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Abstract

Giving a plate new properties simply by cutting a pattern into it can have many uses which
can be discovered by creative minds, professionals and laymen alike. To this end, flex-
ure patterns must be made more accessible. This work contributes to this by performing
experiments on patterned plates, recording deformation under different load cases, and
comparing experimental results with simulated results. The visualization of these results
contributes to better understanding of the theory behind flexure patterns. In addition, a
web application is created to facilitate the creation of flexure patterns with user-defined
parameters.
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Sammendrag

Å gi en plate nye egenskaper kun ved å kutte et mønster inn i den kan ha mange bruk-
sområder som kan oppdages av kreative sinn, både hos fagfolk og lekmenn. Til dette
formålet må bøyningsmønstre gjøres mer tilgjengelige. Denne oppgaven bidrar til dette
ved å utføre eksperimenter på mønstrede plater, måle deformasjon under forskjellige last-
tilfeller, og sammenligne eksperimentelle resultater med simulerte resultater. Visualis-
eringen av disse resultatene bidrar til bedre forståelse av teorien bak bøyningsmønstre. I
tillegg er det laget en webapplikasjon for å forenkle generering av bøyningsmønstre med
brukerdefinerte parametere.
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Chapter 1
Introduction

The study of flexure patterns is a relatively new field, with the term having been coined
as recently as 2017. Similar concepts already existed, such as living hinge and compliant
array, but the flexure pattern term describes it in a broader sense. The definition, introduced
by Oddvin Agnalt Østmo in his master’s thesis on the subject[17], goes as follows:

A flexure pattern is characterized as a 2D mechanical metamaterial that con-
sists of flexures configured in a pattern that increases the compliance com-
pared to the bulk material of which it has been made. The flexures are pat-
terned onto the plane according to a set of rules.

A metamaterial is a material that is constructed to achieve properties that are not found
naturally. It is made from multiple elements of certain shapes and sizes assembled in
specific arrangements, which is what the material derives its properties from, rather than
the properties of its base materials. A mechanical metamaterial is specified to distinguish
it from other types, such as electromagnetic or optical metamaterials, the difference being
what types of properties one desires to achieve. In a flexure pattern, the elements are
flexures – flexible elements engineered to be compliant in specific degrees of freedom –
and the desired property is increased compliance. To put it simply, a flexure pattern is a
pattern cut into a plate to allow it to bend more easily than its material would normally
allow.

Giving a plate new properties simply by cutting a pattern into it can have many uses
which can be discovered by creative minds, professionals and laymen alike. To this end,
flexure patterns must be made more accessible. This thesis attempts to do so by:

1. Creating a web application for flexure pattern generation.

2. Simulating the behavior of patterned plates.

3. Testing flexure pattern behavior in real life.

Chapter 1 introduces the topic. Chapter 2 contains background, discussing relevant
theory for the topic. Chapter 3 contains methodology, describing the creation of the web

1



Chapter 1. Introduction

application and the tools used; the method of gathering results from simulations and the
visualizations thereof; and the execution of the experiment. Chapter 4 presents the results
and discussion thereof. Finally, chapter 5 concludes the thesis.

2



Chapter 2
Background

2.1 Flexure Patterns

2.1.1 Patterns

Although theoretically, the amount of patterns it is possible to create is limited only by
the imagination, in order to reliably replicate properties introduced by flexure patterns it is
necessary to define a set of definitions and rules.

Parts

A flexure pattern consists of the parts shown in figure 2.1.

Wallpaper groups

A wallpaper group, or plane symmetry group, is a classification of a two dimensional
repetitive pattern based on its symmetries. The classification has its basis in crystallogra-
phy. There are 17 distinct plane symmetry groups, see table 2.1. Much of the information
in this section is derived from Schattschneider’s article on the subject[16].

Each letter in the crystallographic name for the wallpaper group has a significance.
The first symbol is either p for primitive cell or c for centered cell. The primitive cell is
simply the lattice unit, as seen in figure 2.2 with solid lines1. The corners are at the centers
of highest order of rotation. On the other hand, the centered cell, shown in figure 2.2c
with dashed lines, has its sides normal to the reflection axes. The second symbol denotes
the highest order of rotation. As you rotate the wallpaper group 360◦, this is the amount
of times it will look exactly the same as its original, un-rotated version. The third symbol
denotes a symmetry axis normal to the x-axis and is either an m for mirror or reflection; a g
for glide-reflection; or a 1 for no symmetry. The fourth symbol denotes a symmetry axis at

1There are also two more lattices, parallelogram and hexagonal, that are not shown here.
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an angle dependent on the highest order of rotation, with the symbol otherwise interpreted
as the third symbol.

Highest Non-trivial
order of glide Generating

Type Lattice rotation Reflections reflections region
p1 parallelogram 1 no no unit
p2 parallelogram 2 no no 1/2 unit
pm rectangular 1 yes no 1/2 unit
pg rectangular 1 no yes 1/2 unit
cm rhombic 1 yes yes 1/2 unit
pmm rectangular 2 yes no 1/4 unit
pmg2 rectangular 2 yes yes 1/4 unit
pgg rectangular 2 no yes 1/4 unit
cmm3 rhombic 2 yes yes 1/4 unit
p4 square 4 no no 1/4 unit
p4m4 square 4 yes yes 1/8 unit
p4g5 square 4 yes yes 1/8 unit
p3 hexagonal 3 no no 1/3 unit
p3m16 hexagonal 3 yes yes 1/6 unit
p31m7 hexagonal 3 yes yes 1/6 unit
p6 hexagonal 6 no no 1/6 unit
p6m hexagonal 6 yes yes 1/12 unit

Table 2.1: Recognition chart for relevant plane periodic patterns.

Diagrams of the wallpaper groups can be found in figure 2.3. These do not necessarily
correspond to the unit of the flexure pattern, but may be built up from generating regions
of several adjacent units.

2Parallel reflection axes.
3Perpendicular reflection axes.
44-fold centers on reflection axes.
54-fold centers not on reflection axes.
6All 3-fold centers on reflection axes.
7Not all 3-fold centers on reflection axes.
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2.1 Flexure Patterns

Figure 2.1: The different parts of a flexure pattern, here shown on a LET p4m pattern. Figure
adapted from Østmo[17].

(a) Parallelogram (b) Rectangular (c) Rhombic

(d) Square (e) Hexagonal

Figure 2.2: Lattices for periodic plane patterns. For the rhombic lattice, the centered cell is repre-
sented by a dashed line.
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Figure
2.3:
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2.1 Flexure Patterns

2.1.2 Flexure pattern creation
In his master’s thesis, Østmo proposed the following basic method for creating new flexure
patterns[17]:

1. Choose a flexure mechanism.

2. Choose a basic tile.

• Use triangles to build polygons.

3. Choose a tiling.

• The crystallographic wallpaper groups are a good basis for tiling.

In addition, one must take care to make the pattern continuous (no gaps or overlaps),
connected (symmetrical connection points, or asymmetrical connection points with mir-
rored tiles) and compliant (flexible members, no inactive flexures or interlocking regions).

2.1.3 Mechanical behavior
The behavior of a flexure pattern depends on the flexure type and the wallpaper group, as
well as the parameters describing geometry.

Single flexure strips

A single flexure strip is a basic building block. Although its compliant degrees of freedom
(DOFs) are controlled by the complete flexure configuration, a single flexure is generally
regarded as compliant in three DOFs (translative, bending and twist). It is often modelled
as a spring.

The equations for the stiffnesses in different modes are given in table 2.2, where:

• E = Young’s modulus

• G = Modulus of rigidity

• A = Cross section area

• I = Moment of inertia

• J = Polar moment of inertia

• L = Length of the flexure strip

• w = Width of the cross section

• t = Thickness (height) of the cross section

• c = Factor for bending mode given by boundary conditions

Regarding geometry, increasing the length of the flexure strip increases the compliance
in bending and torsion. Increasing the height-to-width ratio of the cross-section increases
the resistance to bending and torsion, having a greater effect on the former than the latter.
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Chapter 2. Background

Axial Angular
Tension Ku

t = EA

Bending Ku
B = cEI

L3 KΘ
B = cEI

L

Torsion KΘ
T = JG

L

Table 2.2: Stiffness equations of a single flexure strip.

Compound flexures

Flexure strips can be combined in series, increasing compliance, total deflection and an-
gular deflection, and stored energy; or in parallel, decreasing compliance and increasing
total force and stored energy. The compound flexures can be symmetric, antisymmet-
ric or asymmetric. Symmetric structures are more stable as the response in the structure
cancels out some forces internally, whereas the responses antisymmetric and asymmetric
structures may trigger additional moments, creating higher stresses.

2.1.4 Achieving target properties
Certain design choices have been discovered to achieve target properties:

• To increase compliance, reduce flexure width and increase flexure length while re-
ducing plate thickness.

• To increase out-of-plane compliance while keeping in-plane stiffness, proportionally
scale the geometry while keeping the same plate thickness.

• P4 patterns with only rotations present will give different in-plane and out-of-plane
axes of rotation.

• Patterns with at least one axis of reflection or glide reflection give orthogonal stiff-
ness.

• Patterns with 3-fold symmetry or more give transverse isotropic stiffness.

• Flexure configurations with many degrees of freedom give a low degree of anisotropy,
and vice versa.

2.2 Mechanics
The main sources of information in this section are Bell[5], Dowling[8] and Hibbeler[12].

2.2.1 Stress
Normal stress is the intensity of the force acting normal to an area, while shear stress is
the intensity of the force acting tangent to an area. Figure 2.4 shows the stresses on faces
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x

y

dx

dy

σy

τyx

σx

τxy

σy + dσy

τyx + dτyx

σx + dσx

τxy + dτxy

z

Figure 2.4: Normal and shear stress.

parallel to the x − y plane, with σx and σy being normal stresses and τxy and τyx being
shear stresses. The stress matrix is:

σM =

σx τxy τxz
τyx σy τyz
τzx τzy σz

 (2.1)

The complementary property of shear means that, due to moment equilibrium:

τxy = τyx, τyz = τzy, τzx = τxz (2.2)

This means that the stress matrix is symmetric. It is then more convenient to express a
stress vector:

σ =


σx
σy
σz
τxy
τyz
τzx

 (2.3)

2.2.2 Strain
Figure 2.5 shows two lines OA and OB on an undeformed body in cyan, parallel to the x
and y axes respectively and perpendicular to one another. After deformation, the points
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x,u

y,v

dx

dy

A

B

z, w
O

u

v

γx

γy

π
2 − γxy

δv
δxdx

δv
δydy

dy

δu
δy dy

δu
δxdxdx

O’

A’

B’

Figure 2.5: Normal and shear strain.

O, A and B have shifted to O’, A’ and ’B respectively, forming the lines (OA)’ and (OB)’
shown in blue.

