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Abstract

This master’s thesis serves as an introduction to the research and theory con-
sidering the subject of laser triangulation sensors, robotics and computer vision.
The primary goal of the thesis is to examine the use of structured light sensors
in robotic welding of large multi-pass weld groves as well as to develop and test
a laser triangulation sensor on steel weld groves. Previous research, as well as
commercial actors in the field of robotic welding and laser triangulation, are pre-
sented and used as basis to evaluate the results from the test at the end. Theory
and methods regarding the operation of laser vision sensors which includes the
description of important system parameters like working distance, the principle of
triangulation and depth of field is also discussed in this thesis. Methods for cal-
ibration of laser vision sensor is also presented, which includes the intrinsic and
extrinsic calibration of image sensors, hand-eye calibration between the image
sensor and robot end-effector and the estimation of the laser plane.

An experimental setup of a laser vision sensor mounted on an industrial KUKA
robot is developed where the sensor consists of a Z-LASER Z18 line laser and
an industrial AT C4-2040 image sensor that is able to detect laser points based
on advanced internal processing. Potential factors which might have an effect on
the accuracy of the sensor is also presented and discussed. Because the sensor
is vision based, it suffers from the effects of environmental factors like specular
reflection and ambient light which becomes apparent through the initial testing.
Simple solutions to mitigate these effects are proposed and tested out at the end
of the thesis, where a proof of concept is presented with the main objectives to
reconstruct an accurate 3-D representation of a single-v weld grove. The final test
results of the laser vision sensor is shown to have a deviation in depth measurement
of 0.7 mm, compared to previously achieved results on similar projects where the
reported mean deviation is < 0.5 mm.



Sammendrag

Denne masteroppgaven er en introduksjon til forskning og teori om temaer rundt
laser trianguleringssensorer, robotisert sveising og datasyn. Det primære målet
med oppgaven er å undersøke bruken av sensorikk som benytter seg av struk-
turerte lys for å inspisere overflater i robotisert sveising av flerlags sveis, som
benyttes i produksjon av store offshore stål konstruksjoner. I tillegg blir også
en laser trianguleringssensor utviklet og testet for å kunne identifisere ytelses-
mål. Tidligere forskning samt kommersielle aktører innen robotisert sveising og
lasersyn blir presentert og diskutert, hvor funn brukes som basis for å evaluere
resultatene fra sluttesten. Teori og metoder for bruk av lasersyn sensorer blir også
diskutert. Dette inkluderer beskrivelse av viktige systemparametere som arbei-
dsavstand, trianguleringsprinsipp og dybdeskarphet. I tillegg til grunnleggende
teori innen robotikk og datasyn, så presenteres også metoder for kalibrering av
lasersyn sensorer. Dette inkluderer intrinsik og ekstrinsisk kalibrering av bilde-
sensor, hånd-øye-kalibrering mellom bildesensor og robotens end-effektor, samt
estimeringen av laserplan.

Et eksperimentelt oppsett av en lasersyn sensor som er montert på en industriell
KUKA-robot blir presentert. Sensoren består av en Z-LASER Z18 linje laser og
en industriell AT C4-2040 bildesensor som er i stand til å oppdage laserpunkt
basert på avansert intern bildebehandling. Potensielle faktorer som kan ha en
innvirkning på sensorens nøyaktighet presenteres og diskuteres. Fordi sensoren
baserer seg på datasyn, så lider den av ekstern påvirkning fra arbeidsmiljøet slik
som reflekterende overflater og lysforurensning. Enkle løsninger for å redusere
slik påvirkning blir foreslått og testet i slutten av avhandlingen, hvor et bevis
på konseptet blir presentert. Hovedmålet med sluttesten er å rekonstruere en
nøyaktig 3-D-representasjon av en enkeltsveis som kan brukes til å parameterisere
sveisen. De endelige resultatene blir vist å ha et avvik i dybdemåling på 0.7 mm,
sammenlignet med tidligere oppnådde resultater på lignende prosjekter hvor det
rapporterte gjennomsnittlige avviket ligger på < 0.5 mm.
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Chapter 1.

Introduction

1.1. Background

Figure 1.1.: Third jacket delivered to Johan Sverdrup from Kværner Verdal [25]

This project is done in cooperation with Kværner Verdal, one of Norways largest
offshore construction manufacturers that specializes in manufacturing of large
steel jackets and topsides for offshore oil and gas installations on the Norwegian
continental shelf. Jackets produced at Kværner Verdal are very large, usually at
several tens of thousand tonnes, and have hundreds of pipe junctions where the
braces and legs of the structure are joined together. Due to the size of the jackets,
they are prefabricated in parts and assembled outdoors. Most of the assembly is
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done horizontally, and as little work as possible are performed above the ground,
this is done in order to decrease the risks and hazards as well as the increased
complexity tied to carrying out work at heights. The prefabricated bracings are
cut from a CAD-model and then welded to the legs at the pipe junctions. Most
of the welding is currently done manually, where the largest weld groves requires
many layers consisting of multiple weld beads, and may take as much as a full
man-year to complete. Because the welding is very labor intensive and puts a lot
of strain on the welder, the welding of a single multi-layer weld groove is usually
done in shifts. A general rule of thumb is that welders are only able to efficiently
weld for about 20 min of every work hour, therefore the benefits of robotizing the
welding process can be easily recognized.

In cooperation with SINTEF Manufacturing and NTNU, Kværner Verdals Au-
tokons project aims to automate the welding processes of large multi-pass weld
groves using robotic arc welding. The robot cell at Kværner Verdal is delivered by
igm Robotsysteme AG which is a leading company in welding automation from
Switzerland. Currently Kværner Verdal is able to carry out welding of the pipe
junctions with stub angle less than 80 degrees, but due to a tedious programming
process there is still room for improvements. The weld grooves of the pipe junc-
tions are often irregular-shaped due to the geometry of the joining between the
different pipes, which is dependent on the the stub angle and the diameter-ratio
between the pipes. This complicates the path planning process. Tests done by
Kværner, using an iCAM laser scanner from igm, has shown that the result is far
from perfect. To perform a good weld, the surface of the workpiece often requires
to be machined and cleaned before welding. This can result in noisy data from
the laser scanner due to the reflective properties of the machined steel surface.

