
Tarjei H
een, K

evin W
. K

ariuki

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f S
tr

uc
tu

ra
l E

ng
in

ee
ri

ng

M
as

te
r’

s 
th

es
is

Tarjei Heen
Kevin W. Kariuki

Investigative Study on Method for
Approximating Nonlinear Material
Behavior in Reinforced Concrete
Structures Subjected to Seismic
Ground Motions

Master’s thesis in Civil and Environmental Engineering
Supervisor: Amir M. Kaynia

June 2019





Tarjei Heen
Kevin W. Kariuki

Investigative Study on Method for
Approximating Nonlinear Material
Behavior in Reinforced Concrete
Structures Subjected to Seismic Ground
Motions

Master’s thesis in Civil and Environmental Engineering
Supervisor: Amir M. Kaynia
June 2019

Norwegian University of Science and Technology
Faculty of Engineering
Department of Structural Engineering





Department of Structural Engineering                 
Faculty of Engineering 
NTNU- Norwegian University of Science and Technology 
 
 
 
 

MASTER THESIS 2019 
 
 

SUBJECT AREA: 

Earthquake Engineering 

DATE: 

June 11th 2019 

NO. OF PAGES: 

105 + 51 (Appendix) 

 

 

 

 
RESPONSIBLE  TEACHER: Prof. Amir M. Kaynia 
 
SUPERVISOR(S) Prof. Amir M. Kaynia 
 
CARRIED OUT AT: Department of Structural Engineering, NTNU 

TITLE: 

Investigative Study on Method for Approximating Nonlinear Material  
Behavior in Reinforced Concrete Structures Subjected to Seismic Ground  
Motions 

 
 Undersøkelse av metode for å tilnærme ikke-lineær materialoppførsel i  

betongkonstruksjoner utsatt for jordskjelvlaster 
BY: 
 

 Tarjei Heen 

 
 

Kevin W. Kariuki 

SUMMARY: 
Nonlinear time history analyses are generally regarded as the most accurate way of predicting the dynamic response of 
a structure to a given seismic ground motion. Unfortunately, these types of analyses are computationally demanding and 
requires appropriate software. Therefore, the aim of this thesis is to investigate the feasibility and accuracy of an elastic 
analysis where material nonlinearities are accounted for iteratively through the use of secant stiffnesses, namely the 
Secant Method. The structure of focus is the South Pylon of the Chacao Bridge located in Chile. For comparative 
purposes, two models were created in the open-source framework OpenSees:  a full nonlinear fiber model where 
nonlinear material behaviour is accounted for through distributed plasticity, and an elastic model where the element 
flexural stiffnesses are updated through the use of the Secant Method. For further verification, several pushover 
analyses were conducted on both models, with the inertial forces from the most unfavourable time-steps from the 
response histories providing the load distributions in the analyses. 
The results from seven averaged response history analyses show that the Secant Method is able to capture the 
maximum forces in the structure within an acceptable margin. The Secant Method is only able to emulate the stiffness 
reduction corresponding to maximum moments. The method is not able to capture regaining of stiffness once cracks are 
closed due to cyclic responses. Additionally, since the maximum moments for each element are picked independently of 
each other, the reductions obtained should be treated as a worst case scenario.  With this in mind, the Secant Method is 
not recommended for studying the entire response history of the structure and should only be used when maximum 
responses are to be analyzed. 
The pushover analysis verified that the Secant Method was able to predict the response of the structure up until the steel 
reinforcement yields or crushing of the concrete. Nevertheless, the method was accurate for the loads representing the 
Most Probable Earthquake event and would be suitable for identifying possible plastic hinges, and to some degree 
assess the ductility of the structure. 
For design purposes, the concluding remarks of this confirm that the method is s a valid and code-compliant option to the 
full nonlinear analysis, according to the AASHTO Guide Specifications for LRFD Seismic Bridge Design and Eurocode 8. 
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Abstract
Nonlinear time history analyses are generally regarded as the most accurate way of predicting
the dynamic response of a structure to a given seismic ground motion. Unfortunately, these
types of analyses are computationally demanding and requires appropriate software. There-
fore, the aim of this thesis is to investigate the feasibility and accuracy of an elastic analysis
where material nonlinearities are accounted for iteratively through the use of secant stiffnesses,
namely the Secant Method. The structure of focus is the South Pylon of the Chacao Bridge
located in Chile. For comparative purposes, two models were created in the open-source frame-
work OpenSees: a full nonlinear fiber model where nonlinear material behaviour is accounted
for through distributed plasticity, and an elastic model where the element flexural stiffnesses
are updated through the use of the Secant Method. For further verification, several pushover
analyses were conducted on both models, with the inertial forces from the most unfavourable
time-steps from the response histories providing the load distributions in the analyses.

The results from seven averaged response history analyses show that the Secant Method is
able to capture the maximum forces in the structure within an acceptable margin. The Secant
Method is only able to emulate the stiffness reduction corresponding to maximum moments.
The method is not able to capture regaining of stiffness once cracks are closed due to cyclic re-
sponses. Additionally, since the maximum moments for each element are picked independently
of each other, the reductions obtained should be treated as a worst case scenario. With this in
mind, the Secant Method is not recommended for studying the entire response history of the
structure and should only be used when maximum responses are to be analyzed.

The pushover analysis verified that the Secant Method was able to predict the response of
the structure up until the steel reinforcement yields or crushing of the concrete. Nevertheless,
the method was accurate for the loads representing the Most Probable Earthquake event and
would be suitable for identifying possible plastic hinges, and to some degree assess the ductility
of the structure.

For design purposes, the concluding remarks of this thesis show that the Secant Method
is able to accurately predict maximum responses from time history analyses, pre-yielding be-
haviour and load distributions in static analyses. Hence, the method is a valid code-compliant
option to a full nonlinear analysis, according to requirements from American Association of
State Highway and Transportation Officials (AASHTO) Guide Specifications for LRFD Seis-
mic Bridge Design and Eurocode 8.
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Sammendrag

Ikke-lineære tidsplansanalyser blir generelt ansett som den mest nøyaktige metoden for å anal-
ysere responsen til konstruksjoner utsatt for seismiske laster. Dessverre er denne typen analyser
svært krevende beregningsmessig, samt at det er nødvendig med passende spesialiserte verk-
tøy. Målet med denne masteroppgaven er derfor å undersøke nøyaktigheten og brukbarheten av
Sekantmetoden. Dette er en elastisk analyse, hvor de ikke-linære effektene i konstruksjonens
materale blir tatt hensyn til gjennom bruken av sekantstivheter. Oppgavens fokus er rettet mot
det søndre brutårnet på Chacao Bridge, en hengebru med beliggenhet i Chile. Til denne opp-
gaven ble det laget to modeller. Den første er en ikke-lineær fiber modell hvor ikke-lineæriteter
i materialene er tatt hensyn til gjennom fordelt plastisitet. I tillegg ble det satt opp en elastisk
modell, hvor bøyestivhetene til elementene ble oppdatert iterativt. Videre ble det uført ulike
pushoveranalyser med hensikt av å danne et bredere sammenligningsgrunnlag.

Resultatene fra syv ulike tidsplansanalyser viste at Sekantmetoden er egnet til å beregne
maksimum av bøyemomentene i konstruksjonen, innenfor en akseptabel feilmargin. Den en-
delige reduserte modellen representerer det verste tilfelle for samtlige elementer, og gir derfor
en altfor myk konstruksjon sammenlignet med hva som i realiteten er tilfelle på et gitt tidspunkt
under et jordskjelv. I tillegg evner ikke metoden å gjenskape lukking av riss i betongen grunnet
osillerende svigninger. På grunnlag av dette egner metoden seg kun til å beregne maksmo-
menter, og ikke hele responshistorier.

Pushoveranalysene verifiserte Sekantmetodens egnethet til å beregne lastfordelingen i kon-
struksjonen fram til et lastnivå hvor knusing av betongen eller flyt i armeringen initieres. Meto-
den er likevel nøyaktig nok til å identifisere mulige flyteledd, og til en viss grad vurdere kon-
struksjonens duktilitet.

De konkluderende bemerkningene fra denne masteroppgaven viser at Sekantmetoden egner
seg til analyser og prosjektering av konstruksjoner, da den evner seg å fange opp de største mo-
mentene som opptrer i konstruksjonen. I tillegg egner metoden seg til å beregne lastfordelingen
i konstruksjonen før maks kapasitet nås i statiske analyser. På grunnlag av dette konkluderes det
med at metoden gir et fullverdig alternativ til analyser ikke-lineær materialoppførsel. Dette er
i samsvar med krav fra både Eurokode 8 og AASHTO Guide Specifications for LRFD Seismic
Bridge Design.
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Chapter 1

Introduction

1.1 Background

In recent years, Aas-Jakobsen, a civil engineering consultancy based in Oslo, has been working
on a suspension bridge that will connect the island of Chiloé to the Chilean mainland by crossing
the Chacao channel. The suspension bridge, named Chacao Bridge, will at completion have a
total length of approximately 2750 meters divided into two main spans of 1155 meters and 1055
meters, supported by three Reinforced Concrete (RC) pylons. Lying near the the subduction
zone between the Nazca Plate and the South American Plate makes the Chacao Bridge building
site one of the most seismically active regions on the planet [1]. The building site is shown in
figure 1.1a, with an overview of the tectonic plate boundaries causing seismic activity in figure
1.1b.

(a) (b)

Figure 1.1: Chacao Bridge Building site [2]

Given the sites proximity to an area with high seismicity, both in frequency and magnitude,
the design criteria for the structure have been strict and has forced the responsible engineers
to be innovative in their work. One of the major issues surrounding the design process was
whether or not to conduct a full nonlinear analysis of the structure. A full nonlinear analysis
on a structure gives the most accurate information regarding the system’s response to ground
motion. However, for a structure of this size and complexity a full nonlinear analysis would take
up to several days to complete, while an elastic analysis would complete in a fraction of the time.
Thus, if possible it would be preferable to obtain the same results in a more efficient way. For

1



2 1.2 Scope

Figure 1.2: Chacao Bridge [4]

this reason, it was decided to conduct an elastic analysis of the bridge, while accounting for the
cracked stiffness of the concrete sections through an iterative procedure based on the sections
secant stiffnesses, which for this thesis will be named the Secant Method. This type of procedure
is allowed in the design code used for the Chacao Bridge, namely the Guide Specifications for
LRFD Seismic Bridge Design from the AASHTO, which states that:

The distribution of forces from an elastic analysis should be carefully reviewed to
verify that the results are consistent with the expected nonlinear behavior of the
earthquake resisting elements. [3]

Engineers at Aas-Jakobsen expressed interest in a further investigation into the procedure itself
though a comparative study including a fully nonlinear model as baseline. Hence, this thesis
will look into the accuracy of the Secant Method when compared to a full Nonliear Time His-
tory Analysis (NTHA), as well conduct several pushover analyses for further verification. The
Chacao Bridge is illustrated in figure 1.2, with the South Pylon in the foreground.

1.2 Scope

This thesis will focus on comparing a NTHA to a Time History Analysis (THA) run with elas-
tic elements where the stiffness is updated iteratively to account for cracking of the concrete
sections.To ensure that the various analyses are implemented correctly and constrict the area of
focus, only the South Pylon will be analyzed. Two models are developed for this purpose. The
first one is a fiber model with distributed plasticity, where each cross section consists of fibers
modelled with nonlinear material models. The second one is an elastic model where an iterative
procedure is developed to reduce the flexural stiffness of each element based on the maximum
responses from the previous iteration. In addition, multiple pushover analyses will be carried
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out on both models to attain further basis of comparison between models as well as to act as ver-
ification for the results from the THA. Both models are developed in the open source academic
tool OpenSees [5]. The modelling of the South Pylon is carried out on the basis of a RM Bridge
[6] model previously established by Aas-Jakobsen together with construction drawings from
the bridge. Furthermore, several MATLAB scripts [7] are developed for iteration calculations,
as well as for pre- and post-processing.

1.3 Structure of the thesis

The following list provides a description of the contents of each chapter:

Chapter 2 lays out the fundamental theoretical background and descriptions of distributed plasticity,
material models, time history analyses and the iterative procedure that this thesis will
focus on.

Chapter 3 gives insight on how the South Pylon was modelled in OpenSees for both the fiber model
and the elastic model.

Chapter 4 describes how the each of the analyses were implemented in OpenSees with focus on the
iterative procedure for the Secant Method.

Chapter 5 provides the result from the time history and the pushover analyses, with plots comparing
the response of the two models.

Chapter 6 presents a discussion of the results from both analyses, as well as a brief discussion of the
methodology.

Chapter 7 concludes this thesis, and lays out the final thoughts on the Secant Method when com-
pared to the full nonlinear model.





Chapter 2

Theory

2.1 Distributed Plasticity

The distributed plasticity element presented in this thesis is based on the Euler-Bernoulli beam
theory. The theory behind the element will be presented for the three dimensional case, but is
easily simplified for a two dimensional problem. These models assume a torsional response
that is uncoupled from the axial and bending moment response. The element kinematics are
described by the following displacement field

u(x) =

u(x)

v(x)

w(x)

 (2.1)

where u(x), v(x) and w(x) are the axial and two transverse displacements in y and z-direction
respectively. The section deformation vector e is then given by

e(x) =

εa(x)

κy(x)

κz(x)

 =



∂u
∂x

∂2v
∂x2

∂2w
∂x2


(2.2)

where κ denotes the curvature about the two axes and εa is the normal strain at the reference
axis origin for an arbitrary element seen in figure 2.1.

Figure 2.1: Strain at a point m in a section with bi-axial bending and axial load [8]
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6 2.1 Distributed Plasticity

With the assumption from Bernoulli theory that plane sections remain plane after deforma-
tion, the strain at each point m on an arbitrary cross section can be found by

ε(x, y, z)m = εa(x) + zκy(x)− yκz(x) =
[
1 z −y

]εa(x)

κy(x)

κz(x)

 (2.3)

which by making use of the section kinematic vector as can be expressed as

ε(x, y, z)m = as(y, z)e(x) (2.4)

Equation (2.4) above decomposes the general strain field of the frame element εm into functions
over the cross section and along the x-axis of the element itself [8]. The section forces, also
known as generalized stresses, are represented by the section force vector

s(x) =

 N(x)

My(x)

Mz(x)

 (2.5)

where N is the axial force and M is the bending moment about the y and z-axis.

2.1.1 Displacement-Based Formulation

As with the classical Finite Element Method (FEM) beam formulations, the displacement fields
for the Displacement-Based (DB) formulation are interpolated with linear Lagrangian polyno-
mials for the axial deformation and cubic Hermite polynomials for the transverse deflection.
With the chosen interpolation functions equation (2.1) can be expressed as

u(x) ∼= NU(x)Ue, (2.6)

where NU(x) is the interpolation matrix and Ue the vector contains element end displacements.
The interpolation of the displacements along the element interior serves as an important source
of approximation error for beams that are not prismatic and linear elastic [9]. By combining
equations (2.2) and (2.6) we get the following relation between the element end displacements
and the strain in a section

e(x) = B(x)Ue (2.7)

where B is the strain-displacement transformation matrix, consisting of shape functions for
section deformation. The section constitutive behaviour can be described by

s(x) = ks(x)e(x),
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where ks(x) is the section tangent stiffness matrix, taken as ks(x) = ∂s/∂e [8]. For homoge-
neous materials where the origin of the of the reference system coincides with the centroid of
the section, ks becomes

s(x) =

EA(x) 0 0

0 EIy(x) 0

0 0 EIz(x)

 e(x) (2.8)

where E is the tangent modulus of the σ-ε relation. In the nonlinear case, the incremental
change in forces δs(x) is given by the product of the section tangent stiffness, ks(x), and an
incremental change in section strains δe(x) so that

δs(x) = ks(x)δe(x). (2.9)

By making use of the principal of virtual displacement, the following equilibrium equations for
the element force vector and stiffness matrix can be obtained

Pe =

∫ L

0

BT (x)s(x) dx (2.10)

Ke =

∫ L

0

BT (x)ks(x)B(x) dx (2.11)

where the section forces and stiffness matrix are integrated over the element length L.

2.1.2 Gaussian Quadrature

During structural analyses, equations (2.10) and (2.11) are solved with numerical integration,
of which the most common is Gaussian quadrature. For distributed plasticity elements, two
of the quadrature rules are the Gauss-Legendre and the Gauss-Lobatto rule. The first of the
two is most commonly used for elastic FEM-formulations. The Gauss-Legendre rule is able to
accurately integrate polynomials of order 2m− 1, where m is the number of Gauss Integration
Points (IP) along an element. [10]. The Gauss-Lobatto rule on the other hand has the advantage
of always placing IPs at the element ends.[11] This makes it possible to capture exact forces and
deformations at the element ends, where the forces and moments usually are the largest. This
is especially useful for integration of inelastic elements. The downside of the Gauss-Lobatto
is that the rule only integrates polynomials exactly up to order 2m − 3. Table 2.1 and 2.2
summarize the IP locations and weights for m = 3, 4, 5, 6. Note that the location of the points
are given in the isoparametric space with range −1 ≤ ξ ≤ 1.
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Table 2.1: Gauss-Lobatto quadrature rule in isoparametric space

Number of IP, m IP location ξh IP weight wh
3 0.0 4/3

±1.0 1/3

4 ±0.447214 5/6
±1.0 1/6

5 0.0 32/45
±0.654654 49/90
±1.0 0.066667

Table 2.2: Gauss-Legendre quadrature rule in isoparametric space

Number of IP,m IP location ξh IP weight wh
3 0.0 8/9

±
√

3
5

5/9

4 ±0.339981 0.652145
±0.861136 0.347855

5 0.0 128/225
±0.538469 0.478629
±0.906180 0.236927

2.1.3 Fiber Sections

Fiber sections is a way of discretizing cross sections to account for nonlinearities at any point
of the element when using distributed plasticity. However, in practise, the element behaviour is
only captured at the Gauss IPs, see figure 2.2. It can be shown that the section forces s can be
expressed as

s(x) =

∫
A

 1

z

−y

σm dA =

 N(x)

My(x)

Mz(x)

 (2.12)

where σm is the is the normal stress at pointm. Further, by using equation (2.9) and the principal
of virtual displacement, the following equation can be derived for the section state determination

ks(x) =

∫
A

as(y, z)
T dσ

dε
as(y, z) dA,

dσ

dε
= Em (2.13)
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where the stress σm and the material tangent modulus Em are determined by the material mod-
els. By discretizing the section into fibers the integrals above can instead be expressed as

sh =

nfib∑
fib=1

(as,fib)T (σfibAfib) (2.14)

and

ks,h =

nfib∑
fib=1

(as,fib(x))T (EfibAfib)as,fib = (EfibAfib)

 1 zfib −yfib
zfib z2

fib −zfibyfib
−yfib −zfibyfib y2

fib

 (2.15)

for an arbitrary section h. As the equations above suggest, the section state is determined
by looping over each discrete fiber in the section and calculating the section forces and tangent
stiffness matrix, which in turn are used to calculate the element forces and stiffness by equations
(2.10) and (2.11), respectively. The fiber variables σfib and ET,fib are found from the material
models of each fiber. This allows the creation of composite sections consisting of different
materials, such as RC sections. With this approach, no previous calibration of the moment-
curvature hysteretic rule is required; therefore, there is no need for any semi-empirical decision
[12].

