@ NTNU

Norwegian University of
Science and Technology

Detecting Wireless Identity Spoofs in
Urban Settings, Based on Recelved
Signal Strength Measurements

@ystein Aas Pedersen

Master of Science in Communication Technology
Submission date: June 2010
Supervisor: Stig Frode Mjglsnes, ITEM
Co-supervisor: Martin Eian, ITEM

Thomas Jelle, Tradlgse Trondheim

Norwegian University of Science and Technology
Department of Telematics

Problem Description

There are several proposed methods to discover attacks in wireless networks. This thesis focus on
measuring received signal strength (RSS] values to detect attacks. Current research culminates in
the paper written by Chandrasekaran et. al. where the authors solves a newly discovered
vulnerability regarding the 802.11e QoS protocol and also proposes a new way of using RSS
measurements for localizing wireless nodes. Using these two methods together, they claim to
achieve a false positive rate of 0.5%, even when nodes are mobile.

Could the methods proposed be used to decide if an attack is ongoing in an urban environment?
What about type 1 and 2 errors in this setting? How dependable are the method(s] in regards to
circumvention and active attacks?

This thesis will cover existing RSS detection methods, and how these can be used in open wireless
LANs like Tradlgse Trondheim. Work will also look into how to implement and qualitatively test
these methods in a live setting, by using the lab setup and the SIDS application from previous
work.

Assignment given: 15. January 2010
Supervisor: Stig Frode Mjglsnes, ITEM

Abstract

The most common gateway for executing attacks in 802.11 networks are the
MAC spoofing attack. Current Todays Wireless IDS implements different meth-
ods to detect MAC spoofing, but are particularly interested in using methods
that are based on characteristics that are considered unspoofable. One such
characteristic is the received signal strength . Current research are often
tested in office environments only, and this work aims to test how the meth-
ods work in Wireless Trondheim’s urban environment. To research the effects,
a wireless sensor network was made. A framework for treating captured data
from the sensor network was developed that can be augmented with various de-
tection methods for 802.11 based networks. A RSS detection method has been
developed and tested with real test data from an urban environment. A RSS
based detection method was tested, and the results depicts the challenges of
using such methods in an urban environment. Results also show that existing

statistically based RSS methods would work poorly in such environments.

II

Preface

This master thesis was finalized during the fall semester in 2010. The the-
sis marks an end to a 5 year study for the master’s degree in Communication
Technology with specialization in Information Security. The work has been ac-
complished at the Department of Telematics at Norwegian University of Science
and Technology (NTNU).

The background for this thesis was a pre-project done in the fall semester of
2009 by Oystein Aas Pedersen and Eirik Holgernes. Wireless Trondheim was
the assignment owner and provided equipment and offices during the making of
the thesis.

I would like to thank the staff at Wireless Trondheim for equipment and help

in setting up and configure the sensor network.

I would also like to thank the supervisor Martin Eian for invaluable contributions

during times of mental drought that helped me continue my work.

This thesis is dedicated to my fiancé Agnete, who has always been there for me.

Trondheim, June 2010

ITI

v

Contents

[Abstract] I
[Prefacel 111
[List of Figures| IX
[List of Tables| XIIT
|[Abbreviations and acronyms| XV
(1__Introductionl 1
L1 Motivationl 2
I1.2 Research Scope|l o 3
1.3 Research Goals and Questions|. 4
L4 Contributions|o 5
I1.5 Methodologyl o o 6

2 Background| 7
I Wireless TANS 7
2.2 80211 Radiol 8
2.3 Wireless based Intrusion Detection Systems| 10
2.3.1 MAC Frame based detection methods 12

[2.3.2 802.11 Radio based IDS Detection Methods| 13

24 80211 Protocoll oo 13

CONTENTS

241 The 802,11 MAC Framel 14

2.4.2 802.11 Sequence Numbers| 17

2.4.3 Physical Layer Metrics|. 19
8__Related Workl 23
[3.1 Fingerprint Detection Methods| 24
8.1.1 RSS Based Fingerprintingf 25

13.1.2 REF based fingerprinting| 27

3.2 Combination of Detection Methods 28

4 Distributed Wireless Capture System| 31
41 The Sensor] 33
4.2 Kismet-Newcorel 0. 34
421 Kismet-dronel oL 35

422 Kismet-Serverd. o oL 36

23 Kismet-client] 37

4.3 Architecture Overview] 38
4.4 Code Framework| o000 39
4.4.1 Software Specitics| o oL 41

[5 Experimentation| 43
[.1 Design of Experiments| 44
[5.2 Execution of Experiments| 45
0.3 Data Analysis|. oo 47
[6_Results] 49
[6.1 Control Experiments|, 50
6.1.1 Control Experiment 1| 50

6.1.2 Control Experiment 2| 52

[6.1.3 Control Experiment 3 (Northugonly)| 54

6.1.4 Analysis| 54

[6.2 Attack Experiments| oo 56
6.2.1 Attack Experiment 1}.o 0oL 56

VI

6.2.2 Attack Experiment 2[. 0oL
6.2.3 Attack Experiment 3. 0oL
6.2.4 Attack Experiment 4f.o
[6.2.5 Attack Experiment 5 (Northug only)|.
[6.2.6 Attack Experiment 6 (Northug only).
6.2. Analysis| L
6.3 IDS method testingl. oL,

|A.2.1 Sheevaplug Details|
1A.2.2 Kismet-Newcore Config Files|
1A.2.3 Kismet Server Configuration|
IA.3 Experiments|.
|A.3.1 Setup of stations|o
IA3.2 Stationsetup| Lo o

75
(0]
76
76
78
78

81
82

83

89
89
89
91
96
96
96
96
105
105
105

Vi1

CONTENTS

IA.3.3 Attacker setup| 0oL 106
BACodd. 106
[A41 Framework Codd 106
BA2 RCodd . . . ot 117

VIII

List of Figures

2.1 A simple illustration of a 802.11 network|. 8
.27 The MAC frame format [1| 14
2.3 The Frame Control field. 16
.4 Sequence control field [I]] 18
2.5 PPl field as viewed in Wiresharkl 21

[3.1 From [2]. WA is aggregating measurements of the two clients, |

creating a RSS profile per frame.| 0L 25

[3.2 Proposed algorithm in [3] to detect identity spoofs in 802.11e- |

enabled networks.l.o 30

4.1 Placement of the two sensors, where each are placed 20 cm away |

from the monitored APsl 32

4.2 Sheevaplug as advertised on the www.plugcomputer.org, June 2010.| 34

4.3 Screenshot of a capture session with Kismet-client. Lett side |

shows the output of the two sensors, while the right side shows |

the Kismet-client. 38

4.4 Logical architecture of the distributed capture system. 40

IX

LIST OF FIGURES

[6.1 Control experiment 1, sensor Bjorg|

[6.2 Control experiment 1, sensor Northug|

[6.3 Control experiment 2, sensor Bjorg|

[6.4 Control experiment 2, sensor Northug.|

[6.6 Control experiment 3 (Northug only)|.

[6.7 Attack experiment 1, sensor Bjorg,|

[6.8 Attack experiment 1, sensor Northug.|

[6.9 Attack experiment 2, sensor Bjorg,|

[6.10 Attack experiment 2, sensor Northug.|

[6.11 Attack experiment 3, sensor Bjorg,|

[6.12 Attack experiment 3, sensor Northug.|

[6.13 Attack experiment 4, sensor Bjorg,|

[6.14 Attack experiment 4, sensor Northug.|

[6.15 Attack experiment 5 (Northugonly). |

[6.16 Attack experiment 6 (Northugonly)|

[6.17 Detection method on control experiment 1f.

[6.18 Detection method on control experiment 2.

[6.19 Detection method on control experiment 3 (Northug only)|

[6.20 Detection method on attack experiment 1|

[6.21 Detection method on attack experiment 2|

[6.22 Detection method on attack experiment 3|

[6.23 Detection method on attack experiment 4|

53

57

59

61

63

[6.24 Detection method on attack experiment 5 (Northug only)| 73

[6.25 Detection method on attack experiment 6 (Northug only)[. . . . 73

|[A.1 802.11 type and subtype combinations from IEEE 802.11 [1].| . . 90

XI

LIST OF FIGURES

XII

List of Tables

2.1 To DS / From DS table] 17
6.1 Summary table for control experiment 1 and 2. | 52
6.2 Summary table for the control experiments| 56
6.3 Summary table for attack Tand 2.| 60
6.4 Summary table for attack 3and 4.o 000 62
6.5 Summary table for attack 5 and 6 with a comparison of the data |

from the single sensor control experiment.| 65
6.6 Experiment summary table] 0000 67

XIII

LIST OF TABLES

X1V

Abbreviations and Acronyms

ATK attacking station

AP access point

CA collision avoidance

CRC cyclic redundancy check

CSMA carrier sense multiple access
CTS clear-to-send

CUWN Cisco Unified Wireless Network
DS distribution system

FCS Frame Check Sequence

GMM gaussian mixture model

IDS intrusion detection system

IEEE Institute of Electrical and Electronics Engineers
iid independent and identical distributed

I0S Internetwork Operating System

XV

IPS intrusion prevention system

LAP lightweight access point

LWAPP light weight access point protocol

MAC media access control

MiM Man-in-the-Middle

MSB most significant bit

NAV network allocation vector

NIC network interface

OS operating system

OSI Open System Interconnection Reference Model
PARADIS Passive RAdiometric Device Identification System
Pcap packet capture

PDU protocol data unit

PPI Per-Packet Information

QoS Quality of Service

QoE Quality of Experience

RF radio frequency

RSS received signal strength

RSSI received signal strength indication

RSN Robust Security Network

RTS request-to-send

RTT round-trip-time

SN sequence-number

SIDS simple IDS

STFT short-time Fourier transform
SSFA signal strength Fourier analysis
SSID service set identifier

SSL secure socket layer

STA station

VPN virtual private network

wIDS Wireless Intrusion Detection System
WLAN wireless local area network
WLC Wireless LAN Controller
WMM Wi-Fi mulitmedia

WPA Wi-Fi Protected Access
WUN Wireless Unified Network

WT Wireless Trondheim

Introduction

Wireless Trondheim (WT)) in Trondheim City is a company owned by NTNU,
the local authorities and several other local companies to create an arena for

research and development for new wireless and mobile services.

Today has installed wireless local area network coverage in the
main areas of Trondheim City, free of use for students and employees of Trond-
heim kommune. Other people can connect as well, by paying a fee, e.g. 10 KR
for 3 hours, 30 Kr for 24 hours etc. After payment is verified, the station that
was associated with the payment will be given access to use the network wher-
ever [WT] has coverage. The station can be any WLAN enabled device. What
actually happens is that the stations media access control address is

Chapter 1

added to a whitelist on a captive portal. Any traffic going to the Internet must

go through this portal, and stations not in the whitelist will be denied access.

In an open wireless network like [WT]it is quite easy to circumvent the installed
captive portal by pretending to be a legitimate user. An attacker could do this
in several ways, but one of the easier methods is to set its own MAC address as

an already registered one, thereby masquerading as a valid user.

There are several proposed methods to discover such attacks in 802.11 wireless

networks. This thesis will focus on detection methods that measure received

signal strength values.

1.1 Motivation

Previous work in the pre-project assignment in the fall semester of 2009 by
Pedersen and Holgernes [4], together with work by Chandrashekaran et. al. [3]

and Gill [5] is the primary motivation for this thesis.

The main task in the pre-project was to research possible solutions to the prob-
lem of detecting session hijacking in open 802.11 networks after the event had
happened. Primarily a system that analyzes capture logs after an incident has
happened is preferred in contrast to block users from the network during use.
As mentioned, [WTk network is completely open, and ways of determining if a
customer’s session has been hijacked for malicious use is important in legal mat-
ters. This is especially true in the wake of the EU data retention directive and
its soon-to-be decided fate here in Norway. There is much research going into
surveillance of computer systems, both wired and wireless, and the EU directive
will impose a law on all ISPs, making them register logs of traffic for up to 2
years. Making a system that can trigger alarms by analyzing log files is in this
context important both to satisfy the EU directive, but also to avoid blaming

an innocent user.

The project was set in a lab environment where the authors had access to a

Introduction

replica of [WTk city wide WLAN, based on the Cisco Unified Wireless Network
(CUWN])). Interesting results found within the area of MAC sequence number
analysis and RSS measurements showed that there are valid methods that can

be implemented in solving the initial problem of spoof detection.

Future work was identified to be:

Remedy the 802.11e sequence number vulnerability (solved in [3]).

Usage of RSS measurements for attack detection in Wireless Trondheim.

Centralization of an IDS system within Wireless Trondheim.

Augment and further develop the simple IDS (SIDS)) application detection

methods.

This thesis will focus on RSS as a detection method in urban environments,
creating a centralized system for capturing live data and analyze afterwards for

spoof detection.

My colleague from the pre-project in [4] will address the other two identified

future works in his thesis in [6].

1.2 Research Scope

All work will be based on IEEE 802.11 infrastructure networks. The research is
especially focused on the usage of RSS in intrusion detection systems with only

minor focus on other detection techniques.

In respect to what was done during the project in [4], it was now time to change
the laboratory to a real life setting in Trondheim. This meant widening the
scope to an urban setting, with all the constraints a wireless operator like WT

would face.

Chapter 1

I chose to concentrate on one physical area in Trondheim and do my experiments
there. All experiments was done outdoors and in the open, i.e. no testing
indoors. As a note, Wireless Trondheim are not prioritizing indoor coverage,

only at select places in Trondheim [7].

1.3 Research Goals and Questions

The main goal was to use existing RSS based detection methods in academia to
test if spoofing of the MAC address could be detected in an urban environment.

The goals can be broken down into three sub-problems:

1. Gathering of reliable test data for analysis from an urban environment.

2. Create software that processes the test data for use with IDS detection
methods.

3. Analyze test data for evaluation of a RSS detection method.

Gathering test data By utilizing open source software together with the
equipment and support given to me by Wireless Trondheim, I created the in-
frastructure needed to gather experimental data. This infrastructure was placed

in an environment that resembles an urban environment.

The process of building a sensor network and process captured data is most
often done in an office setting with an ubiquitous amount of sensors giving the
authors nearly perfect results. To actually implement this in a live setting is
another matter, and my goal therefore was to contribute on the validity of the
methods proposed and also to some of the practical difficulties of building such

a system.

By using an experimental approach, I generated and gathered the test data

based on experiences from the pre-project [4] and the work from others.

Introduction

Create software for test data processing To be able to analyze the test
data, I needed software that organized the captured data in such a way that

detection methods can be applied to them.

By creating a framework that parses the test data and then logically process

the capture data for the detection methods was an important part of the work.

Analyze After the test data had been generated they were used with the
developed software for analysis. In the analysis my goal was to identify some of
the key aspects of using RSS detection methods in an urban environment and

to shed some light on the usability of such methods.

1.4 Contributions

By using open source software and Sheevaplugs, a distributed sensor system was
set up in WTs production environment in Trondheim. The system was used to
generate test data from an urban environment with the purpose of being fed to
a RSS based detection method. Testing of this method with measured effects is

considered a contribution.

Creation of a framework that can process the resulting capture log files from
the sensor system, that can be augmented with other detection methods in
the future, not just based on RSS measurements. This can be used in future
work for building a more complete IDS program based on even more detection

methods.

Previous work on RSS detection methods have not considered how RSS mea-
surements behave in urban environments. Measurements and analysis of how

RSS values actually behave in the urban setting are considered a contribution.

Chapter 1

1.5 Methodology

My methodological approach was to test and research how earlier work done in
an office or cubical setting will work in the urban setting of Wireless Trondheims

infrastructure.

Below is the described workflow during this thesis.

1. Reviewing existing literature.

2. Design and analyze experiments by setting up a basis for testing in
Trondheim City

3. Implement and test resulting data for IDS purposes.
4. Analyze IDS results from IDS testing

5. Conclude what is usable as testing metrics regarding received signal

strength (RSS))

First I set up the testing environment with sensors and a central server for
processing. Then I used the network to generate test data for my IDS detection

program based on RSS.

All changes to the detection program was based on experiences from the tests,
and the program was changed in an iterative manner. Typically the points 2
through 4 is based on an iterative approach. The iterative approach is preferable
because of the many uncertainties when working in an uncontrolled experiment

environment.

Conclusions were then based on analysis of the resulting data.

Background

2.1 Wireless LANs

Wireless LANs got introduced in the 802.11 standard in 1997 and has ever since

been a popular method for wireless communication.

A basic WLAN consist of several mobile stations (STAs) communicating with
an access point . The AP handles all communication between the stations,
it also handles all communication the station has with the Internet. The system
that forwards traffic from the AP and to the network is called a distribution

system (DS)). See ﬁg for an illustration.

Chapter 2

Figure 2.1: A simple illustration of a 802.11 network

Since STAs must use a predefined frequency for communication in a shared
medium, only one STA can use the airwaves at the same time. Without proper
handling of when the stations are transmitting, collisions would occur and no

data can be sent.

To manage this, the 802.11 standard defines a physical layer sensing mechanism
called carrier sense multiple access with collision avoidance (CSMA/CA). A
MAC-based virtual sensing mechanism called RTS-CTS methods is also used,
but are optional and not always turned on in WLANs. Further studies of RTS-
CTS can be found in the pre-report [4], as it is not considered further in this

thesis.

2.2 802.11 Radio

All 802.11 radio receivers have an ability to deduce the power level of a received

signal. This measurement of the power signal is called received signal strength
indication .
IEEE 802.11 [I], p. 489] defines RSSI to be:

14.2.3.2 RXVECTOR RSSI

Background

The RSSI is an optional parameter that has a value of 0 through
RSSI Max. This parameter is a measure by the PHY of the energy
observed at the antenna used to receive the current PPDU. RSSI
shall be measured between the beginning of the SFD and the end of
the PLCP HEC. RSSI is intended to be used in a relative manner.
Absolute accuracy of the RSSI reading is not specified.

The RSSI is an integer from 0 - 255, or 0 - RSSI_ Max. Each manufacturer of
network interface s implements their own granularity of this integer, hence
the accuracy (as stated in the last sentence) is not specified. Therefore, when
using 802.11 wireless sensors, it is important to use the same type of sensors
or in some other way correct the differences caused by differing implementation

between manufacturers.

The parameter is normally used in station roaming and to set a lowest limit
for what the NIC can handle regarding reception of frames. It is measured in
decibel per milliwatts or the said RSSI between 0 and 255.

To avoid confusion, in this work all RSS readings are in dBm, and I will use

the acronym RSS throughout.

Perceived power at a station is the product of factors like the stations trans-
mission power, distance between station-AP and the environment that causes

multi-path distortion and absorption effects.

Multi-path distortion When a RF signal is propagating through the air,
it will encounter objects that reflect, refract! or diffract the signal, creating
multiple wavefronts that reach the receiver at different points in time. This
creates among other things increased (or decreased) signal amplitudes [§] and

be considered noise from the receivers point of view.

1Refraction is the change in direction of a wave due to a change in its speed.

Chapter 2

Antenna Diversity Is a technique used to remedy multi-path distortion is-
sues. Antenna diversity helps overcome this problem by using two antennas
spaced at multiples of one wavelength apart (12.5 cm for 2.4GHz). This gives
the receiver better signaling conditions when receiving, but can also make it
send frames on either of the two antennas. The most notable element that has
an effect on transmission power is the distance. The power fades inversely as

the square of the distance [9].

P

m

A short explanation of how the 802.11 standard organizes its radio spectrum.

802.11 defines three versions of the standard; 802.11a, 802.11b and 802.11g.

802.11a and 802.11b was an amendment in 1999, introducing physical layer

changes to the standard.

802.11a operates in the 5GHz area with a maximum bitrate of 54Mbps.