As previously mentioned, the primary challenges with robotic welding of large
subsea structures are related to the programming of welding paths and the exe-
cution of the robot trajectories using sensor feedback. Welding paths and robot
trajectories can be generated with help of an offline programming system. How-
ever, this requires that the CAD model of the workpiece and the actual workpiece
geometry are within the geometric tolerances of the welding process. This is not
the case in manufacturing of large subsea constructions which might have large
geometric discrepancies in the build geometry. Moreover, with a varying weld
seam geometry several welding seams need to be applied to the weld grove, which
leads to a non-uniform layout. As a consequence of this, the placement of the
welding paths might need correction. In the utmost consequence, all remaining
welding paths and robot trajectories need to be re-planned and corrected based
on the build geometry.

The re-planning requires an iterative online strategy where a sensor system scans
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and extract information from the build geometry, and uses the information to
generate the remaining welding paths. This can be achieved in multiple ways,
but one of the most effective methods is by using a sensor system attached to
the robot, consisting of a structured light projector and high speed industrial
cameras to build the 3-D model based on laser triangulation and computer vision
methods.

In addition to the challenges related to the layout and execution of welding paths
and robot trajectory locally in the welding seam, a primary challenge is the path
planning of the robot due to the possibly very complex geometry of the work piece.
This challenge requires 6-D path planning methods that can generate collision-free
paths and trajectories while taking into account the process and quality require-
ments, the external environment of the robot as well as its geometry and working
envelope.

The challenges related to geometric deviations can be analyzed at a global, local
and micro level. In short, the geometric deviations at the global level relates to
identification of the deviations in the relative positioning and orientation of work-
piece in the robot system envelope. At the local level identification of deviations
are related to the local geometry, that is the welding seam of the work piece, and
to compare the physical setup towards the CAD model. At the micro level the
challenges are tied to the identification of the welding seam geometry in proximity
to the welding process, that is the measurement of welding bead and welding seam
at the welding pistol. Welding automation at the micro level has been solved for
several decades, and there exists commercial actors on the marked. The general
challenges for Norwegian industry, as well as the primary challenge of this project,
are related to the global and local levels, which is to generate collision-free welding
paths and robot trajectories for welding of large subsea constructions that satisfy
the process and quality requirements of the final product.

1.2. Objectives

The primary focus of this master’s thesis is on the development, calibration and
performance evaluation of a machine vision system for use in the multi-pass
robotic welding of large subsea structures.

The system should be developed in the robot lab, of the Robotics and Automation
group at the Department of Mechanical and Industrial Engineering at Valgrinda
NTNU Trondheim. It should consist of one or more laser triangulation sensors
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mounted on an industrial robot which can be used to scan and build up a 3-
D representation of the actual geometry of the work pieces that is to be welded.
The 3-D representation should then be used to parameterize the weld grove for the
programming of welding trajectories. Performance indicators should be defined,
and the performance of the system should be evaluated based on said indicators.

1.3. Structure of the report

In the first chapter the status quo concerning the use of robotic welding in in-
dustrial processes is described and the objective of this thesis is defined. In the
second chapter a state-of-the-art literature review where findings from research on
the use of computer vision and structured light in robotic welding processes are
presented. In chapter 3 the theoretical fundamentals of computer vision and robot
kinematics, as well as methods for estimating planes are presented. In chapter
4 the fundamentals of laser vision systems is described, which includes the de-
scription of system parameters of an image acquisition system as well as some of
the important functionalities of a modern laser image sensor. In the next section
of the thesis, chapter 5, the description of methods for calibrating a laser vision
sensor attached to a robot manipulator is presented. This includes calibration
with respect to the intrinsic parameters of the camera, as well as the hand-eye
transformation and laser plane. In chapter 6 the experimental setup is presented
and the configuration of the laser vision sensor is defined. Chapter 6 also dis-
cusses some of the factors which might have contributed to errors in the system.
In chapter 7 the results from the calibration as well as the results from the final
test is presented and at the end of the thesis the conclusion and future work is
presented.



Chapter 2.

Robotic Welding using
Machine Vision

The purpose of this chapter is to give an overview of previous research done on
the machine vision technologies that support robotic welding. The articles and
papers presented in this chapter is only a small portion of all the research that
has been done on the subject, as there are many challenges tied to the use of
machine vision in a welding process. At the end of this chapter some findings
from the commercial marked is briefly presented to give an understanding of the
technology that is relevant in similar processes today.

2.1. Previous Research

With the introduction of more sophisticated and cheaper sensor hardware and the
given state of the offshore industry which demands faster real-time and more cost
efficient solutions, manufacturers look to computer vision to solve the challenges
related to automated welding of large structures. Vision-based sensors are often
favored because of their high performance, real-time capability and adaptability.
Conventional methods such as ultrasound inspection or magnetic inspection of
weld bead are sub-optimal [26] because they are often too slow, requires highly
skilled operators or have low degree of adaptability which makes them unattrac-
tive for robotic welding applications. With vision based sensors, online real-time
inspection can be implemented to reduce cycle time and material waste. This
can be achieved by inspecting each pass and terminate the welding process when
defects are discovered [26]. This suggests that online inspection is necessary to
achieve high quality welds.
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Other methods for weld inspection including the use of structured light vision for
seam tracking and 3D-geometry extraction are discussed in [45, 49, 26]. In [8]
and [36] pure stereo vision without structured light is used to detect the weld
joints, and in [48] a system that combines structured light and stereo vision is
proposed. Other methods use structured light vision to self-regulate the welding
process [11], and [28] introduces a combination of neuron-network, fuzzy control
approach based on feedback from a structured light sensor that tries to simulate
a human welder.