Normal strain is the change in length of a line segment per unit length[12]. For line
OA, the change in length is:

du =
δu

δx
dx

Since OA is along the x axis, dy and dz are both zero. The normal strain in the
x direction at point O is then:

εx =
|O− A|
|O’− A’|

=
δu

δx
(2.4)

Similarly, for the y and z directions respectively:

εy =
δv

δy
(2.5)

εz =
δw

δz
(2.6)

Shear strain is the change in angle, measured in radians, between two line segments
that are originally perpendicular to one another[12]. For small displacements:

10



2.2 Mechanics

tan γx =
δv
δxdx

dx
=
δv

δx
≈ γx

and similarly for γy . The change in angle, and thus the shear strain, in the x− y plane
is then:

γxy = γy + γx =
δu

δy
+
δv

δx
(2.7)

Similarly, for the y − z and z − x planes respectively:

γyz =
δv

δz
+
δw

δy
(2.8)

γzx =
δu

δz
+
δw

δx
(2.9)

Putting it all together, we can then express deformation in matrix notation:
εx
εy
εz
γxy
γyz
γzx

 =



δ
δx 0 0
0 δ

δy 0

0 0 δ
δz

δ
δy

δ
δx 0

0 δ
δz

δ
δy

δ
δz 0 δ

δx


uv
w

 (2.10)

This is equivalent to:

ε = ∆u (2.11)

where ε is the strain vector, ∆ is the operator matrix, and u is the displacement vector.

2.2.3 Stress-strain relationship
Imagine a two dimensional specimen in the x− y plane being stretched in the x direction.

Hooke’s law states that the strain on a body is proportional to the stress applied to it.
In the x direction it is expressed by:

εx =
σx
Ex

(2.12)

where Ex is the modulus of elasticity or Young’s modulus.
As the specimen stretches in the x or axial direction, it contracts in the y o lateral

direction. This is known as the Poisson effect, and the ratio between the lateral and axial
strain is called Poisson’s ratio:

νy = − εy
εx

(2.13)

Meaning that:

εy = −νyεx = −νy
σx
Ex

(2.14)
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Isotropic materials

An isotropic material is a material in which elastic properties are independent of direction.
If a material is isotropic, then:

νx = νy = νz = ν and Ex = Ey = Ez = E (2.15)

We can use this to get the following expressions for normal strain:

εx =
1

E
(σx − νσy − νσz)

εy =
1

E
(−νσx + σy − νσz)

εz =
1

E
(−νσx − νσy + σz)

(2.16)

and for shear strain:

γxy =
2(1 + ν)

E
τxy =

1

G
τxy

γyz =
2(1 + ν)

E
τyz =

1

G
τyz

γzx =
2(1 + ν)

E
τzx =

1

G
τxy

(2.17)

where:

G =
E

2(1 + ν)
(2.18)

is the shear modulus. In matrix notation:


εx
εy
εz
γxy
γyz
γzx

 =
1

E


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)




σx
σy
σz
τxy
τyz
τzx

 (2.19)

which is equivalent to:

ε = C−1σ (2.20)

where C−1 is the compliance or flexibility matrix. Inversely:
σx
σy
σz
τxy
τyz
τzx

 =


λ+ 2G λ λ 0 0 0
λ λ+ 2G λ 0 0 0
λ λ λ+ 2G 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G




εx
εy
εz
γxy
γyz
γzx

 (2.21)
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which is equivalent to:

σ = Cε (2.22)

where C is the elasticity matrix and:

λ =
νE

(1 + ν)(1− 2ν)
(2.23)

is Lamé’s constant.

Anisotropic materials

If the material is anisotropic:

C =


C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

 (2.24)

The matrix is symmetrical, so Cij = Cji, giving 21 independent constants. Likewise:

C−1 = S =


S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66

 (2.25)

Orthotropic materials

If the material is orthotropic, i.e. has three orthotropic planes of symmetry:

C =


C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 (2.26)

C−1 = S =



1
Ex

−νyx

Ey
−νzzEz

0 0 0

−νxy

Ex

1
Ey

−νztEz
0 0 0

−νxz

Ex
−νyz

Ey

1
Ez

0 0 0

0 0 0 1
Gyz

0 0

0 0 0 0 1
Gzx

0

0 0 0 0 0 1
Gxy


(2.27)
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2.3 Plate theory
The main sources of information in this section are Bell[5] and Timoshenko and Woinowsky-
Krieger[18].

In Kirchhoff-Love plate theory, the following assumptions apply to thin plates affected
by lateral loads with small deflections compared to their thickness:

1. There is no deformation in the middle plane of the plate.

2. Straight lines normal to the middle plane of the plate remain straight and normal to
the middle plane of the plate after deformation.

3. Normal stresses in the direction transverse to the plate can be disregarded.

2.3.1 Deflection and curvature
Taking the middle plane of the unbent plate as the xy plane, during bending, the points in
the xy plane undergo small displacements w perpendicular to said plane.

x

z

O

dx

dw

(a) Deflection in the zx plane.

x

y

O

n

t

dn α

dx

dy

a

a1

(b) Deflection in the xy plane.

Figure 2.6: Deflection of a plate section.

Figure 2.6 shows a bent plate in the zx plane and the xy plane. In figure 2.6a, the slope
of the middle surface in the x direction is:

ix =
δw

δx
(2.28)

and likewise, in the y direction:

iy =
δw

δy
(2.29)

Figure 2.6b shows that, for any direction an in the xy plane at an angle α with the x
axis, the difference in the deflections between point a and point a1 on the an axis is:

dw =
δw

δx
dx+

δw

δy
dy (2.30)
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The corresponding slope is then:

δw

δn
=
δw

δx
cosα+

δw

δy
sinα (2.31)

Assuming the deflections are very small, the slope of the surface can be taken to be
equal to the angle between the xy plane and the tangent of said surface. The curvature of
the surface is then:

κx =
1

rx
= − δ

δx

(
δw

δx

)
= −δ

2w

δx2
(2.32)

κy =
1

ry
= − δ

δy

(
δw

δy

)
= −δ

2w

δy2
(2.33)

in a plane parallel to the zx plane and a plane parallel to the yz plane, respectively. A
positive curvature is convex downward, while a negative curvature is convex upward. The
curvature of the middle surface in any direction n is:

κn =
1

rn
= − δ

δn

(
δw

δn

)
(2.34)

which becomes:

κn = κx cos2 α− κxy sin 2α+ κy sin2 α (2.35)

where:

κxy =
1

rxy
=

δ2w

δxδy
(2.36)

is the twist of the surface with respect to the x and y axes. Likewise:

κt = κx sin2 α− κxy sin 2α+ κy cos2 α (2.37)

and:

κnt =
d

dt

(
dw

dn

)
=

1

2
(κx − κy) sin 2α+ κxy cos 2α (2.38)

For simplification, one can assume that the zx and yz planes are taken parallel to
the principal planes of curvature at point a – i.e. the planes of maximum and minimum
curvature – which means that κxy = 0.

Gaussian curvature

The Gaussian curvature at a point is:

K = κxκy (2.39)
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Figure 2.7 shows shapes with negative, zero and positive Gauss curvatures. A negative
Gauss curvature means that the curvature in each direction has opposite signs, and gives
a saddle-like shape. A Gauss curvature of zero means that the curvature in at least one of
the directions is zero, and gives a cylindrical shape – or, if the curvature in both directions
is zero, a flat plane. A positive Gauss curvature means that the curvature in each direction
has the same sign, and gives a dome-like shape.

(a) K < 0 (b) K = 0 (c) K > 0

Figure 2.7: Examples of shapes with different Gauss curvatures. Images c©Peter Schröder / Cali-
fornia Institute of Technology / CC-BY-NC-ND 3.0.

2.3.2 Stresses and strains

dxdy

h
2

h
2

z

dz

(a) The element

dxdy

α

z

dz τnt σn

(b) Stresses acting on a section of the element
inclined to the x and y axes.

Figure 2.8: An element cut out of a plate.

Figure 2.8a shows an element cut out of a plate. The strain at a distance z from the
middle plane is:
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εx =
δu

δx
=
δu0

δx
− z δ

2w

δx2
= ε0x + zκx (2.40)

εy =
δv

δy
=
δv0

δy
− z δ

2w

δy2
= ε0y + zκy (2.41)

γxy =

(
δu

δy
+
δv

δx

)
=
δu0

δy
+
δv0

δx
− 2z

δ2w

δxδy
= γ0

xy + zκxy (2.42)

or, in matrix form: εxεy
γxy

 =

 ε0xε0y
γ0
xy

− z


δ2w
δx2

δ2w
δy2

2 δ2w
δxδy

 =

 ε0xε0y
γ0
xy

+ z

 κxκy
κxy

 (2.43)

or simply:

ε = ε0 + zκ (2.44)

The stress is: σxσy
τxy

 =

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q66

 εxεy
γxy

 (2.45)

or simply:

σ = Qε = Qε0 + Qzκ (2.46)

where Q is the reduced stiffness matrix.
Figure 2.8b shows the stresses acting on the element in the nt plane, where:

σn = σx cos2 α+ σy sin2 α (2.47)

τnt =
1

2
(σy − σx) sin 2α (2.48)

where α is the angle between the n and x axes or, equivalently, the t and y axes.

2.3.3 Forces and moments
Figure 2.9 shows an element cut out of a plate, with the x and y axes on the middle plane
of the plate and the z axis perpendicular to that plane. Any strain in the middle plane of
the plate is assumed to be negligible. Shear forces are shown in yellow, bending moments
in cyan and twisting moments in magenta.

Figure 2.10 shows the middle plane of the element and the forces and moments acting
on it.

The equation of equilibrium for the forces is then:
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dxdy

Vy +
δVy

δy dy

Myx +
δMyx

δy dy

My +
δMy

δy dy

Vx + δVx

δx dx

Mxy +
δMxy

δx dx

Mx + δMx

δx dx

Figure 2.9: An element cut out of a plate, with forces and moments on the middle plane.

Mx

Mxy

Mx + δMx

δx dx

Mxy +
δMxy

δx dx

Myx

My

Myx +
δMyx

δy dy
My +

δMy

δy dy

(a) Moments.

x

y
z

Vx

Vx + δVx

δx dx

Vy

Vy +
δVy

δy dy

(b) Shear forces.

Figure 2.10: Moments and shear forces on the middle plane of the plate.

δVx
δx

dxdy +
δVy
δy

dydx+ qdxdy = 0 (2.49)

δVx
δx

+
δVy
δy

+ q = 0 (2.50)

where q is the load distributed over the surface of the plate, which may include its
weight. The equation of equilibrium for the moments with respect to the x axis:

δMxy

δx
dxdy +

δMy

δy
dydx+ Vydxdy = 0 (2.51)

δMxy

δx
+
δMy

δy
+ Vy = 0 (2.52)

Likewise, about the y axis:

δMyx

δy
dydx+

δMx

δx
dxdy + Vxdxdy = 0 (2.53)

δMyx

δy
+
δMx

δx
+ Vx = 0 (2.54)

Because τxy = τyx, we also have that Myx = −Mxy . Using the above equations, the
equation of equilibrium is:

18



2.3 Plate theory

δ2Mx

δx2
− 2

δ2Mxy

δxδy
+
δ2My

δy2
= −q (2.55)

2.3.4 Large deflections of plates

Earlier in this section, the deflection of the plate has been assumed to be small compared to
its thickness, which meant that strain in the middle plane of the plate could be neglected.
However, with large deflections, one must take into account the in-plane forces brought on
by strain due to bending, see figure 2.11.

x

y

Nx

Nxy

Ny

Nyx

Nx + δNx

δx dx

Nxy +
δNxy

δx dx

Ny +
δNy

δy dy

Nyx +
δNyx

δy dy

Figure 2.11: In-plane forces acting in the middle plane of the plate.

