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Abstract

Glencore Nikkelverk is designing a large-scale venturi scrubber to clean pollutant gas from a

new processing plant. The proposed design by Glencore Nikkelverk of the large-scale scrubber

is based on an already installed smaller venturi scrubber. By obtaining the fluid dynamics

of the scrubber it is possible to optimize the design and reduce air pollution in accordance

to the modern standards for a greener future. This thesis investigates the particle-laden gas

flow in the installed scrubber at Glencore Nikkelverk and the full-scale scrubber by means of

CFD. Furthermore, two test cases were performed to enhance validation of the simulations of

the scrubber. Specifically, turbulence modelling was benchmarked in the first test case, i.e.

turbulent flow in a concentric annulus. Simulations with standard two-equation turbulence

models and Reynolds stress model were performed and compared to experimental and nu-

merical data in the literature. In the second test case, confined bluff body flow, the particle

modelling was benchmarked by comparisons of simulations and experimental data.

Based on the findings of the two test cases, two-dimensional axisymmetric simulations of

the installed scrubber were performed. One of the most important design parameters is

the pressure drop across the venturi scrubber. In the present study, the pressure drop was

computed for different operating conditions. The computed pressure drop was within the

standard deviation of the measurements obtained by Glencore Nikkelverk for the installed

venturi scrubber. The conducted literature study revealed that most designers rely on em-

pirical correlations for determining the pressure drop. For an accurate a priori pressure drop

estimation based on empirical correlations, appropriate factors must be determined. Thus,

the reliability of these correlations is limited, and a CFD simulation is therefore preferred.

An investigation of the particle paths in the installed scrubber was conducted. The results

were consistent with the literature, i.e. the smaller particles are more difficult to separate

from the gas phase than larger particles. Finally, simulations of the large-scale scrubber

were performed where the dimensions are scaled-up by a factor of ten. The results indicated

smaller particle Stokes number and less efficient separation than the installed scrubber. It

was found that further work is needed in order to accurately predict the particle collection

efficiency.
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Sammendrag

Glencore Nikkelverk utvikler en fullskala venturi skrubber for å rense forurenset gass fra

et nytt prosessanlegg. Designet skal optimalisere separasjon av partikler i gassfasen og skal

baseres p̊a en mindre installert skrubber. Høy virkningsgrad er avgjørende for å imøtekomme

standarder for luftforurensing og bidra til et grønnere og mer bærekraftig miljø. Denne

oppgaven anvender CFD som analyseverktøy for partikkelbelastet gasstrømning i b̊ade den

installerte og fullskala skrubberen. To klassiske interne strømningstilfeller ble undersøkt

for validering av de numeriske beregningene av skrubberen. Turbulens modellering ble un-

dersøkt i det første strømningstilfellet, turbulent strømning i en konsentrisk annulus. CFD

simuleringer med standard to-lignings turbulens modeller og Reynoldsspennings modell ble

benyttet og sammenlignet med eksperimentelle data og numeriske simuleringer i litteraturen.

I det andre strømningstilfellet, nedstrøms rørstrømning rundt et butt objekt, er partikkel

modelleringen validert ved sammenligning med eksperimentell data.

Basert p̊a erfaringer fra de to strømningstilfellene ble det utført todimensjonale aksesym-

metrisk numeriske beregninger av den installerte skrubberen. En viktig design parameter er

trykkfallet over skrubberen. I denne oppgaven ble trykkfallet beregnet ved forskjellige drift-

stilstander. Beregnet trykkfall for den installerte skrubberen er innenfor standardavviket for

målingene utført av Glencore Nikkelverk. Litteraturstudiet viste at hovedsakelig empiriske

korrelasjoner blir brukt til å beregne trykkfallet i utviklingsfasen. Et nøyaktig a priori esti-

mat av trykkfallet avhenger av at korrekte konstanter blir satt i de empiriske korrelasjonene.

Derfor er p̊aliteligheten av disse korrelasjonene begrenset og CFD simuleringer er dermed

foretrukket.

Partikkelbaner i den installerte skrubberen ble undersøkt. Det er funnet at mindre par-

tikler er vanskeligere å separere fra gassfasen enn større partikler, som er bekreftet i litter-

aturstudiet. Til slutt, ble simuleringer av en fullskala skrubber utført, hvor dimensjonene

er oppskalert med en faktor p̊a ti. Resultatene indikerte lavere Stokes nummer og mindre

effektiv seperasjon av partikler. Det er funnet at betraktinger utenfor oppgavens avgrensning

må inkluderes for å designe en effektiv fullskala skrubber.
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Chapter 1

Introduction

1.1 Background

In recent years there has been an increased interest in gas cleaning due to new standards

for air pollution control in the general industry, marine, as well as in the oil and gas in-

dustry. Glencore Nikkelverk AS produce high quality nickel and cobalt as well as copper

and sulphuric acid. The company aim to lead the technological development in the market

and operate to the high standards and principles set for sustainable development. Glencore

Nikkelverk AS is investing in a new copper production process. The aim is to develop a

cleaning process of the polluted air from this process to comply with the company’s focus

on sustainability. Glencore Nikkelverk AS is issued a permit by the Norwegian Environment

Agency for activities that may cause pollution. The permit is based on the Pollution Control

Act and the purpose of the act ”is to protect the outdoor environment against pollution and

to reduce existing pollution, to reduce the quantity of waste and to promote better waste

management” [1]. The permit conditions including emission limit values are set on the basis

of Best Available Techniques (BAT) [23] under Directive 2010/75/EU of the European Par-

liament and of the Council on industrial emissions, for the non-ferrous metals industries.

There exists many different devices that can be used for gas cleaning, e.g. settling chambers,

centrifugal separators, wet scrubbers, packed beds, high-efficiency air filters, mechanical sep-

arators, electrical precipitators. The venturi scrubber is a type of wet scrubber. A scrubbing

liquid is used for removing particles from the polluted gas. The flow in a scrubber include

complex geometry, turbulence and multi-phase with interaction between gas, liquid and par-

ticles. Understanding the behaviour of the particle-laden gas flow is crucial knowledge in

order to predict the particle collection efficiency of a venturi scrubber. Only by obtaining

an understanding of the physics involved, it is possible to predict and design gas cleaning

devices to meet the standards for air pollution and to ensure a greener future.

1



CHAPTER 1. INTRODUCTION 2

1.2 Previous work

The present work is a continuation of the project work completed by the author at Norwegian

University of Science and Technology (NTNU) during the autumn of 2018. The project

work provided an introduction to CFD and particle-laden gas flows through the OpenFOAM

software. In addition, a detailed literature study of particle-laden gas flows was conducted.

Particle-laden gas flow over a backward-facing step (BFS) were investigated with the k − ε
turbulence model. Results were compared with experimental data provided by Eaton and

Fessler [30] and numerical data by Greifzu et al. [33], Jin et al. [40] and Lu et al. [50]. In

addition, flow characteristics and setup were modified to gain knowledge of particle-laden

flows. The project provided the author with important experience and knowledge about

particle-laden flows in order to approach the current thesis in an efficient manner.

1.3 Scope of this thesis

The purpose of this thesis is to develop a numerical model of the particle-laden gas flow in the

venturi scrubber in ANSYS Fluent. Consequently, a literature study of the venturi scrubber

and particle-laden gas flows will be conducted. Furthermore, two test cases are investigated

to validate the numerical model of the scrubber. Simulations of test cases are conducted

and validated by experimental and numerical data available in the literature. The thesis is

divided into three cases:

• Turbulent flow in concentric annulus

• Confined bluff body

• Venturi scrubber

The first two cases include physics that need special considerations in the venturi scrubber.

The scope of this thesis will include a numerical analysis of one continuous phase of air and

the dispersed phase of solid particles for the venturi scrubber. This is to set a basis for a

future multiphase model of the venturi scrubber where air, liquid water and solid particles are

considered in order to predict the particle collection efficiency. This thesis will not include

the liquid phase, the liquid droplet breakup nor the interaction between the droplets and

solid particles and its associated chemistry. Numerical simulations will be performed for the

installed venturi scrubber at Glencore Nikkelverk. The results, i.e. pressure drop across the

venturi scrubber, from the presented numerical model are compared to experimental data,

provided by Glencore Nikkelverk AS. Finally, the geometry of the installed scrubber will be

scaled up to predict the flow in a full-scale venturi scrubber which is planned to be built in

2022.
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1.4 Outline of the thesis

Chapter 2 will cover the relevant theory to the numerical analysis in the present study. An

introduction to the governing equations, turbulence modelling and particle-laden gas flows

are given. The mathematical models used in this study are explained in detail.

A short introduction of CFD software and level of modelling is provided in chapter 3. In

addition, a short note on different types of grids and mesh generation is included. The three

cases, i.e. turbulent flow in a concentric annulus, confined bluff body (CBB) and venturi

scrubber are given in chapter 4, 5, 6, respectively. The results from the calculations for each

case will be presented consecutively. The results of the concentric annulus and CBB are

compared to experimental and numerical data available in the literature, while the results

of the pilot venutri scrubber are compared to experimental data by Glencore Nikkelverk.

Finally, concluding remarks and recommended further work will subsequently be given in

chapter 7 and 8.

1.5 Literature Survey

Particle-laden flows have been subject to research for a long time. This is because particle-

laden flows are found in many engineering applications as well as in natural settings, this

includes for example separation of particles, erosion, combustion and sedimentation. Rel-

evant text books for particle-laden flows are Crowe, Sommerfeld and Tsuji [21], Varaksin

[84] and Schellander [72]. In particle-laden flows there are three different flow regimes and

a corresponding coupling between the continuous and dispersed particle phase. Elghobashi

[28] proposed a method to determine what regime is present for particle-laden flows. The

approach by Elghobashi [28] is presented in section 2.9. The review by Van der Hoef et al.

[83] states the different approaches to solve particle-laden gas flows numerically. The three

main approaches are resolved particle model, which is a direct numerical simulation (DNS),

unresolved discrete particle models (DPM) and two-fluid models. A review by Kuerten [52]

give an overview of the research on particle-laden flow for DNS and large eddy simulation

(LES). The discrete particle model (DPM) is a frequently applied model for numerical com-

putations of particle-laden flows and is based on the work by Cundall [22]. The review of

Deen [26] contains different approaches on how fluidized beds can be computed by discrete

particle modelling today.

The venturi scrubber is a highly efficient particle-laden gas cleaning device and it is used

in various industries and power plants. Relevant text books for scrubbers and air pollution

are Wang et al. [87], Danielson [25], Couper et al. [19] and Perry [62]. In the wake of the

Fukushima Daiichi nuclear disaster in 2011 countermeasures are urgently needed. As a result

of increased focus on safety of nuclear power plants, Ali et al. [4] gave a comprehensive re-
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view of the venturi scrubber. The review presented published studies related to performance

of the venturi scrubber in the last few decades. The review state that performance is de-

pendent on droplet dispersion, pressure drop, atomization, size of droplets, injection method

and collection mechanism. The pressure drop is one of the most important parameter. As

the pressure drop is related to both collection efficiency and operational cost, several models

have been developed. The pressure drop model by Calvert [16] is one of the simplest mod-

els. The pressure drop is predicted due to change in momentum of droplets in the throat

and the model does not include the geometry of the scrubber. More sophisticated pressure

drop models have been developed on the basis of the simple model by Calvert [16], e.g.

Viswanathan [86] and Azzopardi et al. [11]. Allen and van Santen [5] measured the pressure

drop for different operating conditions for a venturi scrubber. The study is relevant because

of measurements in terms of dry and wet pressure drop. Allen and van Santen stated that

the turbulence-induced gas phase losses, i.e. dry pressure drop, is important in determining

the total pressure drop.

Some numerical analysis with the use of CFD software have been performed. Goniva [32]

conducted a simulation of a venturi scrubber in the OpenFOAM software to determine the

performance. An Eulerian-Langrangian approach for the particle-laden gas and the droplets

was used. The simulated pressure drops were in good quantitative agreement with exper-

iments, while an accurate prediction of the collection efficiency was however not achieved.

Guerra et al. [35] conducted experiments and CFD simulations for a venutri scrubber and

focused on pressure drop and liquid distribution. Pak & Chang [60] developed a numerical

model to predict pressure drop and collection efficiency of a venturi scrubber. The simulated

pressure drop was a little under-predicted compared to experimental data. The inaccurate

prediction of the droplet size and no liquid film modelling were given as arguments for the

under-predicted pressure drop. The collection efficiency was in good agreement with exper-

imental data except for the low gas throat velocity. All simulations of the aforementioned

authors used the k − ε turbulence model.

In terms of geometric similarities of the installed scrubber at Glencore Nikkelverk and the

literature, the venturi scrubber in the study by Viswanathan [86] has been found to be clos-

est. Based on experimental studies, Viswanathan developed an empirical correlation for the

two-phase pressure drop in the scrubber. However, no identical geometry was found in the

literature and thereby validation of the venturi scrubber simulations is obtained by the test

cases and the measurements provided by Glencore Nikkelverk.
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Theory

2.1 Governing Equations

There are three universal laws of conservation in fluid mechanics: conservation of mass,

conservation of momentum and conservation of energy.

2.1.1 Conservation of mass

Conservation of mass, implies that mass cannot be created or destroyed in a flow field. Using

the Eulerian approach, the conservation of mass is given as:

∂

∂t

ˆ
V

ρdV = −
‹
S

ρU · ndS (2.1)

The equation states that the rate of increase of mass inside the volume, V, is equal to the

net inflow of mass through the closed surface S. By applying the divergence theorem and

consider that the equation is valid for any arbitrary volume, equation 2.1 may be written as:

∂ρ

∂t
+
∂(ρui)

∂xi
= 0 (2.2)

A special case give an important simplification of equation 2.2. For homogeneously constant

density, which is valid for incompressible flows, equation 2.2 is reduced to:

∂ui
∂xi

= 0 (2.3)

2.1.2 Conservation of momentum

For stationary control volume Ω, with boundary ∂Ω, considering pressure, viscous and volume

forces as external forces the momentum equation on integral form is:

5
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ˆ
Ω

∂ρU

∂t
dV +

ˆ
∂Ω

ρUU · ndA = −
ˆ
∂Ω

pndA+

ˆ
∂Ω

τ · ndA+

ˆ
Ω

ρfdV (2.4)

Simplifying equation 2.4, in a Cartesian coordinate system, for an incompressible, Newtonian

fluid flow and constant viscosity and density, give rise to the famous Navier-Stokes equation:

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+
f

ρ
(2.5)

where p is the pressure, ν is the kinematic viscosity of the fluid and f is the body force, e.g.

gravity. Equation 2.5 is valid for an incompressible, Newtonian fluid flow problem. Steady

air flows are assumed to be incompressible for fluid velocities below 100 m/s, according to

Pletcher [63] .

2.2 Principles of solution

To solve the governing equations in a numerical approach, physical space and time are dis-

cretized. Different discretization schemes are used in time and space, since the different terms

of the governing equations are approximated at different levels. For a transient problem the

equations are time-dependent and advanced in time from initial conditions. A steady state

is achieved when the solution is time independent. Appropriate boundary conditions must

be applied and are given in section 3.3.