Figure 2.2: Example of controlling sections along the element and section fiber discretization [12]

Figures 2.3a and 2.3b summarize this theory by illustrating the element state and section
state determination process. The fiber state determination is handled by the chosen material
model in each fiber, which will be elaborated on in section 2.2
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(a) Element state determination procedure (b) Section state determination procedure

Figure 2.3

2.2 Nonlinear Material Models

2.2.1 Concrete

Concrete01

A widely used uniaxial concrete material model with both accuracy and simplicity is the Kent-
Scott-Park concrete material object with degraded linear unloading/reloading stiffness, accord-
ing to the work of Karsan and Jirsa, and no tensile strength [13, 14]. This material model,
named Concrete01 in OpenSees, requires minimal input to define the nonlinearity of the consti-
tutive stress-strain law. The required input, as show in figure 2.4, are maximum stress fpc, strain
corresponding to maximum stress εc0, ultimate stress fpcu and ultimate strain εcu. The initial
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linear branch of the curve Ecm is defined as two times the maximum stress divided by the cor-
responding strain [15]. This allows some flexibility in modelling, since this makes it possible
to use the elastic modulus as input, and defining the strain by the relation between stiffness and
maximum stress. This property makes it possible to create a full nonlinear fiber model with the
same exact initial stiffness as a linear elastic model. It should be noted that stresses and strains
in compression are negative in figure 2.4.

Figure 2.4: Concrete01 material model in OpenSees [15]

Concrete02

Another material model that is integrated in OpenSees is the Concrete02 model. Similar to
the previously mentioned Concrete01 model, Concrete02 is also based on the Kent-Scott-Park
concrete material object with degraded linear unloading/reloading stiffness. However, unlike
Concrete01, Concrete02 has a bilinear relationship to represent the stress-strain relationship in
tension and has bilinear unloading and linear reloading [16] properties. The material parameters
for Concrete02 are shown in figure 2.5. Again, note the sign for compressive stresses and
strains. The additional parameters are the ratio between the unloading slope and the initial
stiffness λ, the tension stress limit ft and the slope of the linear tension softening branch Ets.



12 2.2 Nonlinear Material Models

Figure 2.5: Concrete02 material model in OpenSees [5]

From figure 2.6 one can observe that the two models have exactly the same behaviour for
monotonic compression forces. The differences occur during unloading and in tension, the latter
not depicted in the figure. On a global scale, in the context of this thesis, the main difference
among the two models is the initial stiffness contribution from the concrete fibers in tension.
For elements without considerable axial forces, the loss of initial strength in tension should be
considered when selecting the appropriate material model. This will be discussed in greater
detail in chapter 4.

Figure 2.6: Comparison of Concrete01 and Concrete02 [17]
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Concrete Confinement

The use of fiber section allows for the inclusion of additional strength of core concrete from
transverse reinforcement as proposed by Mander, Priestley and Park [18]. Figure 2.7 shows the
importance of considering this effect when analyzing concrete structures.

Figure 2.7: Stress-strain model proposed for monotonic loading of confined and unconfined concrete
[18]

At low stress-levels, the transverse reinforcement is hardly stressed and the response thus
behaves similar for both confined and unconfined concrete. At stresses close to to the uniaxial
stress limit of the concrete material, internal fracturing causes the concrete to dilate which in
turn will induce confining action in the concrete [18]. By having a suitable distribution of
stirrups, the strength as well as ductility of the concrete is significantly increased. This is an
important aspect of concrete design for seismic action, and should be considered when there is
a possibility of the concrete experiencing stresses close to the uniaxial strength limit as well as
risks of brittle failure.

2.2.2 Structural Steel

Steel02

A uniaxial analytical material model for structural steel that offers numerical efficiency whilst
agreeing well with experimental data from cyclic loading is the Giuffré-Menegotto-Pinto (GMP)
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model [19], known as Steel02 in OpenSees. By formulating the stress strain relationship ex-
plicitly with only a handful of parameters it offers a simple yet accurate way of describing the
path dependent behaviour of steel. In its simplest form, assuming straight lines for the elastic
yield line asymptotes, the normalized steel stress σ∗ is defined as

σ∗ = bε∗ +
(1− b)ε∗

(1 + ε∗R)
1
R

(2.16)

where
σ∗ =

σ

σy
=

σ − σr
σ0 − σr

(2.17)

and
ε∗ =

ε

εy
=

ε− εr
ε0 − εr

(2.18)

Equation (2.16) describes a continuous function transitioning from a straight line with initial
slopeE0 to a yield asymptote with slopeE1 = bE0 where b is the post yield hardening ratio. The
(ε0, σ0) and (εr, σr) pairs are located at the intersection of the asymptotic slopes and where the
last strain reversal took place, respectively. The parameter R influences the transition between
the two asymptotic lines and is defined as

R = R0 −
a1ξ

a2 + ξ
(2.19)

with R0 as initial value and where ξ is the total plastic strain over the initial yield strain which
is updated after each strain reversal. a1 and a2 are derived from empirical data. R influences the
transition between the two asymptotes thus taking into account the Bauschinger effect, which
alter the yield value of a steel member undergoing cyclic plastic deformations with opposite
signs [20]. To allow for the effect of isotropic strain hardening, it is proposed to shift the yield
line asymptote parallel to its direction following each strain reversal by an increment of σst
[21]. This induces discrete stress and strain shifts on the monotonic envelope curve, given by

σst = a3σy0

(εmax
ey0

− a4

)
(2.20)

where εmax is the absolute total strain value when the strain reversal occurs, εy0 is the initial
yield strain and a3 and a4 are found experimentally. When using the appropriate values for
a1, a2, a3 and a4, the GMP model is capable of incorporating several important properties of
reinforcing steel mentioned above. Thus, its hysteric response following different load histories
closely resembles experimental data [19], spite its simplicity. Figure 2.8 gives a summary of
the GMP model.
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Figure 2.8: Menegotto-Pinto Steel Model [22]

2.3 Nonlinear Geometry

2.3.1 Corotational Formulation

Slender structural members undergoing large displacements and carrying high axial forces are
prone to the effect of nonlinear geometry. Nonlinear chord geometry considers the relative
translations of element ends. Using the principle of virtual work, the equilibrium relating the
basic element forces q to the end forces p̄ in the local reference system whilst taking this effect
into account can be established [8]. The relation, seen below, show how the kinematic matrix
a(ū)T depend on the relative end displacements ∆ūx and ∆ūy in the element reference system.
Ln is the deformed element length.

p̄ = a(ū)Tq (2.21)
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

Figure 2.9 below depicts the element basic forces q in the corotational frame and the the end
forces p in the global reference system. β is the chord rotation angle, taken from the undeformed
orientation.

Figure 2.9: Relation between the element basic forces q and end forces p [8]

The tangent stiffness ke of the corotational frame element in the global coordinate system
can be established by making use of the relation in equation (2.21), such that

ke =
∂p

∂q
=
∂[aTg (u)]q

∂u
(2.22)

where aTg (u) relates to aT (ū) and p to p̄ through linear transformation. By making use of the
chain rule, the above equation can be expressed as

ke = aTg (u)
∂q

∂v
ag(u) +

∂[aTg (u)]

∂u
q = km + kg (2.23)

where v is the element deformation, u is the element end deformation in the global reference
system, km is the material stiffness matrix and kg the geometric stiffness matrix. Noting that
k = ∂q/∂v, the material stiffness matrix km may or may not include nonlinear element ge-
ometry effects also known as P-δ, depending on the axial force as well as element length and
stiffness. The geometric stiffness kg can be further sub divided into the truss geometric stiffness
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kga and beam geometric stiffness kgb, relating to the contribution from the axial basic force and
transverse end forces, respectively.

2.3.2 P-Delta

It can be shown that the truss geometric stiffness kga derived in the previous section is much
more significant that the beam geometric stiffness kgb [8]. Big P-Delta, denoted P-∆, is an
approximation of the nonlinear chord geometry effect which makes use of this fact by neglecting
the contribution from the beam geometric stiffness and further simplifying the truss geometric
stiffness. By neglecting axial deformation all together and assuming small ∆ūy so that Ln ≈ L,
the relation in equation (2.21) can be simplified to

p̄1

p̄2

p̄3

p̄4

p̄5

p̄6


=



−1 0 0

0 1
L

1
L

0 1 0

1 0 0

0 − 1
L
− 1
L

0 0 1



q1

q2

q3

+



0

−∆ūy

L

0

0
∆ūy

L

0


q1

Here, the matrix multiplying the basic element end force vector q is simply the static matrix
aT under linear geometry. The last column multiplied with the axial basic force q1 considers
the offset due to the relative end displacement ∆ūy normal to the undeformed element chord.
This gives rise to a moment, q1∆ūy and corresponding transverse element end forces. It can be
shown that the approximate plane frame stiffness matrix ke in the global coordinate system is

ke = aTg kag +
q1

L


(I− iiT ) 0 −(I− iiT ) 0

0 0 0 0

−(I− iiT ) 0 (I− iiT ) 0

0 0 0 0

 = km + kg (2.24)

where I is the identity matrix and the unit vector i consists of the the direction cosines of the
element chord in the original orientation,

i =

[
∆X
L

∆Y
L

]
(2.25)

kg represent the approximation of the truss effect resulting from the nonlinear chord geometry.
k is the basic element stiffness matrix which again, may or may not include nonlinear element
geometry, P-δ.
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2.4 Structural Damping

In structural dynamics, damping plays an important role for the response of a structure excited
by some dynamic action. The damping is a representation of all mechanisms causing energy
dissipation in a structure during vibration. It is mathematically convenient to consider damping
as a force proportional to the velocity, known as viscous damping. While this might not be
the physically accurate, it gives a satisfactory representation of the inherent damping forces.
[23]. In most cases, classical damping is an appropriate idealization, given similar materials
over a structures height. The most common model for establishing a classical damping matrix
is Rayleigh damping. The model expresses the damping matrix C as a linear combination of
the mass M and stiffness C matrices [24] so that

C = a0M + a1K (2.26)

where a0 and a1 are real valued scalars. These coefficients can be determined from specified
damping ratios ξ for two arbitrary modes represented by their natural frequencies ωi and ωj .
If both modes are assigned the same damping ratio the coefficients are found by the following
equations [25]

a0 = ξ
2ωiωj
ωi + ωj

, a1 = ξ
2

ωi + ωj
(2.27)

The damping ratio for modes i and j will be exactly ξ while outlaying modes will be assigned
either higher values if they are outside the interval [i,j] or lower if they are inside the interval.
For practical problems the modes i and j should be chosen to ensure reasonable values for
the damping ratio at all significant modes. Figure 2.10 illustrates the process of distributing
damping ratios.

Figure 2.10: Variation of modal damping ratios with natural frequencies for Rayleigh damping [25]

There are two main ways to include Rayleigh damping in most Finite Element (FE) pro-
grams; either by assigning each element its own damping matrix by using the element modes
or by constructing a global damping matrix. In OpenSees, only the latter option is available.
Therefore, the damping model in OpenSees does not have the same damping ratio in all modes,
but is rather chosen to achieve damping ratios close to the ones suitable for the materials used.



Chapter 3

Analyses in OpenSees

3.1 Section Response Analysis

A way to numerically evaluate the section response for a given fiber section in OpenSees is
to perform a moment-curvature analysis. The section, complete with meshing and appropriate
material models, is assigned to a theoretical zero length element. While one element end is
fixed, the other is free to rotate about one or both of the local section axes. A load pattern con-
sisting of an axial load may be applied perpendicular to the section face to induce initial strain
in the section. Then, a unit rotational load about one of the section axis is applied, as well as
a recorder to monitor the load and displacement values at the free Degree of Freedom (DOF).
Target deformation is then defined along with the number of increments to be performed. The
displacement step size is taken as their quotient, and remain constant during the analysis. When
the analysis is initialized, a load factor is used to vary the unit rotation until the first curvature
step is reached. The load along with the displacement value is then recorded, before the load
factor increases so to reach the next curvature increment. This procedure continues until the
target curvature is reached. A resulting text file contains the recorded values; the linearly in-
creasing curvature values along with the corresponding bending moments. Figure 3.1 illustrates
a moment-curvature diagram for an arbitrary cross section, where the curvature increment is set
to 4× 10−6m−1, with a final curvature target of 4× 10−3m−1.
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Figure 3.1: Moment-curvature diagram for arbitrary RC cross section
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The same procedure can also be used to obtain the force-strain relation for a fiber section.
A unit force is then applied perpendicular to the section face, and the translation DOF at the
same end is left unrestrained. The sign of the force and target ductility determine whether
a compression or tension analysis is to be performed. The analysis is then carried out for a
number of linearly increasing strain steps for which the corresponding forces are recorded.

3.2 Time History Analysis

A THA is the most accurate way of predicting a structures response to a specific seismic event,
especially when the structure is expected to deform beyond the limit of linear elastic behaviour.
The governing equation for a linear Multi Degree of Freedom (MDOF) system subjected to
arbitrary seismic loading is given by

mü + cu̇ + ku = −mTüg(t) (3.1)

where m, c k and T are the mass matrix, damping matrix, stiffness matrix and influence vector,
respectively. For inelastic systems, the nonlinear relation between resisting forces r(u) and dis-
placements u is path dependent, meaning that the relation depends on whether the deformation
is increasing or decreasing, as well as the extent of previous deformations [25]. For a NTHA,
(3.1) instead becomes

mü + cu̇ + r(u) = −mTüg(t) (3.2)

The solution of the nonlinear differential equation above is computationally demanding, since
the resisting forces have to be computed and updated for all elements and fibers for every time
or load step, elaborated in sections 2.1 and 2.2. The solution of equations (3.1) and (3.2) are
usually handled by use of numerical time-stepping methods. In this thesis, Newmark’s method
will be utilized. More specifically the constant acceleration method, an implicit and uncondi-
tionally stable method, will be used. Large scale structural problems rarely requires small time
steps. Even though other methods such as the linear acceleration method or the central differ-
ence method might be more accurate, the constant acceleration method is often more suitable
for these types of problems given the restriction on time increments other methods inherent.
Newmark’s method with constant acceleration is summarized in figure 3.2
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Figure 3.2: Newmark’s method with constant acceleration [25]

3.3 Secant Method

The nonlinear material properties in a structure can be taken into account through an iterative
procedure if certain nonlinear properties are known. This method, from now referred to as
the Secant Method, uses the nonlinear moment-curvature relation of an element and the forces
resulting from a linear THA to approximate its nonlinear response. As previously mentioned
in chapter 1, an elastic analysis with secant stiffnesses is allowed by the AASHTO Seismic
Design Manual, as long as the distribution of forces are verified to be consistent with expected
nonlinear behaviour [3], which is what this thesis aims to examine. Eurocode 8 also states that
if an elastic analysis is performed, it is preferable that the cracked stiffness of concrete sections
are included in the analysis to account for including the influence of cracking on forces and
deformations [26]. In the absence of an accurate evaluation of stiffness properties, the Eurocode
also allows for a simplified method with 50% reduction of flexural stiffness in elements that are
at risk of cracking. The simplified method will not be pursued further in this thesis, but it
provides an indication of reasonable stiffness reductions in critical elements. Given that the
Secant Method provides sufficiently accurate results compared to the nonlinear fiber model,
the method is code-compliant for structures subjected to seismic loading that are design by
following both the AASHTO Seismic Design Manual, as well as the Eurocode.
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To perform the Secant Method, moment-curvature relations must first be established for all
elements that potentially can become nonlinear during a seismic event. This relation depends
on section properties such as reinforcement layout and material properties, as well as the axial
forces acting on the section such as gravity loads. Then, a linear THA with the initial stiffnesses
is conducted. The initial stiffnesses is taken as the slope of the tangent along the moment-
curvature relation at the origin for each element in both directions.
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Figure 3.3: Moment and corresponding axial load for an element following a THA

Following the THA, each element has a series of resulting forces in the time domain, such
as the ones in figure 3.3, from which the largest absolute bending moments about each section
axis can be obtained. It should be noted that the larges absolute moment about the two principle
axes does not necessarily occur simultaneously. Further, if the earthquake forces results in
significant changes to the axial forces in the elements, the moment-curvature relations must be
re-evaluated. The effect of the axial force on the moment-curvature relation, seen in figure 3.4a
for an arbitrary RC element in compression, significantly influences the capacity of the element.
For structures with frame-like configurations, horizontal translation of the girder can generate a
tension-compression pair in the columns, which in turn will govern the ultimate strength of the
these.
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(a) Varying compressive load for M-κ relation
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(b) Secant line in M-κ relation

Figure 3.4: Determination of secant line using moment

The secant is taken as a line from the origin through the intersection point of the obtained
moment and the correct moment-curvature relation, as seen in figure 3.4b. The new stiffness
EI can then be found by making use of the relation

EI =
M

κ
(3.3)

whereM and κ is the moment and curvature about the appropriate axis. Thus, by calculating the
slope of the secant line in both directions, the nonlinear flexural stiffness about both principle
axes can be approximated. The updated stiffness of the structure can then be used in the next
iteration of the procedure, replacing the initial stiffness.

This algorithm can be repeated for a certain number of iterations i or until a convergence
criteria is met for the stiffness development. In theory this method should be able to approxi-
mate the nonlinear material response of a structure, since each elements’ response is bounded
by its inelastic moment-curvature relation. The final structure with reduced stiffnesses will in
principal have the same maximum forces as a structure using full nonlinearity. The method has
some weaknesses, however. If the moment value surpasses the peak of the moment-curvature
relation, determining the secant line becomes significantly more cumbersome. Further, since
the method only captures maximum deformation and forces, it is not able to take effects such as
cyclic degradation and dissipation of energy due to cracking of the concrete into consideration.
Furthermore, the method reduces each element on the basis of the maximum moments in the
each element individually. Since the maximum response for all elements do not occur simulta-
neously during a THA and because a stiffness reduction of one element will affect the response
of other elements, the response values following the each iteration of the Secant Method rep-
resents a worst-case scenario in regards to the stiffnesses in the structure. Additionally, the
method is not able to account for the regaining of stiffness when cracks are closed under cyclic
loading. These two effects in particular makes the final structure too soft, which must be taken
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into consideration when evaluating the resulting stiffness values.

3.4 Pushover Analysis

The pushover analysis is a static incremental analysis with the goal of predicting the nonlinear
behaviour of a structure. By incrementally increasing an applied horizontal load, it is possible
to assess the structural performance of newly designed structures as well as to estimate potential
plastic mechanisms and redistribution of forces [26]. Usually, a pushover analysis is conducted
by converting the structural system into an equivalent Single Degree of Freedom (SDOF) sys-
tem. Thereafter, a response spectrum analysis is conducted on the equivalent SDOF system
to find displacement demands and corresponding load distributions, which are then applied to
the entire structure. The loads are then incrementally increased until the target displacement is
reached, and the residual strength of the structure is analyzed. This method is generally only ap-
plicable in structures where the fundamental mode shape dominates the response. Procedures
such as the Modal Pushover Analysis have also been developed to account for all significant
modes in the analysis by combining several pushover analyses, and therefore obtaining results
that provide a better estimation of the forces from a THA [27].

For this thesis, the pushover analysis will hereby refer to the analysis procedure used by
Aas-Jakobsen during the design of the Chacao Bridge. Rather than retrieving lateral loads from
an equivalent SDOF system, the applied loads are instead set as the inertial forces retrieved
at the most unfavourable time-steps from a THA. For a structure as complex as the Chacao
Bridge, higher modes will significantly effect the response of the structure. It is also not cer-
tain that the fundamental mode shapes are the dominant response patterns with regards to the
load distribution in various failure modes. By performing an analysis of this type, the exact
acceleration profile and load distribution that might be detrimental to the structural integrity are
easily identified and investigated. The process of establishing a pushover analysis of this type
is explained in the list below [28].

1. Determine a critical element or section that is to be studied. For example the base of the
pylon or one of the cross-beams.

