that includes also battery degradation issues and is able to tackle the optimal trade off
between battery replacements, grid reinforcements and renewable installations throughout the chosen time
horizon. Compared to traditional decision approaches the model is able to take more precise decisions due to its
higher insight on the long term costs projections, the inclusion of battery degradation issues and the inclusion of
grid rules and regulations limits that affect the final decisions.

1. Introduction

The increasing demand of electric vehicles creates challenges for the
electric grid both on the transmission level and distribution level.
Charging sites for several vehicles will face strong challenges, especially
in those countries where a massive penetration of electric vehicles
happened in the last years and even more is expected in the forth-
coming future. In this case, it is not the energy consumption that is
challenging, but the fact that the maximum capacity in the distribution
network and station itself is limited. This motivates to study the pro-
blem of smart design and operation of charging sites. Here typical de-
sign elements can be the charging capacity, the local power generation
capacity, the capacity of batteries installed to smooth out the residual
load, the transformer capacity as well as potentially the need to in-
crease the dimension on the distribution grid. The main objective of this
paper is to show under which conditions storage integration and re-
newable integration becomes convenient compared to grid

reinforcement investments.
In this paper we propose to address the problem of integrated

planning of operations, design and capacity expansion by using a
multistage stochastic programming approach. For this purpose we de-
veloped an integrated model for design and operation, a Stochastic
Multihorizon Approach for Charging Sites Management, Operations,
Design and Expansion under Limited capacity conditions (SMACS
MODEL). This model is used to analyse critical decisions in terms of
transformer expansion, grid reinforcements, renewable installation and
storage integration, over a time horizon of 10 years. There is a novel
focus on the long-term uncertainty in the price variations of the avail-
able resources and cost development: long-term investment decisions
and short-term operational decisions are addressed simultaneously in a
holistic approach. The expansion decisions are taken at the distribution
level, which is the focus of the study.

The main contribution is the methodology to handle the trade-off
between battery replacements, grid reinforcements and renewable
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installations throughout the chosen time horizon based on stochastic
modelling. The multistage stochastic model includes both short-term
and long-term uncertainty. The model framework is tested on realistic
data, and results has been analysed to discuss the value of a multi-
horizon perspective versus traditional approaches that are usually ne-
glecting learning effects and uncertainty in investment costs.

Moreover, a second contribution is a detailed methodology to in-
clude battery technical properties and degradation in order to optimise
battery stock replacements throughout the years according to residual
lifetime throughput and capacity degradation.

A third contribution is the extensive computational experiments and
sensitivity analyses with real world dataset that has been performed.
We provide real world dataset related to the cost projection of different
energy technologies, as well as electricity price and demand forecast
development. Analysis are performed to investigate the trade-off be-
tween performance and costs over time. A particular focus has been put
on investigating which combinations of storage replacement costs and
grid reinforcement costs make the system economical under different
demand assumptions. Further tests have been done to investigate the
trade-off between cheaper batteries with lower performance and more
expensive batteries with better performance.

The study shows that the ability to take decisions by considering the
uncertainty in the future development of investment costs of energy
units is crucial. Technology improvement drastically affect the timing,
cost and performance of the charging site.

The structure of the paper is as follows: Section 2 will present a
literature review in the field of charging sites operations, location-al-
location and design; Section 3 will introduce the main technical aspects
linked to battery properties, transformer properties and grid re-
inforcement tasks that are needed to understand the mathematical
model presented in the following Section 4; the real world data set used
for computational experiments will be discussed in Section 5 while
testing and results will be presented in Section 6; finally, Section 7 will
draw the conclusions.

2. Literature review

A few optimization approaches related to charging sites exist in the
literature. We divide them into the following categories: charging site
operation, charging site location-allocation and charging site design.

Charging site operation regards the problem of managing the local
resources like batteries and available charging capacity (power) in
shorter time horizons (often decided by the charging cycle of the bat-
teries). A comprehensive review on scheduling methods for charging
sites is proposed in [1] where conventional optimisation methods, game
theory and heuristics algorithms are surveyed. A review and classifi-
cation of method for smart charging of electric vehicles for fleet op-
erators is presented also in [2]. A framework for optimizing charging
and discharging of the electric drive vehicles, given the driving patterns
of the fleet and the variations in market prices of electricity is presented
in [3]. Moreover, a novel optimal charging scheduling strategy for
different types of electric vehicles is proposed in [4] where analyses are
based not only on transport system information, such as road length,
vehicle velocity and waiting time, but also grid system information,
such as load deviation and node voltage. An optimization framework
for the operating model of battery swapping stations is proposed in [5]
while a model which yields the rate of degradation of the battery as a
function of both temperature and depth-of-discharge is proposed in [6].
The latter is then used in an electric vehicle energy management opti-
mization problem, where the degradation suffered by the battery due to
a controlled charge is minimized. In [7] authors present a model
dealing with the simultaneous scheduling of electric vehicles and re-
sponsive loads to reduce operation costs and emissions in presence of
wind and photovoltaic sources in a microgrid. Renewable sources are
included also in [8] where a two-stage framework for the economic
operation of a microgrid-like electric vehicle parking deck with on-site

photovoltaic generation is presented. The uncertainty due to renewable
resources is addressed through a two-stage stochastic optimisation ap-
proach in [9]. Moreover, the integration of renewable energy sources
within charging sites is addressed in [10] where authors investigate the
possibilities to integrate additional loads of uncertain renewable energy
sources, by smart charging strategies of three different electric vehicle
fleets (namely, commercial customers, commuters, and opportunity
parkers). A stochastic approach for controlling electric vehicles char-
ging is proposed in [11] where the focus is put on frequency regulation
issues. The same authors propose a two stage stochastic optimisation
approach in [12] for operational control of electric vehicles charging.
The model captures the use of distributed energy resources and un-
certainties around electric vehicles arrival times and charging demands
upon arrival, non-electric vehicles loads on the distribution system,
energy prices, and availability of energy from the distributed energy
resources.

Charging site location-allocation problems are oriented towards the
problem of locating in a geographical area a set of charging stations,
and simultaneously deciding their capacity based on allocation of cus-
tomers demand to each site. An optimisation approach for charging
stations location is proposed in [13]. This paper proposes a new loca-
tion model based on the set cover model taking the existing traditional
gas station network as the candidate sites to determine the distribution
of the charging and battery swap stations. An Integer Linear Pro-
graming approach for sitting and sizing of electric taxi charging stations
is proposed in [14]. A queuing model is adopted to estimate the
probability of taxis being charged at their dwell places. Input guiding
the location and capacity decisions comes from large-scale GPS trajec-
tory data collected from the taxi fleet. The optimal planning of electric
vehicles charging/swap stations with MILP approach is proposed in
[15]. Here models for location and capacity decisions are developed for
rapid-charging stations and battery swap stations considering the dis-
tribution network and potential reinforcement. In [16] the charging
station location problem includes where to locate the charging stations
and how many chargers should be established in each charging station.
In [17] the authors present an analytical approach to estimate the op-
timal density of charging stations for certain urban areas, which are
subsequently aggregated to city level planning. In [18] a multi-period
model for strategic charging station location planning is presented,
recognizing that CS will be introduced gradually over time. A study
based on the real traffic flow data of the Korean Expressway network is
presented. A stochastic model is proposed in [19] where location of
fast-charging stations with uncertain electric vehicle flows is addressed.

These studies focus on location of multiple charging stations in big
regions rather than design and expansion of particular charging sites.
The charging site design problem addresses the more detailed design
and capacity planning of a single site and investigates the optimal ca-
pacity based on deterministic or stochastic demand for charging ser-
vices. If the model includes long-term dynamics so that investment
decisions can be optimally timed we call it a design and expansion
problem. In both cases the models include dimensioning of technical
equipment like maximum charging power, local generation, transfor-
mers, batteries and local grid may be included. The charging site design
problem is addressed in [20] through a simulation approach that makes
use of the HOMER simulation software, and in [21] where authors
proposed an algorithm for the optimal sizing of different units, but the
uncertainty in prices and production both on the short term operational
level and on the long term strategic level is not considered. In [22]
authors present an approach that considers time and distance from
electric vehicles to a charging station as well as construction costs of
transformers, cables, chargers and operational grid (harmonic power
loss and other) to determine the optimal placement and sizing of
charging stations.

A key component within charging sites is represented by battery
energy storage. Therefore the optimal design and operation of such
devices is an important aspect to be considered, especially when it
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comes to degradation issues involved in the charge/discharge cycles. A
review on methodologies for the optimal placement, sizing and control
of battery energy storage can be found in [23]. A mixed integer linear
programming approach for optimal placement, sizing, and dispatch of
battery energy storage in distribution networks is addressed in [24].
The authors compare the value of battery energy storage with grid re-
inforcement, but they focus on the technology state of the art here and
now, without taking into account the effects of long term forecast future
variations in the technology investment costs and in the technology
performance. Battery degradation issues are also gaining more and
more attention and included within mathematical optimisation models
to analyse how they affect the value of such technologies. An example
can be found in [25] where the degradation cost of batteries is included
within microgrids optimal energy management.

The contribution of our work is on the charging site design and
expansion problem, including the integration with the grid. We con-
sider both local renewable energy sources production, batteries and
transformers to balance the capacity of the charging site with the dis-
tribution system costs. In order to provide the needed detail for the
capacity planning, representative operational time periods are added. A
novel approach combining short-term uncertainty in the operational
horizon (i.e. load, generation) and long-term uncertainty (i.e. invest-
ment cost development) is used. To make this computationally tract-
able, multihorizon stochastic programming is proposed. As far as the
authors know, this is the first approach where the long-term design
decisions are linked to this detail level on the operational level for
charging site design including stochasticity in both the long run and
short run.