2.2.1 Spatial discretization

There are three main concepts of spatial discretization, finite difference, finite volume and

finite element. It is well known that finite difference and finite volume method (FVM) is

closely related [63]. This thesis is based on the formulation of finite volume. The finite

volume method uses the integral formulation of the Navier-Stokes, equation 2.4. In the finite

volume approach, the continuous problem domain is discretized into control volumes. These

control volumes represent a spatial grid for the computational domain with associated grid

points. A typical CV in 2D are shown in Fig. 2.1. The surfaces of the CV are denoted

with lower-case letters, w (west), e (east), n (north) and s (south), with a central node (P).

The governing integral conservation equation is valid for each CV and for the whole domain.

Summation of the equations for all CVs yield the global conservation equation. As a result

the global conservation is built into the FVM-method. In this project a cell-centered method

is used where the grid points are in the centers of the volume. In addition the co-located grid

system is used, based on the work by Rhie and Chow [67]. As a consequence all variables are

stored in one point.
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Figure 2.1 Schematic representation of CV for a 2D Cartesian grid and notations, adapted
from [29].

In order to approximate the integrals of equation 2.4 the values of variables at other locations,

than the CV center, are needed. The following will show schemes to approximate these

variables.

Schemes for convection and diffusion

The convective flux for a quantity φ is given by:

f c = ρφU · n (2.6)

The diffusive flux for the same quantity φ is given as:

fd = Γ∇φ · n (2.7)

The velocity field, the density and fluid property Γ are assumed to be known at all locations.

The value of φ and its normal gradient on the surface of the CV are needed. To find the value

at the surface, interpolation of the centre values is performed. The most popular schemes,

according to Ferziger [29], are presented for the value of φ and its normal gradient at the

eastern cell face, ”e”, corresponding with Fig. 2.1.

Upwind Differencing Scheme (UDS)

The first order upwind scheme use a forward- or backward-difference approximation depend-
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ing on the flow direction. Using the UDS, the value of φe is approximated by:

φe =

φP if (U · n)e > 0

φE if (U · n)e < 0
(2.8)

The scheme unconditionally satisfies the boundedness criterion. However, it is only a first or-

der scheme and introduce numerical diffusion, which can be shown by Taylor series expansion.

Central-difference scheme (CDS)

The central-difference scheme is based on linear interpolation between the two neighboring

nodes. Using the CDS, the value of φe is approximated by:

φe = φEλe + φP (1− λe), λe =
xe − xP
xE − xP

(2.9)

The CDS is second-order accurate and most widely used, but may produce oscillatory solu-

tions.

Another relevant scheme is the Linear Upwind Scheme, which is second-order accurate, where

the quantities at cell faces are computed using a multidimensional linear reconstruction ap-

proach, see Barth & Jespersen [12]. A number of higher-order schemes are available and

often used together with limiters. Limiters are used to avoid oscillations for high gradients

regions, see Pletcher [63] and Ferziger [29].
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2.3 RANS - Reynolds Averaged Navier-Stokes

An important simplification of the Navier-Stokes equations is to assume a time averaging of

the equations. This is known as the Reynolds averaged Naiver-Stokes equations. The instan-

taneous quantities are split into mean and fluctuating components by Reynolds decomposi-

tion. The streamwise velocity component for a Cartesian coordinate system is decomposed

as

u = u+ u′ (2.10)

where u is the instantaneous velocity, u is the mean value of velocity and u′ is the fluctuating

value of velocity. As a result of the Reynolds decomposition, the mean of a fluctuating

component is zero by definition. The reader should also notice that the time average of

the product of two fluctuating quantities is, in general, not equal to zero. By Reynolds

decomposition and time averaging of equation 2.5, the RANS equation is given as [63]:

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+

∂

∂xj
(τij − ρu′iu′j) + fi (2.11)

where τij is the averaged viscous stress tensor, given as:

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.12)

In equation 2.11 the Reynold stress tensor, u′iu
′
j, is introduced and will be revisited. At this

point is hard to see why this is a helpful simplification to solve the NS equations as new un-

knowns are introduced, like the Reynolds stress tensor. Therefore, new equations are needed

in order to close the system of equations. This is achieved by turbulence modelling.

Most flows occurring in nature are turbulent, this also apply in many engineering appli-

cations. Turbulence has no precise definition, but turbulence characteristics are given after

Tennekes & Lumley [81]:

• Randomness - All turbulent flows are irregular and statistical methods are applied.

• Diffusive - The diffusivity of turbulence is responsible for enhanced mixing of momen-

tum, heat and mass transfer.

• Large Reynolds number - A characteristic of turbulence is large Reynolds number.

• Three dimensional

• Transient

• Dissipative
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• Continuum phenomenon

It is known that in turbulent flows a wide range of length scales exists. The largest length scale

is bounded by the dimensions of the flow field, while the smallest is bounded by the diffusive

action of molecular viscosity. As a result also different time scales exists. The smallest scales

are the Kolmogorov microscales of length, time and velocity. The Kolmogorov time scale is

given as:

τK =
(ν
ε

)1/2

(2.13)

where ε is the turbulent dissipation rate per unit mass. The Kolmogorov length scale is given

as:

η =

(
ν3

ε

)1/4

(2.14)

2.4 Turbulence Modelling

The unknown averages of products of fluctuating quantities in the RANS equation can be

modelled with equations for dependent variables. An example of a turbulence model is the

relation between the unknown Reynolds stresses and the mean velocity components. An

overview of turbulence models with an increase in complexity is given, according to Kristof-

fersen [43]: algebraic models, one-equation model, two-equation model, algebraic stress model

(ASM), Reynolds stress model (RSM), Large Eddy Simulation (LES) and Direct Numerical

Simulation (DNS). In this thesis several turbulence models is utilized. Therefore, the two

equation models k − ε, k − ω, k − ωSST and RSM are presented. ANSYS Fluent is used in

this study. Consequently, the turbulence models are given according to the implementation

in Fluent. In addition, a short note on ASM is given.

A common approximation to obtain closure is the Boussinesq’s eddy viscosity hypothesis

relate the unknown Reynolds stresses to the mean flow:

−u′iu′j = 2νTSij −
2

3
kδij (2.15)

where Sij = 1
2
( ∂ui
∂xj

+
∂uj
∂xi

) is the mean strain rate and νt is the turbulent viscosity. The

turbulent kinetic energy k is a measure of the turbulence intensity and is given as:

k =
1

2
u′iu
′
i (2.16)
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The exact differential equation for the turbulent kinetic energy can be derived from the

Navier-Stokes equations assumed constant density:

∂k

∂t
+ uj

∂k

∂xj
= Dk + Pk − ε (2.17)

where

Dk = − ∂

∂xi

[
u′i

(
p

ρ
+ k

)]
+

∂

∂xi

(
2νu′js

′
ij

)
(2.18)

Pk = −u′iu′j
∂ui
xj

(2.19)

ε = 2νs′ijs
′
ij (2.20)

Equation 2.17 has the same form as an general transport equation where the left hand side

of equation 2.17 represents the rate of change of k within a fluid element. The terms on the

right hand side may contribute to the change of k. The first term on the right hand side of

equation 2.17, Dk represents the diffusion of k due to molecular and turbulent transport and

has a spatial redistribution effect. Further, Pk is characterized as the production term due to

interaction of the mean flow and the turbulent stresses. The unknown Reynolds stresses can

be modelled by the eddy viscosity hypothesis given in equation 2.15. The last term on the

right hand side of equation 2.17 is the dissipative term where ε is the viscous dissipation rate

of turbulent kinetic energy. Due to viscous stresses, energy is extracted from the turbulence.

The energy cascade involve energy transfer from the larger eddies down to the smallest eddies

and then to be dissipated. By length scale and dimensional analysis [81] it can be shown

that the viscous dissipation cannot be neglected and that the dissipation can be estimated

from

ε ≈ Cd
k3/2

L
(2.21)

where Cd is an empirical constant and L is the length scale of the larger eddies.

2.5 Two-equation turbulence models

Two-equation models are characterized by one PDE for the turbulent kinetic energy, k, and

one PDE for the length scale of the larger eddies L. Several proposals have been made to

obtain a dependent variable. The most used two-equation models are the k − ε and k − ω.

Both models are based on the the eddy viscosity hypothesis.
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2.5.1 k − ε model

The k − ε model is governed by partial differential equations for both the turbulent kinetic

energy, k, and the turbulent dissipation rate, ε. Furthermore, an algebraic expression is

needed in order to close the system of equations [7]. Based on the work by Prandtl (1945)

and Kolmogorov (1942) the eddy-viscosity can be expressed as:

µT = ρCµ
k2

ε
, νt =

µt
ρ

(2.22)

The standard k− ε model in Fluent is based on the model by Launder and Spalding [44] and

is given as:
∂k

∂t
+ uj

∂k

∂xj
=

∂

∂xj

[(
ν +

νT
σk

)
∂k

∂xj

]
+ Pk − ε (2.23)

∂ε

∂t
+ uj

∂ε

∂xj
=

∂

∂xj

[(
ν +

νT
σε

)
∂ε

∂xj

]
+
ε

k
(Cε1Pk − Cε2ε) (2.24)

where Pk is the production term defined as:

Pk = 2νTSij
∂ui
∂xj

(2.25)

and where σk = 1.0, σε = 1.3, Cε1 = 1.44, Cε2 = 1.92 and Cµ = 0.09 are empirical constants.

Pk represent the production of turbulent kinetic energy. The turbulence model, including

equations 2.22 -2.24 together with the continuity equation and the momentum equation form

a closed set of the governing equations which can be solved numerically with appropriate

boundary conditions.

2.5.2 k − ω model

The k − ω model include one transport equation of k and one for the specific dissipation

rate, ω. The transport equations for k and ω together with an algebraic expression for the

turbulent viscosity close the system of equations. The algebraic expression for the turbulent

viscosity is given as:

νT =
k

ω
(2.26)

The standard k − ω model in Fluent is based on Wilcox suggested model [88]. The model

has been improved by reducing the freestream sensitivity. The transport equations for the



CHAPTER 2. THEORY 13

k − ω model is given as:

∂k

∂t
+ uj

∂k

∂xj
= 2Sij

∂ui
∂xj

+
∂

∂xj

[(
ν +

νT
σk

)
∂k

∂xj

]
− βkkω (2.27)

∂ω

∂t
+ uj

∂ω

∂xj
= 2ανTSij

∂ui
∂xj

+
∂

∂xj

[(
ν +

νT
σω

)
∂ω

∂xj

]
− βωω2 (2.28)

where σk = 2.0, σω = 2.0, βk = 0.09, βω = 0.075 and α = 0.56 are empirical constants in the

model. It should be noted that the standard k−ω model in Fluent is implemented with low-

Reynolds number correction. This correction is done by introducing dampening coefficients

for the turbulent viscosity and the production of the specific dissipation rate. The details

are given in depth in Wilcox [88] and Fluent User Guide [3].

2.5.3 k − ω SST model

The k−ω shear-stress transport model is an extension of the standard k−ω model developed

by Menter [53]. As a result the model combines the advantages of the k − ω and the k − ε
model. The transport of turbulent shear stress is obtained by applying a limiter to the eddy

viscosity:

νt =
k

ω

1

max
[

1
α∗
, SF2

a1ω

] (2.29)

where

F2 = tanh(φ2
2), φ2 = max

[
2
√
k

0.09ωy
,
500µ

ρy2ω

]
(2.30)

and S is the strain rate magnitude and y is the distance to the wall. The model constants

are similar as for the standard k − ω model, described in the previous section.

2.6 Reynolds stress model

The Reynolds stress models are second order closure models and probably the most general

of all classical turbulence models. In the two-equation models (k − ε and k − ω) turbulence

is represented by a scalar qunatity, k, the turbulent kinetic energy and are implicitly based

on the assumption of local isotropy, i.e. u′2 = v′2 = w′2. This is usually not the case in real

flows and the turbulence is thereby anisotropic. The RSMs is able to compute the anisotropic

turbulence by abandoning the eddy-viscosity hypothesis. The closing of the RANS equations

is done by solving transport equations for the individual Reynolds stress components:
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−u′iu′j =

−u′u′ −u′v′ −u′w′−v′u′ −v′v′ −v′w′
−w′u′ −w′v′ −w′w′

 (2.31)

In two-dimensional problems, five transport equations have to be solved for the Reynolds

stresses. As a result this approach is more computationally expensive and in addition no

numerical stability from the eddy viscosity is gained. The RSM may be tuned by a parameter

study.

2.6.1 Transport equations

The equation for the individual Reynolds stress may be derived from the equation for the

fluctuating velocity. The transport equation implemented in Fluent is based on the model

by Gibson and Launder [31] and is given as:

∂

∂t
(ρu′iu

′
j)︸ ︷︷ ︸

Local time
derivative

+ Cij︸︷︷︸
Convection

= −DT,ij︸ ︷︷ ︸
Turbulent
diffusion

+ DL,ij︸ ︷︷ ︸
Molecular
diffusion

−Pij︸︷︷︸
Stress

production

+ φij︸︷︷︸
Pressure

strain

− εij︸︷︷︸
Dissipation

(2.32)

where

Cij =
∂

∂xk
(ρuku′iu

′
j) (2.33)

DT,ij ≡ −
∂

∂xk

[
ρu′iu

′
ju
′
k + p′

(
δkju′i + δiku′j

)]
(2.34)

DL,ij ≡
∂

∂xk

[
µ
∂

∂xk

(
u′iu
′
j

)]
(2.35)

Pij ≡ −ρ
(
u′iu
′
k

∂uj
∂xk

+ u′ju
′
k

∂ui
∂xk

)
(2.36)

φij ≡ p

(
∂u′i
∂xj

+
∂u′j
∂xi

)
(2.37)

εij ≡ 2µ
∂u′i
∂xk

∂u′j
∂xk

(2.38)

The turbulent diffusion DT,ij, redistribution φij and dissipation εij need to be modelled in

order to close equation 2.32.

Modelling turbulent diffusion

The turbulent diffusion term DT,ij may be modelled by a generalized gradient-diffusion model

proposed by Daly and Harlow [24]. Due to numerical instabilities, the model in Fluent is
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simplified and a isotropic model is implemented, where the turbulent viscosity is included,

as suggested by Lien And Leschziner [48]:

DT,ij =
∂

∂xk

(
µt
σk

∂u′iu
′
j

xk

)
(2.39)

where the Prandtl number for turbulence energy is σk = 0.82. Similarly, the turbulent

viscosity µt is given by equation 2.22 in the k − ε model with Cµ = 0.09.

Modelling redistribution

It may be demonstrated that the terms in φij do not change the turbulent kinetic energy

[7]. However, they tend to redistribute energy between different normal Reynolds stresses.