Assuming that there are no other in-place forces acting upon the plate, the following
equations of equilibrium apply:

δNx
δx

+
δNyx
δy

= 0

δNy
δy

+
δNxy
δx

= 0

(2.56)

where Nxy = Nyx. The corresponding strain components are:

ε′x =
δu

δx
+

1

2

(
δw

δx

)2

ε′y =
δv

δy
+

1

2

(
δw

δy

)2

γ′xy =
δu

δy
+
δv

δx
+
δw

δx

δw

δy

(2.57)
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2.3.5 The stiffness matrix

It can be shown that:

N =

NxNy
Nxy

 =

∫ h/2

−h/2
σdz (2.58)

which becomes:

N = Aε0 + Bκ (2.59)

where:

A = Q(zh/2 − z−h/2) (2.60)

B =
1

2
Q(z2

h/2 − z
2
−h/2) (2.61)

are the in-plane stiffness matrix and the bending-stretching coupling matrix, respec-
tively. Likewise:

M =

Mx

My

Mxy

 =

∫ h/2

−h/2
σzdz (2.62)

which becomes:

M = Bε0 + Dκ (2.63)

where:

D =
1

3
Q(z3

h/2 − z
3
−h/2) (2.64)

is the bending stiffness matrix. Combining these equations:[
N
M

]
=

[
A B
B D

] [
ε0

κ

]
(2.65)

In its expanded form:
Nx
Ny
Nxy
Mx

My

Mxy

 =


Axx Axy Axs Bxx Bxy Bxs
Ayx Ayy Ays Byx Byy Bys
Asx Asy Ass Bsx Bsy Bss
Bxx Bxy Bxs Dxx Dxy Dxs

Byx Byy Bys Dyx Dyy Dys

Bsx Bsy Bss Dsx Dsy Dss




ε0x
ε0y
γ0
xy

κx
κy
κxy

 (2.66)
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Orthotropic plates

For an orthotropic plate: σxσy
τxy

 =

E′x E′′ 0
E′′ E′y 0
0 0 G

 εxεy
γxy

 (2.67)

where:

E′x =
Ex

1− νxνy
(2.68)

E′y =
Ey

1− νxνy
(2.69)

E′′ =
νxEx

1− νxνy
=

νyEy
1− νxνy

(2.70)

which gives:
Nx
Ny
Nxy
Mx

My

Mxy

 =


E′xh E′′h 0 0 0 0
E′′h E′yh 0 0 0 0

0 0 Gh 0 0 0
0 0 0 E′xI E′′I 0
0 0 0 E′′I E′yI 0
0 0 0 0 0 GI




ε0x
ε0y
γ0
xy

κx
κy
κxy

 (2.71)

where I = h3

12 .

Isotropic plates

For an isotropic plate: σxσy
τxy

 =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 εxεy
γxy

 (2.72)

which gives:


Nx
Ny
Nxy
Mx

My

Mxy

 =
E

1− ν2



h νh 0 0 0 0
νh h 0 0 0 0

0 0 (1−ν)h
2 0 0 0

0 0 0 I νI 0
0 0 0 νI I 0

0 0 0 0 0 (1−ν)I
2




ε0x
ε0y
γ0
xy

κx
κy
κxy

 (2.73)
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2.3.6 Coupling terms

Axy and Dxy are referred to as the coupling terms of the in-plane and bending stiffness
matrices, respectively. Axy is related to transverse stress with unidirectional strain. A near-
zero value translates to no lateral strain; a negative value translates to lateral expansion;
and a positive value translates to lateral contraction. Correspondingly, Dxy is related to
transverse bending moment with unidirectional curvature. A near-zero value translates to
zero Gaussian curvature; a negative value translates to positive Gaussian curvature; and a
positive value translates to negative Gaussian curvature.

2.4 Regression analysis
Regression analysis is the process of estimating the relationship between variables. The
main sources of information in this section are Cleveland and Devlin[7] and Montgomery,
Peck and Vining[15].

2.4.1 Linear regression

In linear regression, the assumption is that there is a linear relationship between the vari-
ables xi and their observed values yi:

y = β0 + β1x+ ε (2.74)

where β0 and β1 are the regression coefficients, which are unknown and must be esti-
mated using sample data, and ε is a random error component. The most common form of
regression analysis is least squares analysis, which attempts to find the line that minimizes
the sum of the squared errors:

S(β0, β1) =

n∑
i=1

(y1 − β0 − β1xi)
2 (2.75)

The linear regression model here is:

ŷ = β̂0 + β̂1x (2.76)

where the least-square estimators β̂0 and β̂1 are the estimations of β0 and β1 respec-
tively such that the difference between the observations yi and the regression line ŷ is
minimized. These are given by:

β̂0 = ȳ − β̂1x̄ (2.77)

where x̄ and ȳ are the averages of xi and yi, respectively, and:

β̂1 =

∑n
i=1 xiyi −

(
∑n

i=1 xi)(
∑n

i=1 yi)
n∑n

i=1 x
2
i −

(
∑n

i=1 xi)
2

n

(2.78)
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2.4 Regression analysis

The least squares method can be considered a special case of the weighted least squares
method:

S(β0, β1) =

n∑
i=1

wi(y1 − β0 − β1xi)
2 (2.79)

where wi is a weight chosen inversely proportional to the variance of yi.

2.4.2 Polynomial regression
Polynomial regression attempts to find an nth degree polynomial that fits the data as
closely as possible. Table 2.3 shows the form of the regression function for bivariate
polynomials up to the 5th degree.

Degree Form
1 β0 + β1x+ β2y
2 β0 + β1x+ β2y + β11x

2 + β12xy + β22y
2

3 β0 + β1x+ β2y + β11x
2 + β12xy + β22y

2

+β111x
3 + β112x

2y + β122xy
2 + β222y

3

4 β0 + β1x+ β2y + β11x
2 + β12xy + β22y

2

+β111x
3 + β112x

2y + β122xy
2 + β222y

3

+β1111x
4 + β1112x

3y + β1122x
2y2 + β1222xy

3 + β2222y
4

5 β0 + β1x+ β2y + β11x
2 + β12xy + β22y

2

+β111x
3 + β112x

2y + β122xy
2 + β222y

3

+β1111x
4 + β1112x

3y + β1122x
2y2 + β1222xy

3 + β2222y
4

+β11111x
5 + β11112x

4y + β11122x
3y2 + β11222x

2y3 + β12222xy
4 + β22222y

5

Table 2.3: Form of bivariate polynomials.

2.4.3 Local regression
The loess8 method (an acronym for locally estimated scatterplot smoothing), as the name
suggests, is a method developed for scatterplot smoothing using local fitting. The method
estimates a linear9 or quadratic function at each point x in the data range based on the
values of the nearest neighbors to x, using weighted least squares where each neighbor is
weighted according to its distance to x. The weight for the neighbor (xi, yi) is:

wi(x) = W

(
%(x, xi)

d(x)

)
(2.80)

where % is the distance function, d(x) is the distance to the farthest neighbor to x, and
W is the weight function, commonly the tricube function:

8Some sources write the acronym with capital letters (LOESS), but the original literature written by those
who developed the method do not.[7]

9The method using linear functions is sometimes known as the lowess, or locally weighted scatterplot smooth-
ing, method.
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W (t) =

{
(1− t3)3, 0 ≤ t < 1

0, otherwise
(2.81)

If the distances fall outside of the given range, they can be scaled appropriately.
The loess method with quadratic fitting is especially well suited for surfaces with sub-

stantial curvature.

2.4.4 Interpolant analysis

In interpolant analysis, new data points are constructed within the range of a given set
of data points. All given data points must fit into the model. Interpolation differs from
regression in that regression analysis attempts to create a model that can predict data points
outside of the range of the given data points, and only needs to approach the given data
points as closely as possible rather than match them exactly.

2.5 Materials

This section intends to briefly introduce some concepts in materials science. The main
sources of information in this section are Callister and Rethwisch[6] and Dowling[8].

2.5.1 Elastic and plastic deformation

Figure 2.12: Stress-strain diagram. Image c©User:Amgreen / Wikimedia Commons / CC-BY-SA-
3.0.
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2.6 Laser cutting

Deformation of a body being subjected to a load can be classified as either elastic or
plastic. Elastic deformation is recovered immediately upon unloading, while plastic defor-
mation is permanent. Where you have elastic deformation, stress and strain is generally
proportional. On a stress-strain diagram (such as figure 2.12), the area of elastic deforma-
tion is then shown as a straight line. At a certain point, the material yields and transitions
to plastic deformation, where a relatively small increase in stress will cause a large ad-
ditional deformation. The stress at which deformation transitions from elastic to ductile
is known as the yield strength σ0. The stress-strain curve eventually reaches a maximum
stress value – the ultimate tensile strength σu – before decreasing until finally reaching
fracture. A material that can sustain large amounts of plastic deformation before fracture
is considered ductile, whereas a brittle material will fracture after sustaining little to no
plastic deformation.

2.5.2 Heat-affected zone
When a material undergoes welding or a heat-intensive cutting operation (such as laser
cutting), a region around the weld or cut may be affected by the heat in such a way that
the material experiences changes in microstucture and properties, such as residual stresses
forming that weaken the area. This region is known as the heat-affected zone, or HAZ.

2.6 Laser cutting
Laser cutting is a technology for cutting materials using a high-power laser beam inten-
sified by a lens and/or a mirror. In addition to cutting, laser cutters can also engrave
materials.

2.6.1 Advantages and disadvantages
Advantages of laser cutting over traditional cutting are numerous:

• Versatility. Simple and complex designs may be cut or engraved into a wide variety
of materials using the same laser cutting machine, where one may have needed to
use multiple traditional machines.

• Precision. Cuts are very accurate with a small kerf, and the laser does not wear
during cutting.

• Reduced risk of contamination. There is no cutting edge that may be contaminated
by, or contaminate, the material.

• Less warping. Heat generated by traditional cutting may warp the material, whereas
with laser cutting, the area subjected to heat is very small, reducing the chance of
warping.

Laser cutting also has its disadvantages – for example, one must be very careful in
choice of material, to avoid damage to the machinery or to the human body due to harmful
combustion gases; as well as the machine settings, to avoid combustion. However, the
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advantages outweigh the disadvantages to such a degree that laser cutting is ever increasing
in popularity.

2.6.2 Hazards
Some of the hazards to keep in mind when selecting a material for laser cutting are[4, 10]:

Flammability. Some materials are more likely than others to combust due to various rea-
sons. Polycarbonate easily overheats due to its ease of absorbing infrared light from
the laser, while foamed plastics are a fire hazard due to having large amounts of
surface area exposed to oxygen.

Explosion. Porous, hard materials that have the ability to absorb moisture may have pock-
ets of liquid trapped inside, causing steam explosions when heated by the laser.

Damage to machinery. If a material releases hydrogen chloride gas, it may corrode parts
of the laser cutter. Highly reflective materials should also be avoided as the laser
may reflect back into the machinery, damaging it.

Damage to respiratory system. Materials containing halogens, such as PVC, release halo-
gen gases that damage the lungs and respiratory system.