802.11b operates in the 2.4GHz area with a maximum bitrate of 11Mbps.

802.11g operates in the 2.4GHz area with a maximum bitrate of 54Mbps.

Each channel in 802.11b/g is 22MHz wide, making room for 14 overlapping
channels. Only one channel in the standard can be used at any one time, or
else traffic would be impeded by frames being distorted by the overlapping
frequencies. Only channels 1, 6 and 11 are non-overlapping, making them ideal

for use in the same coverage area.

2.3 Wireless based Intrusion Detection Systems

Intrusion detection systems are used to monitor networks and detect activity
that are considered illegal or hurtful for the network. Hurtful activities can

be be detected by different detection methods. Each method is associated to a

10

Background

specific layer in the OSI model, and can be combined with other methods for

better accuracy of detection.

Compared to wired-based IDSs that concentrate on the OSI layers of 3 and
up, the 802.11 Wireless Intrusion Detection System s are focusing on
PHY layer and MAC layers. By exploiting the information available on these
layers, several detection methods are available. In this thesis, I will consider
802.11 based intrusion detection system only, i.e. only layers 1 and 2.
Specifically I will focus on layer 1 detection using [RSS] values.

A Wireless Intrusion Detection System uses wireless sensors that are
placed togheter with the wireless network it is supposed to monitor. The place-
ment of these sensors must be strategical, to cover the WLAN but also such
that it can overlap in certain areas with other sensors. Important for a wIDS
is that it’s sensors must be sensitive enough to be in range to cover the wanted
area for capture. It is also important to capture as many frames as possible to
for the detection method.

As described in section 802.11 uses different channels to communicate. A
wIDS must either be set to monitor a specific channel or use a hopping algorithm,
enabling it to monitor as efficiently as possible to avoid missing to many frames.

The work of U. Desphande [I0] proposes such an algorithm.

Metrics for measuring how an IDS operates in terms of reliability and robustness

are measured in false positives and false negatives.

e An IDS that triggers a false positive is detecting an attack when there

exists none.

e An IDS that triggers a false negative fails to detect an attack when there

are an attack present.

Current IDSs can be divided into to camps; Misuse-based and anomaly based

[5].

11

Chapter 2

Misuse based IDSs uses signatures or patterns to detect an attack. Each signa-
ture explicitly defines the attack, such that if it lacks a signature for a (poten-
tially) new attack, it will generate false negatives when failing to detect it. On

the other hand, it will generate few false positives.

Anomaly-based IDSs do not require signatures, but monitors behavior and raises
alarm if it registers any deviation from the normal. Expected behavior is the

metric of detection, where deviance from the normal raises an alarm.

Gill [5] defines anomaly-based IDSs in two ways; a statistical model or a speci-

fication model.

e A statistical model uses variables and characteristics measured over time
to develop the normal behavior of a system. A threshold is found by a

training phase of the system, which if exceeded, raises an alarm.

e Specification-based IDSs (also by smith [I1]) specify the correct behavior
of a system, and any deviance from the expected correct behavior raises

an alarm.

A more comprehensive discussion of can be found in [5].

2.3.1 MAC Frame based detection methods

Detection based on analyzing the MAC frame utilizes the different fields within
the frame to be able to detect attacks.

Regular MAC sequence-number analysis comprises of methods that utilizes
the MAC sequence-number in data and management frames. This number is
presumed to be monotonic increasing, adding a number for each new outgoing
frame. This expected linear behavior of the numbers can be used to detect
when another attacking station sends frames that have SN that deviates from
the expected numbers. If the numbers deviate too much, a spoofing alert can

be raised.

12

Background

As later work has identified [3, [4], 802.11e¢ enabled networks uses a different
MAC SN per QoS channel. This creates situations where regular detection
of MAC sequence numbers creates more false positives than an non-802.11e
enabled network. Any detection method based on sequence numbers must take
the QoS enabled APs into account.

2.3.2 802.11 Radio based IDS Detection Methods

Using RSS values in a detection context is useful because of their relative un-
spoofability. It is also directly dependent on the senders location, since any

change in location will alter the environment, and also affect the signal power.

Using RSS values also has its drawbacks. The radio environment the signal has

to propagate through will affect how the receiver perceives the RSS.

Any radio signal at the frequency band 2.4Ghz is easily absorbed by water or
bounced off of concrete. In an urban setting with a lot of people, moving vehicles
and buildings, the radio environment is intuitively changing all the time, causing

a receiving station to see more fluctuations of the signal power than normal.

Analyzing RSS values therefore comes with a preconceived notion of not being a
very reliable detection metric when the station sending is on the move, or is sta-
tionary but in a constant changing environment. It will generate fluctuations,
shaped by the state of the environment at the time. Therefore many tech-
niques rely on statistical methods or increase the number of sensors to improve

accuracy.

2.4 802.11 Protocol

802.11 WLANS is a member of the 802 family of standards defined by the IEEE.
All 802 standards focus on the two lowest layers of the OSI model, namely the
Physical PHY layer and the Datalink layers. The PHY layer defines details of

13

Chapter 2

transmission and reception of signals, and the datalink layer how the medium

is accessed and how the data is sent.

2.4.1 The 802.11 MAC Frame

This section gives an overview of the MAC frame structure as defined in the
IEEE 802.11 standard [I].

The 802.11 MAC frame consist of three parts; Header, Frame Body and
Frame Check Sequence. The header contains information about e.g. what
kind of frame it is, and which address the frame should be sent to. The Frame
Body contains the user payload, plus any encryption specific data. The Frame
Check Sequence (FCS) is a cyclic redundancy check error field, used for

the correct delivery of the frame.
WLANSs are governed by three different message types that are used for com-
munication:

e Control frames - are used for control of the communication between

stations,

e Management frames - these are frames used to handle relationship

between a station and a AP.

e Data frames - Payload data from the upper layers. Can be QoS data or
non-QoS data.

The MAC frame is shown in fig[2.2]

Octets: 2 2]] 6 2 [Z 0-23424 4

Frame Durationf
Control

QoS Frame
Control Body

Sequence

Address 1 | Address 2 | Address 3 Control

Address 4 FCS

- o
-}

MAC Header

Figure 2.2: The MAC frame format [I]

14

Background

The MAC frame fields:

e Frame control - Contains frame type information and other control in-

formation.

e Duration/ID - Can be a connection identifier in some Control frames,

and a time duration field in microseconds.

e Addresses 1-4 - Context dependent addresses that consist of the hard-
ware MAC addresses that reside in every link node in the wireless network.
Every MAC address is 6 bytes long, and is described by 12 hexadecimal

characters, separated with a colon [I].

e Sequence control - 12-bits counter and a 4-bit fragment number. Is
used to number the frames transmitted between a given transmitter and
receiver. Also contains a 4-bit fragmentation field. Only present in Man-

agement and Data frames,

e QoS control - 16-bits. Identifies various QoS related information. Iden-

tifies if it is a QoS frame or a non-QoS frame

e Frame body - Frame body is dependent on what type of frame it is

(Control, Management or Data).

e Frame Check Sequence - CRC check for the frame

In size, the Header is between 14 and 36 bytes, and the Frame Body between
0 and 2324 bytes. The total size of the 802.11 MAC frame ranges between
minimum 14 bytes and maximum 2360 bytes?. To be able to interpret the
values in the fields correctly, IEEE [I] section 7.1.1] defines reading the bits in
the fields in increasing order of significance, from lowest bit to highest numbered

bit, i.e. little-endian.

232 bytes Header + 2324 bytes Frame Body + 4 bytes FCS = 2360 bytes.

15

Chapter 2

The Frame Control field which is 2 bytes resides in the MAC header shown in

fig[2.3}

BO B1 B2 B3 B4 B7 B8 B9 B10 B11 B12 B13 B14 B15
Protacol To From More Pwr More Protected
Version Type Subtype DS DS Frag Retry Mgt Data Frame Order
Bits : 2 2 4 1 1 1 1 1 1 1 1

Figure 2.3: The Frame Control field.

The Frame control field is shown below. Fields B8 - B15 are 1 bit each.

16

Protocol version - 2-bits. Currently always 00.

Type - 2-bits. Frame type (Control, Management or Data). See the
appendix for table over valid types and subtypes for each frame.

Subtype - 4-bits. Various types of the given frame, dependent of frame.

To DS / From DS - 2 bit fields that describes the direction of the frame.
This field dictates the address fields and what is in them. See table 2.1]

for possible variations.
More Frag - Indicates if the frame is a fragment frame.
Retry - set to 1 if the frame is a retransmit frame and 0 otherwise.

Pwr Mgt - Indicates power management mode of sending station - 1 is
station will be in power save mode, 0 in active mode. When station are

in power save mode, the AP will buffer any frames destined to it.

More Data - used with power save modes, where a 1 indicates that the
AP still has buffered data to the station.

Background

To DS | From DS | Interpretation SA Address in
0 0 Management and Control frames always set to 00. | Address 2
1 0 To DS Address 2
0 1 From DS Address 3
1 1 Used in AP to AP communication. Address 4

Table 2.1: Combinations of To/From DS flags in MAC control frame [I]. The last column s
which address field the Source address is found, for each combinations of the fields.

e Protected Frame - 1 if Frame Body has been processed by a crypto-
graphic algorithm. Only for Data frames, and Management frames of

subtype Authentication.

Addressing is based on what the To DS / From DS fields in the frame control
is set to. Four different address types are defined:

e TA - Transmitter or transmitting address

e SA - Source address

e RA - Receiving address

e DA - Destination address

2.4.2 802.11 Sequence Numbers

The Sequence Control field is a mechanism for dependable delivery of MAC
frames between two link points. All frames need to be acknowledged by the
recipient to avoid losing frames. The sender keeps track of which frame with
which sequence number that has been successfully acknowledged by the recipi-

ent. If there is an offset in the sequence number regarding acknowledged frames,

17

Chapter 2

i.e. a frame with a higher number than 41 from the previous, the client will

retransmit the lost frame.

BO B3 B4 B15
Fragment Number Sequence Number
Bits: 4 o 12 "

Figure 2.4: Sequence control field [I]

The sequence number field as shown in fig[2.2 comprises of two bytes. As fig[2.4]
shows, the field starts with a 4 bit Fragment Number, followed by 12 bits of
Sequence Number. The sequence number itself, ranges from 0 to 4095. This
means that after the counter reaches 4095, it will wrap around and start again

at 0, i.e. the counter is modulo 4096.

802.11e Sequence numbers

The 802.11e was approved in the the 802.11-2007 standard. The protocol defines
a set of rules to be used to provide Quality of Service on the link layer,
similar to the regular sequence number. There can be potentially 8 different
802.11e classes, or TID (Type ID), as defined in [I, chapter 7.1.3.5 "QoS
Control field"’].

In that respect, 802.11e introduced a separate sequence number counter for each
QoS class.

For example a 802.11e enabled station registered with an 802.11e compliant AP
can potentially keep track of 8 different QoS sequence numbers, that also the
AP must keep track of. The QoS data frames uses the same sequence control

field to indicate sequence numbers, as the non-QoS frames.

18

Background

2.4.3 Physical Layer Metrics

Current 802.11 standard do not support storing information pertaining to the
physical layer, such as RSS values, channel frequency, bit rate etc. per frame.
Information like these are available for the wireless interface, but only per frame
received and only for the driver. This means that if one where to capture this
information one must in some way add the information to the frame in-transit,

and per-frame.

Current technology for achieving this exists, and the most known is the Radiotap
[12] standard. Radiotap support a variable header length that is both more
effective and economical (in terms of overhead in the frame) but also makes it
more robust for adding or removing support of what kind of information one

wants.

Current implementation of Radiotap exists on most operative systems, and is a

widely adopted standard for frame reception and injection 3.

However, in this thesis I will use another similar standard called Per-Packet

Information (PPI).

Per-Packet Information Header

Largely because the packet sniffing program Kismet supports the [PPI header it
was necessary to use this instead of the Radiotap header (I will come back to

Kismet in later sections).

PPI is developed by CACE Technologies, which claims to be “sponsors and the
innovative force behind Wireshark and WinPcap” [I3]. Wireshark is perhaps
the most known dissection tool for network professionals and academics world

wide, and WinPcap is a port of the mentioned libpcap for *NIX to Windows.

The [PP]] header is a meta-information header or pseudoheader that is prefixed

3The famous Aircrack-ng suite uses this format.

19

Chapter 2

to each protocol data unit (PDUJ) captured by a wireless interface. The purpose
is to add information available to the wireless interface at the time of frame
capture, such as 802.11 radio information. As mentioned, this information is

only available at live-capture time and hence must be added per-frame.

Note that what is actually available in the PPI header depends of the driver
of the wireless interface. Also note that PPI supports the newly standardized

802.11n protocol as well, making it ready for future use.

Important Fields in PPI

To get the data I need for this thesis, I must capture the RSS measurements
for every packet. As mentioned PPI supports this by adding an extra header
prefixed in the beginning of the frame. Using the PPI specification [14] the RSS

measurement was found.

In the beginning of each PPI header, there is an additional header describing
the contents of the header. This is version, indicator flags, PPI header
length (between 4 and 65532) and data link type.

The version is currently always 0. The Indicator flag is a 8 bit mask that
defines the behavior of the header. The header length including packet header
and fields. The data link type defines a valid libpcap data type.

After the header comes a PPI Field Structure that defines the first of 6 field
types. Field types in PPI can be viewed in appendix The one I am
interested in is the 802.11-Common field that contains common (pre-n and

.11n) radio information.

In the 802.11-Common fields of the PPI specification (loosely based on Radiotap
header format) there are many fields that could be interesting in a IDS context,
but the one I am focusing on is the dBm-Antsignal field. The 802.11-common
field is 20 bytes long, which gives the bytes on byte placement 31 as the one I
need. A verification using Wireshark shows that this is correct, see fig[2.5]

20

Background

B PPI version 0, 32 bytes
version: 0
Bl Flags: 0x00
.... ...0 = Alignment: Not aligned
0000 000.

Reserved: 0x00
Header length: 32
DLT: 105

&1 802.11-Common
Field type: 802.11-Common (2)
Field Tength: 20
TSET: 0 [invalid]
Flags: 0x0000
Rate: 1,0 Mbps
channel frequency: 2412 [8G 1]
Channel type: unknown (0x0000)
FHSS hopset: 0x00
FHSS patter
dsm_antenna s

Figure 2.5: PPI field as viewed in Wireshark

21

Chapter 2

22

Related Work

In the area of wireless intrusion detection systems in 802.11 networks, there
exists several detection methods, each based on a specific layer in the standard.
There are the ones based of the PHY layer, and the ones of the MAC datalink
layer.

PHY layer techniques uses characteristics of the radio waves. Some techniques
uses specialized monitoring equipment to measure different aspects of the signal.
The more known received signal strength metric is popular in current academia
because of not needing specialized hardware to measure signal amplitude. Al-

most all wireless 802.11 interfaces has the ability to measure RSS.

On the MAC layer the values inside MAC frames are utilized in different ways

23

Chapter 3

to detect anomalies and trigger alarms. Typically the MAC sequence detection
analysis (also for QoS enabled networks) is mostly used, but also behavioral or
specification based methods like analyzing and counting certain types of frames

are also promising.

The most promising and up to-date work of a complete intrusion detection
system is (in my opinion) of Gill and Smith [5, II]. By combining several
detection methods from both PHY layer and MAC layer, and use these methods

in a state based detection mechanism, Gill creates a robust IDS.

Work from Faria [2], Chen [I5] and Sheng [16] uses RSS based methods only,
but get good results in their experiments. However they only do their tests in

office environments.

Chandrashekaran et.al. [3] utilizes MAC sequence number based analysis on
both non-QoS frames and QoS frames, together with RSS measurements for
detecting mobile attacks. I have not seen any other related work that uses RSS

values for detecting attacks while stations are mobile.

As in Gill [5], the methods I am focusing on is the ones that mitigate or help
mitigate the session hijacking and/or identity spoofing attacks. This is not
only because of the Wireless Trondheim assignment, but also because most of
the detection methods involve detecting MAC spoofing. This means primarily
methods that detect if one or more stations are using the same MAC address
i.e. MAC spoofing attacks.

3.1 Fingerprint Detection Methods

The concept of a fingerprint is intuitively something that is unique. In a 802.11
radio-based context, this means finding a fingerprint for a wireless station for
the purpose of uniquely identifying it. These methods uses the characteristics
of the radio frequency signals, and in 802.11, the measured RSSI values.

24

Related Work

3.1.1 RSS Based Fingerprinting

Faria et.al. [2] proposed a method where they use the RSS readings from the
same MAC at different sensors to create a fingerprint of the station, see fig[3.1]

The idea is that any significant deviation from this fingerprint can be used as
an indication of attack. The server aggregates all captured frames from the
sensors, and creates signalprints as viewed in the table in fig[3.1]

Signalprints

Chont 1 | -

Chont 2 |

WA £
Authentication
Server
-73 dBm
| \ -51 aBm
1| 1\ 1 3
a=))| =)
|
/ AP

Client 2
Client 1

Figure 3.1: From [2]. WA is aggregating measurements of the two clients,
creating a RSS profile per frame.

The work showed that more measurements of a MAC address from several

sensors will strengthen the signalprint.

They use a trick to remedy the effect of transmission power fluctuation at one
station (which is benign) by calculating differential values from the sensors.
Differential value of a MAC address is found by finding the median RSS value
at one sensor, and compute the absolute value between the maximum median

sensed by all sensors.

25

Chapter 3

They claim that a client rarely vary it’s RSS value by more than 10 or 15 dB
[2, p. 46]. If the median RSS values measured by at least one sensor differ by

10dB or more, the system sees two stations, thereby prompting an alarm.

Chen et.al. [15] created a system that both detects spoofing attacks and localizes
the attacker. They assume that the registered RSS values are Gaussian dis-
tributed from a partially synthetic data set. As with Faria, Chen aggregates
sensory information to a central server which do the calculations. If there are N
sensors, the measurements from these sensors make up a N-dimensional vector of
frame captures (not unlike Farias work). Using a K-means algorithm to cluster
the readings, ideally each physical transmitter should represent a cluster. This
means that the clusters can represent physical locations, where the locations
of two nodes will be distinct in physical space in the terms of which clusters
they belong to. The detection method then becomes the task of calculate the
distance between these clusters. This can be done with an Euclidean distance
algorithm. A distance of 5 dB from the centroid was proposed as the limit for

issuing an alarm.

What the research do not answer is how it behaves in terms of mobile nodes,
how this will work with a dataset from a real setting that is not synthetic, and

what likely exploitations/attacks the system is vulnerable to.

Sheng et.al. [16] discovered that the single-Gaussian assumption taken by Chen
was wrong. They found that a single station could produce two distinct values
of the RSS mean, causing it to fluctuate more than 5dB in 20% of the cases,
or 10 dB in 4% of cases, i.e. producing two different Gaussian distributions.
This would introduce false positives, as the other methods did not take this into
consideration. The reason for the dual Gaussian distribution was attributed
to the antenna diversity feature that newer 802.11b/g/n NICS use. Please see

page [9] for an explanation of the antenna diversity.

The detection technique from Sheng et.al. is based on first making a profile
of each station/sensor pair. This profile is then used to detect attacks. They

further extend this to be used with several sensors, aggregating the RSS mea-

26

Related Work

surements for more robust detection.

Sheng compared the algorithms from Faria and Chen with their own. The
gaussian mixture model —based global method detected 98% of attacks,
Faria’s method detected 70% and Chen less than 65%. The results show that
there is much to gain when considering multiple Gaussian distributions, however,
how often the antenna diversity was used during the experiment, and if it is

representable for normal use could be discussed.