While there is no literature on this for charging sites, the general
literature on capacity expansion suggests that detailed modelling of
short-term dynamics and stochasticity is a necessary approach. Below
we give some examples on stochastic capacity expansion and multi-
horizon stochastic programming respectively. The stochastic capacity
expansion problem is a well known and extensively studied. A three
level MILP approach is proposed in [26] where optimal expansion of an
electric network with demand uncertainty is proposed using an equi-
librium model. A real application in the power system in Chile is pre-
sented. A stochastic methodology for capacity expansion planning for
remote microgrids is presented in [27] where uncertainty is addressed
with Monte Carlo approach and authors aim at investigating the eco-
nomic benefits of including uncertainty in such kind of problems. Al-
though operational uncertainty is considered, long term investment
uncertainty is not taken into account, especially regarding different
technologies investment prices. A stochastic multistage methodology is
used also in [28] for transmission expansion planning and energy sto-
rage integration. Although the methodology is multistage with a longer
time horizon, the uncertainty in the investment costs of energy units
such as storage and renewables is not addressed, only operational un-
certainty. A main issue with stochastic capacity expansion problems is
the joint modelling of dynamics and stochasticity. Long-term dynamics
is the process of repeated investment decisions in several time periods,
hence the possibility to time investments. Short-term dynamics is the
development of decisions in operational time periods where renewable
energy sources generation, load and batteries are managed over a se-
quence of hours and/or days. When combining these dynamics with
long-term uncertainty (costs development, demand trends) and short-
term uncertainty (load, generation) in a stochastic programming model,
the size of the scenario trees grows exponentially. Multihorizon sto-
chastic programing is a modelling framework developed in particular to
address this issue [29]. The main idea is that as long as the future long-
term outcomes of stochastic variables are not linked to the history of the
short-term uncertain variable outcomes, the long-term development
can be separated from the short-term stochastic process using local end-
of-horizons operationally. The main real world applications of multi-
horizon models found so far in literature are related to hydro plants
management and load management in buildings. The first use was in

modelling natural gas infrastructure development under uncertainty as
shown in [30,31]. Another application is hydro power planning where
[32,33] compare multihorizon models with alternative state-of-the-art
modeling approaches. The method has been used in a TIMES energy
system model to study short-term uncertainty in renewable energy
sources generation and its effects on the energy system design [34,35].
Skar et al. uses a multihorizon approach in EMPIRE, a stochastic model
for the European power system [36]. Moreover, the multihorizon
methodology is used in [37] to analyse retrofitting opportunities for
energy-efficient buildings on a long-term horizon by taking into ac-
count uncertainty in energy prices and technology costs stemming from
deregulation.

To our knowledge this is the first attempt to handle both short-term
and long-term dynamics and uncertainty in optimal charging site design
and expansion.

3. Background on technical aspects

This section will give a broad overview of the main technical aspects
linked to battery properties, transformer properties and grid re-
inforcement tasks. The objective is to outline the main features that
needs to be taken into account when building mathematical optimisa-
tion models for the design and expansion of sites that are supposed to
contain such technologies. This will facilitate the understanding of the
technical constraints that are part of the mathematical model proposed
in the following section.

Batteries are rated in terms of their nominal voltage and ampere-
hour capacity (Ah). Assuming that the voltage is constant and equal to
the nominal voltage, the battery capacity Bj

cap is given in kWh and is
calculated as the battery voltage multiplied by the Ah. The roundtrip
efficiency Bj

eff indicates the percentage of the energy going into the
battery that can be extracted later. We assume that the efficiency in
both directions is the same (see [38,39]). The minimum state of charge
Bj

ch defines a limit below which a battery must not be discharged to
avoid permanent damage. The Bj

rt defines the rate at which a battery is
being discharged. It is defined as the ratio between the discharge cur-
rent and the theoretical current under which the battery would deliver
its nominal rated capacity in one hour. The state-of-charge of a battery
is the percentage of its capacity available relative to the capacity when
it is fully charged. For further readings about battery properties we
refer to [40,41].

The life of a battery can be measured by the so called lifetime
throughput Bj

thr that defines the total amount of energy in kWh that can
be discharged before it is no longer able to deliver sufficient energy to
satisfy the load requirements of the system. The lifetime curve provided
by manufactures relate different depth of discharge with the number of
residual cycles to failure. The deeper the discharge, the lower the
number of related cycles to failure [42].

The state-of-health of a battery is the percentage of its capacity
available when fully charged relative to its rated capacity. It takes into
account the loss of capacity as the battery ages. Through the lifetime
throughput calculation, manufactures guarantee that the capacity of the
battery will not drop more than a certain percentage Bj

fade as long as the
total energy drawn is kept within the lifetime throughput. Academic
battery literature has typically considered a battery degraded to the
point of needing replacement when it is only able to provide 80% of its
original capacity [43].

In a battery bank mixing batteries of different ages is not re-
commended as they interact with each other. The overall performance
is only as good as the weakest link in the chain [44]. Therefore when
one battery in a bank of two or more batteries needs to be replaced,
they should all be replaced at the same time [45].

The transformer capacity Ti
cap is given in kVA. The actual output

power in kW is determined through the load power factor F defined as
the ratio of the real power flowing to the load to the apparent power in
the circuit [46–48].
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Installing a transformer that is too small may cause outages and
voltage drops, while installing a transformer that is too large may bring
unnecessary load losses. The core losses (also called no-load losses) in
particular increase with the capacity of the transformer, hence proper
sizing is crucial and a careful selection of the transformer capacity will
ensure lowest core loss. As stated in [49–51] the no-load loss is con-
sidered as a critical factor as it has undesirable impacts on the aging of
transformers.

It is anyway important to have a transformer bigger than the peak
demand to avoid overload that affects negatively the lifetime and the
quality of service [52,53].

Given the above technical details, the transformer capacity upgrade
has to be limited to a certain value in order to avoid oversizing issues.
Hence as a general guideline a transformer should not exceed the peak
demand more than a certain percentage T%. This will put an upper
bound on the size to avoid oversizing issues, but at the same time will
leave some exceeding capacity to avoid overloading issues. For further
reading about transformer proper sizing and selection it is possible to
refer to [54].

Lines in the distribution grid are oversized to take into account both
extreme peak loads and possible future additional needs. When the
transformer capacity in the charging station increases to a certain level,
the distribution grid supplying the charging station also needs to be
strengthened. Therefore reinforcement costs for grids will typically
occur when the needed capacity is greater than a certain percentage G%

of the existing one.

4. Mathematical model

The problem addressed in the mathematical model takes as a
starting point a location for a charging site and either suggests an op-
timal expansion of its existing capacity, or performs the optimal design
for a greenfield installation.

The need for expansion will be driven by higher charging demand
forecasts. In order to handle the forecast loads that will exceed the
current capacity of the site, it is necessary to select one or a combina-
tion of the following investments: a new transformer with a greater
capacity; grid reinforcements with new upgraded cables; additional
battery storage; additional renewable resources.

As this is a stochastic model, the future demand may be uncertain
along with the cost developments. Investment decisions are hence made
under uncertainty. In addition to the long-term uncertainty of invest-
ment costs, we also model short-term uncertainty that affects both the
operations directly and the investments indirectly, through operational
costs.

Another key characteristic is the need to balance the capacities in
the demand (load), the local generation of renewable energy, the sto-
rage capacity (battery), the transformer capacity and the local grid.
Both batteries and renewable energy generation reduce the need for
grid, but they come at a cost. The effect of these investments depends
on the variations in renewable energy generation and load as well as
the correlations between these.

The problem is a combination of a design problem and an opera-
tional management problem that have to be addressed together. The
design choices are affected by the short-term uncertainty in the re-
newable generation and demand. Clearly also the short-term manage-
ment of the system is limited by the installed capacities. This is the
purpose of using a stochastic multihorizon optimisation model where
the main decisions are the long-term investments, but a number of
operational representative periods are included to consider the ex-
pected effects on the operations. The main objective is to minimise the
total expected investment and operational costs.

4.1. The multihorizon scenario tree

Fig. 1, depicts a multihorizon scenario tree [29] describing how the

uncertainty (both in the short term and long term) is managed. In-
vestment decisions in terms of units to be installed are made in strategic
nodes (black bullets). A long-term scenario consists of all the strategic
nodes on a path from the root node to a leaf. The depicted tree has a
two-stage structure where long-term uncertainty is resolved once (at
time t=1) and the outcome of all long-term is known at that stage. Of
course both a different time for resolving uncertainty, and a multistage
structure is supported by the methodology. Each of the long term sce-
narios show a different development for the investment costs for the
various units such as batteries, transformer, renewable plants (black
arcs). Six long term scenarios are shown in Fig. 1 departing from the
root node.

Fig. 2 shows the details of short term operational scenarios. From
every strategic node (black bullet), two operational scenarios are shown
(red arcs) to take into account the short-term uncertainty in the demand
and renewable production. Operational decisions on energy flows are
made in operational nodes (blue bullets) that are embedded in every
operational scenario. The operational uncertainty is described in a two-
stage tree, where uncertainty is partly resolved in the first branching
and completely resolved in the operational leaf nodes. Other structures
may of course be chosen for the operational tree, based on specific
modelling needs.

Fig. 2 shows that for every scenario, the operational nodes are split
into three different profiles that aim at representing typical periods of
the year. Each period represents a typical week in a year, hence it has to
be made of 168 operational nodes, that represents the hours in a week.
The number of operational periods, should be decided by the need to
capture time correlations and to manage the storage cycles. As we are
including battery storage, we need to bear in mind that the state of
charge of the storage unit will be denied as input at the beginning of
every operational period. After some preliminary tests, it has been
found that a weekly length is suitable as the model has the freedom to
charge and discharge within seven days without using any strong as-
sumption on the daily initial state of charge.

Every profile will be multiplied by a weight that defines how many
times such typical profile occurs in a year. Not all the operational nodes
are depicted in the tree in Fig. 2 which is meant as an example. Simi-
larly, only two operational scenarios for each strategic node are re-
presented.

The time horizon should be chosen in such a way to both obtain a
problem that is computationally manageable and allow a proper ob-
servation of investment replacements throughout the strategic years. It
is important to highlight that there is not limit on the number of years
that can be included in the model for computational experiments, given
that the computational time will increase. The time horizon has been
chosen in order to have a computationally tractable problem and allow
a proper observation of battery replacements. The average life for a
battery pack that is used in combination with renewable resources, is
around four to five years, or even less if the battery is subject to high
and deep cycling. More information about the average life of a battery
pack can be found in [55–59]. In addition, technological improvement
together with demand increment might motivate earlier replacements
to cover the additional demand and take advantage of the investment
costs reduction. Therefore, after some preliminary tests and con-
siderations, it has been decided that 10 years was a suitable time to
keep the model tractable and observe how battery installation and re-
placements were going to behave according to degradation issues and
long term variations in the technological investment costs and perfor-
mance.

Given the parameters and variables listed in Table 1–3, the sto-
chastic multihorizon mathematical model for a charging site design and
management follows. For a general introduction about Multihorizon
Stochastic Optimisation and Programming theory see [29].
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4.2. Methodological notes on the solution approach

We apply a two-stage stochastic programming approach, where the
uncertain parameters are represented by a discrete set of possible rea-
lisations, called scenarios [60]. This implies that the model decisions
are split into two groups; first stage and second stage variables. The
approach is designed such that the first stage variables are made before
knowing the outcome of the uncertain parameters whereas the second-
stage variables are made for a best adaption of each scenario. In our

case, the first-stage decisions are investments in new capacity and the
second-stage decisions are operational decisions [34].

