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Abstract 
A consistent part of the research in the hydropower field in Norway is being done at NTNU. 

The Faculty of Information Technology and Electrical Engineering is an active player in this 

research through the Department of Electric Power Engineering. This research is 

established through a long-term plan and is organized in four main areas: hydropower 

structures, turbines and generators, markets and services, and environmental design.  

For this purpose, NTNU is the host institution and the main research partner, through 

Hydrocen whereas SINTEF Energy Research and The Norwegian Institute for Nature 

Research NINA, also contribute in their respective areas. 

At Hydrocen, the research in variable speed machinery based on converter-fed technology 

is one of the main topics. 

The synchronous generator is controlled by an inverter and feeds a DC link, which is 

connected through the grid by means of the grid side converter, also called Active Front 

End Converter (AFE). 

This Thesis is related to the controls used by the AFE.  

The control of the AFE is a cascade control, which includes a hysteresis current and 

resonant voltage control loop, AC voltage and frequency droop, and other dynamic features 

as virtual damping and inertia effects. 

The focus of this thesis has been the development of a tuning methodology of the resonant 

controller considering the PI control, resonant control and active damping by means of the 

Nyquist diagrams and robust control theory guidelines. Also, a delay compensation method 

has been developed and tested in a simulation environment. The impact of the most 

important variables has been evaluated and recommendations are given to continue the 

work. 
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Norwegian translation of your English Abstract. 
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𝑅𝐹𝑇𝑠
𝐿𝐹  

𝐿−1 Inverse Laplace transform 

𝜂 Minimum distance of 𝐻𝑂𝐿 to the critical point 

𝜂𝑃 Modulus of the minimum distance between the critical 

point (−1,0𝑗) and the Nyquist plot of 𝐾𝑃𝑇
𝐺𝑃𝐿(𝑧) 

1
𝜂𝑃

⁄  Sensitivity peak 

𝜂ℎ Modulus of the minimum distance between the critical 

point (−1,0𝑗) and the Nyquist plot of a resonant 

controller tuned at harmonic order h 

𝐷(𝑧) Distance between the Nyquist plot and the critical 

point (−1,0𝑗) 

𝜔𝜂 Angular frequency where |𝐷(𝑧)| has its global minimum  

𝜂𝑃 

𝛾ℎ Angle between the asymptote at ℎ𝜔1 and the real axis 

𝜔𝑐 Crossover frequency 

𝑅𝑝 Resistance to obtain damping current 

𝑖𝑝 Current across resistance 𝑅𝑝 for active damping 

𝑣𝑐 Capacitor voltage, t domain 

∠T Angle of tangent line to resonant controller with 

damping in z plane 

∠D Angle of line perpendicular to the vector distance of 

open loop transfer function to instability point 

∠𝐻𝑂𝐿 Angle of 𝐻𝑂𝐿 and the x axis in z plane 

𝜃 Angle between 𝐻𝑂𝐿 and tangent line T of a resonant 

controller locus in z plane 

𝑇𝑒𝑞,𝑖 Time constant of an equivalent first order current 

control loop 

𝑘𝑑 Active damping gain 

𝑅𝐶(𝑠)ℎ Resonant Controller in s domain 

𝐾𝑉ℎ Gain in voltage resonant controller at harmonic h 

𝑖ℎ Current reference for harmonic h before resonant gain 

𝐾𝑉ℎ 

𝑓𝑠𝑤_𝑎𝑣𝑔 Average switching frequency 

∆𝑓 Frequency variation related to relative damping factor 

𝑓𝑁 Nominal frequency 

𝛿𝑔𝑟𝑖𝑑 Grid angle 

𝑣𝑐_𝑟𝑒𝑓 Capacitor voltage reference in s domain 

𝑉𝑐_𝑟𝑒𝑓 Capacitor voltage reference in s domain 

𝐼0 Load current in 𝑠 domain 

𝑅𝑐 Capacitor resistance 

𝐾𝑃𝑉 Proportional gain in the voltage control loop 

𝐾𝐼𝑉 Integral gain in the voltage control loop 

AFE Active Front End Converter 

IGBT Insulated Gate Bipolar Transistor 

SPWM Sinusoidal Pulse Width Modulation 

SHE Selective Harmonic Elimination 
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NPC Neutral Point Clamped 

HVDC High Voltage Direct Current 

VSC Voltage Source Converter 

VSI Voltage Source Inverter 

THD Total Harmonic Distortion 

PCC Point of Common Coupling 

MIMO Multiple Input Multiple Output 

PLL Phase Locked Loop 

PI Proportional Integral Controller 

IIR Infinite Impulse Response 

ZOH Zero Order Hold 

ADC Analog to Digital Converter 

DFIIt Direct Form II transposed structure 

 



20 

 

1.1 Problem Background 

 

The energy production in Norway is highly dependent on hydropower with a share of 

approximately 99% of the energy production. Also, Norway has a large potential for wind 

energy, which can be used at as much as possible if the Norwegian grid can deal with the 

intermittency of the wind. 

In addition, the countries in Continental Europe are increasing their proportion of 

renewable generation such as wind and solar, in line with the demanding requirements 

imposed by the growing of population and the need of reducing the dependency of fossil 

fuels and other non-environmentally friendly energy sources in the energy mix. 

The solution with large electric battery storage systems that helps with the variability of 

solar and wind is still far away from a practical solution. 

In the meantime, Norway is aiming at providing flexibility of operation of its electric system 

to incorporate large amounts of wind energy and the European electric system and, in this 

way, help on increasing the penetration of renewable energies through the better use of 

the Norwegian existing hydropower plants, using pumped storage technology.  

Several aspects of this technology are currently under research in NTNU, and one of these 

is the variable speed machinery based on converter-fed technology, a key technology for 

pump storage power plants. 

There are several existing variable speed technologies in use in converters used in variable 

speed generators, but the most recently studied and developed is the full frequency 

converter, which is described briefly in the next lines and is shown graphically in Figure 

1.1. 

 

Figure 1.1: Full frequency converter 

The full frequency converter used with the variable speed pump/turbine consists of two 

main parts; the machine side converter, which does the variable speed operation of the 

generator and that feeds a DC link, and the grid side converter, which inverts the energy 

from the DC side to an AC grid frequency and interacts with the electric grid. 

1 Introduction 
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The machine side converter allows the operation of the generator/motor at different 

rotational speeds, increasing the available range of operation of the pump storage power 

plant when operating in the generating/pumping mode. Hydropower turbines provide their 

best efficiency at rated head when they are operated at a fixed frequency; outside of this 

point, their efficiency decreases. Variable speed helps in this providing energy to the 

system or using energy to fill up the reservoir at better efficiency and heads lower than 

the rated head. Turbine ramping rates are also faster with a full frequency converter. 

The grid side converter is the one which deals directly with the electric grid. In this sense, 

this is the one which must interact with the electric grid all the time. For this reason, its 

dynamic capabilities are of importance; grid side converters must operate and contribute 

to the operation of the electric grid. 

The AFE takes the power of the DC link and converts it to AC. The control strategy of the 

switches in the inverter is the one that shapes the dynamic characteristics that the whole 

converter can provide. 

The AFE control scheme consists of cascade control loops, which are the following: 

• Inner Current Control Loop, consisting of a hysteresis current controller 

• Voltage Control Loop, consisting of a resonant current controller 

• Outer Control Loops, which contain other additional functions such as virtual 

impedance, unbalance control, active and reactive power frequency droop, harmonic 

compensation, synthetic inertia, islanding operation, among other features. 

Being all features of the inverter control based, they are supposed to be to programmable 

to some extent. For instance, the inverter could behave as a generator in the AC grid if 

desired. This idea is important, since it is expected that several power electronics – 

interfaced energy production systems will be incorporated into the grid in the upcoming 

years, and a reduction of the dynamic properties of the system provided by synchronous 

generators, -such as inertia – is expected and must be compensated by the inverters 

through software implementation (this is the reason why the term “synthetic inertia”  

comes into play). 

1.2 Scope of the Master Thesis 

 

In this thesis, the current and voltage controllers of the LCL-type grid side converter, also 

called, Active Front End Converter (AFE) have been studied, with more emphasis in the 

proper tuning of the controllers for an stable operation, considering that the control system 

should be adaptable to variations in the system frequency caused by grid disturbances.  

The stability analysis has been done by means of the Nyquist diagrams and Bode Plots. 

A tuning procedure has been proposed to get a robust and stable solution. As part of the 

tuning procedure, a delay compensation method has been developed and proposed, 

considering the particular properties that the resonant controllers with and without 

damping, as well as with and without delay compensation, have in the z plane. The 

suitability of the proposed methodology has been assessed by means of simulations. 

Practical aspects, such as the digital implementation, noise filtering, delay compensation, 

has been considered. 
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1.3 Outline of the Thesis Report 

 

• Section 2 is a Theoretical Background of the available types of resonant controllers 

in the continuous domain and their digital implementation. The relevant theory and 

concepts of stationary and rotative reference frames, voltage source converters, LCL filters, 

and control theory, as well as any other control features such as active damping and the 

synchronization procedures of the voltage source converters to the electrical grid are 

presented. In addition to that, a literature review of the current tuning methodology for 

resonant controllers. The available digital implementations for resonant controllers with 

and without damping as well as with and without delay compensation are presented. 

• Section 3 explains the proposed delay compensation method for resonant 

controllers with damping developed in this thesis. 

• Section 4 is a detailed explanation of the Simulink models implemented for the 

control loops and the synchronization scheme. 

• Section 5 explains the results of the simulations done in Simulink. 

• Section 6 presents a summary of the simulations and discuss the findings, mainly 

on stability criteria, tuning methodology, the effect of active damping use and the 

implementation approach of the resonant controllers. 

• Section 7 presents the conclusion of this thesis and proposes further work that is 

recommended to do to continue with the research done. 
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2.1 Reference Frame in Control Signal 

The three-phase electrical systems are a proven technology to generate, transmit and 

distribute energy. 

Most of the rotating electrical machines have three-phase winding in its stator, even for 

small machines. Some of the reasons are: 

• In electrical machines, it is easy to get three sinusoidal electric fields shifted by 120 

degrees. This physical configuration produces a rotating electromagnetic field 

constantly in amplitude at the desired frequency 

• A non-pulsating and smooth torque is also obtained by using three-phase systems, 

which is a desirable feature in several applications.  

• It is also possible to have higher order electrical configurations such as 6-phase or 

9-phase machines, but these are very particular designs where there are high power 

requirements with voltage restrictions. However, the practical aspects of handling 

systems for more than three phases are difficult to overcome. 

The analysis of such systems makes necessary the existence of a three coordinates 

reference frame.  

A drawback for the analysis of the three-phase systems is that their oscillating nature may 

complicate the calculations. However, a three-phase balance system can also be 

represented by an orthogonal two-phase stationary system by means of the Clarke 

transformation as shown below: 

 [

𝛼
𝛽
𝛾
] =

2

3

[
 
 
 
 
 1 −

1

2
−

1

2

0
√3

2
−
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2
1

2

1

2
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2 ]
 
 
 
 
 

. [
𝑎
𝑏
𝑐
] (1) 

 

When the system is balanced, the 𝛾 quantities are zero, therefore the last row in the matrix 

is not necessary. Then: 

 [
𝛼
𝛽
0
] =

2

3
[
 
 
 1 −

1

2
−

1

2

0
√3

2
−

√3

2 ]
 
 
 

. [
𝑎
𝑏
𝑐
] (2) 

 

A stationary two reference system such as the 𝛼𝛽 system can be further transformed into 

a rotating reference system, where the magnitudes of both axes can be seen as fixed. This 

is done by means of the Park Transformation, which can be performed as indicated below: 

2 Theoretical Background 
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 [
𝑑
𝑞
0

] = [
cos(𝜔𝑡) sin(𝜔𝑡) 0

− sin(𝜔𝑡) cos(𝜔𝑡) 0
0 0 1

] . [

𝛼
𝛽
𝛾
] (3) 

 [

𝛼
𝛽
𝛾
] = [

cos (𝜔𝑡) −sin (𝜔𝑡) 0

sin (𝜔𝑡) cos (𝜔𝑡) 0
0 0 1

] . [
𝑑
𝑞
0

] (4) 

 

Combining both Clark and Park transformation, a full transformation from  

𝑎𝑏𝑐 to 𝑑𝑞 can be done in this way: 

 [
𝑑
𝑞
0

] =
2

3
[

cos (𝜔𝑡) cos (𝜔𝑡 − 2𝜋/3) cos (𝜔𝑡 + 2𝜋/3)

−sin(𝜔𝑡) −sin(𝜔𝑡 − 2𝜋/3) −sin(𝜔𝑡 + 2𝜋/3)
1/2 1/2 1/2

] . [
𝑎
𝑏
𝑐
] (5) 

 [
𝑎
𝑏
𝑐
] =

2

3
[

cos (𝜔𝑡) −sin (𝜔𝑡) 1
cos (𝜔𝑡 − 2𝜋/3) −sin(𝜔𝑡 − 2𝜋/3) 1

cos (𝜔𝑡 + 2𝜋/3) −sin(𝜔𝑡 + 2𝜋/3) 1
] . [

𝑑
𝑞
0

] (6) 

 

A graphical representation of the transformations can be seen in Figure 2.1. A unique set 

of three-phase  𝑎𝑏𝑐 quantities can be represented as a unique set of 𝛼𝛽 quantities and 𝑑𝑞 

quantities. The practical aspect of this is that any phenomenon can be analyzed and studied 

in the rotating frame 𝑑𝑞 and then transferred back to the stationary 𝑎𝑏𝑐 frame. 

2.2 Operating Principle of Voltage Source Converters  

The primary function of a voltage source converter or voltage source inverter is to convert 

a fixed DC voltage into a three-phase AC voltage with variable magnitude and frequency. 

The most basic inverter that produces a three-phase output voltage is called a two-level 

voltage source converter or voltage source inverter [1]. Once the energy is available at DC 

voltage in the DC link and AC voltage is needed at the output terminals, the conversion to 

the desired AC voltage is done by switching action performed sequentially in each of the 6 

switches, two pair of switches at the same time. The idea is to impress the existing voltage 

in the DC link on each phase in such a way that the waveform measured on each phase is 

shifted by 120 degrees. Of course, the energy stored in the DC voltage link is not infinite, 

it must be restored all the time by an external source. This DC link voltage can be the 

terminals of a battery, the endpoint of a passive or active rectifier, or the DC side of a 

speed drive. The switches can be of several types depending on the specific intended 

application (IGBT, for instance) but all of them have an essential characteristic; they can 

only conduct current in one direction. Therefore, when returning current to the source is 

necessary, diodes are considered. They are called free-wheeling diodes. This can be 

understood looking at Figure 2.2. 
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Figure 2.1: Relationship between 𝒂𝒃𝒄, 𝜶𝜷 and 𝒅𝒒 reference frame for a three-phase 

current. [Yngve Solbakken, 2016] 
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Figure 2.2: Grid Side Converter or Voltage Source Converter 

Whatever the waveform produced in the AC side of the inverter is, the best strategy to 

activate the switches is the one that produces the highest fundamental voltage in the AC 

side. The most basic strategy to produce AC from DC voltage is to activate each of the 

switches by half cycle (180 degrees) and phase shifted 120 degrees between phase. This 

strategy produces a fundamental phase peak voltage of 
2

𝜋
𝑉𝑑𝑐 (

2

𝜋
√

3

2
𝑉𝑑𝑐 ≈ 0.78𝑉𝑑𝑐)  if line rms 

voltage is considered, where 𝑉𝑑𝑐 is the DC link voltage. The switching sequence for the 6 

switches can be appreciated in Figure 2.3 and how the voltage 𝑉𝑎𝑏 is formed. 

The three-phase waveform created in this way is not sinusoidal and produces high 

harmonic components. For this reason, this method is no longer used and because the 

magnitude of the output voltage cannot be modified [2].  

2.3 Sinusoidal Pulse Width Modulation Method  

A better strategy to produce a sinusoidal waveform is to involve a sinusoidal control signal 

as a signal reference. Over the years, a method called sinusoidal pulse width modulation 

has become the most popular method to produce sinusoidal waveforms. There are other 

well-known PWM strategies; for instance, selective harmonic elimination (SHE) and space 

vector modulation (SPWM) [2]. Only the SPWM method will be briefly explained. 

The frequency of the output voltage is the same as the frequency of the sinusoidal signal 

reference (or also called modulating wave) and is controlled by means of a frequency 

modulation index which is defined as the quotient between the carrier wave frequency and 

the modulating wave frequency: 

 𝑚𝑓 =
𝑓𝑐𝑟
𝑓𝑚

 (7) 

The carrier frequency  𝑓𝑐𝑟 is also the switching frequency 𝑓𝑠𝑤  

Similarly, the amplitude of the output voltage is controlled by adjusting the amplitude 

modulation index, which is the quotient of the peak value of the sinusoidal signal reference 

and the peak value of the carrier wave: 

 𝑚𝑎 =
𝑉𝑚_𝑝𝑒𝑎𝑘

𝑉𝑐𝑟_𝑝𝑒𝑎𝑘

 (8) 

 

In the Figure 2.4, 𝑣𝑚𝐴, 𝑣𝑚𝐵, 𝑣𝑚𝐶 are  the three-phase modulating waves and 𝑣𝑐𝑟 is the 

triangular carrier wave. 
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Figure 2.3: Gate signal mapping and converter output voltage for the 180º method [2] 

For a linear increase of the fundamental output voltage, the amplitude modulation index 

should be less than one. In this case, the maximum value of the fundamental line rms 

voltage is 0.612𝑉𝑑𝑐. An increase of the modulation index is possible up to the theoretical 

maximum produced by the square wave of 0.78𝑉𝑑𝑐 , as shown in Figure 2.5. 

However, this operation is undesired because it creates difficulties with low order 

harmonics [1]. 

A good strategy to get a higher fundamental voltage is to increase the peak value of the 

fundamental component of the modulating wave without increasing the peak value of the 

modulating wave itself, adding a third harmonic component in such a way that the new 

peak value of the modulating wave including the third harmonic is less than the peak value 

of the carrier wave as shown in Figure 2.6. 

The new three-phase modulating wave would be [4]: 

 𝑉𝑚𝐴 = sin(𝜔𝑡) +
1

6
sin (3𝜔𝑡) (9) 

 
𝑉𝑚𝐵 = sin(𝜔𝑡 −

2𝜋

3
) +

1

6
sin (3𝜔𝑡) 

(10) 
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𝑉𝑚𝐶 = sin(𝜔𝑡 −

4𝜋

3
) +

1

6
sin (3𝜔𝑡) 

(11) 

 

The third harmonic cancels out in both line and phase voltages. If the reference signal is 

cosinusoidal instead of sinusoidal, the third harmonic is subtracted [5]. 

 

 

Figure 2.4: Sinusoidal pulse width modulation technique (SPWM). [1] 

 

 

Figure 2.5: Three phase inverter 
𝑽𝑳𝑳𝟏

(𝒓𝒎𝒔)

𝑽𝒅
 as a function of 𝒎𝒂 [3] 
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Figure 2.6: Modulating wave 𝒗𝒎𝑨 with 3rd harmonic injection. [1] 

The maximum increase obtained by this strategy is 15.5% additional voltage [1].   

Depending on the voltage, current and power level that must be converted to AC, there 

are several types of VSCs. For wind/solar inverters [6] and distributed generation [7] the 

most popular inverters are the ones described above. In the case of medium voltage and 

High Power industrial inverters, the neutral-point clamped (NPC) inverter [1] is a popular 

solution. The modular multilevel converters are the latest development in the field, and 

they are intended to produce very high voltages with minimal losses (between 0.9% to 

1%) and minimal or no harmonic filtering requirements [8]. They are applied on creating 

AC voltages from DC links or as part of VSC-HVDC links. 

Notwithstanding the popularity of the SPWM method, the control action necessarily causes 

delays that must be considered when the digital implementation is done, and other 

methods have also been explored. Hysteresis controllers have also been used as current 

controllers because of their simplicity and speed. The operating principle of the hysteresis 

controllers and their main features are explained in item 2.4. The hysteresis controller is 

the type of current controller that have been used in this thesis. 

2.4 Hysteresis Controllers 

Also called tolerant band controllers [3], hysteresis controllers are ones of the most basic 

control schemes available. It consists of a control that compares the measured signal with 

two references using hysteresis comparators, whose reference values are higher or lower 

than the measured signal by a value. The difference between the upper and lower reference 

value is called the hysteresis band. This hysteresis band can be fixed or adaptative. In the 

case of a fixed hysteresis band, when the measured signal (typically current in voltage 

source inverters) reaches the upper or lower limit, two switch actions are performed. For 

instance, considering a three-phase inverter with a hysteresis controller per phase, the 

activation of each hysteresis controller activates two of six switches. No more information 

than the hysteresis band is needed for control. The fixed hysteresis band applied over the 

measured signal causes that the switching action is not performed in a uniform way, as 

seen in Figure 2.7. 
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Therefore, the switching frequency of the hysteresis controller is not constant. In the case 

of a sinusoidal measured signal, the switching frequency is lower around the maximum or 

minimum value and higher when the measured signal is close to zero. 