Damage to central nervous system. Materials containing styrene, such as ABS and polystyrene,
release styrene gas which can cause styrene sickness with symptoms such as irrita-
tion of skin, eyes and upper respiratory tract, or, with chronic exposure, effects on
the central nervous system.

Death. Materials containing a carbon-nitrogen bond, such as nylon and ABS plastic, cre-
ate hydrogen cyanide gas when burned, which is lethal as it hinders the human body
from using oxygen.

It must be noted, however, that some of the materials that release toxic gases can still
be cut if the laser cutter has the proper ventilation equipment.
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3.1 Web application
As part of his master’s thesis on flexure patterns, Østmo created code for a flexure pattern
generator[17] which generates vector graphic files of a pattern based on given parameters.
However, this generator does not have a user interface for entering parameters. In order to
facilitate use of this code, a web application was created.

3.1.1 Original code
The original code was written in Python with the help of the NumPy and Shapely libraries.
As mentioned earlier, Numpy is a library for scientific computing with Python, includ-
ing support for large, multi-dimensional arrays and matrices and high-level mathematical
functions to operate on these. Shapely adds geometrical objects and operations on these.
The code creates the flexure pattern and its parts as polygonal shapes and outputs these as
vector graphics files.

3.1.2 Adding functionality
It was desirable to add some extra functionality to the flexure pattern generator. First, the
option to render cuts in the pattern as slits rather than gaps. This was done by adding a
boolean variable which indicates whether the cut should be a slit (false) or a gap (true). In
the vector graphics files, the slits would then be rendered as lines. Second, the option to
generate an Abaqus script that automatically creates parts in Abaqus. This was done by
generating the text needed for the script and outputing it as a Python file.

3.1.3 Creating a web application
The web application was created using Flask, a web framework written in Python. The
framework was mainly chosen due to the original code already being in Python, but also

27



Chapter 3. Method

because it is versatile and easy to use. The web application uses the WTForms library to
handle forms, which is an important part of the application as this is how the user enters
and submits parameters to the application.

3.2 Simulation

The program used for simulation was Abaqus, a unified finite element analysis (FEA)
solution developed by Simulia. The program was used to simulate plates and load cases
equivalent to those used in the experiment (see section 3.3) in order to check the correlation
between real life and simulations. The general procedure was as follows:

1. Run simulation on single unit cell to find stiffness matrix.

2. Use stiffness matrix in shell simulation.

3. Gather nodal results from shell simulation.

4. Visualize results.

This section gives a brief overview of the procedure.

3.2.1 Part creation

The creation of the parts for simulating was done by running scripts generated by the
flexure pattern generator, see section 3.1.

3.2.2 Finding the stiffness matrix

Using a script, simulations were run on the unit cell for load cases of pure strain in the
x direction; pure strain in the y direction; pure shear; pure bending in the x direction; pure
bending in the y direction; and pure twist. For the first load case:


Nx
Ny
Nxy
Mx

My

Mxy

 =


Axx 0 0 0 0 0
Axy 0 0 0 0 0
Axs 0 0 0 0 0
Bxx 0 0 0 0 0
Bxy 0 0 0 0 0
Bxs 0 0 0 0 0




1
0
0
0
0
0

 (3.1)

and similarly for the other load cases. Then:
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Axx =

∑
FXx

∆y
(3.2)

Axy =

∑
FYy

∆x
(3.3)

Axs =
1

2

(∑
FYy

∆x
+

∑
FXx

∆y

)
(3.4)

Bxx =

∑
MX
x

∆y
(3.5)

Bxy =

∑
MY
y

∆x
(3.6)

Bxs =
1

2

(∑
MY
xy

∆x
+

∑
MX
xy

∆y

)
(3.7)

(3.8)

where e.g.
∑
FXx denotes the sum of the forces in the x direction on theX side, which

is the left side on figure 2.11, etc. For curvature:

Bxx =

∑
FXx

∆y
(3.9)

Bxy =

∑
FYy

∆x
(3.10)

Bxs =
1

2

(∑
FYy

∆x
+

∑
FXx

∆y

)
(3.11)

Dxx =

∑
MX
x

∆y
(3.12)

Dxy =

∑
MY
y

∆x
(3.13)

Dxs =
1

2

(∑
MY
xy

∆x
+

∑
MX
xy

∆y

)
(3.14)

(3.15)

The process is repeated for each load case to find the full stiffness matrix.

3.2.3 Shell simulation
A shell element in the shape of the plate is assigned the stiffness matrix found by the
method above. Boundary conditions and loads are added to the model before the simula-
tion is run.
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When assigning a step to the simulation, there is an option to turn NLGEOM on or off.
NLGEOM stands for nonlinear geometry, and will take this into account during calcula-
tions when large deformation takes place in the simulation.

3.2.4 Result gahering
In order to facilitate the gathering of results, multiple node sets are defined on the mesh
before simulation. The nodes are located in the same spots as the gathered data points
from the experiment. Figure 3.1 shows the node sets as red dots on a simulated plate,
where each row is a node set – this is to make the values easier to format as a matrix rather
than as a list.

Figure 3.1: Abaqus screen showing node sets.

A script is then run to gather the displacement at each node and write them to a text
file, which can then be imported into Excel.

3.2.5 Visualization
A program was written in Python to facilitate visualization. The program uses the follow-
ing important libraries:

Numpy is a library for scientific computing with Python, including support for large,
multi-dimensional arrays and matrices and high-level mathematical functions to op-
erate on these.

Pandas provides data manipulation and analysis tools.

Matplotlib allows plotting of data in Python.
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The program uses Pandas to import data from Excel sheets as dataframes. Then,
Numpy is used to interpolate missing data, if any. Finally, the surface is plotted using
Matplotlib, which also automatically saves the plots as image files.

3.3 Experiment
An experiment was performed to see how a patterned plate would react under different
load cases, and to see how well simulations correspond to real life.

3.3.1 Equipment
Flexure pattern generator

The flexure pattern generator, originally coded by Østmo and expanded upon by the author
of this text, was used to generate patterns that could be fed more or less directly into the
laser cutter.

Laser cutter

In order to create a pattern in the specimen for testing, a laser cutter was used – specif-
ically, an Epilog Laser Fusion M2. This is a small-format, 120 W laser cutter with a
1016 × 711 mm workspace. Being less powerful than larger machines for industrial use,
it might not be able to cut certain materials as well or at all, sometimes depending on the
thickness of the material. For example, ABS cuts very well on a more powerful laser cut-
ter, but might exhibit melting on a less powerful laser cutter. For this reason, most of the
application-specific information on materials is gathered from maker space communities
rather than commercial manufacturers.

Laser cutter jobs are sent to the machine from the computer via software. Figure 3.2
shows the dialog screen for adjusting the laser cutter’s settings[10]. The following settings
can be adjusted:

Resolution. Determines the amount of lasered dots per inch when raster engraving.

Default Settings. For dual-source machines, one can select whether to use a CO2 or fiber
laser for the job – however, the machine used in this experiment only uses CO2.
Auto focus, when toggled on, tells the machine to move the work table automatically
to the correct position, where the focus of the laser is on top of the piece or at a given
offset.

Options. Sets options related to the job.

Center-Engraving. Sets the reference point for engraving.

Rotary options. For using the optional 3-Jaw Chuck Rotary Attachment, which the
machine used in this experiment does not have.

Job Type. Raster mode is used for engraving, while vector mode is used for cutting.
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Figure 3.2: The laser cutter’s dialog screen.

Piece Size. By entering the size of the piece, one can easily see whether the design
exceeds it.

Raster Setting. Options for engraving, not relevant for this experiment.

Vector Setting. Sets options related to the output of the laser.

Speed is adjustable from 1− 100 % and refers to the speed of the carriage.

Power is adjustable from 0− 100 % and refers to the amount of laser energy.

Frequency is adjustable from 0− 100 and refers to the number of laser pulses per
inch of travel.

Speed Comp. halves the speed.

Power Comp. reduces the laser output in curves where the carriage speeds slows.

Test rig

An aluminium frame was built from which the plates could be suspended. Figure 3.3
shows the test rig with the following items labeled:

1. Aluminium profiles used to build the frame.

2. Eye bolts connected to the alumiunium crossbeams.

3. Steel wires tied to the eye bolts on top and the hooks on the bottom. The wires are
thin enough to be drawn taut by the weight of the patterned plate, and strong enough
not to be elongated by said weight.
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1

2

3

4
5

6
7

Figure 3.3: Test rig.

4. Hook screws screwed into the patterned plate in order to suspend the plate from the
wires.

5. Plate with laser cut flexure pattern.

6. Laser distance measurer used to measure the distance from the bottom plate to the
patterned plate.

7. Bottom plate which is level with the ground.

Measuring device

To measure the distance from the bottom plate to the patterned plate, a Stanley TLM50
laser distance measurer was used. The device measures distance with a resolution of 1 mm
and an accuracy of ±3 mm.

3.3.2 Specimens
Material selection

In choosing a material for the experiment, certain aspects must be taken into account. First,
the material must be appropriate for testing, leading to meaningful results. Second, since
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the pattern is to be cut into the specimens using a laser cutter, the material must be suitable
for laser cutting.

One of the purposes of the experiment is to measure deformation. Thus, the mate-
rial should be ductile, as a brittle material will break before significant deformation has
taken place. For easily measurable and replicable results, the material should also be ho-
mogeneous and isotropic. For these reasons, a metal or a polymer are the most suitable
candidates.

The decision was made to use a polymer, mainly because many polymers are very
well suited for laser cutting. In contrast, metals are very difficult to cut using lasers due to
their high reflectivity – in fact, there is a danger of the laser reflecting back into the optics,
damaging the machine – and in most cases can only be engraved.

An additional benefit of choosing a polymer is low density, making the specimens
easier to handle.

Some polymers that were considered are ABS, PMMA, acetal, and PETG.

Acrylonitrile butadiene styrene (ABS) is resistant to heat and tends to melt instead of
vaporize, which is a fire hazard as well as potentially damaging to the machine. It
also releases cyanide gas as a combustion product.

Poly(methyl methacrylate) (PMMA) is a very popular material for laser cutting, leav-
ing sharp, clean edges without releasing harmful combustion products, but is very
brittle.

Acetal also cuts very well, but residual stresses in the material may lead to warping,
especially in thin sheets. In addition, its combustion products include formaldehyde.

Glycol-modified polyethylene terephthalate (PETG) is a very popular material for fil-
aments used in 3D printing, but less common in laser cutting. While it does exhibit
some melt, there are no significant hazards in laser cutting PETG, and it is a durable
and ductile material. For these reasons, PETG was the chosen material for this ex-
periment.

Polyethylene terephthalate (PET, fig. 3.4d) is a semi-crystalline polymer synthesized
from terephthalic acid (fig. 3.4a) and ethylene glycol (fig. 3.4b). Copolymerizing PET by
replacing some (50% or less) of the ethylene glycol in the polymer chain with cyclohex-
ane dimethanol (CHDM, fig. 3.4c) results in glycol-modified PET (PETG, fig. 3.4e)[19].
CHDM monomers are much larger than ethylene glycol and do not allow the polymer
chains to be packed as tightly, which reduces the crystallinity and makes the material
amorphous[11]. This in turn lowers the melting temperature. PETG retains the strength
and durability of PET while also making it more ductile and easier to laser cut.