Each normal components in φij, i.e. φ11, φ22 and φ33 may be nonzero, but the summation

of the normal components is zero. A classical decomposition of the redistribution term is

considered:

φij = φslowij + φrapidij + φwallij (2.40)

The slow part φslowij is known as the return-to-isotropy term and contains only turbulent

velocities, resulting in decreasing anisotropy. In contrast, the rapid part φrapidij involve terms

of the mean velocity gradients. The third part is the wall-reflection term and allow the re-

distribution of normal stresses near the wall.

The Linear Pressure-Strain model in Fluent is based on the model by Gibson and Laun-

der [31] and Launder [46]. Equation 2.40 is modelled in Fluent as [2]:

φslowij ≡ −C1ρ
ε

k

(
u′iu
′
j −

2

3
δijk

)
(2.41)

φrapidij ≡ −C2

(
Pij − Cij −

1

3
δij(Pkk − Ckk)

)
(2.42)

φwallij ≡C ′1
ε

k

(
u′ku

′
mnknmδij −

3

2
u′iu
′
knink

)
C

3/4
µ k3/2

κεd

+ C ′2

(
φrapidkm nknmδij −

3

2
φrapidik njnk −

3

2
φrapidjk nink

)
C

3/4
µ k3/2

κεd

(2.43)

where Cij and Pij are defined in equations 2.33 and 2.36, respectively. Here, nk is the xk
component of the unit normal to the wall and d is the normal distance to the wall, κ = 0.4187

is the von Kàrmàn constant and Cµ = 0.09. In the derivation of equation 2.41 and 2.42

homogeneous turbulence is assumed, i.e. independent of position. In the vicinity of walls the
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assumption of homogeneous turbulence is not valid and a modification of the model must be

added. The modification in Fluent is implemented by setting the values of C1, C2, C ′1 and

C ′2 as functions of the turbulent Reynolds number Ret and the Reynolds stress invariants, as

described by Launder and Shima [47]:

C1 = 1 + 2.58BB
1/4
2

(
1− exp[−(0.0067Ret)

2]
)

(2.44)

C2 = 0.75
√
B (2.45)

C ′1 = −2

3
C1 + 1.67 (2.46)

C ′2 = max

[ 2
3
C2 − 1

6

C2

, 0

]
(2.47)

Ret =
k2

νε
(2.48)

The flatness parameter B and tensor invariants B2 and B3 are defined as

B ≡ 1− 9

8
(B2 −B3) (2.49)

B2 ≡ bikbki (2.50)

B3 ≡ bikbkjbji (2.51)

Finally, the Reynolds-stress anisotropy bij tensor is defined as:

bij =
u′iu
′
j − 2

3
δijk

k
(2.52)

Modelling dissipation

A common approach is to consider the dissipation rate tensor εij to be isotropic and one

transport equation for the scalar dissipation rate ε. The dissipation of the Reynolds stresses

in Fluent is modelled as:

εij =
2

3
δijρε (2.53)

The assumption of an isotropic dissipation rate is valid for high Reynolds number flows, but

anisotropy is more prominent for moderate Reynolds number [36]. The transport equation

for the scalar dissipation rate is the same as in the k − ε model, defined in equation 2.24.
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2.6.2 Algebraic stress model (ASM)

A simpler version of the Reynolds stress model is the algebraic stress model. This model

allow a nonlinear relationship between the Reynolds stresses and the rate of the mean strain

without solving the transport equations for the Reynolds stress components. In the ASM the

Boussinesq assumption is not invoked directly as in the two-equations models. Instead, the

constant turbulent viscosity in the two-equations models is replaced by a function. Nonlinear

relationships between the Reynolds stresses and the rate of mean strain have been proposed

by several researchers, e.g. Lumley [51] and Speziale [78]. There are many variations of the

ASMs and two different approaches are given here. The first approach is a series expansion

with the Boussinesq approximation as the lead term based on the work by Zhu et al. [91]. The

second approach suggested by Rodi [70] is to deduce a nonlinear algebraic equation for the

Reynolds stresses by simplifying the the transport equation for the individual Reynolds stress.

In this study the ASM is based on the k − ε model, and the the solution of the k − ε

model is applied as an initial solution for the ASM simulations. The ASM implemented in

ANSYS Fluent is a beta version and ANSYS were not able to provide documentation for

the mathematical formulation. As a consequence, the formulation is not given. The results

of the ASM should not be weighted in the same manner as the other turbulence models, as

these are thoroughly documented.

2.7 Turbulent boundary layer

As both viscous and Reynolds stresses are included in the RANS equations, the importance

of the stresses is investigated. Prandtl [64] proposed that there is an inner layer near the wall

where the mean velocity is determined by viscosity. The no-slip condition at the wall result

in negligible Reynolds stresses in the RANS equations and Prandtl’s suggestion is valid. The

linear region, which is the innermost region, is highly influenced by viscous stresses due to the

large velocity gradient. This velocity gradient arises from the no-slip condition at the wall.

Due to the low velocities in this region, the Reynolds stresses are of negligible magnitude.

In order to determine where the viscous and the Reynolds stresses are dominating, wall

coordinates are introduced:

y+ =
yuτ
ν
, uτ =

√
τw
ρ
, u+ =

u

uτ
(2.54)

Using the inner variables for u and y described in equation 2.54, the relationship between

velocity and distance from the wall is in the linear region is:

u+ = y+ (2.55)
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Further, the inner boundary layer is divided into three regions : the linear region, the buffer

region and the logarithmic region. The logarithmic region, which is the outermost region in

the inner layer, is mostly governed by the Reynolds stresses. Here, as opposed to the linear

region, the viscous stresses can be neglected since the velocity gradient multiplied with the

viscosity is of a much smaller order of magnitude than the Reynolds stresses. The logarithmic

relationship between u+ and y+ can be described as

u+ = Alog(y+) +B (2.56)

where A and B are constants determined by the flow. In between the linear and the logarith-

mic region, the buffer region is located. This is the most complex region in the inner layer,

due to the fact that neither the viscous stresses nor the Reynolds stresses can be neglected,

and simplification of the governing equation 2.11 is prevented. A visualization of the different

regions with their respective models from equation 2.55 and 2.56 is shown in Figure 2.2.

Figure 2.2 The different regions in a turbulent boundary layer for flow over a flat plate.
The dashed lines represent the equation 2.55 and 2.56. Adapted from Pletcher [63].
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2.8 Near wall treatment

The mean velocity field and the turbulence are significantly affected by the no-slip condition

at the wall. In Fluent there are two approaches for the modelling the near-wall region. The

first approach do not resolve the inner region but wall functions based on semi-empirical

formulas are used. The second approach use modifications of the turbulence models in order

to resolve the boundary layer.

2.8.1 Wall functions

As presented in section 2.7 the different layers is divided in three different regions, where the

friction velocity u+ is a function of y+. By the use of wall functions the region affected by

the viscosity is modelled. As the viscous sublayer and the buffer zone is not resolved a coarse

mesh is applied when wall functions are used. This is beneficial in terms of computational

time. On the other hand, these functions are not accurate for moderate Reynolds number

flows and is difficult to apply to complex geometry [76].

In Ansys Fluent wall functions are implemented based on the work by Launder and Spalding

[45]. The law-of-wall for the mean velocity is obtained from equation 2.56 with constants

A = 1
κ

= 1
0.4187

and B = 5.45. Further, Fluent recommend y+ > 30 in the entire domain

[3] For completeness, the law-of-the-wall for the mean velocity is based on the wall unit y∗

instead of y+. Fortunately, these quantities are approximately equal in equilibrium turbulent

boundary layers.

2.8.2 Near-Wall model

The second approach resolve the viscous sublayer and the buffer layer using a two layer model

for the k− ε model and the RSM, as well as the ASM. In Fluent this is called Enhanced Wall

Treatment and based on the work by Chen and Patel [17]. Fluent recommend a structured

grid in wall-normal direction and a value of unity for y+ [3]. The model include modifications

of the eddy viscosity and turbulent dissipation rate in the near wall region. A blending

function is used to bridge the standard model equations and the new equations introduced.

The blending function is dependent on a turbulent Reynolds number

Rey =
ρy
√
k

µ
(2.57)

where y is the distance normal to the wall. The fully turbulent region is defined as Rey > 200

and the standard equations for the k − ε and the RSM are used. For turbulent Reynolds
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number Rey < 200 the eddy viscosity is obtained from the equation given by Wolfstein [89]:

µt,wall = ρCµlµ
√
k (2.58)

where the viscosity length scale lµ is computed from

lµ = yC∗l
(
1− e−Rey/Aµ

)
(2.59)

Similarly, the equation for the turbulent dissipation rate ε is replaced by εwall:

εwall =
k3/2

lε
(2.60)

where the length scale for the dissipation lε given as

lε = yC∗l
(
1− e−Rey/Aε

)
. (2.61)

Finally, the constants in equations 2.59 and 2.61 are:

C∗l = κC−3/4
µ , Aµ = 70, Aε = 2C∗l (2.62)
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2.9 Particle-laden flows

Particle-laden flows are classified in dilute, medium and dense flow regimes according to

Varaksin [84]. The volume fraction is an important ratio in determining the correct flow

regime of the particle-laden flow:

α =
Vs
Vcell

(2.63)

The ratio is based on solid volume, Vs, in a specific volume Vcell. Elghobashi [28] suggested a

classification map of particle-laden flows based on the volume fraction and is given in Figure

2.3. The dilute regime is determined by a volume fraction, α > 10−6. In this region the

coupling between the dispersed and continuous phase is characterised by one-way coupling.

For one-way coupling the carrier fluid effect the particles, but the particles have a negligible

effect on the continuous phase. In the medium regime, 10−6 < α < 10−3, the particles have

an influence on the turbulence and a two-way coupling is needed. The two way coupling are

dependent on the ratio between particle reaction time, τP and the Kolmogorov time scale,

τK from equation 2.13. The particle reaction time is approximated as Stokes flow around the

particle so the time scale is given by

τP =
ρPdP

2

18ρν
(2.64)

In this medium regime small values of τP will enhance turbulence dissipation and larger values

will enhance turbulence production. In dense particle regimes, α > 10−3, also particle-particle

collisions must be considered, hence four-way coupling.

Figure 2.3 Particle-laden flow regimes, including coupling and turbulence effect. (1) one-
way coupling, (2) & (3) two-way coupling, (4) four-way coupling. Adapted from [33].
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2.9.1 Motion of Solid Particles

The motion of particles can be computed within the frame of the Lagrangian approach or

the Eulerian continuum approach. Pletcher [63] state that the in Lagrangian approach the

changes to the properties of a fluid element are recorded by an observer moving with the fluid

element. A Lagrangian approach for the dispersed phase is done by tracking the particles

through the continuous phase. A common method to simplify large number of particles is

the point-particle approach. This method do not resolve the particle boundary layer and

similar flow considerations on particle scale, instead these are empirically modelled. A rele-

vant review of the point-particle methodology is the paper by Kuerten [52].

The Lagrangian equation of instantaneous motion of a single solid particle is given by:

dxP

dt
= up (2.65)

mP
duP

dt
=
∑

Fi (2.66)

where mP is the particle mass, xP is the position vector of the particle and uP is the particle

velocity. The right hand side of equation 2.66 represent the external forces acting on the

particle. The dominating force factors are dependent on the flow problem.

Aerodynamic Drag Force

The influence from aerodynamic drag on the particle trajectory is the most dominant effect,

according to Schellander [72]. Due to the difference in velocity for the fluid and the particle,

the drag force causes acceleration or deceleration of the particle. Figure 2.4 show the fluid

velocity, the particle velocity and the drag force for one particle. The particle is assumed to

be spherical.

Figure 2.4 Particle motion under the effect of the aerodynamic drag force. Adapted from
[84].

Assuming homogeneously distributed spherical particles with the same diameter, the drag
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force is given by:

FD = CDρ
πdP

2

4
(u− uP)|u− uP| (2.67)

Where the drag coefficient, CD, is dependent on the Reynolds number and flow regimes,

described in 2.9. The standard drag curve is shown in Figure 2.5 where the Reynolds number

is a function of the drag coefficient.

Figure 2.5 The drag coefficient of a sphere and Reynolds number, adapted from [21].

The literature states different empirical relations to describe the drag coefficient. The fol-

lowing correlations are based on recommendations by Crowe et. al. [21]. The Stokes flow

regime, where the viscous forces dominate, is present for low Reynolds number, ReP < 1.

The Stokes formula is valid for creeping flow:

CD =
24

ReP
, ReP =

|u− uP|dp
ν

(2.68)

In the inertial range, 750 < ReP < 3.5 × 105 the drag coefficient is close to constant,

CD = 0.445. The drop in the drag coefficient at the critical Reynolds number (Rep ∼ 3×105)

is due to boundary effects. The boundary layer becomes turbulent and the separation point is

moved backward, resulting in a reduced drag coefficient. In this report the Reynolds number

based on particle diameter, ReP , is low because of the particle diameter and small relative

particle and fluid velocity.

The spherical drag law in ANSYS Fluent is based on the work by Morsi and Alexander

[56]. The drag coefficient is modelled as:

CD = a1 +
a2

ReP
+

a3

Re2
P

(2.69)
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where a1, a2 and a3 are constants over several ranges of the Reynolds number. The constants

are given for all ranges in appendix A.

Body forces

The gravitational force, FG, is the product of particle mass and acceleration due to gravity.

FG = ρP
πd3

P

6
g (2.70)

Buoyancy

The buoyancy force, FB, is the product of the fluid density, the volume of the particle and

the gravitational acceleration.

FB = −ρπd
3
P

6
g (2.71)

Other forces that may influence the particle trajectory are the Basset term, Saffman lift and

Magnus lift. These are terms are neglected because the ratio of the density for the particles

to the fluid is more than 1000 and may be neglected according to Jin et al. [40]. Further

information about the force terms are given by Crowe et al. [21]. To summarize, the right

hand side of equation 2.66 can be written as:∑
Fi = FD + FG + FB (2.72)

2.9.2 Turbulent dispersion of particles

Trajectories of particles are predicted using the mean fluid phase velocity. In order to account

for the dispersion of particle due to turbulence the fluctuating gas flow velocity is needed.