The crux of their algorithm is that it depends heavily on stable RSS readings
that do not violate the distribution of the measured RSS signals. This also
becomes clear from the fact that they have not considered mobile stations, as

this would create large fluctuations in time, violating the assumption as well.

The work from Franklin et.al. [I7] is based on the unique signature a wireless
device emits when it is sending 802.11 probe frames. By capturing the probes
and creating a signature through a supervised Bayesian classifier, the technique
creates a fingerprint of the device. The number of probes required are about

11, which they empirically got around one minute

The motivation behind their work is that attackers can launch a driver-specific
exploit by identifying the driver used by the victim. However, this method is
also usable for spoof detection where one can create a profile list of authenticated

stations, and see if the profile changes from the original during use.

Unfortunately this method is easily bypassed where an attacker configures the

probe sending intensity, or executes a MAC masquerading attack.

3.1.2 RF based fingerprinting

The work from Brik et.al. [I8] suggests a fingerprint method is based on the fact
that every manufactured wireless network interface (NIC|) of the same model is
inherently different, even when made from the same manufacturer and with the

same components. This is because all such devices are build according to the

27

Chapter 3

802.11 standard, which allows variances within the components, as long as it is
within a certain threshold [I8]. The variances in these components differ from
NIC to NIC, creating the difference that is revealed in the proposed method
called Passive RAdiometric Device Identification System

By sampling on a per-frame basis, a series of metrics is extracted. Frequency,
magnitude and phase errors, in-phase and quadrature (I/Q) errors and SYNC
correlation are used to create the fingerprint [I8]. Matching this value against
a prerecorded fingerprint of the NIC, one can tell if the NIC is who he says he

1S.

According to the authors,

the PARADIS is capable of distinguish between more than 130
identically manufactured 802.11 NICs.

This method do not use standard 802.11 receivers but specialized variants of

802.11 sensors, thus making it harder to test this method in a live setting.

Because of this, it will not be discussed further.

3.2 Combination of Detection Methods

The authors of [3] have published a method to detect MAC spoofing in a reliable
and robust manner with a false positive rate of 0.5%. They are also one of the
few that have published results concerning mobile spoofing. All previous work

up until now have only considered static stations.

By keeping track of the sequence numbers for both non-QoS and QoS frames,
they proposed an algorithm where, if sequence number detection proved to be
inconclusive, they invoked a costlier method of determining the physical location
of an attacker and a victim. This costlier method uses RSS values from each

captured frame, feeds it to a localization infrastructure that can localize where

28

Related Work

the frame originated from, (i.e. a GPS location of the sending station) and that

way detect attacks.

The interesting part (from an RSS point of view) lies in the way they decide
via RSS that a MAC has been spoofed. Basically using the same method as
Faria, aggregating several RSS measurements from the same MAC address into
a unique fingerprint - they also utilize a localization system with the same
observed RSS values to find the physical location for where the packet originated.
Using an euclidean distance metering algorithm, and observing the change rate
of the positions, they can with a high degree of certainty decide if an attack has
happened or not, even when the station is mobile. The threshold for speed (i.e.
change rate) between measurement points are then used to detect if a station

is mobile or not.

The algorithm was published with the paper and is shown in fig[3.2] In the last
part of the algorithm, the system must use the localization feature to decide if

it is an attack.

Differential in this context means that the rate of change in the distance between
packets are measured. Any abrupt change in this distance will indicate that the
station is either on the move (for a specific speed), or the physical location

between the sending packets are so big that it must indicate an attack.

In a normal situation without any attacks, the differential Euclidean distance
between successive packets from a single source, static or on the move, should
be within a small threshold. This threshold should be based on a upper limit,

based upon the speed of the device and the time interval between measurements.

Additionally, the work from Gill [5] also deserves recognition. He combines
several detection methods (two based on RSS, a received signal strength type
and a RTS-CTS type) into a distributed specification based IDS. Additionally
he also counters Robust Security Network based attacks, which will not

be covered here.

The RSS based method uses a dynamic profile for each registered MAC;

29

Chapter 3

Algorithm: Find-Identity-Spoofs
Input : S: Sequence of wireless packets
Output : Attack/No_Attack
MACs = list of MAC sequence numbers in S:
if MACs in linear progression then
| return No_Attack;
else if MAC variation in valid range then
|_ return No_Attack;
/+* MAC sequences not in linear
progression; check frame types */
FTypes = frame types extracted from S;
if FTypes € {Management, Regular Data} then
| return Attack:
/% Frame type must be QoS-Data; examine
priorities */
QoS-Priorities = QoS priorities extracted from S;
if QoS-Priorities are all the same then
| return Attack;
/* QoS priorities are either mixed, or
mixed QoS-data and regular data xf
Perform differential localization for packets in S;
if Euclidean distance between successive packets exceeds
threshold then
| return Attack:
return No_Attack:

Figure 3.2: Proposed algorithm in [3] to detect identity spoofs in 802.11e-enabled
networks.

Every new RSS value observed for a node is to be compared against
the last observed value and the absolute difference is measured (RSS-
Ddiff). If the RSSdiff is abnormally high (greater than a pre-determined

threshold), an alarm is raised for that node

This RSSdiff detection method is the one I am going to test in later chapters.

His results showed that by combining several detection methods into a specification-
based model , and use distributed sensors, a reliable and accurate IDS can be

made.

30

Distributed Wireless Capture System

The setting I am working in is defined, and limited by Wireless Trondheim’s
available infrastructure. In cooperation with WT, I got two physical locations,
placed approximately 150m apart alongside Elgsetergate. Please see fig[f.1] For
convenience I labeled them “Northug” and “Bjorg” both in the figure and in the

code.

The Reasons to place the sensors on this location are several; both locations
have power and a wired network infrastructure. Also, I can place the sensors
as close to the APs under surveillance as possible. It is not too far away,
making trips to setup, experiment and troubleshoot easier. It also reflects an

urban environment in the sense that it is placed in the vicinity of a heavily

31

Chapter 4

b 1 Tl)
Gatehilder [kart Flyfota Hybric
‘ e

Figure 4.1: Placement of the two sensors, where each are placed 20 cm away
from the monitored APs

32

Distributed Wireless Capture System

trafficked road with traffic light-regulated intersections, and concrete buildings.
The amount of traffic from both transport and people will affect the sensors, so
will interfering wireless WLANS installed in the many homes and office buildings

surrounding the locations.

This is also a typical outdoor setting for Wireless Trondheim WLAN coverage in
Trondheim. They place two APs that transmits on different channels to create

a larger coverage area.

The sensors will forward captured frames back to the central server for process-

ing via the wired network.

The choice of hardware and software used for sensors and central server was
largely decided of what available equipment Wireless Trondheim could offer.

This will be further elaborated on in the next sections.

4.1 The Sensor

The sensor itself is a small form plug-pc called a Sheevaplug!. This is a device
with limited hardware resources in respect to processing power and memory.
Nevertheless, it is capable of running an Ubuntu Linux distribution, which in

itself opens up for many possibilities regarding available software.

Besides its 100 Mbit/s Ethernet interface, it has one USB interface for the WIFI
dongle. Detailed specification of the plug can be viewed in appendix[A-2.T] along

with how to make it run with Ubuntu Linux.

The Sheevaplugs were installed inside steel cabinets on the given locations along-
side the road in fig[f.I] The USB based sensor antenna was a low-cost WIFI
plug, extended with a 3m USB cable mounted approximately 2.5m off the ground

in a shielded plastic container.

See appendix for how it was setup.

IThe Sheevaplug is referred to as a “wall wart device”. A wall wart device is best described
as a bulky AC adapter, often supplied with many commodity electronic devices.

33

Chapter 4

Dream big,
Think small.

SheevaPlug™
Dev

. . y
Free your Imagination. buy now
SheevaPlug®

Figure 4.2: Sheevaplug as advertised on the www.plugcomputer.org, June 2010.

4.2 Kismet-Newcore

Because the Sheevaplug was capable of running Linux programs, I chose the
wireless sniffer program Kismet-ng [19] as a platform for retrieving captured
802.11 frames. I used the Kismet-ng release Kismet-2010-01-R1 which can
be downloaded from http://www kismetwireless.net/. Details of compiling and
configuring Kismet is found in the appendix

The main reason for using Kismet in my thesis is because of its distributed
sensory features, and its logging features. It logs any raw 802.11 captured data
from sensors in .pcapdump format, with it a log of where the frame was captured

from (i.e. which sensor captured the frame) in an additional .gpsxml log file.

Apart from its distributed sensory capability it also has some basic IDS features

that will not be covered in this work.

Kismet is a suite of three programs; For the server part it has the Kismet-server,
for GUI clients it has Kismet-client, and lastly for the drones the Kismet-drone
application. Kismet has the ability to aggregate captured data from sensors (the
drones) to a central server running the Kismet-server application. The drones
themselves runs kismet-drone for capturing frames via a wireless interface. The
Kismet-client application is used to connect to the Kismet-server, to view the

live data capture from sensors.

Important in respect to received signal strength (RSS|) values, Kismet can be

34

Distributed Wireless Capture System

configured to prefix Per-Packet Information (PPI) headers (see page for an
explanation of PPI) to captured frames, containing information from the phys-
ical layer, like RSS values.

To be able to run Kismet-ng, it must first be compiled (built) for use on the
desired platform. This process is slightly different for the Sheevaplug and a

regular x86 based computer.

There are two options for compiling on a Sheevaplug (or on ARM architectures
generally); one is to download source codes directly onto the ARM device, and
build the application with the device’s limited resources. The other is to cross-
compile on a regular x86 architecture and copy the finished application to the
ARM architecture.

The main reason for not building on the original architecture is that it is very
slow compared to building on a faster platform with more resources. I tried both,
and quickly ran into problems when cross-compiling. A compilation done at the
Sheevaplug worked best, and did not take more than 10 minutes. Compilation
of Kismet is straightforward and is described in Kismet-ng documentation on

the website.

Each of the components and their setup will be discussed in the next sections.

4.2.1 Kismet-drone

Each of the drones Northug and Bjorg was setup as shown in the configuration
files in appendix Note that the only difference between the files are
the name of the local capture device, and which port the application would be

forwarding traffic to.

In this work it is important to capture as many frames as possible, and the
default behavior of channel hopping in Kismet is not a wanted situation. This

is remedied by locking the WIFI plug in monitor mode, to a predefined channel.

Additionally a dummy gpsd process must be running to feed the Kismet-drone

35

Chapter 4

the GPS coordinates for the captures, specifically the GPS position of the sensor
itself. The coordinates helps to distinguish which frame was captured at which
sensor, and is added to every captured frame sent to the Kismet-server. In this
work it is important to note that the GPS coordinates used during experiments

are only used for identifying which sensor captured a corresponding frame.

Kismet-drone is started by executing kismet_drone. The program will then
listen on the configured port for any Kismet-server trying to acquire it. When

the Kismet-drone has acquired it, it will start forwarding captured packets.

Below is an example used to start monitoring on the Northug sensor. The
gpsfake command is running in the background for GPS data, the iwconfig
command locks the interface on desired channel (channel 1) and the kismet_drone &
starts the drone.

/usr/bin/gpsfake -o "-n -N" -r "r" /etc/gpsnorthugl > /dev/null 2>&1 &

iwconfig wlanO mode monitor freq 2.412G

kismet_drone &

4.2.2 Kismet-Server

The Kismet-server was run on the same Dell PC used during the project in
[4] with a Ubuntu 2.6.28-18-generic kernel. The configuration file used for the
Kismet-server can be viewed in appendix

Note the configuration for the drones, and their respective addresses:

ncsource=drone:name=Northug,host=127.0.0.1,port=2502
ncsource=drone:name=Bjorg,host=127.0.0.1,port=2503

It was necessary to forward drone capture traffic via a SSH tunnel because of
intermediate firewalls between the drones and the server (an overview of the
architecture can be viewed on page . The tunnel was created via a second

server called samson.item.ntnu.no, and then forwarded to the Kismet-server.

36

Distributed Wireless Capture System

While this was less than optimal, it was a quick fix in contrast to update the

access lists on the firewalls.

Please note that in a setting where the server can reach the drones directly, this
tunnel is not necessary. The author does not recommend this approach if it can

be avoided.

The command to create the tunnel (on the Kismet-server):

ssh -f -L 2502:129.241.95.221:2502 oysteipe@samson.item.ntnu.no -N
ssh -f -L 2503:129.241.95.222:2503 oysteipe@samson.item.ntnu.no -N

After the configuration and the setup of the tunnels, the Kismet-server is started
by typing kismet_server on the central server. It will then create the logfiles

as specified in the configuration file, and fetch captures from the drones.

If the Kismet-server was stopped, it would finish the current capture and write
it to file. Restarting the Kismet-server will cause it to start a new capture
with new files. In this way it is possible to periodically restart the application,
generating log files for later analysis. The trigger for restarting can be put in
crontab for time based restarts, or in a script triggering a restart when the files

exceeds a certain size.

4.2.3 Kismet-client

The Kismet-client is a ncurses? based GUI for the Kismet-server. It connects to
the defined port that the server is running on, and displays the current capture
on the server. It was not needed for the capture process to work, but was a

handy tool for verification during experiments.

A screenshot from a capture session is shown in fig[f:3] This is a GNU screen-

session® where the terminal window from both sensors and the Kismet-client

2A library that enables text-based GUI.
3From Wikipedia - GNU Screen is a free virtual terminal multiplexer that allows a user to
access multiple separate terminal sessions inside a single terminal window or remote terminal

37

Chapter 4

are in the same window. In this way it is possible to keep an eye on the sensors

and keep track of the capture process on the Kismet-server.

@& rybak : rybak 6
File Edit View Scrollback Bookmarks Settings Help
L - Kismet Sort View Windows A

Rybak Nexu

Networks
1

if there are

if the link i

& rybak : rybak

Figure 4.3: Screenshot of a capture session with Kismet-client. Left side shows
the output of the two sensors, while the right side shows the Kismet-client.

4.3 Architecture Overview

Overview of the system architecture is shown in fig/d.4l The top tier show

the wireless infrastructure with both WTs access points and the Kismet-drones

session. It is useful for dealing with multiple programs from the command line, and for
separating programs from the shell that started the program.

38

Distributed Wireless Capture System

installed 4 beside them. Stations communicate with WTs wireless network,

while the drone sensors monitor the traffic.

In tier two, all stations route its Internet traffic via the NOMADIX (in blue),
while all captured frames from the drones is routed through the SSH tunnel to

the Kismet-server (in red).

In the last tier, captured data is processed by the Kismet-server and written to
disk.

For the parser to get access to the logfiles, the Kismet-server has to be restarted,

thus releasing the files by writing any last capture data to them.

Now that all captured data is in the log files, the data can be parsed and

processed by the framework.

4.4 Code Framework

As mentioned in the introduction, the IDS program developed in [4] was never
designed for RSS analysis or treating packets from multiple sensors. Conse-

quently, a rework of the code had to be done.

Features that needed to be implemented in rss.pl were identified to be the fol-

lowing;:
1. Correctly recognize 802.11 frames and parse needed information from PPI
headers and regular frames from .pcap file
2. Parsing of Kismet-ng .gpsxml files.

3. Linking discovered packet to which sensor who captured it(via gpsxml
file).

4The sensor antenna is mounted 20cm from the WT AP antenna to get approximately the
same signaling conditions as the AP. This however is also reliant of the sensors sensitivity, as
will be apparent during tests.

39

Chapter 4

40

Sensor 1 range Serfor_z Elnge
-7 - o~ ~ g - T~ ~
' ~ e N
7 N 7 N
7 N / AN
s N/ Station \
7/ \/ \
4 Station /N \
/ \ \
// Station 5 - \
/ Station Station \
\
// Station \ \
!

! | Staton | Station “

II Station (R é | \ @i |
| |
|
Drofie 1 A Drone 2 pop
Wireless infrastructure
- I
Yy \ 77w.,ﬁ’7 —
‘/\,\ ¢ Tunneled traffic

— NOMADIX

The Internet Tunneled affic

Network infrastructure SWItCh

Application and server

IDS
application

Figure 4.4: Logical architecture of the distributed capture system.

Distributed Wireless Capture System

4. Methods for data extraction and calculation for detection purposes.

Source code is found in appendix [A41]

The program is started by giving two files as arguments; first a .pcapdump file,

the second a .gpsxml file. A typical execution looks like this:

rss.pl 1log-20100530-20-04-34-1.pcapdump log-20100530-20-04-34-1.gpsxml

In essence, the program compares the two files, and by per-packet basis matches
the captured frames in the .pcap log file with the lines in .gpsxml. The result

is a dataset which can be used as basis for further analysis.

4.4.1 Software Specifics

To be able work with MAC frames an IDS program must be able to communicate
with the wireless interface. The library Pcap (short for packet capture and
referenced as libpcap in *NIX systems) is open source and widely supported
in much of todays work within networking. It is an API enabling software to
capture packets onto the link layer. It can also write packet dumps to file, and

read files in pcap format for processing.

Using Perl and it’s wast support of libraries, including a wrapper to libpcap,
makes experimenting with network capture easy, and is my choice of a software

platform for experimentation.

For example, the ability to read files in .
pcap format is especially important for testing an IDS, as the dataset is non-

changing.

41

Chapter 4

42

Experimentation

Wireless Trondheim’s infrastructure is made up of a Cisco Unified Wireless
Network and a captive portal. The stations involved in the experiments uses
WTs logon based solution, which adds authenticated stations to its whitelist on
the NOMADIX (see further discussion of WTs infrastructure in [4]).

Attacker and victim uses standard off-the shelf DELL laptops with wireless
transmitters, with or without QoS provisioning (se chapter[2.4.2)). The antennas
on the laptops are omni-directional.

The wireless distributed system is setup as explained in chapter [4]

43

Chapter 5

5.1 Design of Experiments

The experiments are divided in two parts. The first part consists of control
experiments with no attacks. The second part consists of attack experiments
with freeloading attacks (see [4]). Both sensors are operative and monitoring in

control experiments 1-2 and in attack experiments 1-5.

Note that a special set of experiments was done for just one sensor in control
experiment 3 and in attack experiments 5 and 6. This was decided largely
because of suspicion of low sensor sensitivity with loss of frames as a result.

This will be further elaborated in later sections.

Control experiments was executed with a single laptop sending packets contin-
uously. Attack experiments was executed with the victim on the same spot
as in the control experiments, while the attacker was attacking from different
positions. All attacks was based on the freeloader attack, where the attacker

spoofs the victims MAC address.

During attack experiments, the attacker is free to change MAC address, victim
is not. Both stations generate traffic by primarily generating ICMP packets to
an external site unless otherwise stated. The duration of each experiment is

given in seconds in the resulting plots.

During each experiment a new Kismet-server instance is started at the central
server. It will then connect to the two drones and start capturing frames to file.

After the experiment is finished the Kismet-server program will be terminated.

The sensors will be in monitor mode and set to a specific channel. All captured
data will be forwarded to the central Kismet-server where it will be aggregated
into log files as described in section [f] about Kismet. In this way, there will be

reproducible attack data for later testing of the IDS detection methods.

After these are executed and gathered as logfiles at the centralized server, the
script will be used to see if any MAC spoofing attack is performed. The de-

scription of each case is explained below.

44

Ezxperimentation

Because of the low number of sensors, and to be able to capture as many frames
as possible, I must concentrate on monitoring one channel at each scenario.
Both sensors will be set to monitor channel one, or frequency band 2.412 GHz.
To further ease the testing, the station used in the test will be forced to use

channel 1 as well.