2. Find the time-step tmax across all input ground motions where the maximum moment in
the chosen section occurs.

3. Obtain the total acceleration profile, üt(tmax) for the ground motion that gives the maxi-
mum bending moment in the critical element.

4. Compute lateral inertial forces as F = müt(tmax), and distribute the computed loads in
the structure. This load level corresponds to a load step λ = 1.

5. Incrementally increase the load step, λ, by ∆λ from zero until ductile failure or until the
analysis fails to converge.
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6. Steps 1-5 are repeated for all critical elements or failure modes that are to be investigated.

This type of pushover analysis was performed by Aas-Jakobsen to enable the extraction of
forces that are critical for various failure modes in the structure, demonstrate sufficient ductility
and displacement capabilities. Furthermore, the pushover analysis is conducted to to verify
that nonlinear effects do not have a detrimental effect to the integrity of the structure [28].
The analysis is considered conservative, as the maximum response is retrieved from the worst-
case time history for a specific element without averaging, which is allowed for design under
Most Probable Earthquake (MPE). It has been verified that the applied loads reproduce the
displacements and element forces when applied with a load factor λ = 1.

The pushover analysis described above was deemed preferable for this thesis over more
conventional pushover analyses to stay consistent with the analyses used by Aas-Jakobsen in the
actual design of the Chacao Bridge. The pushover analyses will be conducted to further verify
the Secant Method, and control the results from the THA. Figure 3.5 illustrates an example
of a capacity curve from a pushover analysis. In the fiber model, nonlinearities are handled
internally by the solver in OpenSees, while nonlinearities in the elastic model will be handled
by the Secant Method, which will be discussed further in the next chapter and in section 5.4.
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Chapter 4

Modelling in OpenSees

4.1 Choice of Finite Element Software

During the early stages of this report, several approaches were investigated to determine the
best way to readily create a FE model with the desired requirements. Elements with distributed
fiber sections were chosen to model the plastic behaviour of reinforced concrete due their abil-
ity to depict inelastic responses along an element for arbitrary cross sections. Because of the
large axial loads imposed on the pylons, plastic deformations cannot be limited to certain el-
ement intervals which is the case for plastic hinge elements. An alternative way of modeling
distributed plasticity is to model the entire beam as a solid with embedded reinforcement bars
before creating solid FEs through meshing. This method is however computationally expensive
and was disregarded after several trials in Abaqus.

An application with the necessary capability of using fiber sections is OpenSees. This open-
source framework developed by the Pacific Earthquake Engineering Research Center (PEER) is
an extension of the Tcl interpreter for Finite Element Analysis (FEA). With one of the authors
having prior experience with the program after an exchange year abroad, some pre and post
processing schemes in MATLAB [7] were obtainable. Preliminary knowledge, available tools
and versatility thus made OpenSees the FE program of choice. Similar to most FE programs,
OpenSees offers the possibility of defining an parametric input file, making it easy to alter
properties in the element model. A drawback when using this approach in the design, however,
is that any output value must be recorded manually and only data files are produced, limiting
the amount of visual interface. For further post processing and visual interpretation of the data
obtained, numerous MATLAB scripts have been developed.

4.2 Modelling of the South Pylon

The South Pylon along with the rest of the Chacao Bridge had previously been modeled by
engineers at Aas-Jakobsen in the FEA program RM Bridge, and the parametric input file for this
program laid the groundwork for establishing the OpenSees model. Data regarding geometry,
boundary conditions and material properties were acquired from the parametric input file and
related documentation. To accurately depict the geometry of the element model used by Aas-
Jakobsen, the exact same node distribution was used in OpenSees. For easy comparison, node
and element numbering were also kept alike. The elements connecting the nodes in the RM

27



28 4.2 Modelling of the South Pylon

Bridge model were designed as linear elastic for most of the bridge, including the South Pylon.
For this thesis however, two FE models of the South Pylon were created; one with nonlinear
material properties using fiber sections and one linear elastic. A pinned model showing the node
and element numbering of the pylon can be seen in figure 4.1.
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The naming convention used in this thesis and the local element axes related to the global
coordinate system are elaborated in table 4.1. Here, the global Z-axis is upwards, while the
global X and Y-axis are normal and parallel to the cross-beams, respectively.

Table 4.1: Naming convention and local element axes

Structural Part Elements Local x Local y Local z

Pylon Legs
4101-4122
4201-4222

Along element axis
Transverse axis
perp. to pylon

Longitudinal axis
perp. to pylon

Lower Cross-Beam 4501-4504 Along element axis Global longitudinal axis Vertical

Upper Cross-Beam 4701-4704 Along element axis Global longitudinal axis Vertical

Pile Caps
4099-4100
4199-4200

Along element axis
Transverse axis
perp. to pylon

Longitudinal axis
perp. to pylon

Tie-beams 4011-4014 Along element axis Global longitudinal axis Vertical

SSI-springs
34201
34202

Global X Global Y Global Z

Cable Springs
100
200

Global X Global Y Global Z

4.2.1 Fiber Model

Nonlinear RC fiber sections can readily be created in OpenSees by defining the concrete sec-
tion dimensions and reinforcement layout. The pylon legs, for instance, were made using eight
trapezoidal shaped segments, derived from structural drawings acquired from Aas-Jakobsen,
seen in figure 4.2a for one of the pylon legs. The longitudinal reinforcement can then be mapped
onto each segment by defining lines and specifying the distance between adjacent reinforcement
bars. When combined, these segments make up a continuous reinforced concrete section, seen
in figure 4.2b, which then can be meshed and assigned to one or more elements. To shorten
the modelling process, some simplifications were made when creating the fiber elements, such
as using only one row with twice the reinforcement area rather than two parallel bundled rein-
forcement groups. All fiber section can be found in appendix C.
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(a) Structural drawing of leg section
(b) Equivalent fiber section in OpenSees

Figure 4.2: Comparison of construction drawings with fiber section in OpenSees

As mentioned in chapter 2.2, transverse reinforcement that confines the longitudinal bars
can give a significant increase in strength and ductility of a concrete member, especially under
large axial forces. This effect can be considered for uniaxial material models such as the ones
used in OpenSees by distinguishing the concrete within and outside of the transverse shear re-
inforcement. The parameters for the confined concrete are largely based on the layout of the
shear reinforcement, and formulas exist for several configurations. The hollow pylon legs are
not among these, however, thus establishing a stress-strain relation for the confined concrete
thus becomes a tedious task. Further, engineers at Aas-Jakobsen argued against including the
effects of confinement, due to the unconventional section layout. When using thin walled sec-
tions as opposed to solid section, the effect can be unfavorable as the concrete cover spalls off
resulting in a significant reduction of concrete area [29]. In addition to this, separating confined
and unconfined concrete would have become a tedious task in OpenSees due to the complexity
of the section layout. Therefore, no distinction was made on the concrete properties within
and outside of the shear reinforcement and the concrete parameters for the entire pylon were
based on the ones used by Aas-Jakobsen as well as values from the AASHTO Seismic Design
Specifications [3], which was used as the design code for the bridge. While this does increase
the capacity of the unconfined area in each cross section, the ratio of the unconfined area to
the confined area is so small that this does not result in any considerable change to the overall
response of the structure. At the same time, the compressive strength of the concrete was not
scaled up to account for the confined strength of the core concrete, so that only the ductility
benefits of confined concrete were kept. All in all, the choice of material parameters for the
concrete was deemed conservative while preserving the efficiency of the modelling process.

Two relevant material models for concrete available in OpenSees are Concrete01 and Con-

crete02, presented in section 2.2. The main distinction between these is that Concrete02 bear
some tensile strength, whereas Concrete01 does not. Arguably, Concrete02 provides a more
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realistic concrete model, yet choosing one of the two has proven difficult. Figure 4.3a below
shows the moment-curvature relation for a section belonging to the lower cross-beam which has
relatively small compression forces resulting from gravity loads compared to the pylon legs. For
moments larger than 150 MNm, the difference between the two curves are negligible, since the
tensile part of the concrete section has cracked completely. For moments less that this value,
however, there is a significant deviation between the two curves. This raises an issue when per-
forming the Secant Method, for which Concrete02 will yield a secant line significantly steeper
than that of Concrete01, when using a moment less than 150 MNm. Since the two curves have
the same initial stiffness, seen in figure 4.3b, the ratio of reduction from initial stiffness po-
tentially depend on which material model is chosen. After switching between both material
models for an extensive period, Concrete02 was chosen, since it produced more realistic results
for the cross-beams during the secant procedure. As shall be seen later, the secant procedure
is extremely sensitive to crack development, and since the cross-beam have small axial forces,
sometimes even in tension, cracking will occur for small and negligible moments when using
Concrete01.
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Figure 4.3: Moment-curvature analysis using Concrete01 and Concrete02

The longitudinal reinforcement is modeled using the Steel02 material model in OpenSees,
presented in section 2.2.2. The bars are represented as 1D points along lines in the section, with
capacity depending on the material model as well as the assigned diameter.
Tables 4.2 and 4.3 below summarize the choice of material parameters used for the fiber sec-
tions. The concrete compressive strength parameters correspond to concrete of type C45.
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Table 4.2: Concrete02 material paramters

Parameter Symbol Value

Expected maximum compressive strength fpc 58.5 MPa
Initial modulus of elasticity Ecm 32.1 GPa
Strain at maximum compressive strength εc0 3.64 h

Ultimate compressive strength fpcu 49 MPa
Ultimate compressive strain εcu 5 h

Expected tensile strength ft 4.05 MPa
Tensile softening stiffness Ets 4.41 MPa
Ratio between unloading and initial slope λ 0.5

Table 4.3: Steel02 material parameters

Parameter Symbol Value

Expected yield strength fy 470 MPa
Young’s modulus Es 200 GPa
Yield strain εy 2.35 h

Strain hardening ratio b 0.06
Isotropic hardening parameter a1 0
Isotropic hardening parameter a2 1
Isotropic hardening parameter a3 0
Isotropic hardening parameter a4 1
Asymptote parameter R0 0.20
Asymptote parameter cR1 0.925
Asymptote parameter cR2 0.15

The material parameters for the steel fibers correspond to steel Grade 60. The values for
a1-a4 are kept as the default values for Steel02, while R0, cR1 and cR2 are chosen as the values
recommended in the OpenSees manual [5].

Upon completion, all sections were assigned to elements, onto which they were distributed
along IPs determined by the numerical integration algorithm. For this thesis, the Gauss-Lobatto
rule was used, presented in table 2.1. Although less accurate than the Gauss-Legendre rule, it
has the advantage of having IPs at the element ends. For the Hermite polynomials of the DB
elements, the accuracy of the Gauss-Lobatto rule is sufficient with five IP along the element
length. The outermost cross-beam elements were modeled with eccentricities so that their sec-
tions did not overlap with those of the pylon legs. The outer parts of the cross-beams which
lack sections are rigid and follow the rotation of the leg nodes they are connected to.

Elements belonging to the foundation of the pylon were kept linear elastic. This decision
was made on the notion that these elements were to complicated to be made into equivalent
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fiber sections with similar properties. Further, these elements make up the pile caps and the
tie-beam coupling them and will thus stay linear elastic behaviour due to their sheer size. Their
properties were thus simply imported from the RM Bridge input file.

The local coordinate system for sections assigned to the pylon legs and cross-beams are
depicted in figure 4.4 below, along with the global coordinate system seen with capital letters.
The local x-axis coincides with the element vector, and its direction can be found using the right
hand rule. The local coordinates are also shared by the linear elastic elements.

Figure 4.4: Local section coordinate systems

4.2.2 Section Discretization

Obtaining specific rules for the number and distribution of fibers over the section from literature
was proven unsuccessful. These parameters effect the accuracy of the results and may also
lead to convergence problems if the mesh is too coarse. On the other hand, increased mesh
refinement leads to increased computational cost, eventually without significant improvements
of accuracy [30]. During the early stages of development, it was decided upon using a 25×10
grid when meshing each of the four trapezoids making up the long sides of the leg sections.
The mesh of the trapezoids which makes up the corners was scaled accordingly. This mesh
size was deemed sufficiently small after a series of moment-curvature analysis was conducted,
seen in figure 4.5 below. It shows the results following said analysis on element 4101, with
varying axial forces and mesh sizes. The axial loads are in compression and represent 0.5,



34 4.2 Modelling of the South Pylon

1 and 1.5 times the gravity force on the element. For reference, the gravity load is -117.6
MN. Seen in figure 4.5, there is no significant difference among the section response using the
25×10 mesh or the more refined 50×20 mesh. Using a 5×2 grid or coarser however, result in
divergence from the converged response. Since the 50×20 did not display great improvements
in the results, the 25×10 mesh was deemed sufficiently accurate. The same element size was
was used when discretizing the cross-beam sections.
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Figure 4.5: Moment-curvature relations for different meshing and axial load

4.2.3 Elastic Model

A linear elastic model of the South Pylon was also created in OpenSees, from now on referred to
as the elastic model, onto which the Secant Method could be conducted. The elastic model was
largely based on the fiber model, with elastic properties derived from the fiber model rather than
from the RM Bridge input file. Doing so would remove potential sources of uncertainty when
comparing the results of the Secant Method to those from the NTHA using the fiber model.
The only distinction between the two models is how the elements are constructed. In the elastic
model, these are defined as linear elastic, by specifying the elastic modulus along with the cross
section area and the second moment of area about the two local element axes and the torsional
constant. To obtain the second moment of area about the two transverse axes, each fiber section
used in the fiber model underwent an moment-curvature analysis about both principle axes,
described in detail in section 3.1. The slopes of the initial tangents from these curves provides
the initial stiffness, EI, which divided by the elastic modulus becomes the effective second
moment of area.
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The fiber sections in OpenSees do not provide any inherent torsional stiffness. However,
this can value can be attributed to a fiber section if an appropriate value can be obtained. In this
thesis, these values were taken from the RM Bridge input file and assigned to all fiber sections
as well as all elements in the elastic model.

Instead of assigning each element in the elastic model the area of the corresponding section
in the fiber model, an equivalent area was obtained which included the stiffness contribution
from the reinforcement. Same as for the transverse bending stiffnesses EI, the initial axial
stiffness EA can be taken as the slope of the initial tangent from a section response analysis.
As outlined in section 3.1, both a compressive and a tensile analysis can be conducted. The
elements which make up the pylon legs will always remain in compression due to the large
self weight of the structure and the cables during a THA. The cross-beams however, although
mostly in compression, will occasionally be stretched under certain ground motions. This raises
an issue since nonlinear RC sections have significantly different axial stiffness in tension and
compression. Because the tensile stiffness for these sections typically was around ten per-
cent of the compression stiffness if no tensile strength was attributed to the concrete, it was
deemed too conservative to use this value for the cross-beams. Thus, all equivalent areas were
taken from compression force-strain relations. When using the Concrete02 material model in
OpenSees, this simplification becomes slightly more correct as the material model carry some
tensile strength.

4.2.4 Mass and Gravity Loads

Mass in OpenSees can either be assigned directly to nodes as point masses in directions of
choice or distributed along the elements, then lumped to adjacent nodes automatically [5]. Both
methods yield the same resulting mass matrix, and the second approach was applied for this
thesis. The mass density per unit length was calculated using the sectional area times the mass
density of RC, taken as ρc = 2500 kg/m3.

OpenSees does not have any functionality where the dead loads are calculated automatically
from the mass of the structure. These must be defined separately as vertical point loads at each
node. For both the fiber and elastic model the nodal gravity forces were obtained by lumping
half of the weight of all elements connected to a node onto said node.

4.3 Synopsis of Mass and Stiffness

For completeness, some of the properties of the fiber and elastic model created in OpenSees are
summarized in table 4.4 below. Due to symmetry only one of the two pylon legs are included as
well as only one element from each cross-beam and the tie-beam. The two rightmost columns
contains the stiffnesses used in the elastic model, derived from the sections in the fiber model
using moment-curvature analysis. Elements marked with an asterisk (*) make up the foundation
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and are modeled as linear elastic in both models, as elaborated in section 4.2.1. Element lengths
include eccentricities. The total mass of the pylon structure ignoring cables and nonstructural
components is 1.739× 106 kg.

Table 4.4: Properties of the OpenSees models

Element Area [m2] Length [m] Mass [kg ×103] Iy [m4] Iz [m4]

4011*-4014* 12 2.80 84.35 9.00 16.00

4099* 340.00 1.50 1275.00 11333.33 8188.33

4100* 340.00 4.50 3825.00 11333.33 8188.33

4101 10.24 3.00 76.80 48.59 40.88

4102 10.22 3.00 76.68 47.18 40.57

4103 9.76 4.00 97.59 44.91 40.16

4104 9.29 4.00 92.92 44.51 40.05

4105 10.16 4.17 105.90 47.60 44.30

4106 11.04 2.50 69.00 63.44 53.98

4107 11.02 2.50 68.91 63.11 53.92

4108 10.12 3.03 76.70 47.47 47.04

4109 9.21 0.16 3.69 44.50 46.06

4110 9.18 11.84 271.90 39.31 39.43

4111 9.12 12.00 273.71 37.02 36.03

4112 9.06 12.00 271.83 36.03 35.66

4113 9.00 12.00 269.94 35.02 35.29

4114 8.93 12.00 268.06 34.07 34.92

4115 8.87 12.00 266.18 33.10 34.56

4116 8.81 12.00 264.30 32.15 34.23

4117 8.77 4.00 87.68 31.54 33.96

4118 8.75 3.71 81.14 31.73 36.51

4119 9.62 3.00 72.18 35.74 39.91

4120 10.50 2.27 59.47 43.26 45.08

4121 10.49 0.77 20.07 43.12 45.05

4122 26.42 3.50 231.21 52.39 59.20

4501-4506 9.50 3.63 86.26 48.98 64.89

4701-4704 8.46 4.23 89.52 33.21 43.62
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4.3.1 Boundary Conditions

Main Cables

As mentioned, only the South Pylon of the Chacao Bridge is being assessed in this thesis.
However, loads and stiffness contributions from the main cables play an important role in the
response of the pylon. Therefore, the main cable has been modelled using one-dimensional
springs in the longitudinal and transverse directions. That is, along the bridge axis and along the
horizontal axis perpendicular to it. The springs were modelled using the zero-length elements
in OpenSees [5]. These elements are defined by two nodes at the same location, which in this
case is set at the top of each pylon leg. Thereafter, the element is assigned material properties
in directions of choice. Computationally, the zero-length elements have unit length and area
in all directions, meaning that the strain and axial displacement are the same, ε = ∆L

L
= ∆L.

Furthermore, the axial stiffness in each direction is defined by the Young’s modulus in the
corresponding direction, EA

L
= E. From this it follows that the stiffness contributions from the

cables, which were retrieved from the full Chacao Bridge model, could be inserted directly into
the zero-length elements as their corresponding Young’s modulus. This is summarized in tables
4.5 and 4.6 below. In addition to the cable springs, vertical point loads of −84 MN are placed
on the top nodes of each leg to represent the vertical forces from the main cables.

Table 4.5: Longitudinal cable stiffness at each leg, with chosen E in OpenSees

Pylon leg Cable stiffness [kN/m] E [N/m]

West Leg 59012 -

East Leg 58964 -

Mean 58988 58988000

Table 4.6: Transverse cable stiffness at each leg, with chosen E in OpenSees

Pylon leg Cable stiffness [kN/m] E [N/m]

West Leg 523 -

East Leg 527 -

Mean 525 525000

Soil-Structure Interaction

The presence of soil or sedimentary rock layers above bedrock at a construction site will modify
the ground motion characteristics [31]. The effect of this has been included by a previously con-
ducted Soil-Structure Interaction (SSI) analysis in PLAXIS. In the RM Bridge model used by
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Aas-Jakobsen, SSI have been implemented using matrix elements connected to the foundation
elements. In OpenSees there are no such matrix elements that would suit this purpose. Instead,
the SSI-matrices have been approximated using zero-length elements, as for the main cables.
By extracting the stiffness used in RM Bridge directly from the matrix elements, it is possible
to achieve the same stiffness in all diagonal terms. The off-diagonal terms have been neglected,
as they are not as significant as the diagonal terms, and at the same time are more troublesome
to include. 