The RANS equations do not provide these fluctuations and a stochastic method is used to

estimate the fluctuations. Here the discrete random walk (DRW) model in ANSYS Fluent,

also known as the stochastic eddy life time, is applied. In this model the fluctuating velocity

is obtained by a Gaussian distribution function as:

u′ = γ
√
u′2 (2.73)

where γ is a normally distributed random number. The local root mean square value is

calculated on the assumption of isotropic turbulence for the two equations models:

√
u′2 =

√
v′2 =

√
w′2 =

√
2

3
k (2.74)

Further, the characteristic eddy lifetime τe is the time scale the particle is assumed to interact

with the continous phase eddy [65]. In this model the characteristic lifetime of the eddy is
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defined as:

τe = 0.3
k

ε
(2.75)

2.9.3 Stokes number

The Stokes number is an important dimensionless parameter and gives useful information

about the behavior of particles suspended in a fluid flow. The Stokes number is defined as

St =
τP
τF

(2.76)

where τP is the particle response time and τF is the time characteristic of the flow field. Stokes

[80] found that for small particles with negligible Reynolds number the particle response time

is

τP,Stokes =
(2ρP + ρF )dP

2

36µ
(2.77)

A simplification of equation 2.77 when the fluid density is negligible, i.e. for solid particles

in gaseous medium, equation 2.64 is obtained. As this time constant is only valid for low

Reynolds number a correction for the drag coefficient can be used. This can be done my

applying a Reynolds dependent drag coefficient, e.g. equation 2.69. For low Stokes number,

St << 1, the particle response time is less than the characteristic time of the flow field. In

this type of particle-laden flow the particles will have time to respond to velocity changes

in the flow. As a result the velocity of particle and the fluid will be in equilibrium. In

contrast, for higher Stokes number, i.e. St >> 1, the particle response time is larger than

the characteristic time of the flow field and the fluid will only have a small effect on the

particle velocity.
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Numerical Method

Computational Fluid Dynamics (CFD) is applied to the governing equations to obtain an

approximate numerical solution. By discretization the aforementioned PDEs are reduced to

a set of algebraic equations. Both time and space are discretized into small control volumes

or cells. The continuous solution of the flow field is represented by the approximation of each

cell. According to Ferziger [29], the components of a numerical method are:

• Mathematical model

• Discretization

• Coordinate and basis vector system

• Numerical grid

• Finite approximation

• Solution method

• Convergence criteria

3.1 Level of modelling

In numerical simulations the level of modelling need to be considered. The output of the

simulation is dependent on the level of modelling. The choice is often limited because of

computational power and time. Spalart [77] attempted to clarify and size up the levels of

modelling for a numerical simulation of a complete airplane in turbulent flow.

Figure 3.1 give an overview of modelling particle-laden flows and the information abstracted

from the simulation. When modelling large scale system an Eulerian-Eulerian model also

called a two-fluid model is often preferred. This method model both the fluid and particles

as a continuous fluid. Another approach is the Eulerian-Lagrangian where a discrete model

26
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is applied for the particles. RANS, LES and DNS may be used for the continuous phase.

The level of modelling is greatly dependent on the particle-laden flow regime, discussed in

section 2.9, this will also be highlighted in the discussion of the results.

Vegendla et al. [85] conducted a numerical simulation of a dilute gas-solid flow and com-

pared the Eulerian-Lagrangian and Eulerian-Eulerian approach to experimental data. The

Eulerian-Eulerian simulation deviated considerably from the experimental data, while the

Eulerian-Lagrangian method compared well with the experimental data. Vegendla et al.

[85] explained the deviations are mainly due to the diffusive nature of the Eulerian-Eulerian

method.

Figure 3.1 Modelling scheme of particle-laden flows, adapted from Deen et al. [26].

3.2 ANSYS Fluent

In the present study, the commercial CFD software ANSYS Fluent 19.2 is used. A wide

range of turbulence models are implemented in Fluent. The presented k − ε, k − ω, k − ω
SST , ASM and RSM in chapter 2 are applied. The two equations models were considered

due to the simplicity and limited computational resources. However, the two equations mod-

els struggle to capture the effects of streamline curvature, flows with zones of recirculation

and rotating flows [20]. This effect will be investigated in the first test case, i.e. turbulent

flow in a concentric annulus. Then the obvious choice is to use the ASM formulation where

anisotropy in the normal stresses is computed by algebraic expressions. Unfortunately, the

ASM in Fluent is a beta version and not fully developed and validated. Therefore, ANSYS
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was not able to provide documentation of the model and its mathematical formulation. As

a result, the more complex turbulence modelling, i.e the RSM described in section 2.6, were

considered. Firstly, the ε-based RSM is used. This is because the ω-based Reynolds stress

models are not compatible with the Eulerian muliphase model in Fluent, thus not applicable

for a future RSM model for the scrubber. Secondly, the linear pressure-strain model was

chosen because the quadratic model by Speziale et al. [79] is only available with standard

wall functions.

The discrete particle model (DPM) in Fluent is utilized for modelling particle-laden gas

flows in this study. The model is a Euler-Lagrangian approach and the dispersed phase may

exchange momentum, mass and energy with the continuous phase. The DPM is limited by

a maximum volume fraction α = 0.1. The equations of motion for particles given in section

2.9.1 are implemented in the DPM. One-way and two-way coupling between the dispersed

and continuous phase are available within the DPM. In addition, the discrete random walk

model for particle dispersion described in section 2.9.2 is used in the confined bluff body test

case.

Three-dimensional and two-dimensional axisymmetric simulations were performed. The

momentum equations for each velocity component, the Poisson equation for pressure and

the transport equation for the turbulent variables were solved using ANSYS Fluent. The

pressure-based coupled solver was used in all computations. The SIMPLE (Semi-Implicit

Method for Pressure Linked Equations) scheme is used for the pressure equation and it is

based on the work by Patankar and Spalding [61]. Further, the default second-order scheme

for pressure was chosen. Gradients are discretized by the Least Square Cell Based scheme.

The second order upwind scheme was applied for all other quantities. The relaxation fac-

tors were chosen based on recommendations by [3], hence the following relaxation factors for

momentum and pressure are αU = 0.7 and αP = 0.3, respectively. A convergence criteria of

10−6 for the scaled residual for all variables was set.

The built-in processing tool CFD-Post in Fluent is used in processing data and for visu-

alization. In addition, the Matlab software is used for data processing and to create various

figures.

3.3 Initial and boundary conditions

3.3.1 Inlet and outlet

In order to have a correct physical modelling of the flow, boundary conditions are needed

for velocities, pressure, turbulent kinetic energy, turbulent dissipation rate and turbulent
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viscosity at the inlet and outlet. At the outlet zero gauge pressure is usually specified. The

turbulent kinetic energy, k is given at the inlet by

k =
3

2
(UbI)2 (3.1)

where I is the turbulent intensity and defined as the ratio of the root mean square of the

velocity fluctuations to the bulk velocity. The turbulence intensity is given after the recom-

mended equation [3]

I = 0.16(ReDh)−1/8 (3.2)

Further, the turbulent dissipation rate, ε is given at the inlet by

ε = C3/4
µ

k3/2

l
(3.3)

where Cµ = 0.09 is an empirical constant and the l is the turbulence length scale. The

recommended approximation of the turbulence length scale is used:

l = 0.07Dh (3.4)

When the k−ω model is applied, an initial condition for turbulent dissipation rate is needed.

The turbulent dissipation rate is determined by:

ω =
k1/2

C
1/4
µ l

(3.5)

Finally the eddy-viscosity is obtained from equation 2.22 and 2.26 in section 2.4 for the k− ε
and k − ω model, respectively.

Reynolds stresses need to be specified when using the Reynolds stress model. The initial

turbulence is assumed to be isotropic for initial conditions:

u′iu
′
j = 0 (3.6)

and the normal stresses are determined by

u′ku
′
k =

2

3
k (3.7)

3.3.2 Walls

The no-slip condition is applied for solid walls and will result in a boundary layer near the

walls. The boundary layer theory were presented in 2.7 and subsequently wall modelling.
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Boundary condition for the turbulent kinetic energy k imposed at the wall is

∂k

∂n
= 0 (3.8)

where n is local normal to the wall. However, the boundary conditions for the solution

variables are set according to wall functions both for standard wall functions and enchanced

wall treatment [3].

3.4 Mesh

The mesh is a result of the discretization of the domain. The governing equations must hold

for all cells. A wide range of meshes have been suggested to satisfy an accurate discretiza-

tion. The main differences are geometry and topology in different mesh types. In general,

meshes are divided into two categories, structured and unstructured grid system. Examples

of a structured grid and an unstructured grid is shown in Figure 3.2. Structured mesh has

advantages in coding and efficiency because of its simplicity. The structured mesh follows a

structured indices convention. As a result the structured mesh system require less computer

memory. In contrast, additional topological information is needed for unstructured mesh,

which add complexity according to Moukalled [57]. This is because the cells are arranged

arbitrary. The flexibility in fitting a domain with a complicated geometry is where the un-

structured mesh is superior to the structured mesh, according to Bern et al. [13]. In this

study all meshes are constructed using ANSYS Fluent Meshing. The meshes used in the

three cases are presented within the related chapters.

(a) Structured mesh (b) Unstructured mesh

Figure 3.2 Mesh types, adapted from [75].
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Concentric Annulus

The first test case in this study is turbulent flow in a concentric annulus. This test case

is considered because the same flow is present in the venturi scrubber. Flow in concentric

annulus is encountered in many engineering problems such as heat exchangers and drilling

operations in the oil and gas industry. Fully developed turbulent flow in a concentric annulus

is more complex than pipe flow due to nonlinear radial variation of total shear stress. Among

researchers there is a discussion of whether the position of maximum and zero shear stress

coincide at the same location. Rehme [66] experimentally investigated the flow with hot-wire

anemometry and found non-coincidence between zero shear stress and maximum velocity.

Kjellstrøm and Hedberg [42] showed by a theoretical analysis that the assumption of zero

shear and maximum velocity are coincident is not necessarily true. However, experiments by

Kjellstrøm and Hedberg [42] showed no difference. Nouri et al. [59] conducted measurements

by the use of LDA in a fully developed concentric annulus flow at ReDh = 8900. Chung

et al. [18] performed a direct numerical simulation with the radius ratio of 0.1 and 0.5 and

Reynolds number, ReDh = 8900 of a concentric annulus flow and found no coincident. Chung

et al. [18] made comparisons to the experimental data by Nouri et al. [59].

However, Boersma & Breugem [14] investigated turbulent flow in a concentric annulus by

means of direct numerical simulation (DNS) and concluded that the radial position for the

maximum axial velocity is the same as the position where the Reynolds shear stress is zero.

According to Boersma & Breugem [14] the discussion is important as the eddy viscosity

model would be invalid for the non-coincident case. Gretler and Meile [34] stated that the

standard eddy-viscosity hypothesis yields good results in most engineering problems, but

fails to predict the shear stress distribution in asymmetric turbulent flows in the vicinity of

the maximum velocity. Azouz and Shirazi [8] evaluated several turbulence models for turbu-

lent flow in concentric annulus and reported good agreement with the available experimental

data. More recently, new measurement techniques have been applied. Corredor et al [71]

investigated turbulent flow in a concentric annular geometry using high resolution particle

31
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image velocimetry (PIV). Radial position of zero shear stress and maximum velocity where

found to be slightly (2%) different. Xiong et al. [90] conducted a RANS based numerical

analysis and compared the results to experimental and numerical data. Furthermore, all

investigations of flow in concentric annulus a asymmetric velocity profile, tilting toward the

inner wall, is found. In the literature study it is found that the position of the maximum

velocity is less dependent on the Reynolds number than the radius ratio.

In this study the goal is to identify differences between different turbulence models, types of

grids, near wall treatment and validation of simulations by experimental and numerical data

available in the literature. This serve as a first test case of the later numerical analysis of the

venturi scrubber. The concentric annulus is chosen because similar geometry is present in

the venturi scrubber. In addition, the pressure drop in the scrubber is strongly dependent on

the turbulence in a annulus flow. Firstly, from Moody’s diagram an increase in the Reynolds

number result in a decreased friction factor and subsequently the pressure drop. Secondly,

the Reynolds stress is greater for an higher Reynolds number flow and cause an increase in

the pressure drop.

4.1 Case description

The flow in a concentric annulus is confined by an inner and outer wall and the geometry

is shown in Figure 4.1. Simulations were performed at three Reynolds numbers ReDh =

8900, 38700, 56400 based on the hydraulic diameter, Dh = 2(R2 − R1). Parameters of the

annulus are listed in Table 4.1, e.g. the radius ratio θ = R1/R2. A two-dimensional ax-

isymmetric geometry were considered, due to less computational cost compared to a full

three-dimensional geometry.

Figure 4.1 Geometry of concentric annulus, adapted from [90].
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Table 4.1 Annulus parameters

Fluid Water
Density 998.2 kg/m3

Kinematic viscosity, ν 1.005 · 10−6 m2/s
Reynolds number, ReDh 8900 38700 56400
Hydraulic diameter , Dh 0.038 m 0.057 m 0.057 m
Length, Lx 2 m 2, 3.5 m 2, 3.5 m
Radius ratio, θ 0.5 0.4 0.4
Bulk velocity, Ub 0.2353 m/s 0.6822 m/s 0.9942 m/s

4.2 Numerical setup

Investigation of the turbulent flow in the concentric annulus is based on the RANS equations,

described in section 2.3. Steady-state simulations with several turbulence models were per-

formed. Wall functions were applied for the k− ε, k−ω and k−ω SST model. In addition,

the viscous sublayer were resolved using k− ω SST , ASM and RSM. The k− ε solution was

used as an initial solution for both the ASM and RSM computations for faster convergence

[3]. Initial and boundary conditions described in section 3.3 are considered. At the inlet a

uniform velocity profile is given by the bulk velocity Ub, see Table 4.1.

4.3 Mesh

The mesh type is structured and two-dimensional in all computations. Two different mesh

were considered, mesh A and mesh B. The length of the computational domain is 3.5 m for

mesh A. Mesh A is defined by 105000 cells and stretched in both x- and y-direction. The

mesh is refined in the centre in order to determine the position of the maximum velocity.

Standard wall functions are considered for mesh A and the wall adjacent cell size ensure

y+ > 30 as recommended by Fluent [2].

As fully developed flow is considered the maximum streamwise velocity were monitored for

x = 3.5m and x = 2.0m. The obtained difference for the maximum streamwise velocity was

0.01 %. As a result the length of the computational domain for mesh B is 2m. Further, Mesh

B is constructed to resolve the near wall boundary layer and is defined by 180000 quadrical

cells. The grid is stretched in the y-direction to allow smaller cells in near-wall region. A

grid convergence study for mesh B is presented in section 4.4.3.

Mesh B is used for Reynolds number in the range ReDh = 8900 − 56400. The velocity

gradients are greater for higher Reynolds number flows. Thus, there are fewer cells in the

viscosity-affected region for the higher Reynolds number flows. The wall coordinate y+ is
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shown in Figure 4.2. Increased values of y+ are computed for higher Reynolds numbers, but is

acceptable as y+ < 4 according to the Fluent [3]. Precursor computation were performed for

ReDh = 56400 to ensure y+ ≈ 1. A fully developed velocity profile and turbulent quantities,

from a similar annulus flow, were applied as the inlet conditions.

Figure 4.2 Values of y+ for mesh B for k − ω SST simulations.
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4.4 Results and discussion

4.4.1 Overview simulations and literature

Several simulations for different Reynolds number, mesh type and radius ratios have been

performed and an overview of the simulations is given in Table 4.2. A radius ratio θ = 0.4 is

considered for all simulations except for ReDh = 8900.

Table 4.2 Overview of simulations

Turbulence model Mesh ReDh θ = R1/R2

k − ε A 38700, 56400 0.4
k − ω A 38700, 56400 0.4
k − ω SST A, B 8900, 38700, 56400 0.5, 0.4
ASM B 37800, 56400 0.4
RSM B 8900, 37800 0.5, 0.4

4.4.2 Validation

The Reynolds numbers and radius ratios are chosen in terms of relevance to the later inves-

tigation of the scrubber in chapter 6. Further, data from the literature is available for these

parameters and the literature is presented in Table 4.3.