In a more natural scenario, the station would roam between the two towers when
the sensitivity threshold is low enough, causing it to change frequency. If one
were to capture frames in such a scenario, the sensor should change its listening
frequency based on a channel hopping algorithm [I0], or simply just install
another sensor operating at the desired channel. Because of some indication of
lost packets on both sensors detected throughout the experiments, the sensors
is restarted and setup anew between sessions. Each gap of lost frames in the
results will show to be about 10 seconds, correlating to error messages on the
drones themselves. Possible causes can be infrastructure related, e.g. with the
SSH tunnel used, or software based issues e.g. with the drone installation on
the Sheevaplugs or the Kismet-server. The effects could be negligible from my
point of view, but should be considered if new experiments with the same setup

is to be done.

5.2 Execution of Experiments

A short explanation of the key elements in each experiment is shown. All
experiments was executed in the area as shown in figlfI] on page 32] The
setup of the stations is described in appendix [A:3:2] The setup and commands
used to execute attacks are in appendix

Regarding the traffic mix from both attacker and victim stations, experimen-
tation with different programs ensued before settling on a more stable traffic

mix.

To generate enough frames for the experiments, the clients must transfer data.

45

Chapter 5

Experimentation with different programs like ping , scp and regular browsing
was tested in the first experiments. Unless stated, both attacker and victim
stations generates ICMP packets by using the mtr! program for linux. Usage of
the flood option in ping was considered, but was deemed too aggressive for these
experiments. The attacker was always contacting www.db.no and the victim/s-
tation was always contacting www.vg.no. This was done to differentiate between

frames in Wireshark analysis, and was not used in the detection methods.

Control Experiments The station was stationary at a bus stop in the middle
of the two sensors. In control experiment 1, the traffic mix consisted of pinging
www.vg.no and copying a large file via scp to an external server, while the

control experiment 2 used the mtr program.

In control Experiment 3 the station was positioned close to the sensor Northug
during the session, about 3-4 meters. The sensor Bjorg was disabled during this

session via commenting-out the nsources option in the Kismet-server config

file.

Attack experiments The victim station was placed at the same position as
in the control experiments. The attacker was positioned approximately 50 meter

away from the victim.

In attack experiments 1 and 2 the attacker and victim had a traffic mix of both
web browsing, pinging and file copy with scp. This mix was abandoned in later

experiments

Attack experiment 4 lasted 25 minutes, where the first 10 minutes consisted
of an attack at the same spot as before, and the last 10 minutes the position
was changed. The attacker was not transmitting during the move to the new

position, so all attacks was when the attacker was not moving.

IMyTraceRoute - a different version of traceroute. Keeps sending ICMP packets for decid-
ing latencies between routes to the destination.

46

Ezxperimentation

5.3 Data Analysis

After the experiments was done, I needed a way to analyze the data. By using
the framework from section[4-4] the logfiles from each experiment was processed.
By using R to generate plots and statistics from the log files, I was able to
visualize the results, easing the analysis of the data. Code for generating R

graphs and statistics are included in appendix [A.4.2]

After each experiment a pdf file with plots of the following was created:
1. Differential RSS values, RSS samples and Sequence number plot for Bjorg
sensor

2. Differential RSS values, RSS samples and Sequence number plot for Northug

sensor
3. IDS plots
4. Density distributions of RSS values plots

5. Normal Q-Q plots

These files was used as basis for analysis, together with numerical generated

data from R.

47

Chapter 5

48

Results

This chapter will illustrate the results from the experiments conducted on the
sensor network. All experiments will be illustrated with plots from each sensor
that will give a foundation for further improvement of the detection methods

using RSS measurements.
An explanation of the plots follows.

I illustrate the power differences between frames in the first plot, the sampled
RSS from each frame in the second plot. Lastly, plots of sequence numbers per
frame is shown in the last plot. Higher values in dBm in plots indicate a stronger
signal. A line is added to the RSS sample plots, resembling mean values at the

corresponding times.

49

Chapter 6

Note that when the system misses packets (for some reason) it will show as

empty gaps in the plots at corresponding times as explained in chapter

In the attack experiments the sequence number plots will show if a MAC address
is sending with deviating sequence numbers. Note that the sequence number

plot wasnot considered in analysis of MAC address spoofing.

All frames recorded are from the same station used in the experiments with
MAC 00:22:fb:89:5a:36. An attacker will also use this address during attack.

6.1 Control Experiments

All control experiments are used as a basis for comparison later when analyzing
data from the attack experiments. It also serves as an indication of how well

the sensors work in capturing frames.

As an initial note,it seems that for some reason the sensors (both of them)
are reporting RSS values in even numbers. This is very unfortunate, as it will

decrease the resolution of the RSS measurements.

6.1.1 Control Experiment 1

The results from the experiment are shown in fig[6.1] fig]6.2] and table

Notable observations Differential RSS readings from both sensors seem to
be clustered in the area of -10 to +10 dBm. This is a much higher variance
compared to the results from Papini [20], where the variance were in the region
of +/- 5dBm. Although the sensors only report even numbers, it does not

explain the large difference.

Power samples at both sensors are fairly constant in local areas, shown with

steady means . Power samples also show a correlation where Bjorg has a drop

50

Results

dBm
0
L

-20
L

dBm

-80
L

-90
L

3000

Sequence number

10 20
L

dBm

-20 -10

dBm

-80

-90
L

3000
L

1000
L

0
L

Differential RSS values — Sensor Bjorg

x X) XX g x KX X xpx

$ x X kS XK
»

%

‘
% iig x
- ofxookx W x M
T T ﬂ?&i X% £,
X

x

100 200 300 400 500 600

Time in seconds

RSS samples - Sensor Bjorg

Time in seconds

Sequence numbers — Sensor Bjorg

1000
L

0
L

. /’ s ’ R
- ”~ P s 7 .
e . / .
- 2 - . /. - Fd /
o, L4 °
. 4 . ’

.
T T
100 200 300 400 500 600

Time in seconds

Figure 6.1: Control experiment 1, sensor Bjorg

Differential RSS values — Sensor Northug

0
L

%
x x
x Y T J
x
; g T R 3
x
M Xx)&xx ¥x S o xx otk E x % Hx
P
R A pm g Rt = g
x X X X% X S "%
& * Yo o xyx
x xx x
] 100 200 300 400 500 600
Time in seconds
RSS samples — Sensor Northug
m scx
L = e
- X XX oo XX_ _ _ _ _ o _ X 000 0708wk
T~ — S ARl Rtk T
= RN R T m B URS REONE « = I
P R mpmO [S o S - x
« x X X x % %
» x 1
X X
o 100 200 300 400 500 600

Time in seconds

Sequence number — Sensor Northug

Sequence numbers
L

Time in seconds

Figure 6.2: Control experiment 1, sensor Northug

o1

Chapter 6

Experiment ‘ Sensor ‘ Frames ‘ Std.dev
Control Experiment 1 | Bjorg 2570 4.8886
Northug 2457 4.7849
Control Experiment 2 | Bjorg 860 | 4.8847
Northug 5910 4.6352

Table 6.1: Summary table for control experiment 1 and
2.

in power measured, at the same time as Northug power measures increases.
This indicates that the environment of the experiment changed significantly at
that time.

Samples that actually are registered shows a normal sequence of numbers, in-
creasing as it should without additional multiples of sequences. However, there
are repeated clusters of numbers appearing regularly on both sensors. After
closer scrutiny of the logfiles together with viewing of the .pcapdump file with
Wireshark, there seems to be repeated 802.11e QoS Null frames that is be-
ing sent from the station. The 802.11 standard defines sequence numbers in
QoS(+)Null frames to be set to any value, [I, p.66], so this explains that
anomaly. All subsequent graphs show the same pattern.

6.1.2 Control Experiment 2

The results from the experiment are shown in figf6.3] fig[6.4] and table

Notable observations The sparse graph at sensor Bjorg compared to Northug
is explained by the number of sampled frames at the sensors. Frame count for
Bjorg was 858 and Northug 5904.

The high sample rate on Northug helps in giving confidence that the signal did

52

Results

Differential RSS values - Sensor Bjorg

x x o oX x X xx
1 & X XX x ;%X‘;xx: xx o x§ 5
| X X x x %

§ o el e omloo R e o o Btk W%fﬂg“ ;?;'?'ﬂ
24 X R xx x@& X X x xxi& N “Xxxxx &*x
] o *

§ % .
.
] 200 400 600 800 1000
Time in seconds
RSS samples - Sensor Bjorg
N
o] . x X x

EF ii:a %U_M. s o ox

S cEFEEIE Lo o0 e ol o e v - o f S R M X
I L. - SO, W Fox- bizioak Sl S S S o e RN o

— x
] 200 400 600 800 1000
Time in seconds
Sequence numbers — Sensor Bjorg

3 4 °

€3 - PR
g |

2" -~ .-o" -

8 . —

c - . -

g g | g . L. . . Py -

E -~ e -

(2B (A o’ -ttt

.
[200 400 600 800 1000
Time in seconds
Figure 6.3: Control experiment 2, sensor Bjorg
Differential RSS values — Sensor Northug
<
<

£

@ © -

3
El
:

S
g |
.
[
Time in seconds
RSS samples — Sensor Northug
2
£ R
g ']
3 |
3]
i T T T T T T
] 200 400 600 800 1000
Time in seconds
Sequence number — Sensor Northug

o 4

2

E §-

§E g

2

s A

3

S s e id

g & ~ . - > < Kide 53

L -~ ~°

T T T T T
0 200 400 600 800

Time in seconds

Figure 6.4: Control experiment 2, sensor Northug.

Chapter 6

not differ more than +/- 10dBm, with an exception in the end of the experiment.
Bjorg sensor showed some indication of the same variance, although it had few

captured frames.

Power sampled at both sensors show a slightly changing mean. At around
780 to 860 seconds Bjorg mean increases slightly, while Northug loses captures
altogether. Around 900 to 1100 seconds the RSS mean at Northug suddenly
gets a rising mean, with some larger differential RSS values, while Bjorg mean

seems constant.

Sequence graphs show indication of one station sending with the MAC address.

6.1.3 Control Experiment 3 (Northug only)

Since the resolution from experiments when the two of the sensors were captur-
ing were inconclusive, it makes sense to test if using a single sensor only will give
any conclusive answers. This time both attacker and victim was in the vicinity
of the sensor. The victim was approx. 2m away from the sensor. The attacker

was approx. 30m away the sensor. See figl6.5] for illustration of placement.

The results from the experiment are shown in fig[6.6] and in table [6.2]

Notable observations The graphs show a clear change in regards to variance
in the differential RSS values. The frame count is also much higher than the

other control experiments (10857 frames).

These plots resembles the results from Papini [20] with little or no deviation.

6.1.4 Analysis

Comparing the values from the experiments I get the following:

By studying the table[6.2]it is clear that the sensors capture frames more readily

when the source is much closer, and also get less variable readings.

54

Results

dBm
-5 0 5 10

dBm

Sequence numbers

-15

-80 70 60

-90

3000

0 1000

Figure 6.5: Placements of attacker and victim

Differential RSS values — Sensor Northug

e X XXX o
X
x - X X X ¥x
¥ x
xl & - == ﬁl—l
% X ooy XX L3 gx E3:]
o M Xy x X)
M x .
xx x x
T T T T T T T
o 100 200 300 400 500 600
Time in seconds
X X %
= = x X X o x
= X x = = X %
x xx ox R xx xx w X x & x Xix
X owomd ¥ oo 3k *oc Sk sooocx B ook x X PR TN T
DA o S e Dt e e e — 1
R ER ERE o
e R s i Eam—— T e —— e e
TS IO T T R N M X MO E—R 0 % o Em o ok e %%
Rk e Tl kR SR R 5 O R sn R e =
| b sk Yo KR XXX L ol s x
% x xR XM x Kk o R x o TR g X x X
4 xR K o x oK x Xy x o i S K x
o Kok K " x % X x o * X
X x] X x X x X x % x X Ko &
ER b Ix x x ®
x xx x < X x x
x x
T T T T T T T
o 100 200 300 400 500 600

Time in seconds

Sequence number — Sensor Northug

\

o 100 200 300 400 500 600
Time in seconds

Figure 6.6: Control experiment 3 (Northug only)

55

Chapter 6

Experiment Sensor ‘ Frames ‘ Std.dev
Control Experiment 1 | Bjorg 2570 4.8886

Northug 2457 4.7849
Control Experiment 2 | Bjorg 860 4.8847

Northug 5910 | 4.6352

Control Experiment 3 | Northug | 10857 | 1.0850

Table 6.2: Summary table for the control experiments

Nevertheless, this is the base measurements that is to be measured against the

results from the attack experiments.

6.2 Attack Experiments

6.2.1 Attack Experiment 1

Both attacker and victim were non-moving while the experiment lasted. The
victim station was placed at the same spot as in the non-attacking experiments,
in the bus stop. The attacker station was placed on the curb some 50 meters
from the victim. Attacker was closest to Northug sensor, while the victim was

closest to the Bjorg sensor.

The first minutes in the beginning of the experiment was used to prepare and

walk over to the spots before actually executing the attack.

Both attacker and victim were pinging db.no and vg.no respectively to generate

generate ICMP messages, and browsing the web.

The results from the experiment are shown in figf6.7} [6.§ and table

56

Results

dBm

-20
L

-40
L

dBm

-80
L

-90
L

Sequence number

40
.

dBm

-80

-90
L

3000
L

1000
L

0
L

Differential RSS values — Sensor Bjorg

3000
L

1000
L

0
L

x x00x
X X %X”(X X X X X
= x ko= :&rx:mk = o .? %x{% B
X X ; 'X R x X oxox
X x o
X
T T T T = T
200 400 600 800 1000
Time in seconds
RSS samples - Sensor Bjorg
x ox x
x x o x x 00X 0w 000 ook mooox K wok X K - = o
X o m ool o E xRk e ol son ik 4 B - - = = = e WK
- - - S - BRI E RTREC TR S IR R I o o =5 x
X x X X [ol I e D St e S % i
o x % H - S X 3
= X X
T T T T T
200 400 600 800 1000
Time in seconds
Sequence numbers — Sensor Bjorg
e
; 7/ ~ .
. o
o 4 , :
B
: / .
s - Ld
P - .
P 'l r] c/f - 'l / / K '.

1000
Time in seconds

Figure 6.7: Attack experiment 1, sensor Bjorg.

Differential RSS values — Sensor Northug

o R MR
x
x
¥ Xy o g0 g e R . ’&Zﬂ* . X::H‘?
- * xxx”nmxxxugﬁ Wk! "m« n i
X ox X x x e xx)n- X m” X m x 9
x X 0k X XX X XX
xx x*X *x *x
<
200 400 600 800 1000
Time in seconds
RSS samples — Sensor Northug
. ol
oo G, O
— x x . it X
B T R e, R X x
T T E R BN R R O %
PR T S N - K P
A R T R L % X 4
& Xy x X « X
s« ? X
= x
= %
x
200 400 600 800 1000

Time in seconds

Sequence number — Sensor Northug

Sequence numbers
L

. / sl
- J "
e e R Avr‘... ot .

ff

200 400 600 800
Time in seconds

Figure 6.8: Attack experiment 1, sensor Northug.

57

Chapter 6

Notable observations Studying the table the standard deviation shows
twice the readings compared to the control experiment on Northug. One may
come to the conclusion that Northug is receiving the signals from the attacker
more strongly than Bjorg, causing the relatively low packet count. This is
further verified by the sequence-number plots, were Bjorg seems to only capture
most packets from one station, causing the rapidly increasing sequences, while
Northug clearly (from approximately half-way in the plot) receives frames with

two different sequence numbers.

The two sensors’ delta plots show that between 0 and 380 seconds there are
little traffic. Because the victim station was a Linux client, it did not have
any active firewall in place, and would send a TCP-Reject message, promptly
disconnecting TCP sessions initiated by the attacker when trying to browse or
initiate other TCP connections. By executing the same IP table command as
in appendix [A:3.3] this was solved. This happened halfway in the experiment,

and correlates with what the plots are showing.

Comparing the two sensor’s power delta plots after the IP table command, we see
that Northug’s captures vary more strongly than Bjorg’s, causing the outliers
to vary between -45 to +30 for Bjorg compared to -53 to +53 for Northug.
Northug also has more captured frames than Bjorg, 2529 and 1555 respectively.

6.2.2 Attack Experiment 2

This experiment was conducted right after attack experiment 1, and the traffic

mix was the same.

The results from the experiment are shown in fig[6.9] fig6.10] and table [6.3]

Notable observations From table [6.3] we can see that Northug captured
most of the traffic in this experiment. Because Northug sensor has so many
more frames captured than Bjorg, it is natural to concentrate more on Northugs

results.

58

Results

10
L

dBm
0
L

-20 -10

dBm

-80
L

-90
L

Sequence number

40
.

dBm

-80

-90
L

3000
L

1000
L

0
L

Differential RSS values — Sensor Bjorg

=¥ *x
X o x “
Ay K xx W xx oo % x p
= = f x oy # §;Xx % inx;é " o = X ok
& %5 O % e o XK T X Xy x XX
X x
x x xxg;{ Hx X x % X x x
X Xx X L X
Hom
T T T T T
200 400 600 800 1000

Time in seconds

RSS samples - Sensor Bjorg

x X
ok H
= x o X % x
o B Mo mid wk Xx o ox ok x X
it Sl et TR T TIIR TE heboa y ik B g x o = E =
x x xx OROX XX e Y e £ I |33 - 4
-4 X x R TR TR LXK 2 0
X % X X x X X x O
X x b
T T T T T
200 400 600 800 1000

Time in seconds

Sequence numbers — Sensor Bjorg

3000
L

1000
L

0
L

. . @ - -

T i

.
/ oot eeme "
’° : : .. -
e
L4

) o cmme

- PR T « R P
200 400 600 800 1000

Time in seconds

Figure 6.9: Attack experiment 2, sensor Bjorg.

Differential RSS values — Sensor Northug

x x % X X
o il o

X X X x XXX

. ;

: R & e i e
2 XX X X X X000 YK -
% x Ko x

200 400 600 800 1000

Time in seconds

RSS samples — Sensor Northug

Time in seconds

Sequence number — Sensor Northug

Sequence numbers
L

- omeme

K - P - g —':—/

T T T T
a 600 800 1000

Ld - M
et et T
o o -:?-.‘ P
e otmmumd el okl bl "
T
200 00

Time in seconds

Figure 6.10: Attack experiment 2, sensor Northug.

59

Chapter 6

Experiment Sensor ‘ Frames ‘ RSS diff. Std.dev
Attack experiment 1 | Bjorg 1555 5.3500
Northug 2562 11.9106
Attack experiment 2 | Bjorg 984 5.1575
Northug 8047 12.1045

Table 6.3: Summary table for attack 1 and 2.

If one were to analyze Northugs power deltas, one can see that there are huge
differences from the control experiments. The standard deviation also suggests
this.

This observation only holds for parts of the experiment though, as one can see
that there are periods where no traffic are registered at all. It seems that both
sensors lose packet captures in the last segment of the experiment. I suspect
that this has something to do with the infrastructure delivering packets to the

central server.

Clearly, the attacker (nearest Northug) had the best signaling conditions for
Northug to capture, as one sees from the strong signal level registered in the

power samples plot.

It is also apparent that now Northug captures more frames than the last experi-
ment. The attack itself could explain this, as both attacker and victim generated

more traffic.

6.2.3 Attack Experiment 3

Both attacker and victim were in the same positions as the former two attack

experiments.