Measurement from vision sensor are not as precise as the measurement from using
mechanical devices [36], but are in most cases well within the thresholds of the
industrial welding processes [35] for steel construction. Mean deviation in mea-
surements < 0.5 mm are reported in [36, 49, 26]. The self-tuning system proposed
in [11] is able to achieve directional mean deviations as small as (0.04 mm, 0.07
mm) for horizontal and vertical direction respectively. The papers report that the
main challenges using computer vision in surface inspection is tied to calibration
of the sensors and specular reflection of light on the machined metal surface of
weld joints [8, 49, 46]. An example of reflection from the laser caused by the
smooth surface of the workpiece can be seen in Fig. 2.1. In addition, ambient
light can also have a negative effect on the quality of the image from the sensors,
an example of this is arc light from welding during online tracking, which makes
the extraction of features from the image difficult [26]. To overcome this problem,
the authors of [8] suggests using pure stereo vision, edge detection algorithms and
filtering techniques for seam detection. In [48] a combination of stereo vision and
structured light is employed to add redundancy information and improve precision
and robustness of the sensor system. The paper also claims that the proposed
system is less sensitive to illumination. In [45] a laser triangulation system that
uses an AT-C4 CMOS camera and a laser line projector to align parts for welding.
The manufacturer of the camera claims that the High Dynamic Range capabilities
of the camera makes it possible to scan surfaces with in-homogeneous reflection
properties.

To make an adaptive system that is able to plan weld seam trajectories on non-
linear weld joints, case studies have been done to develop methods for collision
free path planning for welding of brace-to-chord joints for offshore oil rigs [2].
In [29] path planning of weld seam in intersecting pipes are discussed at length. A
methodology for estimating the bead layout of cross-sections in multi-pass welding
groves are presented in [47]. The parameters of the weld bead layout are based on
manual welds that have been carried out on steel test pieces with wall thickness
larger than 40 mm The authors suggests that their the proposed methodology is
applicable for adjustment of welding trajectory based on sensor feedback. One
example that uses vision sensors in multi-pass robotic welding is shown in [26].
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Figure 2.1.: Heavy reflections on a polished surface [26]

The authors aims to measure weld beads and detect defects without the the need
for complicated 3D calibration and reconstruction techniques. The parameters
needed to describe a single v-weld are illustrated in Fig. 2.2.

Figure 2.2.: Definitions of weld bead and weld grove geometry [26]

In [36], the authors suggests that a disadvantage of using structured light vision
for bead inspection is that it restricts the the sensor to only perform search at the
local level of the welding process. This means that it cannot be used for detection
at the global level, that is the work envelope of the welding robot. Instead,
the authors proposes an approach for path correction in pre-offline programmed
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robotic welding using stereo vision.

2.2. Commercial Actors

In this section state-of-the-art technologies from some of the leading companies
in vision based sensoring and robotic welding are briefly presented.

2.2.1. Inrotech

Figure 2.3.: Inrotechs AMWT showcase video [21]

Inrotech [21] is a danish company located in Odense which specializes on welding
automation in shipyard manufacturing and manufacturing of pipe sections for
offshore windmill productions. The sensor technology used in their adaptive multi-
pass welding system is laser line scanning sensors. The weld groove is scanned
prior to the welding, and a 3D image of the weld groove is created which is used
for path planning. The welding system is build upon traditional submerged arc
welding where welding is done in the flat PA position where the sensor is shielded
from the environment by a welding curtain. Inrotech claims that their sensor
system can be used in all welding positions and is able to handle weld groove
variations of about 30%, as well as having around 85% effective welding time.

2.2.2. SERVO-ROBOT

SERVO-ROBOT is a Canadian company located near Montreal. Combining seam
tracking, seam finding and weld inspection makes a SERVO-ROBOT recognized
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Figure 2.4.: SERVO-ROBOT iCUBE showcase video [40]

leader in 3D robot-vision and sensing system for robotic welding and automated
manufacturing. Their i-CUBE seam finding technology [40] is able to locate and
correct a displaced weld seam by projecting a laser line on the part and capture
it in different orientations.

2.2.3. LTI Technologies

Figure 2.5.: LTI Gocator 2880 3D Laser Line scanner [30]

LMI Technologies specializes in 3D smart sensor technologies and has a long prod-
uct line of advanced laser line sensors. Their Gocator 2000- and 3000 series is built
for industrial usage and uses stereo vision and laser triangulation to rapidly scan
large objects with complex geometries. The use of stereo vision means that the
sensor delivers more information about the scene, and the sensor is able to com-
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pensate for occlusion that occurs when the laser line is blocked from the cameras
view. The manufacturer reports a measurement accuracy of ±50µm

2.2.4. Automation Technology

Automation Technology specializes in image sensors for industrial process au-
tomation and inspection tasks. Their advanced top of the line C5 sensors use
internal hardware and external software technologies to extract laser line profiles
and perform surface inspection at high speeds on a wide range of materials. Re-
ported precision [44] on welding seam inspection steel welds is as low as 10µm at
a welding speed of 250 mm/s.

Figure 2.6.: C5-series [43]



Chapter 3.

Theoretical Fundamentals of
Rigid Body Kinematics and
Computer Vision

The purpose of this chapter is to give an understanding of the fundamental theory
behind the robot kinematics and computer vision. The chapter does not include
the basics of vector calculus and linear algebra, which is assumed to be known. At
the beginning of the chapter, basic robot kinematics is presented. This includes
rigid body motions and forward kinematics. The kinematics are based on robotic
literature Siciliano et.al. [41] and [9]. The theory on computer vision which is
introduced is based on Zisserman et.al. [3] and [10]. This includes the description
of the ideal pinhole model, image formation and camera to world transformations.
At the end of the chapter a description of points, lines and planes in 3-D is
presented as well as methods for plane estimation where the RANSAC algorithm
and the least squares are presented.