The model is developed in AIMMS and Python using the pyomo
algebraic language [61,62] and the CPLEX solver [63] under academic
license.

One of the most common methods to solve a two-stage stochastic
linear program is to build and solve the deterministic equivalent [64].
For stochastic linear programs the deterministic equivalent is re-
presented by another potentially very large linear program. A stochastic

Fig. 1. Stochastic multihorizon tree that summarises the model construction.

Fig. 2. Details of short term scenarios. Every scenario is described by typical weekly profiles of winter, summer and the rest of the year. A hourly resolution is
choosen.
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Table 1
Nomenclature - parameters.

Renewable

R Unitary current investment cost of the renewable plant ($)
Rn

L Long term multiplier that defines variations in the renewable
investment costs in every strategic node n

Reff efficiency of the renewable plant of type w (%)

Rt p s, ,
forecast production of one unit of renewable source in time t, profile
p, operational scenario s (kWh)

Rlim upper limit in the possible renewable installation linked to available
area (kWh)

Transformer

Ti current investment cost of the transformer of type i ($)
Tn

L long term multiplier that defines variations in the transformer
investment costs in every strategic node n

Ti
eff efficiency of the transformer of type i (%)

Ti
cap capacity of the transformer of type i (kVA)

F power factor for the conversion from kVA to kW (%)

T̂i
cap capacity of the existing transformer of type i (kVA)

T% percentage of the peak demand that limits the transformer capacity
increment in every strategic node (%)

Tlim upper bound on the maximum size allowed for a distribution
transformer (kVA)

Battery

Bj current investment cost of the battery of type j ($)
Bn

L long term multiplier that defines variations in the battery investment
costs in every strategic node n

Bj
eff efficiency of the battery of type j (%)

Bj
cap capacity of the battery of type j (kWh)

Bj
ch minimum state of charge of the battery of type j (%)

Bj
rt rating of the battery of type j (%)

Binit desired state of charge of the battery at the beginning of every typical
profile (%)

Bfin desired state of charge of the battery at the end of every typical profile
(%)

Bj
thr lifetime throughput of battery of type j (kWh)

Bj
fade capacity fade of battery of type j when 100% of the total throughput is

used (%)

Demand

Dt,n,p,s forecast demand in time step t, profile p, operational scenario s within strategic node n (kWh)
Dn

L long term multiplier that defines demand variations in every strategic node n

Dt p s, ,
short term multipliers modelling the daily demand trend in time t, profile p, operational scenario s

Dn
peak peak demand in every strategic node n (kWh)

Electricity Price

Pt,n,p,s forecast electricity price in time step t, profile p, operational scenario s, within strategic node n ($/kWh)
Pn

L long term multiplier that defines price variations in every strategic node n

Pt p s, ,
short term multipliers modelling the daily price in time t, profile p, operational scenario s

Grid reinforcement

Gcost unitary cost of digging for cable installation ($/km)
Gcab unitary cost of cables ($/km)
Gcap cable capacity (amps)
k distance of the charging site from the transformer substation (km)
H factor for converting amps to kW in cable sizing
G% percentage of additional transformer capacity at which grid reinforcement will occur (%)

Other

Ps probability of operational scenario s (%)
Pn probabililty of strategic node n (%)
Yn year number associated to strategic node n
ωp weight of profile p
r interest rate ($)
BigM a very big number
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linear program is built from a collection of multi-period linear pro-
grams, each having the same structure but somewhat different data. In
order to incorporate uncertainties in the second stage, it is necessary to
assign probabilities to the different scenarios and then solve the cor-
responding deterministic equivalent. With a finite number of scenarios,
two-stage stochastic linear programs can be modelled as large linear
programming problems. This formulation is often called the determi-
nistic equivalent linear program. Strictly speaking a deterministic
equivalent is any mathematical program that can be used to compute
the optimal first-stage decision, so these will exist for continuous
probability distributions as well, when one can represent the second-
stage cost in some closed form. For example, to form the deterministic
equivalent to a stochastic linear program, it is necessary to assign a
probability p(k) to each scenario k=1, K. Then it is possible to mini-
mize the expected value of the objective, subject to the constraints from
all scenarios.

In practice it might be possible to construct scenarios by eliciting
experts’ opinions on the future. The number of constructed scenarios
should be relatively modest so that the obtained deterministic equiva-
lent can be solved with reasonable computational effort. In order to face
the computational burden due to the necessity to handle both short
term and long term uncertainty, the computational experiments have
been carried out at the HPC lab: Solstorm.iot.ntnu.no (HPC standing for
High Performance Computing at the NTNU lab for Computational
Economics and Optimization).

4.3. Objective function
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The objective function minimises the net present value of opera-
tional costs TOn and investment costs TCn that will occur in every year
represented by strategic nodes n. As different long term scenarios are
considered (see the different branches of the tree in Fig. 1), such ac-
tualised costs are multiplied by the related probability Pn.

As shown in Eq. (2) the total investment costs in every strategic
node are related to renewable installation costs, battery installation
costs, transformer upgrade costs and grid reinforcement costs. Eqs. (3),
(4) and (5) define the investment costs of renewable plants, batteries
and transformer in every strategic node n according to long term
multipliers that forecast their future investment cost trend.

Operational costs are shown in Eq. (6) as the summation of
P f( * )t n p s t n p s i, , , , , , ,

TD that is the cost of the energy that flows from the trans-
former i to the load in every time step t embedded in every strategic
node n, plus f P( * )t n p s i j t n p s, , , , ,

TB
, , , that is the cost of the energy that flows

from the transformer i to the battery j in every time step t embedded in

Table 2
Nomenclature – sets and indexes.

Sets and index

t set of operational time periods
p set of operational profiles
n set of strategic nodes
s set of operational scenarios
j set of battery types
i set of transformer types

Table 3
Nomenclature - variables.

Variables

ft n p s, , ,
RD energy flow from the renewable plant to the demand in time t of strategic node n for profile p, operational scenario s (kWh)

ft n p s j, , , ,
RB energy flow from the renewable plant to the battery j in time t of strategic node n for profile p, operational scenario s (kWh)

ft n p s i, , , ,
TD energy flow from the transformer i to the demand in time t of strategic node n for profile p, operational scenario s (kWh)

ft n p s i j, , , , ,
TB energy flow from the transformer i to the battery j in time t of strategic node n for profile p, operational scenario s (kWh)

ft n p s j, , , ,
BD energy flow from the battery j to the demand in time t of strategic node n for profile p, operational scenario s (kWh)

θn,i integer variable defining the units of transformer of type i installed on strategic node n
qn i

T
,

variable that keeps track of the actual installed transformer capacity in every strategic node n

z cable size that can accommodate the transformer capacity (amp)
θn,j binary variable equal to 1 if the battery of type j is installed on strategic node n
εn,j integer variable defining the number of batteries of type j to be installed on strategic node n
qn j

B
,

variable that keeps track of the actual installed battery capacity in every strategic node n

bt n p s j, , , ,
SOC state of charge of the battery j in every time step t of strategic node n for profile p, operational scenario s (kWh)

yt,n,p,s,j binary variable equal to 1 if the battery of type j is charging in time t of strategic node n for profile p, operational scenario s

n
R continuous variable defining the additional renewable capacity to install in the strategic node n (kW)

qn
R variable that keeps track of the actual installed renewable capacity in every strategic node n (kW)

gn binary variable equal to 1 if grid reinforcement is needed on strategic node n
cn

REF transformer reference capacity in very node n used to decide if grid reinforcement is needed (kVA)

hn j,
INIT residual lifetime throughput of battery of type j at the beginning of the strategic period n (kWh)

hn j,
FIN residual lifetime throughput of battery of type j at the end of the strategic period n (kWh)

bn j,
REP binary variable equal to 1 if a battery replacement of type j occurs on strategic node n

hn j,
REP battery residual throughput that is still available in the old battery once the replacement occurs (kWh)
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every strategic node n. As explained previously, we are sectioning the
year into typical profiles p, therefore the operational costs have to be
multiplied by the weight wp that represents how many times a typical
profile of type p occurs in a year. As we are including also operational
uncertainty, such energy flows have to be multiplied by Ps that re-
presents the probability of every operational scenario s.

The electricity price Pt,n,p,s is given by the forecast price Pt p s, , , mul-
tiplied by Pn

L that is a long term multiplier aiming at representing the
price variation in the forthcoming years n.

4.4. Demand

+ + =f R f B f T D n p s t* * * , , ,t n p s
j

t n p s j j
i

t n p s i i t n p s, , ,
RD eff

, , , ,
BD eff

, , , ,
TD eff

, , ,

(8)

=D D D n p s t* , , ,t n p s n
L

t p s, , , , , (9)

Eq. (8) assures that the demand is met by the energy flows from the
transformer, from the renewable and from the battery.

The demand Dt,n,p,s is given by the forecast demand Dt p s, , multiplied
by Dn

L that is a long term multiplier aiming at representing the demand
variation in the forthcoming years n.

4.5. Renewable

= =q n n| 1n
R

n
R (10)

= + >q q n n| 1n
R

n
R

n
R

1 (11)

q R nn
R lim (12)

+f f q R n p s t* , , ,t n p s
j

t n p s j n
R

t p s, , ,
RD

, , , ,
RB

, ,
(13)

The variable qn
R keeps track of the renewable capacity available in

every node n. In the first node, the available renewable capacity is equal
to the number of units installed (Eq. (10)) while in the following nodes
it is equal to the capacity available in the previous node plus the ad-
ditional units installed in the current node (Eq. (11)). Space limitations
might impose an upper bound in the maximum installable capacity (Eq.
(12)). The renewable operations in terms of flows to the load and to the
battery are limited by the units installed multiplied by the forecast
unitary production Rt p s, , (Eq. (13)).