Kx 0 0 0 0 0

0 Ky 0 0 0 0

0 0 Kz 0 0 0

0 0 0 Kxx 0 0

0 0 0 0 Kyy 0

0 0 0 0 0 Kzz


Figure 4.6: Coordinates in the OpenSees coordinate system



113e5 0 0 0 0 0

0 159e5 0 0 0 0

0 0 111e5 0 0 0

0 0 0 11945e5 0 0

0 0 0 0 9580e5 0

0 0 0 0 0 14595e5


Figure 4.7: SSI matrix used in OpenSees [kN/m] & [kNm/rad]

4.4 Second Order Effects

As elaborated in section 2.3, slender structures subjected to large axial forces are susceptible
to the effect of nonlinear geometry. Tall pylon structures definitively fall within this category,
thus nonlinear geometry needs to be accounted for when analyzing the South Pylon. OpenSees
accomplishes this through geometric transformation objects, which are attributed to each ele-
ment. The main task of these is to transform global displacements to natural coordinates and to
transform the resulting natural forces and stiffnesses obtained back to global coordinates [32].
When assembling an element in OpenSees, linear, P-∆ or corotational transformation can be
chosen, which in turn determinate the kinematic transformation matrix. It should be noted that
the nonlinear element geometry effect P-δ is not included in OpenSees, however this effect is
usually several magnitudes smaller that the nonlinear chord geometry effect. The negative im-
pact this will have on accuracy can be omitted by carefully selecting element lengths depending
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on axial load and stiffnesses. This was not done for this thesis, but will be discussed further in
section 7.4. After using alternating between the P-∆ and Corotational transformation for the leg
sections over several analyses, it was observed that the two methods yielded almost identical
results. Thus, it was decided to advance with the P-∆ transformation object, as it was faster.

4.5 Comparison of Modes

The first 20 modes computed for the linear elastic model and the nonlinear fiber model are
shown in table 4.7. The results show that the two models behave similarly, with some differ-
ences that may stem from approximation when defining the elastic model. The results however,
were deemed satisfactory for the purpose, with differences being so small that they will have
negligible impact on the dynamic response. The mode shapes are illustrated in appendix B.
Only the mode shapes for the fiber model have been includes, as the mode shapes are similar
for the elastic model.

Table 4.7: Comparison of modes for the two models

Mode Nr. Fiber Model [s] Elastic Model [s] Deviation [%]

1 2.181 2.139 1.929

2 1.145 1.132 1.090

3 0.794 0.793 0.225

4 0.596 0.591 0.829

5 0.491 0.484 1.563

6 0.415 0.408 1.767

7 0.376 0.376 -0.025

8 0.284 0.280 1.440

9 0.240 0.236 1.607

10 0.215 0.212 1.366

11 0.193 0.189 2.083

12 0.176 0.173 1.696

13 0.163 0.162 0.928

14 0.161 0.159 1.526

15 0.136 0.135 0.658

16 0.131 0.129 1.186

17 0.127 0.125 0.934

18 0.116 0.114 1.253

19 0.107 0.106 0.950

20 0.104 0.102 2.150
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4.6 Structural Damping

In section 2.4, it was shown how classical viscous damping is a practical way of including the
various effect that cause dissipation of energy in a dynamic system. As seen in table 4.7, the nat-
ural modes of the two structures are sufficiently close. This allows the use of the same Rayleigh
damping coefficients for both structures. The target damping ratio was set to 5 %, in accordance
with recommendations in most codes [26, 3]. The calculation of the damping coefficients were
performed by Aas-Jakobsen and inserted directly into OpenSees [31]. The damping matrix
is then computed internally in OpenSees through utilizing the previously established equation
(2.26). By using the same Rayleigh coefficients in both models, consistent damping forces are
ensured through each iteration step in the Secant Method.
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Implementation of Analysis

5.1 Introduction

On a structure such as the Chacao Bridge, a full nonlinear time history analysis can take days to
finish and convergence is not guaranteed. Therefore, Aas-Jakobsen deployed the Secant Method
to investigate if some elements would get reduced stiffnesses due to cracking during an seis-
mic event. This would in turn result in an overall softer structure and a reduction of element
forces. Aas-Jakobsen used nonlinear moment-curvature relations for each section obtained in
Nova Design and RM Bridge to run the elastic THA during each iteration [31]. The proce-
dure was implemented on the South and North Pylon, as well as on the approach bridge piers,
all of which showed a significant reduction of stiffness for certain elements after a number of
iterations. However, since RM Bridge is unable to preform complete nonlinear analysis in a
satisfactory manner, it is difficult to confirm these results. By ensuring that the reinforcement
did not yield for the any of the sections, engineers at Aas-Jakobsen concluded that the model
remained consistent with elastic design assumptions. Further, the elements with reduced stiff-
ness also had the largest moments for the fundamental mode shapes. The reduced stiffness was
therefore assumed to be representative and used in further analyses after some modifications.

OpenSees, on the other hand, allows for the implementation of nonlinear material models
and thus the possibility of a complete cross examination between the two approaches arises.
Two models of the South Pylon were used during this analysis; one linear elastic with iterative
stiffness updates based on the Secant Method, and one nonlinear fiber model used as a reference
model. Both models were excited with seven earthquake records of large magnitude to ensure
inelastic behavior, provided by Aas-Jakobsen. The elastic model underwent between 6-8 itera-
tions depending on the earthquake record before the convergence criteria was met. Values such
as largest absolute displacement and moment along the structure during the final iteration was
then compared with the corresponding ones from the NTHA. Afterwards, the inertial forces
which gave rise to the largest moments in the most critical sections were used as the basis of a
pushover analysis, which was used as verification of the results, as well as a comparison of the
two models in its own right.
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5.2 Time History Analysis

The responses obtained from a THA is naturally sensitive to the chosen acceleration record,
and in general, the likelihood of two identical seismic events is very low. For this reason,
both the entire Chacao Bridge and the pylon structure in this thesis have been analyzed using
seven different ground motion records. The results from these records will be averaged to give
response values representative of the MPE, with a return period of 1030 years [31]. This is in
accordance with the guidelines from the codes [26, 3]. The input ground motions were run with
a full transient analysis in OpenSees with Newmark’s constant average acceleration method
as the time-stepping scheme, see section 3. OpenSees has the functionality of simultaneously
running seismic ground motions in two directions. The accelerograms provided are generated
with a time step of 0.01 seconds. This was initially done to prevent numerical damping of
important high frequency modes for the entire Chacao Bridge. Since this thesis only considers
the South Pylon, 0.01 seconds is not necessary. However, the time-step size is kept as-is to
ensure convergence for the NTHA.

5.2.1 Input Ground Motion

Aas-Jakobsen have supplied the authors with seven pairs of horizontal ground motions for the
South Pylon. The accelerograms were found by calculating the free-field ground motions at
each location from rock motions, while taking into account the soil profile and foundation char-
acteristics on site. For the South Pylon, the transverse ground motion, H2-components, was
found with the assumption of one dimensional wave propagation, while the longitudinal, H1-
component was found with two-dimensional site response analyses. [33]. The time-histories
were then calculated using a computer code. The method used is not relevant for this thesis, and
will therefore not be elaborated further. When the ground motions in the two directions have
differing length, the analysis will use the shortest ground motion’s duration.

A summary of the input ground motions used is shown in table 5.1, while the acceleration
time histories themselves can be seen in the subsequent figures 5.1-5.7.
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Table 5.1: Input Ground Motions

Input Ground Motion Direction PGA [m/s2] Length [s]

SP1-H1 Long. 3.65 99.990

SP1-H2 Trans. 3.64 141.630

SP2-H1 Long. 4.04 75.000

SP2-H2 Trans. 3.90 124.560

SP3-H1 Long. 3.42 95.000

SP3-H2 Trans. 3.70 201.960

SP4-H1 Long. 4.16 50.010

SP4-H2 Trans. 3.32 71.970

SP5-H1 Long. 3.91 60.010

SP5-H2 Trans. 4.12 64.420

SP6-H1 Long. 3.76 30.000

SP6-H2 Trans. 4.08 54.540

SP7-H1 Long. 4.15 60.010

SP7-H2 Trans. 4.55 88.650
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Figure 5.1: Input ground motion SP1

0 10 20 30 40 50 60 70 80

-6

-4

-2

0

2

4

0 10 20 30 40 50 60 70 80

-6

-4

-2

0

2

4

Figure 5.2: Input ground motion SP2
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Figure 5.3: Input ground motion SP3
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Figure 5.4: Input ground motion SP4
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Figure 5.5: Input ground motion SP5
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Figure 5.6: Input ground motion SP6
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Figure 5.7: Input ground motion SP7

5.3 Secant Method for Time History Analyses

An OpenSees script was created to execute the Secant Method on the elastic pylon model
through a series of iterations. However, due to limitations of the Tcl programming language,
MATLAB was invoked during iterations to process the results before writing them to files that
OpenSees subsequently would retrieve. The algorithm, which is also presented as a flow chart
in figure 5.8, can be summarized as follows:

1. Perform several moment-curvature analyses in OpenSees for each section in the fiber
model using gravity loads with different factors. Then, establish the initial bending stiff-
ness for each element in both directions by calculating the slope of the tangent at the
origin, using the moment-curvature relation with unit factor times the gravity load. All
moment-curvature diagrams following these analyses can be found in appendix D.

2. Assemble the elastic model with the obtained initial stiffnesses. Define recorders to track
values of interest, such as node displacements and accelerations as well as element forces.
After applying gravity forces to the structure, perform a modal analysis to acquire eigen
frequencies.

3. Conduct an elastic THA in both horizontal global directions simultaneously.
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4. Invoke MATLAB to establish the axial forces corresponding to the largest absolute mo-
ments for each element in both directions. These forces include the axial loads resulting
from self weight. Upon completion, MATLAB writes the results to text files.

5. Retrieve the axial forces in OpenSees and use these to conduct a new moment-curvature
analysis for each section. This was only done for the cross-beams, as they experienced
large variations in axial forces. The effect of varying axial force on the pylon legs was
incorporated by interpolation between the different moment-curvature diagrams obtained
in the first step. This could be justified seeing as the variation was relatively small and
the method extremely time efficient.

6. Invoke MATLAB to calculate the updated stiffnesses. For the cross-beam elements, load
the updated moment-curvature relations and find the intersection point of each curve and
the corresponding moment resulting from the elastic THA. The secant line passes through
the origin and this intersection point. The secant stiffness EIsecant is taken as the slope of
the secant line. For the pylon legs, the intersection point is found using linear interpola-
tion. To ensure stability and convergence, only a fraction f = 0.5 of the secant stiffness
will be used. The updated stiffness EIi of iteration i is taken as

EIi = EIi−1 − f(EIi−1 − EIsecant) (5.1)

where EIi−1 is the updated stiffness saved from the previous iteration i− 1. The ratio of
updated stiffness to initial stiffness is then written to a file. The ratio R of initial stiffness
about one of the two transverse element axes is taken as

R =
EIsecant

EIInital
(5.2)

where EIsecant is the slope of the secant line and EIinitial is the slope of the initial tangent
of the moment-curvature relation, using gravity forces only. If the change in updated
stiffness is less than 5% from previous iteration, convergence is said to be met. The
change is calculated as

conv =

∣∣∣∣∣ |Ri| − |Ri−1|
|Ri−1|

∣∣∣∣∣ (5.3)

where conv denotes the percentage change and R the ratio of initial stiffness about local
the y or z-axis. Convergence must be met for all elements about both transverse axes
before a break statement can be passed to OpenSees, successfully terminating the script
at the current iteration.

7. If no break statement has been passed to OpenSees upon completion of the MATLAB
script, OpenSees will use the updated stiffness ratios in the next iteration, multiplying
them with the initial stiffness. Entry 2 through 7 will then be repeated until convergence
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is met or the maximum number of iterations is reached, which generally means that in-
stability has occurred.

The above algorithm is in turn enveloped by a for loop in which the OpenSees script loops
over all earthquake records, seen in section 5.2.1. Data regarding for instance maximum ab-
solute moment is therefore saved specifying the direction, element, iteration and earthquake

record, making it easy to retrieve and compare different data sets. If the procedure has reached
convergence, the final elastic model with reduced flexural stiffnesses, from now on referred to
simply as the reduced elastic model, will have properties which simulate nonlinear material be-
havior. The main OpenSees script used to perform the Secant Method can be found in appendix
E along with the MATLAB script which is used to calculate the stiffness ratios in appendix F.
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Figure 5.8: Flow chart showing the iteration procedure in detail



Chapter 5. Implementation of Analysis 51

5.4 Pushover Analysis

Several pushover analyses were conducted to verify the models used for the THA, with the main
objective being to control whether or not the iterative procedure is able to capture the nonlinear
material behaviour of the pylon close to failure. Five different failure modes were selected to be
analyzed further. For each of these modes, the applied forces were chosen as the lateral inertial
forces corresponding to the most unfavourable time step in the response histories of the critical
elements in the mode. Consequently, these response histories would correspond to the most
critical ground motion for said elements. The inertial forces are extracted from the response
histories of the fiber model, to remain consistent with the idea that the fiber model serves as the
reference in this thesis. In practical cases, when a fiber model is not available, the force input
should instead be taken from the response history of the reduced elastic model. In each analysis,
the vertical forces, consisting of loads from the cables and the gravity loads, were held constant
throughout the analysis. The sorting criteria for the failure modes, together with the earthquake
record and corresponding time-step are shown in table 5.2 below.

Table 5.2: Sorting criteria and description of applied pushover loads

Analysis Description of sorting criterion Direction TH Time [sec]

L1 Max moment in upper part of pylon leg
(Max/min My for elements 4115 & 4215

Long. SP5 32.02

L2 Max moment at the base of pylon leg
(Max/min Mz for elements 4101 & 4201

Long. SP2 35.37

T1 Max moment at the base of pylon leg
(Max/min Mz for elements 4101 & 4201

Trans. SP2 48.43

T2 Max moment at lower cross-beam
(Max/min My for elements 4501-4506

Trans. SP5 34.27

T3 Max moment at upper cross-beam
(Max/min My for elements 4701-4704

Trans. SP1 26.16
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5.4.1 Longitudinal direction - L1

The L1 analysis is based on the sorting criterion of finding the time-step across all 7 records
where the maximum moment My occurs in the upper portion of the pylon leg, that is, in element
4115 and 4215. The acceleration profile and moment diagram for the given case are shown in
figure 5.9. Governing values at corresponding elements:

• My = 223 MNm for west leg

• My = 217 MNm for east leg
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Figure 5.9: Acceleration profile and moment diagram for analysis L1
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5.4.2 Longitudinal direction - L2

The L2 analysis is based on the sorting criterion of finding the time-step across all 7 records
where the maximum moment My occurs at the base of the pylon legs, that is, in element 4101
and 4201. The acceleration profile and moment diagram for the given case are shown in figure
5.10. Governing values at corresponding elements:

• My = 359 MNm for west leg

• My = 326 MNm for east leg
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Figure 5.10: Acceleration profile and moment diagram for analysis L2
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5.4.3 Transverse direction - T1

The T1 analysis is based on the sorting criterion of finding the time-step across all 7 records
where the maximum moment Mz occurs in the lower portion of the pylon leg, in element 4101
and 4201. The acceleration profile and moment diagram for the given case are shown in figure
5.11. Governing values at corresponding elements:

• Mz = 181 MNm for west leg

• Mz = 166 MNm for east leg
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Figure 5.11: Acceleration profile and moment diagram for analysis T1
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5.4.4 Transverse direction - T2

The T2 analysis is based on the sorting criterion of finding the time-step across all 7 records
where the maximum moment My occurs in the lower cross-beam, elements 4501 to 4506. The
acceleration profile and moment diagram along the height of the pylon for the given case are
shown in figure 5.12. Governing values at corresponding elements:

• My = 215 MNm at the western end. Element 4501

• My = 200 MNm at the eastern end. Element 4506
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Figure 5.12: Acceleration profile and moment diagram for analysis T2
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5.4.5 Transverse direction - T3

The T3 analysis is based on the sorting criterion of finding the time-step across all 7 records
where the maximum moment My occurs in the upper cross-beam, elements 4701 to 4704. The
acceleration profile and moment diagram along the height of the pylon for the given case are
shown in figure 5.13. Governing values at corresponding elements:

• My = 153 MNm at the western end. Element 4701

• My = 151 MNm at the eastern end. Element 4704

-8 -6 -4 -2 0 2 4

20

40

60

80

100

120

140

160

(a)

-250 -200 -150 -100 -50 0 50 100 150 200

20

40

60

80

100

120

140

160

(b)

Figure 5.13: Acceleration profile and moment diagram for analysis T3
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5.5 Secant Method for Pushover Analysis

The iterative procedure for calculating the secant stiffness of the RC sections is similar for both
the pushover analysis and the method using THA, previously explained in section 5.3. There are
some key differences, however. Thus, the following list will elaborate the algorithm in detail.
The algorithm is also illustrated as a flow chart in figure 5.14. The load step increment, ∆λ is
fixed as 0.05 for all the pushover analyses.

1. Perform a moment-curvature analysis in OpenSees for each section when subjected to
various scaling of the gravity loads, and establish the initial stiffness for each element by
calculating the tangent of the curve at the origin.

2. Assemble the elastic model with obtained stiffnesses.

3. Increment the load step λi = λi−1 + ∆λ.

4. Define recorders tracking moment at all elements, and displacements in all nodes of in-
terest. Run the analysis with the current value of λ.

5. Start new iteration loop. Hold the value of λ constant throughout the iteration loop.

5.1. Invoke MATLAB to compute the updated stiffness for each element based on their
corresponding cross sectional forces. Calculate the secant stiffness EIsecant. The
updated stiffness EIi of iteration i is taken as equation (5.1).

5.2. Check for convergence. If converged jump to point 6.

5.3. Check if maximum number of iterations has been reached. If so exit the analysis

5.4. If the convergence criteria has not been met, start iteration i + 1, using the updated
stiffnesses EIi.

6. Increase the load step λ by ∆λ, and start the next load step.

7. Repeat points 2.-6. until OpenSees fails to converge within the maximum number of
iterations.



58 5.5 Secant Method for Pushover Analysis

Figure 5.14: Flow chart showing the iteration procedure for the pushover analysis in detail
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Results

6.1 Results from the Time History Analysis

The results following the Secant Method, using the elastic model was compared to those result-
ing from the NTHA using the fiber model. Doing so for all seven ground motions established
a solid base to further investigate if the Secant Method indeed carried out as expected. One of
the goals of the Secant Method is to approximate the force distribution following a NTHA by
simulating the nonlinear material behaviour in the structure. The development of the bending
moments during the iterative procedure is therefore of high interest, specifically how well these
values eventually compare to those following the NTHA. A vast library of data was available
upon completion of the two fundamental different approaches which could be further processed
in MATLAB.

In the following subsections, results for selected elements will be investigated further. These
elements are located in segments with large bending moments about one or both transverse axes
and are thus prone to undergo a reduction of stiffness. The selected elements are 4101, 4103,
4106, 4112, 4115, 4120, 4501 and 4701, which can be seen in figure 4.1b.