3.1. Notation

To understand the notation used in this chapter it is useful to start with a short
description. Points in 2D are written with lowercase letters and a 3-D point is
written in uppercase letters

p = p(x, y) and P = P (X,Y, Z)
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Vectors are written in bold lowercase letter and matrices are in bold uppercase
letters, that is v and M respectively.

A point P can be represented by a 3-D column vector

p =

XY
Z

 (3.1)

The homogeneous representation of the same point is a 4-D vector

p̃ =
[
p
1

]
=


X
Y
Z
1



3.2. Rotations

Rotation in space are used to describe the orientation of an object with reference
to some coordinate frame. A coordinate frame is defined by three orthogonal axes
representing the 3 dimensions in Euclidean space, that is the x-axis, the y-axis
and the z-axis. Coordinate frames are often used to describe rotation because
they give an intuitive geometrical illustration of how one orientation relates to
another, see Fig. 3.1.

Figure 3.1.: A rotation about the z-axis
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3.2.1. The rotation matrix

A rotation matrix is a 3 × 3 matrix that describes the rotation from one frame
to another. This notation gives us information about how the axis of the frame
at the end of the rotation is oriented relative to the frame at the start of the
rotation.

Let frame a and frame b denote the start frame and the end frame respectively.
Then a rotation from frame a to b can be written as

Ra
b =

[
xab yab zab

]
=

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (3.2)

where

xab =

r11
r21
r31

 yab =

r12
r22
r32

 zab =

r13
r23
r33

 (3.3)

represents the three axis of frame b relative frame a.

In a 3-D coordinate frame each axis is orthogonal to the two other axis, which
means that the rotation matrix is an orthogonal matrix. The orthogonality gives
the rotation matrix some unique and useful properties

RTR =

1 0 0
0 1 0
0 0 1

 = I , identity matrix (3.4)

which means that

RT = R−1 (3.5)

This can be useful when we know the rotation from one frame to another and we
want to know the opposite rotation, that is

(Ra
b )T = (Ra

b )−1 = Rb
a (3.6)
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3.2.2. Basic rotations

Basic rotations in Euclidean space is the rotations about the x-, y- and z-axis.

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , rotation θ about the x-axis (3.7)

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , rotation θ about the y-axis (3.8)

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , rotation θ about the z-axis (3.9)

In Fig. 3.1 we see an example of a basic rotation about the z-axis.

3.2.3. Composite rotation

If we want to know the rotation from one frame to another via some intermedi-
ate frame we can use the rotations between each frame to describe the rotation
between the desired frames. This is called a composite rotation.

Ra
d = Ra

bRb
cRc

d (3.10)

and the inverse rotation is

Rd
a = (Ra

d)−1 = Rd
cRc

dRb
a (3.11)

3.2.4. Euler Angles

Euler angles are a simple and intuitive way of describing rotation. It was first
introduced by Leonhard Euler and can describe any orientation of a rigid body
by using a sequence of three angles in combination. The roll-pitch-yaw (RPY)
convention often used to describe the movement of airplanes about its principal
rotation axes, is an example of a common Euler angle convention. RPY rotation
is given as a sequence of rotations about current axes, which implies that the
current rotation axis is always affected by previous rotations in the sequence.
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Figure 3.2.: Roll, pitch and yaw on a plane

The rotation sequence for RPY is

RZY X = Rz(ψ)Ry(θ)Rx(φ)

where the yaw is given by the angle ψ about the z-axis, the pitch is given by the
angle θ about the current y-axis and the roll is given by the angle φ about the
current rotated x-axis. The resulting rotation matrix is

RZY X =

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 (3.12)

Let the elements of the rotation matrix in Eq. (3.12) be given as R = rij , then
the solutions for the RPA angles are

ψ =Atan2(Er21, Er11) (3.13)

θ =Atan2(−r31, E
√
r2

32 + r2
33) (3.14)

φ =Atan2(Er32, Er33) (3.15)

where the variable E is

E =1, when, cθ > 0 (3.16)
E =− 1, when, cθ < 0 (3.17)

KUKA robot controllers describes orientation with a sequence of rotations similar
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to the roll-pitch-yaw convention

RKUKA = Rz(A)Ry(B)Rx(C) (3.18)

where the RPY angles are given by A, B and C.

One disadvantage using Euler angles to describe orientations are that the conven-
tion suffers from gimbal lock which occurs when two or more rotation axes are
aligned. In this situation there exists no unique solution to a given orientation.
In robotics gimbal lock can cause singularities in the wrist joint which results in
the robot trying compensate by doing rapid 180◦ joint movements to maintain
the orientation. This should be avoided because it can have a serious effect on
the robot end effector, tool and process.

3.2.5. Angle-axis and quaternions

Angle-axis representation is a more compact representation of rotation, where a
single axis and a rotation about the axis is used to describe the spatial orientation
of a coordinate frame

R = (θ, k) (3.19)

here k is the rotation axis and θ is the rotation angle. This can be re-parameterized
into four rational terms without any singularities called the Euler parameters

η = cos θ2 (3.20)

ε = k sin θ2 (3.21)

Quaternions was first introduced by Hamilton in 1843 and are by many considered
to be the golden standard in 3-D pose estimation and path interpolation. The
quaternion is a complex number consisting of one real part and three imaginary
parts which can be defined in terms of the angle-axis parameters (θ, k). The unit
quaternion q is defined as

q = η + ε = cos θ2 + k sin θ2 (3.22)

where ||q|| = 1. The rotation matrix can be described using unit quaternions

R = I + 2ηε× + 2ε×ε× (3.23)



Chapter 3. Theoretical Fundamentals of Rigid Body Kinematics and Computer
Vision 17

where ε× is the skew symmetric of ε. It is worth noting that the quaternion
representation is not affected by gimbal lock because the rotation is described
using the Euler parameters instead of an orthogonal matrix.