4.6. Transformer

= + =ˆq T F T F i n n* * * , | 1n i
T

n i i, ,
cap cap

(14)

= + >q q T F i n n* * , | 1n i
T

n i
T

n i i, 1, ,
cap

(15)

+f f q n p s t i, , , ,
j

t n p s i j t n p s i n i
T

, , , , ,
TB

, , , ,
TD

,
(16)

+q D T n*(1 )
i

n i
T

n,
peak %

(17)

q T n
i

n i
T
,

lim

(18)

The variable qn i
T
, keeps track of the transformer additional capacity

available in every node n. In the first node the transformer upgrade is
equal to the additional installed capacity, while in the following nodes
it is equal to the capacity available in the previous nodes plus the ad-
ditional installation in the current node (Eqs. (14) and (15) respec-
tively). The flows out the transformer are limited by the available ex-
isting and new capacity in every node (Eq. (16)). As explained in details

in Section 3, the total transformer capacity in every node has to be
limited to a certain percentage T% of the peak demand. Constraint (17)
guarantees a technically feasible choice to prevent the negative im-
plications of oversizing and overloading described in Section 3. More-
over, distribution transformer sizes are supposed to lie within certain
dimensions that impose upper bounds Tlim in the maximum allowed
typical size (constraint (18)). Typical values for small, medium, large
distribution transformers will be discussed in Section 5.6.

4.7. Grid reinforcement

= = =ˆg c T F n n0 * | 1n n
REF cap

(19)

= = >g c c n n0 | 1n n n
REF

1
REF (20)

= =g c q n1n n
i

n i
TREF
, (21)

> = =ˆq G T F g n n* * 1 | 1
i

n i
T

n,
% cap

(22)

> = >q G c g n n* 1 | 1
i

n i
T

n n,
%

1
REF

(23)

+f f z G H n p s i* * , , ,
j

t n p s i j t n p s i, , , , ,
TB

, , , ,
TD cap

(24)

Grid reinforcement costs will occur when the transformer has to be
upgraded above a certain limit. It is assumed that grid reinforcements
occur when the transformer capacity has to be upgraded of an amount
that is greater than a certain percentage G% of the current available
capacity. The variable cn

REF keeps track of the transformer reference
capacity in every strategic node. As long as the transformer is upgraded
below a certain percentage of the current capacity, the reference vari-
able cn

REF will remain the same. When the transformer capacity will be
upgraded above the limit, then the reference variable cn

REF will be up-
dated. This is achieved by the following set of constraints.

Constraints (19), (20) and (21) define what happens to the reference
variable cn

REF if grid reinforcements occur or not. If no grid reinforce-
ments happen in the first strategic node, the reference variable cn

REF is
simply equal to the existing transformer capacity (constraint (19)). If no
grid reinforcements happen in any other strategic node, then the re-
ference variable cn

REF remains unchanged and equal to the value it had
in the previous strategic node (constraint (20)). If a grid reinforcement
happens in any of the strategic nodes, then the reference variable cn

REF is
updated by adding the new capacity qn i

T
, to the existing capacity (con-

straint (21)).
Constraints (22) and (23) define in which circumstances grid re-

inforcements happen. In the first strategic node, if the upgraded
transformer capacity is greater than a certain percentage G% of the
initial existing capacity, then a grid reinforcement occurs and the
binary variable gn has to be 1 (constraint (22)). In every other strategic
node, if the upgraded transformer capacity is greater than a certain
percentage G% of the reference capacity in the previous node cn 1

REF, then
a grid reinforcement occurs (constraint (23)).

All the above statements can be written in a form suitable for op-
timisation models by using proper BigM formulations or by including
indicator constraints. For further reading about handling indicator
constraints in MIP problems see [65].

Finally constraint (24) ensures that the chosen cable capacity is
suitable for the forecast energy flows that will be needed in every
strategic node.

4.8. Battery choice and degradation

= =q B j n n* , | 1n j
B

n j j, ,
cap

(25)

C. Bordin and A. Tomasgard Journal of Energy Storage 26 (2019) 100824

8



= =h B j n n* , | 1n j j n j,
INIT thr

, (26)

= =h B P
f

B
j n n* * * , | 1n j j n j

s
s

p
p

t

t n p s j

j
,

FIN thr
,

, , , ,
BD

eff
(27)

= + >h h B j n n* , | 1n j n j j n j,
INIT

1,
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= = >b q q
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B
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j,

REP
, 1,

1,
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,
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thr
fade

(32)

n1
j

n j,
(33)

= n0 1n j n j, , (34)

For the battery choice we refer to the real world situation in which
different standard types of batteries are available in the market with
certain properties (price, capacity, efficiency, rating, etc.). Hence the
model chooses one type of battery j with a certain capacity Bj

cap and
then the optimal number of units of that type to be installed εn,j in order
to create the battery bank.

The variable qn
B keeps track of the total storage capacity available in

every node n. The storage capacity available in the first year is equal to
the capacity of the battery of type jmultiplied by the number of units to
be installed (constraint (25)).

Two main degradation issues are taken into account in the model:
lifetime throughput and capacity fade.

The model keeps track of the residual lifetime throughput in every
strategic node through the variables hn j,

INIT and hn j,
FIN that define the

lifetime throughput at the beginning of every year and at the end of
every year respectively. On the first node the initial lifetime throughput
is given by the throughput of the chosen battery multiplied by the
number of units installed (constraint (26)); while the final throughput is
given by the initial value minus the total energy that has been drawn in
the different typical periods and for the different operational scenarios
(constraint (27)).

In all the other nodes the lifetime throughput at the beginning of the
year, is equal to the residual throughput at the end of the previous year,
plus the additional throughput derived from new additional battery
installation (constraint (28)).

However, as discussed in Section 3, when adding new batteries, the
whole battery bank has to be replaced as it is not recommended to keep
batteries of different age and type working together. Hence when a
battery replacement occurs in a strategic node ( =b 1n j,

REP ), the lifetime
throughput has to be zero at the end of the previous year (constraint
(29)) and the battery installation is simply equal to the new installation
that occurs in the node (constraint (30)).

In a multihorizon framework, a decreasing trend of battery costs
together with an increasing trend of demand, may bring to decisions in
which it is worthy to replace a small battery bank with a larger one in a
certain year, instead of carrying on using the residual throughput of the
existing bank from the previous year (that may be insufficient to fulfill
the increased demand requirements of the forthcoming years). In order
to give the model freedom in deciding if it is worthy to replace a battery
bank that still has a residual throughput, a variable hn j,

REP is inserted in
constraint (31). If the term εn,j is greater than zero, a replacement oc-
curs. Therefore the residual throughput of the previous year has to be

zero (constraints (29) and (30)) but the variable hn j,
REP can get a value

greater than zero: this is the residual throughput that may still be there
when doing such battery replacement. This way, whatever the residual
throughput is, a battery replacement can occur if certain combinations
of forecast demand increment and cost reductions arise.

Constraint (32) aims at including the capacity fade that occurs in
the battery as a further degradation term in addition to the throughput
discussed above. If no replacement occurs, the battery capacity will not
remain the same, but it will decrease as a function of the used
throughput. As discussed in Section 3, as long as the battery usage is
kept within the throughput, the manufacturers guarantee that the ca-
pacity will not drop below a certain limit Bj

fade. Therefore it is possible
to approximately quantify the capacity fade %fade at the end of every
year through a simple proportion [ =B B h h: ( ): %fadej j n j n j

thr fade
1,

INIT
,

INIT ].
This gives us informations about the percentage of capacity fade asso-
ciated with a certain usage of throughput. This is inserted in constraint
(32) to properly keep track of the available storage capacity and pe-
nalise it according to capacity fade issues.

Constraint (33) limits the choice of battery units to a one single
type, so that batteries of the same type will be installed in the battery
bank.

Finally constraint (34) links the two decisional variables εn,j and θn,j.
Constraints (29, 30) and (32) can be expressed using BigM for-

mulations or indicator constraints. For further reading about handling
indicator constraints in MIP problems see [65].

4.9. Battery operations

= =b B q n p s t j t* , , , , | 0t n p s j j n
B

, , , ,
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, , , ,
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= + +
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, , , ,
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eff , , , , ,
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, , , ,
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+f f y n p s t j*BigM , , , ,
i
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, , , ,
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, , , ,
(38)

f y n p s t j(1 )*BigM , , , ,t n p s j t n p s j, , , ,
BD

, , , , (39)

b q n p s t j, , , ,t n p s j n
B

, , , ,
SOC (40)

b B q n p s t j* , , , ,t n p s j j n
B

, , , ,
SOC ch (41)

f
B

B q n p s t j* 1 * , , , ,t n p s j
j

j n
B

, , , ,
BD

eff
rt

(42)

+f T f R B q n p s t j* * * , , , ,
i

t n p s i j i t n p s j j n
B

, , , , ,
TB eff

, , , ,
RB eff rt

(43)

The variable qn
B keeps track of the storage capacity available in

every node n.
Constraints (35) and (36) define the battery state of charge at the

beginning and at the end of every typical profile respectively.
Equation (37) defines the battery state of charge in every time step.

Flows in and out the battery are mutually exclusive as imposed by
constraints (38) and (39).

The battery maximum capacity and minimum state of charge to
avoid permanent damage are defined in constraints (40) and (41).

The battery rating is defined in constraints (42) and (43).

5. Real world data collection

5.1. Notes on scenario generation

This section will outline the main approaches that have been used
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for scenario generation purposes, both on a short term and long term
basis.

Short term scenarios are generated to capture both daily and weekly
uncertainty. Random sampling has been used. It is important to high-
light that this is a strategic model; hence the main motivation for our
scenario generation approach is to represent realistic operational si-
tuations in the model, not to forecast the future. Therefore we base
scenarios on historical data and use no prediction model. The method
presented is in general valid for long-term investment models with in-
termittent energy sources, as discussed in [35]. We use historical data
in order to find realistic outcomes for the demand, renewable avail-
ability and electricity prices. It is not likely that the same realisations
occur in the future, but they can be used as representative days. A
sample of the historical data set is used to generate the stochastic sce-
narios. For each model period, a scenario is generated by a random
sample of a historical year. When creating these operational scenarios,
it is desirable to have a good statistical property match between the
sample used for scenarios in the model and the historical data. Authors
in [35] illustrate how to make scenarios by an iterative random sam-
pling method. As illustrated in [66], the number of scenarios is pri-
marily chosen to ensure manageable computational time, even though a
higher number of scenarios can increase the quality of the model re-
sults. With too few scenarios, the description of uncertainty may not be
good enough and the model may not be stable. With too many sce-
narios, the resulting model may become computationally intractable.
Considering computational intractability, it is desirable to use as few
scenarios as possible as long as we satisfy the stability requirements. As
described in [66] in order to check if the number of scenarios is high
enough to give a stable solution, it is possible to test in-sample and out-
of-sample stability.