6.1.1 Stiffness Ratios

The figures and tables below summarize the core of the Secant Method itself for the selected
elements upon completion of the entire procedure. The responses stem from 6 iterations where
the ground motion record SP2 was applied in both horizontal directions. Only the response
history about one of the two transverse axes for each element is shown. Each element history
is summarized using three figures and one table. The first two figures, for example figure 6.1a
and 6.1b, depict the approach to compute the secant line and the resulting reduction of stiffness,
respectively. The solid blue line in figure 6.1a represent the moment-curvature relation for the
corresponding section used in the fiber model, with normal forces from gravity only, obtained
as described in section 3.1. The two adjacent dashed lines are moment-curvature relations
using the same section but for increased and decreased normal forces, 0.8N and 1.2N. These,
along with other similar lines that are not shown, have been used to incorporate the effect of
varying axial forces by means of interpolation. Note that this is not the case for the cross-beam
elements, discussed in section 5.3. The moment and the corresponding secant line following
the initial and the final iteration are depicted as green and red solid lines, respectively. The gray
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toned moment-secant pairs represent the intermediate values. Figure 6.1b to the right show
the development of the section stiffness. The ratio is established using equation (5.2) after the
secant slope has been determined during each iteration, seen as the red dots in figure 6.1b.
Only a fraction of this value is carried to the next iteration, however, using equation (5.1). The
resulting ratio used in the next iteration can be seen as the blue dots.

The moments and corresponding axial forces used in figure 6.1a can be seen in figure 6.2.
The top sub figure shows the moment resulting from each THA, further used to establish secant
lines. The solid blue line is the corresponding moment resulting from the NTHA, which the
Secant Method is suppose to approximate. The sub plot below shows the axial force in the
element, obtained at the same time instance during the THA as the moment. The solid gray
toned line represent the axial force resulting from self weight only.

Table 6.1 further summarizes the data following each iteration. The first row specify the
ground motion record used, local element axis depicted and the initial second moment of area
about this axis. The last value is found by dividing the initial stiffness EIinitial by the E-
modulus of concrete. The first column shows the iteration number. The second and the third
column shows the second moment of area in units of m4 resulting from the secant line and
the 50% weighted value, respectively. These values are also found by dividing the appropriate
stiffnesses by the E-modulus of concrete. The fourth column shows the ratio, which again is
after only using 50% of the new secant stiffness and thus are shown as the blue line in figure
6.1b. The fifth column also results from the blue line in figure 6.1b, and show the percentage
change calculated using equation (5.3). This value is used as the convergence criteria and
convergence is said to be met when it is below 5% or 0.05. As can be seen in table 6.1, however,
iterations still continue after this value is passed. This is because the procedure does not stop
until all elements in the structure have reached convergence. The sixth column show the axial
force in the element following the THA normalized by the self weight axial load, both seen in
figure 6.2. The final column shows the maximum moment values in units of MNm following
the THA, also seen in figure 6.1a and 6.2.
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Figure 6.2: Max moment and axial forces

SP2, y-axis, Iinitial= 49.58 m4

i Isecant Ireduced ratio conv axial My

1 25.39 37.48 0.76 0.24 1.08 432

2 26.41 31.94 0.64 0.15 1.00 391

3 30.43 31.18 0.63 0.02 1.08 378

4 30.02 30.60 0.62 0.02 1.10 387

5 30.68 30.63 0.62 0.00 1.10 381

6 30.32 30.48 0.61 0.01 1.09 383

Table 6.1: Summary of figure values
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Figure 6.4: Max moment and axial forces

SP2, y-axis, Iinitial= 45.93 m4

i Isecant Ireduced ratio conv axial My

1 27.52 36.72 0.80 0.20 1.09 338

2 31.87 34.30 0.75 0.07 1.00 310

3 22.27 28.29 0.62 0.17 0.80 292

4 25.81 27.05 0.59 0.04 0.91 307

5 27.24 27.15 0.59 0.00 0.91 299

6 27.02 27.08 0.59 0.00 0.91 301

Table 6.2: Summary of figure values
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Figure 6.5
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Figure 6.6: Max moment and axial forces

SP2, y-axis, Iinitial= 64.10 m4

i Isecant Ireduced ratio conv axial My

1 63.09 63.60 0.99 0.01 1.00 224

2 63.31 63.45 0.99 0.00 0.94 206

3 63.17 63.31 0.99 0.00 0.72 204

4 63.51 63.42 0.99 0.00 0.87 198

5 63.53 63.46 0.99 0.00 0.87 195

6 63.52 63.49 0.99 0.00 0.87 195

Table 6.3: Summary of figure values
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Figure 6.7
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Figure 6.8: Max moment and axial forces

SP2, y-axis, Iinitial= 36.66 m4

i Isecant Ireduced ratio conv axial My

1 36.19 36.43 0.99 0.01 1.02 113

2 36.01 36.22 0.99 0.01 1.10 117

3 36.30 36.26 0.99 0.00 0.98 105

4 36.29 36.27 0.99 0.00 0.99 105

5 36.25 36.26 0.99 0.00 1.00 107

6 36.26 36.26 0.99 0.00 1.00 106

Table 6.4: Summary of figure values
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Figure 6.10: Max moment and axial forces

SP2, y-axis, Iinitial= 33.66 m4

i Isecant Ireduced ratio conv axial My

1 19.54 26.60 0.79 0.21 0.91 231

2 19.16 22.88 0.68 0.14 0.90 229

3 16.54 19.72 0.59 0.14 0.85 233

4 20.14 19.93 0.59 0.01 0.87 216

5 18.87 19.40 0.58 0.03 0.87 222

6 19.06 19.23 0.57 0.01 0.87 221

Table 6.5: Summary of figure values
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Figure 6.12: Max moment and axial forces

SP2, y-axis, Iinitial= 43.99 m4

i Isecant Ireduced ratio conv axial My

1 43.99 43.99 1.00 0.00 0.95 60

2 43.79 43.89 1.00 0.00 1.10 63

3 43.87 43.88 1.00 0.00 1.07 53

4 44.14 44.02 1.00 0.00 0.89 45

5 44.01 44.02 1.00 0.00 0.99 45

6 44.00 44.02 1.00 0.00 0.99 45

Table 6.6: Summary of figure values
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Figure 6.14: Max moment and axial forces

SP2, y-axis, Iinitial= 48.78 m4

i Isecant Ireduced ratio conv axial My

1 14.69 31.73 0.65 0.35 2.90 217

2 14.88 23.32 0.48 0.27 2.66 198

3 15.14 19.23 0.39 0.17 2.16 179

4 14.91 17.06 0.35 0.11 -0.13 175

5 14.99 16.03 0.33 0.06 0.03 173

6 15.04 15.54 0.32 0.03 0.28 172

Table 6.7: Summary of figure values
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Figure 6.16: Max moment and axial forces

SP2, y-axis, Iinitial= 33.04 m4

i Isecant Ireduced ratio conv axial My

1 10.87 21.96 0.66 0.34 1.64 162

2 10.79 16.37 0.50 0.25 0.47 145

3 10.78 13.57 0.41 0.17 0.43 145

4 10.81 12.20 0.37 0.10 0.40 143

5 10.82 11.51 0.35 0.06 0.38 142

6 10.84 11.17 0.34 0.03 0.37 141

Table 6.8: Summary of figure values
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6.1.2 Response History

The main parameters of interest during these procedures are displacements and bending mo-
ments about the two element axes, the latter used when calculating the secant stiffness. As
stated in section 5.3, the moment values were obtained separately for both axes, independent
of sign and time. The same applies for the maximum displacement values. Figures 6.17-6.33
summarize these values, for selected elements and one ground motion only; SP2. Each figure
contains two sub figures, top and bottom, displaying the response at one node/element end in
the local y and z direction, respectively. Each plot contains three response histories in the time
domain; one resulting from the NTHA using the fiber model and two following a THA using
the initial and the final elastic model. The initial elastic model refers to the first iteration of
Secant Method, where all elements still retain their complete flexural stiffness. The final elas-
tic model correspondingly refers to the elastic model following a number of iterations, during
which several element stiffnesses have been reduced and eventually have converged to a steady
stiffness reduction ratio. Only the first and the last response histories are included so to make
the plots more comprehensible and because they to some extent envelope the intermediate re-
sults. Each plot contains the maximum absolute value for each of the result histories, marked
with a circle. To further make the plots digestible, only a certain time interval of the original
history is included. For each figure, this time frame includes all six maximum values, three in
each direction. Since all figures stem from the same ground motion record, SP2, they have been
subjected to the same number of iterations.
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Figure 6.17: Displacement history from the first pylon leg node above foundation
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Figure 6.18: Displacement history from the middle of the leg segment connecting tie-beam and the
lower cross-beam
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Figure 6.19: Displacement history from the node connected to the lower cross-beam
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Figure 6.20: Displacement history from intermediate node along the leg segment connecting the lower
and upper cross-beam

34 36 38 40 42 44 46 48

-0.4

-0.2

0

0.2

0.4

34 36 38 40 42 44 46 48

-0.4

-0.2

0

0.2

0.4

Figure 6.21: Displacement history from intermediate node along the leg segment connecting the lower
and upper cross-beam
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Figure 6.22: Displacement history from the node connected to the upper cross-beam
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Figure 6.23: Displacement history from the 2nd node of the lower cross-beam
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Figure 6.24: Displacement history from the 2nd node of the upper cross-beam

Figure 6.25 below depicts the maximum absolute displacement values for one of the pylon
legs along the height of the pylon. Using the same notation as in the figures above, it compares
the displacement values from the initial and final elastic model with those from the fiber model.
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Figure 6.25
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Figure 6.26: Moment history from the first pylon leg element above foundation
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Figure 6.27: Moment history from the middle of the leg segment connecting tie-beam and the lower
cross-beam
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Figure 6.28: Moment history from the lower element connected to the lower cross-beam
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Figure 6.29: Moment history from intermediate element along the leg segment connecting the lower and
upper cross-beam
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Figure 6.30: Moment history from intermediate element along the leg segment connecting the lower and
upper cross-beam
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Figure 6.31: Moment history from the lower element connected to the upper cross-beam
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Figure 6.32: Moment history from the outer most element on the lower cross-beam
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Figure 6.33: Moment history from the outer most element on the upper cross-beam

Figure 6.34 below depicts the maximum absolute moment values for one of the pylon legs
along the height of the pylon. Using the same notation as in the figures above, it compares the
moment values from the initial and final elastic model with those from the fiber model.
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Figure 6.34
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6.1.3 Normalized Moment

Figures 6.35-6.38 below summarize the results from all moment histories for the selected ele-
ments. The figures contain thee maximum moment values following each of the seven ground
motion records, SP1 to SP7, about both axes. All moment values are normalized by the cor-
responding maximum moment following the NTHA for each ground motion. The maximum
moment from fiber model thus becomes unity, and the moments from the two elastic models are
expressed factors of the response following the NTHA. DenotedM∗

i,itr, the normalized moment
about axis i following iteration itr is taken as

M∗
i,itr =

Mi,itr

Mi,fiber

(6.1)

where the maximum absolute moment following the NTHA is the denominator. itr equal to
initial represent the first, unreduced iteration and itr equal to final the last, converged itera-
tion. The horizontal axis show the deviation among the values while the vertical axis represent
different ground motion records. Along the horizontal axis, two diamond shaped markers iden-
tify the mean value of both the initial and the final moment, taken over all ground motion
records. The top plot in each figure display the bending moment about the local y-axis for the
appropriate element while the bottom plot about the local z-axis. A summary of the values can
be found in table 7.1.
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6.2 Results from the Pushover Analysis

The results from the pushover analyses using the elastic model with updated stiffnesses are
compared to the responses from pushover analyses using fiber model with the same load dis-
tribution. At the beginning of each subsection below, a pushover curve is presented, showing
the displacement of the structure against load step, as well as the bending moment in the gov-
erning element, also against the load step, for both methods. The governing elements for each
analysis can found in section 5.4. As for the THA, the main parameter that forms the basis for
comparing the responses from the nonlinear fiber model and the elastic model is the bending
moment about the relevant axis, given by the push direction for each element. The moment
diagram of the structure is therefore presented both for the load step λ = 1, which corresponds
to the maximum moments from the input ground motions, and for last converged load step for
the elastic model. To easily assess the accuracy of the Secant Method on the elastic model, the
normalized moment as presented in equation (6.1) will be presented in tables for the critical
elements for each analysis.

6.2.1 Longitudinal Analysis - L1

Table 6.9 summarizes the results from the longitudinal analysis L1. The governing elements for
this analysis are located in the upper portion of the pylon legs, elements 4115 and 4215. The
final converged load step for the elastic model is λ = 1.5. Elements 4101 and 4201 are also
deemed critical for this analysis and will be included in the table below.

Table 6.9: Summary of critical element for pushover analysis L1

Element Ratio λ = 1 M∗
λ=1 Ratio λ = 1.5 M∗

λ=1.5

4101 0.95 0.99 0.47 1.03
4201 0.95 1.00 0.47 1.04
4115 0.92 1.02 0.47 1.05
4215 0.93 1.01 0.31 1.04
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Figure 6.39: Pushover curves for analysis L1
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Figure 6.40: Moment distribution for the pylon legs
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Figure 6.41: Moment distribution for the pylon legs

6.2.2 Longitudinal Analysis - L2

Table 6.10 summarizes the results from the longitudinal analysis L2. The governing elements
for this analysis are located at the base of the pylon legs, elements 4101 and 4201. The final
converged load step for the elastic model is λ = 1.8. Elements 4115 and 4215 are also deemed
critical for this analysis and will thus be included in the table below.

Table 6.10: Summary of critical elements for pushover analysis L2

Element Ratio λ = 1 M∗
λ=1 Ratio λ = 1.8 M∗

λ=1.8

4101 0.81 1.00 0.34 1.01
4201 0.83 1.00 0.34 1.01
4115 0.98 1.00 0.36 1.08
4215 0.98 1.00 0.36 1.07
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Figure 6.42: Pushover curves for analysis L2
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Figure 6.43: Moment distribution for the pylon legs
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Figure 6.44: Moment distribution for the pylon legs

6.2.3 Transverse Analysis - T1

Table 6.11 summarizes the results from the transverse analysis T1. The governing elements for
this analysis are at the base of the pylon legs, elements 4101 and 4201. The final converged load
step for the elastic model is λ = 4.4. The cross-beam end elements are also deemed critical for
this analysis and will be included in the table below.

Table 6.11: Summary of critical elements for pushover analysis T1

Element Ratio λ = 1 M∗
λ=1 Ratio λ = 4.4 M∗

λ=4.4

4101 0.98 1.00 0.47 0.94
4201 1.00 0.98 0.27 1.03
4501 0.86 1.01 0.16 0.89
4506 0.99 1.01 0.28 1.13
4701 1.00 1.00 0.33 1.01
4704 1.00 0.99 0.48 1.05
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Figure 6.45: Pushover curves for analysis T1

-60 -40 -20 0 20 40 60 80 100

20

40

60

80

100

120

140

160

(a)

-50 0 50 100

20

40

60

80

100

120

140

160

(b)

Figure 6.46: Moment distribution for the pylon legs
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Figure 6.47: Moment distribution for pylon legs

6.2.4 Transverse Analysis - T2

Table 6.12 summarizes the results from the transverse analysis T2. The governing elements for
this analysis are the lower cross-beam ends, elements 4501 and 4506. The final converged load
step for the elastic model is λ = 1.35. Elements 4101, 4201, 4701 and 4704 are also deemed
critical for this analysis and will be included in the table below.

Table 6.12: Summary of critical elements for pushover analysis T2

Element Ratio λ = 1 M∗
λ=1 Ratio λ = 1.35 M∗

λ=1.35

4101 0.92 1.06 0.53 0.99
4201 0.96 0.91 0.94 0.91
4501 0.30 0.93 0.27 0.95
4506 0.30 1.03 0.29 1.02
4701 0.35 0.96 0.32 1.01
4704 0.87 1.13 0.34 1.12
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Figure 6.48: Pushover curves for analysis T2
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Figure 6.49: Moment distribution for the pylon legs
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Figure 6.50: Moment distribution for the pylon legs
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Figure 6.51: Moment distribution for the lower cross-beam
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6.2.5 Transverse Analysis - T3

Table 6.13, summarizes the results from the transverse analysis T3. The governing elements for
this analysis are the upper cross-beam ends, elements 4701 and 4704. The final converged load
step for the elastic model is λ = 2.6. Elements 4101, 4201, 4501 and 4506 are also deemed
critical for this analysis and will be included in the table below.

Table 6.13: Summary of critical elements for pushover analysis T3

Element Ratio λ = 1 M∗
λ=1 Ratio λ = 2.6 M∗

λ=2.6

4101 0.99 1.02 0.96 0.87
4201 1.00 0.95 0.95 1.1
4501 0.85 0.97 0.29 0.86
4506 0.99 1.03 0.29 0.99
4701 0.46 0.94 0.10 1.02
4704 0.90 1.06 0.32 1.07
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Figure 6.52: Pushover curves for analysis T3
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Figure 6.53: Moment distribution for the pylon legs
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Figure 6.54: Moment distribution for the pylon legs
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Figure 6.55: Moment distribution for the upper cross-beam





Chapter 7

Discussion

7.1 Discussion of the Secant Method

In the following, a brief discussion of the Secant Method itself will be conducted, before the
various results following said procedure will be examined in detail. One of the main objectives
of the Secant Method is to give an indication of the nonlinear material behavior in certain
elements when a full nonlinear analysis either is unfeasible or too computationally demanding
to perform. There are several approaches to develop this procedure, and as discussed in 5.3, an
OpenSees script which invoked MATLAB was used for this thesis. A downside of this approach
is that a new instance of MATLAB needed to be booted at least once during each iteration. This
was in itself time consuming, and likely could have been avoided if more research had been put
into the functionality of the Windows Command Prompt, from which MATLAB was invoked.

Other efforts to cut iteration time was instead pursued, most notably was the change from
calculating new moment-curvature diagrams each iteration to instead use interpolation between
pre-existing ones, when capturing the effect of the axial load. This modification removed about
two-three minutes off each iteration which in turn reduced the entire procedure using all seven
ground motions with about two hours. The downside of this measure is however the possibility
of encountering issues in determining the stiffness by interpolation, especially for high moments
in elements with substantial axial forces. Figure 7.1 shows the moments-curvature diagrams
used for determining the stiffness at the base of the pylon legs, elements 4101 and 4201, about
the local z-axis. For axial forces 1.6-2 times the gravitational load, the maximum moment
capacity correspond to relatively small curvatures. The algorithm is implemented in such a way
that if the moment obtained from the analysis exceeds the maximum moment value of one of
the interpolating curves, the secant stiffness is taken as the maximum moment of the lowest
curve divided by the corresponding curvature. This effectively caps the possible reduction in
the relevant elements, and reduces the elastic models ability to deform in a ductile manner, post
yielding of concrete fibers. This effect is mostly relevant for the transverse pushover analyses,
as large transverse forces gives rise to high compressive axial forces in one of the pylon legs,
and is a possible explanation for the instability seen in the transverse analysis T1, and why the
updated elastic model is as ductile as the fiber model. Similar moment-curvature diagrams as
the one in figure 7.1 are shown in appendix D for all elements.
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Figure 7.1: Moment-curvature diagrams about local z-axis for varying axial loads

The factor used in equation 5.1 to ensure stability also impacted the total run time of the
Secant Method. Choosing a low factor, say 30%, generally resulted in a higher number of itera-
tions than when using a higher factor, for instance 50%. When using a lower factor, the updated
ratio carried to the next iteration will be more similar to the previous one, thus yielding a lower
percentage change. The ratio will consequently spend additional iterations to reach a given
value, but once close to the value, it will converge faster due to the nature of the convergence
criteria. Of these two opposing effects, it becomes clear from figure 7.2 that it is the descending
speed that is the dominant one. The figure shows the development of the stiffness reduction
for the same element following a series of iterations where only the factor varies. Using a too
large of a factor may lead to instability issues, as seen for the curves using a factor of 0.6 and
0.7. A factor yielding convergence for all 7 ground motions whilst being as large as possible
was therefor preferable, and 0.5 was determined after trial and error. Another advantage of
choosing the largest possible factor is that the final ratio will be closer to whichever value it was
approaching.
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Figure 7.2: Stiffness ratios from procedures using different factors

Since it is such an essential part of the entire secant procedure, some final remarks regarding
the convergence test are in order. The convergence value, calculated for all elements during
each iteration using equation (5.3), evaluates the percentage change of the updated ratio with
regards to the previous one. This means than an increase of say 0.1 in the stiffness ratio will
render a lower percentage change for a high number than for a low number. A justification
for using this bias criteria is that elements which stiffnesses are substantially reduced during
the procedure will have stricter convergence requirements, thus ensuring that they indeed have
converged properly before terminating the iteration scheme.