This time the author also had a Macbook to control the experiment. Viewing

registered traffic at the central server via Kismet-client confirmed that the sen-

60

Results

10
L

dBm
0
L

-20 -10

dBm

-80
L

-90
L

Sequence number

0
I

40
.

dBm

-80

-90
L

3000
L

1000
L

Differential RSS values — Sensor Bjorg

% X w
X x x
xR X KK Rxxx g x X x x x XK x ok x xx
X% xe X x X xx x X x
;xpy xxgg}i xg&ﬂ&;& XX x m om xx Xx x 0¥ m moomo g F o« P x =
xx X el «
. 8 oL x X X X % x x¥ XX x
k " X x M
X xox x x "oy x x
x X x x
x x x
T T T T T
o 200 400 600 800

Time in seconds

RSS samples - Sensor Bjorg

x x
X S
PR SRR - £ O SN 5
x oo ud . - - -
s S WX ETRE T B o o
KT e o x X %X
PLETIORE - g 4 * x
% X
¥ X X x
x
T T T T T
] 200 400 600 800

Time in seconds

Sequence numbers — Sensor Bjorg

3000
L

1000
L

e
-

. e
ves ®
. .o
- -
4 - .
Lo .
. .
. R
. - .
- Lo .
T T T T T
0 200 400 600 800

Time in seconds

Figure 6.11: Attack experiment 3, sensor Bjorg.

Differential RSS values — Sensor Northug

x x X x x
X x
XXX){xxgﬁ X EAk X
b %&; x%v;”ﬁ();x X
350 *x“ oo
g ‘& =
RO X
SR ok o % ROBR0RK
K omox xR X
x x
T T T
400 600 800

Time in seconds

RSS samples — Sensor Northug

Time in seconds

Sequence number — Sensor Northug

Sequence numbers
L

Time in seconds

Figure 6.12: Attack experiment 3, sensor Northug.

61

Chapter 6

Experiment Sensor ‘ Frames ‘ Std.dev
Attack experiment 3 | Bjorg 484 5.3562
Northug 4453 | 12.7301
Attack experiment 4 | Bjorg 3297 | 7.1216
Northug 2014 | 4.1790

Table 6.4: Summary table for attack 3 and 4.

sors captured frames at all (see figd.3). As a note, Macbook wireless access
operated on the eduroam network, which was on a different channel than the

experiment.

The results from the experiment are shown in figl6.11] fig and table

Notable observations Again Bjorg sensor did not capture as many frames
as Northug. The variance at Northugs power deltas however do give a strong

indication that an attack is ongoing.

6.2.4 Attack Experiment 4

This experiment is made up of two attacks. First part consists of a regular 10
minutes attack as the previous attacks, the second part the attacker logs of the
network, and walks to a position closer to Bjorg sensor, across the road of the
victim. Then another 10 min attack is executed, followed by 5 minutes of no

attack where only the victim is online.

The results from the experiment are shown in fig and table

Notable observations Because of the longer timespan than the other experi-

ments the standard variance is lower than other attack experiments. The higher

62

Results

Differential RSS values - Sensor Bjorg

%
s
s « XX w x x
H] " 0%,
£ 9S4 x x axm&xx’ww‘%m" %"’é“ x X x"x 0% X
& - x N s HXXXX }(xxx)i’k’v«x Xmemm
T ° o K *w *"2"“’%1‘2%%; i *”ﬁ‘m %
1 x { x i(x Mxx
§ 4 s . xx
. . . .
] 500 1000 1500
Time in seconds
RSS samples - Sensor Bjorg
]
£ R4 x 2>< X ot x
&] -4Et- i s a4
8 x
] x
Fi : : :
] 500 1000 1500
Time in seconds
Sequence numbers — Sensor Bjorg
5
)
R
g B .
ERE-E .
g - .
[| ‘
o
Time in seconds
Figure 6.13: Attack experiment 4, sensor Bjorg.
Differential RSS values — Sensor Northug
El B x xm* b XX.H:M H@U,@ T Fx PEG
- R { xx Boam o gl 538 t
c X x o
@ o & %% "*iﬁm’gg i‘% ;&%ﬁ Wﬁm%? cxod g X k”xé**&w*”x
X x . ’i Snt X ¢ x § e x
71 x B AT { L
S xxﬂx *xn‘*&&yxxwmx‘mx‘ x x L
o 500 1000 1500
Time in seconds
RSS samples — Sensor Northug
2
£ R4 ook x Xx e ow o x o x xx
E 5 " o B ol & x deood B osouxx xR - BoxE S
8 4 -pE--E LTINS - S S S - = PR
s] 1% k2 W T TR Try xR B ORE % o g B x
; i ¥ PR I N NN S S L S i H
] X - S ¢ < %« £oxEy ix X ox x
N LR H % % x WONE
T T T T
0 500 1000 1500
Time in seconds
Sequence number — Sensor Northug
o .] ’
(7] l "
2
8 | .
5% Y
@ E| 4 . N o
§ g ’ <
- .. - 63
5.1 R | s

Time in seconds

Figure 6.14: Attack experiment 4, sensor Northug.

Chapter 6

frame count at Bjorg is expected, as the attacker moved closer to it during the

experiment.

6.2.5 Attack Experiment 5 (Northug only)

Differential RSS values - Sensor Northug

%
<
s d
£
o
T °1
N
Time in seconds
RSS samples — Sensor Northug
7 X XX
e x % w Bk xx x x
3 . Xox % o o Bk o momok X X x o xom M m xx
? oo lmon w o o e i B e i 10t o ot ok wode o i s o ol
i ook S o ol K S B, Tt o S S o i
e e . e e e e & —— =
° e
E T PR i et N e —————$ s R s ey
7 =4 b
a '] X ROOORX I (R it 100 T B IR L I I T M e oK MOk
S Ao x5 g R X O x o xox R T SR T X QUG X SO
o Bk X K o BREOE o Bk x ol R O S e xR OO BX
84 X A% 0% e % xx Xk o % % P R |
<] x x S ox X x % X o
R T T T T T
3 200 400 600 800
Time in seconds
Sequence number — Sensor Northug
o
5 /
2 o
§ &1
2
o 4 -
5 = 'J/ - -
s g = =~ i /‘ -
ER]
= -
@ = —rr
* o e e TR T ¥ xomxx woxxx x x

04

200 400 600 800

Time in seconds

Figure 6.15: Attack experiment 5 (Northug only).

This experiment must be seen together with control experiment 3, as it was exe-
cuted with the victim on the same place. The attacker was some 30 meters away

across a road that was mildly trafficked, see fig[6.5 for illustration of placement.

In the first 6 minutes of this capture, the victim was alone in transferring packets.
After 6 minutes the attacker commences its mtr db.no and continue to do that

for 10 minutes.

64

Results

Experiment ‘ Sensor ‘ Frames ‘ Std.dev

Control Experiment 3 | Northug | 10857 | 1.0850

16218
26497

3.6689
2.40167

Attack experiment 6 Northug

Northug

Attack experiment 5

Table 6.5: Summary table for attack 5 and 6 with a com-
parison of the data from the single sensor control experi-
ment.

The results from the experiment are shown in fig and in table

Notable observations The number of frames is more than doubled compared
to the control experiment as shown in table so has the standard deviation.

Also the graphs show clear signs of larger differential RSS values, clearly a sign

of an attack.

The sequence number plot also support that there are two stations on the same
MAC address.

6.2.6 Attack Experiment 6 (Northug only)

This experiment was conducted immediatly after the last one without interrupt-

ing the attack. Measurements lasted precicely for 10 minutes.

The results from the experiment are shown in fig and in table

Notable observations The frame count is 10k less this time, with a stan-
dard deviation of 3.6 vs 2.4 from previous experiment. Differential RSS values
show more or less constant differences of +/- 10dBm, 5dBm more than control

experiment 3. Again a clear trail of two linear sequences numbers is present.

65

Chapter 6

Differential RSS values — Sensor Northug

7
<
s
€
[
El
T T T T T T T
[100 200 300 400 500 600
Time in seconds
RSS samples — Sensor Northug
$ 4
£ 8
[
E
?
s
7

Time in seconds

Sequence number - Sensor Northug

3000
L

1000
L
1}

Sequence numbers
L
]
\
' \ \

/
- XX X X XX x X X X x F— X X XXXA

0 100 200 300 400 500 600

Time in seconds

Figure 6.16: Attack experiment 6 (Northug only)

66

Results

Experiment Sensor ‘ Frames ‘ Std.dev
Control Experiment 1 | Bjorg 2570 4.8886

Northug 2457 4.7849
Control Experiment 2 | Bjorg 860 4.8847

Northug 5910 | 4.6352
Control Experiment 3 | Northug 10857 1.0850

Attack experiment 1 Bjorg 1555 5.3500
Northug 2562 | 11.9106
Attack experiment 2 Bjorg 984 | 5.1575
Northug 8047 | 12.1045
Attack experiment 3 Bjorg 484 | 5.3562
Northug 4453 | 12.7301
Attack experiment 4 Bjorg 3297 | 7.1216

Northug 2014 4.1790

Attack experiment 5 Northug 26497 2.4017
Attack experiment 6 Northug 16218 3.6689

Table 6.6: Summary table for all the experiments.

6.2.7 Analysis

As table show, it is evident that there are significant differences between

measurements when a station is far away from the sensors.

6.3 IDS method testing

From the control-, and attack experiments (section and section [6.2)) it is
clear that the most reliable metric for spoof detection in RSS context could be
the rate of how differential RSS (RSSdiff) changes in a certain period of time.

67

Chapter 6

This is also supported by previous work done by Gill [5].

Using the test data, I implemented a simple RSSdiff detection method based on
differential RSS values and evaluated how good a detection method it was. The
rss.pl script was modified with a subroutine to calculate how many outliers

(deviants) were outside a specific threshold, over a certain period of time.

The idea was to see if this way of counting deviating RSSdiff values could be a

reasonable detection metric.

For such a method to not generate to many false positives or false negatives, the
differential RSS threshold must not be too small or too big. The time window
that the method operates in should not be to big either. During this time
window the algorithm simply counts if the number of times subsequent frames
have a RSS value differing with more than a certain threshold. A time period

of 10 seconds was decided after some initial testing for both cases.

Studying the results from the experiments, a threshold value of 15 dBm was
considered abnormal for the experiments with two sensors, and 6 dBm for the
single sensor experiments. The threshold for the single sensor experiments was
decided from the results from Papini, where he seldom got readings over 56dBm
in non-attack settings. 6dBm and not 5dBm because of the even-numbering
issue with the sensors, to get an even more conservative threshold. This means
that subsequent frames with RSS values deviating with 8 dBm or more will be

flagged as an attack.

Note that the the x-axis has no relation to the x-axis in former plots, i.e theay

are not time-comparable with them.

6.3.1 Detection Method on Control Data

All deviation plots show counts under 20 for the control experiments.

In control experiment 1 fig[6.17] the highest count for Bjorg sensor was 12 during

only a few occurrences at the end for sensor Northug, no bigger than 8.

68

Results

For control experiment 2 figl6.18] the most notable graph is the sensor Northug,
indicating almost no deviations until the end of the experiment where it touches

the 20 count mark.

The single sensor experiment in fig[6.19] shows some deviances, but still under
20.

6.3.2 Detection Method on Attack Experiments

From the first attack experiment fig[6.17] Bjorg sensor show no counts over 20,
while Northug sensor clearly has increased both the frequency and the counts
of deviations. While only a couple of counts are over 20, there seem to be more

frequent counts altogether between 30 - 70.

Attack experiment 2 figl6.21] show Bjorg sensor with only one instance of a
count over 20. Northug sensor has both frequent counts of deviation but also

high counts altogether in each bin.

In attack experiment 3 fig[6.22] the differential RSS values registered at Northus
continues to be frequent and with high counts. Bjorg sensor seems to have 10

fewer bins than Northug, probably caused by missing capture frames.

In attack experiment 4 (see figl6.23) there are none registered deviances at
Northug, and only a few at Bjorg.

In the final attack experiments 5 and 6 (see page , the differences are both

frequent and many in each bin.

69

Chapter 6

IDS data Sensor Bjorg

c 21
S g4
g °
S <
3 e
a a4

Pl ‘ :

° 10 2 0 w© 50

Time in 10 sec bins
IDS data Sensor Northug

c 21
2 g4
g °
S <
3 e
o g4

o4 | |

Time in 10 sec bins

Figure 6.17: Detection method on control experiment 1

IDS data Sensor Bjorg

g4
<
S g4
g °
3 29
] a4
° T T T T T T T
o 10 0 2 0 50 & 70
Time in 10 sec bins
IDS data Sensor Northug
c 21
S g4
g °
S o
3 2
a a4
oL . . . Il
0 0 o 0 o

Time in 10 sec bins

Figure 6.18: Detection method on control experiment 2

IDS data Sensor Northug

100
L

Counts over 6 dBm

Time in 10 sec bins

70 Figure 6.19: Detection method on control experiment 3 (Northug only)

Results

Deviation

Deviation

Deviation

Deviation

IDS data Sensor Bjorg

8
e
° . . I ol
T T T \‘ T T ‘ T
0 10 20 30 40 50 60
Time in 10 sec bins
IDS data Sensor Northug
2
ol bl
T T T

T T T
0 10 20 30 40 50 60 70

Time in 10 sec bins

Figure 6.20: Detection method on attack experiment 1

IDS data Sensor Bjorg

o
e
ci\ - T ‘ T \‘ T \
0 10 20 30 40 50
Time in 10 sec bins
IDS data Sensor Northug
‘] H ‘
o] | ‘\‘ I H\“H \ H ‘HH il
T T T
20 40 60

80

Time in 10 sec bins

Figure 6.21: Detection method on attack experiment 2

71

Chapter 6

72

Deviation

Deviation

Deviation

Deviation

IDS data Sensor Bjorg

8

07\ ‘\‘ T — ;‘ - T T
0 10 20 30 40 50

Time in 10 sec bins
IDS data Sensor Northug

2

-] mm“\\\\\\“h \\H\m\m‘w \HHH“\‘\‘HMHM
T T T T T T

0

Figure 6.22: Detection method on attack experiment 3

10 20 30 40

Time in 10 sec bins

IDS data Sensor Bjorg

50

T
60

°
o 4 el T TR A
T T T T T T T
0 20 40 60 80 100 120
Time in 10 sec bins
IDS data Sensor Northug
o
-

Figure 6.23: Detection method on attack experiment 4

T T T
20 40 60

Time in 10 sec bins

80

Results

IDS data Sensor Northug

)
8
o H ‘ ‘\ “ “‘

T T T T T
0 20 40 60 80

Time in 10 sec bins

60 80 100
I I

Counts over 6 dBm
40

Figure 6.24: Detection method on attack experiment 5 (Northug only)

IDS data Sensor Northug

100
I

Counts over 6 dBm

T T T
20 30 40

Time in 10 sec bins

*
)
N
o 4 ‘
T T
0 10

Figure 6.25: Detection method on attack experiment 6 (Northug only)

‘ ‘
T
50

73

Chapter 6

74

Discussion

Through the control-, and attack experiments in chapter [} the behavior of RSS
values in an urban environment were recorded. Based on the results, a simple
RSS based detection method was implemented. The results from these tests

will be discussed here.

7.1 Measurement Variability in Experiments

As we will see, variability in measurements directly impacts the performance of

the detection method if not carefully considered.

75

Chapter 7

7.1.1 Distance

First a recap of where the attacker and victim stations were placed in contrast

to the sensors.

The station used during control experiments and attack experiments was ap-

proximately 94m from Northug and 90m from Bjorg (figure on page

The attacker was placed on the curb by Rema 60 meters from Northug, and 133
m from Bjorg. In the last part of experiment 4, the attacker was 152m from

Northug and 40m from Bjorg.

As mentioned, the main factor of signal degradation is the distance from the
sender to the sensor. This is mainly shown in the number of capture frames,

where Bjorg sensor captured the fewest in most of the scenarios.

Also, as the experiments show, with this distance comes large variances in the
registered RSS values. In two-sensor experiments with clients far away, control
experiments show a standard deviation of the RSS differentials of 4.8, while in

the single-sensor experiment the standard deviation was closer to 1.

It is safe to say that distance plays an important role when it comes to how
much subsequent frames differ between each frame captured at a sensor, as well

as how many frames actually being captured by the sensor.

7.1.2 Environmental Factors

In an urban environment, it is natural to assume that the physical environment
is a major factor for signal noise and fading, that will affect the mean RSS
value. As proposed by Sheng, antenna diversity is also a contributor affecting
the mean, where he reported that it could change 5dBm in 20% of the cases or

10dBm in 5% of the cases. How do this play out in the experiments?

It is evident that the radio environment is changing during tests that consider-

ably affects the RSS mean in certain local time periods. By viewing the graphs

76

Discussion

from the control experiments with two sensors, the sampled RSS mean is chang-
ing with means fluctuating a little under 10dBm, considered over the whole test

period of 20 minutes.

As mentioned in antenna diversity is used to mitigate multipath distortion
issues. The author thinks that the changes in the graphs are a combination of
antenna diversity and the changing environment, at least not diversity alone. If
antenna diversity was the only factor for the fluctuations, it is highly unlikely
that it was the main contributor in situations where one sensor looses the signal
altogether, wile the other is unchanged. For that to happen the signal must
have dropped almost 15 - 20 dBm during long time periods. Since the whole
point of antenna diversity is to improve signaling conditions, it does not make

sense that it would decrease the signal level that much for that amount of time.

Examples of this can be seen in control experiments 1 and 2. In control ex-
periment 1 on page [51] between 400 and 500 seconds Northug loses captures
altogether, while Bjorg have a huge decrease in frames captured but still indi-
cates to be on the same RSS mean. In control experiment 2 on page at
around 780 to 860 seconds Bjorg’s mean increases slightly, while Northug loses
captures altogether. Around 900 to 1100 seconds the RSS mean at Northug
suddenly gets a rising mean, with some larger differential RSS values, while

Bjorg mean is unchanged.

There was however an example of the RSS mean changing 4-6dBm abruptly
(and kept having a steady mean), indicating antenna diversity behavior. This
can be seen in control experiment 1. There was a correlation between the
two sensors, where one sensor loses signal strength while the other gains signal
strength between 140 to 200 seconds.

Interference from other APs that transmits on the same channel is also a source
of degradation of the signal. During a test (not shown here) for each of the
sensors, the number of WLANs were counted to be more than 84 on both
sensors. This was done by setting the sensors to monitor channel 1 for 20

minutes. The interference is time dependent, as it is based on how much the

7

Chapter 7

AP is used.

The effects viewed in the results are mostly caused by environmental effects
like people passing by or by larger vehicles like buses and trucks, that is seen
frequently in Elgsetergate. One should also take note to the antenna diversity

effect as mentioned in the work of Sheng et.al. [16].

7.1.3 1IDS Infrastructure

The infrastructure used to capture frames was working as it should most of the
time, although some problems were encountered, causing the system to loose
frames. This is shown as gaps in the plots, especially noticable in the sequence

number plots.

Reasons for these gaps were not found explicitly, but some suspicion is directed

at the use of the SSH tunnel between the central logging server and the drones.

The gaps in the experiments are best illustrated in the single sensor experi-
ments, as the gaps are more visible when there are more captured frames. As
the experiments progressed, I noticed that the sensors were announcing error
messages where it re-started their wireless interfaces. This could be caused by
the SSH tunnel or by the drones themselves. If this setup is to be used again,

it is important to take this into consideration.

7.2 Detection Method Results

Using the log parser program with the detection method produced results usable
for detection. The method produced low counts of deviances (e.g. attack events)

during control experiments, and frequent counts during attacks.

The metric in the method was to be counting the number of bins and the number
of deviants inside each bin during a certain time period. In the experiments,

the time period was as long as the experiment lasted.

78

Discussion

Comparing the results from figures [6.20] through fig[6.23] we see the following:

e Attack 1 and 4 show some increase in frequency of the bins and a low

count in each of them.

e Attack 2 and 3 show frequent bins with very high counts in attack 2 and

some spikes in attack 3.