In the ideal case, the hysteresis controller should activate the switching action as soon as 

the current has reached the upper and lower limit. However, this is not possible in the 

digital implementation. Therefore, the actual operation of the hysteresis controller looks 

like as shown in the figure below: 

 

Figure 2.7: An hysteresis current control for a three-phase two-level power converter: 
(A) operation principle and (B) block diagram. [9] 

The simplest hysteresis control is performed in the natural frame 𝑎𝑏𝑐, but it can also be 

performed in the 𝛼𝛽 (stationary reference frame) and 𝑑𝑞 frame (synchronous reference 

frame) as well. In these three cases, the hysteresis band would look different: 

 

 

Figure 2.8: Simulation results showing phase currents and error trajectories in the 
stationary reference frame and synchronous reference frame. [10] 

The idea behind an adaptative hysteresis band is to get a switching frequency as constant 

as possible. According to [11], the main advantages of adaptive hysteresis current 

controller are constant switching frequency of operation, better dc-bus voltage utilization, 
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simple filter design and low total harmonic distortion (THD) at the point of common 

coupling (PCC). In any case, the effort done on trying to get a switching frequency as 

constant as possible may negate the simplicity of the hysteresis controller as a concept.  

 

However, some applications where the risk of resonance due to the variable switching 

frequency is an issue [12] may need an adaptative hysteresis controller. 

 

When a fixed hysteresis band current controller is applied to a power inverter with an LCL 

filter, it should meet certain characteristics. The switching frequency of a power inverter 

should be as low as possible to limit the switching losses, improving the efficiency of the 

converter. The typical maximum standard limit for switching frequency for a power inverter 

is around 3 kHz [13]. In the case of a hysteresis controller, the design of the LCL filter 

should be such that the average switching frequency is about 3 kHz. For this case, a fixed 

hysteresis band of 0.1 p.u. is typically chosen. 

2.5 Design Criteria of an LCL filter 

The grid filter goal as part of a VSC is twofold; first, it gives the dominant inductive behavior 

necessary to the converter to operate properly when connected to the utility grid. Second, 

the inverter itself, independently of the modulation method used in the current and voltage 

controllers, generate harmonics that cannot be fed into the grid [6] and they must be 

filtered. Very strict requirements stated by international standards such as IEEE 519, [14, 

15], IEEE 929 and IEEE 1547 [16] pose limits on the harmonic level that can be fed into 

the grid at the point of common coupling. In the case of power converters, to limit the 

switching losses caused by semiconductor devices, low switching frequencies are used 

[13]. In these cases, the low order harmonics with high currents demand large and bulky 

inductors for filtering, which has an impact on the cost and the space required for it. In 

addition to this, the dynamic response may become poorer [6]. 

Typically, the standard requirements mentioned above makes necessary to use low pass 

filters to remove high order harmonics. Instead of an L filter, and LC filter may work, 

although this may leave the converter capacitor, with very low impedance at high 

frequencies, with no defense against harmonic produced somewhere else in the grid. A 

more efficient solution is to consider an LCL filter, i.e. an inductor in series with the 

converter, a capacitor in shunt and an additional inductor towards the grid as shown in 

Figure 2.9.  

According to [6], the LCL filter gives optimal sizes for inductor and capacitors. A 

representation of the Bode Plot of an LCL filter is shown in Figure 2.9: 

Something also important of an LCL filter is that provides attenuation of 60dB after its 

resonant frequency, which is always selected lower than the switching frequency, so it can 

filter the sideband voltage harmonics as well [6]. 

Several considerations must be taken into account to select the LCL filter parameters [6, 

14, 16], but a general guideline can be established considering all of them: 

• Limit the upper and lower limit of the converter side inductor by limiting the inductor 

current ripple and fundamental voltage drop on the inductors 

• Establish the upper limit of the capacitor value and voltage considering the 

necessary converter current to charge it for easy synchronization 

• Obtain the grid side inductor value by considering the resonant frequency of the 

converter with some margin and the harmonic restrictions in the grid side. 



32 

 

 

Figure 2.9: single phase representation of an LCL filter connected to the grid and its 

transfer functions 𝒀𝟏𝟏 =
𝒊𝟏

𝒗𝟏
⁄  and 𝒀𝟐𝟏 =

𝒊𝟐
𝒗𝟏

⁄  [17]. 

• Verify how the LCL will work with and without the active damping 

More detailed requirements are necessary for a full design of the converter with an LCL 

filter, such as consider the optimization of the weight of the inductors and capacitor [17] 

and DC link voltage [18], however the first set of values can be obtained in the following 

way: 

• Consider the magnitude of the capacitor impedance 10 times (10 p.u.) of the base 

impedance. This is to guarantee around 1.0 p.u. in the capacitor voltage when a 

0.1 p.u. converter current is used to charge it before synchronization and 

connection to the grid. This means: 

 𝐶 = 0.1
𝑃𝑅

𝜔1𝑉𝑔
2 (12) 

𝑃𝑅 is the converter rated output, 𝜔1 is the grid fundamental frequency, and 𝑉𝑔 is the 

grid voltage. 

• Limit the inductance voltage drop to 10% in operation, preferably 5% on each 

inductor as a first step. Otherwise, it is necessary to have a higher DC link voltage 

to guarantee current controllability, which leads to higher losses. [14]. This means 

that the converter side inductance is: 

 𝐿1 = 0.05
𝑉𝑁

√3𝐼𝑁
 (13) 

Other formulations such as the one proposed in [17] provide similar results. 
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• Calculate the resonant frequency of the LCL filter considering both inductances 

equal and verify if there is enough margin. The resonant frequency calculation 

should also include the grid impedance, and an estimation of its variation should be 

considered to assess its impact in the resonant frequency [6]. The resonant 

frequency calculation should be done with the following formula: 

 𝑓𝑟𝑒𝑠 =
1

2𝜋
√

𝐿1 + 𝐿2

𝐿1𝐿2𝐶
 (14) 

𝐿2 includes the grid side inductor value and the grid equivalent impedance. If, as a 

first approximation, the grid side inductance is considered equal to the converter 

side inductance, then  𝐿2 will be: 

 𝐿2 = 𝐿1 + 𝐿𝑔 (15) 

• The resonance frequency can be assessed considering the factor 𝐾𝑟𝑒𝑠:  

 𝐾𝑟𝑒𝑠 =
𝑓𝑟𝑒𝑠

𝑓𝑠
 (16) 

According to [14], the resonant frequency should be in the range of [10𝑓1,
1

2
𝑓𝑠] to 

avoid resonance problems in the lower and upper parts of the harmonic spectrum. 

Another author [17], consider the 𝐾𝑟𝑒𝑠 range of [0.2,0.4] for a power inverter.  

• According to [17], a good target harmonic current is 0.3% to fulfill the current 

harmonic limits of IEEE 519 for grids with a low short circuit ratio, but this target 

changes according to the requirements of the grid codes. This seems a rather strict 

requirement, therefore in this thesis, a limiting THD of 5% is considered in the 

capacitor voltage. 

When a hysteresis controller is considered, it should be checked that the average switching 

frequency does not exceed 3 kHz, the value considered a maximum value of a power 

converter to limit switching losses. The converter side inductor is the one that has more 

influence in the average switching frequency of a hysteresis controller. 

Additional detailed criteria for the design of an LCL filter can be found in several references 

[6, 14, 16-18]. 

2.6 PI Controllers in the 𝑑𝑞 and 𝛼𝛽 frame 

PI controllers are the most widely used controllers in the industry nowadays [19]. They are 

simple, and the rules to tune them are well understood. The general form of a PI Controller 

is:  

 𝐾𝑃 +
𝐾𝐼

𝑠
 (17) 

Analyzing closely this transfer function, it is observed that the PI controllers have a pole at 

zero frequency, which means that they cannot eliminate the steady-state error at the 

fundamental frequency [19].  

To eliminate this problem, a synchronously rotating 𝑑𝑞 transformation where the PI 

controller can be implemented is needed. A typical implementation of a PI controller as 

such is: 
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Figure 2.10: Typical block diagram of a current-controller VSI in the synchronously 
rotating (d-q) reference frame. [19] 

Considering only the integral part of the PI controller, a resonant controller without 

damping is obtained in the 𝛼𝛽 frame. The proof can be seen in [6]. 

The resonant controller with damping in the 𝛼𝛽 can be obtained considering an 

approximation of the integral part of the PI controller considering the function: 

 𝐺𝑑𝑞(𝑠) =
𝐾𝐼

1 +
𝑠
𝜔𝑐

 (18) 

 

Note that 𝜔𝑐 ≪ 𝜔, therefore the integral transfer function in the 𝑑 − 𝑞 frame can be obtained 

in this way:  

 𝐺𝑑𝑞(𝑠) =
𝐾𝐼𝜔𝑐

𝜔𝑐 + 𝑠
≈

𝐾𝐼𝜔𝑐

𝑠
 (19) 

 

This approximation makes easy to obtain the resonant controller in the 𝛼 − 𝛽 frame. 

Applying the transformation from 𝑑𝑞 to 𝛼𝛽 in the same way [6]: 

 𝐺𝛼𝛽
+ (𝑠) =

1

2
[

𝐺𝑑𝑞1 + 𝐺𝑑𝑞2 𝑗𝐺𝑑𝑞1 − 𝑗𝐺𝑑𝑞2

−𝑗𝐺𝑑𝑞1 + 𝑗𝐺𝑑𝑞2 𝐺𝑑𝑞1 + 𝐺𝑑𝑞2
] (20) 

 

 𝐺𝑑𝑞1 = 𝐺𝑑𝑞(𝑠 + 𝑗𝜔ℎ) (21) 

 𝐺𝑑𝑞2 = 𝐺𝑑𝑞(𝑠 − 𝑗𝜔ℎ) (22) 

 

 
𝐺𝑑𝑞1 + 𝐺𝑑𝑞2 =

𝐾𝐼𝜔𝑐

𝜔𝑐 + (𝑠 + 𝑗𝜔ℎ)

+
𝐾𝐼𝜔𝑐

𝜔𝑐 + (𝑠 − 𝑗𝜔ℎ)
 

(23) 
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 𝐺𝑑𝑞1 + 𝐺𝑑𝑞2 =
𝐾𝐼𝜔𝑐(𝑠 − 𝑗𝜔ℎ)

(𝑠 + 𝜔𝑐)
2 + 𝜔ℎ

2
+

𝐾𝐼𝜔𝑐(𝑠 + 𝑗𝜔ℎ)

(𝑠 + 𝜔𝑐)
2 + 𝜔ℎ

2
=

2𝐾𝐼𝜔𝑐𝑠

(𝑠 + 𝜔𝑐)
2 + 𝜔ℎ

2
≈

2𝐾𝐼𝜔𝑐𝑠

𝑠2 + 2𝜔𝑐𝑠 + 𝜔ℎ
2
 (24) 

 

 
𝑗𝐺𝑑𝑞1 − 𝑗𝐺𝑑𝑞2 = 𝑗

𝐾𝐼𝜔𝑐(𝑠 − 𝑗𝜔ℎ)

(𝑠 + 𝜔𝑐)
2 + 𝜔ℎ

2
− 𝑗

𝐾𝐼𝜔𝑐(𝑠 + 𝑗𝜔ℎ)

(𝑠 + 𝜔𝑐)
2 + 𝜔ℎ

2
=

2𝐾𝐼𝜔𝑐𝜔ℎ

(𝑠 + 𝜔𝑐)
2 + 𝜔ℎ

2

≈
2𝐾𝐼𝜔𝑐𝜔ℎ

𝑠2 + 2𝜔𝑐𝑠 + 𝜔ℎ
2
 

(25) 

 

 −𝑗𝐺𝑑𝑞1 + 𝑗𝐺𝑑𝑞2 = −(𝑗𝐺𝑑𝑞1 − 𝑗𝐺𝑑𝑞2) ≈ −
2𝐾𝐼𝜔𝑐𝜔ℎ

𝑠2 + 2𝜔𝑐𝑠 + 𝜔ℎ
2
 (26) 

 

The variable 𝜔ℎ is the harmonic frequency ℎ𝜔1. For the negative sequence, the expression 

is obtained by replacing 𝜔ℎ by −𝜔ℎ. Looking at the equations, only the non-diagonal terms 

are affected, they become the opposite for each sequence. 

The complete 𝛼𝛽 transfer function is obtained by using the following expression: 

 𝐺𝛼𝛽(𝑠) =
1

2
[𝐺𝛼𝛽

+ (𝑠) + 𝐺𝛼𝛽
− (𝑠)] (27) 

 

 𝐺𝛼𝛽(𝑠) =
1

2

[
 
 
 

2𝐾𝐼𝜔𝑐𝑠

𝑠2 + 2𝜔𝑐𝑠 + 𝜔ℎ
2

0

0
2𝐾𝐼𝜔𝑐𝑠

𝑠2 + 2𝜔𝑐𝑠 + 𝜔ℎ
2]
 
 
 

 (28) 

 

This is the integral part of the PI controller in the 𝛼𝛽 frame, which becomes a resonant 

controller with damping. 

Several authors, such as [20] have listed the limitations that the PI controllers have to 

control harmonics, for instance, the distortion of line currents when there are distorted 

voltages caused by background harmonics introduced into the system through the 

feedforward path. This harmonic distortion may trigger an LC resonance, especially in an 

LCL filter. The formula 28 proves that the P+Resonant controller in the 𝛼𝛽 frame is the 

equivalent of the PI controller in the 𝑑𝑞 frame. 

Several features are attributed to resonant controllers. [21] mentions that resonant 

controllers are capable of tracking sinusoidal references of arbitrary frequencies of both 

positive and negative sequences with zero steady-state error, being comparable to PI 

control in a synchronous reference frame. 

Other important features mentioned are the important saving of computational resources 

because of their lack of Park transformations, less sensitiveness to noise and error in 

synchronization, compensation of unbalance with a smaller number of regulators because 

of the ability to track both sequences. 

 The amount of applications where resonant controllers have been applied successfully is 

long [21]: active power filters, photovoltaic systems, wind turbines, controlled rectifiers, 

permanent magnet synchronous motors, induction drives, and fuel cells, and others. 
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According to [19], the Proportional Resonant Controller (PR Controller) introduces an 

infinite gain at a selected resonant frequency, eliminating in this way the steady state error 

at that frequency. This means that the property of introducing an infinite gain at zero 

frequency of the PI controller in the 𝑑𝑞 frame is equivalent to introduce an infinite gain at 

the resonant frequency in a PR controller in the 𝛼𝛽 frame. 

2.7 Resonant Controllers in the 𝛼𝛽 frame 

The general form of a resonant controller without damping is given by: 

 𝐺𝑃𝑅ℎ
(𝑠) = 𝐾𝑃ℎ

+ 𝐾𝐼ℎ

𝑠

𝑠2 + ℎ2𝜔1
2 (29) 

Where: 

𝐾𝑃ℎ
 is the proportional term and 𝐾𝐼ℎ

 is the resonant gain at frequency ℎ𝜔1. This controller 

gives an infinite gain at the resonant frequency ℎ𝜔1 when this is implemented in a closed 

loop. 

The Bode plots for a typical resonant controller with and without a proportional term are 

shown below: 

 

Figure 2.11: Bode Plot of R Controller and a P+R Controller for a gain 𝑲𝑷𝒉
= 𝟏. 𝟎 and 𝑲𝑰𝒉

=

𝟐𝟓𝟎, fundamental frequency 60 Hz 

See, for instance, this case: 

 

Figure 2.12: A closed-loop system. [22]. 
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A closed loop system whose close loop transfer function is: 

 
𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
 (30) 

 

If the resonant controller G(s), which is in the numerator and denominator, has a very high 

gain, will make that the output follows the input. This assures a good reference tracking. 

When several harmonics need to be tracked, the transfer function will be: 

 𝐺𝑃𝑅ℎ
(𝑠) = 𝐾𝑃ℎ

+ 𝐾𝐼1

𝑠

𝑠2 + ℎ2𝜔1
2 + ∑

𝐾𝐼ℎ
𝑠

𝑠2 + (𝜔1ℎ)2

ℎ=5,7,11,…,6𝑝±1

 (31) 

A typical Bode Plot for a resonant controller is shown in Figure 2.13. 

 

Figure 2.13: Bode Plot of R Controller and a P+Resonant Controller for a gain 𝑲𝑷𝒉
= 𝟏. 𝟎 

and 𝑲𝑰𝒉
= 𝟐𝟓𝟎 for fundamental frequency, and harmonics 5,7,11 

It is also possible to have a PI controller for the fundamental term and consider resonant 

controllers for the harmonic terms. In this case, the transfer function of the controller will 

be: 

 𝐺𝑃𝑅ℎ
(𝑠) = 𝐾𝑃 +

𝐾𝐼

𝑠
+ ∑

𝐾𝐼ℎ
𝑠

𝑠2 + (𝜔1ℎ)2

ℎ=5,7,11,…,6𝑝±1

 (32) 

The Bode plot would change in this case, having some infinite gain at DC, and this gain 

reduces when the frequency increases.  

A typical Bode Plot for a resonant controller with these features is Figure 2.14: 
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Figure 2.14: Bode Plot of PI + R Controller for a gain 𝑲𝑷 = 𝟏. 𝟎 , 𝑲𝑰 = 𝟏𝟎𝟎 for fundamental 

frequency and 𝑲𝑰𝒉
= 𝟐𝟓𝟎, for harmonics 5,7,11 

The damping term in the PR controller, such as the one presented in equation 36 helps to 

control the gain of the resonant term and avoid stability problems associated with the 

infinite gain. 

 𝐺𝑃𝑅ℎ
(𝑠) = 𝐾𝑃ℎ

+ 𝐾𝐼ℎ

𝑠

𝑠2 + 2𝜁ℎ𝜔1𝑠 + ℎ2𝜔1
2 (33) 

In this case, the Bode Plot for a resonant controller damping is shown in Figure 2.16: 

 

Figure 2.15: Bode Plot of a P+Resonant Controller for a gain 𝑲𝑷 = 𝟏.𝟎, 𝑲𝑰 = 𝟏𝟎𝟎 for 

fundamental frequency and 𝑲𝑰𝒉
= 𝟐𝟓𝟎, for harmonics 5,7,11 and a damping term 𝝃 = 𝟎. 𝟎𝟑 
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When several harmonics need to be tracked and to control the fundamental with a PI 

controller, the transfer function will be: 

 𝐺𝑃𝑅ℎ
(𝑠) = 𝐾𝑃ℎ

+
𝐾𝐼

𝑠
+ ∑

𝐾𝐼ℎ𝑠

𝑠2 + 2𝜁ℎ𝜔1𝑠 + (𝜔1ℎ)2

ℎ=5,7,11,…,6𝑝±1

 (34) 

In this case, the Bode Plot for a PI +R controller with damping is shown in Figure 2.16: 

 

Figure 2.16: Bode Plot of PI + Controller for a gain 𝑲𝑷 = 𝟏. 𝟎, 𝑲𝑰 = 𝟏𝟎𝟎, and 𝑲𝑰𝒉
= 𝟐𝟓𝟎 for the 

fundamental frequency, and harmonics 5,7,11 and a damping term 𝝃 = 𝟎. 𝟎𝟑 

From Figure 2.16, the damping term helps with the stability of the controller. The phase 

does not exceed 90°, which is well below the limit of 180°. 

When the delay compensation is considered, the resonant transfer function will be: 

 𝐺𝑃𝑅ℎ
(𝑠) =

𝐾𝐼ℎ[𝑠𝑐𝑜𝑠(𝜙ℎ) − ℎ𝜔1𝑠𝑖𝑛(𝜙ℎ)]

𝑠2 + 2𝜁ℎ𝜔1𝑠 + (𝜔1ℎ)2
 (35) 

 

The difference with the transfer function of the resonant controller is minimum and not 

much difference can be seen in the Bode diagram. However, something important happens 

with the phase angle. In the case of a transfer function without delay compensation, the 

Bode plot will be: 
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Figure 2.17: Bode plot of a resonant transfer function for several harmonics without 
compensation delay 

The phase angle is limited within +/-90 degrees, with enough margin with respect to the 

limit 180 degrees. In the case of the Bode plot for the transfer function considering the 

compensation delay of 4 samples (4𝜔1𝑇𝑠), the Bode plot will look like: 

 

Figure 2.18: Bode plot of a resonant transfer function for several harmonics with 
compensation delay 

A notable difference in the phase angle in the second case is that the phase angle reaches 

approximately +/-180 degrees. This is very close to the stability limit. 
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2.8 Low and high pass filters in the 𝑑𝑞 and 𝛼𝛽 frame 

In the same way as the PI controllers, a low pass filter implemented in the 𝑑𝑞 frame can 

also be transferred into the 𝛼𝛽 frame. The low pass filter in the 𝑑𝑞 frame is: 

 𝐿𝑃𝐹𝑑𝑞(𝑠) =
1

1 + 𝑇𝐿𝑃𝑠
 (36) 

Applying the same expression (20), the equivalent  𝑑𝑞 low pass filter in the 𝛼𝛽 frame will 

be: 

 𝐿𝑃𝐹𝛼𝛽(𝑠) =

[
 
 
 

1 + 𝑇𝐿𝑃𝑠

(1 + 𝑇𝐿𝑃𝑠)2 + (𝜔1𝑇𝐿𝑃)2
0

0
1 + 𝑇𝐿𝑃𝑠

(1 + 𝑇𝐿𝑃𝑠)2 + (𝜔1𝑇𝐿𝑃)2]
 
 
 

 (37) 

The high pass filter can be obtained by subtracting the low pass filter transfer function 

from 1, without considering the non-diagonal terms: 

 𝐻𝑃𝐹𝛼𝛽(𝑠) = 1 − 𝐿𝑃𝐹𝛼𝛽(𝑠) =

[
 
 
 
 
𝑇𝐿𝑃𝑠(1 + 𝑇𝐿𝑃𝑠) + (𝜔1𝑇𝐿𝑃)2

(1 + 𝑇𝐿𝑃𝑠)2 + (𝜔1𝑇𝐿𝑃)2
0

0
𝑇𝐿𝑃𝑠(1 + 𝑇𝐿𝑃𝑠) + (𝜔1𝑇𝐿𝑃)2

(1 + 𝑇𝐿𝑃𝑠)2 + (𝜔1𝑇𝐿𝑃)2 ]
 
 
 
 

 (38) 

 

This is important because when an equivalent control loop in the 𝛼𝛽 frame is needed, all 

components must be available in the same coordinate frame. 