7.2 Discussion of Results From the THA

The reduced elastic model, that is, the elastic model with reduced flexural stiffness values fol-
lowing the Secant Method, should in theory mimic the behavior of a model where nonlinear
material models have been accounted for. The potential success of the iterative secant proce-
dure using THA can best be investigated referencing figures 6.1-6.15. By depicting the maxi-
mum moment following the initial and the final iteration for each ground motion, these figures
provides an overview of how well the benchmark moment values resulting from the NTHA
are approximated by these values. The extreme moment values in each element upon conver-
gence of the secant procedure should in theory be closer to the corresponding ones following
the NTHA, in this case unity. Suggested for instance by the top sub figure in figure 6.1, this
is a general trend, supported by the mean values along the horizontal axis. It does not hold
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true for all of the ground motion records, however, as seen for the moment following ground
motion record SP1 which shifts further away from the benchmark value after the elastic model
stiffnesses have been reduced.

Moving on to the top sub figure in figure 6.7, the mean values along the horizontal axis
suggests a trend moving away from the NTHA value of unity. The stiffness of this element,
4112, about the y-axis is not reduced significantly during the procedure for any input ground
motion, seen in table A.1. The steady increase in moments can thus be a result of stiffness
reduction in other elements and consequently a redistribution of forces. Second order chord
geometry may also contribute to the increase in bending moments. Stiffness reductions in cer-
tain elements result in an overall softer structure and consequently larger deformations, seen
in figures 6.25a and 6.25b. Some elements may thus experience larger second order moments
due to the substantial compression loads combined with increasing relative end displacements.
Unlike element 4101 located near the base of the pylon, element 4112 is located halfway to the
top and is thus significantly more susceptible to this effect. Again looking at figures 6.25a and
6.25b, it becomes clear that the Secant Method in fact increases the between the gap between
the displacements following the NTHA and the THA. This emphasizes a key property of the
procedure; while it gives better approximations for the maximum moment response, displace-
ments tends diverge further from their true value. If accurate displacement values are sought
after, fundamental refurbishment is needed throughout the procedure.

Table 7.1 below summarizes the mean values found in figures 6.35-6.38, taken over all seven
responses in both in each direction. It also displays the mean initial stiffness ratio obtained after
the final iteration along with the mean maximum moment values resulting from the NTHA in
units of MNm.

Table 7.1: Summary of mean values from figures 6.35-6.38

Element Ratio M∗
initial M∗

final Mfiber Ratio M∗
initial M∗

final Mfiber

y-axis z-axis

4101 0.63 1.12 1.06 338 0.95 0.95 1.18 159

4103 0.80 1.11 1.03 274 1.00 0.86 1.21 90

4106 0.99 1.10 0.96 187 0.99 1.05 0.98 82

4112 0.99 1.04 1.21 92 0.98 1.06 1.01 107

4115 0.82 1.10 1.11 192 0.99 1.10 1.02 92

4120 1.00 1.04 1.03 53 0.94 1.12 0.99 181

4501 0.31 1.27 1.03 185 1.00 0.98 1.18 7

4701 0.35 1.13 1.01 137 1.00 1.00 0.94 4

Looking at table 7.1 above, several observations can be made. Moment values about the
local y-axis for elements close to the pylon base are generally nudged closer to NTHA moments
following the Secant Method. This also holds true for the lower and upper cross-beam elements.
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The y-axis bending moments along the intermediate pylon leg elements, however, are either not
significantly affected by the Secant Method, or drifting further away from the benchmark values,
as seen for element 4112. This is likely due to increased second order geometry effects.

The moments about the local z-axis, on the other hand, stray further away from the NTHA
values near the pylon foundation. This is likely due to the severe reduction of the cross-beam
ends, acting as hinges and redistributing much of the moments about the global x-axis to the
pylon legs. The z-axis moments at the intermediate elements along the legs are nudged slightly
closer to the NTHA values, also likely due to the reduction of cross-beam ends about the local
y-axis. The moments about the local z-axis for the cross-beam elements are too random to infer
any general behavior from, when looking at figures 6.13 and 6.15, but since these moments are
relatively small, they are not of importance in this context. It is interesting to see, however,
that the cross-beams remain uncracked about this axis, which would not have been the case
is Concrete01 have been used. There are, without a doubt many effect to account for when
looking at these results. Many of which can be attributed of the crude nature of the Secant
Method, which, by assessing each element individually, fails to account for relations among
elements in the structure.

The normalized extreme values in figures 6.1-6.15 are obtained from moment histories such
as the ones seen in the preceding figures, 6.26-6.33, for ground motion SP2 only. Based on these
response histories, several observations can be made. Looking at the periods of the responses,
these corresponds to some degree to that of the two first eigen periods, which oscillates in the
global y and x direction, respectively. Although less visible for the response about the local
z-axis, it shows that these periods indeed are present in the response.

The two solid lines representing the dynamic response from the NTHA and the THA us-
ing initial stiffness values are in phase, indicating similar vibration properties among the two
models. The response amplitude from the linear elastic model is consistently larger than the
response from the fiber model, which is to be expected. In the majority of the cases, the max-
imum response also occurs simultaneously for the two curves. The dashed line, showing the
response following the last iteration of the secant procedure, does not coincide as well with the
NTHA response. Further, for certain segments, this response is larger in magnitude than that
following the unreduced elastic response, yet the absolute maximum is lower. This observation
can be attributed to the different stiffness stiffness properties between the two models, which
also explains why the maximum values seldom occur simultaneously.

For the moment about the local y-axis, My, the final elastic response experiences a signifi-
cant increase in phase angle, which illustrates another limitation of the Secant Method. While
the nonlinear fiber model is able to capture crack opening and closing, the Secant Method
merely captures crack opening, which results in a reduced section area even after the crack
closes up and is in compression. Thus, the Secant Method underestimates the effective stiff-
ness. The moment history following the final iteration therefore resembles a more conservative
model where permanent degradation has occurred, such as crushing of concrete and yielding
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of reinforcement. This can be confirmed by comparing the two elastic moment histories to a
NTHA using the same earthquake ground motion but with increased amplitude. Figure 7.3 illus-
trates this for element 4101, which experiences the largest moments in the structure. While the
two elastic moment histories still result from the secant procedure using SP2, the fiber moment
history uses 1.5×SP2, to invoke permanent deformations. What becomes clear from the top
figure, representing the moment about the local y-axis, is that the fiber moment history initially
coincides with the initial elastic one. After reaching its maximum value, however, it gradually
changes its phase, increasingly aligning with the final elastic curve. Two assumptions can be
deduced from this realization. First, as expected, the reduced stiffnesses obtained following
the Secant Method are conservative, as they mimic the nonlinear behavior following a stronger
earthquake. Second, the earthquakes used during this analysis does not inflict permanent degra-
dation beyond cracking, as the fiber moments stay aligned with the initial elastic moment in
figures 6.26-6.33. Consequently, consistency with elastic design can be assumed.
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Figure 7.3: Moment history using 1.5SP2 as input during NTHA

Cracking of RC sections largely depends on the development of tensile stress. This in turn is
determined by the moment and axial force as well as the section layout. Although the sections
near the foundation are under extreme axial compression, it is evident that cracking indeed
occurs, confirmed by table 7.1. Tables A.1-A.4 in Appendix A gives a complete summary of
the stiffness ratios obtained. Despite the fact that the axial forces and section properties vary
along the pylon leg, it is apparent that the the reduction ratio to some degree follow the NTHA
moment distribution, as seen in these tables. The elements connecting the cross-beam to the
pylon legs receive the largest reduction in the entire structure, even though their maximum
bending moment values about the local y-axis are relatively low. This can be attributed to the
section properties, but more importantly is a result of the oscillating axial forces, seen in tables
6.7 and 6.8. Even reaching tensile forces during some iterations, these sections are significantly
exposed to cracking, also for small bending moment values.

The observation made regarding the reduced stiffness values coincides with what can in-
tuitively be expected. Yet, the question remain weather they represent a valid assumption or
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not and if the reduced elastic model is representative of the inelastic behavior. As previously
discussed, the stiffness reductions are on the larger side, resulting a structure which is too soft.
This consequently increases the the deflections, which in turn introduces additional forces due
to the large compression forces. However, using the initial stiffness in further analysis will also
undoubtedly introduce errors, as the structure will be too stiff. A structure whose stiffness is
enveloped by these two outer limits can therefor be of interest. By merely using the reduced
stiffnesses as guidelines, the effect of cracking can be implemented whilst to some degree coun-
teracting the overestimated reductions.

7.3 Discussion of Results From the Pushover Analysis

By using the fiber model as reference for the performance of the elastic model, it is safe to say
that the Secant Method in general is able to capture the material nonlinearities of the structure
caused by concrete cracking, while the method struggles when yielding of the cross section has
to be accounted for. For all pushover analyses, the response of the two models are approximately
the same for the MPE level inertial forces corresponding to load step λ = 1, while there are
some variations as λ surpasses this value.

For the longitudinal analysis L1, both the bending moment My at the base and the upper
part of the pylon legs return results that were about equal to the nonlinear model response for
the seismic level load step, see table 6.9 and figure 6.40. For the elements where there are
deviations in the moment response, the results are slightly on the conservative side, that is,
higher for the iterative elastic model. For load levels beyond the MPE, the Secant Method is
to some extent able to reproduce the same responses as the fiber model. The moments in the
elements are around 3-5% higher for all the critical elements in this analysis, seen in figure 6.41
and table 6.9, which confirms that the reduced elastic model still is able to mimic the nonlinear
behavior of the structure. The maximum deviation at the final load step is 5%, which can be
considered acceptable. The pushover curves in figure 6.39 also present the same results as
mentioned above. The curves for the two models are similar up to λ = 1. Onwards, the elastic
model begins to deviate from the reference results in the fiber model, and produce conservative
responses. That is, for a given load step, the reduced elastic model is produces larger deflections
and bending moments.

The longitudinal analysis L2 shows the same tendencies as L1. For the earthquake level
forces, both structures yield identical results. All the critical elements have bending moments
that match the moments appearing in the fiber model exactly. The stiffness of the base elements
4101 and 4201 have been reduced to 81% and 83% of their initial stiffnesses, which means
that parts of the concrete section has reached its tensile strength and that the Secant Method
has been able to emulate this effect, see table 6.10 and figure 6.43. When moving towards the
final converged load step of the elastic model, λ = 1.8, the elastic model begins to diverge
slightly from the nonlinear results. This is most likely because further reductions of the base
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elements lead to increased displacements in the upper part of the pylon, which in turn due
to P-∆ effects increases the secondary moments in the pylon. Despite of this, the maximum
deviation for the moments in the critical elements is only 8%, while giving conservative results
for this analysis as well. The pushover curves following the analysis in figure 6.48b illustrate
this behavior. The displacement of node 4115 is for all practical purposes the same up to a
load step of approximately λ = 1.5. For lambda values beyond this stiffening behavior of the
elastic model can be observed. This is purely a numerical issue, which is likely caused by the
Secant Methods apparent restrictions in emulating proper yielding and ductile behavior, similar
to the case for analysis L1. Another possible explanation for the deviations in the longitudinal
analyses for higher load levels is that for large deflections P-∆ effects plays a significant role.
This makes the moment response at high load levels sensitive to deflections,which in turn will
influence the stiffness reduction. The analyses might therefore struggle to converge within the
accepted number of iterations.

At the MPE level inertial forces in analysis T1, the only considerable reduction of stiffness
is in the western end of the lower cross-beam; 14% reduction of element 4501 compared to
its initial stiffness. Given the relatively small reductions it is not surprising that the bending
moment from the elastic model matches the nonlinear one, with the base of eastern pylon leg
deviating less than 2%. By looking at the pushover curve in figure 6.45, one can observe that the
two models produce similar results up to a load level of approximately λ = 2. From that point
and onward, some numerical issues can be spotted in the load-moment curve for element 4201,
which carries on until convergence failure at λ = 4.4. This issue might stem from the way the
algorithm was implemented, as well as restrictions on the method’s ability to capture ductile
yielding as previously mentioned. The elements with the largest stiffness reductions are also
the elements where the deviations in the moment values are the largest; namely the cross-beam
elements. This support the assumption that the numerical instabilities seen in the pushover
curves stem from shortcomings in the Secant Method when approaching the ultimate strength
of the section. It is noteworthy how the cross-beams ends reduced the most, with an 84% and
72% stiffness reduction in elements 4501 and 4506 respectively, even though the governing
failure mode for this analysis is failure at the base of the pylon legs. This can also serve as an
explanation to why this analysis fails to converge relatively early compared to the fiber model,
see table 6.11.

For analysis T2 it can be observed that the cross-beams already are reduced to about 30% of
their initial stiffness for λ = 1. This can be explained by their relatively low axial forces, which
make them susceptible to cracking. Despite this, the Secant Method yields accurate results
throughout the analysis, alternating between conservative and unconservative results for the
critical elements seen in table 6.12. The same goes for the results when the load step increases
towards 1.35. The force-displacement curve in figure 6.48a shows that the Secant Method
accurately approximates the displacement of the top node all the way up to the last converged
load step. However, the procedure again falls short of following the curve all the way up to



Chapter 7. Discussion 97

λ = 1.5 at which the fiber model fails. At the last converged load step for the elastic model,
the results from both models are fairly similar, with the exceptions being the base of the eastern
pylon leg and the eastern end of the upper cross-beam; element 4201 with 9% underestimation
and element 4504 with 12% overestimation.

The results at λ = 1 following analysis T3 bears some resemblance to the results from T2.
That is, significant stiffness reduction of the cross-beams and decent approximations. More
specifically, the upper cross-beam, element 4701, which also is the governing elements for this
analysis, is reduced to 46% of its initial stiffness, see table 6.13. At the same time the deviation
between the moments in the fiber and elastic model is within 6%. From approximately λ = 1.5,
significant deviations in the deflection start to occur, which can be seen in figure 6.52a. The
elastic model yields some unconservative results, which can also be seen in the 6.13 for λ = 2.6,
where the base element 4101 as well as the lower cross-beam element 4501 have deviations of
13-14%. The upper cross-beam, however, have a resulting moment on the conservative side,
which consequently renders larger stiffness reductions than what can be expected. This will
affect the magnitude of the bending moments carried by the lower part of the pylon and hence
be an explanation for the deviations found in these elements.

In general the Secant Method was able to accurately estimate the response of the South Py-
lon when the nonlinear fiber model is used as a reference. For the load level corresponding to
the inertial forces from the seismic ground motion, all critical elements are within an tolerable
margin, the exception being element 4701 in analysis T2. As the elements approach their final
converged steps, the method seems to somewhat destabilize and give less accurate results. As
mentioned, this is likely due of the algorithm itself, which struggles to capture the ductile yield-
ing behavior of the structure. Despite these numerical issues, the method serves its purpose by
being able to accurately approximate the response of the cracked concrete sections and force
distribution in the pylon up to the MPE level. Further, the procedure is to some extent able to
provide reasonably accurate, though slightly conservative, force distributions for the nonlinear
branch of the analysis.

It should be noted that the resulting stiffness reductions following the pushover analyses
were in general somewhat lower than than the corresponding mean element reductions follow-
ing the THA. For example, from table 7.1, element 4101 has experienced a mean stiffness of
0.63 times its initial stiffness, while the pushover analysis L2 where element 4101 is the critical
element resulted in a ratio of 0.81 for λ = 1. This can also be observed for the critical elements
in other pushover analyses. The explanation for this is that inertial forces used in the pushover
analyses are obtained from the response history using the fiber model rather than the reduced
elastic model. The accelerations history for the reduced elastic model were in general larger
than the accelerations from the fiber model, which in turn leads to lower inertial forces when
using the latter. By using a force input with lower load levels, the reductions at the chosen load
level are consequently smaller. The choice to use the accelerations from the fiber model was
made because this model acts as a reference for the analysis, and it would therefore be suitable
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to use the forces extracted from this model. Because the results showed that the Secant Method
was still relatively accurate for loads up to at least λ = 1.2, the force input was kept as is. With
more time in hand, it would have been possible to run the analyses with inertial force input from
the response history of both models to further analyze their differences.

7.4 Further Work

If more time was available at hand, several improvements likely could have been made to both
the fiber and the elastic model. A more uniform node distribution could for instance have
been applied to cope with the absence of nonlinear element geometry effects. By using linear
interpolation to calculate new node coordinates while maintaining geometry, element lengths
can be decided based on their stiffness and anticipated axial load. By ensuring that ψ given by

ψ =

√
|q1|L2

EI
(7.1)

where q1 is the axial basic force, is less than 0.5, first order stiffness coefficients can be used [8].
Solving equation 7.1 for the element length L using ψ=0.5 thus gives the upper limit for element
lengths for which the basic axial force q1 has negligible influence on the flexural stiffness k.
This will potentially provide more accurate results, but depending on the refinement also come
at the expense of computational cost.

Looking at the fiber model, the effect of confinement could have been taken into considera-
tion if more time had been set aside to calculate the different parameters needed and subdividing
the section mesh. This would yield a more realistic model, but it should be emphasized that the
main importance for this thesis is the similarity between the elastic model and the fiber model.

OpenSees provides the possibility of recording the stress and strain in each individual fiber
during analyses. Although a tedious task to implement, this would have provided a necessary
tool which could have been used when investigating convergence failure in the Secant Method
and section response close to the ultimate strength of the sections.

It must be stressed that the different OpenSees scripts containing the model and running
analyses are complex and as new layers of code were added, it became increasingly harder to
modify the older parts. If the modifications previously mentioned had been taken into account
from the beginning, it would have been significantly easier to implement them.