This suggests that even though an attack is present and essentially is the same
attack at the same points, it produces different results for each of them. Viewing
the RSS values for the experiments this is not that surprising. But it illustrates
an important point; Even though the attacks are in the same area, this kind
of detection method produces different results. Stability and reliability in a

detection method is important to minimize false positives and negatives.

Even though the results were different from each experiment, comparing the
results from attacks 5 and 6 on page [73|show that if the sensors get stable cap-
tures, it can work as a detection method. The challenge is to choose thresholds
that work even though an attacker is far away, or when the interference is even

worse than in these experiments.

79

Chapter 7

80

Conclusion

In this work, RSS based detection methods has been researched, specifically
in an urban environment. Previous work within the area has been conducted
in office environments with promising results regarding RSS detection methods

based on statistics.

A framework for processing captured 802.11 frames from a distributed sensor
network has been made, and unique results from how RSS behaves in an ur-
ban environment has been gathered. Results has shown that because of the
constantly changing radio environment caused by vehicles, buildings and com-
peting APs around the sensors, it breaks the core assumption that the RSS

distributions are Gaussian distributed, thereby making proposed statistical de-

81

Appendiz 8

tection methods unreliable.

The tested method that do not use a statistical model for attack detection
was tested with the captured data. It must however be be finely tuned to
work properly in specific situations, and can be cumbersome to use in highly

fluctuating radio environments.

It can be argued that the problem can be overcome by introducing more sensors
with higher sensitivity, placed at strategic locations. This is the prevailing
method as shown in previous work done in office environments. However, the
number of sensors in an urban environment is highly motivated by whether the
operator has got proper locations with power and reporting infrastructure to
house such equipment. The troubles of even being allowed to setup an antenna
on a building is something mobile operators must cope with when setting up

equipment, further limiting sensor numbers and placement.

The conclusion is that RSS based detection methods are difficult to use in
unstable radio environments, and that they should be supplemented by other

detection methods in an Wireless Intrusion Detection System.

8.1 Future Work

The wireless distributed sensory with Kismet has shown to be a success. By us-
ing more sensitive sensors, which also account for antenna diversity effects, it can
serve as a prominent infrastructure for further IDS testing. Additional detection
methods can be implemented using the made framework for the Kismet-Newcore

program.

By acknowledging that usage of RSS based detection methods are difficult in
urban environments, other forms of detection should be considered in addition.
A combination of different methods in a specification based detection system is

proposed in [5], and should be tested in an urban environment.

82

[1]

Bibliography

IEEE, “IEEE Standard for Information technology-Telecommunications
and information exchange between systems-Local and metropolitan area
networks-Specific requirements - Part 11: Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) Specifications,” tech. rep.,
IEEE, 2007.

D. B. Faria and D. R. Cheriton, “Detecting identity-based attacks in wire-
less networks using signalprints,” in WiSe ’06: Proceedings of the 5th ACM
workshop on Wireless security, (New York, NY, USA), pp. 43-52, ACM,
2006.

G. Chandrashekaran, J. A. Francisco, V. Ganapathy, M. Gruteser, and
W. Trappe, “Detecting identity spoofs in 802.11e wireless networks,” in
GC’09: Proceedings of the IEEE Globecom 2009 Communications and In-
formation Security Symposium, (Honolulu, Hawaii), IEEE Computer Soci-
ety Press, Los Alamitos, California, USA, November/December 2009.

Pedersen and Holgernes, “How to detect session hijacking in 802.11 open
networks,” tech. rep., NTNU, 2009.

R. S. Gill, Intrusion Detection Techniques in Wireless Local Area Networks.
PhD thesis, Queensland University of Technology, 2009.

83

(6]

[12]

[13]

[14]

[15]

[16]

E. Holgernes, “Detecting Identity Thefts In Open 802.11e enabled Wireless
Networks,” Master’s thesis, NTNU, 2010.

“Web page trAédlAjse trondheim.” http://www.tradlosetrondheim.no/,
2010.

“Multipath and Diversity.” http://www.cisco.com/application/pdf/
paws/27147/multipath.pdf, 2008.

J. Bardwell, “Converting Signal Strength Percentage to dBm Values.
http://www.wildpackets.com/elements/whitepapers/Converting_
Signal_Strength.pdf, 2002.

U. Deshpande, A Dynamically Refocusable Sampling Infrastructure for
802.11 Networks. PhD thesis, Dartmouth College, 2008.

J. Smith, Denial of Service: Prevention, Modelling and Detection. PhD
thesis, Queensland University of Technology, 2007.

http: //netbsd. gw. com/cgi-bin/man-cgi? ieee80211_radiotap+ 9+
NetBSD-current.

“Web page tcace technologies.” http://www.cacetech.com/company/
index.html] 2010.

CACE Technologies, “Per-Packet Information Header Specification,” tech.
rep., CACE Technologies, 2009.

Y. Chen, W. Trappe, and R. Martin, “Detecting and localizing wireless
spoofing attacks,” in Proceedings of the Fourth Annual IEEE Communica-
tions Society Conference on Sensor, Mesh, and Ad Hoc Communications
and Networks, pp. 193-202, Citeseer, 2007.

Y. Sheng, K. Tan, G. Chen, D. Kotz, and A. Campbell, “Detecting 802.11
MAC layer spoofing using received signal strength,” in Proc. IEEE INFO-
COM, pp. 1768-76, 2008.

84

http://www.tradlosetrondheim.no/
http://www.cisco.com/application/pdf/paws/27147/multipath.pdf
http://www.cisco.com/application/pdf/paws/27147/multipath.pdf
http://www.wildpackets.com/elements/whitepapers/Converting_Signal_Strength.pdf
http://www.wildpackets.com/elements/whitepapers/Converting_Signal_Strength.pdf
http://netbsd.gw.com/cgi-bin/man-cgi?ieee80211_radiotap+9+NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?ieee80211_radiotap+9+NetBSD-current
http://www.cacetech.com/company/index.html
http://www.cacetech.com/company/index.html

[17]

[19]

[20]

[21]

[25]

[26]

D. McCoy, J. Franklin, P. Tabriz, J. Van Randwyk, and D. Sicker, “Pas-
sive Data-Link Layer 802.11 Wireless Device Driver Fingerprinting,” in
Proceedings of the 15th conference on USENIX Security Symposium, 2006.

V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device identifica-
tion with radiometric signatures,” in MobiCom ’08: Proceedings of the 14th
ACM international conference on Mobile computing and networking, (New
York, NY, USA), pp. 116-127, ACM, 2008.

“Kismet-Newcore web page.” http://www.kismetwireless.net/, 2010.

D. Papini, “An Anomaly based Wireless Intrusion Detection System,” Mas-

ter’s thesis, Kongens Lyngby, 2008.

S. Haines and Thornton, Kismet Hacking. Syngress Publishing, Inc., 2008.

Covers the old Kismet, not Kismet-Newcore.

M. Saxena, P. Gupta, and B. N. Jain, “Experimental analysis of rssi-based

location estimation in wireless sensor networks,” 2008.

E. Elnahrawy, X. Li, and R. Martin, “The limits of localization using signal
strength: A comparative study,” in IEEE SECON, vol. 2004, pp. 406414,
Citeseer, 2004.

F. Guo and T. Chiueh, “Sequence number-based MAC address spoof de-
tection,” Lecture Notes in Computer Science, vol. 3858, p. 309, 2006.

T. Kohno, A. Broido, and K. Claffy, “Remote physical device fingerprint-
ing,” Computing, vol. 2, p. 2, 2005.

Q. Li and W. Trappe, “Relationship-based detection of spoofing-related
anomalous traffic in ad hoc networks,” Sensor and Ad Hoc Communications
and Networks, 2006. SECON’06. 2006 3rd Annual IEEE Communications
Society on, vol. 1, 2006.

85

http://www.kismetwireless.net/

27]

[31]

[32]

[34]

H. Debar and A. Wespi, “Aggregation and correlation of intrusion-detection

alerts,” Lecture Notes in Computer Science, pp. 85-103, 2001.

D. Madory, New methods of spoof detection in 802.11 b wireless networking.
PhD thesis, Dartmouth College, 2006.

802.11 Denial-of-Service Attacks: Real Vulnerabilities and Practical Solu-
tions, 2003.

“Wiki setup page for the sheevaplug.” http://plugcomputer.org/
plugwiki/l 2010.

J. Edney and W. Arbaugh, Real 802.11 security: Wi-Fi protected access
and 802.11i. Addison Wesley Publishing Company, 2004.

K. Tao, J. Li, and S. Sampalli, “Detection of Spoofed MAC Addresses in
802.11 Wireless Networks,” in E-business and Telecommunications, Com-
munications in Computer and Information Science, Volume 23. ISBN 978-
3-540-88652-5., p. 201, Springer Berlin Heidelberg, 2009.

R. Gill, J. Smith, M. Looi, and A. Clark, “Passive Techniques for Detecting
Session Hijacking Attacks in IEEE 802.11 Wireless Networks,” in AusCERT
Asia Pacific Information Technology Security Conference Refereed RED
Stream, p. 26, 2002.

R. Gill, J. Smith, and A. Clark, “Experiences in passively detecting session
hijacking attacks in IEEE 802.11 networks,” in Proceedings of the 2006 Aus-
tralasian workshops on Grid computing and e-research-Volume 54, pp. 221—
230, Australian Computer Society, Inc. Darlinghurst, Australia, Australia,
2006.

“Deploying Cisco 440X Series Wireless LAN Controllers.” http:
//www.cisco.com/en/US/docs/wireless/technology/controller/
deployment/guide/dep.html, 2006.

86

http://plugcomputer.org/plugwiki/
http://plugcomputer.org/plugwiki/
http://www.cisco.com/en/US/docs/wireless/technology/controller/deployment/guide/dep.html
http://www.cisco.com/en/US/docs/wireless/technology/controller/deployment/guide/dep.html
http://www.cisco.com/en/US/docs/wireless/technology/controller/deployment/guide/dep.html

[36] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo,
R. Siracusa, H. Liu, and M. Singh, “Overview of the ORBIT Radio Grid
Testbed for Evaluation of Next-Generation Wireless Network Protocols,”
tech. rep., 2005.

87

88

Appendix

A.1 Theory addendum

A.1.1 802.11

The bits in figure are shown in binary and the most significant bit (MSB))
is b7.

89

T}'E: :;illle T‘\lpe’ Subtype 1‘:\1119 Subtype description
3 b2 description b7 b6 b5 b4

00 Management 0000 Association request

00 Management 0001 Association response

00 Management 0010 Reassociation request P

00 Management 0011 Reassociation response

00 Management 0100 Probe request

00 Management 0101 Probe response

00 Management 01100111 Reserved

00 Management 1000 Beacon

00 Management 1001 ATIM

00 Management 1010 Disassociation

00 Management 1011 Authentication

00 Management 1100 Deauthentication

00 Management 1101 Action

00 Management 1110-1111 Reserved

o1 Control 00000111 Reserved

o1 Control 1000 Block Ack Request (BlockAckReq)

01 Control 1001 Block Ack (BlockAck)

o1 Control 1010 PS-Poll

o1 Control 1011 RTS

o1 Control 1100 CTS

o1 Control 1101 ACK

01 Control 1110 CF-End

01 Control 1111 CF-End + CF-Ack

10 Data 0000 Data

10 Data 0001 Data + CF-Ack

10 Data 0010 Data + CF-Poll

10 Data 0011 Data + CF-Ack + CF-Poll

10 Data 0100 Null (no data)

10 Data 0101 CF-Ack (no data)

10 Data 0110 CF-Poll (no data)

10 Data 0111 CF-Ack + CF-Poll (no data)

10 Data 1000 QoS Data

10 Data 1001 QoS Data + CF-Ack

10 Data 1010 QoS Data + CF-Poll

10 Data 1011 QoS Data + CF-Ack + CF-Poll

10 Data 1100 QoS Null (no data)

10 Data 1101 Reserved

10 Data 1110 QoS CF-Poll (no data)

10 Data 1111 QoS CF-Ack + CF-Poll (no data)

11 Reserved 0000—1111 Reserved

Figure A.1: 802.11 type and subtypg,combinations from IEEE 802.11 [1].

A.1.2 Per-Packet information (PPI)

What is PPI? This is an explanation from the Kismet-Newcore documentation:

The Per-Packet Information (PPI) Header is a general and extensi-
ble meta-information header format originally developed to provide

802.11n radio information, but can handle other information as well.

By default Kismet will log the pcap file, gps log, alerts, and network
log in XML and plaintext. By default, Kismet will try to log to
pcapfiles using the PPI per-packet header. The PPI header is a well-
documented header supported by Wireshark and other tools, which
can contain spectrum data, radio data such as signal and noise levels,
and GPS data. PPI is only available with recent libpcap versions.
When it is not available, Kismet will fall back to standard 802.11

format with no extra headers.

PPI is a header field that is added to every packet processed by
the wireless interface. Based on the well-known Radiotap header in
Linux, the header gives information that do not usually be described
in a regular 802.11 frame. Added support for 802.11n radio networks

as well enables it to be used in the future as well.

Why do I need PPI, or why do I use PPI?

While some drivers in linux support the Radiotap header, the use of PPI in
Kismet is eqvivalent, plus the added benefit of handling 802.11n frames as well.
Therefore, the perl script that analyzes the log files must take this format into

account. How do i use it?

The only standard I seem to be able to dig up stems from the CACE Technologies
websites. CACE Technologies has strong ties to the wireshark community and
WinPCAP, as seen from their website !.

Thttp://www.cacetech.com

91

PPI Header Specification Version: 1.0.9

14

15

1.6

Date: 5/11/2009

RSSI receive signal strength indicator

RX receive or receiver

SGI short guard interval

TSF timing synchronization function
TSFT timing synchronization function timer
uiD unique identifier

UTF Unicode transformation format

Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted
as described in RFC 2119.

References
Radiotap manual page: http://nethsd.gw.com/cgi-bin/man-cgi?ieee80211_radiotap+9+NetBSD-current

NTAR documentation: http://www.winpcap.org/ntar/
RFC 2119: http://www.ietf.org/rfc/rfc2119.txt

Overview

Section 2 provides a description of the PPI header, along with an explanation of its necessity. Section 3
defines the structure of the header, complete with C and C++-compatible data structures. Section 4 defines
each data type. Data structures are assumed to be packed.

Overall Description

Existing header formats are typically made up of static data structures filled in by the capture mechanism
and passed to user space. They suffer from the following problems:

e Limited scope. They are restricted to specific elements within a single domain.
e Rigidity. Itis either impossible or very difficult to add new elements.
e Fixed DLTs. Each format only supports one encapsulated data link type.

PPI attempts to address each of these issues in a clean, consistent manner. Data elements are formatted as
type-length-value (TLV) triplets, which allows for future expansion of the header while providing
backward compatibility. Per-packet DLTs can be implemented by using an “empty” PPI header.

PPl Header Format

Each PPI packet header is made up of a packet header followed by zero or more fields. Each field is a
type-length-value triplet.

Packet Field Field Field Field
Header Header Data Header Data

PPI headers may contain only a packet header with no field header or field data elements. This removes any
assumption or requirement that supplemental data exists for every packet captured. It also makes it possible
to save packets with multiple data link types in a single capture file.

Multi-byte integers in the packet header and field headers MUST be stored as little-endian. The endian-
ness of field data may be either big- or little-endian, and MUST be noted in the field description. The total
length of the packet header plus all field headers and field data MUST be padded to a 32-bit boundary.

© CACE Technologies, 2007 - 2009 Page 5

PPI Header Specification

3.1

311

3.1.2

3.1.3

3.14

3.2

3.2.1

PPl Pac

ket Header Structure

Version: 1.0.9
Date: 5/11/2009

The PPI packet header provides a version, indicator flags, and the header length:

typedef struct ppi packetheader ({
uf
u_
u_

u_

} ppi_

pph_ver

int8 t pph version; /*
int8 t pph flags; /*
intl6é_t pph len; /*
*
*
int32 t pph dlt; /*
*
packetheader t;

sion

Version.
Flags.
Length of
including
payload.
Data Link

Currently 0 */

*/

entire message,
this header and TLV

*/

Type of the captured

packet data. */

The version of the PPI header. MUST be set to zero (0).

pph_flags
An 8-bit mask that defines the behavior of the header. The following values are defined:

Bits (Bit 0= LSB) | Values

0 Alignment. 32-bit aligned = 1, non-aligned = 0
Explained further in section 3.3

1-7 Reserved. MUST be 0.

pph_len

The length of the entire PPI header, including the packet header and fields. It MUST be between 8 and
65,532 inclusive.

pph_dlt

This MUST contain a valid data link type as defined in pcap-bpf.h from the libpcap distribution. If an
official DLT registry is ever created by the libpcap development team, then it will supersede this list.

A capture facility can implement per-packet DLTs by setting pph_version to 0, pph_flags to 0, pph_len to
8, and pph_dlt to the DLT of the encapsulated packet.

PPI Fiel

d Structure

Each PPI field includes a type and length:

typede

u_
u_
}oppi_

f struct ppi fieldheader {
intl6 t pfh type; /* Type */
intl6_t pfh datalen; /* Length of data */

fieldheader t;

pfh_type
The type of data following the field header MUST be a valid type value as defined below:

Range Possible Values
0-29,999 General-purpose field. Defined in section 4.
30,000-65,535 Vendor-specific fields. Defined in section 5.

If an unknown field value is encountered, it MUST be skipped according to the length rule in section 3.3.
Implementations MAY mark it as “unknown” as appropriate.

© CACE Technologies, 2007 - 2009

Page 6

PPI Header Specification Version: 1.0.9

3.2.2

3.3

4.1
4.1.2

Date: 5/11/2009

pfh_datalen

The length of the data, in bytes, that follows MUST be between 0 and 65,520 inclusive. The end of the
data MUST NOT exceed the total header length.

Field Processing

The first field header immediately follows the packet header (that is, if the packet header starts at byte 0,
the first field header starts at byte 8). The starting point of each subsequent field header is defined by the
“alignment” bit in pph_flags:

e Ifthe “alignment” bit in pph_flags is set to 1 AND pfh_datalen in field n is not a multiple of 4,
then field n+1 will start at the next multiple of 4. For example, if pph_datalen in field 3 is 9, then
the next three bytes MUST be considered padding, and field 4 will begin at byte 12.

e Ifthe “alignment” bit in pph_flags is 0, then field n+1 will start at the next byte offset following
the data in field n.

The “alignment” bit in pph_flags also applies to field data. That is, if the “alignment” bit is set and the
field type is 7 bytes long, then there will be one byte of padding between the field header and field data.

All padding bytes MUST be set to 0 in order to keep from exposing kernel memory to user space.

General-Purpose Field Types

The following general-purpose fields are currently defined. Further general-purpose fields will be defined
in later revisions of this document. Vendor-specific fields may be defined externally.

Type Length Description
(Bytes)
0-1 RESERVED
2 20 802.11-Common. Common (pre-n and .11n) radio information.
3 12 802.11n MAC Extensions. Extended (.11n) radio information.
4 48 802.11n MAC+PHY Extensions. Extended (.11n) radio information.
5 22-65,520 | Spectrum-Map. Radio frequency spectrum information.
6 19-65,520 | Process-Info. Process information, e.g. UID and GID
7 ?77? Capture-Info. Capture information, e.g. interface, drop counts, etc.
8 4 Aggregation Extension. Interface information for packets coming from
aggregating interfaces.
9 8 802.3 Extension. Information regarding 802.3 (Ethernet) packets.
10 - - RESERVED
29,999

Field Descriptions

802.11-Common
Zero or one 802.11-Common fields may be present in a single header. All fields are little-endian.

The 802.11-Common field is loosely based on the existing Radiotap header format. It contains data
common to both pre-n and 802.11n. Total length is 20 bytes.