Flexure pattern

The flexure pattern chosen for the experiment was a YdX cmm pattern, as its negative
Poisson’s ratio might produce some interesting results. Figure 3.5 shows an illustration of
the simulated LET cmm unit, and table 3.1 shows the measurements of each colored part.
Rather than having cut-outs, the cuts are mere slits with a width equal to the kerf of the

34



3.3 Experiment

O

HO O

OH

(a) Terephthalic acid
OH

OH

(b) Ethylene glycol (1,2-ethanediol)

OH

OH

(c) Cyclohexane dimethanol (1,4-cyclohexanedimethanol)
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(e) Glycol-modified polyethylene terephthalate (PETG)

Figure 3.4: Constituent molecules of PET-G.
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laser cutter. The units are repeated 18 times in the horizontal direction and 24 times in the
vertical direction for the pattern seen in figure 3.6.

Figure 3.5: YdX cmm unit.

Color Direction Measurement
Blue Long side 10 mm
Blue Short side 3 mm

Green Horizontal 5 mm

Table 3.1: Measurements for YdX cmm unit.

Load cases

Results were measured for three load cases:

1. No load; the plate is only affected by gravitational body forces. This was measured
for two plates.

2. One concentrated load in the middle of the plate.

3. Two concentrated loads on the left and right side of the plate, symmetrical about the
middle of the plate.

An illustration of the plates used for testing is shown in figure 3.6. The plates had
three hook screws screwed into them from the top side, from which the plates could be
suspended. The locations are shown as blue dots in the figure. On one plate, a hook screw
was screwed in from the underside from which a load could be attached, the location of
which is shown as a green dot in the figure, representing load case 2. On another plate,
two hook screws were screwed in from the underside, the locations of which are shown as
red dots in the figure, representing load case 3.

As mentioned in section 3.3.1, the wires from which the plates are supended are drawn
taut and do not elongate. This gives a boundary condition where those points have zero
translation in the z direction, where the z axis is positive in the upwards direction – i.e.,
w = 0.

Plate 1 has a mass of 789.8 g and plate 2 has a mass of 792.0 g, for an average mass
of 790.9 g. In load case 2, the load has a mass of 1074.4 g. In load case 3, one load has a
mass of 545.4 g and the other a mass of 547.0 g, for an average mass of 546.2 g.

3.3.3 Specimen preparation
Laser cutting

Before laser cutting the patterns, several tests were made to find the optimal settings for the
laser cutter. Even if the laser cuts through the top of the material, the cut might not go all
the way through, as shown by the angle in the kerf in figure 3.7. In e-mail correspondence
with Polulu, a company that offers laser cutting on PETG, their suggestion was to set the
focus to the top surface of the material and to use maximum power and frequency while
testing for the maximum speed at which the laser will cut through the material. Thus, in
testing, the power was set to 100 % and the frequency to 100 pulses per inch, while speed
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Figure 3.6: Pattern in black; suspension points in blue; middle load point in green; side load points
in red.

was variable. Figure 3.8a shows, from left to right, 20 × 20 mm samples cut at 100 %,
80 %, 60 %, 40 % and 20 % speed, with the top samples being cut in one pass and the
bottom samples being cut in two passes. Only the samples cut at 20 % speed, as well as
the sample cut at 40 % speed in two passes, cut through the thickness of the plate.

Another test was made to check how the width of the cutouts affected the ability to
cut through the material. Figure 3.8b shows, from left to right, samples with a height of
20 mm and a width of 20 mm, 10 mm, 5 mm, 2.5 mm and 1 mm, all cut at 20% speed and
with two one pass at the top and two passes at the bottom. On narrower cuts, warping in
the heat-affected zone caused the cut-out to fuse back into the material from which it is
cut. All samples cut through except the ones with the smallest width of 1 mm, which stuck
to the material at both one and two passes.

To ensure that the laser would cut through for the whole pattern, the material was cut
at 17 % speed in two passes. The narrowest part of the pattern – i.e. the flexure – is 3 mm
in width, which is wide enough to avoid the warping effects seen above. Figure 3.9 shows
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Chapter 3. Method

Figure 3.7: Zoomed-in sample showing angled kerf.

one of the plates used in the experiment to the left, with measurements as seen in figure 3.5,
and a version with twice as large measurements to the right. It took around 45 min to cut
one pattern.

In figure 3.9 one can also see a white residue on the plates. This is vaporized material
settling as dust on the plates. Although having a rather unpleasant smell, the residue is
not harmful, but one should still avoid inhaling the residue as it may settle in the lungs.
In addition, one must take care to clean the machine, and especially the optics, after laser
cutting to avoid damage to the machine.

Dross

In figure 3.8, one can clearly see, in addition to discoloration, increasing amounts of melted
material on the surface with lower speed and more passes. The melted material, known as
dross, comes from the cuts, and is blown across the surface by the machine’s ventilation
system. The dross was scraped off with a knife after laser cutting, see figure 3.10. After
scraping, the plates were wiped with a damp cloth to clean off the scrapings as well as the
white residue.

Preparing for measuring

Due to the transparent nature of the material, the laser distance measurer had trouble cor-
rectly measuring the distance from the bottom plate to the patterned plate (see figure 3.3),
as the laser beam went through the plate rather bouncing back into the device. Therefore,
two layers of matte white spray paint were applied to the plates to make them opaque.
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(a) Speed tests.

(b) Width tests.

Figure 3.8: Laser cutter tests.
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Figure 3.9: Two plates fresh out of the laser cutter.

(a) Before scraping. (b) After scraping.

Figure 3.10: Plate before and after scraping off dross.
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3.3.4 Method

Figure 3.11: Load suspended from plate.

The following steps were followed for each load case:

1. Suspend the plate from the wires.

2. Screw in or out the eye bolts to adjust the height of the three suspension points
for the plates until the laser distance measurer measures the same distance at each
suspension point.

3. For load case 2 and 3, add one or two loads respectively to the plate.

4. Use the laser distance measurer to measure the distance from the bottom plate to the
center of each unit on the plate.

5. For each data point, subtract the distance to the suspension points to get relative
displacement in the z direction.

Figure 3.11 shows how the loads, in the form of large bolts, are suspended from the
plate by hook screws. The figure also shows how the plates are spray painted on the bottom
side for opacity. Figure 3.12 shows all three load cases.
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(a) Load case 1: No loads, only plate weight.

(b) Load case 2: One load in the center of the plate.

(c) Load case 3: Two loads on the left and right side of the
plate.

Figure 3.12: Load cases.
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Chapter 4
Results and Discussion

4.1 Material testing

Before performing experiments on sheets with the flexure pattern cut into them, it was
desirable to find some of the elastic properties of the material. As PETG sheets are the-
oretically isotropic, this was done by performing uniaxial tensile tests on four identical
specimens.

The specimens were cut from the same sheet of PETG material using a laser cutter.
Figure 4.1 shows a sketch of the specimen geometry with dimensions in millimeters in
accordance with ASTM D638-14[2]. In addition, the thickness of the plate, and thus the
specimens, is 3.0 mm.

Figure 4.1: Tension test specimen dimensions (in mm).

As only the linear elastic portion of the stress-strain curve is of interest, the tests were
stopped when significant necking was observed. As seen in figure 4.2, the specimens
displayed necking at a 45 degree angle. This corresponds to the plane of maximum shear.

Strain data was gathered from two strain gauges glued to the specimen, one along the
axial direction and one along the lateral direction. Load data was gathered from the test
machine itself. The data was then processed using Pandas and visualized using Matplotlib.
The stress values were obtained using the formula for average normal stress:
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Figure 4.2: Specimens after tension testing.

σ =
N

A0
(4.1)

where σ is the average normal stress, N is the normal force and A0 is the original
cross-sectional area, in this case the thickness multiplied by the width of the narrow part
of the specimen.

Figure 4.3 shows the stress-strain diagram for all specimens individually in figure 4.3a-
d, and all on the same figure in figure 4.3e. Some tests were recorded for a longer time
than others, which is why e.g. figure 4.3e has a longer-running curve than figure 4.3a. The
diagrams show linear-elastic behavior for the material at the beginning of the test, before
the slopes begin to decrease as deformation begins to transition from elastic to plastic.

Figure 4.4 shows the lateral-axial strain diagram for all specimens individually in fig-
ure 4.4a-d, and all on the same figure in figure 4.4e. The diagrams show a linear relation-
ship between lateral and axial strain.

Numpy was then used to find linear regression lines for the linear portions of the
graphs. On the stress-strain diagrams, this was measured at εaxial = 1− 6 mm/m, and on
the lateral-axial strain diagram, at εaxial = 3− 7 mm/m. Since for an isotropic material:

E =
σ

ε
(4.2)

and:

ν = −εlateral
εaxial

(4.3)

Those regression lines could then be used to find approximate values for the Young’s
modulus E and Poisson’s ratio ν for the PETG sheet, as seen in table 4.1, by using the
average value over all tests.

Table 4.1 also shows the density ρ. This was found by cutting out 20 × 20 mm
samples from a 3 mm thick plate and weighing those. With a 0.2 mm kerf from the laser,
the sides of the samples measured 19.8 mm. The samples were weighed individually and

44



4.1 Material testing

0 5 10 15 20 25
Axial strain [mm/m]

0

5

10

15

20

25

30

35

40

45

St
re

ss
 [M

Pa
]

(a) Stress-strain diagram from test 1.
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(b) Stress-strain diagram from test 2.
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(c) Stress-strain diagram from test 3.
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(d) Stress-strain diagram from test 4.
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(e) Stress-strain diagram from all tests.

Figure 4.3: Stress-strain diagrams from tensile testing.
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(a) Lateral-axial strain diagram from
test 1.
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(b) Lateral-axial strain diagram from
test 2.
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(c) Lateral-axial strain diagram from
test 3.
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(d) Lateral-axial strain diagram from
test 4.
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(e) Lateral-axial strain diagram from all tests.

Figure 4.4: Lateral-axial strain diagrams from tensile testing.
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4.1 Material testing

E 2.08 GPa
ν 0.42
ρ 1.19 g/cm3

Table 4.1: Properties of PETG sheets.

all together (8 samples), giving an average mass of 1.4 g. The density was found by putting
this value into the following formula:

ρ =
m

V
(4.4)

where m is the mass and V is the volume.

4.1.1 Discussion
The manufacturer lists a value for Young’s modulus at E = 2.2 GPa[1], while other
sources list average values between 1.8 GPa and 2.8 GPa[13, 14]. The experimental value
is thus 5.6% lower than the manufacturer’s estimate, but falls within the average values.
Values for Poisson’s ratio for PETG are harder to find and is not listed by the manufacturer
at all, but some sources list average values between 0.3 and 0.4[3, 9]. The manufacturer
lists a value for the density at ρ = 1.27 g/cm3[1], while other sources list average values
between 1.23 g/cm3 and 1.29 g/cm3[13, 14]. The experimental value is thus 6.3% lower
than the manufacturer’s estimate and 3.3% lower than the lowest average value. It must be
noted that the scale used for weighing the samples had a resolution of 0.1 g, which is poor
at such low weights.

Due to the linear relationship between E and the stiffness matrix, a 5.6% decrease
in E amounts to a 5.6% decrease in the stiffness coefficients. The relationship between
Poisson’s ratio ν and the stiffness matrix, however, is not linear. Figure 4.5 shows the
results of running simulations on a YdX unit cell with the same measurements as in the
experiment, with properties as found in material testing, but with variable Poisson’s ratio.
The graphs show a gradually changing slope for each stiffness coefficient.