For long term scenario generation, there is more subjectivity than
the short run. For short term scenarios generation, researchers would
generally use historical data or statistical techniques. While for long
term scenario generations, qualitative analyses are generally necessary,
by combining contributions from expert opinions, information con-
tained in reports provided by established energy agencies, as well as
information about societal development and policy actions. For the
proposed work, the material for the long term scenarios generation has
been represented by the expert opinions received from the eSmart
system company, which also provided access to the smart meter data
within the charging site. In addition, the information provided within
open available reports on energy, policy, and societal development
have been used. Therefore the long term scenarios represent different
long term realisations of policy actions, energy prices, technological
development, and demand trends. The considered assumptions aim at
capturing a range of possible realisations of the future energy prices,
technological developments and those societal change that will affect

the demand trends of electric vehicles charging. Even though the long
term scenario generation is done more at a qualitative level, still it has
to be highlighted the importance of capturing the covariations between
parameters, in order to generate scenarios with a proper combination of
long term projections that can show proper long term variations.
Delving deeper into long term scenario generation methodologies is
beyond the scope of the current paper that rather aims at proposing a
methodology to make use of short term and long term input data for
decision making under uncertainty. However, to gain more insight on
long term scenario generation at a qualitative level, as well as future
prices development and future effects of policy actions, it is possible to
refer to the works proposed in [67], [68] and [34].

The following sections will give a comprehensive overview of the
sources where real world data and reports have been collected for
scenario generation purposes. It is important to highlight that different
samples have been used in each strategic node to allow a better re-
presentation of uncertainty. The short term trends visible in the fol-
lowing Figs. 5, 6 and 9, are showing only one example of short term
scenarios for illustrative purposes. Within the model and analyses,
different samples have been used in each strategic node, by using the
available real world dataset gathered from the smart meters installed at
the charging site location, as well as the historical data for renewable
generation and price variations. In addition, in each strategic node the
short term scenario is multiplied by multiplicative factors in order to
incorporate the long term variation that can happen in each of the fu-
ture years.

5.2. Battery data

Current battery prices, throughput values and lifetime properties
can be found in [69] where different data for various batteries from
different manufacturers are proposed. According to this source, the
battery cost per kWh is currently set in a range around 800 - 1000
$/kWh for a kWh throughput per kWh capacity in a range around 2000
- 3000 kWh. This is in line also with what is discussed in [70] and [71].
According to [69], higher throughput properties in the range of 7000 -
10000 kWh throughput per kWh capacity have a cost that is set around
2000 - 2500 $/kWh.

Future battery cost projections are discussed in [72] where different
forecast trend proposed by BNEF, NAVIGANT and EIA are shown as
well as an averaged curve. Long term multipliers that trace such fore-
cast are shown in Fig. 3 and used in the mathematical model to define
the battery prices in different strategic nodes. Scenario01 is tracing
BNEF optimistic prediction, Scenario03 is tracing EIA pessimistic pre-
diction while Scenario02 is tracing the averaged curve. NAVIGANT
prediction is not shown as it was overlapping with BNEF optimistic
prediction.

Fig. 3. Long term multipliers to calculate battery projected costs in the forthcoming years.
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For further readings about battery cost projections see [73] and
[74].

5.3. Renewable data

Current and projected future costs for photovoltaic plants are dis-
cussed in [75], [76] and [77]. The former in particular analyse different
scenarios from which suitable long term multipliers can be derived as
shown in Fig. 4.

According to the mentioned sources, the current average cost of a
photovoltaic plant (solar panel and installation) is set around 700
$/kW.

The unitary production of a photovoltaic plant can be found in the
PVWatts calculator available online through the NREL website [78].
Fig. 5 shows the photovoltaic production for typical weeks in Norway.

5.4. Electricity price data

Both current and historical electricity price values are available
from the Nord Pool website [79]. Fig. 6 shows the price trend for typical
weeks in Norway.

Long term projection of electricity price in Norway has been dis-
cussed in [80], [81,82]. The former in particular shows three different
scenarios for price forecasts. According to such study, long term price
multipliers are shown in Fig. 7.

For an overview of electricity price projection in Europe it is pos-
sible to refer to [83].

5.5. Demand data

This paper addresses the effect of the increasing demand of electric
vehicles charging, on the expansion decisions taken within existing
charging sites. The considered load is therefore described by the ag-
gregated power demand that is detected at the charging power station
through smart meters. Short term demand data were collected through

smart meters installed at a real charging site station, called Ladetorget,
located in Moss (Norway). The data were collected for a whole year,
with a resolution of one minute. Such data have been used to develop
the short term demand with hourly resolution to be used in the model
for the computational analyses. Random sampling from the existing
dataset have been used to pick the short term scenarios. Fig. 9 shows
the demand trend for typical weeks in different seasons.

The same data have been used also to develop the long term sce-
narios, by introducing multiplicative factors to describe the demand
increment throughout the forthcoming years. As outlined in previous
sections, qualitative analyses has to be performed for long term sce-
nario generation. For the proposed work, the material for generating
long term demand scenarios, has been represented by the expert opi-
nions received from eSmartSystems, an energy company located in
Halden (Norway) which also provided access to the smart meter data
within the charging site. In addition, the information provided within
open available reports on energy and societal development have been
used to generate long term scenarios at qualitative level. In particular,
references about electric vehicles demand development in Norway can
be found in [84]. While for an overview related to electric vehicles
demand development in Europe see [85,86].

According to the mentioned qualitative analyses, for long term de-
mand development, the basic assumption is that the power needed will
approximately double every second year, mainly due to charging at
higher power levels, but also due to further increasing penetration of
electric vehicles in the Norwegian transportation market. Fig. 8 shows
the long term demand multipliers that describe two scenarios of future
demand development. In particular, Scenario01 is optimistic and as-
sumes that demand will double every second year as mentioned above.
While Scenario02 is a pessimistic one, that mitigates the effect of Sce-
nario01, assuming that the demand will keep on increasing for a limited
period and then settle. This is made to take into account possible future
policy changes. Indeed, in Norway electric vehicles have seen a very
high diffusion mainly due to strong government incentives (i.e. electric
vehicles are exempt road tax, public parking fees, toll payment as well
as being able to use bus lanes). But for instance, these incentives were
supposed to in effect until 2018 as further discussed in [87]. Hence how
a change of incentives and policies will affect the market is unknown,
but needs to be taken into account in future scenarios generation.

5.6. Transformer data

Different typical transformer sizes and related investment costs
updated in 2016 can be found in [88] and are summarised in Table 4.
According to the proposed numbers, it is reasonable to assume an ap-
proximated average unitary cost equal to 15 $/kVA that can be suitable
for linear programming models.

The lifetime of a transformer can be realistically assumed around 20
years more or less [53].

We do not assume long term uncertainty in the transformer price

Fig. 4. Long term multipliers to calculate photovoltaic projected costs in the
forthcoming years.

Fig. 5. Example of renewable production for one kW photovoltaic panel, throughout typical weeks of summer, winter and the rest of the year. Different samples have
been used in every strategic node to allow a better representation of uncertainty.
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because this is a very established technology that have not changed
very much for the last years.

5.7. Grid reinforcement data

Grid reinforcement costs can be found in the Sinterf Planbok [89]
and are higher for installations inside the city compared to installations
outside the city. In particular, the digging part for cable installation
which is around 75000 $/km inside the city and 33000 $/km outside
the city. As for the cost of cables, this varies with both the capacity and
the length of the cable. A unitary cost can be defined according to data
provided in [90] and summarised in Table 5.

As the lifetime of cables is very long, it is reasonable to assume that
within a time horizon of 10 years, if such an investment is needed, it
will be done once and cables will be oversized according to the load
forecast. It is straightforward that the trade off between proper battery
installation and proper cable oversizing according to the related ex-
penses and load forecast is worthy to be investigated through the pro-
posed optimisation model.

Grid reinforcement costs can include a wider variety of other costs
related to electrical components, substation upgrade procedures, addi-
tional connections etc. However, the cable cost per km provided above,
can be considered as a representative cost aimed at defining a reason-
able starting point for further sensitivity analyses. In particular, sensi-
tivity analyses assuming different grid reinforcement costs according to
different distances from transformer and load can be performed to
evaluate the different response and choice of the proposed optimisation
model.

5.8. Scenarios selection

The six selected scenarios for testing are shown in Fig. 10 and aim at
capturing different combinations of battery and renewable costs long
term variations, as well as demand and electricity price long term de-
velopment discussed in previous sections.

6. Computational experiments

The main research question investigated in the computational ex-
periments, is related to an important trade-off that has to be addressed
in the proposed decision problem: given that the investment costs of

Fig. 6. Example of electricity price in Norway, throughout typical weeks of summer, winter and the rest of the year. Different samples have been used in every
strategic node to allow a better representation of uncertainty.

Fig. 7. Long term multipliers to calculate the projected electricity price in the
forthcoming years.

Fig. 8. Long term multipliers to calculate the projected demand in the forth-
coming years.

Table 4
Transformer costs.

Capacity (kVA) Price ($)

25 1235
50 1706
75 2106
100 2435
160 3233
200 3822
250 4156
315 4896
400 5885
500 6851
630 8363
800 9909
1000 11597
1250 13966
1600 17339
2000 20776

Table 5
Cable costs.

Size (kcmil) Ampacity (Amps) Price ($/km)

500 332 39360
750 405 85280
1000 462 123640
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battery storage and renewable resources will drop in the forthcoming
years, how should grid reinforcement be timed in terms of transformers
and cables? Cables represent one of the highest cost components when
upgrading such systems, and costs increase with the cable size and
length. Therefore, given a forecast for demand increment, we are in-
terested in analysing whether battery and renewable investment spread
out over the years, can mitigate - or even make us able to avoid - the
costs of grid reinforcements needed today. Moreover, even if batteries
and renewable might still be too expensive today, their costs may drop
through the years making them more convenient in the future. This may
allow savings today in terms of grid reinforcements because smaller
installations can be done recognizing that future demand increment
will then be covered by additional storage and renewable technologies
whose costs are supposed to become cheaper.

For testing purposes we assume an existing site that is undersized
compared to the forecast increment in demand, and where an upgrade
decision has to be taken already in the first year. That might include an
upgrade of the transformer, the installation of new cables, the in-
stallation of batteries or renewables. The decision can be any combi-
nation of these.

6.1. Effect of charging site location and distance from transformer
substation

The tests includes sensitivity analyses to understand how the cost of
cables linked to the distance between charging site and transformer
substation can affect the investment decisions.

As seen in the data section, the cable costs represent a high

Fig. 9. Example of demand trend for a charging site throughout typical weeks of summer, winter and the rest of the year. Different samples have been used in every
strategic node to allow a better representation of uncertainty.