3.2.6. Deviation in rotation

In many applications concerning robotic path planning and computer vision, a
method of quantifying and evaluate the distance between two rotations is nec-
essary. In pose estimating the deviation between two rotations is the amount
of rotation needed in order to achieve the desired rotation from the estimated
rotation. This can be written as

Rd = RRe (3.24)

where Rd represents the desired rotation, Re is the error in rotation and R is the
actual estimated rotation. Its easy to see that the ideal situation occurs when
Re = I which results in Rd = R. This leads to

RdRT = I (3.25)

which can be further derived into a distance function

d(Rd,R) = ||I−RdRT|| (3.26)

this is also referred to as a metric. There exists many different metrics, all with
advantages and disadvantages. Huynh [15] and Kuffner [24] suggests that us-
ing quaternions in rotation estimating are the most computational and spatial
efficient.

Let the actual rotation and the desired rotation be defined by their quaternions

q̄ = η − ε
qd = ηd + εd

where q̄ is the conjugate quaternion of the actual rotation, corresponding to the
transpose rotation RT.

The inner product of the quaternions returns the angle θe between them, which
is the magnitude of rotation needed to bring the actual rotation to the desired
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rotation

θe = arccos(Q) (3.27)

here Q is the quaternion inner product

Q = qd · q̄ (3.28)
= ηdη − εd · ε (3.29)

Quaternions are based on the angle-axis representation, hence there exists exactly
two unit quaternion representations of the same rotation. In order to account for
multiple representations, the norm of the product should be used. The quaternion
equivalent to Eq. (3.26) is then

d(qd, q) = |1− |Q|| (3.30)

where d(qd, q) is a distance metric that returns a scalar value between [0, 1].

3.2.7. Homogeneous transformation matrix and rigid
transformations

A transformation, that is rotation and translation, between two frames, a and b,
can be described using the homogeneous transformation matrix Ta

b .

Ta
b =

[
Ra
b taab

0T 1

]
(3.31)

where taab is the translation from frame a to frame b and Ra
b is the rotation from

frame a to frame b.

The inverse of the homogeneous transformation matrix is

(Ta
b )−1 = Tb

a =
[
(Ra

b )T −(Ra
b )T taab

0T 1

]
=
[
Rb
a −Rb

ataab
0T 1

]
(3.32)

Composite transformations can be described the same way as composite rotations.
Let the desired transformation from frame a to frame c be Ta

c . If the transfor-
mation between an intermediate frame b is known, that is Ta

b and Tb
c, then the

desired transformation is

Ta
c = Ta

bTb
c =

[
Ra
bRb

c raab + Ra
brbbc

0T 1

]
=
[
Ra
c taac

0T 1

]
(3.33)
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Sometimes it can be useful to know the position of a point from another frame of
reference than what has been given. If we know the transformation between the
current frame and the desired frame, and we know the displacement between the
point and the current frame, we can find the point given in the desired reference
frame.

Then
p̃a = Ta

b p̃b (3.34)

and
p̃b = (Ta

b )
−1p̃a = Tb

ap̃a (3.35)

3.3. Forward Kinematics

Figure 3.3.: KUKA KR10 R900 in Visual Components [6]

A typical robot can be seen in Fig. 3.3, it is usually made up of n number of
links that are attached together in joints that can either rotate about or translate
along the joint axis. The first link is defined at the base of the robot, and is
denoted as link 0. The last link of the robot, link n, is called the end-effector
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and can be viewed as the hand of the robot manipulator. When we know the
configuration of the joint variables of the robot, which is an angle for rotational
joints or a translation for a prismatic joint, it is possible to compute the orientation
and position of the end-effector relative the base of the robot. This computation
process is called forward kinematics.

3.3.1. Denavit-Hartenberg convention

The DH-convention is standard material in most robotic literature and it is used to
describe the homogeneous transformation as a composite displacement of 4 homo-
geneous transformation matrices. The composite displacement can be described
as follow:

1. A rotation θ about the current z-axis

2. A translation d along the current z-axis

3. A rotation α about the current x-axis.

4. A translation a along the current x-axis.

On compact form the composite transformation is

Ti−1
i = Rotz(θi)Transz(di)Rotx(αi)Transx(ai) (3.36)

where

Rotz(θi)Transz(di) =


cθi

−sθi
0 0

sθi
cθi

0 0
0 0 1 di
0 0 0 1

 (3.37)

and

Rotx(αi)Transx(ai) =


1 0 0 ai
0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1

 (3.38)
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Then Eq.(3.36) can then be derived as

Ti−1
i =


cθi

−sθi
cαi sθi

sαi aicθi

sθi
cθi
cαi −cθi

sαi aisθi

0 sαi cαi di
0 0 0 1

 (3.39)

The parameters of each joint on the robot are typically presented on the following
form

Link(i− 1) θi di αi ai Link i
0 θ1 d1 α1 a1 1
1 θ2 d2 α2 a2 2
2 θ3 d3 α3 a3 3
...

...
...

...
...

...
n− 1 θn dn αn an n

3.3.2. Displacement of the end-effector

Using the DH-convention the end-effector displacement from the base of the robot
can be found by calculating the transformation from the base to the end-effector
which is given by

T0
n = T0

1T1
2T2

3...Tn−1
n (3.40)

where the transformation between each joint, that is joint (i - 1) and joint i is
described in Eq.(3.39).