Table 4.3 Overview of literature for comparison

Author Type ReDh θ = R1/R2

Chung et al. Numerical, DNS 8900 0.5
Corredor et al. Experimental, PIV 38700, 56400 0.4
Nouri et al Experimental, LDA 8900 0.5
Japper-Jaafar et al. Experimental, LDA 30600, 61400 0.506
Bizhani et al. Experimental, PIV 57000 0.4
Xiong et al. Numerical, RANS 38700 0.4

As a first validation a simple force balance is considered. Newton’s second law simplify to∑
F = 0 for fully developed and steady state flow. The force balance is

ΣFx =

ˆ
(Pin − Pout)dA−

ˆ L

0

(τinner + τouter)dx = 0 (4.1)

where pressure forces and forces due to the shear stress are considered. The control volume

analysis is given in Appendix C. The error for this simple force balance is within 3% for all

simulations.
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The skin friction coefficient defined as Cf = τW
1
2
ρU2

b

is shown in Table 4.4 for radius ratio

θ = 0.4 and ReDh = 387000. Here, the fine mesh, i.e mesh B, simulations computed an

overall greater skin friction coefficient compared to the simulations obtained with mesh B

and the experimental data.

Table 4.4 Skin friction coefficient, ReDh = 38700

Cf,i, Inner Cf,o, Outer
Corredor et al. 0.0062 0.0054
Xiong et al. 0.0065 0.0056
k − ε Mesh A 0.0061 0.0055
k − ω Mesh A 0.0066 0.0058
k − ω SST Mesh A 0.0066 0.0057
k − ω SST Mesh B 0.0069 0.0060
ASM Mesh B 0.0068 0.0059
RSM Mesh B 0.0068 0.0060

Nouri et al. [59] developed an expression for the average skin friction coefficient in the annulus

based on a least square fit for Reynolds numbers from 4000 to 30000. The expression by Nouri

et al. [59] is

Cf,avg = 0.36Re−0.39
Dh

(4.2)

and for ReDh = 38700 the value is 0.0058. The computed average skin friction coefficient is

estimated as Cf,avg = R1

R1+R2
Cf,i + R2

R−1+R2
Cf,o and is equal to 0.0057 and 0.0062 for the k− ε

and RSM simulation respectively.

4.4.3 Mesh convergence

A mesh convergence test was conducted to investigate the solution sensitivity in terms of

grid resolution. Here, mesh B is considered at ReDh = 38700 with the k − ω SST model.

The presented approach is based on the work by Roache [69]. Three different grid resolutions

are tested: fine (1), medium (2) and coarse (3). The refinement ratio, rg, between each

step in the refinement process is set to 1.5. When refining the mesh special considerations

are needed regarding the clustering and stretching of the elements in the mesh. This is an

unwanted consequence that can occur when refining the mesh and will lead to a reduced

overall quality. In example the aspect ratio will increase for mesh refinement only in one

direction. For comparing the different resolutions, the maximum streamwise velocity in the

middle of the annulus ux,m and the average wall shear stress τW,avg of the inner and outer wall

are monitored. The grid convergence shows how much the solution is affected by the grid

refinement. This can be used to evaluate the choice of grid resolution for later computations.

The grid convergence process show that there is a difference for the ratio ux,m/Ub and the

average skin friction coefficient, τW,avg for the different meshes. A summary of parameters in
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the grid refinement procedure is given in Table 4.5, where Nx and Ny are the number of cells

in the streamwise and radial direction. In addition, the wall coordinate y+ is given for the

inner and outer wall.

Table 4.5 Grid refinement

Mesh Nx Ny Ntot ux,m/Ub τW,avg y+
i y+

o

Coarse 160 500 80000 1.12368 2.45064 1.05 0.98
Medium 240 740 180000 1.12344 2.46029 0.74 0.65
Fine 360 1125 405000 1.12332 2.46180 0.47 0.44

Following the procedure suggested by Roache [69] the order of grid convergence is pgrid = 1.8,

based on the maximum streamwise velocity ux,m. The grid convergence index (GCI) is a

standardized parameter to determine grid convergence quality and is given by

GCI =
Fs|e|

r
pgrid
g − 1

(4.3)

where e is the error between two grids and FS is a safety factor. The value Fs = 1.25

suggested by Roache [69] is used. At the medium refinement level the grid convergence index

is GCI2,3 = 0.03%, while GCI1,2 = 0.01% at the last refinement level. In addition, it is

needed to check that a asymptotic range of convergence is achieved. The asymptotic range

is achieved if

GCI2,3 ' rpGCI1,3 (4.4)

As GCI2,3
rpgGCI1,2

= 0.9999 the asymptotic range of convergence is achieved. However, a mesh

independent solution is not obtained because of a change in the maximum velocity. A fine

mesh compared to the medium mesh introduce extra computational time. Therefore, the

medium mesh is chosen for the later computations.
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4.4.4 Axial velocity

At first, solutions obtained with mesh B for k − ω SST , ASM and RSM are presented. The

axial mean velocity in wall coordinates for the inner and outer wall is given in the figures

4.3, 4.4 and 4.5 at ReDh = 8900, 38700 and 56400 respectively. The velocity profile obtained

from the experimental data by Nouri et al. [59] and Corredor et al. [71] in addition to the

numerical simulations follows the universal wall law. In the logarithmic layer (y+ > 30) the

numerical and experimental data are similar to the values computed by equation 2.56 which

is the log law. The constants A = 2.5 and B = 5.5 in equation 2.56 are considered and are

described in detail by Eggels et al. [27]. Numerical results is in better agreement with the

proposed law of the wall for increased Reynolds numbers. The velocity profile obtained by

k − ω SST at ReDh = 8900 is slightly lower than the proposed logarithmic equation, while

good agreement is obtained by the RSM compared to the experimental data by Nouri et al.

[59].

Figure 4.3 Axial velocity at the wall ReDh = 8900.

The experimental data by Corredor et al. [71] have slightly higher values in both the viscous

sublayer and logarithmic layer in Figure 4.4. The velocities near the outer pipe wall in

the logarithmic layer is higher compared to the velocities near the inner pipe wall. This

discrepancy is consistent with the literature [18], [14] and it is due to the curvature effect.
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Figure 4.4 Axial velocity at the wall ReDh = 38700.

Figure 4.5 Axial velocity at the wall ReDh = 56400.
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The mean streamwise velocity profile is shown in figures 4.6, 4.7 and 4.8 for the three different

Reynolds numbers. Here, the simulations of both mesh A and B are presented. Normalization

by the bulk velocity, Ub were performed. In addition, the dimensionless distance from the

inner wall, ξ = (y − R1)/(R2 − R1) is used. The computed velocity profile is asymmetric

and the position of the maximum velocity is closer to the inner pipe wall and similar results

are reported in the literature [18], [14], [39], [66]. The experimental data by Nouri [59] in

Figure 4.6 is rescaled as integration of the measured profiles in the radial direction did not

yield a value of unity. This was reported by Chung et al. [18] and Azouz & Shirazi [8] and

the rescaled values of Chung et al. [18] are given in Figure 4.6. Both RSM and k − ω SST

simulations are in agreement with the DNS by Chung [18] and the rescaled experimental

data by Nouri [59].

Figure 4.6 Axial mean velocity at ReDh = 8900.

A difference between computed and experimental data by Corredor [71] profile is clearly

visible in Figures 4.7 and 4.8, but better agreement is obtained with the experimental data

by Japper-Jafafar et al. [39]. However, Japper-Jaafar et al. [39] performed experiments at

ReDh = 30600 and 61400 and a radius ratio, θ = 0.506 as summarized in Table 4.3. The

maximum velocity to bulk velocity, umax/Ub was found to lower at higher Reynolds number

by Corredor et al. [71] and Japper-Jaafar [39]. In Figure 4.7 the position of the maximum

velocity is shifted closer to the inner wall as the radius ratio θ is decreased and this is also

reported by Chung et al. [18], Xiong et al. [90] and Boersma & Breugem [14]. The velocity

profile in Figure 4.8 is slightly flatter due to an increased Reynolds number compared to

Figure 4.7.
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Figure 4.7 Axial mean velocity at ReDh = 38700. Note: Japper-Jaafar at ReDh = 30600,
θ = 0.5

In the near wall regions the computed velocity profile from the three different turbulence

models, k− ε, k−ω and k−ω SST with Mesh A, deviations from the experimental and the

fine mesh computations are visible in Figures 4.7 and 4.8. Here, the limitations of the wall

functions described in section 2.8.1 are prominent.

Figure 4.8 Axial mean velocity at ReDh = 56400. Note: Japper-Jaafar at ReDh = 61400,
θ = 0.5.
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4.4.5 Turbulence intensity

The root mean square (rms) of the fluctuating velocities are regarded as a good measure of

the turbulent intensity. For the RSM computations the rms of the fluctuating velocities are

recovered from the Reynolds stresses, e.g. u′rms =
√
u′u′. The rms velocities in the axial,

radial and tangential direction computed by the RSM at ReDh = 8900 and θ = 0.5 are

given in Figure 4.9. Here, the fluctuation velocities are normalized by the bulk velocity Ub.

The anisotropy is clearly visible, i.e. u′u′ 6= v′v′ 6= w′w′. The behaviour of the fluctuation

velocities is as expected with a decrease in magnitude from axial, to tangential, to radial

components. An overall agreement is obtained with the experimental values of Nouri et al.

[59].

Figure 4.9 Rms of fluctuation velocities at ReDh = 8900.

A comparison of the fluctuation velocities computed by the RSM and ASM at ReDh = 38700

and θ = 0.4 is shown in Figure 4.10. The tangential component w′rms is computed quite

similarly by the two turbulence models. However, greater anisotropy is computed by the

RSM. As the Reynolds number is increased the fluctuating velocities peak closer to the wall.

In Figure 4.10 the peak values are greater at the inner wall than at the outer wall and this

is also reported by Liu & Lu [49]. Note the the ASM computed the same value for all the

fluctuation velocities at approximately ξ = 0.45.
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Figure 4.10 Rms of fluctuation velocities at ReDh = 38700.

The rms of the fluctuating velocities in wall coordinates close to the inner and outer wall are

given in Figures 4.11a, b, c, d, e, f at ReDh = 38700. The velocities are nondimensionalized

by the local friction velocity uτ , note that the friction velocity at the inner wall is greater

than at the outer wall as presented in terms of the skin friction coefficient in Table 4.4. The

fine mesh, i.e. mesh B, is used for the RSM, ASM and k−ω SST model, while mesh A is used

for k − ε model. As the two-equations models assume isotropic turbulence, the rms values

are computed from the turbulent kinetic as u′rms = v′rms = w′rms =
√

2
3
k. The assumption

of isotropic turbulence for the k − ωSST and the k − ε model is shown by comparing the

axial and radial velocity fluctuations at the inner wall, e.g. see Figure 4.11c and 4.11e. The

two profiles of the velocity fluctuations are identical. In contrast, the ASM and the RSM are

capable of estimating the anisotropy of the turbulence. In addition, experimental data by

Corredor et al. [71] and Japper-Jaafar et al. [39] are included. Firstly, the rms values are

higher near the outer wall compared to the inner wall and is more prominent in the axial

direction. The smaller rms values near the inner wall is due to the small surface area at

the inner wall to support turbulent energy. This transverse curvature effect is reported by

Chung et al. [18]. Secondly, the limitations of the wall functions are visible in all figures for

simulations with the k− ε and mesh A. Thirdly, a tendency in the k− ω SST simulations is

that the peak values are closer to the wall than the computations with the RSM.

In Figure 4.11b the maximum value of the normalized axial velocity fluctuations computed

by the RSM simulation is 2.41, while Japper-Jaafar and Corredor measured 2.86 and 2.46

respectively. The DNS by Boersma & Breugem [14] computed the maximum to 2.7 and is

consistent with the survey of the streamwise velocity fluctuations in wall bounded flows by

Mochizuki & Nieuwstadt [55]. Location of peak values for the experimental data is within the

buffer layer between 10 and 15 wall units. The k−ω SST and the k− ε model underestimate
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(a) Inner wall (b) Outer wall

(c) Inner wall (d) Outer wall

(e) Inner wall (f) Outer wall

Figure 4.11 Fluctuation velocities at ReDh = 38700. Note: rms of the fluctuating velocities

for the two-equation models are estimated from u′rms = v′rms = w′rms =
√

2
3
k.
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the axial velocity fluctuations and no peak is obtained by the k − ε model with Mesh A.

A discrepancy between the experimental data by Corredor et al. [71] and simulations is

noticeable in the range from 20 to 60 wall units where a drop in the streamwise velocity

fluctuations is measured by Corredor et al. [71]. This drop is not consistent with the

experimental data by Japper-Jaafar et al. [39] and Nouri et al. [59] or numerical data

obtained by Boersma & Breugem [15] and Chung et al. [18].

4.4.6 Turbulent kinetic energy

The turbulent kinetic energy computed by the RSM and k− ω SST model for ReDh = 8900

and θ = 0.5 is shown in Figure 4.12. Based on the comparisons of computed fluctuating

velocities and experimental data it is reason to believe that computed turbulent kinetic energy

by the RSM is more accurate than the k−ω SST model. The RSM computed slightly greater

value of k near the outer wall than near the inner wall, this it not the case for the k−ω SST
model. Furthermore, the k − ω SST model computed greater peak values of the turbulent

kinetic energy than the RSM. Chung et al. [18] reported that the turbulent intensities of

the inner wall are smaller than those of the outer wall for this case. The tendency is more

prominent for smaller radius ratios. Another effect reported by Boersma & Breugem [14]

is the Reynolds number dependency. Increased Reynolds number result in higher turbulent

intensity near the inner wall, while the effect is absent at the outer wall.

Figure 4.12 Turbulent kinetic energy at ReDh = 8900.

Next, the turbulent kinetic energy is shown in Figure 4.13 and 4.14 at the two higher Reynolds

number flows and radius ratio θ = 0.4. Here, computed values by the two-equations turbu-

lence models are included. In the near wall region the turbulent kinetic energy is modelled

when wall functions are used and do not approach zero at the wall. As the Reynolds number
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is increased, better agreement between simulations with wall functions and the fine mesh sim-

ulations is obtained. Corredor et al. [71] did not measure the tangential velocity component

Figure 4.13 Turbulent kinetic energy at ReDh = 38700.

and the experimental values in Figure 4.14 are based on velocity fluctuations in the radial

and axial direction. As seen in the previous section the tangential component is larger than

the radial component and smaller than the axial component. Based on this the turbulent

kinetic energy is expected to be higher than the experimental data provided by Corredor

et al. [71]. Significant discrepancies are found at approximately ξ = 0.1 and 0.9 where the

experimental data has a drop in the turbulent kinetic energy and is due to the measurement

of the axial velocity fluctuations. Corredor et al. [71] obtained similar measurements for

ReDh = 38700 discussed in section 4.4.5.