The loss pass filter and high pass filter in the 𝑑𝑞 frame are similar to a bandpass filter 

and stopband filter in the 𝛼𝛽 frame respectively, as seen in the picture below: 

 

Figure 2.19:  𝒅𝒒 frame Low pass filter and high pass filter  transferred to the  𝜶𝜷 frame.  
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2.9 Harmonics of positive, negative and zero sequence 

If the system is balanced, no triplen or zero sequence harmonics should be present, 

because they are the zero sequence harmonics. However, a resonant controller for zero 

sequence harmonics could be also added to try to eliminate those harmonics. 

The harmonics of interest are the 6𝑝 ± 1 also called 3ℎ + 1, 3h + 2, as described in Table 2.1: 

Sequence Harmonic order Rotation 

+ 1st  7th  13th  19th  … 3h+1 Forward 

0 3rd  9th  15th  21st … 3h No rotation 

- 5th  11th  17th  23rd  …3h+2 Reverse 

Table 2.1: Harmonic Order and sequence (note: even orders not considered) [23]. 

Both positive and negative sequence harmonics need to be controlled. Fortunately, with 

only one resonant controller both types of harmonics can be handled at the same time. 

2.10 Impact of PR Controllers without damping and with 

damping in the tracking of negative sequence components. 

Resonant controllers with damping and without damping can track negative sequence 

components if there is a resonant controller for those negative sequence components. As 

described in equations 27 and 28, the coupling between negative and positive sequences 

are eliminated which means that if resonant controllers are implemented in both 𝛼 and 𝛽 

frames, the resonant controller will track also steady state unbalanced voltages/currents. 

If it is also required that the controller eliminates unbalanced voltages, it should also 

contain a resonant controller for the fundamental frequency. 

2.11 Nyquist stability criterion 

Nyquist diagram is a polar plot of a transfer function 𝐻(𝑗𝜔), which means that is a plot of 

the magnitude of 𝐻(𝑗𝜔) versus the phase angle of 𝐻(𝑗𝜔), when 𝜔 is varied from zero to 

infinite [22]. In this diagram, the angle is measured positive when it rotates 

counterclockwise and negative when it rotates clockwise from the positive real axis. 

The Nyquist stability criterion determines the stability of a closed-loop system from its 

open-loop frequency response and open-loop poles. The Nyquist stability criterion relates 

the open loop frequency response 𝐺(𝑗𝜔)𝐻(𝑗𝜔) to the number of zeros and poles of 1 +

𝐺(𝑠)𝐻(𝑠) that lie in the right half plane. The Nyquist stability criterion is based on the theory 

of complex variables.  

Considering that a transfer function of 1 + 𝐺(𝑠)𝐻(𝑠) has both zeros and poles and is a linear 

control system, three possibilities can occur [22]: 

1. There is no encirclement of the −1 + 0𝑗 point. This implies that the system is stable if 

there are no poles of 𝐺(𝑠)𝐻(𝑠)  in the right-half s plane; otherwise, the system is unstable.  
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2. There are one or more counterclockwise encirclements of the −1 + 0𝑗 point. In this case 

the system is stable if the number of counterclockwise encirclements is the same as the 

number of poles of 𝐺(𝑠)𝐻(𝑠) in the right-half s plane; otherwise, the system is unstable. 

3. There are one or more clockwise encirclements of the −1 + 0𝑗 point. In this case, the 

system is unstable. 

2.12 Stability margins for a robust design  

For the design of a control system, the plant model may have some uncertainties in its 

parameters or the system characteristics such as the frequency, may change, and the 

control system must continue operating. This is possible if the stability of the closed loop 

is maintained when the plant model uncertainties appear. A closed control loop will be 

termed ¨robust¨ if the stability is maintained when uncertainties in the model appear [24]. 

To evaluate how far is the critical point from the locus of the open loop transfer function, 

four elements help in the task and they are [24]: 

• Gain margin 

• Phase margin 

• Delay margin 

• Modulus margin 

Their definitions can be better understood with the help of Figure 2.20: 

 

Figure 2.20: Gain, phase and modulus margins. [24] 

2.12.1 Gain Margin 

The gain margin ∆𝐺 is equal to the inverse of the open loop transfer function when the 

phase shift equals  ∠𝜙(𝜔) = −180°. Then: 

 
∆𝐺 =

1

|𝐻𝑂𝐿(𝑒
−𝑗𝜔180°)|

 (39) 

If the Nyquist plots cross the x-axis several times for the multiples of −180°, then the gain 

margin is given by the minimum value. This criterion is important in the case of resonant 

controllers because this type of controllers have circumferences as loci as will be explained 

in Section 3. 

2.12.2 Phase margin 

The phase margin ∆𝜙  is the phase difference between the phase of the OL at the crossover 

frequency and −180°. This means:  
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 ∆𝜙 = 180° − ∠𝜙(𝜔cr) (40) 

𝜔cr is called crossover frequency and is the frequency when the HOL crosses the unit circle. 

This is the same frequency that is seen in the Bode diagram when the HOL gain becomes 

1.0 or 0dB in the Bode plot. In cases where the HOL crosses the unit circle at several 

frequencies 𝜔𝑐𝑟
𝑖  several phase margins will be obtained. In that case, the system phase 

margin [24] is defined as: 

 ∆𝜙 = 𝑚𝑖𝑛𝑖𝜙𝑖 
(41) 

2.12.3 Delay margin 

This is an important margin since the time delay introduces a phase shift proportional to 

the frequency 𝜔. For a frequency 𝜔0, the phase shift introduced by a time delay 𝜏 is: 

 ∆𝜙 (𝜔0 ) = −𝜔0 𝜏 (42) 

This phase shift can be also expressed as ¨time delay margin¨, which can be interpreted 

as the maximum increase in the time delay in the open loop system before the closed-loop 

system becomes unstable. As the time delay margin, the phase shift is: 

 ∆𝜏 =
∆𝜙 

𝜔cr

 (43) 

 

In the cases where the HOL crosses the unit circle at several frequencies, the delay margin 

is the minimum of the time delay obtained at those frequencies. Then: 

 ∆𝜏 = min
∆𝜙𝑖 

𝜔𝑐𝑟
𝑖

 (44) 

[24] points out that a good phase margin does not guarantee a good delay margin. This is 

the case when the delay margin is low even if the phase margin is enough. 

2.12.4 Modulus margin 

This is perhaps the most interesting of all margins and will be used in detail later in this 

thesis. As shown in Figure 2.15, the modulus margin is defined as the radius of the circle 

centered in the instability point (-1, 0j) and the open loop transfer function 𝐻𝑂𝐿(𝑧
−1) [24]. 

The radius is tangent to the  𝐻𝑂𝐿(𝑧
−1),  this also means that is the minimum distance 

between the instability point and the 𝐻𝑂𝐿(𝑧
−1).  

The typical values for stability margin in a robust design are [24]: 

• gain margin: ∆𝐺 ≥ 2  (6 dB) [minimum:1.6 (4 𝑑𝐵)] 

• phase margin: 30° ≤ ∆𝜙 ≤ 60°  

• delay margin: ∆𝜏 =
∆𝜙

𝜔𝑐𝑟
≥ 𝑇𝑠  [minimum: 0.75𝑇𝑠] 

• modulus margin: ∆𝑀 ≥ 0.5  (-6 dB) [minimum: 0.4 (−8 𝑑𝐵)] 
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2.12.5 Sensitivity function, its meaning and its relationship with 

modulus margin 

When a system has multiple inputs and multiple outputs (MIMO), multiple outputs and one 

single input, and the system is linear, it is possible to analyze the impact of one of the 

inputs independent of each other. Later, the outputs can be added, and the complete 

output is obtained [22]. 

For instance, in the case of a closed loop subjected to a disturbance, the disturbance can 

be treated as an input, as shown in Figure 2.21: 

 

Figure 2.21: Close loop system with a disturbance as input. [22] 

The transfer function between the output and the input R is: 

 
𝐶𝑅(𝑠)

𝑅(𝑠)
=

𝐺1(𝑠)𝐺2(𝑠)

1 + 𝐻(𝑠)𝐺1(𝑠)𝐺2(𝑠)
 (45) 

 

The transfer function between the output and the disturbance is: 

 
𝐶𝐷(𝑠)

𝐷(𝑠)
=

𝐺2(𝑠)

1 + 𝐻(𝑠)𝐺1(𝑠)𝐺2(𝑠)
 (46) 

 

The added effect of both inputs is: 

 𝐶𝑅(𝑠) + 𝐶𝐷(𝑠)

𝐷(𝑠)
=

𝐺1(𝑠)𝐺2(𝑠) + 𝐺2(𝑠)

1 + 𝐻(𝑠)𝐺1(𝑠)𝐺2(𝑠)
 (47) 

 

If the disturbance is applied directly into the output, 𝐺2(𝑠) = 1 and the transfer function 

between the output and the disturbance becomes: 

 𝑆𝑦𝑝 =
𝐶𝐷(𝑠)

𝐷(𝑠)
=

1

1 + 𝐻(𝑠)𝐺1(𝑠)
=

1

1 + 𝐻𝑂𝐿

 (48) 

 

This is the system’s response only to the disturbance and this is called ¨output sensitivity 

function¨ [24]. 

If a perfect rejection of the disturbance is required, 𝑆𝑦𝑝 should be zero.  

𝑆𝑦𝑝 is also called error rejection [13] or disturbance rejection [24]  

Looking at the equation 48, the relationship between the output sensitivity transfer 

function, open loop transfer function, and modulus margin is: 
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Figure 2.22: Relationship between 𝑺𝒚𝒑 ,∆𝑴, the 𝑯𝑶𝑳 in the z plane and the instability point 

 𝑆𝑦𝑝 =
1

|1 + 𝐻𝑂𝐿|
=

1

∆𝑀
 (49) 

2.13 Classical Tuning of PI Controllers 

There are several ways to select the parameters 𝐾𝑃   and 𝐾𝐼 in a PI controller, being the 

most common [5]: 

• Utilizing Bode-plots where a classic criterion is that the open loop transfer function 

will have a gain margin of at least 6 dB and a phase margin of 45 degrees. 

• Pole location 

• Use of criterion as Modulus optimum and Symmetric optimum for the synchronous 

reference frame. 

The classic criteria to assess the stability of resonant controllers is to achieve a phase 

margin of 45° and gain margin of 6 dB, in the same way as any other controllers.  

2.14 Discretization of transfer functions 

When a control loop is implemented into a computer or similar automatic processing device 

for its use, the computer performs calculations according to the synchronization clock 

frequency. The computer receives the discrete signal 𝑒(𝑘) and produces the signal 𝑢(𝑘). 

This signal 𝑢(𝑘), which is a discrete series of pulses, is kept constant up to next pulse by 

means of a zero-order hold (ZOH) implementation. This modified signal is sent to the 

process. Another analog quantity measured from the process plant is discretized by means 

of the analog to digital converter (ADC), so the computer can understand and provides a 

command to the system. A graphical description is given in Figure 2.23. 
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Figure 2.23: Digital control system and operation of the ADC, DAC and ZOH. Based on 
[24]  

The ZOH implementation can be constructed by the difference of two unit steps shifted by 

one time sample, as shown in Figure 2.24. 

 

Figure 2.24: Construction of the zero-order hold. Based on [24] 

The zero-order hold impact on how to handle the plant transfer function in the digital 

domain is essentially adding the expression in cascade with the original transfer function: 

 𝐻𝑍𝑂𝐻(𝑠) =
1 − 𝑒𝑠𝑇𝑠

𝑠
 (50) 

 

The global continuous transfer function will be: 

 𝐻′(𝑠) =
1 − 𝑒𝑠𝑇𝑠

𝑠
𝐻(𝑠) (51) 

 

To transfer the effect of the ZOH into the z transform, including the computational delay 

of one sample (𝑇𝑠), it should be done in this way: 

 𝐻(𝑧) = 𝑧−1𝑍 {𝐿−1 [
1 − 𝑒−𝑠𝑇𝑠

𝑠
𝐻(𝑠)]} (52) 

2.14.1 Laplace transform, z transform, delta operator and w 

transform 

The continuous transfer function in s domain cannot be directly applicable when a discrete 

implementation is necessary.  
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In order to study the continuous time models in the frequency domain, a periodic input of 

the complex exponential type has been used [24]: 

 𝑒𝑗𝜔𝑡 = cos(𝜔𝑡) + 𝑗𝑠𝑖𝑛(𝜔𝑡) (53) 

Which corresponds to the relationship 𝑠 = 𝑗𝜔. 

This is done considering only the steady-state periodic signals, such as the AC signals 

produced for electrical machines or electronic systems. If also the transitory states are to 

be studied, it is better to consider a more general and complex s variable of the form 𝑠 =

𝜎 + 𝑗𝜔. If a continuous time signal is to be measured for control purposes, this is done 

periodically as well at sampling intervals of 𝑡 = 𝑘𝑇𝑠, where 𝑇𝑠 is the sampling time. These 

measured quantities are described as impulse sampling and, in this case, the z and s 

variables are related by the equation [24]: 

 𝑧 = 𝑒𝑠𝑇𝑠 (54) 

The variable sigma 𝜎 must be <0 (left half of the s plane) so the system is stable. Under 

this condition, the whole left s plane is transferred into the unit circle in the z plane. 

 𝑧 = 𝑒(𝜎+𝑗𝜔)𝑇𝑠 ≤ 1 (55) 

Sometimes, to get better numerical properties in the z plane, and more efficient 

implementation in controllers with limited process capacity an additional transformation is 

necessary and is called single-sided delta transform [25]: 

 𝑧 = 1 + 𝛾∆ (56) 

The value of ∆ is adjustable depending on the specific case of digital implementation and 

is considered as a first estimation ∆= 𝑇𝑠.  

In order to use the well-developed frequency response methods to the analysis and design 

of control systems based on Bode plots, an additional transformation is necessary. This is 

called a bilinear transformation, and is defined in the following way [26]: 

 𝑧 =
1 +

𝑇𝑠

2
𝑤

1 −
𝑇𝑠

2
𝑤

 (57) 

 𝑤 =
2

𝑇𝑠

𝑧 − 1

𝑧 + 1
 (58) 

The frequency in the w plane is distorted in relation with the real frequency 𝜔 and is called 

𝜈 such that 𝑤 = 𝑗𝜈. Therefore, a transformation must be done once the design of the control 

discrete system is done in the w plane, to get the desired frequency in the s domain [26]: 

 𝜈 =
2

𝑇𝑠

tan (
𝜔𝑇𝑠

2
) (59) 

This distortion is not severe for small values of 𝜔𝑇𝑠, where the approximation 

 𝜈 ≈ 𝜔 

 
(60) 

Is valid. A graphical description of the stability regions of the continuous Laplace plane, z 

plane, shift plane 𝛾, and w plane is given in Figure 2.24. 
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Figure 2.25: Stability regions/mapping of continuous Laplace plane, z plane, discrete 
delta and w planes. Based on [24, 25]  

A full description of z and w transformations and their applications can be found in [24] 

and [26]. 

2.14.1 Prewarped Tustin Method 

In order to avoid degradation of the operation of the resonant controller because of the 

resonant frequency shifting, the appropriate discretization method should be chosen. 

Several references recommend the use of the Tustin pre-warped method, such one of the 

methods that have the desired mapping and frequency properties. It consists of the 

substitution of s variable with the following expression: 

 𝑠 =
ℎ𝜔1

𝑡𝑎𝑛 (
ℎ𝜔1𝑇𝑠

2
)

𝑧 + 1

𝑧 − 1
 (61) 

Or 

 𝑠 =
𝜔

tan (
𝜔𝑇𝑠

2
)

𝑧 + 1

𝑧 − 1
 (62) 

In a more general way. 

The use of this transformation has the advantage that the frequency in the continuous 

and discrete planes are the same and therefore no additional transformations are 

necessary. 

A good summary of the diverse discretization methods and their impact in the stability of 

the digital resonant controllers without damping is available in [27]. 

2.15 Frequency adaptation of digital resonant controllers 

The final implementation of a controller of any type in a microprocessor is done by 

obtaining the discrete version (digital version) of this, which will be programmed into the 

processor´s memory. The discretization is essentially an approximation of the continuous 

solution that can be implemented sequentially in a microprocessor. This approximation is 

done mathematically by converting the transfer function from the Laplace domain to the Z 

domain. 

There are different ways of doing this transformation, and the suitability of them depends 

on the intended use of the discrete version. The discretization involves sampling time, the 

accuracy of tracking, modification of the pole and zero placements, time delays, as well as 

the computational burden required to process the signals in a reasonable time. The 

modification of the location of zeros and poles because of the transformation, as well as 

the stability properties of the system changes once the discrete transformation is 
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performed. To mitigate the negative effects that these changes may have in the controller, 

error compensation strategies or delay compensation strategies are used. 

These effects require some treatment, otherwise, the perfect tracking expected is not 

achieved and, the stability of the implementation may be compromised. It might happen 

that the system is inherently stable, but an inappropriate discrete implementation produces 

an unstable performance. [28]. 

As it can be seen in Figure 2.26, a small displacement of the resonant frequency away from 

the desired point changes severely the gain desired, compromising the tracking of the 

resonant frequency. 

 

Figure 2.26: Effect of displacement of the resonant frequency. [27] 

Several discretization methods have been proposed, such as the ones summarized in [27]. 

Besides the accuracy, the computational burden is also a consideration, because of its 

impact on the speed of the controller. 

Despite the interesting development of numerical methods for an ideal resonant controller, 

as mentioned by Teodorescu [20], the ideal resonant controllers have problems with 

stability, due to infinite gains at resonant points. That instability can be corrected with a 

damping term. With damping, the gain is finite but still high enough to enforce small steady 

state error [20]. 

The question of how large the damping factor of the resonant controller could be answered 

thinking how large the frequency variation should be such that the controller can operate 

without significant deterioration of its high gain features. Reference [19] recommends a 

damping factor of 𝜁 = 0.01 whereas [29] recommends a range for 𝜔𝑐 = 2𝜁𝜔1 of [5-15] rad/s. 

This means, for 5 rad/s: 

𝜁 =
𝜔𝑐

2𝜔1

=
5

2 ∗ 377
= 0.0066 

For 𝜔𝑐=15 rad/s, the damping factor is 𝜁 ≈ 0.02. 
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2.16 Discretization Methods for Resonant Controllers without 

damping 

Two integrator discretization methods seem to be the most popular among the available 

discretization methods because of their suitability for frequency adaptation with low 

requirement of computational capability [27]. 

One of the discretization methods evaluated in this thesis is proposed in [27]. This 

discretization method has already been applied in a previous master thesis as well [15]. It 

will be explained in Section 2.18 that the delay compensation strategy is dependent on the 

parameters of the plant model which means that the discretized version of the plant should 

be obtained. 