3.4. Computer Vision

In computer vision information is extracted from digital images and can be used in
decision making or to build 3-D data representation of real world objects. This is
an imitation of how humans and animals are able to extract and act on information
acquired through sight. To be able to do this, mathematical models must be built
to simulate the eyes, which can be modeled as a camera model. A camera model
is a matrix with particular properties that describes the relationship between a
3-D point in space and its projection onto the image plane of the camera. The
most common model is the ideal pinhole camera model.
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3.4.1. The pinhole model

Figure 3.4.: Pin hole camera [32]

The pinhole camera is a simple idealized camera model with a single small aper-
ture, which allows rays of light to pass through which results in a projected in-
verted image onto the image plane of the camera.

Figure 3.5.: The basic pinhole model, Zisserman [3]

A conventional representation of this model can be seen in Fig. 3.5. The image
plane, also known as the virtual image plane, is positioned in front of the camera
at a distance equal to the focal length f of the camera. By doing this we get the
upright image instead of the inverted image. The z-axis of the camera intersects
the image plane in its center p, which is called the principal point.

Let a 3-D world point X = [X,Y, Z] relative to the camera be projected onto the
image plane in point x = [xf , yf , zf ] where the ray from X to the origin of the
camera intersect the image plane. From similarity triangles it is possible to find
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the image coordinates

xf = f
X

Z
(3.41)

yf = f
Y

Z
(3.42)

zf = f
Z

Z
= f (3.43)

If we divide the image coordinate by the focal length of the camera we get the
corresponding normalized image coordinate

s̃ = x
f

=
(
X

Z
,
Y

Z
, 1
)T

= (sx, sy, 1)T (3.44)

3.4.2. Intrinsic and extrinsic camera parameters

Focal length, pixel dimension and image resolution is called intrinsic parameters.
They are intrinsic because they are inherent to the camera, which means that
different cameras have different intrinsic parameters.

The intrinsic parameters can be described using the camera calibration matrix
K:

K =

f/ρw s u0
0 f/ρh v0
0 0 1

 =

α 0 u0
0 β v0
0 0 1

 (3.45)

Here, f is the focal length, ρh and ρw are the pixel dimensions, u0 and v0 are the
pixel coordinates of the center of the image.

Note that the skew parameter, s, which is non-zero when the image axes are not
perpendicular, are assumed to be zero.

The inverse of the camera matrix K is

K−1 = 1
f

ρw 0 −ρwu0
0 ρh −ρhv0
0 0 f

 (3.46)

Translation and rotation of the camera in reference to some frame, usually the
world frame or the base frame of the robot, are called extrinsic parameters since
they do not depend on the camera itself. The extrinsic parameters of the camera
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are as follows
Tworld
camera =

[
Rw
c twwc

0T 1

]
(3.47)

3.4.3. The relation between pixel coordinates, normalized image
coordinates and Cartesian coordinates

Figure 3.6.: The image plane [10]

The information extracted from images is given in pixel values, that is pixel co-
ordinates and pixel intensity. If we want to know the position of a point in the
world relative to the camera in metric values, we first need to transform the pixel
coordinates.

Let the corresponding pixel coordinates of a world point in the camera image be

p = [u, v]T (3.48)

The homogeneous form of the pixel coordinates is then

p̃ = [u, v, 1]T (3.49)

Pixel and normalized image coordinates are related by the camera calibration
matrix K

p̃ = Ks̃ (3.50)

s̃ = K−1p̃ (3.51)

The relationship between the normalized image coordinates and the actual dis-
placement between the camera and point in the world is given by

zcs̃ = rccb (3.52)
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where zc is the z-coordinate of rccb which can be found if we know the transfor-
mation between the camera and the world frame.

3.4.4. Euclidean transformation between world and camera
frames

Points in space will usually be expressed in terms of the world coordinate frame,
where the camera frame and the world frame are related by a rotation and a
translation. Let X̃ = [X,Y, Z, 1]T be the homogeneous representation of a point
in the world. Then the corresponding homogeneous image coordinate is given
by

x̃ = PX̃ = K[R | t]X̃ (3.53)

where

P =

αr11 + u0r31 αr12 + u0r32 αr13 + u0r33 αt1 + u0t3
βr21 + v0r31 βr22 + v0r32 βr23 + v0r33 βt2 + v0t3

r31 r32 r33 t3

 (3.54)

has both the intrinsic and extrinsic parameters of the camera and is called the
perspective transformation matrix.

3.5. Points, lines and planes in 3-D

3.5.1. Points

A point in space can be represented by a 3-D vector p = [X,Y, Z]T where X,
Y and Z represents the Cartesian coordinates of the point. Often it is useful
to represent a point in homogeneous coordinates. Let p be represented as a
homogeneous vector

x̃ = [x1, x2, x3, x4]T (3.55)

where

p = 1
x4

x1
x2
x3

 =

XY
Z

 (3.56)
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The homogeneous representation is often written on the form

x̃ = x4

[
p
1

]
(3.57)

where it is easier to see that x4 is a scaling factor, and that x̃ represents the same
point in space p for all x4 6= 0.

3.5.2. Lines

A straight line is defined as an infinite set of colinear points. In two dimensions
the line equation is well known

y = ax+ b (3.58)

where a is the slope of the line and b gives the interception between the line and the
y-axis. In 3-D the line representation is somewhat more complicated. It is often
easier to view the line as a ray with a initial starting point and an end point.
Let the origin of a line be p0 = [x0, y0, z0]T and the end point p = [x, y, z]T.
The equation for a line in space can then be represented by three parametric
equations

x = v1t+ x0 (3.59)
y = v2t+ y0 (3.60)
z = v3t+ z0 (3.61)

which gives us the vector equation for a line

p = tv̂ + p0 (3.62)

where p is a function of the scalar t which gives an indication of how far along
the line the end point is located and v̂ represents the unit direction vector of the
line

v̂ = v
|v| = [v1, v2, v3]T√

v2
1 + v2

2 + v2
3

(3.63)
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3.5.3. Planes

A plane π in 3-D can be represented as the set of all points p ∈ R3 that satisfy
the plane equation

ax+ by + cz + d = 0 (3.64)

where the plane π is represented by its coefficients

π = [a, b, c, d]T (3.65)

A more geometrical representation of the plane is

π =
[
n
d

]
(3.66)

where n = [a, b, c]T represents the plane normal in Cartesian space, and d

|n| is
the distance to the origin along the plane normal.