Using the final structure with reduced stiffness in other analyses such as for instance a
response spectrum analysis to see how the results hold up against those following a NTHA is in
itself an interesting subject. This can further confirm the assumptions made about the reduced
model or find shortcomings with it. It would also be beneficial to investigate the effect increased
eigen periods due to reduced stiffness will have on accelerations during such an analysis.
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Conclusion
The goal of this study has been to assess if the the secant stiffness could provide a reasonable ap-
proximation to the nonlinear material behavior of structures. Naturally, a good indication of this
is that the responses following the secant procedure coincides with the ones following a NTHA.
The results presented in previous section indicate that the approximation is satisfactory for the
majority of the elements, but there are also anomalies where the secant procedure increases the
gap between the THA and NTHA responses. These may occur for a number of reasons, most
of which are rooted in the shortcomings of the Secant Method itself, which are summarized
in section 3.3 and further discussed in section 7.1. Despite these observations, discrepancies
between the moment values from the two models should not render the reduced stiffnesses in-
correct. The reduced stiffness values obtained following the secant procedure merely indicate
whether or not nonlinearities have occurred during the THA, that is, cracking of concrete and
yielding of reinforcement. As discussed in the previous section, the observations made regard-
ing the reduced stiffness values coincides with what can intuitively be expected. Further, if the
results are assessed properly, the linear elastic model with reduced flexural stiffnesses may be
utilized in further analysis. Clearly, using the initial, unreduced linear elastic model in say a re-
sponse spectrum analysis will yield conservative forces if cracking is indeed expected to occur.
Use of the reduced linear elastic model with the associated increased periods of the structure
will produce more realistic results by capturing the crack distribution. Additionally, as seen
throughout the results presented in this thesis, discrepancies between the results of NTHA and
the reduced elastic model tends to be on the conservative side. That is, the elastic model with
reduced stiffnesses tends to produce higher maximum moments than the fiber model. As dis-
cussed, this follows from the fact that use of the Secant Method often results in a structure that
is too soft. Thus, rather than simply using the stiffness values obtained following the Secant
Method, it is proposed in this study to use these as guidelines for creating new stiffnesses. By
selecting stiffnesses enveloped by the initial and reduced values, more towards the latter, the
overestimated reduction is to some degree counteracted. If the relative magnitude among the
stiffness reductions remain the same, a structure which contains a realistic representation of the
crack distribution will then result.

The numerical tool was also used in the pushover analyses. The results from the pushover
analysis indicated that the Secant Method is capable of accurately producing the same bending
moments and displacement patterns as the nonlinear fiber model up to and slightly beyond the
load levels corresponding the maximum loads from various THA. When reaching load levels
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where post-yield capacity was expected, the Secant Method produced bending moments with
slightly higher values in the elements experiencing the largest reductions. This may be due to
a number of effects, most important of which is the way the Secant Method obtains stiffnesses
for moments close to the ultimate section capacity. Nevertheless, the general trend from the
pushover analyses, both for λ = 1, and for higher load levels is that the force distribution,
as well as deflections to a certain degree are approximated to a sufficient level, especially in
the most critical elements. Overall, the Secant Method has proved to be a valid option to the
full nonlinear analysis. The method is also code-compliant as it satisfies the requirements from
both Eurocode 8 and the AASHTO Guide Specifications for LRFD Seismic Bridge Design with
regards to providing results that are consistent with expected nonlinear material behaviour.
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Appendix A

Secant Procedure Results
Tables A.1-A.4 below summarize the converged ratios of initial stiffness for each element in
both directions calculated using equation 5.2 and 5.1. The ratios thus results from the final
iteration of the Secant Method, for each ground motion record SP1-SP7. Column 2-8 in each
table depicts an individual ground motion record and the reduction about one axis. The second
to last column shows the mean values of the ratios, take over all ground motions, and the last
column the mean moment of all seven NTHA using the fiber model, in units of MNm.

A1



A2

Table A.1: Ratios of initial stiffness, y-direction, element 4101-4122, 4501-4506

Element SP1 SP2 SP3 SP4 SP5 SP6 SP7 Ratio Ave

4101 0.52 0.61 0.54 0.54 0.65 0.81 0.74 0.63 338

4102 0.55 0.71 0.62 0.59 0.78 0.90 0.83 0.71 306

4103 0.61 0.59 0.73 0.92 0.90 0.95 0.91 0.80 274

4104 0.89 0.79 0.96 0.96 0.97 0.97 0.98 0.93 239

4105 0.98 0.94 0.98 0.98 0.98 0.98 0.99 0.98 211

4106 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 187

4107 0.99 0.98 0.99 0.99 0.99 0.99 1.00 0.99 171

4108 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 155

4109 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 134

4110 0.99 0.99 0.99 0.98 0.99 0.99 1.00 0.99 133

4111 1.00 0.99 1.00 1.00 0.99 1.00 0.99 1.00 72

4112 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 92

4113 0.97 0.97 0.98 0.98 0.98 0.98 0.99 0.98 143

4114 0.87 0.77 0.94 0.97 0.96 0.98 0.98 0.93 180

4115 0.80 0.57 0.78 0.95 0.89 0.89 0.88 0.82 192

4116 0.94 0.93 0.90 0.97 0.91 0.90 0.92 0.92 176

4117 0.98 0.98 0.98 0.98 0.97 0.98 0.99 0.98 123

4118 0.99 1.00 0.99 0.99 0.99 1.00 1.00 0.99 99

4119 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 74

4120 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 53

4121 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 36

4122 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 30

4501 0.30 0.32 0.31 0.32 0.31 0.32 0.32 0.31 185

4502 0.33 0.62 0.57 0.69 0.45 0.69 0.51 0.55 127

4503 0.99 1.00 0.99 1.00 0.99 0.99 0.99 0.99 67

4504 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 14

4505 0.91 0.99 0.98 0.98 0.93 0.98 0.97 0.96 68

4506 0.31 0.43 0.36 0.41 0.33 0.37 0.35 0.37 120
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Table A.2: Ratios of initial stiffness, y-direction, element 4201-4222, 4701-4704

Element SP1 SP2 SP3 SP4 SP5 SP6 SP7 Ave Ave

4201 0.54 0.52 0.60 0.68 0.56 0.68 0.81 0.63 331

4202 0.58 0.72 0.70 0.81 0.64 0.82 0.90 0.74 299

4203 0.63 0.87 0.81 0.54 0.77 0.91 0.95 0.78 268

4204 0.92 0.94 0.94 0.90 0.97 0.97 0.97 0.95 236

4205 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.98 208

4206 0.99 0.98 0.99 0.99 0.99 0.99 0.98 0.99 183

4207 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 171

4208 0.99 0.98 0.99 0.99 0.99 0.99 0.98 0.99 154

4209 1.00 0.98 0.99 1.00 0.99 0.99 0.99 0.99 133

4210 1.00 0.98 0.99 1.00 0.99 0.99 0.98 0.99 132

4211 0.99 1.00 0.99 0.99 0.99 1.00 1.00 0.99 72

4212 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.99 93

4213 0.97 0.97 0.98 0.98 0.98 0.98 0.99 0.98 142

4214 0.89 0.94 0.96 0.95 0.93 0.98 0.97 0.95 180

4215 0.82 0.84 0.86 0.85 0.68 0.91 0.96 0.84 192

4216 0.90 0.88 0.94 0.93 0.79 0.92 0.97 0.90 175

4217 0.98 0.98 0.98 0.99 0.99 0.98 0.98 0.98 122

4218 1.00 0.99 1.00 1.00 1.00 0.99 0.99 0.99 97

4219 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 73

4220 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 52

4221 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 36

4222 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 30

4701 0.33 0.34 0.35 0.35 0.34 0.34 0.37 0.35 137

4702 0.75 0.85 0.98 0.98 0.82 0.91 0.99 0.90 75

4703 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 16

4704 0.50 0.73 0.69 0.66 0.62 0.60 0.69 0.64 74
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Table A.3: Ratios of initial stiffness, z-direction, element 4101-4122, 4501-4506

Element SP1 SP2 SP3 SP4 SP5 SP6 SP7 Ave Ave

4101 0.85 0.98 0.97 0.99 0.95 0.97 0.96 0.95 159

4102 0.98 0.99 0.97 0.99 0.99 0.99 0.99 0.99 123

4103 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 90

4104 1.00 1.01 1.00 1.00 0.98 1.00 1.00 1.00 58

4105 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 58

4106 0.99 1.00 1.00 0.99 1.00 0.99 0.99 0.99 82

4107 0.93 0.91 0.97 0.98 0.87 0.93 0.96 0.94 225

4108 0.97 0.94 0.97 0.98 0.94 0.96 0.98 0.97 212

4109 0.98 0.97 0.98 0.98 0.97 0.98 0.98 0.98 196

4110 0.98 0.93 0.97 0.98 0.95 0.97 0.97 0.96 195

4111 0.97 0.98 0.97 0.97 0.97 0.98 0.98 0.98 143

4112 0.97 0.98 0.97 0.98 0.97 0.98 0.98 0.98 107

4113 1.00 0.98 0.99 0.98 0.98 0.99 0.99 0.99 76

4114 0.98 0.99 0.99 0.98 0.99 0.98 0.99 0.99 82

4115 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 92

4116 0.98 0.98 0.97 0.98 0.98 0.99 0.98 0.98 117

4117 0.95 0.98 0.96 0.97 0.97 0.97 0.97 0.97 149

4118 0.90 0.98 0.97 0.97 0.97 0.97 0.97 0.96 160

4119 0.82 0.98 0.97 0.97 0.97 0.97 0.97 0.95 171

4120 0.76 0.97 0.97 0.98 0.97 0.98 0.98 0.94 181

4121 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 13

4122 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 10

4501 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 7

4502 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 17

4503 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 24

4504 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 26

4505 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 24

4506 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 17



Chapter A. Secant Procedure Results A5

Table A.4: Ratios of initial stiffness, z-direction, element 4201-4222, 4701-4704

Element SP1 SP2 SP3 SP4 SP5 SP6 SP7 Ave Ave

4201 0.96 0.97 0.97 0.97 0.96 0.97 0.96 0.97 163

4202 0.96 0.98 0.99 0.98 0.97 0.97 0.97 0.98 124

4203 0.97 0.98 1.00 1.00 0.98 0.99 0.97 0.99 90

4204 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 58

4205 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 58

4206 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 86

4207 0.92 0.94 0.97 0.95 0.62 0.93 0.97 0.90 224

4208 0.97 0.96 0.97 0.97 0.81 0.97 0.96 0.94 211

4209 0.97 0.96 0.97 0.98 0.94 0.97 0.98 0.97 197

4210 0.97 0.95 0.97 0.97 0.89 0.96 0.97 0.95 196

4211 0.97 0.97 0.98 0.99 0.98 0.97 0.98 0.98 143

4212 0.97 0.98 0.99 0.99 0.98 0.99 0.99 0.99 107

4213 0.98 0.99 0.98 0.99 0.98 0.98 0.98 0.98 77

4214 0.99 0.98 0.98 0.99 0.98 0.99 0.98 0.98 82

4215 0.99 0.98 0.98 0.99 0.98 0.99 0.99 0.98 92

4216 0.97 0.98 0.99 0.99 0.98 0.98 0.98 0.98 117

4217 0.96 0.96 0.95 0.98 0.96 0.97 0.99 0.97 149

4218 0.96 0.97 0.95 0.97 0.96 0.97 0.98 0.97 160

4219 0.93 0.97 0.92 0.95 0.97 0.97 0.97 0.95 170

4220 0.87 0.97 0.90 0.92 0.96 0.96 0.96 0.93 178

4221 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 13

4222 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 10

4701 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 4

4702 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 10

4703 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 13

4704 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 10
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Mode shapes
The following appendix illustrates the mode shapes of the South Pylon. Only the mode shapes
for the fiber model have been included as the mode shapes for the elastic model being equal,
with only slight differences in periods, see table 4.7.
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Figure B.1: Mode shapes for the fiber model with cable springs

B1



B2

10

40

10
0

0

60

-10
-10

80

100

120

140

(a)

10

40

10
0 0

60

-10-10

80

100

120

140

(b)

Figure B.2: Mode shapes for the fiber model with cable springs
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Figure B.3: Mode shapes for the fiber model with cable springs
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Figure B.4: Mode shapes for the fiber model with cable springs
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Figure B.5: Mode shapes for the fiber model with cable springs
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Figure B.6: Mode shapes for the fiber model with cable springs
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Figure B.7: Mode shapes for the fiber model with cable springs
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Figure B.8: Mode shapes for the fiber model with cable springs
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Figure B.9: Mode shapes for the fiber model with cable springs
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Figure B.10: Mode shapes for the fiber model with cable springs
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Cross sections
The following appendix illustrates the various cross sections used in both the fiber model, and
for creating the moment-curvature diagrams for use with the Secant Method. The cross sectional
properties are listed in table 4.4 in chapter 4. The figures have been created using a MATLAB-
script, and are produced in scale and with fixed axes to showcase the relative differences in
section dimensions.

Figure C.1: Section 4101 and 4201

C1



C2

Figure C.2: Section 4102 and 4202

Figure C.3: Section 4103 and 4203
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Figure C.4: Section 4104 and 4204

Figure C.5: Section 4105 and 4205
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Figure C.6: Section 4106 and 4206

Figure C.7: Section 4107 and 4207
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Figure C.8: Section 4108 and 4208

Figure C.9: Section 4109 and 4209
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Figure C.10: Section 4110 and 4210

Figure C.11: Section 4111 and 4211
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Figure C.12: Section 4112 and 4212

Figure C.13: Section 4113 and 4213
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Figure C.14: Section 4114 and 4214

Figure C.15: Section 4115 and 4215
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Figure C.16: Section 4116 and 4216

Figure C.17: Section 4117 and 4217
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Figure C.18: Section 4118 and 4218

Figure C.19: Section 4119 and 4219
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Figure C.20: Section 4120 and 4220

Figure C.21: Section 4121 and 4221
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Figure C.22: Section 4501-4506

Figure C.23: Section 4701-4704



Appendix D

Moment-Curvature Diagrams
The following appendix lists the moment-curvature diagrams with varying axial loads for inter-
polation of reduced stiffness in the Secant Method. The diagrams for the cross-beams are only
included for illustrative purposes, as they are computed for each iteration with exact axial load
due to large variations in axial force levels.
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Figure D.1: Moment-curvature relation for element 4101and 4201about both local axes
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Figure D.2: Moment-curvature relation for element 4102and 4202about both local axes

D1



D2

0 0.5 1 1.5 2 2.5 3 3.5 4

10
-3

0

100

200

300

400

500

600

700

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

10
-3

0

100

200

300

400

500

600

700

(b)

Figure D.3: Moment-curvature relation for element 4103and 4203about both local axes
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Figure D.4: Moment-curvature relation for element 4104and 4204about both local axes
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Figure D.5: Moment-curvature relation for element 4105and 4205about both local axes
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Figure D.6: Moment-curvature relation for element 4106and 4206about both local axes
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Figure D.7: Moment-curvature relation for element 4107and 4207about both local axes
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Figure D.8: Moment-curvature relation for element 4108and 4208about both local axes
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Figure D.9: Moment-curvature relation for element 4109and 4209about both local axes
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Figure D.10: Moment-curvature relation for element 4110and 4210about both local axes
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Figure D.11: Moment-curvature relation for element 4111and 4211about both local axes
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Figure D.12: Moment-curvature relation for element 4112and 4212about both local axes
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Figure D.13: Moment-curvature relation for element 4113and 4213about both local axes
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Figure D.14: Moment-curvature relation for element 4114and 4214about both local axes
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Figure D.15: Moment-curvature relation for element 4115and 4215about both local axes
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Figure D.16: Moment-curvature relation for element 4116and 4216about both local axes



Chapter D. Moment-Curvature Diagrams D9

0 0.5 1 1.5 2 2.5 3 3.5 4

10
-3

0

50

100

150

200

250

300

350

400

450

500

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

10
-3

0

50

100

150

200

250

300

350

400

450

500

(b)

Figure D.17: Moment-curvature relation for element 4117and 4217about both local axes
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Figure D.18: Moment-curvature relation for element 4118and 4218about both local axes
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Figure D.19: Moment-curvature relation for element 4119and 4219about both local axes
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Figure D.20: Moment-curvature relation for element 4120and 4220about both local axes
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Figure D.21: Moment-curvature relation for element 4121and 4221about both local axes
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Figure D.22: Moment-curvature relation for element 4122and 4222about both local axes
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Figure D.23: Moment-curvature relation for element 4501-4506 about both local axes
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Appendix E

OpenSees Script
The following script written in the Tcl programming language performed the iterative Secant
Method in OpenSees.

E1



1   set Resultat_itr {};
2   for {set EQ 1} {$EQ <= 7} {incr EQ 1} {
3   wipe;
4   set record "SP$EQ"
5   set StiffFact_X {}; #Initial Stiffness factors
6   set StiffFact_Y {};
7   
8   file delete -force "Results_elastic/Section_$EQ/Ratio"
9   file delete -force "Results_elastic/Section_$EQ/MomentCurvature"

10   
11   file mkdir "Results_elastic/Section_$EQ/Ratio"
12   file mkdir "Results_elastic/Section_$EQ/MomentCurvature"
13   
14   for {set i 1} {$i<=54} {incr i 1} {
15   lappend StiffFact_X 1
16   lappend StiffFact_Y 1
17   }
18   
19   source Units_Riss.tcl
20   puts "" ;  
21   puts "BASIC UNITS - $LunitTXT, $FunitTXT, $TunitTXT"
22   set itr 15
23   set fact 0.5
24   
25   for {set iter 1} {$iter <= $itr} {incr iter 1} {
26   file delete -force "Results_elastic/Section_$EQ/Ratio/signal.txt"
27   file delete -force "Results_elastic/Section_$EQ/Ratio/signalAxial.txt"
28   
29   wipe ;
30   
31   puts "::::::::::::::::::::::::::::::: Run itr. $iter :::::::::::::::::"
32   
33   set Cables "On"; # On for Cables, off to run analysis without suspension cable
34   
35   set Results "Results_elastic"
36   file mkdir $Results
37   
38   set AnalysisDyn "$Results/DynamicAnalysis_$EQ"
39   file mkdir $AnalysisDyn
40   
41   file mkdir "$Results/Section_$EQ"
42   
43   # ######################################################################
44   
45   source Nodes_and_BC_Riss.tcl
46   source Material_Properties_Riss.tcl
47   
48   puts "$StiffFact_X"
49   puts "----------------------------------------------------------------"
50   
51   puts "$StiffFact_Y"
52   puts "----------------------------------------------------------------"
53   
54   source Element_Riss_ini02.tcl
55   source Gravity_Loads_Riss.tcl
56   set modes 30
57   source Modal_analysis_Riss.tcl
58   source TimeHistory_Riss.tcl
59   
60   remove recorders;
61   
62   
63   # Moment curvature analysis with current axial forces
64   set StiffFactDir "$Results/Section_$EQ/Ratio"
65   file mkdir $StiffFactDir
66   # Matlab script obtaining max abs. moment and corresponding axial forces
67   
68   if {[catch {exec matlab -nosplash -nodesktop -r

"getAxialForces($EQ);quit"}]} {
69   puts "Ignore this $msg"
70   }
71   
72   while {[file exists "$StiffFactDir/signalaxial.txt"] != 1} {
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73   }
74   puts "Axial forces computed!"
75   
76   source GetMphi.tcl; # Moment curvature, cross-beams only
77   puts "Moment-curvature for crossbeams computed!"
78   
79   # Matlab script calculating secant stiffnesses
80   if {[catch {exec matlab -nosplash -nodesktop -r
81   "GetStiffness_elast_interpol($fact,$iter,$EQ);quit"}]} {
82   puts "Ignore this $msg"
83   }
84   
85   
86   while {[file exists "$StiffFactDir/signal.txt"] != 1} {
87   }
88   puts "New stiffness computed!"
89   
90   set cv [open "$StiffFactDir/conv.txt" r];
91   set conv_data [read $cv];
92   set conv [lindex $conv_data 0]
93   if {$conv > 0} {
94   puts "Conv = $conv, stop after itr=$iter"
95   close $cv
96   lappend Resultat_itr "\n $record converged after $iter itr."
97   
98   break
99   }

100   close $cv
101   set StiffFactFileX "ratiosX_$iter.txt"
102   set StiffFactFileY "ratiosY_$iter.txt"
103   
104   set fpX [open "$StiffFactDir/$StiffFactFileX" r]; # Update stiffnesses
105   set fpY [open "$StiffFactDir/$StiffFactFileY" r]; 
106   
107   set StiffFact_X [read $fpX]
108   set StiffFact_Y [read $fpY]
109   close $fpX
110   close $fpY
111   if {$iter==$itr} {
112   lappend Resultat_itr "\n $record did not converge, max itr.=$itr"
113   }
114   
115   wipe;
116   puts "iter=$iter done!"
117   }
118   
119   puts "Analysis complete for record $record"
120   }
121   puts "Analysis complete for all records";
122   puts "$Resultat_itr";
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Appendix F

MATLAB code
The following script written in MATLAB was invoked once during each iteration of the Secant
Method and calculates the updated stiffness ratio using the maximum absolute moment and
section response at each element.