Although the manufacturer does not list Poisson’s ratio for the material, online litera-
ture suggests that it is typically between 0.3 and 0.4, which is lower than the value found
in testing, i.e. 0.42. Table 4.2 shows the values of the stiffness coefficients at a Poisson’s
ratio of 0.42, 0.4 and 0.3, as in figure 4.5, as well as the percent change in each stiffness
coefficient. For example, a Poisson’s ratio of 0.4 presents a 0.09 % increase in the value
of A11 compared to a Poisson’s ratio of 0.42. The table shows that a change in Poisson’s
ratio from 0.42 to 0.4 – a 4.76 % decrease – has a small effect on the stiffness matrix, the
largest difference being a 1.21 % increase in D66. A larger change in Poisson’s ratio, from
0.42 to 0.4 – a 28.57 % decrease – has a greater effect. While the in-plane stiffness matrix
A does not change much, the bending stiffness matrix D displays a minimum difference
of a 3.10 % increase in D11 and a maximum difference of a 7.84 % increase in D66.

Density does not have an impact on the stiffness matrix, but inaccuracies in the density
have an impact on calculations of displacement and strain due to gravitational body forces.

In this case, due to the fact that all four tensile tests yielded almost identical stress-
strain and lateral-axial strain graphs, it can be assumed that the Young’s modulus and
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Figure 4.5: Stiffness coefficients with variable Poisson’s ratio ν.
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4.2 Measurements from experiments

ν
0.42 0.4 0.3

Value Value Percent
change

Value Percent
change

A11 [N/mm] 701.338 701.950 0.09 % 706.100 0.68 %
A22 [N/mm] 249.924 250.212 0.12 % 252.008 0.83 %
A12 [N/mm] −363 586 −364 233 0.18 % −367 792 1.16 %
A66 [N/mm] 21.328 21.244 −0.40 % 20.947 −1.79 %
D11 [N mm] 979.327 984.074 0.48 % 1009.675 3.10 %
D22 [N mm] 349.237 351.123 0.54 % 361.302 3.45 %
D12 [N mm] −71.833 −70.997 −1.16 % −66.352 −7.63 %
D66 [N mm] 262.957 262.957 1.21 % 283.578 7.84 %

Table 4.2: Difference in stiffness coefficients with different Poisson’s ratio ν.

Poisson’s ratio found in section 4.1 are approximately correct, while there still might be
some uncertainty around the density due to the poor resolution of the scale.

4.2 Measurements from experiments

The values were measured at the middle of each unit cell, for a total of 391 data points.
These measured values were taken to be in the z direction, with positive direction upwards.
The translation of each point in the x and y directions is assumed to be negligible. The
value at the suspension points was subtracted from all data points to obtain the relative
displacement in the z direction.

4.2.1 Interpolation of data

For load case 1 and 2, the loads suspended from the plate blocked the laser distance mea-
surer, leading to inability to measure points around those loads. Numpy was used to inter-
polate values for those points.

4.2.2 Load case 1

In load case 1, the plates were only subjected to gravitational body forces. Figures 4.6 and 4.7
show visualizations of the data points collected from load case 1 on plate 1 and plate 2,
respectively.

4.2.3 Load case 2

In load case 2, the plate was subjected to a single load in the middle of the plate. Figure 4.8
shows a visualization of the data points collected from load case 2 on plate 1.
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(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.6: Load case 1 on plate 1.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.7: Load case 1 on plate 2.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.8: Load case 2 on plate 1.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.9: Load case 2 on plate 1.
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4.2.4 Load case 3
In load case 3, the plate was subjected to two symmetrical loads on the left and right
sides in the x direction, and the middle in the y direction, of the plate. Figure 4.9 shows a
visualization of the data points collected from load case 3 on plate 2. Here, the interpolated
points around the loads have an unrealistically low value, as shown by the two downwards
spikes.

4.2.5 Surface fitting
The visualizations of the data points show a quite rugged surface. This can be attributed to
inaccuracy in measuring – as mentioned in section 3.3.1, the device used to measure the
data points had an accuracy of ±3 mm. In order to smoothen out the surface, Matlab was
used for regression analysis. Matlab has multiple surface fitting models, listed in table 4.3.
In the case of polynomial models, for i and j, integers from 1 to 5 are inserted, denoting
the degree of x and y in the polynomial, respectively.

Model type Name in Matlab Description
Polynomial polyij Up to 5th degree polynomial
Interpolant linearinterp Linear interpolation

nearestinterp Nearest neighbor interpolation
cubicinterp Cubic spline interpolation
biharmonicinterp Biharmonic interpolation
thinplateinterp Thin-plate spline interpolation

Loess lowess Local linear regression
loess Local quadratic regression

Table 4.3: Matlab models for surface fitting.

After visual inspection, the loess model using local quadratic regression was deemed
to give the best fit. Figures 4.10-4.13 show visualizations of the fitted surfaces, with the
measured data points as blue dots. The visualizations were done in Matplotlib, and the
deformation in the z direction is exaggerated in the visualizations to better show the shape
of the deformed plate – this is the case in all visualizations in this chapter. Load case 3
had the most complex shape and most extreme outliers, and was thus the most interesting
specimen for visualization of each model, see appendix A. Here, one can see that poly-
nomial models are too inaccurate, as is the local linear lowess model. Interpolant models
are not intended for this type of surface fitting, but visualizations of them are included for
completeness.

4.2.6 Discussion
The measured data points are not symmetrical about the middle in the yz plane, contrary to
expectations. This can be attributed to device inaccuracy, as well as resolution, the device
having a resolution of 1 mm. The points from which the plates were suspended were
measured to be at the same height, but due to this inaccuracy they likely were slightly
offset from each other, leading to some rigid body motion.
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(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.10: Load case 1 on plate 1 fitted with the loess model.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.11: Load case 1 on plate 2 fitted with the loess model.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.12: Load case 2 on plate 1 fitted with the loess model.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.13: Load case 3 on plate 2 fitted with the loess model.
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4.3 Simulation

4.3 Simulation

A simulation of the unit cell using the material properties found in section 4.1 yielded the
following stiffness matrix components:

A =

 701.621 −363.801 0
−363.801 250.094 0

0 0 21.345

N/mm

B = 0

D =

979.335 −71.898 0
−71.898 349.458 0

0 0 263.027

N mm

(4.5)

This was then used to simulate the load cases on a shell model of the same size as
the plates. The translation in the z direction was gathered from nodes at the middle of
each unit cell. The simulations were then visualized using Matplotlib using those gathered
translational values.

4.3.1 Load case 1

Figure 4.14 shows a visualization of the simulated plate. Figure 4.15 shows a comparison
between fitted data points on plate 2 in blue-to-green, and the simulation in red-to-yellow.

4.3.2 Load case 2

Figure 4.16 shows a visualization of the simulated plate. Figure 4.17 shows a comparison
between fitted data points on the real-life plate in blue-to-green, and the simulation in
red-to-yellow.

4.3.3 Load case 3

Figure 4.18 shows a visualization of the simulated plate. Figure 4.19 shows a comparison
between fitted data points on the real-life plate in blue-to-green, and the simulation in
red-to-yellow.

4.3.4 The effect of NLGEOM

Figure 4.20 shows a comparison between simulations with NLGEOM toggled off in cyan-
to-magenta, and with NLGEOM toggled on in red-to-yellow, of load case 3. All other
parameters are equal. There is a clear difference between the two, showing the importance
of taking geometric nonlinearity into account during calculations with large deformations.
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(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.14: Load case 1 simulated.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.15: Load case 1 comparison between measured data points and simulation.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.16: Load case 2 simulated.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.17: Load case 2 comparison between measured data points and simulation.
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(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.18: Load case 3 simulated.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.19: Load case 3 comparison between measured data points and simulation.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.20: Comparison between simulations with and without NLGEOM.
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4.3.5 Discussion
When examining the comparisons between the data points and the simulations, their shapes
are very similar in every load case, despite the asymmetry of the data points. This shows
that the shell deformation method is fairly accurate for analyzing patterned plates. The
measured data points do display more deformation in the z direction overall, however. A
possible cause of this is inaccuracy in measuring the weight of the plate, so that the density
input in the simulation suggests a lighter weight than what the plate actually has. Another
cause might lie in the production of the plates. The pattern was cut into the plates using a
laser cutter. Due to the heat-intensive nature of the laser, this gives a heat-affected zone,
or HAZ, around the cuts. The machine’s laser is very concentrated, giving a small HAZ
which is insignificant on larger-width cuts. The specimens used for material testing, for
example, have a minimum width of 13 mm, see figure 4.1. A HAZ width of 0.5 mm would
amount to 3.8 % of the width of the specimen, which is likely not significant. The HAZ
then would not have a significant effect on the results of material testing. However, the
patterned plate’s flexures have a narrower width of 3 mm. A HAZ width of 0.5 mm would
then amount to 16.7 % of the flexure’s width. A change in material properties in the HAZ
would then have a greater effect on the flexure, and in turn, the patterned plate. The size
of the HAZ in the case of this experiment is unknown, but when laser cutting, the HAZ
increases with decreased speed of the carriage, as this means heat exposure over a longer
amount of time. The effect of the HAZ on the elastic properties of the flexures is also un-
known, but might very well give reduced stiffness, leading to the increased deformation in
the measured data points in the experiment compared to the simulation of the same plate.

4.4 Comparison of patterns
Simulations were run with different patterns with approximately the same dimensions as
the YdX pattern, all with the material properties found for PETG. The cuts were all 0.2 mm
wide, reflecting the kerf of the laser cutter. In addition, a solid plate without a pattern was
simulated. The visualizations demonstrate how the differences in the stiffness matrices
affect the deformation of the plates.

4.4.1 Solid
Stiffness matrix components

The stiffness matrix components found through simulation were as follows:

A =

7576.493 3182.127 0
3182.127 7576.493 0

0 0 2197.183

N/mm

B = 0

D =

5682.370 2386.595 0
2386.595 5682.370 0

0 0 1647.887

N mm

(4.6)
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Seeing as this is an isotropic solid, these can be verified by putting the found material
properties into equation 2.73, which gives the exact same results.

Load case 1

Figure 4.21 shows a visualization of a simulation of load case 1 on a solid plate. Fig-
ure 4.22 shows a comparison between the solid plate in cyan-to-magenta, and the YdX
cmm plate in red-to-yellow, for load case 1.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.21: Load case 1 on a solid plate.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.22: Load case 1 comparison between a solid plate and a YdX cmm plate.

Load case 2

Figure 4.23 shows a visualization of a simulation of load case 2 on a solid plate. Fig-
ure 4.24 shows a comparison between the solid plate in cyan-to-magenta, and the YdX
cmm plate in red-to-yellow, for load case 2.
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(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.23: Load case 2 on a solid plate.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.24: Load case 2 comparison between a solid plate and a YdX cmm plate.

Load case 3

Figure 4.25 shows a visualization of a simulation of load case 3 on a solid plate. Fig-
ure 4.26 shows a comparison between the solid plate in cyan-to-magenta, and the YdX
cmm plate in red-to-yellow, for load case 3.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.25: Load case 3 on a solid plate.
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(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.26: Load case 3 comparison between a solid plate and a YdX cmm plate.