The inaccuracies caused by the discretization methods can be evaluated based on the 

following criteria: 

• Effect on the location of resonant poles 

• Effect on zeros location or system delay 

• Computational burden 

The block diagram of the continuous resonant controller transfer function (equation 29) of 

order h is shown in Figure 2.27: 

 

Figure 2.27: Block diagram of a continuous resonant controller based on two integrators. 
[21] 

Being 𝜔1 the fundamental frequency. To consider the delay compensation due to 

computation, modulation, and passive filters, a phase lead should be introduced in the 

vicinity of the resonant frequency ℎ𝜔1 of the resonant controller ([21] and previous 

authors) with the following expression: 

 𝐺𝑃𝑅ℎ

𝑑 (𝑠) = 𝐾𝑃ℎ
+ 𝐾𝐼ℎ

𝑠𝑐𝑜𝑠(𝜙ℎ
∗) − ℎ𝜔1sin (𝜙ℎ

∗)

𝑠2 + ℎ2𝜔1
2  (63) 

 

(𝜙ℎ
∗) is the target leading angle, i.e. the angle needed to compensate the system delay. In 

the continuous domain, 𝐺𝑃𝑅ℎ

𝑑 (𝑠) satisfies 𝜙ℎ = 𝜙ℎ
∗ . This correction in the transfer function of 

the resonant controller allows an improvement in the stability of the system. The block 

diagram for this corrected scheme is shown in Figure 2.28: 
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Figure 2.28: Block diagram of a continuous resonant controller based on two integrators 
with system delay compensation. [21] 

A good discretization that implements the best features of the forward/backward Euler 

method for accurate pole location and impulse invariant method for less phase lag in a 

single expression has been proposed in [21]. The proposed discrete version of the resonant 

controller is: 

 
𝐺𝑃𝑅ℎ

𝑐𝑑 (𝑧) = 𝐾𝑃ℎ
+ 𝐾𝐼ℎ

𝑇𝑠

𝑧−1𝑐𝑜𝑠(ℎ𝜔1𝑇𝑠 + 𝜙ℎ
∗) − 𝑧−2𝑐𝑜𝑠(𝜙ℎ

∗)

1 − 2𝑧−1 (1 −
𝐶ℎ𝑇𝑠

2

2
) + 𝑧−2

 
(64) 

 

Being 𝐶ℎ an expression derivated from the Taylor expansion of 𝑐𝑜𝑠(ℎ𝜔1𝑇𝑠): 

 𝐶ℎ = ∑
(−1)𝑛+1

(2𝑛)!
(ℎ𝜔1𝑇𝑠)

2𝑛
𝑘/2

𝑛=1
𝑇𝑠

−2 (65) 

     

Being k even values. The larger the terms included in h, the higher the accuracy of the 

method. 

The block diagram for the corrected expression is shown in Figure 2.29: 

 

Figure 2.29: High performance proposed implementation of PR controllers based on two 
integrators, included resonant pole correction and accurate frequency adaptation. [13] 
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2.17 Discretization Methods for Resonant Controllers with 

damping 

The resonant controller is, in fact, a band-pass filter of second-degree. Therefore, a 

realization structure suitable for filters is the most convenient way to represent digitally 

the resonant controller. Of all available filter realization structures, according to several 

references [25, 30, 31] the filter type IIR, Direct Form II transposed (DFIIt) is 

recommended as the most appropriate structure.  

The digital version of the resonant controller with damping and no delay compensation 

using the pre-warped Tustin bilinear transform, considering the DFIIt version of the digital 

filter is given as [32]: 

 𝐺𝑃𝑅ℎ
(𝑧) =

𝑏0 + 𝑏1𝑧
−1 + 𝑏2𝑧

−2

1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2
 (66) 

Where the coefficients are given by: 

 𝑔 =
𝐾𝐼ℎ

2ℎ𝜔𝑟𝑒𝑠

[
sin (ℎ𝜔𝑟𝑒𝑠𝑇𝑠)

1 + 𝜁sin (ℎ𝜔𝑟𝑒𝑠𝑇𝑠)
] (67) 

 𝑎1 = −
2cos (ℎ𝜔𝑟𝑒𝑠𝑇𝑠)

1 + 𝜁sin (ℎ𝜔𝑟𝑒𝑠𝑇𝑠)
 (68) 

 𝑎2 = −
1 − 𝜁sin (ℎ𝜔𝑟𝑒𝑠𝑇𝑠)

1 + 𝜁sin (ℎ𝜔𝑟𝑒𝑠𝑇𝑠)
 (69) 

 𝑏0 = 𝐾𝑃 + 𝑔 (70) 

 𝑏1 = K𝑃𝑎1 (71) 

 𝑏2 = K𝑃𝑎2 − 𝑔 (72) 

 

 

Figure 2.30: Block diagram for a Direct Form transposed digital structure DFIIt [25] 

When better numerical properties are required to minimize the computational power and 

to get a faster operation, a low word length is required. A word length or machine word 

length in digital processing is the normal or preferred size number of bits used in a 

particular computer architecture, i.e. the number of bits that the processor or computer 

can process at a time. In this case, the delta operator is used and is defined as [33]: 

 𝛿 =
𝑧 − 1

∆
 (73) 
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In this case, ∆ is an optimization parameter and ∆≤ 1. It is important to mention that the 

discretization has a consequence of a deterioration of the signal, which can be observed in 

the Bode diagram as a deviation of the gain and phase deviation as in the Figure 2.26. 

In this case, the delta operator gives a better precision which is observed as a digital 

implementation closer to the continuous transfer function.  

The discretized transfer function considering the delta operator is: 

 
𝐺𝑃𝑅ℎ

(𝑠) =
𝛽0𝛿

2 + 𝛽1𝛿 + 𝛽2

𝛿2 + 𝛼1𝛿 + 𝛼2

 (74) 

Where the coefficients are: 

 𝛽0 = 𝑏0 (75) 

 
𝛽1 =

2𝑏0 + 𝑏1

∆
 (76) 

 
𝛽2 =

𝑏0 + 𝑏1 + 𝑏2

∆2
 (77) 

 𝛼0 = 1 
(78) 

 
𝛼1 =

2 + 𝑎1

∆
 (79) 

 
𝛼2 =

1 + 𝑎1 + 𝑎2

∆2
 (80) 

If a discrete model with delay compensation is necessary, [30] provides a discrete 

implementation with a delta operator considering ∆= 1 and a transfer function as shown 

below: 

𝐺𝑃𝑅ℎ
(𝑠) =

𝑏0𝛿
2 + 𝑏1𝛿 + 𝑏2

𝛿2 + 𝑎1𝛿 + 𝑎2

 

Where the coefficients are: 

 
𝑟ℎ =

1

1 +
𝜁

2ℎ𝜔1
sin (ℎ𝜔1𝑇𝑠)

 (81) 

 
𝐾ℎ

′ =
𝐾ℎ

2ℎ𝜔1

 (82) 

 𝑏0 = 𝐾ℎ
′ [𝑠𝑖𝑛(ℎ𝜔1𝑇𝑠 + 𝜙ℎ) − 𝑠𝑖𝑛(𝜙ℎ)] (83) 

 𝑏1 = 𝐾ℎ
′ [3𝑠𝑖𝑛(ℎ𝜔1𝑇𝑠 + 𝜙ℎ) − 4𝑠𝑖𝑛(𝜙ℎ) − 𝑠𝑖𝑛(ℎ𝜔1𝑇𝑠 − 𝜙ℎ)] (84) 

 𝑏2 = 𝐾ℎ
′ [2𝑠𝑖𝑛(ℎ𝜔1𝑇𝑠 + 𝜙ℎ) − 4𝑠𝑖𝑛(𝜙ℎ) − 2𝑠𝑖𝑛(ℎ𝜔1𝑇𝑠 − 𝜙ℎ)] (85) 

 𝑎1 = 2[1 − 𝑟ℎcos (ℎ𝜔1𝑇𝑠)] (86) 

 𝑎2 = 2𝑟ℎ[1 − 𝑟ℎcos (ℎ𝜔1𝑇𝑠)] (87) 
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2.18 Tuning Methods for resonant controllers 

Different methods to tune a resonant controller have been proposed for several authors, 

and they are based on different criteria. A small summary of the ones reviewed during the 

development of this thesis is given below: 

• [13] proposed to evaluate and optimize the proximity to instability using Nyquist 

diagrams, and the sensitivity function. 

• [30] proposed maximum values of 𝐾𝑃𝑇
 and 𝐾𝑖ℎ for a P+R controller in a current 

control closed loop with a plant model of an inductance. 

• [34] presented a method to avoid destabilization of a poorly damped grid and/or 

input filter resonances, particularly when the converter time delay is not negligible. 

The proposal is to make the converter´s input admittance passive. 

• [35] proposed a controller parameter design method, based on the system error 

transfer function to extend the stable region of the controller. 

• [36] proposed to use the weighted average value of the currents flowing through 

the two inductors of the LCL filter as feedback to the current PR regulator. 

• [37] proposed the use of a direct discrete-time pole placement strategy from the 

classical control theory using transfer functions and involving two extra filters to 

enhance the performance of the resonant controller. 

• [42] mentioned that it could be desirable to tune the harmonic gains proportionally 

to its percentage of THD to minimize the total error convergence rate. 

One general idea that can be traced across all references is the presence of a plant model 

that is approximated as an inductance. Also, most of the references propose solutions 

based on current control loops. 

2.19 Tuning criteria for PR Controllers without damping 

The authors in [13] proposed a tuning criterion for current controllers using the Nyquist 

diagram and the output sensitivity function. It is based in maximization of the distance of 

the open loop transfer function to the instability point 𝐷(𝑧) and the minimization of the 

sensitivity peak 1 𝜂⁄  at each frequency in the Nyquist diagram. It also combines this criterion 

with the maximum 𝐾𝑃𝑇
 that can be obtained to limit the interference of the commutation 

harmonics with the current control. 

The voltage source converter analyzed in [13] is shown below: 
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Figure 2.31: Current-controlled VSC supplying a voltage source (or equivalent) through a 
low-pass filter. Other control inputs are omitted for clarity. [13] 

The authors in [13] analyzed the LCL filter, considering it as L filter for a range of 

frequencies below the resonant frequency 𝑓𝑟𝑒𝑠. In this case, the block diagram of the LCL 

filter, when modeled as an L filter is shown below: 

 

Figure 2.32: Block diagram of an LCL filter. [13] 

The plant transfer function of the simplified system is: 

 𝐺𝐿(𝑠) =
𝐼(𝑠)

𝑉𝑐(𝑠)
=

1

𝑠𝐿𝐹 + 𝑅𝐹
 (88) 

 

 

Figure 2.33: Block diagram of current control close-loop in stationary frame. [13] 
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The discrete-time transfer function equivalent to the plant in Figure 2.33 without neglecting 

the delays, the computational delay 𝑒−𝑠𝑇𝑠 is substituted by 𝑧−1 and the PWM block was 

substituted by a zero-order hold (ZOH) is:  

 𝐺𝑃𝐿(𝑧) = 𝑧−1𝑍 {𝐿−1 [
1 − 𝑒−𝑠𝑇𝑠

𝑠
𝐺𝐿(𝑠)]} =

𝑧−2

𝑅𝐹

1 − 𝜌−1

1 − 𝑧−1𝜌−1
 (89) 

Where 𝜌 = 𝑒
𝑅𝐹𝑇𝑠
𝐿𝐹 . 

The ZOH is claimed to be a very good approximation in the case of a triangular carrier 

waveform [13]. 

The whole method is based on the fact that the transfer function of the resonant controller 

without damping for each harmonic has a similar shape, with an asymptote at the resonant 

frequency ℎ𝜔1.  

 

Figure 2.34: Nyquist diagram of a generic [𝑲𝑷𝑻
+ 𝑲𝑰𝒉

𝑹𝑰𝒉

𝒅 (𝒛)]𝑮𝑷𝑳(𝒛), for positive frequencies . 

[13] 
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Figure 2.35: Optimum asymptote at 𝒉𝝎𝟏 in order to maximize 𝑫(𝒛)  at frequencies around 

𝒉𝝎𝟏, in 𝑮𝑷𝑹𝒉

𝒅 (𝒛) controllers.[13] 

The Figure 2.34.b shows that a good approximation of 𝐾𝑃𝑇
 can be obtained by recognizing 

that the consideration of the resonant controllers in the 𝐻𝑂𝐿 only affected the plot in a small 

range around ℎ𝜔1 and in that way, 𝐾𝑃𝑇
 could be obtained by analyzing the system 

considering only 𝐾𝑃𝑇
 and the plant model without adding the resonant controllers. Note that 

the Nyquist plot of the 𝐻𝑂𝐿 does not enclose the instability point. 

The way of obtaining this 𝐾𝑃𝑇
 value is by setting a desired sensitivity peak 1 𝜂𝑃

⁄  , and finding 

the global minimum of 𝐷(𝑧) in this way: 

 𝐺𝑃𝐿(𝑧) = 𝑧−1𝑍 {𝐿−1 [
1 − 𝑒−𝑠𝑇𝑠

𝑠
𝐺𝐿(𝑠)]} =

𝑧−2

𝑅𝐹

1 − 𝜌−1

1 − 𝑧−1𝜌−1
 (90) 

 𝐷(𝑒𝑗𝜔𝑇𝑠) = 1 + 𝐾𝑃𝑇
𝐺𝑃𝐿(𝑒

𝑗ℎ𝜔1𝑇𝑠) (91) 

 𝑔(𝜔𝜂) =
𝜕|𝐷(𝑒𝑗𝜔𝑇𝑠)|

𝜕𝜔
(𝜔𝜂) = 0 (92) 

 𝜕2|𝐷(𝑒𝑗𝜔𝑇𝑠)|

𝜕𝜔2
(𝜔𝜂) > 0 (93) 

The value of 𝜔𝜂 is then used to obtain 𝜂𝑃 by using the following relationship: 

 |𝐷(𝑒𝑗𝜔𝜂𝑇𝑠)| = 𝜂𝑃 (94) 

Then, an expression of 𝐾𝑃𝑇
 as a function of 𝜂𝑃, 𝑇𝑠, 𝑅𝐹, 𝐿𝐹 is obtained: 

 𝐾𝑃𝑇
= 𝐹1( 𝜂𝑃, 𝑇𝑠, 𝑅𝐹 , 𝐿𝐹) (95) 

The exact formulation is rather complex for such a small system, but it expresses 

appropriately the concept of minimization. The exact formula can be obtained in Appendix 

C.1 of [13]. 

The authors in [13] identified that in the resonant controllers without damping, the 

asymptote for each resonant frequency has a clear tendency and that by setting 𝐾𝑃𝑇
, it was 

straightforward to fix 𝜂𝑃 = 𝜂ℎ. The asymptote angle 𝛾ℎ =
𝜋

2
+ 𝜙ℎ + ∠𝐺𝑃𝐿(𝑒

𝑗ℎ𝜔1𝑇𝑠) in the Nyquist 
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diagram was set equal to the angle of the tangential line to the 𝐻𝑂𝐿 locus with the x-axis 

at the point where the distance to instability point 𝐷(𝑧) was the minimum. This is the way 

the delay compensation 𝜙ℎ was minimized, assuring the optimum selection of 𝐾𝑃𝑇
 and the 

delay compensation angle together. This means that, comparing the asymptotic angle in 

Figure 2.34 and Figure 2.35: 

 𝛾ℎ =
𝜋

2
+ 𝜙ℎ + ∠𝐺𝑃𝐿(𝑒

𝑗ℎ𝜔1𝑇𝑠) = ∠D(𝑒𝑗ℎ𝜔1𝑇𝑠) +
𝜋

2
 (96) 

From this relationship, an expression for the delay compensation angle was obtained: 

 𝜙ℎ
′ = −∠𝐺𝑃𝐿(𝑒

𝑗ℎ𝜔1𝑇𝑠) + ∠D(𝑒𝑗ℎ𝜔1𝑇𝑠) (97) 

The terms of 𝜙ℎ
′  are developed and an expression was obtained: 

 𝜙ℎ
′ = 𝐹2(ℎ𝜔1, 𝑇𝑠, 𝑅𝐹, 𝐿𝐹) (98) 

The complete expression is available in Appendix C.2 of [13]. 

The limit of 𝐾𝑃𝑇
  established by the criterion of avoiding the interference of the commutation 

harmonics with the current control assuring that the crossover frequency is lower than a 

decade below the switching frequency (i.e., 𝜔𝑐 <
𝜔𝑠𝑤

10
, 𝜔𝑠 = 2𝜋𝑓𝑠𝑤), so the attenuation at 𝑓𝑠𝑤 

is at least 20 dB. Therefore, a relationship between 𝐾𝑃𝑇
 and 𝜔𝑐 was established: 

 |𝐾𝑃𝑇
𝐻𝑂𝐿(𝜔𝑐)| = |𝐾𝑃𝑇

𝐺𝑃𝐿(𝜔𝑐)| = |𝐾𝑃𝑇
𝐺𝑃𝐿 (𝑒𝑗

𝜋
5)| = 1 (99) 

 

This relationship is used to obtain the maximum acceptable 𝐾𝑃𝑇
  that satisfies 𝜔𝑐 =

2𝜋𝑓𝑠𝑤

10
. 

Under this condition, a 𝐾𝑃𝑇
  value was proposed for a plant model that can be modeled as 

an inductance: 

 𝐾𝑃𝑇
=

𝑅𝐹

(1 − 𝜌−1)√2
√2 + 2𝜌−2 − (1 + √5)𝜌−1 (100) 

 

Being 𝑅𝐹 the resistance of the inductance that represents the plant model and 𝜌 is the term 

𝑒
𝑅𝐹𝑇𝑠
𝐿𝐹 .  

In this manner, the value of 𝐾𝑃𝑇
 obtained to minimize the interference of commutation 

control and the 𝐾𝑃𝑇
 required to minimize the distance of the open loop transfer function to 

the instability point for a desired sensitivity peak 1 𝜂𝑃
⁄  can be assessed. The most restrictive 

of the two values was used to tune the controller. 

2.20 Active Damping 

There are several methods to implement the active damping capability. Two of them, 

extracted from [1] and [10] will be explained. When there is an LC or LCL circuit, there is 

always a possibility of oscillations because the resonance frequency associated is activated 

by a transitory state, such as the startup, disconnection of a load, or a fault in the electric 

system. These temporary oscillations eventually disappear. Fortunately, it is possible that 
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these high oscillating frequencies can be attenuated if a control loop is added for that 

specific purpose. 

One intuitive way of explaining the active damping is to remember that, when there is a 

resistance in an LC circuit, the resistance eventually attenuates the current. The 

implementation of this resistance in this LC circuit could be done in two ways; either adding 

a real resistance or adding an additional current reference that acts as a resistance. The 

first way is not the best way, because it consumes power and is also called passive damping 

[1]. The second one is to add an additional current reference that emulates a resistance 

𝑅𝑝 and carry a current 𝑖𝑝. This method is called active damping. The difference between 

active and passive damping can be appreciated in Figure 2.36: 

 

Figure 2.36: Realization of passive and active damping for a current source rectifier. [1] 

In the case of a PWM rectifier (could be also an inverter), 𝑖𝑝 can be generated following the 

next sequence: 

• Detect the instantaneous capacitor voltage 𝑣𝑐; 

• Calculate the damping current by 𝑖𝑝 = 𝑣𝑐/𝑅𝑝 and 

• Adjust the modulation index 𝑚𝑎 dynamically based on the calculated 𝑖𝑝. 

Only the non-fundamental components of the voltage oscillations need to be removed. To 

achieve that, what can be done is identify the non-fundamental components of the 

capacitor voltage obtained through an 𝑎𝑏𝑐/𝑑𝑞 transformation using a PLL, incorporating a 

high pass filter to the voltage value in the 𝑑𝑞 frame. This is possible because the 

fundamental component of the ac capacitor voltage becomes DC when the transformation 

from 𝑎𝑏𝑐 to 𝑑𝑞 is done, then filtering all alternating components in the 𝑑𝑞 frame effectively 

eliminates the non-fundamental components. This can be understood looking at Figure 

2.37: 
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Figure 2.37: Block diagram of a vector-controller CSR with active damping control 
(HPF=High Pass Filter).[1] 

The second way of obtaining the non-fundamental voltage oscillations is as proposed by 

[10], which includes close-loop feedback that reduces oscillations in the capacitor voltage 

to zero by adding damping currents to the current references.  

One great advantage is that the higher oscillating frequency components can be controlled 

independently from others that comes from the converter itself or non-linear loads 

connected at the entrance of the converter. The additional inductance that converts the LC 

filter in an LCL filter blocks some harmonics as well. 

The basic principle can be summarized as follows, according to [1]: 

• The oscillating component of the capacitor voltage is extracted (the non-

fundamental component) 

• The error in the capacitor voltage is found by subtracting the oscillating component 

from its reference, which is equal to zero 

• The error is amplified and added to the reference signal for the current controller. 

The block diagram of the active damping loop is shown in the following figure: 

 

Figure 2.38: Block diagram of the active damping block.[38] 

Also, according to [38], the time constant of the low pass filter has an influence in the 

performance of the active damping during slow transients and, also the performance when 

negative sequence components are present. For this reason, the filter should be selected 

according to the desired behavior.  

Another benefit of the active damping is the minimization of the DC offset in the converter. 

However, there is always a tradeoff between minimization of oscillations and the 

minimization of DC offset. 

In this thesis, the second version has been implemented. 



62 

 

2.21 Other Control Features of VSIs 

2.21.1 Synchronization 

A synchronization system is a system that verifies that the conditions to close a circuit 

breaker are met. This synchronization system allows the connection of one main equipment 

such as generators, electric drives, to the electric power systems or the interconnection of 

two systems.  

 To do this, it is necessary that three conditions are fulfilled, with different criteria according 

to the application: 

• The Voltage difference is within a certain range 

• The Frequency difference is within a certain range  

• The Phase angle difference is within a certain range 

When all these conditions are met, the circuit breaker can close the circuit and connect the 

equipment with the electric power system. 

