
Resource-Efficient Implementation of BLUE MIDNIGHT WISH-256 Hash
Function on Xilinx FPGA Platform

Mohamed El-Hadedy∗, Martin Margala †, Danilo Gligoroski ∗ and Svein J. Knapskog ∗
∗ Norwegian University of Science and Technology (NTNU), Trondheim, Norway

† University of Massachusetts(UMASS), Lowell,MA,USA
∗ Email: mohamed.elhadedy@q2s.ntnu.no, danilog@item.ntnu.no, Svein J. Knapskog@q2s.ntnu.no

† Email: Martin Margala@uml.edu

Abstract—This paper presents the design and analysis
of an area efficient Blue Midnight Wish compression
function with digest size of 256 bits (BMW-256) on FPGA
platforms. The proposed architecture achieves significant
improvements in system throughput with reduced area. We
demonstrate the performance of the proposed BMW hash
function core using VIRTEX 5 FPGA implementation. The
new BMW hash function design allows for 16X speed up
in performance while consuming significantly lower area
than previously reported (i.e. just 445 slices).

Keywords-Hash Function Standard; SHA-2; Blue Mid-
night Wish; BMW-256;

I. INTRODUCTION

In cryptography and information security, hash func-
tions are considered the ”Swiss army knife”- they are
used in countless protocols and algorithms. Recently,
there have been two SHA algorithms introduced. SHA-
1, and SHA-2, and although they have some similari-
ties, they have also significant differences [1,2]. SHA-
1 is the most used member of the SHA hash family,
employed in hundreds of different applications and
protocols. However, in 2005, we witnessed a signif-
icant theoretical breakthrough in breaking the cur-
rent cryptographic standard SHA-1[1]. the discovered
mathematical weaknesses which might exist indicates
the urgent need for using stronger hash functions [2].
Already, there exist another family of standardized
hash function called SHA-2 ready to replace SHA-1.

The SHA-2 family is a family of four algorithms
that differs from each other by different digest size,
different initial values and different word size. The
digest sizes are: 224, 256, 384 and 512 bits. Although no
attacks have yet been reported on the SHA-2 variants,
their operational performance is less than desirable,
and the National Institute of Standards and Technology
(NIST) have felt the need for and made efforts to
develop an improved new family of hash functions
[2, 3]. At the end of 2007, NIST decided to invite
cryptographic algorithms designers and developers to
participate in an open competition running between
2008 and 2012 for choosing the superior candidate

for the next cryptographic hash standard SHA-3. This
work is now well underway, as the competition is
about to enter into its third phase, in which four or
five of the strongest candidates will be singled out
for the final testing until a winner may be declared
in 2012. The Blue Midnight Wish (BMW) hash func-
tion is one of the candidates promoted to the second
round of the SHA-3 competition and implemented in
software,it is one of the fastest proposed new designs
[4]. In this paper, the proposed hardware design of
BMW is simple, area efficient and provides significant
throughput improvements over previous works. The
proposed BMW hash function core -256 is evaluated in
FPGA using VIRTEX II XCV300-6PQ240 Xilinx device
[5,6].

The rest of the paper is organized as follows. In
Section 2, we describe briefly the compression function
of of the second round version of the BMW-256 algo-
rithm. of the second round version of the BMW-256
algorithm. In Section 4,BMW Hashing operations. In
section 5, the synthesis results of the FPGA implemen-
tation are given with comparisons with other related
works. Finally, in section 6, conclusions are presented,
and observations and future work are discussed.

II. THE COMPRESSION FUNCTION OF BLUE
MIDNIGHT WISH – 256

The BMW-256 compression function is shown in
Fig.1. We refer to the variant that creates the 256 bit
message digest as BMW-256. The basic data block used
is called a word which is 32 bits long. BMW has four
different operations in the hash computation stage: bit-
wise logical word XOR operation, word addition and
subtraction, shift operations (left or right), and rotate
left operation. BMW uses a double pipe design to
increase the resistance against generic multi-collision
attacks and length extension attacks [7,8]. In the double
pipe design, the sizes of the inputs to the compression
function are twice the message digest size. The inputs
to the compression function are the message blocks
M(i) of size 512 bits, along with the initialization vector



Figure 1: Graphical representation of the compres-
sion function in Blue Midnight Wish

(previous output of the BMW compression) H(i−1) of
512 bits size of the current double pipe H(i)

The compression function [5,6] uses 2 main parts
as shown in Fig.1. The first one uses three separate
functions f0, f1, f2 to generate H(i) = (H(i)

0 , H(i)
1 ,...,

H(i)
15 ). Inputs for the function F0 are two arguments: The

first argument consists of sixteen 32-bit words, which
are working as initial values H(i−1)

0 , H(i−1)
1 ,.., H(i−1)

15
The second argument consists of sixteen 32-bit words,
which represent the input message block: M(i)

0 , M(i)
1

,..., M(i)
15

The function F0(M(i), H(i−1)) computes M(i) ⊕
H(i−1) and produces Q(i)

a as the first part of the ex-
tended (quadrupled) pipe, hence Q(i)

a = (Q(i)
0 , Q(i)

1 ,...,
Q(i)

15 ). The inputs for the function F1 are also three
arguments, Message block M(i), AddElement and the
value of Q(i)

a . The function F1(M(i), Add Element, Q(i)
a

) computes the second part of the extended (quadru-
pled) pipe Q(i)

b , hence Q(i)
b = (Q(i)

16 , Q(i)
17 , ..., Q(i)

31 ).
The third function F2 takes three arguments; Mes-

sage block M(i) and the values of both Q(i)
a and Q(i)

b .