Discussion

As suggested by the stiffness matrix, having quite large values, the unpatterned plate is
much more stiff than the YdX cmm plate.

The simulated solid plate under load case 1, as seen in figure 4.21, is very similar to
the YdX cmm plate under load case 3 simulated with NLGEOM toggled off, as seen in
figure 4.20. Deformations must be small in order to not have to take nonlinear geometry
into account, which is the case with the former, but not the latter. The similarity in shape
thus shows that a simulation with large deformations that does not take nonlinear geometry
into account behaves in the same way as a simulation with small deformations.

4.4.2 LET cmm
Dimensions

Figure 4.27 shows an illustration of the simulated LET cmm unit, and table 4.4 shows the
measurements of each colored part.

Figure 4.27: LET cmm unit.

Color Direction Measurement
Blue Horizontal 10 mm
Blue Vertical 3 mm
Red Horizontal 3 mm

Table 4.4: Measurements for LET cmm unit.

Stiffness matrix components

A =

5900.134 8.917 0
8.917 10.323 0

0 0 166.372

N/mm

B = 0

D =

4441.377 46.743 0
46.743 110.540 0

0 0 743.221

N mm

(4.7)
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Simulation

When attempting to simulate the LET cmm plate, the program returned errors related to the
program dividing the simulations into too short time increments. This could be because of
difficulty calculating excessive deformation in the simulated plate. Another reason could
be the high degree of anisotropy.

4.4.3 LET p4m

Dimensions

Figure 4.28 shows an illustration of the simulated LET p4m unit, and table 4.5 shows the
measurements of each colored part.

Figure 4.28: LET p4m unit.

Color Direction Measurement
Blue Horizontal 3 mm
Red Horizontal 6 mm

Green Horizontal 10 mm

Table 4.5: Measurements for LET p4m unit.

Stiffness matrix components

A =

96.941 0.556 0
0.556 96.727 0

0 0 37.792

N/mm

B = 0

D =

412.311 15.060 0
15.060 412.059 0

0 0 537.483

N mm

(4.8)

Load case 1

Figure 4.29 shows a visualization of a simulation of load case 1 on a LET p4m plate.
Figure 4.30 shows a comparison between the LET p4m plate in cyan-to-magenta, and the
YdX cmm plate in red-to-yellow, for load case 1.

60



4.4 Comparison of patterns

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.29: Load case 1 on a LET p4m plate.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.30: Load case 1 comparison between a LET p4m plate and a YdX cmm plate.

Load case 2

Figure 4.31 shows a visualization of a simulation of load case 2 on a LET p4m plate.
Figure 4.32 shows a comparison between the LET p4m plate in cyan-to-magenta, and the
YdX cmm plate in red-to-yellow, for load case 2.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.31: Load case 2 on a LET p4m plate.
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(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.32: Load case 2 comparison between a LET p4m plate and a YdX cmm plate.

Load case 3

Figure 4.33 shows a visualization of a simulation of load case 3 on a LET p4m plate.
Figure 4.34 shows a comparison between the LET p4m plate in cyan-to-magenta, and the
YdX cmm plate in red-to-yellow, for load case 3.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.33: Load case 3 on a LET p4m plate.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.34: Load case 3 comparison between a LET p4m plate and a YdX cmm plate.
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4.4.4 Coil cmm

Dimensions

Figure 4.35 shows an illustration of the simulated coil cmm unit, and table 4.6 shows the
measurements of each colored part.

Figure 4.35: Coil cmm unit.

Color Direction Measurement
Blue Vertical 3 mm

Table 4.6: Measurements for coil cmm unit.

Stiffness matrix components

A =

 9.794 −0.343 0
−0.343 10.792 0

0 0 4.951

N/mm

B = 0

D =

167.371 2.191 0
2.191 138.226 0

0 0 76.039

N mm

(4.9)

Load case 1

Figure 4.36 shows a visualization of a simulation of load case 1 on a coil cmm plate.
Figure 4.37 shows a comparison between the coil cmm plate in cyan-to-magenta, and the
YdX cmm plate in red-to-yellow, for load case 1.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.36: Load case 1 on a coil cmm plate.
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(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.37: Load case 1 comparison between a coil cmm plate and a YdX cmm plate.

Load case 2

Figure 4.38 shows a visualization of a simulation of load case 2 on a coil cmm plate.
Figure 4.39 shows a comparison between the coil cmm plate in cyan-to-magenta, and the
YdX cmm plate in red-to-yellow, for load case 2.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.38: Load case 2 on a coil cmm plate.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.39: Load case 2 comparison between a coil cmm plate and a YdX cmm plate.

Load case 3

Figure 4.40 shows a visualization of a simulation of load case 3 on a coil cmm plate.
Figure 4.41 shows a comparison between the coil cmm plate in cyan-to-magenta, and the
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YdX cmm plate in red-to-yellow, for load case 3.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.40: Load case 3 on a coil cmm plate.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.41: Load case 3 comparison between a LET p4m plate and a YdX cmm plate.

4.4.5 Coil p4

Dimensions

Figure 4.42 shows an illustration of the simulated coil p4 unit, and table 4.7 shows the
measurements of each colored part.

Figure 4.42: Coil p4 unit.

Color Direction Measurement
Blue Vertical 3 mm

Table 4.7: Measurements for coil p4 unit.
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Stiffness matrix components

A =

10.315 −0.394 0
−0.394 10.320 0

0 0 4.949

N/mm

B = 0

D =

153.051 2.423 0
2.423 153.051 0

0 0 75.679

N mm

(4.10)

Load case 1

Figure 4.43 shows a visualization of a simulation of load case 1 on a coil p4 plate. Fig-
ure 4.44 shows a comparison between the coil p4 plate in cyan-to-magenta, and the YdX
cmm plate in red-to-yellow, for load case 1.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.43: Load case 1 on a coil p4 plate.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.44: Load case 1 comparison between a coil p4 plate and a YdX cmm plate.

Load case 2

Figure 4.45 shows a visualization of a simulation of load case 2 on a coil p4 plate. Fig-
ure 4.46 shows a comparison between the coil p4 plate in cyan-to-magenta, and the YdX
cmm plate in red-to-yellow, for load case 2.
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(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.45: Load case 2 on a coil p4 plate.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.46: Load case 2 comparison between a coil p4 plate and a YdX cmm plate.

Load case 3

Figure 4.47 shows a visualization of a simulation of load case 3 on a coil p4 plate. Fig-
ure 4.48 shows a comparison between the coil p4 plate in cyan-to-magenta, and the YdX
cmm plate in red-to-yellow, for load case 3.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.47: Load case 3 on a coil p4 plate.
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(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.48: Load case 3 comparison between a coil p4 plate and a YdX cmm plate.

4.4.6 Switchback cmm

Dimensions

Figure 4.49 shows an illustration of the simulated switchback cmm unit, and table 4.8
shows the measurements of each colored part.

Figure 4.49: Switchback cmm unit.

Color Direction Measurement
Blue Horizontal 10 mm
Blue Vertical 3 mm
Red Horizontal 3 mm

Table 4.8: Measurements for switchback
cmm unit.

Stiffness matrix components

A =

76.915 −1.302 0
−1.302 10.113 0

0 0 13.209

N/mm

B = 0

D =

526.455 5.874 0
5.874 115.293 0

0 0 127.953

N mm

(4.11)

Load case 1

Figure 4.50 shows a visualization of a simulation of load case 1 on a switchback cmm plate.
Figure 4.51 shows a comparison between the switchback cmm plate in cyan-to-magenta,
and the YdX cmm plate in red-to-yellow, for load case 1.
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(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.50: Load case 1 on a switchback cmm plate.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.51: Load case 1 comparison between a switchback cmm plate and a YdX cmm plate.

Load case 2

Figure 4.52 shows a visualization of a simulation of load case 2 on a switchback cmm plate.
Figure 4.53 shows a comparison between the switchback cmm plate in cyan-to-magenta,
and the YdX cmm plate in red-to-yellow, for load case 2.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.52: Load case 2 on a switchback cmm plate.
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(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.53: Load case 2 comparison between a switchback cmm plate and a YdX cmm plate.

Load case 3

Figure 4.54 shows a visualization of a simulation of load case 3 on a switchback cmm plate.
Figure 4.55 shows a comparison between the switchback cmm plate in cyan-to-magenta,
and the YdX cmm plate in red-to-yellow, for load case 3.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.54: Load case 3 on a switchback cmm plate.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.55: Load case 3 comparison between a switchback cmm plate and a YdX cmm plate.
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4.4.7 Switchback p4g

Dimensions

Figure 4.56 shows an illustration of the simulated switchback p4g unit, and table 4.9 shows
the measurements of each colored part.

Figure 4.56: Switchback p4g unit.

Color Direction Measurement
Blue Short side 3 mm
Red Long side 3 mm

Green Diagonal 10 mm

Table 4.9: Measurements for switchback
p4g unit.

Stiffness matrix components

A =

11.063 −4.129 0
−4.129 11.051 0

0 0 3.447

N/mm

B = 0

D =

164.200 −31.147 0
−31.147 164.203 0

0 0 64.996

N mm

(4.12)

Load case 1

Figure 4.57 shows a visualization of a simulation of load case 1 on a switchback p4g plate.
Figure 4.58 shows a comparison between the switchback p4g plate in cyan-to-magenta,
and the YdX cmm plate in red-to-yellow, for load case 1.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.57: Load case 1 on a switchback p4g plate.
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(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.58: Load case 1 comparison between a switchback p4g plate and a YdX cmm plate.

Load case 2

Figure 4.59 shows a visualization of a simulation of load case 2 on a switchback p4g plate.
Figure 4.60 shows a comparison between the switchback p4g plate in cyan-to-magenta,
and the YdX cmm plate in red-to-yellow, for load case 2.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.59: Load case 2 on a switchback p4g plate.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.60: Load case 2 comparison between a switchback p4g plate and a YdX cmm plate.

Load case 3

Figure 4.61 shows a visualization of a simulation of load case 3 on a switchback p4g plate.
Figure 4.62 shows a comparison between the switchback p4g plate in cyan-to-magenta,
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and the YdX cmm plate in red-to-yellow, for load case 3.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.61: Load case 3 on a switchback p4g plate.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure 4.62: Load case 3 comparison between a switchback p4g plate and a YdX cmm plate.

4.4.8 Discussion

Overall, the results in this section shows that different patterns can give very different
elastic properties to a plate, even with similar parameters.