Plane defined by 3 points

Let p1, p2 and p3 represent three known points in space. If the points lies in the
the unknown plane π, it is possible to find the plane from the known points. Let
two vectors in the plane be

v1 = p1 − p2 (3.67)
v2 = p2 − p3 (3.68)

Since the two vectors both are parallel to the plane, it follows that the cross
product between the two vectors must be perpendicular to the plane and in the
direction of the normal vector to the plane

n = v1 × v2 (3.69)

The distance from the origin to the plane is then given by

δ|n| = p3 · (p1 × p2) (3.70)

where d = −δ|n|. The plane is then

π =
[

v1 × v2
−p3 · (p1 × p2)

]
=
[
n
d

]
(3.71)



Chapter 3. Theoretical Fundamentals of Rigid Body Kinematics and Computer
Vision 28

Plane defined by a set of points

Let A ∈ Rn×4 be a matrix with n-row vectors representing n-homogeneous
points

A =


p̃1

T

p̃2
T

...
p̃nT

 (3.72)

where p̃iT = [pi, 1] = [xi, yi, zi, 1]. To find the unknown plane π fitted to the
points in A, the plane must satisfy Eq. (3.76). This can be written as a homoge-
neous system of linear equations

Aπ = 0 (3.73)

which can be solved using singular value decomposition

A =
4∑
i=1

σiuivT
i = UΣVT (3.74)

U and V are orthogonal matrices and Σ is a diagonal matrix containing the
singular values of A. The only non-trivial solution for π is the last column of V,
that is

π = kv4 (3.75)

where k is some constant. Its worth noting that if A contains noisy points so that
the points are approximately on the plane, the solution becomes a least square
solution.

Condition for a point to be in a plane

Given a plane π = [a, b, c, d]T and a point p = [x, y, z]T represented on homoge-
neous form as p̃, the condition for the point to be in the plane is then

πTp̃ = 0 (3.76)

which is equivalent to Eq. (3.64).
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Distance between a point and a plane

Given a plane π = [a, b, c, d]T and the centroid to the plane p0 = [x0, y0, z0]T such
that

ax0 + by0 + cz0 + d = 0 (3.77)

where

x0 =
∑
x

n
, y0 =

∑
y

n
and z0 =

∑
z

n
(3.78)

Then the distance between any given point p = [x, y, z] and the plane along the
plane normal is

δ = nT(p − p0)
|n| (3.79)

Intersection between a line and a plane

Let a plane be defined as an infinite set of points p for which

(p − p0) · n = 0 (3.80)

where n is the plane normal and an arbitrary point p0 lying on the plane. From
Eq. (3.62) the vector equation for a line can be written as

p = dl̂ + l0 (3.81)

where d is a scalar, l̂ is the unit direction vector and l0 is some point on the line.
If the line intersects the plane, then the set of plane points, p, must contain at
least one point of intersection which solves Eq. (3.80). The line equation can be
substituted into Eq. (3.80)

(dl̂ + l0 − p0) · n = 0 (3.82)

which can be solved for d

d = (l0 − p0) · n
l̂ · n

(3.83)
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Note that this have two possible outcomes, namely{
l̂ · n 6= 0
l̂ · n = 0

(3.84)

If l̂ · n = 0 there is two possibilities; either there exists no solution because the
line never intersects the plane; or all point along the line lies in the plane, which
implies that the line itself is contained in the plane. If l̂ · n 6= 0 then d can be
computed and the point of intersection can be found from Eq. (3.81)

3.6. Plane Fitting

Figure 3.7.: Plane and noisy data points

If we want to fit a plane in space to a set of data points, we need to find the
best plane model which fits the point data. This can be done in several different
ways, each with different advantages and disadvantages. In this section two such
methods will be discussed, namely least square fit and random sample consensus
(RANSAC). Concepts like inliers and outliers are also shortly discussed.

3.6.1. Inliers and outliers

Most data sets and point clouds from the real world contains noisy data. Noisy
data is often referred to as outliers because the data lies outside the general
population of data. Noise can potentially make it difficult to find an accurate
model which describes the general case of the data. In Fig. 3.7 the relationship
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(a) Large inlier threshold (b) Small inlier threshold

Figure 3.8.: Outliers vs Inliers

between the model estimate, a plane in this case, and the set of point data is
illustrated. The green points lies within some predefined threshold of the plane
and are defined as inliers to the plane, while the red points are defined as outliers
because they lie outside the threshold.

Least Squares

Least squares is a mathematical method for finding a curve in 2-D or a plane in
3-D that minimizes the sum of the squared residuals. The residuals are the offset
between the actual points and the estimated model. Because the squares of the
residuals are used, LS is sensitive to outliers, which means that is if the data set
contains outliers with large offsets the outliers will have a disproportionate effect
on the fitted model.

Let a plane be defined by its normal vector n = [a, b, c] and a distance d. A point
p = [X,Y, Z] that lies in the plane is then defined by

n · p + d = 0 (3.85)

this can be written as the usual plane equation

aX + bY + cZ + d = 0 (3.86)

Since a plane is 3 dimensional and the plane equation above uses 4 parameters the
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solution space is over-determined. A workaround is to assign the z-component of
the normal to the plane equal to 1, that is c = 1 so that

aX + bY + d = −Z (3.87)

Taking n points Eq.(3.87) becomes
x0 y0 1
x1 y1 1
...

...
...

xn yn 1


ab
d

 = −


z0
z1
...
zn

 (3.88)

Let

A =


x0 y0 1
x1 y1 1
...