Field Name Semantics Value Type Length

© CACE Technologies, 2007 - 2009 Page 7

PPI Header Specification

Version: 1.0.9
Date: 5/11/2009

TSF-Timer 7.3.1.10 and 11.1 of IEEE 802.11-1999 Unsigned integer 8 bytes
Invalid value = 0
Flags Packet flags LSB = bit 0. Bits: Unsigned integer 2 bytes
Bit 0 = If set, FCS present
Bit 1 = If set to 1, the TSF-timer is in ms, if
set to 0 the TSF-timer is in us
Bit 2 = If set, the FCS is not valid
Bit 3 = If set, there was a PHY error
receiving the packet. If this bit is set, Bit 2
is not relevant
Rate Data rate in multiples of 500 Kbps Unsigned integer 2 bytes
Invalid value = 0x0000
Channel-Freq Radiotap-formatted channel frequency, in MHz Unsigned integer 2 bytes
Invalid value = 0x0000
Channel-Flags Radiotap-formatted channel flags: Unsigned integer 2 bytes
Bit 0-3 = Reserved
Bit 4 = Turbo
Bit 5 = Complementary Code Keying
(CCK)
Bit 6 = Orthogonal Frequency-Division
Multiplexing (OFDM)
Bit 7 = 2 GHz spectrum
Bit 8 =5 GHz spectrum
Bit 9 = Only passive scan allowed
Bit 10 = Dynamic CCK-OFDM
Bit 11 = Gaussian Frequency Shift Keying
(GFSK) (FHSS PHY)
Bit 12-15 = Reserved
FHSS-Hopset Radiotap-formatted Frequency-hopping spread Unsigned integer 1 byte
spectrum (FHSS) hopset
FHSS-Pattern Radiotap-formatted Frequency-hopping spread Unsigned integer 1 byte
spectrum (FHSS) pattern
dBm-Antsignal RF signal power at antenna Signed integer 1 byte
Invalid value = -128
dBm-Antnoise RF noise at antenna Signed integer 1 byte
Invalid value = -128
Unlike Radiotap, these fields are packed without any padding or alignment.
© CACE Technologies, 2007 - 2009 Page 8

A.2 Infrastructure

A.2.1 Sheevaplug Details

Follow the Howto from the openplug.org website, and build the newest kernel

with the drivers we need.

As far as the author knows, there exists no previous work using a Sheevaplug

with kismet-newcore drones.

The main beauty of using the Sheevaplug, is that all the tools available in Linux
is also available to the plug. Apart from running anything that has been ported
to the ARM branch of ubuntu linux, it can be customized in limitless ways by
either compiling on the plug itself or cross-compile on a external computer for

speed.

A.2.2 Kismet-Newcore Config Files

A.2.3 Kismet Server Configuration

Kismet config file
Most of the "static" configs have been moved to here -- the command line
config was getting way too crowded and cryptic. We want functionality,

not continually reading --help!

Version of Kismet config

version=2009-newcore

Name of server (Purely for organizational purposes)

servername=Rybak_Nexus

Prefix of where we log (as used in the logtemplate later)

logprefix=/home/rybak/kislog/

Do we allow plugins to be used? This will load plugins from the system

96

and user plugin directiories when set to true (See the README for the default
plugin locations).

allowplugins=false

External Sheevadrones
ncsource=drone:name=Northug,host=127.0.0.1,port=2502
ncsource=drone:name=Bjorg,host=127.0.0.1,port=2503

Comma-separated list of sources to enable. This is only needed if you
defined

multiple sources and only want to enable some of them. By default, all
defined

sources are enabled.

For example, if sources with name=prismsource and name=ciscosource are
defined,

and you only want to enable those two:

enablesources=prismsource,ciscosource

Control which channels we like to spend more time on. By default, the list

of channels is pulled from the driver automatically. By setting preferred
channels,

if they are present in the channel list, they’ll be set with a timing delay
so that

more time is spent on them. Since 1, 6, 11 are the common default channels,
it makes

sense to spend more time monitoring them.

For finer control, see further down in the config for the channellist=
directives.

#preferredchannels=1,6,11

How many channels per second do we hop? (1-10)

#channelvelocity=10
By setting the dwell time for channel hopping we override the channelvelocity
setting above and dwell on each channel for the given number of seconds.

#channeldwell=10

Channels are defined as:

#channellist=Cropped:1,6

97

H OH B OHE O OH OH OH OH OH O

H#

or

channellist=name:range-start-end-width-offset,ch,range,ch,...

Channels may be a numeric channel or a frequency

Channels may specify an additional wait period. For common default channels,
an additional wait period can be useful. Wait periods delay for that number
of times per second - so a configuration hopping 10 times per second with a
channel of 6:3 would delay 3/10ths of a second on channel 6.

Channel lists may have up to 256 channels and ranges (combined). For power

users scanning more than 256 channels with a single card, ranges must be used

Ranges are meant for "power users" who wish to define a very large number of

H OH OB O OH O OHE OH ¥ OH OH K H

channels. A range may specify channels or frequencies, and will
automatically
sort themselves to cover channels in a non-overlapping fashion. An example

range for the normal 802.11b/g spectrum would be:

range-1-11-3-1

which indicates starting at 1, ending at 11, a channel width of 3 channels,

incrementing by one. A frequency based definition would be:

range-2412-2462-22-5

since 11g channels are 22 mhz wide and 5 mhz apart.

Ranges have the flaw that they cannot be shared between sources in a non-
overlapping

way, so multiple sources using the same range may hop in lockstep with each
other

and duplicate the coverage.

channellist=demo:1:3,6:3,11:3,range-5000-6000-20-10

Default channel lists
These channel lists MUST BE PRESENT for Kismet to work properly. While it is

98

possible to change these, it is not recommended. These are used when the
supported

channel list can not be found for the source; to force using these instead of

the detected supported channels, override with channellist= in the source
defintion

#

IN GENERAL, if you think you want to modify these, what you REALLY want to do
is

copy them and use channellist= in the packet source.

channellist=IEEE80211b:1:3,6:3,11:3,2,7,3,8,4,9,5,10

channellist=IEEE80211a:36,40,44,48,52,56,60,64,149,153,157,161,165

channellist=IEEE80211ab
:1:3,6:3,11:3,2,7,3,8,4,9,5,10,36,40,44,48,52,56,60,64,149,153,157,161,165

Client/server listen config

listen=tcp://0.0.0.0:2501

People allowed to connect, comma seperated IP addresses or network/mask
blocks. Netmasks can be expressed as dotted quad (/255.255.255.0) or as
numbers (/24)

allowedhosts=127.0.0.1,129.241.104.0/24,80.202.211.71/24

Maximum number of concurrent GUI’s

maxclients=5

Maximum backlog before we start throwing out or killing clients. The

bigger this number, the more memory and the more power it will use.
maxbacklog=5000

Server + Drone config options. To have a Kismet server export live packets
as if it were a drone, uncomment these.

dronelisten=tcp://127.0.0.1:3501

droneallowedhosts=127.0.0.1

dronemaxclients=5

= OH OH O B

droneringlen=65535

0UI file, expected format 00:11:22<tab>manufname

IEEE OUI file used to look up manufacturer info. We default to the
wireshark one since most people have that.

ouifile=/etc/manuf

ouifile=/usr/share/wireshark/wireshark/manuf

ouifile=/usr/share/wireshark/manuf

99

Do we have a GPS?

gps=true

Do we use a locally serial attached GPS, or use a gpsd server?

(Pick only one)

gpstype=gpsd

gpstype=serial

What serial device do we look for the GPS on?

gpsdevice=/dev/rfcomm0

Host:port that GPSD is running on. This can be localhost OR remote!
gpshost=localhost :2947

Do we lock the mode? This overrides coordinates of lock "0", which will
generate some bad information until you get a GPS lock, but it will
fix problems with GPS units with broken NMEA that report lock O
gpsmodelock=false

Do we try to reconnect if we lose our link to the GPS, or do we just
let it die and be disabled?

gpsreconnect=true

Do we export packets over tun/tap virtual interfaces?
tuntap_export=false
What virtual interface do we use

tuntap_device=kistap0

Packet filtering options:

filter_tracker - Packets filtered from the tracker are not processed or
recorded in any way.

filter_export - Controls what packets influence the exported CSV, network,
xml, gps, etc files.

All filtering options take arguments containing the type of address and

addresses to be filtered. Valid address types are ’ANY’, ’BSSID’,

’SOURCE’, and ’DEST’. Filtering can be inverted by the use of ’!’ before

the address. For example,

filter_tracker=ANY(!"00:00:DE:AD:BE:EF")

has the same effect as the previous mac_filter config file option.

H OH O H OH O ¥ OH ¥ OH OB ¥

#filter_export=BSSID(00:23:5D:00:00:00/FF:FF:FF:00:00:00)
#filter_export=ANY(00:23:5D:00:00:00/FF:FF:FF:00:00:00)

100

#filter_tracker=BSSID(00:23:5D:00:00:00/FF:FF:FF:00:00:00)
#ilter_export=BSSID(00:23:5D:00:00:00/FF:FF:FF:00:00:00)
#filter_dump=BSSID(00:23:5D:00:00:00/00:23:5D:FF:00:00)

#

Kun 0022fb895a36

#filter_dump=BSSID(00:23:5D:0E:00:31)
#filter_export=BSSID(00:23:5D:0E:00:31)
filter_tracker=BSSID(00:23:5D:0E:00:31)

#filter_dump=SOURCE(!00:19:A9:06:1C:00)
#filter_export=BSSID(00:23:5D:00:00:00/FF:FF:FF:00:00:00)
#filter_tracker=BSSID(AA:BB:CC:00:00:00/FF:FF:FF:00:00:00)

filter_dump=...
filter_export=...
#filter_netclient=SOURCE(!00:19:A9:06:1C:00)

Alerts to be reported and the throttling rates.
alert=name,throttle/unit,burst

The throttle/unit describes the number of alerts of this type that are
sent per time unit. Valid time units are second, minute, hour, and day.
Burst describes the number of alerts sent before throttling takes place.
For example:

alert=F00,10/min,5

Would allow 5 alerts through before throttling is enabled, and will then
limit the number of alerts to 10 per minute.

A throttle rate of O disables throttling of the alert.

See the README for a list of alert types.
alert=ADHOCCONFLICT,5/min,1/sec

alert=AIRJACKSSID,5/min,1/sec

alert=APSPO0F,10/min,1/sec

alert=BCASTDISCON,5/min,2/sec

alert=BSSTIMESTAMP,5/min,1/sec

alert=CHANCHANGE,5/min,1/sec

alert=CRYPTODROP,5/min,1/sec

alert=DISASSOCTRAFFIC,10/min,1/sec

H OH #H O OH O OH O OB OH O

101

alert=DEAUTHFL0O0D,5/min,2/sec
alert=DEAUTHCODEINVALID,5/min,1/sec
alert=DISCONCODEINVALID,5/min,1/sec
alert=DHCPNAMECHANGE,5/min,1/sec
alert=DHCPOSCHANGE,5/min,1/sec
alert=DHCPCLIENTID,5/min,1/sec
alert=DHCPCONFLICT,10/min,1/sec
alert=NETSTUMBLER,5/min,1/sec
alert=LUCENTTEST,5/min,1/sec
alert=LONGSSID,5/min,1/sec
alert=MSFBCOMSSID,5/min,1/sec
alert=MSFDLINKRATE,5/min,1/sec
alert=MSFNETGEARBEACON,5/min,1/sec
alert=NULLPROBERESP,5/min,1/sec
#alert=PROBENOJOIN,5/min,1/sec

Controls behavior of the APSPOOF alert. SSID may be a literal match (ssid=)
or

a regex (ssidregex=) if PCRE was available when kismet was built. The
allowed

MAC list must be comma-separated and enclosed in quotes if there are multiple

MAC addresses allowed. MAC address masks are allowed.

apspoof=Fool:ssidregex="(?i:foobar)",validmacs=00:11:22:33:44:55

apspoof=Foo02:ssid="Foobar",validmacs="00:11:22:33:44:55,aa:bb:cc:dd:ee:ff"

Known WEP keys to decrypt, bssid,hexkey. This is only for networks where
the keys are already known, and it may impact throughput on slower hardware.
Multiple wepkey lines may be used for multiple BSSIDs.
wepkey=00:DE:AD:CO:DE:00,FEEDFACEDEADBEEF01020304050607080900

H H B O

Is transmission of the keys to the client allowed? This may be a security
risk for some. If you disable this, you will not be able to query keys from
a client.

allowkeytransmit=true

How often (in seconds) do we write all our data files (0 to disable)

writeinterval=300

Do we use sound?

102

Not to be confused with GUI sound parameter, this controls wether or not the
server itself will play sound. Primarily for headless or automated systems.
enablesound=false

Path to sound player

soundbin=play

sound=newnet,true
sound=newcryptnet,true
sound=packet,true
sound=gpslock,true
sound=gpslost,true

sound=alert,true

Does the server have speech? (Again, not to be confused with the GUI’s speech
)

enablespeech=false

Binary used for speech (if not in path, full path must be specified)

speechbin=flite

Specify raw or festival; Flite (and anything else that doesn’t need
formatting

around the string to speak) is ’raw’, festival requires the string be wrapped

in
SayText("...")

speechtype=raw

How do we speak? Valid optiomns:

speech Normal speech

nato NATO spellings (alpha, bravo, charlie)
spell Spell the letters out (aye, bee, sea)

speechencoding=nato

speech=new, "New network detected s.s.i.d. %1 channel %2"
speech=alert,"Alert 1"

speech=gpslost,"G.P.S. signal lost"
speech=gpslock,"G.P.S. signal 0.K."

How many alerts do we backlog for new clients? Only change this if you have

a -very- low memory system and need those extra bytes, or if you have a high

memory system and a huge number of alert conditionmns.

103

alertbacklog=50

File types to log, comma seperated. Built-in log file types:
alert Text file of alerts

gpsxml XML per-packet GPS log

nettxt Networks in text format

netxml Networks in XML format

pcapdump tcpdump/wireshark compatible pcap log file

H OH O ¥ OH O H

string All strings seen (increases CPU load)
#logtypes=pcapdump, gpsxml
logtypes=pcapdump, gpsxml ,netxml ,nettxt,alert

Format of the pcap dump (PPI or 80211)
pcapdumpformat=ppi
pcapdumpformat=80211

Default log title
logdefault=Rybak_Nexus

logtemplate - Filename logging template.
This is, at first glance, really nasty and ugly, but you’ll hardly ever

have to touch it so don’t complain too much.

%p is replaced by the logging prefix + ’/°

%n is replaced by the logging instance name

is replaced by the starting date as Mon-DD-YYYY

%D is replaced by the current date as YYYYMMDD

%t is replaced by the starting time as HH-MM-SS

%i is replaced by the increment log in the case of multiple logs

%1 is replaced by the log type (pcapdump, strings, etc)

O o o B O # # O # O H H O
>
o

%h is replaced by the home directory
logtemplate=Yp%n-%D-%t-%i.%1
Where state info, etc, is stored. You shouldnt ever need to change this.

This is a directory.

configdir=}h/.kismet/

104

Kismet Drone Configuration

Common Kismet drone config file for sensors

Northug and Bjorg.

version=newcore.1

servername=[Northugl | Bjorgill

dronelisten=tcp://127.0.0.1:[2502 | 2503]

droneallowedhosts=127.0.0.1,129.241.104.0/24,129.241.0.0/16

dronemaxclients=10

droneringlen=65535

gps=true

gpstype=gpsd

gpshost=localhost:2947

gpsmodelock=false

gpsreconnect=true

ncsource=wlanO:name=NortSense,hop=false,channel=1

channellist=IEEE80211b:1:3,6:3,11:3,2,7,3,8,4,9,5,10

channellist=IEEE80211a:36,40,44,48,52,56,60,64,149,153,157,161,165

channellist=IEEE80211ab
:1:3,6:3,11:3,2,7,3,8,4,9,5,10,36,40,44,48,52,56,60,64,149,153,157,161,165

A.3 Experiments

A.3.1 Setup of stations

A.3.2 Station setup

Forcing client STA to ONE BSSID and one frequency.
Victim laptop was a Dell 12100 netbook with MAC 00:22:fb:89:5a:36

iwconfig wlanO mode managed essid "WirelessTrondheim" ap 00:23:5D:0E:00:31 freq
2.412G key off

105

A.3.3 Attacker setup

Desc: Forcing ATK to the same channel as sensors and STA

Attacking laptop was a Dell D630 with MAC 00:1F:3C:2E:6A:E3

1. Find STA MAC address
Find it by sniffing with tshark or the like, I used the MAC address of the DELL
L2100 above.

2. Setup and clone STAS address.

ifconfig wlanO down

macchanger --mac=00:22:fb:89:5a:36 wlanO

ifconfig wlanO up

iwconfig wlanO mode managed ap 00:23:5D:0E:00:31 key off essid "

WirelessTrondheim"

Set IP address as the same as STA:
ifconfig wlanO 10.100.0.180 netmask 255.255.254.0 up

Set correct routing:
route add default gw 10.100.0.1

3. Fix firewall with IP tables.

iptables -A INPUT -i wlanO -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A INPUT -i wlanO -p tcp -j DROP

A.4 Code

A.4.1 Framework Code

#!/usr/bin/perl -w

Parser program for Kismet-ng .pcap files and .gpsxml files

Input to program : rss.pl <kismetlogfile.pcap> <kismetlogfile.gpsxml>
use Net::Pcap;

use strict;

106

use
use
use
use

use

my

1
my

$

$

$
) =
my
my
my
my
my

my
my

my
my

pri

unl

warnings;
DateTime;
File::Basename;
Cwd;

warnings FATAL => qw(uninitialized);

(@gpsdata, $CAPFILE);
nit counters - all set to O
(
count_hashed, $counter_manag, $counter_gps_match,
counter_gps_total, $counter_total, $counter_manag_response,
counter_data, $count_control, $counter_seek
0’) x 9;
$lower = time();
$upper = time();
%hashmap = 0; # Key = sourceMACs
$edist_counter = 0; # Number of euclidian computations
$SNAPLEN = 56; # Number of bytes to capture from each packet -
PPI = 32 + 24
$PROMISC =1; # Sets interface in promiscous mode -
$TIMEOUT = 2000; # specifies a read time-out for packet
capturing in msec.
$file = $ARGV[0];
($capfilename, $WORKDIR) = fileparse($file);

nt "Working directory: $WORKDIR \n";

ess ($CAPFILE = $ARGV[0]) {

die "Capture pcap file error: " . $!;

}

unl

ess (open FILE, $ARGV[1]) {

die "gpsxml file opening error." . $!;

C
unl
d

#my

alls gps log file parser.

ess (gps_parse_xml()) {
ie "GPS generation failed:" . $!;
$level = -1; # Level of indentation

107

sub main () {

loopit_offline();

Results
hash_print_RQ);

#ids (°0022fb895a36°) ;
#hash_print_contents();
#status();

}

main();

Per MAC and Sensor IDS check.
sub ids {
my ($mac, $sensor, $thres_sec, $thres_dBm) = @_;
my ($count_time, $start_time, $stop_time, $rss_delta, $frmcount, @diffarray,

@deviation);

for my $sensor (keys %{ $hashmap{$mac} }) {
my $framecnt = $#{ $hashmap{$mac}{$sensor}[0] };
$start_time = ${ $hashmap{$mac}{$sensor} }[1]->[0];

$stop_time = $start_time + $thres_sec;

#print "$start_time $stop_time ".$start_time - $stop_time . "\n";
for my $i (O .. $framecnt) {
$rss_delta = &get_rss_delta($mac, $sensor, $i);
push @diffarray, $rss_delta;
$count_time = ${ $hashmap{$mac}{$sensor} }[1]1->[$i];
if ($count_time > $stop_time) {
push @deviation, (&detect(\@diffarray, $thres_dBm));
$start_time = ${ $hashmap{$mac}{$sensor} }[1]1->[$i];

$stop_time = $start_time + $thres_sec;
@diffarray = (;

} else {

}

}

return \@deviation;

}

108

#calculates number of deviations from given threshold. Returns number of
detected.
sub detect {
my ($values, $thres_dBm) = @_;
my $detect = 0;
foreach my $rss (@{$values}) {
if ($rss > $thres_dBm or $rss < -$thres_dBm) {
$detect = $detect + 1;

#print "Returning nubmer of detected: $detect\n";

return $detect;

Extracts given MAC and executes R for graphing.
sub hash_print_R () {
my $thres_sec = 10; # Time in seconds for detection interval
my $thres_dBm = 6; # RSS delta threshold in dBm
my ($frmcount, $deviation, $key, $DATADIR);
$DATADIR = $WORKDIR . "data";
mkdir ($DATADIR) or #;
chdir $DATADIR or die "Can’t cd to working directory: $!\n";

print "Creating data for R from file " . "$ARGV[1]... creating files under $
DATADIR...\n";
$key = ’0022fb895a367 ; # Remove for handling all mac adresses in capture.

for my $key (keys %hashmap) {
for my $sensor (keys %{ $hashmap{$key} }) {
$frmcount = $#{ $hashmap{$key}{$sensor}[0] };
if ($frmcount < 300) {# Skip MACs with fewer frames than 300.