Depending on the voltage level, the synchronization system features vary, being common 

the following: 

• Low and medium voltage level: three pole closing 

• High voltage level: monopole closing and three pole closing 

Sometimes, to minimize the overvoltage transients caused by the connection of the 

equipment, the closing of the three phases are done sequentially, which is called point-on-

wave switching. This is a special feature that it is normally used to connect the extremes 

of long high voltage transmission lines, reactors or power transformers.  In the case of the 

medium voltage and low voltages, this is not normally used, due to its high cost and 

complexity. 

One of the great advantages of Voltage Source Converter or Voltage Source Inverters is 

that there is no need of a grid voltage to operate the switches (self-commutation). This 

feature is essential for grids with HVDC links in case of blackouts, where a VSC can help to 

restart the grid after a blackout (black start) [39]. The possibility of the inverter of creating 

its own voltage such as a conventional generator allows synchronization. 

To achieve this, in the case of an AFE, normally the breaker is installed next to the filter 

capacitor, as shown in the figure below: 

 

Figure 2.39: Single phase schematic of the Synchronization Circuit 
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The voltage needed in the capacitor can be obtained charging the capacitor with current, 

using the voltage in DC side of the inverter. The DC side voltage can be either a battery or 

a machine side converter which connects the drive with a motor or generator. In the case 

of a solar panel, since the power is generated directly in DC, this additional converter is 

not needed. 

Voltage transformers are needed to measure the voltages in both sides of the breaker and 

two phase locked loop systems to obtain the angle reference and frequency on both sides. 

Once the capacitor is charged with the voltage necessary and the frequency and angle is 

within the correct limits, the circuit breaker can close. 

2.21.2 Normal Operation 

Once the circuit breaker is closed, the voltage controller raises the voltage up to the 

reference value (1.0 p.u.) and increases the converter current up to the rated value. It is 

expected that the time the controller uses to take the current and voltage to their rated 

values be the minimum possible. 

During normal operation, the inverter should be able to handle the load and voltage 

variations without losing stability, as well as handle reasonably the non-linear loads, 

reducing the total harmonic distortion (THD) up to an acceptable limit. 
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Despite the fact that the authors in [13] have proposed a promising delay compensation 

method, other authors claim that it is inaccurate for an LCL filter [35]. However, 

conceptually, the method is simple and could be extended for a general system. It is 

necessary to mention that for applications where adaptative frequency is necessary, 

damping is a must. Another important aspect is that in real control applications, low pass 

filtering, uncertainty in the obtention of plant models, active damping, hysteresis 

controllers and other control features must be incorporated into the system. Therefore, in 

those cases, the direct formula proposed in [13] is no longer valid. 

It would be desirable as well that the open loop transfer function can be obtained for any 

control implementation and use it as the general description of the model to obtain the 

delay compensation necessary and 𝐾𝑃𝑇
. 

Two other important aspects highlighted in the method proposed in [13] is the combination 

of the ZOH method for the z model of the plant, while using the pre-warped Tustin method 

for the discretization of the controller. The first important aspect to assess stability in the 

z plane is how the resonant controller with damping should be represented in that plane. 

The resonant controller transfer function is repeated below: 

 𝑅𝐶(𝑠) = ∑
𝐾𝐼ℎ𝑠

𝑠2 + 2𝜁ℎ𝜔1𝑠 + (𝜔1ℎ)2

ℎ=5,7,11,…,6𝑝±1

 (101) 

 

Its Bode diagram in the z plane is shown below: 

 

Figure 3.1: Bode diagram of a set of resonant controllers implemented in digital domain 
w. 

3 Proposed Delay Compensation Method of 

Resonant Controllers with Damping 
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Given the structure of the resonant controller transfer function in the s plane, the value of 

the transfer function is zero at the origin (𝑠 → 0) and when 𝑠 → ∞. 

When a resonant controller with or without delay compensation is converted into the z 

plane, the locus of it becomes a circumference. In this case, the locus of a resonant 

controller is a circumference centered in (𝐾𝑉ℎ/2, 0𝑗), as shown in Figure 3.2: 

 

Figure 3.2: Nyquist plot of resonant controllers 6p+/-1 for p=1…4 without delay. The 
small light blue circle is the unit circle. 𝑲𝑽𝒉 = 𝟓𝟎. 

Since the resonant gains 𝐾𝑉ℎ for all harmonics have the same value, the loci of the resonant 

transfer functions are the same circumference. As the point in the s plane moves from 𝜔 →

0 to 𝜔 → ∞, its corresponding value in the z plane travels along the circumference starting 

from the origin in the s and z plane and ends in the origin as well. The circumference is 

traveled several times, one time for each resonant frequency. It is worth mentioning that 

the resonant controller is the type of functions called proper functions [40], which means 

that the denominator of the transfer function has one order greater than the denominator, 

which implies that the locus of the Nyquist plot of the transfer function will end up in the 

origin when 𝜔 → ∞ always. 

If the delay compensation is included, the center of the circumference is different for each 

resonant controller when they are plotted independently, however, the radius is the same. 

This can be seen in Figure 3.3: 
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Figure 3.3: Nyquist plot of resonant controllers 6p+/-1 for p=1…4 with delay 

compensation included, same harmonic gains 

With different gains, the resonant controllers will become circumferences of different radius 

and they would look like Figure 3.4. 

 

Figure 3.4: Nyquist plot of resonant controllers 6p+/-1 with delay compensation 
included and different harmonic gains 

The asterisks that are included in Figure 3.4 represent the harmonic resonant frequency 

ℎ𝜔1 (red) and their upper and lower typical limits 0.95ℎ𝜔1 (green) and 1.05ℎ𝜔1 (black). The 

blue circle is the unit circle. This is mentioned to show that most of the circumference of 

the resonant controller is formed essentially by the frequencies around the harmonic 

frequency. This is an interesting property that can be exploited. 

In the case of the voltage controller of an inverter with an LCL filter, with a hysteresis 

current controller approximated as a first-order filter when a resonant controller with delay 

compensation is used, the locus of the open loop transfer function is shown in Figure 3.5, 

In this case the orange circle is the unit circle. 
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Figure 3.5: Nyquist plot of open loop transfer function of a voltage controller of an LCL 

filter, with resonant controllers for several harmonics  

Something that can be concluded comparing Figures 3.3, 3.4 and 3.5 is that the resonant 

controllers dominate other terms in the open loop transfer function. As already mentioned, 

this is an important feature that can be exploited to find a suitable delay compensation 

angle.  

Another interesting aspect is that the resonant controller locus of lowest order harmonic 

frequency, 5th harmonic in this case, encircles the part of the open loop transfer function 

locus influenced by the higher order resonant controllers. In this sense, the radii formed 

by 𝐻𝑂𝐿 at frequencies close to the higher order harmonic frequencies become smaller when 

frequency increases. This situation might be the result of adding all resonant controllers. 

This is a new characteristic that appears here, and it can be used. This means that the 𝐻𝑂𝐿 

approaches the instability point at frequencies close to the lowest harmonic frequency.  

Since the resonant controllers seem to influence each other, the gain of each of them 

contributes to the overall stability. This cannot be concluded looking at Bode plots. 

Typically, the most practical way of tuning resonant controllers has been to set the same 

gain to all of them. But the truth is that not all harmonic currents or voltages have the 

same contribution to the overall THD, and the harmonic values are normally a fraction of 

the fundamental value.  

If all the gains are considered the same, the relative gain of each resonant controller with 

respect to the current that this is trying to control or to eliminate would be very high for 

the harmonic terms. This reasoning coincides with the one mentioned in [42] mentioned 

that it could be a good idea to tune the harmonic gains proportionally to its percentage of 

THD to minimize the total error convergence rate or inverse proportional to the 

corresponding harmonic frequency. 

Therefore, to reach absolute stability of the open loop it is a good idea to focus in the 

resonant controller of lower harmonic frequency first and then in the higher order ones, 

reducing their harmonic gains, to get a stable solution. 

As in the case of the analysis done by [13] and summarized in Section 2.19, it is necessary 

to identify the minimum distance between the instability point and the open transfer 

function including the resonant controller. The gain margin is not analyzed at this moment, 

it will be done in Section 4.  

Thus, a generalization of the open loop transfer with one resonant controller, the lowest 

order one, could be done for an open loop transfer function as shown in Figure 3.6: 



68 

 

 

Figure 3.6: Optimum asymptote to maximize 𝑫(𝒛) for one generic harmonic h in the z 

plane at frequencies around 𝒉𝝎𝟏 for resonant controllers with damping term 

The tangent point T is an excellent place to find a suitable relationship that can relate the 

delay compensation angle 𝜙ℎ, ∠𝐻𝑂𝐿, and ∠D angle.  

The angle of the tangent line with the x-axis ∠T at the resonant controller locus can be 

obtained by using trigonometry in several ways. The first way is to identify the angle of 

the vector D, i.e. ∠D, as seen in the picture and its relationship with ∠T.  

The tangent point T is at a frequency that it is at the vicinity of ℎ𝜔1 and the harmonic 

resonant frequency is at H. 𝜙ℎ could be the delay compensation necessary to reach the 

resonant frequency point H. 𝜃 is the angle necessary to shift the open loop vector H to 

become parallel to the tangent line T.  

In a similar way as proposed for the resonant controllers without damping in [13], in this 

case, the angle of the tangent line is, as shown in Figures 2.35 and 3.7, the following: 

 ∠T = ∠D +
𝜋

2
= ∠𝐻𝑂𝐿 + 𝜙ℎ + 𝜃 (102) 

With these relationships, a value for the delay compensation can be obtained: 

 𝜙ℎ = −∠𝐻𝑂𝐿 + ∠D +
𝜋

2
− 𝜃 (103) 

The variable 𝜃 is dependent on all the other factors involved in the open loop transfer 

function. However, it should not be as large as 𝜋 .This will vary among the resonant 

controllers when used together. The delay compensation proposed with a value of 𝜃 =
3𝜋

4
 is 

given by equation 104: 

 𝜙ℎ = −∠𝐻𝑂𝐿 + ∠D −
𝜋

4
 (104) 

When the relative damping factor 𝜁 is very small, the angle 𝜃 may become zero, the radius 

of the resonant controller locus becomes very large and the delay compensation angle 

becomes very similar to the angle proposed in [13]. The radius continues increasing and 
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when 𝜁 = 0 there is an asymptote at ℎ𝜔1 that jumps from one extreme of the plot to the 

other at the resonant frequency, as in the Figure 2.34. 

An approximation to that case is provided in Figure 3.7.  

 

Figure 3.7: Resonant controller locus when the damping factor 𝜻 becomes very small  

In that case, the delay compensation would be: 

 𝜙ℎ = −∠𝐻𝑂𝐿 + ∠D +
𝜋

2
 (105) 

There is no need to propose an exact formula for 𝜙ℎ since this can be obtained using the 

actual open loop transfer function with any commercial software such as Matlab for any 

specific case, and also the z transfer function of the open loop transfer function with any 

discretization method is too complex even for small control loop systems. It is also not 

necessary to set 𝜂𝑃 = 𝜂ℎ as proposed in [13], since the loci of the resonant transfer function 

of each harmonic interact among them when damping is included and only locus of the 

open loop transfer function around the lowest harmonic frequency considered is prevalent. 

Thus, analysing the lowest order harmonic, a relationship can be established for the rest 

of controllers. 

Considering that 𝜃 could vary between 0 and a value less than 𝜋, in some cases 𝜙ℎ could 

become equal to the one proposed in [13]. In that sense, the delay compensation  

proposed could be regarded as a generalization of the formula provided in [13]. 
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4 Active Front End Converter Control System 

Design 

4.1 Typical Design 

The cascade control system of an AFE can contain controllers of different types depending 

on the performance desired on each specific stage. An example of the inner control loops 

of an AFE is shown below: 

 

Figure 4.1: Current and voltage control loops of a VSI.[41] 

In an AFE is possible to implement several functionalities, such as unbalanced 

compensation, droop control of active and reactive power, harmonic compensation, virtual 

impedance control, synthetic inertia, etc. A proposal of control implementation [41] is 

shown below:  

 

Figure 4.2: Block diagram of the closed control loop of a voltage source inverter. [41] 
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4.2 LCL dimensioning 

Considering the criteria explained in Chapter 2.5 regarding the design of the filter, the 

capacitor and inductor components of the LCL filter has been selected.  

 

𝐶 = 0.1
𝑃𝑁

𝜔1𝑉𝑔
2 = 0.1

1.79

377 ∗ 6902
= 998.76 ∗ 10−6 = 998.76 𝜇𝐹 

The power in MW, the angular frequency in rad/s and the voltage in V. A value of 990 𝜇𝐹 

was chosen. 

𝐿1 = 0.05
𝑉𝑁

√3𝐼𝑁
= 0.05

690

√3 ∗ 1500
= 13.2 𝑚𝐻 

The voltage in V, the angular current in A. 

The resonance frequency with these values would be: 

𝑓𝑟𝑒𝑠 =
1

2𝜋
√

𝐿1 + 𝐿2

𝐿1𝐿2𝐶
=

1

2𝜋
√

2𝐿1 + 𝐿𝑔

𝐿1(𝐿1 + 𝐿𝑔)𝐶
=

1

2𝜋
√

2 ∗ 13.2 + 53

13.2(13.2 + 53)990
= 897 𝐻𝑧 

𝐾𝑟𝑒𝑠 =
𝑓𝑟𝑒𝑠

𝑓𝑠
=

1503.5

3000
≈ 0.5 

This value is not the recommended range [0.2, 0.4]. A value of 𝐿1 = 41.5 𝑚𝐻 meet the 

requirements of average switching frequency of 3 kHz in the inverter, obtaining a 𝐾𝑟𝑒𝑠 =

897/3000 ≈ 0.3, in the expected range. 

The variation of the grid impedance has an impact in the resonance frequency, although 

in this case is not critical. Doubling the grid impedance, which means that the grid has 

become weaker, only varies the resonant frequency from 897 to 888 Hz. This is not a 

critical situation. The design seems reasonable and other detailed studies can be conducted 

to optimize the solution. 

4.3 General description of the control loops implemented 

The simplified inner current control loop and voltage control loop developed is shown in 

Figure 4.3:  

 

Figure 4.3: General Power and Control Circuit of the closed-loop voltage source inverter 
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The voltage closed-loop control system has the main goal of control the capacitor voltage. 

This is done taking the grid voltage angle 𝛿𝑔𝑟𝑖𝑑 with a voltage reference of 1.0 p.u. The 

inner control loop is a hysteresis controller and uses the output of the voltage controller as 

reference current. The feedback in this case is the inverter current. The hysteresis 

controller provides as output, gates signals to the inverter switches. 

As part of the voltage controller, a PI controller, resonant controllers and active damping 

control has been implemented. A connection to the grid with a non-linear load and an 

unbalanced load has been considered. 

 

Figure 4.4: Voltage control loop with PI controller, Resonant Controller including delay 
compensation, active damping, voltage capacitor filter and first order equivalent current 

control loop 

As shown in Figure 4.4, in order to do an analysis of the voltage control loop considering 

the impact of the current control loop as well, a first-order equivalent transfer function of 

the hysteresis current control loop has been done. Since the hysteresis controller itself is 

a non-linear controller, the equivalent first order transfer function is just an approximation. 

The plant model of the first order equivalent control loop in this case is: 

𝐺𝑃𝐿(𝑧) = 𝑍 {𝐿−1 [
1 − 𝑒−𝑠𝑇𝑠

𝑠
𝐺𝑃𝐿(𝑠)]} 

𝐺𝑃𝐿(𝑧) = 𝑍 {𝐿−1 [
1 − 𝑒−𝑠𝑇𝑠

𝑠

1

1 + 𝑇𝑒𝑞,𝑖𝑠
]} 

𝐴𝐵(𝑧) = (1 − 𝑧−1)𝑍 {𝐿−1 [
1

𝑠
−

1

(1/𝑇𝑒𝑞,𝑖 + 𝑠)
]} 

𝐴𝐵(𝑧) = (1 − 𝑧−1)𝑍 {𝐿−1 [
1

𝑠
−

1

(
1

𝑇𝑒𝑞,𝑖
+ 𝑠)

]} 
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𝐴𝐵(𝑧) = (1 − 𝑧−1) (
1

1 − 𝑧−1
−

1

1 − 𝑒
−

𝑇𝑠
𝑇𝑒𝑞,𝑖𝑧−1

) 

The sample and hold circuit is applied to the capacitor model as well. In this case: 

𝐺𝑃𝐿(𝑧) = 𝑍 {𝐿−1 [
1 − 𝑒−𝑠𝑇𝑠

𝑠
𝐺𝑃𝐿(𝑠)]} 

𝐺𝑃𝐿(𝑧) = 𝑍 {𝐿−1 [
1 − 𝑒−𝑠𝑇𝑠

𝑠

1

𝑠𝐶
]} 

𝐺𝑃𝐿(𝑧) =
(1 − 𝑧−1)

𝐶
𝑍 {𝐿−1 (

1

𝑠2
)} 

𝐺𝑃𝐿(𝑧) =
(1 − 𝑧−1)

𝐶

𝑇𝑠𝑧
−1

(1 − 𝑧−1)2
 

𝐺𝑃𝐿(𝑧) =
1

𝐶

𝑇𝑠𝑧
−1

(1 − 𝑧−1)
 

As mentioned in [21], the resonant controllers appear as a solution to track sinusoidal 

references with zero error. However, resonant controllers implemented in the stationary 

reference frame cannot eliminate the DC offset. To solve this problem, a combination of 

the best attributes of the PI controller and resonant controllers have been used. It is 

expected some steady state error because the fundamental frequency is not controlled 

with a resonant controller, but the error obtained can be adjusted modifying slightly the  

𝐾𝑃𝑇
 value. 

Another possibility is to include an integral controller (I) and a P+R controller for 

fundamental frequency and harmonics frequencies. 

A zero-voltage reference has been included for the resonant controllers and active 

damping, such that the control system can force the harmonic voltages and high frequency 

voltages to become zero up to the extent possible. To minimize the interference of the 

active damping with the resonant controller and to facilitate the tuning of both controllers, 

the harmonic currents before the resonant gain are subtracted from the error signal, before 

to be applied to the active damping gain 𝑘𝑑. In this way the active damping only works 

with the high frequency harmonics and the resonant controllers work with the low-order 

harmonics. 

The low pass filter implemented in the capacitor feedback loop is necessary to avoid feeding 

the controller with very high frequency signals that can be regarded as noise and that can 

be amplified, affecting the performance of the controller. A time constant of 50 𝜇𝑠 has been 

used for this purpose. 

The separation of the fundamental frequency voltage and the harmonic frequency voltages 

is done using a low pass filter in the 𝑑𝑞 frame. The details are shown in Figure 4.11 and it 

will be explained later.  

A simplification of the voltage control loop is necessary to analyze its open loop transfer 

function. Using the classical block diagram reduction properties [22], the simplified 

equivalent model is shown in Figure 4.5. 
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Figure 4.5: Simplified equivalent model of the voltage control loop. 

Looking at the 𝐶(𝑠) expression, the PI controller is restricted to act for low frequencies by 

the direct multiplication 𝑃𝐼(𝑠)𝐿𝑃𝐹(𝑠) and the resonant controllers  and active damping are 

restricted to act only for high  and very high frequencies. A small reorganization of the 

𝐶(𝑠) term is shown in equation 106: 

 𝐶(𝑠)=
𝐿𝑃𝐹𝐶(𝑠)

𝑃𝐼(𝑠)
{𝑃𝐼(𝑠)𝐿𝑃𝐹(𝑠) + 𝑅𝐶(𝑠)HPF(s) + 𝑘𝑑 [1 − (

𝑅𝐶(𝑠)5

𝐾𝑉5
+

𝑅𝐶(𝑠)7

𝐾𝑉7
+ ⋯

𝑅𝐶(𝑠)ℎ

𝐾𝑉ℎ
)]HPF(s)} 

 

(106) 

The PI controller and the resonant controller are added, and the active damping is an 

additional term that is working only for high frequencies. In this sense, with the 

exception of the active damping term and the low and high pass filters, the control loop 

is equivalent of control loop shown in the Figure 4.1 and proposed in [41] 

The resonant controller normally is accompanied by a proportional gain. However, in this 

implementation, the proportional gain related to the PI controller and the resonant 

controllers have been grouped as one single 𝐾𝑃𝑇
 value to facilitate the tuning process, 

which will be explained in detail in Section 4.5. 



75 

 

4.4 Detailed implementation in Simulink 

4.4.1 Synchronization Circuit 

 

Figure 4.6: Implementation of the synchronization scheme in Simulink. 

The synchronization circuit implementation is shown in Figure 4.6. Two PLLs are necessary 

to measure the grid angle (𝛿_grid_PLL) and the converter angle (𝛿_conv_PLL). A logic 

implemented helps to decide when to generate the signal to close the breaker. 

 

Figure 4.7: Implementation of the synchronization logic in Simulink. It uses voltage, 
angle and frequency difference. 

4.4.2 Non-linear and unbalanced load 

The non-linear load was a truster drive of 800 kW, whose nonlinear currents have the 

following waveform at the start of its operation as shown in Figure 4.8.  
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Figure 4.8: Three-phase non-linear load waveform (time in s and current in A) 

4.4.3 Hysteresis controller 

 

Figure 4.9: Hysteresis controller for stationary frame implemented in Simulink 

The hysteresis controller takes the current references provided by the voltage controller 

and convert them into gate signals. An additional routine has been implemented to obtain 

the average switching frequency of the hysteresis controller. A 0.10 p.u. hysteresis 

bandwidth represents an average switching frequency of 3 kHz. 