Fig. 10. Long term scenarios used in the model computational testing.
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component of the site upgrade costs. This is influenced not only by the
size of cables (that is linked to the upstream transformer size), but also
by the length (that is linked to the distance between the transformer
substation to the charging site itself). Hence, closer substations will be
cheaper than those which are far away. The following tables show how
does this affect investment decisions in different energy units. The
column Bat shows the investments in battery capacity, column Ren
shows the investments in renewable photovoltaic plants, while the
column Reinf shows the investment decisions in terms of grid re-
inforcement (this indicates the maximum power in watts which the new
upgraded cables are able to carry. Transformer is upgraded accord-
ingly).

When the distance from the charging site to the transformer in-
creases, the investments in grid reinforcement on the first year become
lower, resulting in higher and earlier investments in batteries along the
following years.

Note that, even with very high grid reinforcement costs (Table 9),
with the given scenarios the batteries are still too expensive to be in-
stalled in the first year. Large battery installations happen anyway
around the 7th and 8th year when prices are likely to be more or less
80% of the current price (Table 6).

In Tables 8 and 9 results indicate that very small battery installa-
tions are done the year before a larger installation. In such cases the
battery is small and quicly degraded in terms of throughput in order to
allow a larger installation the year after, at a better price.

In scenario 6 of Tables 7–9, a large battery installation is proposed
in the 9th year. This is due to the particular scenario structure that is
visible in Fig. 10, where the stronger battery price decrement is com-
bined with a strong demand increment. Hence to take advantage of the
price reduction in batteries in combination with a demand increment
that can allow a high investment, the model is postponing the large
battery installation to the 9th year, but still installing a battery on the
7th year. This does not happen in scenario 3 because even if the battery
learning curve is the same, the demand increment is smoother and does
not justify larger investments in batteries.

In these tests it is clear that the demand curve is affecting the bat-
tery installation in terms of both timing and sizing. Battery installation
happens later and in smaller capacity for scenarios 1, 2 and 3 where the
demand curve is growing less, compared to scenarios 4, 5 and 6 where
the demand curve is increasing rapidly and strongly throughout the
whole time horizon. The grid reinforcement made on the root node
(year 1) will have to cover all the 6 future scenarios. In order to
properly cover the highest demand curve of scenarios 4, 5 and 6, cables
will result in being slightly oversized for the lower demand curve of
scenarios 1, 2 and 3.

Finally, the renewable photovoltaic resource is installed very late,
probably due to the fact that in this particular application with data

from Norway, a good portion of the year is characterized by a very low
solar production due to the long winter season.

6.2. Influence of demand forecast on the worthiness of batteries and
renewable

In this section we propose sensitivity analyses to investigate how
different demand curves affect the model decisions in terms of battery
and renewable installation. Indeed, the tests discussed in the previous
section, showed the long term investment decisions when the scenarios
available in Fig. 10 are utilised as input data to describe the uncertainty
in the long term trend of demand, energy prices, battery investment
costs and renewable investment costs. The authors recognised during
the testing that the high load increase visible in scenarios 4, 5 and 6 of
Fig. 10, was strongly impacting the decisions in terms of battery storage
installation. Therefore, this section will propose additional computa-
tional experiments by considering the effect of different long term load
curves on the final decisions.

Fig. 11 summarises tests made by considering a charging site that is
1 km distant from the transformer substation. Different demand curves
are shown. For every curve, a dot point indicates on which year a
battery installation happens with the related installed capacity. More-
over, the related cables upgrade on the first year is indicated in the
legend for every curve. For each series, the legend indicates the max-
imum power in kW that the new upgraded cables are able to carry (the
transformer is upgraded consequently).

Results show that the higher the demand increment is, the later the
battery installation occurs and the greater the battery capacity installed
is. Higher demand increment means higher battery capacity needed and
therefore higher investment. The higher the battery capacity, the later
the investment in order to take advantage of the battery price forecast
dropping. Hence the ability to look ahead in battery prices combined
with the ability to properly forecast the demand trend, is crucial to
make optimal choices in terms of cable size today and future battery
installations. For this particular set of tests, no renewable has never
been chosen within the optimal solution.

Figs. 12 and 13 show the results for a set of tests made by con-
sidering a charging site that is 5 km away from the transformer sub-
station. Hence, a case study in which grid reinforcement costs are much
higher compared to the previous one due to the longer distances in-
volved. Compared to the previous set of tests, Fig. 12 shows not only
higher and earlier investments in batteries but also battery bank re-
placements for the lowest demand curves (violet and green). Still the
main trend of postponing battery installation for higher demand in-
crement is kept.

Moreover in this case study renewable installations are shown in
Fig. 13. Due to the high costs of grid reinforcement, the cable size is

Table 6
Results: 1 km distance from site to transformer substation.
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lower compared to the previous case study, and renewable generation is
chosen in addition to batteries to meet the higher demand in the later
years.

The computational experiments proposed above, show that the
proposed methodology is suitable not only for investment decision
making, but also to analyse the sensitivity of the results to different
input dataset and provide precious insight about the effect of long term
uncertainty on the decision making process. It is also worthy it to note
that the current model structure allows changes in the chosen resolu-
tion for the investment decision making. The proposed experiments
have been run with a yearly resolution for the long term investment
decisions, and a hourly resolution for the short term decisions However,
the time structure of the model is flexible and can be adjusted. It is
possible for instance to set investment decisions every 2 or 3 years or it
is possible to have a finer resolution at the beginning where the un-
certainty is lower, and a less fine resolution for the farther years where
the knowledge about the future is less precise.

6.3. Influence of battery performance and related costs

In this set of tests we analyse the effect of battery performance and
related costs on the optimal decisions. In particular, we run the model
by considering a charging site that is 5 km distant from the transformer
substation and we include the lower demand curve (violet one) from
the previous tests. We observed previously that two battery installations
occurred throughout the time horizon for this particular case study (see
Fig. 12 where battery is installed on the first year and then replaced on
the 5th year for the lower demand curve in violet). Therefore we are

now interested in looking deeper into this case study by providing the
model with the choice between two batteries with different perfor-
mances in terms of rating and efficiency. In particular, the model will
choose between a battery of type 01 with better performance (0.8 ef-
ficiency and 0.5 rating), and a battery of type 02 with worse perfor-
mance (0.7 efficiency and 0.25 rating). The cost of the battery 02 is
assumed 800 $/kWh that is around the cheaper price that can be cur-
rently found in the market. Compared to battery 02, the cost of battery
01 is varied from slightly less than double, slightly more than double
and three times larger in order to compare results. The objective is to
give the reader an overview of how the costs and battery performance
affect the model decisions.

Fig. 14 shows a case study where the cost of battery of type 01 with
a better performance is almost double the cost of the battery of type 02
with lower performance. In this case the optimal choice is to always
install the better battery of type 01 both in the first year and in the fifth
year.

Fig. 15 shows a case study where the cost of battery of type 01 with
a better performance is now slightly higher than double compared to
the battery of type 02. In this case the optimal choice is the best battery
of type 01 in the first year, that will be replaced by the lower per-
forming battery of type 02 in the fifth year. This is happening because
the battery price will increase with the capacity. Given the low in-
stallation required in the first year, the cost of battery 01 is still more
than compensated by the better efficiency and rating. But in the fifth
year, higher capacity is required and the better performance is no
longer worthy the higher costs. Therefore investment in a cheaper unit
is preferred.

Table 7
Results: 2 km distance from site to transformer substation.

Table 8
Results: 3 km distance from site to transformer substation.
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Fig. 16 shows a case study where the cost of battery of type 01 with
a better performance is assumed three times larger compared to the
lower performing battery of type 02, hence a better battery perfor-
mance is now very expensive. In this case the optimal choice is to go for
the cheaper battery type both in the first year and in the fifth year when
the bank is replaced. This is because the performance improvement in
terms of efficiency and rating cannot defend the higher cost.

Hence, the previous examples showed how sensible such decisions
can be and how important it is to have a proper tool to support in-
vestment decisions in this field. Analyse the trade-off between cheaper
batteries and more expensive batteries and their cost difference in the
market can be crucial for industries involved in expansion decisions like
the proposed one.

Table 9
Results: 4-10 km distance from site to transformer substation.

Fig. 11. Battery installation and grid reinforcement decisions for different demand forecast trends considering a 1 km distance from the charging site to the
transformer substation.

Fig. 12. Battery installation and grid reinforcement decisions for different demand forecast trends considering a 5 km distance from the charging site to the
transformer substation.
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7. Conclusions

A mathematical model for the optimal design, extension and man-
agement of electric vehicles charging sites has been presented. It uses a
multihorizon approach which compared to traditional approaches, al-
lows to include both long-term uncertainty and short-term uncertainty

in the model without an explosion of the scenario tree size as a con-
sequence. The long-term uncertainty is important to be able to model
the uncertain long-term trends, allowing the model to delay decisions
until more information is known. The short-term uncertainty is im-
portant to estimate the consequence of investments in terms of capacity
utilization of equipment under different operational settings.

Fig. 13. Photovoltaic installation and grid reinforcement decisions for different demand forecast trends considering a 5 km distance from the charging site to the
transformer substation.

Fig. 14. Installation decisions with choice between two batteries with different performances in terms of efficiency and rating. Case when the cost of a battery with
better performance is assumed less than double compared to a battery type with lower performance.

Fig. 15. Installation decisions with choice between two batteries with different performances in terms of efficiency and rating. Case when the cost of a battery with
better performance is assumed more than double compared to a battery type with lower performance, but still not too much higher.
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The paper provides a complete real world dataset which can be of
interest for similar studies. Extensive computational experiments and
sensitivity analyses have been presented to gain insight in the factors
driving the decisions under different assumptions. The analysis shows
that both the long-term uncertainty and the short-term uncertainty play
a major role in both timing, technology choice, and capacity decisions.
Compared to traditional decision support approaches the model is able
to take more precise decisions due to its multihorizon approach, the
inclusion of battery degradation and the inclusion of grid rules and
regulations limits that affect the final results.

Acknowledgments

The authors would like to acknowledge Sintef Energy Research for
the precious help in providing costs of grid reinforcements for charging
sites. Authors acknowledge also eSmart Systems for providing the de-
mand data from a real charging site in Moss, Norway.

References

[1] Z. Yang, K. Li, A. Foley, Computational scheduling methods for integrating plug-in
electric vehicles with power systems: a review, Renew. Sustain. Energy Rev. 51
(2015) 396–416.

[2] J. Hu, H. Morais, T. Sousa, M. Lind, Electric vehicle fleet management in smart
grids: a review of services, optimization and control aspects, Renew. Sustain.
Energy Rev. 56 (2016) 1207–1226.