Figure 4.14 Turbulent kinetic energy at ReDh = 56400.
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4.4.7 Reynolds stresses

The Reynolds stress distribution nondimensionalized by the outer wall friction velocity for the

annular section is given in Figure 4.15 at ReDh = 8900. For the k−ω SST model the Reynolds

stress is estimated from the Boussinesq’s approximation in equation 2.15. Comparisons are

made to the DNS by Chung et al. [18]. The distribution of the Reynolds shear stress is

asymmetric. The Reynolds stress is greater close to the outer wall than close to the inner

wall. Regarding the discussion whether the position of maximum streamwise velocity and

zero Reynolds stress coincide, here the RSM simulations give no coincidence of these points.

This is consistent with the DNS by Chung et al. [18] but not with the DNS by Boersma &

Breugem [14]. As expected, the simulations with the k − ω SST model show coincidence of

these points and is due to the eddy viscosity model. However, this study cannot be decisive

for such a fundamental behaviour in turbulent flows.

Figure 4.15 Reynolds stress distribution at ReDh = 8900. Note: the Reynolds stress for the
two-equation model is computed from the Boussinesq approximation, equation 2.15.

The Reynolds stress close to the inner and outer wall in wall coordinates are given in Figure

4.16 and 4.17 respectively. Here, the Reynolds stress is normalized by the local friction

velocity. The k − ω SST model peak closer to the wall compared to the RSM and the DNS

by Chung [18]. Kim et al. [41] performed a DNS for a turbulent fully developed channel flow

and the data is included in Figure 4.17. It is evident that the Reynolds stress distribution in

the outer wall region is similar to the channel flow by Kim et al. [41].
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Figure 4.16 Reynolds stress distribution close to the inner wall at ReDh = 8900. Note: the
Reynolds stress for the two-equation model is computed from the Boussinesq approximation,
equation 2.15.

Figure 4.17 Reynolds stress distribution close to the outer wall at ReDh = 8900. Note: the
Reynolds stress for the two-equation model is computed from the Boussinesq approximation,
equation 2.15.

The distributions of the Reynolds stress at ReDh = 38700 and 56400 are given in Figure 4.18

and 4.19. Also here the Reynolds stress is estimated from the Boussinesq’s approximation in

equation 2.15 for the two-equation turbulence models. The peak value of Reynolds stress is

moved closer to the wall as the Reynolds number is increased. At both Reynolds numbers

the fine mesh simulations are in good agreement. The results from the k − ε model are in

agreement the fine mesh simulations and the experimental data, except close to the wall.
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Figure 4.18 Reynolds stress distribution at ReDh = 38700. Reynolds stress distribution
close to the inner wall at ReDh = 8900. Note: the Reynolds stress for the two-equation
models are computed from the Boussinesq approximation, equation 2.15.

Figure 4.19 Reynolds stress distribution at ReDh = 56400. Note: the Reynolds stress for
the two-equation models are computed from the Boussinesq approximation, equation 2.15.

The Reynolds stress (τRe = −u′v′) and the total shear stress (τTot = −u′v′+ν ∂u
∂y

) close to the

inner and outer wall at ReDh = 38700 are shown in Figure 4.20. Both stresses are normalized

by the local friction velocity. The distribution of the total shear stress is slightly curvilinear

due to the curvature. At the wall the total shear stress is equal to unity, i.e τw = µ∂u
∂y

. Here,

the viscous stresses are dominant in the viscous sublayer. Both Reynolds and viscous stresses

are present in the buffer region, while the Reynolds stresses are dominant in the logarithmic

region. This is consistent with the theory given in section 2.7.
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Figure 4.20 Reynolds stress and total shear stress at ReDh = 38700 computed by the RSM.

4.5 First test case conclusion

Turbulent flow in a concentric annulus at three Reynolds numbers and two radius ratio were

investigated numerically by ANSYS Fluent. Two-equation turbulence models, ASM and

RSM simulations were performed for both standard wall functions and near wall modelling.

The mean streamwise velocity profile is asymmetric and skewed to the inner wall. The mean

axial velocity for the fine mesh (y+ ≈ 1) was found to follow the classical law of the wall.

Both RSM and ASM resemble the fluctuation velocities, as evidenced by comparisons with

experimental data by Nouri et al. [59], Corredor et al. [71] and Japper-Jaafar et al. [39].

It is found that the RSM produce greater anisotropy than the ASM. Nevertheless, the beta

version of the ASM in ANSYS Fluent has potential, due to less computational cost.

A tendency is observed, i.e. as the Reynolds number increased the turbulence models pro-

duced more similar results for the turbulent kinetic energy and the Reynolds stress. Ac-

ceptable concurrence was found between the two-equation turbulence models and the RSM

outside the inner region of the turbulent boundary layer. In addition, the two-dimensional

axisymmetric simulations in this test case are found to be acceptable when comparing to the

DNS by Chung [18] and the experimental data.
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Confined Bluff Body

The second test case is the flow downstream of a bluff body confined by an outer pipe wall.

This test case is relevant to the venturi scrubber due to the modelling of particles. In addition,

similar geometry is present in the venturi scrubber. The confined bluff body (CBB) flow is

a well-known model validation of particle-laden gas flows and the mixing of solid particles.

The CCB represents a simple geometric flow. Nevertheless, it contains many important

features of more complex industrial particle-laden flows. Borèe et al. [15] investigated the

CBB flow experimentally by Phase Doppler Anemometry (PDA) and the experimental data

is used for validation of numerical computations. The CBB flow by Borèe et al. [15] is

numerically investigated by Riber et al. [68] using several LES approaches. Riber et al. [68]

obtained best agreement with the Euler-Lagrangian approach and concluded that the most

critical parameters in terms of accuracy are the grid and the convective schemes. Alletto &

Breuer [6] also performed a LES with more grid points than the study of Riber et al. [68]

which allowed wall-resolved predictions. Furthermore, a high mass loading case including

four-way coupling was considered by Alletto & Breuer [6]. Greifzu et al. [33] performed

RANS simulations and investigated the effect of the dispersion model in ANSYS Fluent.

Simulations were compared the to the experiment by Boreè et al. [15] and solutions obtained

from the CFD program OpenFOAM. In this study the goal is to identify differences between

different 2D axisymmetric and 3D mesh. Validation of simulations is obtained by comparison

to experiment by Boreè et al. [15] and the numerical analysis by Greifzu et al. [33].

5.1 Case description

5.1.1 Geometry

The flow is confined by an outer pipe wall. The bluff body separate the central particle-laden

jet and the annular jet. The geometry and geometric parameters are given in Figure 5.1.

The radius of the central jet Rj is 10 mm and the length of the pipe is 1500 mm to ensure no

51
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disturbance from the outflow. The radius of the outer pipe is Ro = 15Rj = 150mm while the

inner radius of the annular region is Ri = 7.5Rj The blockage ratio is BR = R2
i /R

2
o = 0.25.

The geometric dimensions are expressed in terms of the radius of the central jet, Rj, in Figure

5.1.

Figure 5.1 Geometry of the confined bluff body, adapted from [33].

5.1.2 Flow characteristics

The flow consists of two stagnation points, where S1 is the mean stagnation point of the

central jet and S2 is the stagnation point where the two jets come in contact. A vortex pair,

R1 and R2, separate the central and the annular jet. Downstream of stagnation point S2,

where the central and annular jet is merged together, a wake-like region is observed by Boreè

et al [15].

Following the approach suggested by Elghobashi [28] described in section 2.9, the volume

fraction of particles is moderate α = 2 · 10−6. Hence, the flow regime is categorized as

medium according to Figure 2.3 and a two-way coupling is needed. The injected particles are

assumed to be spherical and the particle diameter is dP = 63 µm. The relaxation time from

equation 2.64 is τP = 27.6 ms and was obtained by Riber et al. [68]. The time characteristic

of the flow field, τF , is estimated by the fluid most energetic eddies and is estimated as:

τF =
2Ro/3

u′maxF

(5.1)

where u′maxF is the maximum fluctuating velcoity in the pipe. Based on estimations by

Riber et al. [68] the time characteristic of the fluid flow is τF ≈ 7 ms. The ratio of the

particle relaxation time and the time characteristic of the fluid flow result in a Stokes number,

St = τP
τF

= 3.9. Flow characteristics are given in Table 5.1. The Reynolds number based on

the hydraulic diameter of the annular duct is ReDh = 20000.
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Table 5.1 Flow characteristics

Continuous phase Dispersed phase
Fluid Air Material Glass beads
Central jet Particle diameter dP = 63 µm
Inlet velocity profile uj,avg = 3.01 m/s Particle density ρP = 2470 kg/m3

Annular jet Particle mass flow rate ṁp = 2.78 · 10−4 kg/s
Inlet velocity profile ua,avg = 5.36 m/s Injection velocity uP,z = 4.08 m/s
Kinematic viscosity ν = 1.5 · 10−5m2/s
Reynolds number ReDh = 20000

5.2 Numerical setup

Investigation of the turbulent particle-laden flow is based on the RANS equations, described

in section 2.3. The dispersed phase is solved with the discrete particle model (DPM) and

the discrete random walk model in Fluent. The discrete particle model (DPM) is described

in section 3.2. As a two-way coupling is considered the momentum exchange is obtained

through the term for body forces. The particle motion of the dispersed phase is solved in

a Lagrangian frame, obtained from equation 2.66 and equation 2.72. The k − ε turbulence

model was chosen as Greifzu [33] stated that this eddy viscosity model were able to predict

the position of the stagnation points in agreement with experimental data. In addition, the

performance of the k − ε model was investigated in detail in the first test case.

A velocity profile obtained from a 1/7 power law with a maximum centre velocity in the

streamwise direction Uj,z = 3, 4m/s is given for the central jet. To match the experimental

setup the average mean streamwise velocity is uj,avg = 3, 01m/s. Similarly, a velocity pro-

file with a average mean streamwise velocity ua,avg = 5.36m/s is given for the annular jet

at the inlet. The particles are injected in the streamwise direction with a uniform velocity

uP,avg = 4, 08m/s. Initial and boundary conditions for other quantities were given in section

3.3.

5.2.1 Mesh

Firstly, a two-dimensional orthogonal structured mesh is used to ensure y+ > 30 in order to

apply standard wall functions. The computational domain is discretized by 125000 quadri-

lateral cells. The mesh is stretched in the negative radial direction to capture the region of

the inner jet. The maximum aspect ratio for the two-dimensional mesh is 6.7.

Secondly, a three dimensional structured mesh is used. The mesh consists of 299520 hexahe-

dral cells. In the centre of the pipe there is a Cartesian mesh and a cylindrical mesh outside

the core. This mesh is known as a butterfly grid. The mesh is shown in Figure 5.2 in the
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streamwise direction. Hernandez-Perez et al. [37] investigated different mesh structures for

two-phase flow and validated simulations against experimental results. The best agreement

with experimental data was obtained with a butterfly grid. Due to the structure of the mesh,

refinement in the near wall region may be applied, while the singularity at the centre of the

pipe is prevented. Here, the mesh is not refined in the wall region and standard wall functions

are applied for simulations with the butterfly grid. As for the evaluation of the mesh quality,

the maximum aspect ratio is 15, the average skewness is 0.07 with a maximum skewness of

0.5. In addition, the minimum orthogonality of the mesh is 0.78.

Figure 5.2 Three-dimensional mesh.

Mesh validation - Laminar pipe flow

To check the quality of the 3D mesh a separate laminar pipe flow simulation is performed.

The classical Poiseuille flow is characterized by steady laminar flow of an incompressible

Newtonian fluid induced by a pressure difference with a pipe length L and radius R <<

L. By a simple force balance on a volume element and applying boundary conditions the

analytical solution of the velocity profile may be obtained:

u(r) = 2Vavg

(
1− r2

R2

)
(5.2)

A simulation with a ReD = 30 and an average velocity Uavg = 1m/s is computed for a pipe

diameter D = 0, 3m. The computed and analytical streamwise velocity is shown in Figure

5.3. Overall the computed profile is matching the analytical profile and the mesh is deemed

acceptable for this laminar flow.
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Figure 5.3 Laminar velocity profile at Re = 30.

5.3 Results and discussion

The flow characteristics, i.e the development of the central and annular jet, the stagnation

points and the vortex pair are shown in the vector plot in Figure 5.4. Here, the vectors are

coloured by the velocity magnitude and the solid lines black lines represent zero streamwise

velocity of the gas phase, uz = 0. In addition, the locations of z/Rj = 8, 16, 24, 32 and 40

are shown. The central jet is stopped rapidly and the main contributors to the decrease are

the high turbulent shear stress and the axial pressure gradient according to Boreè et al. [15].

The central jet is surrounded by a recirculation flow. A annular shear layer is developed at

the edge of the bluff body.

Two stagnation points S1 and S2 develop in the streamwise direction at the centre of the pipe.

The positions of the stagnation points are summarized in Table 5.2. Here, the experimental

data by Boreè et al. [15] and the numerical data by Greifzu et al [33] are included. Greifzu et

al. [33] performed three-dimensional RANS simulations with the standard k−ε model, similar

to the present study, but discretized the computational domain by 2.01 million hexahedral

cells. The two-dimensional simulation predict the position of S1 accurate but fail to accurately

predict the second stagnation point, S2. In contrast, the opposite is true for the three-

dimensional simulation.

Table 5.2 Location of stagnation points

S1 [mm] S2 [mm]
Boreè et al. 121 217
Greifzu et al. 95 235
k − ε 3D 99 229
k − ε 2D 119 249
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Figure 5.4 Vector plot of the confined bluff body flow.

Next, the streamwise gas velocity along the symmetry line is given in Figure 5.5. The velocity

is normalized by the maximum streamwise jet velocity Uj,z. The stagnation points are located

at the intersections with the line uz/Uj,z = 0. As the stagnation points are not accurately

predicted the results of the velocity development downstream suffer and more prominent for

the two-dimensional simulation. Clear similarities between the three-dimensional simulation

and the results of Greifzu et al. [33] are observed. Greifzu et al. [33] predicted a higher

negative axial velocity than the present simulations. The finer mesh by Greifzu et al. [33]

may contribute to these differences.

Figure 5.5 Axial velocity along the symmetryline.
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The development of the velocity profiles in the streamwise direction as a function of the

span-wise coordinate is shown in Figure 5.6. Note that the normalized velocity profiles are

amplified in order to highlight deviations. The streamwise velocity profiles are given at

z/Rj = 0.3, 8, 16, 24, 32 and 40. In accordance with the results in 5.5, the numerical sim-

ulations lag behind the experimental data by Boreè et al. [15] downstream of the second

stagnation point S2. The flow near the symmetry axis the acceleration of the flow is under-

predicted by the simulations. Therefore, the momentum transfer from the outer region to

the central region is underestimated. It is assumed that this wrongful momentum transfer is

due to the steady-state RANS modelling of wake flows and is also reported by Iaccarino et

al. [38]. The inlet conditions are specified in order to obtain good agreement with the exper-

iment at the location z/Rj = 0.3. However, setting appropriate inflow boundary conditions

are challenging, see velocity profile at z/Rj = 0.3. In this study, the simple k − ε and wall

function are considered and accurately inflow conditions are difficult to set. The influence of

the boundary conditions was reported by both Riber et al. [68] and Alletto & Breuer [6] and

considerably work were done to obtain an accurately inflow boundary conditions. Alletto &

Breuer performed two LES for the solely purpose of generate reasonable inflow data.