F1



1   
2   function GetStiffness_elast_interpol(fact,itr,Eq)
3   
4   Eq_str=num2str(Eq);
5   signal=1;
6   %elemen-tvektor 
7   FibElem=[4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115

4116 4117 4118 4119 4120 4121 4122 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4501 4502 4503 4504 4505
4506 4701 4702 4703 4704];

8   e=length(FibElem);
9   

10   Node=[4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
4116 4117 4118 4119 4120 4121 4122 4123 4201 4202 4203 4204 4205 4206 4207 4208 4209
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4502 4503 4504
4505 4506 4702 4703 4704];

11   n=length(Node);
12   %Input, henter Mphi, tidshistorie
13   FolderGravity = ['C:\Users\Tarjei\Documents\Gogldr\Masteroppgave, 

Dynamikk_\OpenSees\Scripts\Riss\Results_elastic\Gravity'];
14   FolderMomentCurv = ['C:\Users\Tarjei\Documents\Gogldr\Masteroppgave, 

Dynamikk_\OpenSees\Scripts\Riss\Results_elastic\Section_',Eq_str,'\MomentCurvature'];
15   
16   
17   FolderMomentTime = ['C:\Users\Tarjei\Documents\Gogldr\Masteroppgave, 

Dynamikk_\OpenSees\Scripts\Riss\Results_elastic\DynamicAnalysis_',Eq_str,'\Moment'];
18   FolderDynResultsTime = ['C:\Users\Tarjei\Documents\Gogldr\Masteroppgave, 

Dynamikk_\OpenSees\Scripts\Riss\Results_elastic\DynamicAnalysis_',Eq_str];
19   
20   
21   %Output, lager tre nye filer
22   nameX= strcat('C:\Users\Tarjei\Documents\Gogldr\Masteroppgave, 

Dynamikk_\OpenSees\Scripts\Riss\Results_elastic\Section_',Eq_str,'\Ratio\ratiosX_',num
2str(itr),'.txt');

23   nameDispX= strcat('C:\Users\Tarjei\Documents\Gogldr\Masteroppgave, 
Dynamikk_\OpenSees\Scripts\Riss\Results_elastic\Section_',Eq_str,'\Ratio\dispAccX_',nu
m2str(itr),'.txt');

24   name_compX=strcat('C:\Users\Tarjei\Documents\Gogldr\Masteroppgave, 
Dynamikk_\OpenSees\Scripts\Riss\Results_elastic\Section_',Eq_str,'\Ratio\complete_data
X_',num2str(itr),'.txt');

25   name_testX=strcat('C:\Users\Tarjei\Documents\Gogldr\Masteroppgave, 
Dynamikk_\OpenSees\Scripts\Riss\Results_elastic\Section_',Eq_str,'\Ratio\test_dataX_',
num2str(itr),'.txt');

26   
27   fidX=fopen(nameX,'w');
28   fidDispAccX=fopen(nameDispX,'w');
29   fid_compX=fopen(name_compX,'w');
30   fid_testX=fopen(name_testX,'w');
31   
32   
33   nameY=strcat('C:\Users\Tarjei\Documents\Gogldr\Masteroppgave, 

Dynamikk_\OpenSees\Scripts\Riss\Results_elastic\Section_',Eq_str,'\Ratio\ratiosY_',num
2str(itr),'.txt');

34   nameDispY=strcat('C:\Users\Tarjei\Documents\Gogldr\Masteroppgave, 
Dynamikk_\OpenSees\Scripts\Riss\Results_elastic\Section_',Eq_str,'\Ratio\dispAccY_',nu
m2str(itr),'.txt');

35   name_compY=strcat('C:\Users\Tarjei\Documents\Gogldr\Masteroppgave, 
Dynamikk_\OpenSees\Scripts\Riss\Results_elastic\Section_',Eq_str,'\Ratio\complete_data
Y_',num2str(itr),'.txt');

36   fidY=fopen(nameY,'w');
37   fidDispAccY=fopen(nameDispY,'w');
38   fid_compY=fopen(name_compY,'w');
39   
40   if itr>=2
41   forrige_ratioX=load(strcat('C:\Users\Tarjei\Documents\Gogldr\Masteroppgave, 

Dynamikk_\OpenSees\Scripts\Riss\Results_elastic\Section_',Eq_str,'\Ratio\ratiosX_',
num2str(itr-1),'.txt'));

42   forrige_ratioY=load(strcat('C:\Users\Tarjei\Documents\Gogldr\Masteroppgave, 
Dynamikk_\OpenSees\Scripts\Riss\Results_elastic\Section_',Eq_str,'\Ratio\ratiosY_',
num2str(itr-1),'.txt'));

43   elseif itr==1
44   forrige_ratioX=ones(e,1);
45   forrige_ratioY=ones(e,1);
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46   end
47   
48   
49   for el=1:e
50   
51   elem=FibElem(el);
52   str_ele=num2str(elem); %gjør 

elementnr. til en streng
53   
54   MphiX_gravity

=load(fullfile(FolderGravity,strcat('MphiX_Gravity_',str_ele,'1.txt')));
%henter moment-krumning for element i 

55   MphiY_gravity =
load(fullfile(FolderGravity,strcat('MphiY_Gravity_',str_ele,'1.txt')));

56   Axial_Gravity_file =load(fullfile(FolderGravity,strcat('N_Ele',str_ele,'.txt')));
57   
58   axial_gravity=Axial_Gravity_file(end);
59   Ftime=load(fullfile(FolderMomentTime,strcat('M_Ele',str_ele,'.txt')));

%henter Eq-respons for element i  
60   
61   
62   
63   
64   [maxmomentX, i_x]=max(abs(Ftime(:,6))); %Finner max absolutt-moment i tidsserien
65   [maxmomentY, i_y]=max(abs(Ftime(:,7)));
66   
67   axial_x=Ftime(i_x,2);
68   axial_y=Ftime(i_y,2);
69   axial_ratio_x=axial_x/axial_gravity;
70   axial_ratio_y=axial_y/axial_gravity;
71   if elem<4500
72   if axial_ratio_x<=0.8
73   x1=0.6; x2=0.8;
74   MphiX1

=load(fullfile(FolderGravity,strcat('MphiX_Gravity_',str_ele,'06.txt')));
%henter moment-krumning for element i 

75   MphiX2
=load(fullfile(FolderGravity,strcat('MphiX_Gravity_',str_ele,'08.txt')));

76   elseif axial_ratio_x>0.8 && axial_ratio_x<=1
77   x1=0.8; x2=1;
78   MphiX1

=load(fullfile(FolderGravity,strcat('MphiX_Gravity_',str_ele,'08.txt')));

79   MphiX2
=load(fullfile(FolderGravity,strcat('MphiX_Gravity_',str_ele,'1.txt')));

80   elseif axial_ratio_x>1 && axial_ratio_x<=1.2
81   x1=1; x2=1.2;
82   MphiX1

=load(fullfile(FolderGravity,strcat('MphiX_Gravity_',str_ele,'1.txt')));

83   MphiX2
=load(fullfile(FolderGravity,strcat('MphiX_Gravity_',str_ele,'12.txt')));

84   elseif axial_ratio_x>1.2
85   x1=1.2; x2=1.4;
86   MphiX1

=load(fullfile(FolderGravity,strcat('MphiX_Gravity_',str_ele,'12.txt')));

87   MphiX2
=load(fullfile(FolderGravity,strcat('MphiX_Gravity_',str_ele,'14.txt')));

88   end
89   
90   
91   if axial_ratio_y<=0.8;
92   y1=0.6; y2=0.8;
93   MphiY1

=load(fullfile(FolderGravity,strcat('MphiY_Gravity_',str_ele,'06.txt')));
%henter moment-krumning for element i 

94   MphiY2
=load(fullfile(FolderGravity,strcat('MphiY_Gravity_',str_ele,'08.txt')));

%henter moment-krumning for element i 
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95   elseif axial_ratio_y>0.8 && axial_ratio_y<=1
96   y1=0.8; y2=1;
97   MphiY1

=load(fullfile(FolderGravity,strcat('MphiY_Gravity_',str_ele,'08.txt')));
%henter moment-krumning for element i 

98   MphiY2
=load(fullfile(FolderGravity,strcat('MphiY_Gravity_',str_ele,'1.txt')));
%henter moment-krumning for element i 

99   elseif axial_ratio_y>1 && axial_ratio_y<=1.2
100   y1=1; y2=1.2;
101   MphiY1

=load(fullfile(FolderGravity,strcat('MphiY_Gravity_',str_ele,'1.txt')));
%henter moment-krumning for element i 

102   MphiY2
=load(fullfile(FolderGravity,strcat('MphiY_Gravity_',str_ele,'12.txt')));

%henter moment-krumning for element i 
103   elseif axial_ratio_y>1.2
104   y1=1.2; y2=1.4;
105   MphiY1

=load(fullfile(FolderGravity,strcat('MphiY_Gravity_',str_ele,'12.txt')));
%henter moment-krumning for element i 

106   MphiY2
=load(fullfile(FolderGravity,strcat('MphiY_Gravity_',str_ele,'14.txt')));

%henter moment-krumning for element i 
107   end
108   
109   
110   if maxmomentX>=max(MphiX2(:,1))
111   Index_x=find(MphiX2(:,1)==max(MphiX2(:,1)),1);
112   disp('Moment høyere enn Mx-kappa');
113   break;
114   else
115   Index_x1=find(MphiX1(:,1)>maxmomentX, 1); %Finner tilhørende punkt 

på moment-krumning plott
116   Index_x2=find(MphiX2(:,1)>maxmomentX, 1);
117   
118   [kappa_x1,M_x1] = polyxpoly([0 2e-3],[maxmomentX

maxmomentX],[MphiX1(Index_x1,2)
MphiX1(Index_x1-1,2)],[MphiX1(Index_x1,1) MphiX1(Index_x1-1,1)]);

119   [kappa_x2,M_x] = polyxpoly([0 2e-3],[maxmomentX
maxmomentX],[MphiX2(Index_x2,2)
MphiX2(Index_x2-1,2)],[MphiX2(Index_x2,1) MphiX2(Index_x2-1,1)]);

120   
121   kappa_x=kappa_x2+(axial_ratio_x-x2)*(kappa_x1-kappa_x2)/(x1-x2);
122   end
123   
124   if maxmomentY>=max(MphiY2(:,1))
125   Index_y=find(MphiY2(:,1)==max(MphiY2(:,1)),1);
126   disp('Moment høyere enn My-kappa');
127   break;
128   else
129   Index_y1=find(MphiY1(:,1)>maxmomentY, 1); %Finner tilhørende punkt på 

moment-krumning plott
130   Index_y2=find(MphiY2(:,1)>maxmomentY, 1);
131   
132   [kappa_y1,M_y1] = polyxpoly([0 2e-3],[maxmomentY

maxmomentY],[MphiY1(Index_y1,2)
MphiY1(Index_y1-1,2)],[MphiY1(Index_y1,1) MphiY1(Index_y1-1,1)]);

133   [kappa_y2,M_y] = polyxpoly([0 2e-3],[maxmomentY
maxmomentY],[MphiY2(Index_y2,2)
MphiY2(Index_y2-1,2)],[MphiY2(Index_y2,1) MphiY2(Index_y2-1,1)]);

134   
135   kappa_y=kappa_y2+(axial_ratio_y-y2)*(kappa_y1-kappa_y2)/(y1-y2);
136   end
137   fprintf(fid_testX,'%4.0f %5.2f  %7.4e   %7.4e  %7.4e  %7.4e  

\r\n',elem,axial_ratio_x,kappa_x1,kappa_x2,kappa_x,maxmomentX);
138   elseif elem < 4700
139   MphiX =load(fullfile(FolderMomentCurv,strcat('MphiX_4501.txt')));

%henter moment-krumning for element i 
140   MphiY =load(fullfile(FolderMomentCurv,strcat('MphiY_4501.txt')));
141   if maxmomentX>=max(MphiX(:,1))
142   Index_x=find(MphiX(:,1)==max(MphiX(:,1)),1);
143   disp('Moment høyere enn Mx-kappa');
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144   else
145   Index_x=find(MphiX(:,1)>maxmomentX, 1); %Finner tilhørende punkt på 

moment-krumning plott
146   [kappa_x,M_x] = polyxpoly([0 1e-3],[maxmomentX

maxmomentX],[MphiX(Index_x,2) MphiX(Index_x-1,2)],[MphiX(Index_x,1)
MphiX(Index_x-1,1)]);

147   end
148   
149   if maxmomentY>=max(MphiY(:,1))
150   Index_y=find(MphiY(:,1)==max(MphiY(:,1)),1);
151   disp('Moment høyere enn My-kappa');
152   else
153   Index_y=find(MphiY(:,1)>maxmomentY, 1); %Finner tilhørende punkt på 

moment-krumning plott
154   [kappa_y,M_y] = polyxpoly([0 1],[maxmomentY

maxmomentY],[MphiY(Index_y,2) MphiY(Index_y-1,2)],[MphiY(Index_y,1)
MphiY(Index_y-1,1)]);

155   end
156   else
157   MphiX =load(fullfile(FolderMomentCurv,strcat('MphiX_4701.txt')));

%henter moment-krumning for element i 
158   MphiY =load(fullfile(FolderMomentCurv,strcat('MphiY_4701.txt')));
159   if maxmomentX>=max(MphiX(:,1))
160   Index_x=find(MphiX(:,1)==max(MphiX(:,1)),1);
161   disp('Moment høyere enn Mx-kappa');
162   else
163   Index_x=find(MphiX(:,1)>maxmomentX, 1); %Finner tilhørende punkt på 

moment-krumning plott
164   [kappa_x,M_x] = polyxpoly([0 1e-3],[maxmomentX

maxmomentX],[MphiX(Index_x,2) MphiX(Index_x-1,2)],[MphiX(Index_x,1)
MphiX(Index_x-1,1)]);

165   end
166   
167   if maxmomentY>=max(MphiY(:,1))
168   Index_y=find(MphiY(:,1)==max(MphiY(:,1)),1);
169   disp('Moment høyere enn My-kappa');
170   else
171   Index_y=find(MphiY(:,1)>maxmomentY, 1); %Finner tilhørende punkt på 

moment-krumning plott
172   [kappa_y,M_y] = polyxpoly([0 1],[maxmomentY

maxmomentY],[MphiY(Index_y,2) MphiY(Index_y-1,2)],[MphiY(Index_y,1)
MphiY(Index_y-1,1)]);

173   end
174   end
175   
176   
177   EI_secX= M_x/kappa_x;
178   I_secX=EI_secX/(32.1e9);
179   
180   EI_iniX= MphiX_gravity(2,1)/MphiX_gravity(2,2);
181   I_iniX=EI_iniX/(32.1e9);
182   
183   
184   
185   ratioX=EI_secX/EI_iniX;
186   
187   EI_secY= M_y/kappa_y;
188   I_secY=EI_secY/(32.1e9);
189   
190   EI_iniY= MphiY_gravity(2,1)/MphiY_gravity(2,2);
191   I_iniY=EI_iniY/(32.1e9);
192   
193   
194   ratioY=EI_secY/EI_iniY;
195   
196   
197   
198   %ratio=1-fact*(1-ratio1);
199   ratioX=forrige_ratioX(el)-fact*(forrige_ratioX(el)-ratioX);
200   ratioY=forrige_ratioY(el)-fact*(forrige_ratioY(el)-ratioY);
201   
202   %konvegens
203   
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204   convX=abs( abs( ratioX )-abs( forrige_ratioX(el) ))/abs(forrige_ratioX(el));
205   convY=abs( abs( ratioY )-abs( forrige_ratioY(el) ))/abs(forrige_ratioY(el));
206   
207   if convX>0.05 || convY>0.05
208   signal=signal*0; %blir null hvis ett eller flere av convergenskravene er over 

terskel 
209   end
210   
211   
212   fprintf(fidX,'%6.3f\r\n', ratioX);
213   fprintf(fidY,'%6.3f\r\n', ratioY);
214   
215   fprintf(fid_compX,'%4.0f     %7.4f   %7.4f  %7.4f    %5.3f  %4.3f %1.0f %4.2f %7.4e 

%7.4e %7.4e    \r\n', elem, I_iniX,I_secX,ratioX*I_iniX,ratioX,convX,signal,
axial_ratio_x,maxmomentX, kappa_x,axial_x);

216   fprintf(fid_compY,'%4.0f     %7.4f   %7.4f  %7.4f   %5.3f  %4.3f %1.0f %4.2f %7.4e 
%7.4e %7.4e   \r\n', elem, I_iniY,I_secY,ratioY*I_iniY,ratioY,convY,signal,
axial_ratio_y,maxmomentY,kappa_y, axial_y);

217   
218   end
219   
220   for no=1:n
221   node=Node(no);
222   DtimeX=load(fullfile(FolderDynResultsTime,strcat('\Displacement\disp_Node_x_',num2str(

node),'.txt'))); %henter Eq-respons for node i  
223   DtimeY=load(fullfile(FolderDynResultsTime,strcat('\Displacement\disp_Node_y_',num2str(

node),'.txt')));
224   AtimeX=load(fullfile(FolderDynResultsTime,strcat('\Acceleration\TotalAccel_Node_x_',nu

m2str(node),'.txt'))); %henter Eq-respons for node i  
225   AtimeY=load(fullfile(FolderDynResultsTime,strcat('\Acceleration\TotalAccel_Node_y_',nu

m2str(node),'.txt')));
226   maxdispX=max(abs(DtimeX(:,2))); %Finner max absolutt-moment i tidsserien 
227   maxdispY=max(abs(DtimeY(:,2)));
228   maxaccX=max(abs(AtimeX(:,2)));
229   maxaccY=max(abs(AtimeY(:,2)));
230   fprintf(fidDispAccX,'%6.2f  %6.2f\r\n', maxdispX, maxaccX);
231   fprintf(fidDispAccY,'%6.2f  %6.2f\r\n', maxdispY, maxaccY);
232   
233   
234   end
235   
236   fclose(fidDispAccX);
237   fclose(fidDispAccY);
238   
239   fclose(fidX);
240   fclose(fid_compX);
241   fclose(fidY);
242   fclose(fid_compY);
243   
244   conv=['C:\Users\Tarjei\Documents\Gogldr\Masteroppgave, 

Dynamikk_\OpenSees\Scripts\Riss\Results_elastic\Section_',Eq_str,'\Ratio\conv.txt'];
245   fid_conv=fopen(conv,'w');
246   fprintf(fid_conv,'%1.0f\r\n',signal);
247   fclose(fid_conv);
248   
249   signal_path=['C:\Users\Tarjei\Documents\Gogldr\Masteroppgave, 

Dynamikk_\OpenSees\Scripts\Riss\Results_elastic\Section_',Eq_str,'\Ratio\signal.txt'];
250   fid_sig=fopen(signal_path,'w');
251   fclose(fid_sig);
252   fprintf('Iteration %2.0f complete!\n',itr);
253   
254   fclose('all');
255   
256   end
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