} else { # creates log files under ./data
chdir $DATADIR or #;
print cwd() . " Working on file " . $DATADIR . "/" . $key . "_" . §
sensor . ’.data’ . "\n";
open(FILE, (’>’ . $key . "_" . $sensor . ’.data’))
or die $!;

109

open(IDS, (’>’ . $key . "_" . $sensor . ’.ids’)) or die $!;
$deviation = ids($key, $sensor, $thres_sec, $thres_dBm);
print IDS "deviation\n";
foreach my $deviated (@{$deviation}) {
print IDS "$deviated\n";
}
close(IDS);
my ($rss_delta) = 0;
print FILE "type time seq rss rate freq retry rss_delta \n";
for my $i (0 .. $frmcount) {
$rss_delta = &get_rss_delta($key, $sensor, $i);
my $time = ${ $hashmap{$key}{$sensor} }[1]1->[$i] - $lower; # Counts
seconds from the start.
print FILE ${ $hashmap{$key}{$sensor} }[0]->[$i] . " ";
print FILE $time . " ";
print FILE ${ $hashmap{$key}{$sensor} }[2]->[$i] . " ";
print FILE ${ $hashmap{$key}{$sensor} }[3]1->[$i]l . " ";
print FILE ${ $hashmap{$key}{$sensor} }[4]->[$i] . " ";
print FILE ${ $hashmap{$key}{$sensor} }[5]->[$i] . " ";
print FILE ${ $hashmap{$key}{$sensor} }[6]->[$i]l . " ";
print FILE $rss_delta . "\n";
}
close(FILE);

#}
print "Executing R for plots...\n";

system(’R --slave --no-save < /home/peders/widscode/rplot_northug.r’);

For external capture files
sub get_offline_capture {
my ($capturefile) = @_;
my $offline_err;
my $pcap = Net::Pcap::open_offline($capturefile, \$offline_err)
|| die " Can’t read the file ’$capturefile’ : $offline_err \n ";
unless (defined $pcap) {

die ’could not instanciate offline capture on file’;

110

}

return $pcap;

0ffline Monitor
sub loopit_offline {
my $capture = get_offline_capture($CAPFILE);
my $LINKTYPE = Net::Pcap::datalink_name_to_val(’DLT_IEEE802_11_RADIO’);
my $datatype = Net::Pcap::datalink($capture);
my ($key, $value, $num_keys,);

Associates correct linktype to the capture device.
Net::Pcap::set_datalink($capture, $LINKTYPE);
Net::Pcap::loop($capture, -1, \&packetgrinder, ’’);

Cleaning up
Net::Pcap::close($capture);

Prints status after script is finished
sub status {
print "\n";

print "Duration: " . (($upper - $lower) / 60) . " min \n";

#print "Lower time limit: $lower | Upper time limit: $upper. \n";

print "Sum Manag+Data+Contr pkts: ($counter_manag + $counter_data + $

count_control) . "\n";

print "Missed GPS entries: "

. gps_print_array()
. " (after popping or deleting gps array) \n";
print "Management pkts: "
$counter_manag / $counter_total . " ("
$counter_manag . "/"
$counter_total . ")\n";
#print "B. response ratio: " . $counter_manag_response . "/" . $counter_total
n \n" ;
print "Data pkts: " . $counter_data / $counter_total . " (" . $counter_data .

111

"/" . $counter_total . ")\n";

print "Control (ACKs) pkts: "

. $count_control / $counter_total . " ("

. $count_control . "/"

. $counter_total

" - will be discarded) \n";

print "GPS matches: " . $counter_gps_match . "/" . $counter_total . "\n";
print "Hashtable filled: " . $count_hashed . "/" . $counter_total . "\n";
print "\n######\n ";
gps_print_array();

Parses Kismet-ng log.gpsxml into array. Strips zero-sources.
sub gps_parse_xml {
print "Parsing GPS file: " . $ARGV[1] . "\n";

Removes unwanted lines in file:
Removing unknown sources: (source="00:00:00:00:00:00")
my Q@result =
grep { /<gps-point/ && !/GP:SD:TR:AC:KL:0G/ && !/source="00:00:00:00:00:00"
/ } <FILE>;
foreach my $line (@result) {
my (
$f1, $£f2, $£3, $f4, $£f5, $bssid, $source, $tsec, $tusec,
$lat, $lon, $£f12, $£13, $f14, $£15, $rssi, $£17
) = split(/ /, $line);

This split can be done better with REGEXP.
my ($p1, $b2) = split(/"/, $bssid);

my ($s1, $s2) = split(/"/, $source);
my ($t1, $t2) = split(/"/, $tsec);
my ($tul, $tu2) = split(/"/, $tusec);
my ($11, $12) = split(/"/, $lat);
my ($lol, $lo2) = split(/"/, $lon);
my ($r1, $r2) = split(/"/, $rssi);

Removes colon and makes lower-case:
$b2 =~ s/://g;
$b2 =~ tr/A-Z/a-z/;

112

$s2 =~ s/://g;
$s2 =~ tr/A-Z/a-z/;

Sets lower and upper time interval.
if ($t2 <= $lower) {

$lower = $t2;
} else {
$upper = $t2;

Pushes line to array

push(@gpsdata, ([$b2, $s2, $t2, $tu2, $12, $lo2, $r2]));
}
undef Qresult;
close FILE;

Prints contents in finished array
sub gps_print_array {
my $counter = 0;
foreach my $id (@gpsdata) {
formy $i (0 .. 6) {

$counter++;
print $id->[$i]l . "\n";
}
}
if ($counter != 0) {
return print "Left: " . ($counter / 7) . "\n";
}
print "GPS array is empty. \n";

Returns GPS position if found in parsed GPSxml file.

sub gps_get_pos {
$counter_gps_total++;
my ($macaddr, $tstamp_sec, $tstamp_usec, $rss_dbm) = @_;
$counter_seek = 0;
my $frmcount = $#gpsdata; # antall linjer som sjekkes
for my $i (0 .. $frmcount) {

113

$counter_seek++;

my $bssid $gpsdata[$i]->[0];
my $source = $gpsdatal$i]l->[1];
$gpsdatal$i]l->[2];
my $time_usec = $gpsdata[$i]l->[3];
my $lat $gpsdata[$il->[4];

my $lon = $gpsdatal[$i]->[5];

my $time_sec

my $rssi = $gpsdatal$il->[6];
if ($time_sec == $tstamp_sec
&& $time_usec == $tstamp_usec

&& $macaddr eq $source

&& $rssi eq $rss_dbm)

$counter_gps_match++;
if ($1<1){
shift (@gpsdata) ;
return ("$lat", "$lon");
}
splice(@gpsdata, $i, 1);
return ("$lat", "$lon");
} elsif ($counter_seek > 200) {
return ("0", "O"); # Did not find any match;

}
return ("0", "O"); # Did not find any match

sub packetgrinder {
$counter_total++;

my ($user_data, $header, $packet) = @_;

my (
$tstamp_sec, $tstamp_usec, $type, $subtype, $rss_dbm, $sequence, $
macaddr,
$lat, $lon, $flags, $tofroDS, $data_rate, $channel, $retry

);

$tstamp_sec = ${$header}{tv_sec};
$tstamp_usec = ${$header}{tv_usec};
$lat =1;

114

$lon =1;

$data_rate = hex(unpack(’H2’, substr($packet, 22))) * 0.5;

$channel hex((unpack(’H2’, substr($packet, 25))) . (unpack(’H2
>, substr($packet, 24))));

$rss_dbm = hex(unpack(’H*’, substr($packet, 30, 1))) - 256;

($subtype, $type) = split(//, unpack(’Hx’, substr($packet, 32, 1)));

$flags = unpack(’B*’, substr($packet, 33, 1));

$retry = substr($flags, 4, 1);

$tofroDS = unpack(’b2’, substr($packet, 33, 1));

if ($type eq 4’) { # Control frame - Will be discarded
Getting GPS posisjon of sensor - DEPRECATED
All zero sources are removed from gps log file.
$count_control++;
$macaddr = 2000000000000’ ;

Setting sequence number for gps search
$sequence = 'ffff’;
return;

} elsif ($type eq 0’) { # MANAG frame

$counter_manag++;

according to the standard, all management frames have the same structure,
source MAC is always on the same spot.

Source MAC is always in adrfield 2
$macaddr = unpack(’H*’, substr($packet, 42, 6));

#my @pos = gps_get_pos($macaddr, $tstamp_sec, $tstamp_usec, $rss_dbm);
#return;
} elsif ($type eq ’8°) { # DATA frame

$counter_data++;

#print $tofroDS."\n";
if (($tofroDS eq ’00’) or ($tofroDS eq ’10°)) {

#from client to DS, Adrfield 2

$macaddr = unpack(’H*’, substr($packet, 42, 6));
} elsif ($tofroDS eq ’01’) {

115

#from DS to client, Adrfield 3
$macaddr = unpack(’H*’, substr($packet, 48, 6));
} else {

#Between DS’s, adrfield 4
By some reason, cannot check correct timing in these packets with gps
log. Do they exist at all?
#$macaddr = unpack(’H*’, substr($packet, 56, 6));
return;
}
} else {
return;
} # End of Type check
$sequence = unpack(’H*’, substr($packet, 54, 2));
my $seq = hex((substr($sequence, 2, 2) . substr($sequence, 0, 1)));

Getting GPS posisjon of sensor’s packet
my @pos = gps_get_pos($macaddr, $tstamp_sec, $tstamp_usec, $rss_dbm);
$lat = $pos[0];
$lon = $pos[i];
if ($lat == "0" && $lon == "0") {
return;
}
addit(
$macaddr, ($type . $subtype),

$tstamp_sec, $tstamp_usec, $seq, $rss_dbm, ($lat . "+" . $lon),
$data_rate, $channel, $retry
);

Pushes values recored for given MAC address to array within hash table.
sub addit {
$count_hashed++;
my ($key, $type, $tstamp_sec, $tstamp_usec, $sequence, $rss_dbm, $sensor, $
data_rate, $channel, $retry) =
e_;

#my $dt = DateTime->from_epoch(epoch => $tstamp_sec . "." . $tstamp_usec);
my $dt = ($tstamp_sec . "." . $tstamp_usec);

116

push(@{ $hashmap{$key}{$sensor}[0]
push(@{ $hashmap{$key}{$sensor}[1]
push(@{ $hashmap{$key}{$sensor}[2] }, $sequence);

}, $type);
}
}
push(@{ $hashmap{$key}{$sensor}[3] }, $rss_dbm);
}
}
}

, $dt);

push(@{ $hashmap{$key}{$sensor}[4] }, $data_rate);
push(@{ $hashmap{$key}{$sensor}[5] }, $channel);
push(@{ $hashmap{$key}{$sensor}[6] }, $retry);

#print_last_added($key, $sensor);

sub print_last_added {
my ($key, $sensor) = @_;
print
"Added! Source: $key @ sensor $sensor |Type: ${ $hashmap{$key}{$sensor}
}[01->[-1] | Timestamp: ${ $hashmap{$key}{$sensor} }[1]1->[-1].${ $hashmap{
$key}{$sensor} }[2]1->[-1] | Sequence: ${ $hashmap{$key}{$sensor}
}[3]1->[-1] | RSS: ${ $hashmap{$key}{$sensor} }[4]1->[-1] \n";

sub get_rss_delta {
my ($mac, $sensor, $index) = O_;
if ($index == 0) {
return my $rss_delta = 0;
} else {
my $rss_delta =
${ $hashmap{$mac}{$sensor} }[4]1->[$index] - ${ $hashmap{$mac}{$sensor}
}[4]1->[$index - 1 1;
return $rss_delta;

}

A.4.2 R Code

#!/usr/bin/R --no-save
require("gplots")

#library (psych)
library(pastecs)

117

#library (Hmisc)

Read capture data into variable
bjorg <- read.table("./0022fb895a36_11.185184+222.368713.data", header=TRUE)
northug <- read.table("./0022fb895a36_48.117298+11.516666.data", header=TRUE)

#bjorg.l <- bjorglbjorg$time < fool
#bjorg.l <- bjorg.l[bjorg.l$time > bar]

Read IDS data into variable
bjorgids <- read.table("./0022fb895a36_11.185184+222.368713.ids", header=TRUE)
northugids <- read.table("./0022fb895a36_48.117298+11.516666.ids", header=TRUE)

Writing descr. stats to file us ing Pastecs (Package for Analysis of Space-
Time Ecological Series)

bjorgrss_delta_desc <- stat.desc(bjorg$rss_delta, basic=TRUE, desc=TRUE)

bjorgrssdesc <- stat.desc(bjorg$rss, basic=TRUE, desc=TRUE)

nordrss_delta_desc <- stat.desc(northug$rss_delta, basic=TRUE, desc=TRUE)

nordrssdesc <- stat.desc(northug$rss, basic=TRUE, desc=TRUE)

Write statistics to file

write.table(c(bjorgrssdesc), "./bjorgrssdesc.sum", sep="\t")
write.table(c(bjorgrss_delta_desc), "./bjorgrss_delta_desc.sum", sep="\t")
write.table(c(nordrssdesc), "./nordrssdesc.sum", sep="\t")
write.table(c(nordrss_delta_desc), "./nordrss_delta_desc.sum", sep="\t")

Generates PDF with the following content:
1 - RSS_delta, RSS and seqn plot sensor 1
2 - RSS_delta, RSS and seqn plot sensor 2
3 - IDS graphs

4 - Density distributions of RSS values
#5 Normal Q-Q plot

postscript("",command=" ps2pdf - result.pdf ")

Summary Bjorg sensor

par(mfcol=c(3,1), cex.main=2, cex.lab=1.5)

118

Power deltas

plot(bjorg$time,bjorg$rss_delta, main="Differential RSS values - Sensor Bjorg",
xlab="Time in seconds", ylab="dBm", type="p", pch="x", col="red")

#bandplot (bjorg$time, bjorg$rss_delta, add=TRUE, sd = c(), sd.col = c("blue"))

Power samples

plot (bjorg$time,bjorg$rss, main="RSS samples - Sensor Bjorg", xlab="Time in
seconds", ylab="dBm", type="p", pch="x", ylim=c(-90,-55), col="red")

Mean graph of power samples

bandplot (bjorg$time,bjorg$rss, add=TRUE, sd = c(0), sd.col = c("blue"),method
= "range", width, n=15)

Sequence numbers

plot(bjorg$time,bjorg$seq, main="Sequence numbers - Sensor Bjorg", ylab="

Sequence number", xlab="Time in seconds", type="p", pch=16, col="blue")

Summary Northug sensor

par (mfcol=c(3,1))

Power deltas

plot (northug$time,northug$rss_delta, main="Differential RSS values - Sensor
Northug", xlab="Time in seconds", ylab="dBm", type="p", pch="x", col="red"
)

#bandplot (northug$time,northug$rss, add=TRUE, sd = c(1), sd.col = c("blue"))

#Power samples

plot (northug$time,northug$rss, main="RSS samples - Sensor Northug", xlab="Time
in seconds", ylab="dBm", type="p", pch="x", ylim=c(-90,-55), col="red")

Mean graph of power samples

bandplot (northug$time,northug$rss, add=TRUE, sd = c(0), sd.col = c("blue"),
method = "range", width, n=15)

Sequence numbers

plot (northug$time ,northug$seq, main="Sequence number - Sensor Northug", ylab="

Sequence numbers", xlab="Time in seconds", type="p", pch=16, col="blue")

IDS graphs for both sensors

par (mfcol=c(2,1))

Power Deviation

plot(bjorgids$deviation, main="IDS data Sensor Bjorg", xlab="Time in 10 sec
bins", ylab="Counts over 15 dBm", type="h", pch="x", col="red", ylim=c
(0,100))

plot (northugids$deviation, main="IDS data Sensor Northug", xlab="Time in 10 sec

bins", ylab="Counts over 15 dBm", type="h", pch="x", col="red", ylim=c

119

(0,100))

Density plot

par(mfcol=c(2,1))

hist(bjorg$rss ,main="Density plot Sensor Bjorg", xlab="dBm",col="red")
abline(bjorg$rss, bjorg$time)

qgqnorm(bjorg$rss) ;qqline (bjorg$rss)

par(mfcol=c(2,1))

hist (northug$rss,main="Density plot Sensor Northug", xlab="dBm",col="red")

qqnorm(northug$rss) ;qqline (northug$rss)

dev.off ()

120

	Title Page
	Problem Description
	Abstract
	Preface
	List of Figures
	List of Tables
	Abbreviations and acronyms
	Introduction
	Motivation
	Research Scope
	Research Goals and Questions
	Contributions
	Methodology

	Background
	Wireless LANs
	802.11 Radio
	Wireless based Intrusion Detection Systems
	MAC Frame based detection methods
	802.11 Radio based IDS Detection Methods

	802.11 Protocol
	The 802.11 MAC Frame
	802.11 Sequence Numbers
	Physical Layer Metrics

	Related Work
	Fingerprint Detection Methods
	RSS Based Fingerprinting
	RF based fingerprinting

	Combination of Detection Methods

	Distributed Wireless Capture System
	The Sensor
	Kismet-Newcore
	Kismet-drone
	Kismet-Server
	Kismet-client

	Architecture Overview
	Code Framework
	Software Specifics

	Experimentation
	Design of Experiments
	Execution of Experiments
	Data Analysis

	Results
	Control Experiments
	Control Experiment 1
	Control Experiment 2
	Control Experiment 3 (Northug only)
	Analysis

	Attack Experiments
	Attack Experiment 1
	Attack Experiment 2
	Attack Experiment 3
	Attack Experiment 4
	Attack Experiment 5 (Northug only)
	Attack Experiment 6 (Northug only)
	Analysis

	IDS method testing
	Detection Method on Control Data
	Detection Method on Attack Experiments

	Discussion
	Measurement Variability in Experiments
	Distance
	Environmental Factors
	IDS Infrastructure

	Detection Method Results

	Conclusion
	Future Work

	Bibliography
	Appendix
	Theory addendum
	802.11
	Per-Packet information (PPI)

	Infrastructure
	Sheevaplug Details
	Kismet-Newcore Config Files
	Kismet Server Configuration

	Experiments
	Setup of stations
	Station setup
	Attacker setup

	Code
	Framework Code
	R Code