Figure 5.6 Mean axial velocity of the gas phase.

The streamwise velocity profiles of the dispersed phase at z/Rj = 0.3, 8, 16, 24, 32 and 40

are given in Figure 5.7. Here, a good overall agreement between simulated and experimental

profiles are obtained. Also here, the simulations lag behind the experimental data. In the

present study, a dependency on the total number of tracked particles was found. A greater

number of tracked particles resulted in a more accurate representation of the particle velocity

profile. The simulated dispersion of the particles are slightly smaller than in the experiment

by Boreè et al. [15].



CHAPTER 5. CONFINED BLUFF BODY 58

Figure 5.7 Axial velocity of particles.

The particle trajectories downstream of the bluff body are given in Figure 5.8. The trajec-

tories are 20% of the total number of tracked particles. Here, results of the two-dimensional

axisymmetric model are presented and the trajectories are coloured by the streamwise par-

ticle velocity. It is evident that the trajectories are influenced by the turbulent dispersion

computed from the discrete random walk model. Due to this model particles may be found

close to the centre of the pipe as well as in the region close to the annular flow. In the present

study no particles are trapped in the recirulation regions, while the LES by Alletto & Breuer

[6] indicated a mean rotatory motion of the particles in recirculation region R1, see Figure

5.1.

Figure 5.8 Particle trajectories computed by the axisymmetric model, coloured by the
streamwise particle velocity.
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5.4 Second test case conclusion

In the present study, turbulent particle-laden flow downstream of a confined bluff body was

investigated. Simulations are based on the RANS equations for the continuous phase, while

the discrete particle model (DPM) with two-way coupling in ANSYS Fluent was used for the

dispersed phase. Both three-dimensional and two-dimensional axisymmetric simulations of

the continuous phase are adequately captured, as evidenced by the comparison with the ex-

perimental data by Boreè [15]. However, the two stagnation points are computed somewhat

different compared to the experiment. In addition, the axial velocity development of the the

gas phase in the centre region is underpredicted and it is expected due to insufficient mo-

mentum transfer from the annular flow to the central region. This is one of the shortcomings

of the applied RANS modelling of the flow.

The results of the dispersed phase are in agreement with experimental data. Only small

differences between of the three-dimensional and two-dimensional simulations were observed.

Based on the present study, a two-dimensional axisymmetric model and the RANS approach

with the DPM are capable to model particle-laden gas flows and may be used in the numerical

analysis of the venturi scrubber.



Chapter 6

Venturi Scrubber

Glencore Nikkelverk AS is currently using a venturi scrubber to clean the pollutant gas from

a pilot processing plant. Solid particles of copper is present in the pollutant gas. The venturi

scrubber is an air pollution control device that is designed to remove copper particles in

a pollutant gas from a stationary point source. The permit of emission to open air given

by the Norwegian Environment Agency state that the level of copper concentration in the

cleaned gas cannot be more dense than 5 · 10−6 kg/m3. The fluid dynamics in the installed

scrubber is desired due to a planned scale-up of the current pilot processing plant. Similarly,

the pollutant gas from new full-scale processing plant needs to be cleaned.

This chapter will investigate both the installed and full-scale scrubber. The findings in

previous test cases will be utilized to establish a numerical analysis of the particle-laden gas

flow in the installed scrubber. The results are compared to the measurements by Glencore

Nikkelverk AS for the pilot scrubber. Finally, a scale-up of the installed scrubber is performed

and the results of the full-scale scrubber are presented.

6.1 Process description

The schematic of the gas cleaning system is given in Figure 6.1. The schematic include all

elements in the system from the pollutant source to the stack and discharge to the open

air, e.g. scrubber, entrainment separator, recirculation tank, pump, fan and stack. This

investigation will only consider the fluid dynamics of the particle-laden gas, where scrubbing

liquid is not considered. Furthermore, the entrainment separator downstream of the scrub-

ber is not investigated. Including these limitations, the flow in the scrubber is expected to

be a particle-laden gas. The scrubber performance suffers greatly as these limitations are

introduced and is described in depth in section 6.3.

Another simplification is the particle deposition downstream of the scrubber to the stack.

60
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Firstly, in the entrainment seperator a demister is installed. The liquid droplets containing

copper particles will seperate from the gas. Secondly, in the entrainment separator a portion

of droplets and particles will settle due to gravity. Therefore, the particle collection is en-

hanced in the entrainment separator. In addition, some particles will stick to the pipe wall

and elbows downstream of the scrubber.

Figure 6.1 Scrubber schematic.

6.2 Scrubber design

The venturi scrubber is chosen due to its flexibility, simplicity and the ability to collect fine

as well as coarse particles. It is one of the most used types of particluate scrubbers [62]. In

addition, wet scrubbers have lower capital cost than other cleaning devices and approximately

equal operation and maintenance costs [58]. The current design of the venturi scrubber

is based on in-house experience from design and operation of several scrubber systems at

Glencore Nikkelverk. A three-dimensional representation of the scrubber design is shown in

Figure 6.2a. The pollutant gas enters the scrubber from the upper pipe, while the gas exit

the scrubber from the lower pipe. The venturi scrubber has a converging-diverging geometry.

An internal view of the pilot scrubber is shown in Figure 6.2b, where the axis of symmetry is
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included. The throat is where the cross-sectional area is the smallest and the gas velocities

the greatest. The position of the plug is adjustable along the vertical axis. The annular

clearance between the plug and the wall of the scrubber may be reduced or increased by the

position of the plug and thereby changing the velocity of the gas in the scrubber. This design

provides control over the gas velocities and pressure drop. The flow in the annular clearance

present in the scrubber is similar to the concentric annulus flow investigated in chapter 4.

(a) External view
(b) Internal view

Figure 6.2 Scrubber design.

6.3 Scrubber performance

The overall performance of a venturi scrubber is it ability to remove particles from the pollu-

tant gas, this is called the particle collection efficiency. The pollutants are removed through

impaction, diffusion, interception and/ or absorption of the particles onto droplets of liquid.

This thesis will not include the liquid phase and the corresponding physics as stated in sec-

tion 1.3. However, according to Perry [62] and Miller [54] the predominant particle collection

mechanism is impaction. This mechanism can be explained by considering a particle that

is carried along the gas stream and it tends to follow the streamlines but may impact an

approaching droplet because of its inertia. As this study only consider the particle-laden gas

flow other flow characteristics are desired.
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The overall performance of the pilot scrubber is affected by parameters such as:

• pressure drop

• particle size distribution

• mass loading

• gas flow rate

• temperature

• humidity

• residence time

In addition, the turbulence in the scrubber is crucial for the performance, as Danielson [25]

stated that turbulence enhances particle collection by impaction. Due to turbulence the

scrubbing liquid is atomized and improves the contact time between the gas and the liquid.

Firstly, a key flow parameter is the pressure drop across the venturi. The pressure drop

is caused by a decrease in overall energy due to friction and other mechanical losses. The

pressure drop is measured across the converging-diverging section. Higher gas velocity will

increase the momentum of the particles and the collection efficiency. According to Hesketh

[73] the collection efficiency does not improve when increasing the pressure drop above 11200

Pa for most venturi scrubbers. An increase in gas velocity increases the pressure drop and

energy demand and generate higher operating costs for the scrubber. To minimize the pres-

sure drop the diverging section is designed to recover most of the pressure. The gas velocity

is closely linked to the pressure drop. An increase in the relative velocity between the gas

and the liquid droplets increases the momentum of the particles, enabling smaller particles

to be collected by impaction.

Azzopardi and coworkers [11], [9], [10] provided insight of the mechanisms at work and stated

that five components contribute to the total pressure drop. The components are frictional

pressure drop (I), accelerational pressure drop of the gas (II), accelerational pressure drop of

the droplets (III), acceleration pressure drop of the film (IV ) and gravitional pressure drop

(V ). The frictional pressure drop is due to the shear stress acting on the gas at the wall. The

second component (II) is due to change in the kinetic energy of the gas in the converging and

diverging section. The components are given in Figure 6.3 as a function of the streamwise

distance. Note that there is no plug in this geometry, in contrast to the venturi scrubber at

Glencore Nikkelverk and there is a wetted wall injection.

Secondly, the performance of the scrubber is dependent on the particle size distribution of

the solids particles in the pollutant gas. The solid particles have varies shapes and densities.
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Figure 6.3 Components of venturi scrubber pressure drop, adapted from [5].

It is common to express the particle size as aerodynamic diameter. The aerodynamic diam-

eter of a particle is the diameter of a sphere with the density of water and with the same

settling velocity as the particle of interest. Proposed particle size distribution is the logarith-

mic, Rosin-Rammler, Gaudin-Meloy and Gates-Gaudin-Schumann distribution. A typical

particle size distribution is given in Figure 6.4 where the data is similar to the log-normal

distribution. Both cumulative and relative distribution are plotted with the particle size in

microns (µm). The collection efficiency is a function of the particle diameter and higher

pressure drops are need to collect smaller particles [62].

Other flow characteristics are the effect of gravity and residence time. In previous work [74]

gravitational settling increased with increased residence time and the findings are consistent

with Perry [62]. Increased residence time increases the contact time between the liquid and

solid particles.
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Figure 6.4 Typical particle diameter distribution, adapted from Perry [62].

6.4 Measurements by Glencore Nikkelverk

Glencore Nikkelverk AS has provided measurements of the inlet and outlet conditions of the

pilot scrubber. The measurements were obtained by only considering the particle-laden gas

flow and no usage of water. The measurements were obtained during steady state operation.

The position of the plug was constant for all measurements. The measurements include

volumetric flow rate, pressure drop over the venturi and concentration of the copper particles.

The measurements by Glencore Nikkelverk are presented in section 6.8.3.

6.5 Future full-scale plant

The current processing plant, which is the source of the pollutant gas, is a pilot project where

a new copper electrolysis process is tested. The pilot project has proven to be both efficient

and profitable. Therefore, a new processing plant is planned to be built in 2022. The new

processing plant is based on a scale-up of the pilot processing plant. In the full-scale plant

the particle concentration is expected to be equal to the pilot plant. The volumetric flow

rate of the pollutant gas is expected to increase from 1000 m3/h for the pilot plant to 70000

m3/h for the full-scale plant. The dimensions of the full-scale scrubber are approximately

scaled up by a factor of ten. Results of this scrubber is presented in section 6.8.5.
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6.6 Findings from test cases

The numerical analysis of the scrubber is based on the two test cases, i.e turbulent flow in

concentric annulus and the flow downstream of a confined bluff body. The relevance of the

test cases is shown in Figure 6.5 where the locations of the annulus and the geometry similar

to the confined bluff body are shown. These classical test cases have been performed in order

to validate the CFD modelling and enhance the reliability of the numerical analysis of the

venturi scrubber.

Firstly, turbulence modelling where investigated in the first test case. For high Reynolds

number flows the k − ε model is capable to resemble the turbulent flow in a concentric an-

nulus. When wall functions are considered the near-wall region is modelled and introduce

limitations to the solution as described theoretically in section 2.8.1 and shown by the re-

sults of the concentric annulus in section 4.4. Considering that the details of the flow in the

scrubber is not know, a first approximation with the k − ε model is beneficial in terms of

computational resources.

Secondly, two-dimensional axisymmetric and three-dimensional simulations have been per-

formed. The two-dimensional axisymmetric simulations in both test cases proved to be

sufficient. Thirdly, the DPM model in ANSYS Fluent is able to accurately predict particle-

laden gas flows as shown in the confined bluff body case. Furthermore, the appropriate

coupling between the continuous and dispersed phase can be determined by the approach by

Elghobashi [28]. The approach by Elghobashi [28] was investigated for particle-laden flows

in previous work [74].

Figure 6.5 Relevance of test cases for the venturi scrubber.
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6.7 Case description

6.7.1 Geometry

The geometry of the scrubber was presented in Figure 6.2, while the dimensions are given in

Appendix B. The height of the scrubber is 0.841 m and the inner diameter of the inlet and

outlet pipe is 0.162 m. The concentric annulus in the scrubber is defined by the radius ratio

θ = R2/R1 = 0.68 and the gap between the scrubber wall and the plug is R2−R1 = 23 mm.

Here, a two-dimensional axisymmetric model is used and is described in section 6.7.4

6.7.2 Flow characteristics

The particle-laden gas is accelerated in the converging section of the scrubber. A stagnation

point is located on the tip of the plug. The maximum velocity is at the throat in the con-

centric annulus where the cross-sectional area is the smallest. The flow is turbulent as the

Reynolds number ReDh = 45000 − 80000 where the hydraulic diameter is Dh = 2(R2 − R1)

evaluated in the annulus section. The range of Reynolds number is due to the different uni-

form velocity profiles given at the inlet. Various uniform inlet velocity profiles are given to

match the volumetric flow rates for the installed venturi scrubber.

Following the approach suggested by Elghobashi [28] described in section 2.9, the volume

fraction is approximately α = 8 · 10−7 based on measurements by Glencore Nikkelverk.

Hence, the flow regime is categorized as dilute according to Figure 2.3 and a one-way cou-

pling is sufficient. Thus, the particles have negligible effect on the continuous phase. The

injected particles are assumed to be spherical and a Rosin-Rammler diameter distribution

was used. The scrubber is designed to capture particles with diameter DP ≥ 1µm. There-

fore, a distribution with a minimum diameter of 1µm and a maximum diameter of 24µm is

injected. The diameter distribution is shown in the histogram in Figure 6.6.

The relaxation time from equation 2.64 is τP = 0.03 − 16ms based on the diameter dis-

tribution. The characteristic time of the fluid flow is estimated based on the proposal by

Riber et al. [68] where τF = Dh/3
u′maxF

evaluated in the annulus section. The maximum velocity

fluctuation is estimated from

u′maxF =

√
2

3
kmax (6.1)

where kmax is the maximum turbulent kinetic energy. The maximum velocity fluctuation

is 5.2 m/s fot the installed scrubber. Finally, the characteristic time of the fluid flow is

τF = 2.9ms, which result in Stokes numbers in the range St = 0.01− 5.5. A summary of the

flow characteristics are shown in Table 6.1.
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Figure 6.6 Particle diameter distribution.

Table 6.1 Flow characteristics

Continuous phase Dispersed phase
Fluid Air Material Copper
Kinematic viscosity ν = 1.5 · 10−5m2/s Diameter dP = 1-24 µm
Uniform inlet profile Uin = 1.0-2.2 m/s Density ρP = 8800 kg/m3

Reynolds number ReDh = 45000− 80000 Mass flow rate ṁp = 2.77 · 10−7 kg/s

6.7.3 Numerical setup

Investigation of the turbulent particle-laden flow is based on the RANS equations, described

in section 2.3. The dispersed phase is solved with the discrete particle model (DPM) in

Fluent. One-way coupling is considered and the momentum exchange is obtained through

the term for body forces. First a steady state solution of the continuous phase is obtained.