4.4.4 Resonant Controller with and without Active Damping 

Four different implementations of the resonant controllers considering the same control 

strategy have been simulated and evaluated to assess the impact of damping, delay 

compensation, z transform and delta operator. They are: 

1. Resonant Controller without damping but including delay compensation 

2. Resonant Controller with damping and without delay compensation, with z 

transform 

3. Resonant Controller with damping and without delay compensation, implemented 

using a delta operator 
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4. Resonant Controller with damping and delay compensation, implemented using a 

delta operator 

The detailed implementations are explained below: 

 

Figure 4.10: Discrete implementation of PI+R voltage controller and active damping. 

 The current reference sent to the hysteresis controller has a saturation limit of 1.2 p.u. to 

protect the equipment of unexpected current peaks. The frequency of the grid and the 

capacitor voltage angle are necessary signals for theses controllers. In the case of the 

separation of the fundamental and harmonic components of the capacitor voltage, a low 

pass filter in the 𝑑𝑞 frame is necessary and to do that transformation, the capacitor voltage 

angle is needed, while in the case of the PI and resonant controllers that use the Tustin 

prewarped transformation 𝜔 (and therefore 𝑓𝑔𝑟𝑖𝑑) is necessary. 

 

Figure 4.11: Active damping modelling and harmonic separation implemented based on 
[38]. 
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The active damping implementation and the separation of fundamental and harmonic 

voltages has been done as shown in Figure 4.11. The low pass filtering is done in the 𝑑𝑞 

frame and then transformed into the 𝛼𝛽 frame as explained in Chapter 2.8. The extraction 

of the higher order harmonics that are not handled by the resonant controllers and the 

high frequency noise is done before the active damping gain 𝑘𝑑 is applied. 

 

Figure 4.12: Resonant controller without damping and considering delay compensation 
implemented with two integrators modelled in Simulink, according to [21]. 

The discrete version of the resonant controller without damping and with delay 

compensation for a one specific harmonic is shown in Figure 4.12, as suggested in [21]. 

Four terms of the Taylor expansion of cos(ℎ𝜔1𝑇𝑠𝑎𝑚𝑝) = cos(2𝜋𝑓𝑔𝑟𝑖𝑑𝑓𝑁𝑇𝑠𝑎𝑚𝑝ℎ) were included to 

reduce the error by the Taylor approximation.  

 

Figure 4.13: Resonant controller with damping discretized in a zeta realization 
implemented in Simulink, according to [32] 

The discrete version of the resonant controller with damping without delay compensation 

represented as an IIR-DFIIt, is shown in Figure 4.12 and the same resonant controller 
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but using a delta realization is shown in Figure 4.13. For this last implementation, a value 

of  ∆ = 𝑇𝑠𝑎𝑚𝑝 has been used for the simulation. The harmonic current 𝑖ℎ is extracted before 

the gain 𝐾𝑉ℎ is applied to be used in the active damping scheme is shown in the right 

upper side of the Figure 4.14. 

 
 

Figure 4.14: Resonant controller with damping discretized in a delta realization 
implemented in Simulink, according to [31] and  [32]. 

The most complete implementation of the resonant controller with damping, with delay 

compensation implemented in a delta realization is shown in Figure 4.15. 

 

Figure 4.15: Resonant controller with damping and with delay compensation discretized 
in a delta realization implemented in Simulink, according to [30]. 

4.5 Voltage Controller Tuning for stable operation 

4.5.1 Tuning methodology proposed 

Several variables are involved in the stability of the control loop. These are: 

• Integral gain 𝐾𝐼 
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• Active damping gain 𝑘𝑑 

• Damping factor in resonant controller 𝜁 

• Harmonic gain in resonant controller 𝐾𝑉ℎ
 

• Proportional gain 𝐾𝑃𝑇
 

• Crossover frequency 𝜔𝑐𝑟 

• Switching frequency 𝑓𝑠𝑤 or average switching frequency 𝑓𝑠𝑤_𝑎𝑣𝑔 in the case of a 

hysteresis controller 

Each variable is possible to be changed in a limited range. 

Therefore, an iterative process must be applied to obtain the proper tuning. Some of the 

variables such as the damping factor and the crossover frequency can be somewhat pre-

stablished, but the rest of variables must be obtained checking whether the control loop is 

stable or not. A tuning methodology is proposed and translated into a chart, which is shown 

in Figure 4.16 below:  

 

Figure 4.16: Proposed tuning methodology flow chart for a voltage controller with PI+R 
controllers and active damping. 

Therefore, to start this discussion, a pre-analysis has been done to find a suitable stable 

solution that can help explain the main characteristics of the methodology and later in 

Section 6 the influence of the variation of the most important parameters is assessed to 

understand how this affect stability.  

Some of the variables have already been pre-defined as design criteria, and they are the 

starting point of the tuning process. In this case: 

• Following the established practices, a resonant damping factor of 𝜁 = 0.02 is 

considered, to allow frequency adaptability of the resonant controller in a range of 

∆𝑓 =
2𝜁𝜔0

2𝜋
= 2.4 𝐻𝑧 

• The integral gain has been obtained by other methods and is not discussed here. 

For all the cases, 𝐾𝐼 = 85 has been used. 
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• The active damping gain has been chosen 𝑘𝑑 = 1. This is a usual choice according 

to several references [1, 10].  

• Arbitrary harmonic gain 𝐾𝑉ℎ in the resonant controller are chosen, but just at a 

starting point. They will be adjusted to make the system stable if necessary. Only 

requisite is that it should be high enough to have good dynamic performance and 

low enough to keep the system stable. 

• The crossover frequency 𝜔𝑐𝑟 has an initial value of 𝜔𝑐𝑟 =
𝜔𝑠𝑤

100
=

2𝜋𝑓𝑠𝑤

100
. It will be 

adjusted to get a 𝐾𝑃𝑇
 high enough to make the current controller follow the reference 

properly. 

Therefore, the only variable that will be adjusted at the beginning will be the crossover 

frequency 𝜔𝑐𝑟. A value of 𝐾𝑃𝑇
 is obtained, as well as the recommended delay compensation 

angle 𝜙ℎ for each harmonic frequency. Later, if no stable solution is found, the gains 𝐾𝑉ℎ 

are adjusted proportionally to THD in the load that is the harmonics source in this case. 

The converter itself also creates harmonics, but a starting point is necessary. 

The 𝐾𝑃𝑇
 values obtained considering a P and PI controller are different in each case. 

However, the difference becomes less significant for larger values of 𝐾𝑃𝑇
. The delay 

compensation angles obtained in each case are similar for both cases. The integral gain of 

the PI controller handles the fundamental frequency and for that reason the 𝐾𝑃𝑇
 value 

obtained considering the PI controller is the most reliable. For low 𝐾𝑃𝑇
 values calculated 

considering only the P controller, 𝐾𝑃𝑇
 becomes zero. Therefore, using the complete PI 

controller is the most accurate way for small values of 𝐾𝑃𝑇
. 

4.5.2 Controller tuning results considering damping and delay 

compensation 

The key results of the tuning procedure for the design chosen are shown in Table 4.1. 

𝑘𝑑 𝐾𝑉ℎ
 𝐾𝑃𝑇

 
𝜔𝑐 

(rad/s) 

∆𝜙 

(degrees) 
∆𝐺 ∆𝑀 

Delay compensation angle 𝜙ℎ (rad) 

5 7 11 13 17 19 23 

1.0 9.5 1.1 189.82 33.14 5.36 0.46 1.09 1.55 2.06 2.22 2.47 2.57 2.75 

Table 4.1: Tuning results following proposed methodology. 

The graphical selection of all the parameters can be explained looking at Figures 4.17 and 

4.18 shown below:  
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Figure 4.17: Graphical selection of key results of the tuning procedure only PI controller 

Considering PI controller and resonant controllers, the basic change with respect to the 

previous case without resonant controllers is that with the resonant controllers the distance 

from the 𝐻𝑂𝐿 to the instability point becomes smaller. This makes sense, considering to 

what it was explained in Section 3.  
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Figure 4.18: Graphical selection of key results of the tuning procedure with a PI +R 
controller 

As mentioned previously, in the z plane, in contrast to what it was seen in the Bode plots, 

resonant controllers interact each other. The locus of the open loop transfer function 

including PI+R controllers behaves as expected. To improve the overall stability of the 

system, it could be accepted that the harmonics frequencies with minimum or no presence 

in the harmonic spectrum should have a minimum or zero gain. This help to the overall 

stability; the smaller the large circle is, the more probable is to reach stability.  

The output sensitivity template shown in Figure 4.18 demonstrates that the tuning 

proposed has good margins. The delay compensation angle if not affected by the resonant 

controllers because by definition the delay compensation is necessary to compensate the 

effect of the plant model only. At lower frequencies it seems that the delay compensation 

angle is positive (the reference is negative). The reason is that the 𝜃 angle has been 

assumed fixed for all frequencies and this is indeed variable. 

4.5.1 Controller tuning results without considering damping and with delay 

compensation 

If a very low damping is used (almost zero), the plots would change in this way: 



84 

 

  

  

  

Figure 4.19: Graphical selection of key results of the tuning procedure PI +R controller 
without damping 

The Nyquist plot shown in Figure 4.19 becomes very similar to the one seen in Section 

2.34. A zoom of the Nyquist plot close to the origin is available in Figure 4.20. It can be 

seen that there is an asymptotic behavior close to the harmonic frequencies, something 

expected for a resonant controller without damping.   
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Figure 4.20: Zoom close to the origin in the Nyquist diagram of HOL using PI+R without 
damping 

  

  

Figure 4.21: Comparing of Nyquist diagrams for PI+R controllers with and without 
damping and with and without delay compensation 

Looking at Figure 4.22, the upper left and right Nyquist diagrams are from cases 1 and 2 

respectively whereas the lower left and right Nyquist diagrams are from cases 3 and 4 

respectively. All damping factors and delay compensation angles have been considered 

equal for comparison purposes. It seems that the consideration of the delay compensation 

makes system stable. Cases 2 and 3 does not consider delay compensation and the Nyquist 
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plots predicts unstable behavior in those cases. However, something interesting to mention 

is that, at rated frequency, which is represented by the dashed red lines joining the points 

in the plot at rated frequency, the system could be still stable. Only the cases 1 and 4 

would be stable for all frequency conditions. 

4.6 Bode Plots for the Voltage Control loop 

4.6.1 Resonant Controller 

Once a stable solution is found, the Bode plot is obtained directly. The Bodes plot obtained 

for resonant controllers with delay compensation and with/without damping are shown in 

Figures 4.23 and 4.24 respectively. The harmonic gains 𝐾𝑉ℎ have been chosen 9.5, 9.5 ∗ 0.75, 

9.5 ∗ 0.5, 9.5 ∗ 0.25 for harmonics 5,7,11 and 13 respectively. The rest of higher order 

harmonics have been chosen equal to zero. Notice that the sequence 1.00, 0.75, 0.5 and 0.25 

is close to the sequence 5/5, 5/7, 5/11 and 5/13. To choose the harmonic gains proportional 

to the harmonic frequency was also possible, but it was chosen this sequence for easy 

manipulation. 9.5 is approximately 11.1% of the gain used for the 𝐾𝐼 used in the PI 

controller of 85, which is in line with the idea of having the harmonic gains proportional to 

its percentage of the THD. 

 

Figure 4.22: Bode Plot of Resonant controller implemented with damping.  
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Figure 4.23: Bode Plot of Resonant controller implemented without damping.  

The resonant controller implemented using Tusting prewarped transformation seems 

correct. The resonant gains were not chosen equal, has been already explained in Chapter 

4.5. Notice that the gain in the resonant controller is not infinite, the discretization process 

makes the gain finite and it has a very sharp form in the Bode plot. 

4.6.2 Open Loop Transfer Function 

The results obtained for the open loop transfer function are shown in Figures 4.25 and 4.26 

for the cases of resonant controller with and without damping respectively. 

The open loop transfer function crosses 0 dB several times, and it is hard to see which 

phase margin is the most critical. In this case, the Nyquist plot does a good job showing 

the absolute phase margin directly. 

Something worthy of mention is that there is an anomalous peak at a frequency very close 

to the fundamental frequency. The reason is that the low pass filter used in the capacitor 

voltage loop to separate the fundamental frequency voltage and the harmonic frequency 

voltages in the 𝑑𝑞 frame becomes a bandpass filter in the 𝛼𝛽 domain. And it turns out that 

the resonant frequency of that low pass filter is close to the fundamental frequency. 

This is the reason of the additional unexpected loop found in the Nyquist diagram as seen 

in Figure 4.25 as well.  

Other than that, the open loop transfer function has a form which is in line with the 

expected requirement. 

In the case of the resonant controller without damping the effect of the resonant controller 

is high in a very narrow band of frequency which is a weakness when frequency adaptation 

is necessary. 
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Figure 4.24: Impact of the low pass filter into the Nyquist plot of the 𝑯𝑶𝑳 transfer 

function with damping. 

 

 

 

Figure 4.25: Impact of the low pass filter into the Nyquist plot of the 𝑯𝑶𝑳 transfer 

function without damping. 

4.6.3 Voltage tracking and Output Impedance 

The expression for 𝑣𝑐, as a function of 𝑣𝑟𝑒𝑓 and the load current 𝑖0 is given by: 

 𝑉𝑐 = (
𝐴(𝑠)𝐵(𝑠)

1 + 𝐴(𝑠)𝐵(𝑠)𝐶(𝑠)
) 𝑉𝑐_𝑟𝑒𝑓 − (

𝐵(𝑠)

1 + 𝐴(𝑠)𝐵(𝑠)𝐶(𝑠)
) 𝐼0 (107) 

 𝑉𝑐 = 𝑀𝑉𝑐_𝑟𝑒𝑓 − N𝐼0 (108) 

The values of  𝐴(𝑠), 𝐵(𝑠), and 𝐶(𝑠) are the same shown in Figure 4.5 and they are repeated 

below: 

 𝐴(𝑠) =
𝑃𝐼(𝑠)

1 + 𝑇𝑒𝑞,𝑖𝑠
 (109) 

 𝐵(𝑠) =
1

𝑠𝐶
+𝑅𝑐 (110) 

 𝐶(𝑠) =
𝐿𝑃𝐹𝐶(𝑠)

𝑃𝐼(𝑠)
 {𝑃𝐼(𝑠)𝐿𝑃𝐹(𝑠) − [𝑘𝑑 (

𝑅𝐶(𝑠)5

𝐾𝑉5
+

𝑅𝐶(𝑠)7

𝐾𝑉7
+ ⋯

𝑅𝐶(𝑠)ℎ

𝐾𝑉ℎ
) − (𝑘𝑑 + 𝑅𝐶(𝑠))]HPF(s) } (111) 

    

Ideally, the component 𝑀 has the form of a close loop transfer function and as such, it 

should have a straight line around zero up to the crossover frequency. However, in this 
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case, it has as peak, shown in Figure 4.27. The reason is the same as explained before, it 

is the  𝑑𝑞 low pass filter acting as a resonant controller in the 𝛼𝛽 frame. 

The output impedance has the same behaviour, but something more might be important 

to notice; with an output impedance transfer function with a value close to 1.0 means that 

the full load current is affecting the capacitor voltage reducing it which is the logical result 

of the inverter trying to provide its rated current to the grid, which has been assumed as 

a large grid that can maintain its voltage fixed. Thus, the voltage drop caused by the rated 

inverter current will inevitably cause a reduction in the capacitor voltage. 

  

Figure 4.26: Bode Plot of Voltage tracking transfer function M  and output impedance N 
for a resonant controller implemented with damping. 

  

Figure 4.27: Bode Plot of Voltage tracking transfer function M and output impedance N 
for a resonant controller implemented without damping. 

The Figure 4.27 shows that, for the harmonic terms, the closed-loop transfer function of 

the voltage is following the reference and resonates for the harmonic terms. The output 

impedances become very low (gains in the Bode plots lower than zero) at the harmonic 

terms, which is cancelling the load current 𝐼0, which in fact allows the controller follows the 

reference. However, it is important to note that the load current is not completely 

cancelled. There will be in fact, a load drop in the capacitor voltage, caused by the load 

current. A better following of the reference by the controller could be obtained using also 

a resonant controller for the fundamental harmonic value.  



90 

 

The Figure 4.28 is essentially similar in the case of a resonant controller with delay 

compensation but without damping and as expected the impact of the resonant controllers 

is limited at the resonant frequencies. 

In the Section 5, the simulation results will show how the voltage control loop works. 
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5 Simulation Results 
In order to compare the performance of the different implementations with and without 

damping and with and without delay compensation, 5 cases have been assessed. The 

analysis of the result is given in Section 6. The following magnitudes are verified: 

• Converter current before LCL filter 

• Converter current after LCL filter 

• Capacitor Voltage 

• Non-linear load 

• Current supplied to grid 

• Frequency variation at capacitor point 

The cases are: 

• Case 0: No resonant controller and with/without damping 

• Case 1: Resonant Controller without relative damping factor but including delay 

compensation and active damping 

• Case 2: Resonant Controller with relative damping factor and without delay 

compensation, with z transform and active damping 

• Case 3: Resonant Controller with relative damping factor and without delay 

compensation, implemented using a delta operator and active damping 

• Case 4: Resonant Controller with relative damping factor and delay compensation, 

implemented using a delta operator and active damping 

The purpose of Case 0 is to have a reference case to compare the performance of the 

different implementation of resonant controllers. For that reason, no resonant controllers 

are used in this case. Only the 𝐾𝑃𝑇
 and 𝐾𝐼  are maintained equal and all resonant controllers 

and active damping is deactivated. A different selection of 𝐾𝑃𝑇
 and 𝐾𝐼 can be chosen to 

optimize its performance, however it is maintained equal for comparative purposes. 

5.1 Case 0 

With the active damping activated and the resonant controller deactivated the system 

looks stable. The response can be seen in Figure 5.1. When the active damping is 

deactivated the system is completely unstable.  

 

Figure 5.1: System response without resonant controllers and with/without active 
damping Case 0. 

𝐴𝑐𝑡𝑖𝑣𝑒 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 

 𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 
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5.2 Case 1 

In this case the system is stable, with no problems and good balance. In Figure 5.2 it is 

seen that the converter current shows the action of the hysteresis current controller, but 

the filtering action of the converter side inductor is reflected comparing the converter 

current before and after the LCL filter. The transient state in the capacitor voltage because 

of the circuit breaker closing is quite smooth even for such a change in the converter 

current from 0.10 𝑝. 𝑢. to 1.00 𝑝. 𝑢. The rated current is measured at the output of the 

converter, and includes the necessary current to charge the capacitor. The capacitor 

voltage shows some of the high frequency harmonics present in the converter current 

before the converter side inductance, but overall seems good. 

In Figure 5.3, some unbalanced is observed in the converter current, but the impact is 

minimum in the THD. 

In Figures 5.4 and 5.5 it is observed the transient in the 𝛼 and 𝛽 components of the 

capacitor voltage, it is seen that the error difference between the reference voltage 𝑣𝑐_𝑟𝑒𝑓_𝛼 

and the 𝛼 component of the capacitor voltage becomes very close to zero within two cycles, 

which is really good. 

 

Figure 5.2: System response with active damping and resonant controller case 1. 

 

Figure 5.3: System response with active damping and resonant controller case 1. 

𝐶𝑖𝑟𝑐𝑢𝑖𝑡 𝑏𝑟𝑒𝑎𝑘𝑒𝑟 

closing 
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Figure 5.4: Capacitor voltage 𝜶𝜷 frame case 1. 

 

Figure 5.5: Capacitor voltage 𝒂𝒃𝒄 and 𝒅𝒒 frame case 1. 

 

5.3 Case 2 

The performance is very similar to case 1. 
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Figure 5.6: System response with active damping and resonant controller case 2. 

 

Figure 5.7: System response with active damping and resonant controller case 2. 

 

Figure 5.8: Capacitor voltage 𝜶𝜷 frames case 2. 
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Figure 5.9: Capacitor voltage 𝒅𝒒 frame case 2. 

 

5.4 Case 3 

The performance is very similar to case 1. 

 

Figure 5.10: System response with active damping and resonant controller case 3. 
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Figure 5.11: System response with active damping and resonant controller case 3. 

 

Figure 5.12: Capacitor voltage 𝜶𝜷 frames case 3. 
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Figure 5.13: Capacitor voltage 𝒅𝒒 frame case 3. 

5.5 Case 4 

The performance is very similar to case 1. In this case system is also stable, with no 

problems and good balance. To compare with the other previous solutions, a case with 

twice the grid impedance has been simulated, to see the impact in the harmonic levels in 

the grid. 

 

Figure 5.14: System response with active damping and resonant controller case 4. 
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Figure 5.15: System response with active damping and resonant controller case 4. 

 

Figure 5.16: Capacitor voltage 𝒅𝒒 frames case 4. 

 

Figure 5.17: Capacitor voltage 𝜶𝜷 frame case 4. 