[3] T.K. Kristoffersen, K. Capion, P. Meibom, Optimal charging of electric drive vehicles
in a market environment, Appl. Energy 88 (5) (2011) 1940–1948.

[4] Y. Luo, T. Zhu, S. Wan, S. Zhang, K. Li, Optimal charging scheduling for large-scale
eV (electric vehicle) deployment based on the interaction of the smart-grid and
intelligent-transport systems, Energy 97 (2016) 359–368.

[5] M.R. Sarker, H. Pandžić, M.A. Ortega-Vazquez, Optimal operation and services
scheduling for an electric vehicle battery swapping station, IEEE Trans. Power Syst.
30 (2) (2015) 901–910.

[6] I.J. Fernández, C.F. Calvillo, A. Sánchez-Miralles, J. Boal, Capacity fade and aging
models for electric batteries and optimal charging strategy for electric vehicles,
Energy 60 (2013) 35–43.

[7] A. Rabiee, M. Sadeghi, J. Aghaeic, A. Heidari, Optimal operation of microgrids
through simultaneous scheduling of electrical vehicles and responsive loads con-
sidering wind and PV units uncertainties, Renew. Sustain. Energy Rev. 57 (2016)
721–739.

[8] Y. Guo, J. Xiong, S. Xu, W. Su, Two-stage economic operation of microgrid-like
electric vehicle parking deck, IEEE Trans. Smart Grid 7 (3) (2016) 1703–1712.

[9] K. Seddig, P. Jochem, W. Fichtner, Two-stage stochastic optimization for cost-
minimal charging of electric vehicles at public charging stations with photovoltaics,
Appl. Energy 242 (2019) 769–781.

[10] K. Seddig, P. Jochem, W. Fichtner, Integrating renewable energy sources by electric
vehicle fleets under uncertainty, Energy 141 (2017) 2145–2153.

[11] F. Wu, R. Sioshansi, A stochastic operational model for controlling electric vehicle
charging to provide frequency regulation, Transp. Res. Part D: Transp. Environ. 67
(2019) 475–490.

[12] F. Wu, R. Sioshansi, A two-stage stochastic optimization model for scheduling
electric vehicle charging loads to relieve distribution-system constraints, Transp.
Res. Part B: Methodol. 102 (2017) 55–82.

[13] S. Li, Y. Huang, S.J. Mason, A multi-period optimization model for the deployment
of public electric vehicle charging stations on network, Transp. Res. Part C: Emerg.
Technol. 65 (2016) 128–143.

[14] J. Yang, J. Dong, L. Hu, A data-driven optimization-based approach for siting and
sizing of electric taxi charging stations, Transp. Res. Part C: Emerg. Technol. 77
(2017) 462–477.

[15] Y. Zheng, Z.Y. Dong, Y. Xu, K. Meng, J.H. Zhao, J. Qiu, Electric vehicle battery
charging/swap stations in distribution systems: comparison study and optimal
planning, IEEE Trans. Power Syst. 29 (1) (2014) 221–229.

[16] Z.-H. Zhu, Z.-Y. Gao, J.-F. Zheng, H.-M. Du, Charging station location problem of
plug-in electric vehicles, J. Transp. Geogr. 52 (2016) 11–22.

[17] Y. Ahn, H. Yeo, An analytical planning model to estimate the optimal density of
charging stations for electric vehicles, PLOS ONE 10 (11) (2015) e0141307.

[18] S.H. Chung, C. Kwon, Multi-period planning for electric car charging station loca-
tions: a case of Korean expressways, Eur. J. Oper. Res. 242 (2) (2015) 677–687.

[19] F. Wu, R. Sioshansi, A stochastic flow-capturing model to optimize the location of
fast-charging stations with uncertain electric vehicle flows, Transp. Res. Part D:
Transp. Environ. 53 (2017) 354–376.

[20] H.J. Vermaak, K. Kusakana, Design of a photovoltaic-wind charging station for
small electric tuk–tuk in D.R. Congo, Renew. Energy 67 (2014) 40–45.

[21] M.S. Islam, N. Mithulananthan, K. Bhumkittipich, A. Sode-Yome, EV charging sta-
tion design with PV and energy storage using energy balance analysis, Innovative
Smart Grid Technologies-Asia (ISGT ASIA), 2015 IEEE, IEEE, 2015, pp. 1–5.

[22] M.M. Islam, H. Shareef, A. Mohamed, Improved approach for electric vehicle rapid
charging station placement and sizing using google maps and binary lightning
search algorithm, PLOS ONE 12 (12) (2017) e0189170.

[23] L. Ai Wong, V.K. Ramachandaramurthy, P. Taylor, J.B. Ekanayake, S.L. Walker,
S. Padmanaban, Review on the optimal placement, sizing and control of an energy
storage system in the distribution network, J. Energy Storage 21 (2019) 489–504.

[24] R.C. Johnson, M. Mayfield, S.B.M. Beck, Optimal placement, sizing, and dispatch of
multiple BES systems on UK low voltage residential networks, J. Energy Storage 17
(2018) 272–286.

[25] M.A. Hossain, H. Roy Pota, S. Squartini, F. Zaman, K.M. Muttaqi, Energy man-
agement of community microgrids considering degradation cost of battery, J.
Energy Storage 22 (2019) 257–269.

[26] D. Pozo, E.E. Sauma, J. Contreras, A three-level static milp model for generation
and transmission expansion planning, IEEE Trans. Power Syst. 28 (1) (2013)
202–210.

[27] E. Hajipour, M. Bozorg, M. Fotuhi-Firuzabad, Stochastic capacity expansion plan-
ning of remote microgrids with wind farms and energy storage, IEEE Trans. Sustain.
Energy 6 (2) (2015) 491–498.

[28] T. Qiu, B. Xu, Y. Wang, Y. Dvorkin, D.S. Kirschen, Stochastic multistage coplanning
of transmission expansion and energy storage, IEEE Trans. Power Syst. 32 (1)
(2017) 643–651.

[29] M. Kaut, K.T. Midthun, A.S. Werner, A. Tomasgard, L. Hellemo, M. Fodstad, Multi-
horizon stochastic programming, Comput. Manag. Sci. 11 (1-2) (2014) 179–193.

[30] L. Hellemo, K. Midthun, A. Tomasgard, A. Werner, Natural gas infrastructure design
with an operational perspective, Energy Proc. 26 (2012) 67–73.

[31] L. Hellemo, K. Midthun, A. Tomasgard, A. Werner, Multi-stage stochastic pro-
gramming for natural gas infrastructure design with a production perspective,
Stochastic Programming: Applications in Finance, Energy, Planning and Logistics,
World Scientific, 2013, pp. 259–288.

[32] H. Abgottspon, Hydro Power Planning: Multi-Horizon Modeling and its
Applications, PhD thesis, (2015).

[33] H. Abgottspon, G. Andersson, Multi-horizon modeling in hydro power planning,
Energy Proc. 87 (2016) 2–10.

[34] P. Seljom, A. Tomasgard, The impact of policy actions and future energy prices on
the cost-optimal development of the energy system in Norway and Sweden, Energy
Policy 106 (2017) 85–102.

[35] P. Seljom, A. Tomasgard, Short-term uncertainty in long-term energy system

Fig. 16. Installation decisions with choice between two batteries with different performances in terms of efficiency and rating. Case when the cost of a battery with
better performance is assumed three times more compared to a battery type with lower performance.

C. Bordin and A. Tomasgard Journal of Energy Storage 26 (2019) 100824

18

http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0005
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0005
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0005
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0010
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0010
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0010
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0015
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0015
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0020
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0020
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0020
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0025
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0025
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0025
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0030
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0030
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0030
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0035
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0035
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0035
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0035
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0040
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0040
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0045
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0045
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0045
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0050
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0050
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0055
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0055
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0055
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0060
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0060
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0060
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0065
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0065
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0065
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0070
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0070
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0070
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0075
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0075
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0075
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0080
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0080
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0085
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0085
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0090
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0090
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0095
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0095
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0095
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0100
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0100
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0105
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0105
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0105
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0110
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0110
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0110
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0115
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0115
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0115
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0120
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0120
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0120
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0125
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0125
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0125
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0130
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0130
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0130
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0135
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0135
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0135
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0140
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0140
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0140
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0145
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0145
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0150
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0150
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0155
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0155
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0155
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0155
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0160
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0160
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0165
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0165
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0170
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0170
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0170
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0175


modelsa case study of wind power in Denmark, Energy Econ. 49 (2015) 157–167.
[36] C. Skar, G. Doorman, A. Tomasgard, The future european power system under a

climate policy regime, 2014 IEEE International on Energy Conference
(ENERGYCON), IEEE, 2014, pp. 318–325.

[37] R. Paula, M. Kaut, A.S. Siddiqui, Energy-efficient building retrofits: an assessment of
regulatory proposals under uncertainty, Energy 101 (2016) 278–287.

[38] B. Scott, J.F. Peterson, W. Jay Apt, The economics of using plug-in hybrid electric
vehicle battery packs for grid storage, J. Power Sources 195 (8) (2010) 2377–2384.

[39] R. Dufo-López, J.L. Bernal-Agustín, J.A. Domínguez-Navarro, Generation manage-
ment using batteries in wind farms: economical and technical analysis for Spain,
Energy Policy 37 (1) (2009) 126–139.

[40] R.M. Dell, D.A. James Rand, Understanding Batteries, Royal Society of Chemistry,
2001.

[41] N. DiOrio, A. Dobos, S. Janzou, A. Nelson, B. Lundstrom, Technoeconomic mod-
eling of battery energy storage in SAM, National Renewable Energy Laboratory
(NREL) NREL/TP-6A20-64641 (2015).

[42] H. Bindner, T. Cronin, P. Lundsager, J.F. Manwell, U. Abdulwahid, I. Baring-Gould,
Lifetime Modelling of Lead Acid Batteries, (2005).

[43] R. Spotnitz, Simulation of capacity fade in lithium-ion batteries, J. Power Sources
113 (1) (2003) 72–80.

[44] Cadex Electronics Inc, Series and parallel battery configurations. http://batter-
yuniversity.com/learn/article/serial_and_parallel_battery_configurations. Online;
accessed 2019.

[45] Trojan Battery Company, Battery mainteinance. http://www.trojanbattery.com/
tech-support/faq/. Online; accessed 2019.

[46] Y. Li, L. Li, J. Yong, Y. Yao, Z. Li, Layout planning of electrical vehicle charging
stations based on genetic algorithm, Electrical Power Systems and Computers,
Springer, 2011, pp. 661–668.