The function F2(M(i), Q(i)
a , Q(i)

b ) computes the new
double pipe value H(i), hence H(i) = (H(i)

0 , H(i)
1 ,...,

H(i)
15 ). The second part contains the same functions

Figure 2: Graphical representation of the compres-
sion function in Blue Midnight Wish

but instead of initial values H(i−1)
0 , H(i−1)

1 ,..., H(i−1)
15 ,

it will use Constant f inal
j = (Constant f inal

0 , Constant f inal
1

,... , Constant f inal
15 ) values and the input message block

will be the new double pipe H(i) = (H(i)
0 , H(i)

1 ,..., H(i)
15

). The reason to use the final Constants is to remove
one degree of freedom to the attackers who try to find
pseudo collisions and pseudo-pre-images.

III. BLUE MIDNIGHT WISH256 CORE
ARCHITECTURE

Fig.2 shows the complete architecture of the entire
BMW core process, which includes six main hardware
operative parts, Memory units, Parallel shifter/Rotator,
ALU (Arithmetic logic unit), Temporary Register, Out-
put stage and Control Unit. Their operations are as
follows:

Parallel Shifter/Rotator: It contains a 5 x 32 Mux (Mul-
tiplex) matrix each one is Mux 2x1 with big Encoder (5
X 11). This component is responsible for the shift and
rotation operations of the 32 bit word. It receives 32 bit
parallel data from the Memory Block and transmits 32
bit parallel data to the ALU. That happens decided
by the value of shifter control word. Because we have
46 operations in BMW hash Core, the width of shifter
control word is 6 control bits as shown in Fig.3.

ALU component: The ALU component offers four
different operations in the hash computation stage:
bit-wise logical word XOR operation, word addi-
tion and subtraction (modulo 232). The ALU com-
ponent receives 32 bit data words from the parallel
shifter/rotator and the Temporary Register and trans-



Figure 3: Parallel Shifter/Rotator Block

Figure 4: BMW-256 Controller

mit the output to the Temporary Register to work as a
parallel accumulator.

Temporary Register: It contains 32 Mux 2x1 and a
shift register. The Temporary Register works as an
accumulator. It receives 32 bit words from The Memory
unit and The ALU and transmits data 32 bit words to
The ALU and the output stage.

Memory Block: To implement the BMW-256 Core
Memory block, we used an FPGA block RAM of size
256 x 32 bits. As we mentioned in section 3.1, The
Memory Block contains ROM to store the BMW-256
constants Kj, J=0,1,..., 15 , H(i−1) and the Constant f inal

j
. In addition, the Memory Block contains RAM to store
the BMW-256 input block Message (M(i)

0 , M(i)
1 ,..., M(i)

15 ),
the intermediate values of the BMW hash function,
and the final double pipe values H(i) = (H(i)

0 , H(i)
1 ,

H(i)
2 ,...,H(i)

15 ).
Controller: It has been designed as a Moore FSM as

shown in Fig. 4 and Fig. 5. it contains six operative

Figure 5: Control Bus

parts, all of them working together to produce Memory
Address words to control the Memory Block traffic
with the other BMW-256 sub-systems . The controller
produces the control word to control the data flow be-
tween the BMW-256 Core sub-systems. The controller
subsystems are working as the following:

The Input Message Control, once the start signal
becomes high, starts to organize the sixteen input mes-
sages inside RAM locations. Subsequently, the Round
Enable signal becomes high, that will make the BMW
Round Control starts to execute the f0, f1, and f2 ac-
cording to the BMW-256 Algorithm operations which
was described in section 2. Finally, in the final message
round when the Final Round signal becomes high, the
final Process Control Block starts to transfer Const f inal

in messages locations and starts the Round Control
Block to work to produce the Final Hash Output.
Both Control Selector and Address Bus Selector are
multiplexers controlled by the combinational circuit
block called Bus Selector Control.

IV. BLUE MIDNIGHT WISH256 HASHING OPERATIONS

In this section we describe how the Computation
Hash Core works to execute the internal functions in
BMW-256. For example, if we would XOR two pieces
of data in locations number 4 and 5 in the memory
unit, and write the result in location number 7. First,
the Controller gives order to the Memory Block to
choose location number 4. Then the Controller asks the
Temporary Register to pick up the data from data bus
and subsequently the same operation happens with
location number 5. But instead of using the Temporary
Register, the Parallel Shifter/Rotator picks up the data.
Now, the Controller asks the Operation Encoder unit to
give order to the ALU unit to add these data and save
them in the Temporary Register. Finally, the Controller
gives order to the Memory Block to pick up the data
and place them in location number 7. Because we used
the Parallel shift/rotate, and the parallel Arithmetic
Logic Unit which has an output size of 32 bit, we suc-
ceeded to reduce number of cycles for each operation
in Table I. Using the BMW-256 operations in Table I
helps to execute the function F0 in 413 cycles, function
F1 in 476 cycles and finally function F3 in 171 cycles.