99 

 

6 Discussion 

6.1 Simulation results 

The total harmonic distortion factor for the 5 cases simulated is found in Table 6.1. The 

Figure 4.3 is repeated below to easy following of the Table 6.1: 

 

Figure 6.1: General Power and Control Circuit of the closed-loop VSI 

Case 
# 

Description 

THD (%) Grid 

Frequency 

Variation 

(%) 
Non-

linear 

current 

load 

Current 

Supplied 
to grid 

Converter 

Current 

after LCL 

filter 

Capacitor 

Voltage 

0 
No resonant controller and with active 

damping 𝑘𝑑 
7.94 2.22 4.75 4.97 12% 

1 

Resonant Controller without relative 
damping factor 𝜁 but including delay 

compensation 𝜙ℎ and active damping 𝑘𝑑 

12.40 5.34 5.08 4.89 12% 

2 

Resonant Controller with relative damping 

factor 𝜁  and without delay compensation 

𝜙ℎ, with z transform and active damping 
𝑘𝑑 

 12.79 4.27  3.25  5.06  9% 

3 

Resonant Controller with relative damping 
factor 𝜁 and without delay compensation 

𝜙ℎ, implemented using a delta operator 

and active damping 𝑘𝑑 

12.82  4.05 3.26   4.63 9% 

4A 

Resonant Controller with relative damping 
factor 𝜁  and delay compensation 𝜙ℎ, 

implemented using a delta operator and 

active damping 𝑘𝑑, using double grid 

impedance 

 9.04  3% 4.75  6.4%  9% 

 Table 6.1: Total Harmonic Distortion and grid frequency variation for different resonant 

controller implementations  

In the case 0, without the active damping the system is unstable with a high harmonic 

level. This is of course a non-desirable situation. If the system is started without the active 

damping, the system stability is indeed worst. 

A completely different situation is observed with the active damping incorporated. In all 

cases a minimum oscillatory behavior is observed, and the system is stable in all cases 1, 

2,3 and 4. This brings into discussion whether the delay compensation is in fact necessary 

for the stable operation of the converter. It can be seen a reduction in the grid frequency 

variation, but all the implementations seem to work properly. 
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The harmonic level of the non-linear load stays within the expected range that it is not 

transferred into the grid. It seems that the AFE is supplying part of the non-linear current 

to the non-linear load, avoiding the pollution of the grid. This is a desired situation. 

The unbalanced load is added, and some part of that current is supplied from the grid, as 

it can be seen in several Figures in the Section 5 whereas some part is supplied from the 

AFE converter. It is not expected that the AFE converter handles unbalanced currents in 

these cases, because not resonant controllers are used to control the fundamental 

frequency. 

In such case, the control loop should be modified as in Figure 6.2 and the tuning procedure 

should be adjusted to reflect this change. 

 

 

 Figure 6.2: Voltage control loop with resonant controller for fundamental frequency 

However, the controller should still contain an integral term to handle the DC offset, but of 

course, with a different integral gain. 

The procedure to tune the controller in this case should be similar, get the simplified control 

loop and apply the same methodology to obtain a different 𝐾𝑃𝑇
 and new delay compensation 

angles 𝜙ℎ for each harmonic to be controlled. 

Overall it seems that the harmonics levels have been reduced in some cases and increased 

in others and the non-linear loads do not pollute the grid with harmonic levels. The 

capacitor voltage contains some harmonics but the harmonic level is still acceptable. 

6.2 Sensitivity analysis of the solution 

The tuning process has helped to understand how the system works and how the different 

variables influence stability, voltage tracking features and voltages drops obtained. A 

summary of probable impacts on modifying design variables is described below: 
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6.2.1 Influence of the crossover frequency over kp 

The crossover frequency 𝜔𝑐has a direct influence in the value of 𝐾𝑃𝑇
. In Section 2.20 it was 

explained that the 𝐾𝑃𝑇
 selection for a current controller was done considering the crossover 

frequency 10 times smaller than the switching frequency 𝜔𝑐 =
𝜔𝑠𝑤

10
 . For the voltage 

controller, the criterion is 10 times smaller than the crossover frequency of the current 

control loop, i.e. 𝜔𝑐 =
𝜔𝑠𝑤

100
 , as standard practice in control engineering. The results obtained 

indicate that the 𝐾𝑃𝑇
 becomes smaller when 𝜔𝑐 reduces. As very small 𝐾𝑃𝑇

 could be stable 

but may complicate that the current controller follows its reference. Therefore, the system 

should be tested with the 𝐾𝑃𝑇
 obtained and verify if the current controller is indeed following 

the reference and adjust the 𝐾𝑃𝑇
 value accordingly, if necessary. 

6.2.2 Influence of the active damping over stability 

The active damping moves the locus of the open loop transfer function 𝐻𝑂𝐿 away from the 

instability point, therefore it should be always be included to facilitate the design process. 

It is a good feature and simplifies tuning. Some authors [37] have proposed solutions 

without damping but active damping is a well-known control technique and therefore it is 

not a problem to have it in a practical design. 

6.2.3 Influence of the damping factor on resonant controller over 

stability 

A suitable value of relative damping factor helps with the frequency adaptability of the 

resonant controller. A very small value moves the locus of the 𝐻𝑂𝐿 away from the instability 

point but the frequency adaptability is lost. A very large damping factor affects the 

performance of the resonant controller. It should be considered only the relative damping 

factor necessary to achieve the frequency adaptability desired. 

6.2.4 Influence of kp over delay compensation 

The delay compensation is mostly affected by the plant model itself and the computational 

delay time 𝑇𝑑 rather than the 𝐾𝑃𝑇
 value. However, it is recommended to always verify how 

𝐾𝑃𝑇
 affects the delay compensation on each specific case. 

6.2.5 Impact of harmonic gain factor over general stability 

A high harmonic gain 𝐾𝑉ℎ will affect the general stability of the controller. The circumference 

that the resonant controller forms in the z plane increases with the increase of the harmonic 

gain and when there are resonant controllers for several harmonics, in contrast to what 

happens in a Bode Plot, interact with each other. This is characteristic not usually 

recognized in several publications, being the usual approach the tuning of resonant 

controllers with the same gain for all harmonic frequencies [13, 34-36]. It seems to be the 

rule with resonant controllers without damping. Only [42] mention that it could be desirable 

to tune the harmonic gains proportionally to its percentage of THD to minimize the total 

error convergence rate. In this sense, it would be an overkill and additional computational 

time to set all harmonic gains to the same value. As explained in Section 3, the lowest 

order harmonic will form the largest circumference and the circumference radius will 

decrease according to the increase of the harmonic order. Therefore, considering only the 

most significant harmonics and adjusting the gains in a somewhat proportional way to the 

THD is a good approach to get a stable solution.   
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6.2.6 Impact of integral gain factor over general stability 

Provided that the 𝐾𝐼 factor is obtained by standard methods, there is not much concern on 

how to get 𝐾𝐼 to help stability. Lots of methods already exist.  It is important to assure that 

the PI controller does not have to deal with harmonic current, that it cannot control. 

6.2.7 Impact of harmonic gain and damping factor voltage tracking 

ability and harmonic cancellation on load current 

The harmonic gain causes that the voltage tracking and output impedance transfer 

functions have very low gain values at the harmonic frequencies, which is in fact the desired 

situation. This means that the harmonic components of current and voltages are 

attenuated (not eliminated) at those frequencies. The undesired peak close to the 

fundamental frequency is related to the filter, as explained in Section 4.9 

6.2.8 Impact of resonant frequency of LCL filter over control loop 

The resonant frequency of the LCL filter considered in the design is 897 Hz. When the grid 

impedance is doubled, as a way of assessing grid variation, the resonance frequency 

changes from 15𝜔1 to 14.8𝜔1. This is a large harmonic and in this case harmonic 15th is not 

expected. 

6.2.9 Impact of changes in grid impedance over operation of inverter 

A weak grid has a larger impedance than a strong grid. If the converter is connected to a 

weak grid, the converter may take more of the non-linear currents than the grid itself. In 

that sense, it is recommended to assess how the converter would work under weak grid 

conditions, to see if it performs according to it is expected. 
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7 Conclusions and Further Work 

7.1 Conclusions 

• The use of the classical robust control theory and the Nyquist diagrams has been 

used to develop a sequence to tune resonant controllers considering the most 

important features such as delay compensation, filtering, discretization. 

• The resonant controllers without damping provides low stability margins and limited 

frequency adaptation, although they provide good voltage tracking. Even with a 

good discretization method, the bandwidth of the resonant controller is somewhat 

narrow, and it may be affected by regular frequency deviations. In that sense, the 

resonant controllers with damping have a better performance. 

• Regarding the discretization methods, the implementations using z transform and 

delta operator did not show significant difference in the results, although some time 

difference was observed in the time used for the simulations, being the 

implementation with the delta operator faster in most of the cases.  

• The tuning method for resonant controllers with damping becomes very similar to 

the method proposed [13] in  when a very small relative damping factor is used. In 

that sense, it could be said that the method proposed in [13] is a particular case of 

the method proposed. 

• Active damping is a well-known method and it helps on getting a stable solution 

with reasonable effort. Then it is recommended to include it whenever possible. 

• A systematic methodology to tune the resonant controller has been proposed by 

maximizing distance of the HOL locus to the instability point for the fundamental 

frequency and harmonic frequencies. 

• The LCL resonance frequency was high in this case and therefore it was not critical 

for the tuning of the resonant controller. This resonant frequency should always be 

checked. 

• 𝐾𝑃𝑇
 is the most important factor when tuning P+R controllers and its maximum 

value is dependent on the crossover frequency 𝜔𝑐. Once the maximum 𝐾𝑃𝑇
 is 

obtained, it should be adjusted to make sure that the current controller follows the 

reference. 

• 𝐾𝑃𝑇
 is the most important factor when tuning resonant controllers. A high 𝐾𝑃𝑇

reduces 

stability and a low 𝐾𝑃𝑇
 hinders performance. 

• 𝐾𝐼 is less important regarding stability, that guarantees smaller settling time. 

• Harmonic gain 𝐾𝑉ℎ is less important regarding tuning but it impacts in the reduction 

of THD. 

• Harmonic gain can be considered proportional to the harmonic components to help 

in minimizing harmonic and at the same time guarantee stability. 

• Delay compensation is more important for less values of 𝐾𝑃𝑇
 than for high values of 

𝐾𝑃𝑇
. For some converters, a delay compensation scheme may be less important. 

• Unbalanced current or voltage can be controlled if a resonant controller is 

implemented for fundamental frequency. Alternatively, an unbalance compensation 

scheme could be implemented in the active and reactive control loop, as suggested 

in [41]. 



104 

 

7.2 Further Work 

• The angle 𝜃 is variable and depend on the plant and controller parameters. The 

value of 𝜃 = 𝜃 has been used as a conservative estimation with good results. If this 

is equal to 𝜃 =
𝜋

2
, the delay compensation scheme is the same as [13]. An 

assessment of the limits of 𝜃 value that are dependent on the resonant controller 

and the elements in the control loop should be done to improve the accuracy of the 

delay compensation. The idea is to develop a methodology that can be replicated 

in any voltage control loop rather than one exact formulation, since the control 

structures and philosophies change among designs. Most of the tuning 

recommendations reviewed are based on simplified equivalent models which 

complicates its use in new applications. 

• Study how the control loop proposed behaves under grid fault conditions 

• Verify which other elements in the control systems must be adaptative in the system 

to work with changing frequency. 

• Test the controls in islanded operation mode. 

• Continue the development of the outer loop that contain the active and reactive 

power control and other features such as synthetic inertia, virtual impedance, 

unbalance compensation. 

• Prepare the implementation of the control loop in a processor either a DSP or FPGA. 

• Perform testing in a laboratory of the AFE control loops. 

• Test of the complete system, i.e. the AFE converter controls together with the 

adjustable speed drive with a synchronous generator. 
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Appendix 1: Matlab Code for Tuning a Voltage Control Loop 

 

Appendices 



 

Appendix 1: Matlab Code for Tuning a Voltage Control Loop 

%Delay compensation considering the inner current controller as a first 
%order equivalent and the filter of the capacitor voltage feedback loop 
clear; 
close all; 
clc; 
f=60; 
Teq=350*10^(-6);% Equivalent time constant 
Tsamp=1/15000;  % Sampling time 
Rc=0.02;      % Capacitor resistance 
Cap=990*10^(-6); 
zeta = 0.000002;  % damping factor or 0 (zero) 
w0 = 2*pi*f;    % system angular frequency     
Tfc=50*10^(-6); % Filter in capacitor voltage control loop 
T_LP=(1/(2*pi*15)); % Low pass filter in the active damping loop 
%Filter data 
Rf=0.001; 
Lf=0.5*83*10^(-6); 
% Kp and Ki of PI and resonant controller 
kp=0:0.05:50;% 
ki=85; 
%Active damping 
k_d=1; 
kn=numel(kp); 
%Plant model including filter installed in the capacitor voltage control 
%loop 
w0Ts=2*pi/99.3;%Crossover frequency 
w=(0.5:0.5:31500);%Plotting frequencies up to 5000 Hz 
wn=numel(w); 
z=exp(1j*w*Tsamp); 
z1=exp(1j*w0Ts); 
s=(w./(tan(w*Tsamp/2))).*(z-1)./(z+1); 
s1=(w0./(tan(w0*Tsamp/2))).*(z1-1)./(z1+1);  
%Low Pass Filters to separate fundamental capacitor voltage and harmonic 
%capacitor voltage 
LPF=(1+T_LP*s)./((1+T_LP*s).^2+(w0*T_LP)^2); 
HPF=(T_LP*s.*(1+T_LP*s)+(w0*T_LP)^2)./((1+T_LP*s).^2+(w0*T_LP)^2); 
LPF1=(1+T_LP*s1)./((1+T_LP*s1).^2+(w0*T_LP)^2); 
HPF1=(T_LP*s1.*(1+T_LP*s1)+(w0*T_LP)^2)./((1+T_LP*s1).^2+(w0*T_LP)^2); 
%Initialization of all variables 
P=zeros(kn,wn); 
PI=zeros(kn,wn); 
A_P=zeros(kn,wn); 
A_PI=zeros(kn,wn); 
R_C_h=zeros(kn,wn); 
R_C_h_nk=zeros(kn,wn); 
C_P=zeros(kn,wn); 
C_PI=zeros(kn,wn); 
C=zeros(kn,wn); 
CC=zeros(kn,wn); 
HOL_P=zeros(kn,wn); 
HOL_PI=zeros(kn,wn); 
HOL=zeros(kn,wn); 
HV=zeros(kn,wn); 
HI=zeros(kn,wn); 
HOLX=zeros(kn,wn); 
a_HOL_P=zeros(kn,wn); 
a_HOL_PI=zeros(kn,wn); 
a_HOL=zeros(kn,wn); 
a_D_P=zeros(kn,wn); 



 

a_D_PI=zeros(kn,wn); 
a_D=zeros(kn,wn); 
a_D_RL=zeros(kn,wn); 
D_P=zeros(kn,wn); 
S_P=zeros(kn,wn); 
D_PI=zeros(kn,wn); 
S_PI=zeros(kn,wn); 
D=zeros(kn,wn); 
S=zeros(kn,wn); 
d_angle_P=zeros(kn,wn); 
d_angle_PI=zeros(kn,wn); 
%Calculation of Kpt to avoid interference with current control 
%Creation of PI controller for calculation 
for ii=1:kn 
        P1(ii)=kp(ii); 
        PI1(ii)=kp(ii)+ki./s1; 
        A1_P(ii)=(1/Cap)*(Tsamp*z1^(-1)/(1-z1^(-1))-Teq*(1-exp(-

Tsamp/Teq))*z1^(-1)/(1-exp(-Tsamp/Teq)*z1^(-1)))*P1(ii); 
        A1_PI(ii)=(1/Cap)*(Tsamp*z1^(-1)/(1-z1^(-1))-Teq*(1-exp(-

Tsamp/Teq))*z1^(-1)/(1-exp(-Tsamp/Teq)*z1^(-1)))*PI1(ii);         
end 
B1=1/(Cap)*Tsamp*z1^(-1)/(1-z1^(-1)); 
%Note: Resonant controller not included in calculation of Kp 
for ii=1:kn 
    C1_P(ii)=1./((1+Tfc*s1)*P1(ii)).*(P1(ii)*LPF1+k_d*HPF1); 
    C1_PI(ii)=1./((1+Tfc*s1)*PI1(ii)).*(PI1(ii)*LPF1+k_d*HPF1); 
end 

  
for ii=1:kn 
    HOL1_P(ii)=A1_P(ii).*C1_P(ii);     
    HOL1_PI(ii)=A1_PI(ii).*C1_PI(ii); 
end 

  
f_kp_P=1-abs(HOL1_P); 
f_kp=1-abs(HOL1_PI); 

  
for ii=1:kn-1 
    if f_kp_P(ii)>0 && f_kp_P(ii+1)<0 
        ikp_P=ii; 
    else  
        ikp_P=1; 
    end 
    if f_kp(ii)>0 && f_kp(ii+1)<0 
        ikp=ii; 
    end 
end 
ikp_P=ikp_P;%-3 
kp(ikp_P) 
ikp=ikp%-3 
kp(ikp) 
%Creation of P and PI controller 
for ii=1:kn 
    for jj=1:wn   
        P(ii,jj)=kp(ii); 
        PI(ii,jj)=kp(ii)+ki./s(jj); 
        A_P(ii,jj)=(1/Cap)*(Tsamp*z(jj)^(-1)/(1-z(jj)^(-1))-Teq*(1-exp(-

Tsamp/Teq))*z(jj)^(-1)/(1-exp(-Tsamp/Teq)*z(jj)^(-1)))*P(ii,jj); 
        A_PI(ii,jj)=(1/Cap)*(Tsamp*z(jj)^(-1)/(1-z(jj)^(-1))-Teq*(1-exp(-

Tsamp/Teq))*z(jj)^(-1)/(1-exp(-Tsamp/Teq)*z(jj)^(-1)))*PI(ii,jj);         
    end 
end 



 

  
B=1/(Cap)*Tsamp*z.^(-1)./(1-z.^(-1)); 

  
for ii=1:kn 
    for jj=1:wn  
        

C_P(ii,jj)=1./((1+Tfc*s(jj)).*P(ii,jj)).*(P(ii,jj).*LPF(jj)+k_d*HPF(jj)); 
        

C_PI(ii,jj)=1./((1+Tfc*s(jj)).*PI(ii,jj)).*(PI(ii,jj).*LPF(jj)+k_d*HPF(jj))

; 
    end 
end 

  
for ii=1:kn 
    for jj=1:wn  
        HOL_P(ii,jj)=A_P(ii,jj).*C_P(ii,jj); 
        HOL_PI(ii,jj)=A_PI(ii,jj).*C_PI(ii,jj); 
        a_HOL_P(ii,jj)=180/pi*angle(HOL_P(ii,jj)); 
        a_HOL_PI(ii,jj)=180/pi*angle(HOL_PI(ii,jj)); 
    end 
end 

  
for ii=1:kn     
    for jj=1:wn 
        %Creation of all z plant models 
        a_D_P(ii,jj)=180/pi*angle(1+HOL_P(ii,jj)); 
        a_D_PI(ii,jj)=180/pi*angle(1+HOL_PI(ii,jj)); 
        %Creation of all sensitivity functions 
        D_P(ii,jj)=abs(1+HOL_P(ii,jj)); 
        S_P(ii,jj)=20*log(1./D_P(ii,jj)); 
        D_PI(ii,jj)=abs(1+HOL_PI(ii,jj)); 
        S_PI(ii,jj)=20*log(1./D_PI(ii,jj)); 
    end 
end 

  
low_S=20*log(1-1./abs(1-z.^(-1))); 
upp_S=20*log(1+1./abs(1-z.^(-1))); 

  
for ii=1:wn 
    if abs(imag(low_S(ii)))>0 
       low_S(ii)=NaN; 
    end 
    if abs(imag(low_S(ii)))>0 
       upp_S(ii)=NaN; 
    end 
end 

  
for ii=1:kn 
    D_min_P(ii)=min(D_P(ii,:)); 
    D_min_PI(ii)=min(D_PI(ii,:)); 
end 

  
%Calculation of n_p min with P an PI controller 
n_p_P=D_min_P(ikp_P); 
n_p_PI=D_min_PI(ikp); 
for ii=1:kn     
    for jj=1:wn 
        if S_P(ii,jj)>20*log(1/n_p_P) 
            S_P(ii,jj)=NaN; 
        end 



 

        if S_PI(ii,jj)>20*log(1/n_p_PI) 
            S_PI(ii,jj)=NaN; 
        end 
%         if S(ii,jj)>20*log(1/n_p) 
%             S(ii,jj)=NaN; 
%         end 
    end 
end      

         
%Strategy to get only absolute values of atan(x) (tricky) 
count1=0; 
count2=0; 