In the next step the steady state solution of the continuous phase is fixed and the particles

are injected. The particle motion of the dispersed phase is solved in a Lagrangian frame,

obtained from equation 2.66 and equation 2.72. The standard k − ε turbulence model was

chosen as discussed in section 6.6. Initial and boundary conditions were set according to

section 3.3.

6.7.4 Mesh

A two-dimensional axisymmetric mesh was constructed using ANSYS Meshing. The mesh is

shown in Figure 6.7. The mesh is quadrilateral dominant and a proximity size function is used

to specify the minimum number of cells in the annulus section where the cross-sectional area

is the smallest. The mesh in this region is based on the coarse mesh in the first test case, i.e.

the concentric annulus. Furthermore, the mesh is constructed to ensure the recommendation
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of y+ > 30 for standard wall functions [3]. However, a two-dimensional aixsymmetric model

is considered and implies that there are no circumferential gradients in the flow. The length

of the outlet pipe is extended to minimize the effects of the outlet boundary conditions. As

a axisymmetric model is considered a large recirculation zone is present in the outlet pipe.

The total number of cells is 19348 and the maximum skewness is 0.48, while the maximum

aspect ratio is 2 and the minimum orthogonality is 0.79.

Figure 6.7 Two-dimensional axisymmetric mesh for the installed scrubber.
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6.8 Results and discussion

6.8.1 Mesh convergence

A grid refinement was performed for a fixed volumetric flow rate Q = 0.2631m3/s and the

pressure drop ∆P was monitored. The interpolated experimental pressure drop for the same

flow rate is equal to 244.5Pa. A summary of the grid refinement is shown in Table 6.2,

where Ncells is the total number of cells. As the mesh is refined the computed pressure drop

approach the experimental value. The convergence study is similar to the one conducted for

the concentric annulus in section 4.4.3 and is based on the approach suggested by Roache

[69]. Three different grids were considered: fine (1), medium (2) and coarse (3). For all mesh

the requirement y+ > 30 is fulfilled. The mesh is unstructured and som modifications in

the mesh convergence study are needed. The grid refinement ratio rg is estimated with the

effective ratio reff defined as

reff = (N1/N2)1/D (6.2)

where D is the dimensionality of the problem. N1 and N2 is the number of elements for

the fine and coarse mesh respectively. The order of grid convergence is pgrid = 1.3. At the

medium refinement level the grid convergence index is GCI2,3 = 2.3%, while the index for

the finest refinement level is GCI2,3 = 0.6%. Finally, the asymptotic range of convergence is
GCI2,3

r
pgrid
eff GCI1,2

= 0.99. However, Roache [69] stated that the convergence study for unstructured

grids may significantly underestimate or overestimate the accuracy, depending on the refine-

ment algorithm. The medium mesh is used in later computations due to computations with

different volumetric flow rates.

Table 6.2 Grid refinement

Mesh Ncells ∆P [Pa]
Coarse 4841 262.6
Medium 19348 248.9
Fine 43519 245.5
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6.8.2 Streamlines

To give an overview of the flow in the scrubber streamlines of the gas phase are plotted

in Figure 6.8. The streamlines are computed at volumetric flow rate Q = 0.2631 m3/s,

corresponding to an uniform inlet velocity of 1.75 m/s. In addition, the streamlines are

coloured by the velocity magnitude. As expected several recirculation zones are present, i.e.

in the uppermost region of the scrubber, downstream of the plug and in the outlet pipe. The

particle-laden gas is accelerated in the converging section and decelerated downstream of the

throat. The velocity magnitude and the turbulent kinetic energy for the installed scrubber

are given in Appendix D.

Figure 6.8 Streamlines for the installed venturi scrubber, coloured by the gas phase velocity
magnitude. Computed at volumetric flow rate Q = 0.2631 m3/s.

6.8.3 Pressure drop

The static pressure for the venturi scrubber is shown in Figure 6.9 for the volumetric flow rate

Q = 0.2631 m3/s. The pressure drop is determined by probe 1 and 2. The positions of the

probes are based on the physical positions for the installed scrubber at Glencore Nikkelverk.

The locations of the measured pressure drop for the installed scrubber are shown in Ap-
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pendix E. The pressure is lowest at the throat where the gas velocities are greatest. A high

pressure region is found near the top of the plug where there is a stagnation point. In the

diverging section there is pressure recovery, while the velocity decreases. The pressure in the

venturi scrubber at Glencore Nikkelverk is similar to the behaviour reported by Azzopardi

and coworkers [11], [9], [10], see Figure 6.3. At the outlet the applied zero gauge pressure

boundary condition is fulfilled.

Figure 6.9 Static pressure for Q = 0.2631 m3/s.

An initial objective of the project was to compute the pressure drop across the scrubber

and compare to experimental data. The pressure drop is presented in Figure 6.10, both

measurements by Glencore Nikkelverk and results of the present model are included. The

standard deviations of the measurements are included, in addition to a 95% confidence inter-

val. The computed pressure drop from the numerical model show good agreement with the

experimental data. The computed pressure drops are within the standard deviations of the

measurements by Glencore Nikkelverk. The largest deviation from the experimental value

is found at the lowest volumetric flow rate. The frictional pressure drop is due to the shear

stress acting on the continuous phase at the wall and is proportional to the surface roughness

and the square of the gas velocity. Therefore, the loss occurs primarily in the vicinity of the
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throat. As the volumetric flow rate increases the shear stress increases and result in a greater

pressure drop.

Figure 6.10 Measured and simulated pressure drop for the installed venturi scrubber at
Glencore Nikkelverk

As shown in the literature survey, a number of workers have produced empirical pressure

drop correlations and most designers use these correlations when developing venturi scrubber

systems. In addition, analysis based on the Bernoulli’s principle is often applied by designers.

However, Allen et al. [5] reported that the empirical pressure drop correlations are frequently

expressed as

∆P =
1

2
ψρgv

2
gt (6.3)

where vgt is the throat velocity, i.e. the ratio of volumetric flow rate to cross-sectional area at

the throat. Note that equation 6.3 represents the dynamic pressure at the throat multiplied

by the pressure drop factor ψ. The pressure drop factor is determined by the parameters

such as geometry, liquid to gas ratio and other operating conditions. In the design process

of venturi scrubbers it is difficult to set an accurately pressure drop factor. Here, the factor

is considered to be a constant. The pressure drop estimations from equation 6.3 with ψ = 1

and ψ = 0.5 are shown in Figure 6.11. The pressure drop is overestimated for ψ = 1, while

acceptable estimations are obtained with ψ = 0.5. It is evident that a priori prediction of

pressure drop is difficult and strongly dependent on the an accurate pressure drop factor, ψ.
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Figure 6.11 Comparisons of empirical correlations, simulations and experimental data for
the pressure drop.

6.8.4 Particle path

Based on the flow characteristic of the installed scrubber described in section 6.7.2 the es-

timated Stokes number is within St = 0.01 − 5.5 depending on the particle diameter. The

copper particle paths downstream of the plug with diameter DP = 1 µm are shown in Figure

6.12. In addition, streamlines of the gas phase are included as black solid line. It is observed

that the particle response time is less than the characteristic time of the flow field, i.e. the

particles have time to respond to velocity changes and follow the fluid flow. None of the

particles are captured in the recirculation zones. The smaller particles are more difficult to

separate from the gas and it is consistent with the literature, e.g. see [62] and [60]. In Figure

Figure 6.12 Particle path for Dp = 1 µm, black lines are gas streamlines.
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6.13 the particle path for the larger particles are shown. Here, the particles diameters are

DP = 16.3µm (yellow) and DP = 24µm (red), in concurrence with the particle diameter

distribution shown in Figure 6.4. The Stokes number is higher for these particles and the

inertia is greater. The particles do not follow the fluid flow in the same manner as the smaller

particles. Some particles are trapped inside the recirculation zones. It is reason to expect

accumulation in the bottom of the scrubber due to the effect of gravity.

Figure 6.13 Particle path for Dp = 10− 24 µm, black lines are gas streamlines.

6.8.5 Full-scale scrubber

As stated earlier, Glencore Nikkelverk plan to expand the processing plant, hence a larger

venturi scrubber is needed. The dimensions of the new scrubber is scaled up by a factor of

ten. At the throat the gap between plug and scrubber wall is 0.23m. The volumetric flow rate

for the full-scale venturi scrubber of the gas phase is 19.44 m3/s. The particle concentration

is identical to the previous case, hence one-way coupling is considered. The Reynolds number

at the throat based on the hydraulic diameter is ReDh = 660000. The setup in ANSYS Fluent

is similar as the previous investigation of the installed venturi scrubber, see section 6.7. The

mesh is also generated in the same manner and the total number of cells is 136970. Here, the

estimated Stokes number is within St = 0.0006− 0.3, where the approach in section 6.7.2 is

used. Tropea et al. [82] stated that seed particles in the measurements techniques LDA and

PIV the condition St < 0.1 returned an acceptable flow tracing accuracy with errors below

1%.

The copper particle paths in the full-scale scrubber for the complete diameter distribution

are shown in Figure 6.14. The particles are represented by a constant diameter. However, the

particles are coloured according to the different particle diameters. In this case the copper
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particles follow the fluid flow in the same manner as in the installed scrubber for the smallest

particles, see Figure 6.12. This particle behaviour is expected as the Stokes number is small.

It is found that the dimensions of the scrubber affect the particle paths. Here, new consid-

erations may be considered to change the particle path. In example, the position of the plug

may be used to change the cross-sectional area at the throat and hence the throat velocity.

In this manner, higher Stokes number may be obtained. However, the pressure drop will in-

crease according to the analysis of the installed scrubber. The velocity magnitude, the static

pressure and the turbulent kinetic energy for the full-scale scrubber are given in Appendix

F.

Figure 6.14 Particle path in full-scale scrubber, black lines are gas streamlines.
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Conclusion

A numerical study of the installed venturi scrubber at Glencore Nikkelverk was conducted.

Firstly, two test cases were performed to validate turbulence modelling, mesh and the mod-

elling of particle-laden gas flows. In the first test case, i.e. flow in a concentric annulus, it was

found that the standard k−ε model resembles the turbulent flow as evidenced by comparisons

to RSM simulations and experimental data in the literature. Furthermore, in the second test

case, i.e. confined bluff body flow, the results of a two-dimensional axisymmetric simulation

were sufficient when compared to three-dimensional simulation and experimental data. In

the confined bluff body flow the limitations of the k− ε model were revealed. The computed

position of the second stagnation point was 15% downstream of the experimental position.

However, better results were obtained for the dispersed phase in the second test case. The

discrete particle model (DPM) in ANSYS Fluent is deemed able to simulate particle-laden

gas flow, since good agreement between experimental data and simulations were obtained.

Secondly, two-dimensional axisymmetric simulations for the installed venturi scrubber was

conducted. The numerical model was based on the findings of the two test cases. The

computed pressure drop across the venturi scrubber was within the standard deviations of

measurements obtained by Glencore Nikkelverk. In the present study, the CFD simulation

predicted the pressure drop more accurately than empirical correlations and without the

need of carefully choosing the correct factors and constants within the correlations. In the

installed scrubber it is found that the largest particles may separate from the gas phase

due to the high inertia and Stokes number. Finally, in the analysis of the planned full-scale

venturi, it was found that all copper particles follow the gas phase to a large extent, caused

by lower Stokes numbers. As a final point, the numerical model developed in this study is a

good starting point for a future multiphase model in order to accurately predict the particle

collection efficiency.
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Suggestions for Further Work

Based on the present study of turbulent flow in a concentric annulus it is evident that the

RSM yields a more accurate representation of the flow than the two-equation turbulence

models. The k − ε model was considered for the venturi scrubber as the details of the flow

are not known from experiments. Therefore, more advanced measurements, e.g. PIV mea-

surements, may contribute to a better overall understanding of the fluid dynamics in the

venturi scrubber and enhance validation of the numerical simulations.

The proposed two-dimensional axisymmetric model imposes limitations on particle disper-

sion, turbulence modelling and swirling effects. Therefore, three-dimensional computations

may be considered. In addition, a more comprehensive mesh study for the venturi scrubber

is desired due to the findings in the first test case. The findings of this test case also indicated

that resolving the turbulent boundary layer yields more accurate results.

Considerations outside the scope of this thesis are needed to accurately predict the collection

efficiency. Firstly, based on the conducted literature study the most important collection

mechanism is impaction. Therefore, the liquid phase should be included in the numerical

model. The newly implemented VOF to DPM CFD spray model in ANSYS Fluent may be

considered, in addition to the interaction between the droplets and particles. By introducing

a liquid phase in the numerical model, parameters such as the liquid-to-gas ratio, pressure

drop components and droplet size may be studied. Another suggestion is to investigate

different operating conditions, e.g. plug settings. The position of the plug determines the

cross-sectional area at the throat, thus the throat velocity and the pressure drop are affected.
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Appendix A

The drag coefficient for spherical

particles

The drag coefficient equations used in equation 2.69 are:

CD = 24
ReP

for ReP < 0.1

CD = 3.69 + 22.73
ReP

+ 0.0903
Re2P

for 0.1 < ReP < 1.0

CD = 1.222 + 29.1667
ReP

− 3.8889
Re2P

for 1.0 < ReP < 10.0

CD = 0.6167 + 46.5
ReP
− 116.67

Re2P
for 10.0 < ReP < 100.0

CD = 0.3644 + 98.33
ReP
− 2778

Re2P
for 100.0 < ReP < 1000.0

CD = 0.357 + 148.62
ReP
− 4.75·104

Re2P
for 1000.0 < ReP < 5000.0
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Appendix B

Installed venturi scrubber geometry

See next page.

Note:

1. All dimensions in mm.

2. The bushing for the plug axle is not considered in the geometry in this study.

3. The nozzle is not present in the geometry in the CFD simulations.

II



APPENDIX B. INSTALLED VENTURI SCRUBBER GEOMETRY III

Installed venturi scrubber geometry



Appendix C

Force balance for concentric annulus

Figure C.1 Annulus force balance.

IV



Appendix D

Installed scrubber results

Figure D.1 Velocity magnitude for gas phase at Q = 0.2631 m3/s.

V



APPENDIX D. INSTALLED SCRUBBER RESULTS VI

Figure D.2 Turbulent kinetic energy at Q = 0.2631 m3/s.



Appendix E

Pressure measurement, Glencore

Nikkelverk

Figure E.1 Positions of pressure measurement.

VII



Appendix F

Full-scale venturi scrubber results

Figure F.1 Static pressure at Q = 19.44 m3/s.
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APPENDIX F. FULL-SCALE VENTURI SCRUBBER RESULTS IX

Figure F.2 Velocity magnitude of gas phase at Q = 19.44 m3/s.



APPENDIX F. FULL-SCALE VENTURI SCRUBBER RESULTS X

Figure F.3 Turbulent kinetic energy at Q = 19.44 m3/s.
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