[47] W. El-Khattam, Y.G. Hegazy, M.M.A. Salama, An integrated distributed generation
optimization model for distribution system planning, IEEE Trans. Power Syst. 20 (2)
(2005) 1158–1165.

[48] T. Allen Short, Electric Power Distribution Handbook, CRC Press, 2014.
[49] M. Yazdani-Asrami, M. Mirzaie, A.A.S. Akmal, No-load loss calculation of dis-

tribution transformers supplied by nonsinusoidal voltage using three-dimensional
finite element analysis, Energy 50 (2013) 205–219.

[50] How harmonic, mitigating transformers outperform k-rated transformers. Technical
report, Hammond Power Solutions Inc.

[51] M.R. Sarker, D. Julius Olsen, M.A. Ortega-Vazquez, Co-Optimization of Distribution
Transformer Aging and Energy Arbitrage Using Electric Vehicles, IEEE Transactions
on Smart Grid, 2016.

[52] M.C. Kuss, A.J. Markel, W.E. Kramer, et al., Application of Distribution Transformer
Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo
Method: Preprint, National Renewable Energy Laboratory, 2011.

[53] Robert B Moran, Guidelines for transformer application designs. http://ecmweb.
com/content/guidelines-transformer-application-designs, 1999. Online; accessed
2019.

[54] IEEE. Recommended practices and requirements for harmonic control in electrical
power systems. 1993.

[55] A. Alireza, L. dos Santos Coelho, A novel framework for optimization of a grid
independent hybrid renewable energy system: a case study of Iran, Solar Energy
112 (2015) 383–396.

[56] L. Olatomiwa, Optimal configuration assessments of hybrid renewable power
supply for rural healthcare facilities, Energy Rep. 2 (2016) 141–146.

[57] R. Dufo-López, J.M. Lujano-Rojas, J.L. Bernal-Agustín, Comparison of different
lead-acid battery lifetime prediction models for use in simulation of stand-alone
photovoltaic systems, Appl. Energy 115 (2014) 242–253.

[58] Y. Li, J. Song, J. Yang, A review on structure model and energy system design of
lithium-ion battery in renewable energy vehicle, Renew. Sustain. Energy Rev. 37
(2014) 627–633.

[59] F. Marra, C. Træholt, E. Larsen, Q. Wu, Average behavior of battery-electric vehicles
for distributed energy studies, 2010 IEEE PES Innovative Smart Grid Technologies
Conference Europe (ISGT Europe), IEEE (2010) 1–7.

[60] P. Kall, S.W. Wallace, Stochastic Programming, John Wiley and Sons, Chichester,
England, 1994.

[61] J. Bisschop, AIMMS Optimization Modeling, Lulu. com, 2006.
[62] W.E. Hart, C.D. Laird, J.-P. Watson, D.L. Woodruff, G.A. Hackebeil, B.L. Nicholson,

J.D. Siirola, Pyomo-Optimization Modeling in Python, Springer, 2017, p. 67.
[63] B. Meindl, M. Templ, Analysis of commercial and free and open source solvers for

linear optimization problems, Eurostat and Statistics Netherlands within the Project
ESSnet on Common Tools and Harmonised Methodology for SDC in the ESS
(2012) 20.

[64] R.J.-B. Wets, Stochastic programs with fixed recourse: the equivalent deterministic

program, SIAM Rev. 16 (3) (1974) 309–339.
[65] P. Belotti, P. Bonami, M. Fischetti, A. Lodi, M. Monaci, A. Nogales-Gómez,

D. Salvagnin, On handling indicator constraints in mixed integer programming,
Comput. Optim. Appl. 65 (3) (2016) 545–566.

[66] M. Kaut, S.W. Wallace, Evaluation of Scenario-Generation Methods for Stochastic
Programming, (2003).

[67] IRENA., Planning for the renewable future: Long-term modelling and tools to ex-
pand variable renewable power in emerging economies, 2017.

[68] P. Fortes, A. Alvarenga, J. Seixas, S. Rodrigues, Long-term energy scenarios: brid-
ging the gap between socio-economic storylines and energy modeling, Technol.
Forecast. Soc. Change 91 (2015) 161–178.

[69] Solar choice, battery performance comparison tool. https://www.solarchoice.net.
au/blog/solar-choice-battery-storage-product-lifespan-comparison-tool?-
nabe=5824973356924928:0. Online; accessed 2019.

[70] J. Linssen, P. Stenzel, J. Fleer, Techno-Economic Analysis of Photovoltaic Battery
Systems and the Influence of Different Consumer Load Profiles, Applied Energy,
2015.

[71] L. Yang, N. Tai, C. Fan, Y. Meng, Energy regulating and fluctuation stabilizing by air
source heat pump and battery energy storage system in microgrid, Renew. Energy
95 (2016) 202–212.

[72] P. Bronski, J. Creyts, L. Guccione, M. Madrazo, J. Mandel, B. Rader, D. Seif,
P.L. Lilientha, J. Glassmire, J. Abromowitz, et al., The Economics of Grid Defection:
When and Where Distributed Solar Generation Plus Storage Competes with
Traditional Utility Service, Rocky Mountain Institute, 2014.

[73] W.J. Cole, C. Marcy, V.K. Krishnan, R. Margolis, Utility-scale lithium-ion storage
cost projections for use in capacity expansion models, North American Power
Symposium (NAPS), 2016, IEEE, 2016, pp. 1–6.

[74] J.M. Grothoff, Battery storage for renewables: market status and technology out-
look, Technical Report January, International Renewable Energy Agency (IRENA)
(2015).

[75] ISE Fraunhofer and Agora Energiewende, Current and future cost of photovoltaics;
long-term scenarios for market development, system prices and lcoe of utilityscale
pv-systems. Agora Energiewende, 2015, 82.

[76] R. Tidball, J. Bluestein, N. Rodriguez, S. Knoke, Cost and performance assumptions
for modeling electricity generation technologies, Contract 303 (2010) 275–3000.

[77] D. Feldman, R. Margolis, P. Denholm, J. Stekli, Exploring the Potential
Competitiveness of Utility-Scale Photovoltaics Plus Batteries with Concentrating
Solar Power, (2016).

[78] NREL., Pvwatts calculator. http://pvwatts.nrel.gov/pvwatts.php. Online; accessed
2019.

[79] Nord Pool, Historical market data for electricity spot hourly price. http://www.
nordpoolspot.com/historical-market-data/. Online; accessed 2019.

[80] J. Leeuwendal, Kraftmarkedsanalyse 2016–2030, Master's thesis, University of
Twente, 2013.

[81] Gudmund Bartnes og Eirik øysleb øGudmund Bartnes, Jonas Skaare Amundsen,
Kraftmarkedsanalyse 2016–2030. Technical Report, Norges vassdrags- og en-
ergidirektorat - NVE, 2017.

[82] Karin Lövebrant Vstermark Vegard Holmefjord Jørgen Aarstad Eirik Tømte
Bøhnsdalen, Ivar Husevåg Døskeland. Langsiktig markedsanalyse norden og europa
2016 - 2040. Technical report, Statnett 2016.

[83] A. De Almeida, B. Santos, F. Martins, Energy-efficient distribution transformers in
Europe: impact of ecodesign regulation, Energy Effic. 9 (2) (2016) 401–424.

[84] Erling Holden Olav Wicken Marianne Ryghaug Knut Holtan Sørensen Eva
Rosenberg, Kari Aamodt Espegren, Censes energy demand projections towards 2050
- reference path. Technical report, Technical Report, ICF Consulting Services 2015.

[85] Electric vehicles, Europe: Gearing up for a New Phase? Technical Report,
Amsterdam Roundtable Foundation and McKinsey and Company The Netherlands,
2014.

[86] EV Global, Outlook 2016, beyond one million electric cars. International Energy
Agency: Paris, France, 2016.

[87] M.A. Theoni Versi, Overview of the Electric Vehicle Market and the Potential of
Charge Points for Demand Response. Technical Report, ICF Consulting Services,
2016.

[88] E. Hajipour, M. Mohiti, N. Farzin, M. Vakilian, Optimal distribution transformer
sizing in a harmonic involved load environment via dynamic programming tech-
nique, Energy 120 (2017) 92–105.

[89] REN, Et samarbeid med SINTEF. Planbok - oppdatert og systematisert planleg-
gingsbok for kraftnettet. http://www.ren.no/produkter/planbok. Online; accessed
2019.

[90] S. Dutta, T.J. Overbye, A clustering based wind farm collector system cable layout
design, Power and Energy Conference at Illinois (PECI), 2011 IEEE, IEEE, 2011,
pp. 1–6.

C. Bordin and A. Tomasgard Journal of Energy Storage 26 (2019) 100824

19

http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0175
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0180
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0180
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0180
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0185
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0185
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0190
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0190
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0195
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0195
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0195
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0200
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0200
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0205
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0205
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0205
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0210
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0210
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0215
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0215
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0230
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0230
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0230
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0235
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0235
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0235
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0240
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0245
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0245
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0245
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0255
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0255
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0255
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0260
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0260
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0260
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0275
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0275
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0275
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0280
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0280
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0285
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0285
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0285
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0290
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0290
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0290
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0295
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0295
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0295
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0300
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0300
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0305
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0310
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0310
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0315
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0315
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0315
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0315
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0320
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0320
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0325
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0325
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0325
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0330
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0330
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0340
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0340
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0340
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0350
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0350
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0350
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0355
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0355
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0355
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0360
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0360
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0360
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0360
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0365
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0365
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0365
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0370
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0370
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0370
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0380
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0380
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0385
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0385
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0385
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0400
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0400
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0405
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0405
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0405
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0415
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0415
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0425
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0425
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0425
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0435
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0435
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0435
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0440
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0440
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0440
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0450
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0450
http://refhub.elsevier.com/S2352-152X(19)30304-4/sbref0450

	SMACS MODEL, a stochastic multihorizon approach for charging sites management, operations, design, and expansion under limited capacity conditions
	Introduction
	Literature review
	Background on technical aspects
	Mathematical model
	The multihorizon scenario tree
	Methodological notes on the solution approach
	Objective function
	Demand
	Renewable
	Transformer
	Grid reinforcement
	Battery choice and degradation
	Battery operations

	Real world data collection
	Notes on scenario generation
	Battery data
	Renewable data
	Electricity price data
	Demand data
	Transformer data
	Grid reinforcement data
	Scenarios selection

	Computational experiments
	Effect of charging site location and distance from transformer substation
	Influence of demand forecast on the worthiness of batteries and renewable
	Influence of battery performance and related costs

	Conclusions
	Acknowledgments
	References