4.5 Impact of material properties

As mentioned in section 4.1, the stiffness matrix has a linear relationship with Young’s
modulus for the material, but not with its Poisson’s ratio. The stiffness matrices found
earlier in this chapter were all for a Poisson’s ratio of ν = 0.42. A Poisson’s ratio of
ν = 0.378 then represents a 10 % decrease, and ν = 0.462 a 10 % increase in Poisson’s
ratio. Table 4.10 shows the percent change in each stiffness coefficient for the simulated
patterns, as well as the sign of the coefficient.
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ν
Pattern 0.378 0.462 Sign
Solid −3.91 % 4.71 % +

LET p4m −0.73 % 0.94 % +
Coil cmm −0.21 % 0.28 % +
Coil p4 −0.28 % 0.37 % +
SB cmm −0.21 % 0.26 % +
SB p4g −0.63 % 0.83 % +

YdX cmm 0.19 % −0.12 % +

(a) A11

ν
Pattern 0.378 0.462 Sign
Solid −3.91 % 4.71 % +

LET p4m −0.71 % 0.90 % +
Coil cmm −0.36 % 0.48 % +
Coil p4 −0.28 % 0.38 % +
SB cmm −0.55 % 0.68 % +
SB p4g −0.62 % 0.80 % +

YdX cmm 0.25 % −0.17 % +

(b) A22

ν
Pattern 0.378 0.462 Sign
Solid −13.52 % 15.18 % +

LET p4m −12.15 % 12.71 % +
Coil cmm 0.28 % −0.53 % -
Coil p4 −0.10 % 0.32 % -
SB cmm 1.28 % −1.51 % -
SB p4g −0.24 % 0.32 % -

YdX cmm 0.37 % −0.33 % -

(c) A12

ν
Pattern 0.378 0.462 Sign
Solid 3.05 % −2.87 % +

LET p4m −0.69 % 0.93 % +
Coil cmm −0.29 % 0.39 % +
Coil p4 −0.27 % 0.36 % +
SB cmm −0.41 % 0.51 % +
SB p4g −0.84 % 1.09 % +

YdX cmm −0.78 % 1.11 % +

(d) A66

ν
Pattern 0.378 0.462 Sign
Solid −3.91 % 4.71 % +

LET p4m 1.65 % −1.50 % +
Coil cmm 1.06 % −1.01 % +
Coil p4 1.52 % −1.43 % +
SB cmm 0.21 % −0.18 % +
SB p4g 1.25 % −1.16 % +

YdX cmm 1.04 % −0.96 % +

(e) D11

ν
Pattern 0.378 0.462 Sign
Solid −3.91 % 4.71 % +

LET p4m 1.66 % −1.51 % +
Coil cmm 2.07 % −1.94 % +
Coil p4 1.52 % −1.43 % +
SB cmm 2.52 % −2.36 % +
SB p4g 1.25 % −1.17 % +

YdX cmm 1.14 % −1.06 % +

(f) D22

ν
Pattern 0.378 0.462 Sign
Solid −13.52 % 13.18 % +

LET p4m −6.74 % 6.44 % +
Coil cmm −6.83 % 6.44 % +
Coil p4 −6.51 % 6.24 % +
SB cmm −7.28 % 7.10 % +
SB p4g −3.12 % 2.94 % -

YdX cmm −2.52 % 2.29 % -

(g) D12

ν
Pattern 0.378 0.462 Sign
Solid 3.05 % −2.87 % +

LET p4m 2.10 % −1.98 % +
Coil cmm 1.59 % −1.50 % +
Coil p4 1.60 % −1.51 % +

SB cmm 1.83 % −1.71 % +
SB p4g 2.46 % −2.30 % +

YdX cmm 2.58 % −2.40 % +

(h) D66

Table 4.10: Change in stiffness coefficient with change in Poisson’s ratio.
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4.5.1 Discussion
Observations

• For the solid plate, all coefficients increase with increasing ν, apart from A66 and
D66, which decrease.

• A11 and A22 increase with increasing ν for all tested patterns except YdX cmm, for
which they decrease.

• A12 decreases with increasing ν for all tested cmm patterns and increases for all
other tested patterns.

• A66 decreased with increasing ν for all tested patterns, which is directly opposite to
the behavior of a solid plate.

• D11 and D22 decrease with increasing ν for all tested patterns, which is directly
opposite to the behavior of a solid plate.

• D12 increases and D66 decreases with increasing ν for all tested patterns, which is
the same behavior as that of a solid plate.

• There does not seem to be a correlation between the sign of the coefficient and
whether it increases or decreases with increasing ν.

Verification

The results can be verified by checking the formulae for the stiffness coefficients of an
isotropic material (see equation 2.73) against the solid plate. The equation for percent
change is:

new value
old value

− 1 (4.13)

For A11 and A22, when ν1 = 1.1ν0 (i.e. a 10 % increase):

A11,1

A11,0
− 1 =

Eh
1−(1.1ν0)2

Eh
1−ν2

0

− 1 =
1− ν2

0

1− 1.21ν2
0

− 1

=
1− 0.422

1− 1.21(0.422)
− 1 = 4.71 %

(4.14)

For A12:

A12,1

A12,0
− 1 =

E(1.1ν0)h
1−(1.1ν0)2

Eν0h
1−ν2

0

− 1 =
1.1(1− ν2

0)

1− 1.21ν2
0

− 1

=
1.1(1− 0.422)

1− 1.21(0.422)
− 1 = 15.18 %

(4.15)

75



Chapter 4. Results and Discussion

For A66:

A66,1

A66,0
− 1 =

E(1−1.1ν0)h
2(1−(1.1ν0)2)

E(1−ν0)h
2(1−ν2

0 )

− 1 =
(1− 1.1ν0)(1− ν2

0)

(1− ν0)(1− 1.21ν2
0)
− 1

=
(1− 1.1(0.42))(1− 0.422)

(1− 0.42)(1− 1.21(0.422))
− 1 = −2.87 %

(4.16)

The same calculations apply to the coefficients of D. All calculated values match those
found through simulation.

4.6 Web application
The code for the web application is available from the author upon request, or can be
downloaded in a zip file from:
https://drive.google.com/open?id=1Gf9ARYHm1kwVSKfZmTMuHQT25o-5qcJS
Tutorials for running a Flask web application are available on the Flask website:
http://flask.pocoo.org/

4.6.1 Front-end
The web application consists of four pages, see figure 4.63.

index.html

The front page of the application, see figure 4.63a. The user can press the ”Begin” button
to go to the ”pattern” page and begin the process of creating the pattern.

pattern.html

The pattern selection page of the application, see figure 4.63b. The user can select the
flexure type and wallpaper group. The ”Back” button leads to the ”index” page, while the
”Next” button leads to the ”option” page. If the flexure type and wallpaper group com-
bination is invalid (i.e. not yet added to the application), an error is raised upon pressing
”next”, prompting the user to select a valid combination.

option.html

The option selection page of the application, see figure 4.63c. Under ”Mode”, the user can
select if they want the output to be a sample pattern, a full SVG, or an Abaqus script, the
former two being vector graphics files. The checkboxes indicate that the user can select
multiple modes; not selecting a mode raises an error prompting the user to select at least
one mode. Similarly under ”Part”, the user can select if they want to output a generating
region, unit cell or flexure pattern, or any combination thereof, but must select at least one.
Under ”Unit”, the user must select the unit for the measurements. As Abaqus is unitless,
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4.6 Web application

(a) The index page. (b) The pattern page.

(c) The option page. (d) The parameter page.

Figure 4.63: The pages of the web application.
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this is irrelevant for the Abaqus script output; however, for the vector graphics file outputs,
this selects the unit of the file. Under ”Cut”, the user must select whether they want the
cuts to be gaps or slits. The ”Back” button leads to the ”pattern” page, while the ”Next”
button leads to the ”parameter” page.

parameter.html

The parameter input page of the application, see figure 4.63d. This page displays the
relevant parameters for the flexure pattern and output types, which the user can fill in. The
fields are pre-filled with default values. Pressing the ”Back” button leads to the ”option”
page. Pressing the ”Submit” button, on the other hand, sends the parameters to the flexure
pattern generating program, which creates the relevant files (as specified on the ”option”
page). These files are then compressed into a zip file that the user is prompted to download.

4.6.2 Back-end

The logic of the web application is kept in Python programs.

init .py

Initializes an instance of the web application.

forms.py

Creates forms to be rendered on the website from which parameters can be gathered. In-
cludes validation logic for the forms.

routes.py

Contains the logic of what happens upon performing actions, including redirecting to dif-
ferent pages and rendering these. This is where the parameters are gathered and sent to
patternGeneratorsClass.py for generating the files, after which the files sent to the user for
download.

patternGeneratorsClass.py

Originally created by Østmo and expanded upon by the author, this is where the geometry
of the flexure pattern and its parts is defined using parameters sent from the web appli-
cation. The program then sends the geometry to makeSVG.py and makeAbaqus.py for
generation of vector graphics files and Abaqus script, respectively.

makeSVG.py

Originally created by Østmo and adapted by the author, this is where the vector graphics
files are generated from the part geometry.
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makeAbaqus.py

This is where the Abaqus script is generated from the part geometry.

4.6.3 Discussion
In its current form, the web application is not appealing to look at. In order to attract
users, CSS should be added. In addition, an explanation of each of the parameters should
be added. The application also does not automatically delete files after they have been
downloaded – this will cause bloating over time. Finally, more error handling should be
added to detect invalid input. Otherwise, the application is fully functional, creating files
as it should depending on the given parameters.
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Conclusion

The flexure pattern generating web application was created in the hopes of bridging the
gap between theory and application. The web application provides an interface that lets
the end user easily create patterns using their own parameters. This could open up new
possiblities for discovering applications of flexure patterns.

Simulations were confirmed to closely match results of experiments with real life pat-
terned plates. While further real-life testing is recommended, this brings confidence to the
use of simulations for flexure patterns – as long as one is careful to take into account the
nonlinear effects due to large deformations.

When creating plates with flexure patterns, the user must keep in mind that the produc-
tion of the patterned plate might have an unforeseen impact on its properties in addition
to the pattern itself. In using a laser cutter, a pattern with small unit cells and/or narrow
flexures might not cut properly, or have its properties affected by the heat-affected zone
around the cut.

The goal of the thesis was to provide tools and present information that might be useful
for real-life application of flexure patterns by the end user, and the author sincerely hopes
that she has accomplished this task.
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Appendix

A Surface fitting

This section shows visualizations of results of surface fitting on data points from load case
3 on plate 2 using various surface fitting models in Matlab.

A.1 Polynomial models

Figures A.1–A.4 visualize the polynomial models. The original data points are shown as
blue dots.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure A.1: Load case 3 on plate 2 fitted with the 2nd degree polynomial model.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure A.2: Load case 3 on plate 2 fitted with the 3rd degree polynomial model.
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(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure A.3: Load case 3 on plate 2 fitted with the 4th degree polynomial model.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure A.4: Load case 3 on plate 2 fitted with the 5th degree polynomial model.

A.2 Interpolant models

Figures A.5–A.9 visualize the interpolant models. The original data points are shown as
blue dots.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure A.5: Load case 3 on plate 2 fitted with the linear interpolation model.
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(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure A.6: Load case 3 on plate 2 fitted with the nearest neighbor interpolation model.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure A.7: Load case 3 on plate 2 fitted with the cubic spline interpolation model.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure A.8: Load case 3 on plate 2 fitted with the biharmonic interpolation model.
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(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure A.9: Load case 3 on plate 2 fitted with the thin-plate spline interpolation model.

A.3 Loess models
Figures A.10 and A.11 visualize the lowess and loess models, respectively. The original
data points are shown as blue dots.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure A.10: Load case 3 on plate 2 fitted with the local linear regression model.

(a) Isometric view. (b) XY view. (c) XZ view. (d) YZ view.

Figure A.11: Load case 3 on plate 2 fitted with the local quadratic regression model.
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