V. PERFORMANCE EVALUATION

The BMW 256 Core has been designed in VHDL
[9] and it was synthesized (synthesis, placement and



Table I: BLUE MIDNIGHT WISH-256 Hashing Core
Operations (execution times)

Operation Proposed BMW-256[11]
Load 1 1
XOR 3 32
ADD 1 32
SUB 1 32
S0 4 127
S1 4 128
S2 4 129
S3 4 132
S4 4 34
S5 2 34
R1 1 3
R2 1 7
R3 1 13
R4 1 16
R5 1 19
R6 1 23
R7 1 27

Table II: BLUE MIDNIGHT WISH-256 Performance
results

Algorithm
Name

FPGA Type Area(Slice) Throughput

Proposed Virtex XCV300 1314 6 Mbps
Virtex5
XC5VLX110

445 21 Mbps

BMW-256 [11] Virtex XCV300 2147 1.07 Mbps
Virtex5
XC5VLX110

1980 5Mbps

SHA-256[12] Virtex XCV200 4768 291Mbps
SHA-256 [13] VirtexE XCV600 5828 ———-

routing) using ISE foundation 10.1 [10] in VIRTEX
XCV300-6PQ240 and Virtex5 XC5VLX110 Xilinx de-
vices. In Table II, we compare the area size for different
designs for SHA-2 [12,13] in VIRTEX and VIRTEX 5
Xilinx devices. By using the proposed BMW-256 Core,
we have achieved around 38% lower area compared
to previous designs for BMW-256 while increasing
throughput around 6 times compared to the previous
values measured, on the same FPGA Virtex XCV300
device and around 77 % lower area compared to the
previous BMW-256 while increasing the throughput 16
times compared to the previous design on the same
FPGA Virtex5 XC5VLX110.

VI. CONCLUSION AND FUTURE WORK

In This paper we presented an FPGA implementa-
tion of a new BMW-256 hashing core structure with 256
bits of message digest using a parallel shifter/rotator
and a parallel 32 bit word arithmetic logic unit (ALU).
The BMW-256 core receives 16 messages words of 32

bits and processes them. The goal was to use as small
area as possible in order to minimize the hardware
cost. We have achieved around 72% lower area com-
pared to SHA-256 on the same FPGA device. For the
future work, it will be a challenge to improve this
design, to improve the throughput while keeping the
optimized the area usage and implement it on ASIC.

REFERENCES

[1] X. Wang, A. C. Yao, and F. Yao. ”Cryptanalysis
on SHA-1 hash function”. In proceeding of The
Cryptographic hash workshop. National Institute
of Standards and Technology, November 2005.

[2] NIST (2006). ”NIST Comments on Cryptanalytic At-
tacks on SHA-1”.

[3] William E. Burr, ”Cryptographic Hash Standards:
Where Do We Go from Here?”, IEEE Security and
Privacy, Vol. 4, No. 2, pp. 88-91, Mar./Apr. 2006,
doi:10.1109/MSP.2006.37

[4] eBACS (2010). ”ECRYPT Benchmarking of Crypto-
graphic Systems”.

[5] D. Gligoroski, V. Klima, S. J. Knapskog, M. El-
Hadedy, J.Amundsen ,”Blue Midnight Wish”, In pro-
ceeding of The First SHA-3 Candidate Conference,
February 2009, Belgium- Leuven

[6] D. Gligoroski, V. Klima, ”A Document describing all
modications made on the Blue Midnight Wish crypto-
graphic hash function before entering the Second Round
of SHA-3 hash competition”,

[7] Joux, A., ”Multicollisions in iterated hash functions.
Application to cascaded constructions”.In Proceedings
of CRYPTO 2004. LNCS, vol. 3152, pp. 430440,
2004.

[8] Lucks, S., A failure-friendly design principle for hash
functions, In proceeding of ASIACRYPT, 2005.

[9] ”Model Sim PE/PLUS User’s Manual, Model technol-
ogy, 2008

[10] Xilinx, ”Device Package User Guide”, 2010
[11] M. El Hadedy, D. Gligoroski, S. J. Knapskog,

”Low Area Implementation of the Hash Function ”Blue
Midnight Wish - 256” for FPGA platforms”. In Pro-
ceedings of The International Conference on Intelli-
gent Networking and Collaborative Systems. IEEE
Computer Society 2009 ISBN 978-0-7695-3858-7.

[12] N. Sklavos, O. Koufopavlou, ”Implementation of the
SHA-2 Hash Family Standard Using FPGAs”, The
Journal of Supercomputing, 31(3), pp.227-248, 2005.

[13] M. McLoone, J. V. McCanny, ”Efficient single-chip
implementation of SHA-384 & SHA-512”. In Pro-
ceedings of the International Conference on Field-
Programmable Technology (FTP), pp. 311-314, 2002