  
%For P controller only 
for ii=1:kn 
    for jj=1:wn-1 
        if abs((a_HOL_P(ii,jj+1)-a_HOL_P(ii,jj)))>6 
            a_HOL_P(ii,jj+1)=a_HOL_P(ii,jj+1)-360;  
            count1=1; 
        end 
        if abs((a_HOL_P(ii,jj+1)-a_HOL_P(ii,jj)))>6 && count1>0 
            a_HOL_P(ii,jj+1)=a_HOL_P(ii,jj+1)-360; 
        end 
    end 
end 
%For PI controller only. Not relevant for resonant controllers 
for ii=1:kn 
    for jj=1:wn-1 
        if abs((a_HOL_PI(ii,jj+1)-a_HOL_PI(ii,jj)))>170 
            a_HOL_PI(ii,jj+1)=a_HOL_PI(ii,jj+1)-360;  
            count2=1; 
        end 
    end 
end 

  
%Obtention of compensation angles 
for ii=1:kn 
    for jj=1:wn 
        d_angle_P(ii,jj)=-(-a_HOL_P(ii,jj)+a_D_P(ii,jj))+0.5*90; 
        d_angle_PI(ii,jj)=-(-a_HOL_PI(ii,jj)+a_D_PI(ii,jj))+0.5*90; 
     end 
end 

  
%Creation of Resonant Controllers for all cases 
Kih=9.5; 
Kih_s=1; 
k1=Kih*2*zeta*1*w0*0; 
k3=Kih*2*zeta*3*w0*0; 
k5=Kih*2*zeta*5*w0; 
k7=Kih*2*zeta*7*w0*0.75; 
k11=Kih*2*zeta*11*w0*0.5; 
k13=Kih*2*zeta*13*w0*0.25; 
k15=Kih*2*zeta*15*w0*0; 
k17=Kih*2*zeta*17*w0*0; 
k19=Kih*2*zeta*19*w0*0; 
k23=Kih*2*zeta*23*w0*0;  
Kih_m=[k5,k7,k11,k13,k17,k19,k23]; 
hk=[5,7,11,13,17,19,23]; 
hkn=numel(hk);%Harmonics for resonant controllers 
for ii=1:hkn 
            d_angle_c(ii)=-0*d_angle_PI(ikp,377*hk(ii)*2)*pi/180;         



 

    end 
d_angle_c 
for ii=1:hkn 
    for jj=1:wn 
        R_C_h(ii,jj)=Kih_m(ii)*(s(jj)*cos(d_angle_c(ii))-

hk(ii)*w0*sin(d_angle_c(ii)))./(s(jj).^2+2*zeta*hk(ii)*w0*s(jj)+(hk(ii)*w0)

^2); 
        R_C_h_nk(ii,jj)=Kih_s*(s(jj)*cos(d_angle_c(ii))-

hk(ii)*w0*sin(d_angle_c(ii)))./(s(jj).^2+2*zeta*hk(ii)*w0*s(jj)+(hk(ii)*w0)

^2); 
        R_C_h_nd(ii,jj)=Kih*s(jj)./(s(jj).^2+(hk(ii)*w0)^2); 
    end 
end 
R_C_wk=sum(R_C_h); 
R_C_nk=sum(R_C_h_nk); 

  
for ii=1:kn 
    for jj=1:wn 
        PI(ii,jj)=kp(ii)+ki./s(jj); 
        A_PI(ii,jj)=(1/Cap)*(Tsamp*z(jj)^(-1)/(1-z(jj)^(-1))-Teq*(1-exp(-

Tsamp/Teq))*z(jj)^(-1)/(1-exp(-Tsamp/Teq)*z(jj)^(-1)))*PI(ii,jj); 
        C(ii,jj)=1./((1+Tfc*s(jj)).*PI(ii,jj)).*(PI(ii,jj).*LPF(jj)-

(k_d*R_C_nk(jj)-(k_d+R_C_wk(jj))).*HPF(jj)); 
    end 
end 

  
for ii=1:kn 
    for jj=1:wn  
        HOL(ii,jj)=A_PI(ii,jj).*C(ii,jj); 
        a_HOL(ii,jj)=180/pi*angle(HOL(ii,jj)); 
    end 
end 

  
for ii=1:kn     
    for jj=1:wn 
        %Creation of all z plant models 
        a_D(ii,jj)=180/pi*angle(1+HOL(ii,jj)); 
        %Creation of all sensitivity functions 
        D(ii,jj)=abs(1+HOL(ii,jj)); 
        S(ii,jj)=20*log(1./D(ii,jj)); 
    end 
end 

  
for ii=1:kn 
    D_min(ii)=min(D(ii,:)); 
end 

  
%Calculation of n_p min with P an PI controller 
n_p=D_min(ikp); 
for ii=1:kn     
    for jj=1:wn 
        if S(ii,jj)>20*log(1/n_p) 
            S(ii,jj)=NaN; 
        end 
    end 
end   

  
%Obtention of compensation angles 
for ii=1:kn 
    for jj=1:wn 



 

        d_angle(ii,jj)=-(-a_HOL(ii,jj)+a_D(ii,jj))+0.5*90; 
    end 
end 

  
y3=180/pi*(-2*w*Tsamp); 

  
figure(1) 
plot(w/(2*pi),a_D_P(ikp_P,:),'--');hold on; 
plot(w/(2*pi),-90*ones(63000,1),'--');hold on; 
plot([60 60],[0 -350],'--') 
plot([1380 1380],[0 -350],'-') 
title('D angle P'); 
xlabel('Frequency [Hz]'); 
ylabel('Phase [degrees]'); 
xlim([0 5200]);hold on; grid on; 

  
figure(2) 
plot(w/(2*pi),a_D_PI(ikp,:),'--');hold on; 
plot(w/(2*pi),-90*ones(63000,1),'--');hold on; 
plot([60 60],[0 -350],'--') 
plot([1380 1380],[0 -350],'-') 
title('D angle PI'); 
xlabel('Frequency [Hz]'); 
ylabel('Phase [degrees]'); 
xlim([0 5200]);hold on; grid on 

  
figure(3) 
plot(w/(2*pi),y3);hold on; 
plot(w/(2*pi),a_HOL_P(ikp_P,:),'--');hold on; 
plot(w/(2*pi),-90*ones(63000,1),'--');hold on; 
plot([60 60],[0 -350],'--') 
plot([1380 1380],[0 -350],'-') 
title('HOL angle P'); 
xlabel('Frequency [Hz]'); 
ylabel('Phase [degrees]'); 
xlim([0 5200]);hold on; grid on; 

  
figure(4) 
plot(w/(2*pi),y3);hold on; 
plot(w/(2*pi),a_HOL_PI(ikp,:),'--');hold on; 
plot(w/(2*pi),-90*ones(63000,1),'--');hold on; 
plot([60 60],[0 -350],'--') 
plot([1380 1380],[0 -350],'-') 
title('HOL angle PI'); 
xlabel('Frequency [Hz]'); 
ylabel('Phase [degrees]'); 
xlim([0 5200]);hold on; grid on; 

  
figure(5) 
plot(w/(2*pi),y3);hold on; 
plot(w/(2*pi),d_angle_P(ikp_P,:),'--');hold on; 
plot(w/(2*pi),-90*ones(63000,1),'--');hold on; 
plot([60 60],[0 -350],'--') 
plot([1380 1380],[0 -350],'-') 
title('Delay Compensation P'); 
xlabel('Frequency [Hz]'); 
ylabel('Phase [degrees]'); 
legend({'Two Samples Project','Project','90 degrees','60 Hz','h=23 (1380 

Hz)'},'Location','northeast') 
xlim([0 5200]);hold on; grid on; 



 

  
figure(6) 
plot(w/(2*pi),y3);hold on; 
plot(w/(2*pi),d_angle_PI(ikp,:),'--');hold on; 
plot(w/(2*pi),-90*ones(63000,1),'--');hold on; 
plot([60 60],[0 -350],'--') 
plot([1380 1380],[0 -350],'-') 
title('Delay Compensation PI'); 
xlabel('Frequency [Hz]'); 
ylabel('Phase [degrees]'); 
legend({'Two Samples Project','Project','90 degrees','60 Hz','h=23 (1380 

Hz)'},'Location','northeast') 
xlim([0 5200]);hold on; grid on; 

  
figure(7) 
plot(w/(2*pi),y3);hold on; 
for ii=1:kn 
    if kp(ii)<kp(ikp+1) 
        plot(w/(2*pi),d_angle(ii,:),'--');hold on; 
    end 
end 
plot(w/(2*pi),-90*ones(wn,1),'--');hold on; 
plot([60 60],[0 -350],'--') 
plot([1380 1380],[0 -350],'-') 
line([60 60], [0 -350]); hold on; 
title('Delay Compensation PI+R'); 
xlabel('Frequency [Hz]'); 
ylabel('Phase Delay [degrees]'); 
legend({'Two Samples Project','Project','90 degrees','60 Hz','h=23 (1380 

Hz)'},'Location','northeast') 
xlim([0 5000]);hold on; grid on; 

  
figure(8) 
plot(kp,f_kp);hold on; 
title({'Best Kpt to avoid interference of commutation','harmonics with 

current control PI'}); 
xlabel('Kpt'); 
ylabel('f(Kpt)=1 - |HOL(exp(2*pi/100))|'); 
plot([kp(ikp) kp(ikp)],[-2 2],'--'); 
grid on; 

  
figure(9) 
plot(w/(2*pi),D_P(ikp_P,:),'--');hold on; 
title({'Minimum Distance D(z) of the OL transfer','function to the critical 

point (-1,0j) P'} ); 
xlabel('Frequency [Hz]'); 
ylabel('D [p.u.]'); 
xlim([0 5000]);hold on; 
ylim([0 2]);hold on; 
grid on; 

  
figure(10) 
% for ii=1:kn 
plot(w/(2*pi),D_PI(ikp,:),'--');hold on; 
% end 
title({'Minimum Distance D(z) of the OL transfer','function to the critical 

point (-1,0j) PI'} ); 
xlabel('Frequency [Hz]'); 
ylabel('D [p.u.]'); 
xlim([0 5000]);hold on; 



 

ylim([0 2]);hold on; 
grid on; 

  
figure(11) 
for ii=1:kn 
  plot(w/(2*pi),D(ikp,:),'--');hold on; 
end 
title({'Minimum Distance D(z) of the OL transfer','function to the critical 

point (-1,0j) PI+R'} ); 
xlabel('Frequency [Hz]'); 
ylabel('D [p.u.]'); 
xlim([0 5000]);hold on; 
ylim([0 2]);hold on; 
grid on; 

  
figure(12) 
plot(kp,D_min_P,'--');hold on; 
plot(kp,ones(kn,1),'--');hold on; 
plot(kp,n_p_P*ones(kn,1),'--');hold on; 
plot([kp(ikp_P) kp(ikp_P)],[0 1.1],'--'); 
title('Minimum D(z) as a function of Kpt P'); 
xlabel('Kp [p.u.]'); 
ylabel('D(z) [p.u.]'); 
grid on; 

  
figure(13) 
plot(kp,D_min_PI,'--');hold on; 
plot(kp,ones(kn,1),'--');hold on; 
plot(kp,n_p_PI*ones(kn,1),'--');hold on; 
plot([kp(ikp) kp(ikp)],[0 1.1],'--'); 
title('Minimum D(z) as a function of Kpt PI'); 
xlabel('Kp [p.u.]'); 
ylabel('D(z) [p.u.]'); 
grid on; 

  
figure(14) 
plot(kp,D_min,'--');hold on; 
plot(kp,ones(kn,1),'--');hold on; 
plot(kp,n_p*ones(kn,1),'--');hold on; 
plot([kp(ikp) kp(ikp)],[0 1.1],'--'); 
title('Minimum D(z) as a function of Kpt PI+R'); 
xlabel('Kp [p.u.]'); 
ylabel('D(z) [p.u.]'); 
grid on; 

  
figure(15) 
plot(w/(2*pi),20*log(1/n_p_P*ones(1,wn)),'--');hold on; 
plot(w/(2*pi),low_S,'--');hold on; 
plot(w/(2*pi),upp_S,'--');hold on; 
plot(w/(2*pi),S_P(ikp,:),'-');hold on; 
title('Output Sensitivity Function Template P'); 
xlabel('Operating Frequency [Hz]'); 
ylabel('Magnitude [dB]'); 
legend({'Modulus Margin','Lower Delay Margin=Ts','Upper Delay 

Margin=Ts','Output Sensitivity Function'},'Location','northeast') 
xlim([0 5000]);hold on; 
ylim([-50 50]);hold on; 
grid on; 

  
figure(16) 



 

plot(w/(2*pi),20*log(1/n_p_PI*ones(1,wn)),'--');hold on; 
plot(w/(2*pi),low_S,'--');hold on; 
plot(w/(2*pi),upp_S,'--');hold on; 
plot(w/(2*pi),S_PI(ikp,:),'-');hold on; 
title('Output Sensitivity Function Template PI'); 
xlabel('Operating Frequency [Hz]'); 
ylabel('Magnitude [dB]'); 
legend({'Modulus Margin','Lower Delay Margin=Ts','Upper Delay 

Margin=Ts','Output Sensitivity Function'},'Location','northeast') 
xlim([0 5000]);hold on; 
ylim([-50 50]);hold on; 
grid on; 

  
figure(17) 
plot(w/(2*pi),20*log(1/n_p*ones(1,wn)),'--');hold on; 
plot(w/(2*pi),low_S,'--');hold on; 
plot(w/(2*pi),upp_S,'--');hold on; 
plot(w/(2*pi),S(ikp,:),'-');hold on; 
title('Output Sensitivity Function Template PI+R'); 
xlabel('Operating Frequency [Hz]'); 
ylabel('Magnitude [dB]'); 
legend({'Modulus Margin','Lower Delay Margin=Ts','Upper Delay 

Margin=Ts','Output Sensitivity Function'},'Location','northeast') 
xlim([0 5000]);hold on; 
ylim([-50 50]);hold on; 
grid on; 

  
figure(18) 
plot(real(HOL_P(ikp_P,:)),imag(HOL_P(ikp_P,:)),'.-.');hold on;grid on; 
xCenter = 0; 
yCenter = 0; 
theta = 0 : 0.01 : 2*pi; 
radius = 1; 
x = radius * cos(theta) + xCenter; 
y = radius * sin(theta) + yCenter; 
plot(x, y); 
axis square; 
axis equal; 
xlim([-2 2]);hold on; 
ylim([-2 2]);hold on; 
title('Nyquist Diagram HOL only P'); 
xlabel('x axis'); 
ylabel('y axis'); 

  
figure(19) 
plot(real(HOL_PI(ikp,:)),imag(HOL_PI(ikp,:)),'.-.');hold on;grid on; 
xCenter = 0; 
yCenter = 0; 
theta = 0 : 0.01 : 2*pi; 
radius = 1; 
x = radius * cos(theta) + xCenter; 
y = radius * sin(theta) + yCenter; 
plot(x, y); 
axis square; 
axis equal; 
xlim([-2 2]);hold on; 
ylim([-2 2]);hold on; 
title('Nyquist Diagram HOL only PI'); 
xlabel('x axis'); 
ylabel('y axis'); 

  



 

figure(20) 
plot(real(HOL(ikp,:)),imag(HOL(ikp,:)),'.-.');hold on; 

  
for ii=1:hkn 
    

plot(real(HOL(ikp,round(377*hk(ii)/0.5*0.95))),imag(HOL(ikp,round(377*hk(ii

)/0.5*0.95))),'g*');hold on; 
    

plot(real(HOL(ikp,377*hk(ii)/0.5)),imag(HOL(ikp,377*hk(ii)/0.5)),'r*');hold 

on; 
    

plot(real(HOL(ikp,round(377*hk(ii)/0.5*1.05))),imag(HOL(ikp,round(377*hk(ii

)/0.5*1.05))),'k*');hold on; 
end 
grid on; 
xCenter = 0; 
yCenter = 0; 
theta = 0 : 0.01 : 2*pi; 
radius = 1; 
x = radius * cos(theta) + xCenter; 
y = radius * sin(theta) + yCenter; 
plot(x, y); 
axis square; 
axis equal; 
xlim([-4 3]);hold on; 
ylim([-2 5]);hold on; 
title('Nyquist Diagram HOL PI+Resonant Controller'); 
xlabel('x axis'); 
ylabel('y axis'); 

  
figure(21) 
for ii=1:hkn 
    plot(real(R_C_h(ii,:)),imag(R_C_h(ii,:)));hold on; 
    

plot(real(R_C_h(ii,round(377*hk(ii)/0.5*0.95))),imag(R_C_h(ii,round(377*hk(

ii)/0.5*0.95))),'g*');hold on;grid on; 
    

plot(real(R_C_h(ii,round(377*hk(ii)/0.5))),imag(R_C_h(ii,round(377*hk(ii)/0

.5))),'r*');hold on;grid on; 
    

plot(real(R_C_h(ii,round(377*hk(ii)/0.5*1.05))),imag(R_C_h(ii,round(377*hk(

ii)/0.5*1.05))),'k*');hold on;grid on; 
end 
xCenter = 0; 
yCenter = 0; 
theta = 0 : 0.01 : 2*pi; 
radius = 1; 
x = radius * cos(theta) + xCenter; 
y = radius * sin(theta) + yCenter; 
plot(x, y); 
axis square; 
axis equal; 
xlim([-50 60]);hold on; 
ylim([-30 60]);hold on; 
title('Nyquist Diagram of Resonant Transfer Function with Damping'); 
xlabel('x axis'); 
ylabel('y axis'); 

  
    for jj=1:wn  
        HOL(ikp,jj)=A_PI(ikp,jj).*C(ikp,jj); 
        HV(ikp,jj)=A_PI(ikp,jj)./(1+A_PI(ikp,jj).*C(ikp,jj)); 



 

        HI(ikp,jj)=B(jj)./(1+A_PI(ikp,jj).*C(ikp,jj)); 
    end 

     
figure(22) 
%Bode Digital Resonant Controller 
subplot(2,1,1) 
semilogx(w,20*log10(abs(R_C_wk)));hold on;grid on; 
title('Bode Diagram - Resonant Controllers'); 
xlabel('Frequency (rad/s)'); 
ylabel('Magnitude (dB)'); 
xlim([0.5 3*10^4]);hold on; 

  
subplot(2,1,2) 
semilogx(w,180/pi*angle(R_C_wk));hold on;grid on; 
xlabel('Frequency (rad/s)'); 
ylabel('Phase (degrees)'); 
xlim([0.5 3*10^4]);hold on; 

  
figure(23) 
%Bode HOL 
subplot(2,1,1) 
semilogx(w,20*log10(abs(HOL(ikp,:))));hold on;grid on; 
title('Bode Diagram - HOL'); 
xlabel('Frequency (rad/s)'); 
ylabel('Magnitude (dB)'); 
xlim([10 3*10^4]);hold on; 
subplot(2,1,2) 
semilogx(w,180/pi*angle(HOL(ikp,:)));hold on;grid on; 
xlabel('Frequency (rad/s)'); 
ylabel('Phase (degrees)'); 
xlim([10 3*10^4]);hold on; 

  
figure(24) 
%Bode HV 
subplot(2,1,1) 
semilogx(w,20*log10(abs(HV(ikp,:))));hold on;grid on; 
title('Bode Diagram - Voltage Tracking'); 
xlabel('Frequency (rad/s)'); 
ylabel('Magnitude (dB)'); 
xlim([10 3*10^4]);hold on; 
subplot(2,1,2) 
semilogx(w,180/pi*angle(HV(ikp,:)));hold on;grid on; 
xlabel('Frequency (rad/s)'); 
ylabel('Phase (degrees)'); 
xlim([10 3*10^4]);hold on; 

  
figure(25) 
%Bode HI 
subplot(2,1,1) 
semilogx(w,20*log10(abs(HI(ikp,:))));hold on;grid on; 
title('Bode Diagram - Output Impedance'); 
xlabel('Frequency (rad/s)'); 
ylabel('Magnitude (dB)'); 
xlim([10 3*10^4]);hold on; 
subplot(2,1,2) 
semilogx(w,180/pi*angle(HI(ikp,:)));hold on;grid on; 
xlabel('Frequency (rad/s)'); 
ylabel('Phase (degrees)'); 
xlim([10 3*10^4]);hold on; 

  



 

figure(26) 
%Bode LPF 
subplot(2,2,1) 
semilogx(w,20*log10(abs(LPF)));hold on;grid on; 
title({'Bode Diagram','alpha-beta Low Pass Filter'}); 
xlabel('Frequency (rad/s)'); 
ylabel('Magnitude (dB)'); 
xlim([10 3*10^4]);hold on; 
subplot(2,2,3) 
semilogx(w,180/pi*angle(LPF));hold on;grid on; 
xlabel('Frequency (rad/s)'); 
ylabel('Phase (degrees)'); 
xlim([10 3*10^4]);hold on; 
%Bode HPF 
subplot(2,2,2) 
semilogx(w,20*log10(abs(HPF)));hold on;grid on; 
title({'Bode Diagram','alpha-beta High Pass Filter'}); 
xlabel('Frequency (rad/s)'); 
ylabel('Magnitude (dB)'); 
xlim([10 3*10^4]);hold on; 
subplot(2,2,4) 
semilogx(w,180/pi*angle(HPF));hold on;grid on; 
xlabel('Frequency (rad/s)'); 
ylabel('Phase (degrees)'); 
xlim([10 3*10^4]);hold on; 
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