...
...

xn yn 1

 ,x =

ab
d

 , b =


−z0
−z1
...
−zn

 (3.89)

Then Eq. (3.88) can be written as a system of equations

Ax = b (3.90)

The least squares solution can be found by solving for x

x = (ATA)−1ATb (3.91)

To evaluate the fitted model, the vertical offset, between the points in the data
set and the fitted model is calculated as follows

e = b −Ax (3.92)

where the residual is equal to the Frobenius norm

||e||F =

√√√√ m∑
i=1

n∑
j=1

abs(eij)2 (3.93)

3.6.2. RANSAC

Random sample consensus or (RANSAC) was first introduced by Fischler and
Bolles [12], and is an algorithm that can accurately estimate a model even when
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subjected to noisy data. The RANSAC-algorithm takes n random samples from
the data set and estimates a model from the random sampled points and test the
model on the data set. The number of random samples is typically the smallest
number of data points required to describe the model. The test first computes
the distances between all the points and the plane, similar to Eq. (3.76) and then
counts the amount of inliers to the estimated model, based on some threshold.
This is repeated until a model that satisfy the desired ratio of inliers is found.
A best fit model can then be estimated using least squares or singular value
decomposition based on the inlier data set. The best fit model is kept until a
more accurate model is found.

Disadvantages of RANSAC includes the requirement of problem specific settings
to perform well and the settings often need to be based on experimentation. Such
settings include inlier threshold, inlier/outlier-ratio and number of iterations. If
the number of iterations is set too low the estimated model may be not optimal,
or even fit the data. By increasing the iterations, the probability of having a good
estimated model increases, but so does the computational cost.

The inlier tolerance threshold can in many cases be found empirically, though this
process can often be tedious and problem specific. A more reasonable method for
setting the inlier threshold is to estimate a model, compute the mean and standard
deviation of the errors between the model and the points in the data set, then set
the threshold to the mean error plus one or two standard deviations.

Let the error vector e be defined as

e = [d1, d2, ..., di]T (3.94)

where

di = |A(xi − x0) +B(yi − y0) + C(zi − z0)|√
A2 +B2 + C2

(3.95)

is the error in distance between the plane and point pi along the plane normal.
The mean error µ and standard deviation σ is then

µ = 1
N

N∑
i=1

di (3.96)

σ =

√√√√ 1
N

N∑
i=1

(di − µ)2 (3.97)
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The inlier threshold is then computed from

t = µ± aσ (3.98)

where a is an constant that can be found empirically with typical values ∈ [0, 2]



Chapter 4.

Laser Vision System

Figure 4.1.: CAD model of the laser vision system

There are a number of elements that needs to be considered in order to properly
set up an image acquisition system in a laser-triangulation configuration. In
this chapter the main parameters of the imaging system is briefly described and
the main components of the triangulation setup is presented at the end of the
chapter.

4.1. System Parameters of an Image Acquisition
System

In this section the fundamental parameters of an image acquisition system as
suggested by [22] are discussed. The parameters include working distance, field
of view, resolution, image sensor size and depth of field.
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Figure 4.2.: Field Of View

4.1.1. Field Of View

The Field Of View also called Angle Of View of the camera can be illustrated by an
open rectangular pyramid that captures the area contained in the camera scene,
this is illustrated in Fig. 4.2. The FOV is a function of the cameras focal length,
the image sensor size and the pixel dimensions. It can be measured horizontally,
vertically or diagonally and is usually given in degrees or radians. Horizontal and
Vertical FOV can be found from

θh = 2 · arctan
(

W

f · 2ρw

)
(4.1)

θv = 2 · arctan
(

H

f · 2ρh

)
(4.2)

where, W and H is the width and height of the sensor chip in millimeters, ρw and
ρh is the pixel dimensions and f is the focal length of the camera. The base area
of the open rectangular pyramid is the dimensions of the scene that the camera is
able to capture. This area is dependent on the FOV as well as the displacement
from the scene, where a larger FOV or displacement equals a larger area.

4.1.2. Resolution

The resolution of the image acquisition system is the smallest feature that the
camera is able to distinguish. This is tied to the pixel size of the camera as well
as the amount of pixels the camera is able to produce for a given area. In order
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to make accurate measurements the smallest feature in the scene should be at
least two pixels wide. Needless to say a camera with high resolution is capable of
producing very detailed images, which in turn makes it more accurate.

4.1.3. Work distance

The working distance of the camera is the distance between camera lens and
the observed object in the scene. When operating with lenses that have manually
adjustable focus, the working distance needs to be more or less constant, otherwise
the observed scene might be out of focus, resulting in less accurate measurements.
How the work distance is chosen is affected by many factors and can have a large
impact on the accuracy of the measurements done by the vision system.

4.1.4. Measurement principle

Figure 4.3.: Triangulation geometry

According to the measurement principle of a laser triangulation system, the laser
projects a line onto the object from one direction, and the camera observes the
object from another direction. The angle between the two directions defines the
triangulation geometry of the system. The triangulation configuration can be
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set up in a variety of different configurations. Some are more prone to occlusion,
where parts of the laser line are blocked from the camera’s view, while others offer
increased height resolution. How the triangulation system is configured, is highly
dependent on the use case. Consider Fig.4.3, in this particular configuration, often
referred to as reverse geometry, the camera is perpendicular to the object surface
and the laser line is projected onto the object at an angle Θ to the cameras z-axis
which is called the triangulation angle. In this setup there is little occlusion of
the laser line since the camera is viewing the line perpendicular to the surface.

With this triangulation setup the height resolution, ∆Z along the image ray can
be approximated from the following equation

∆Z ≈ ∆X
tan(Θ) (4.3)

where ∆X is the resolution along the projected laser line. It is easy to verify that
when the triangulation angle is increased, the distance ∆Z is decreased.

4.2. Camera

Figure 4.4.: AT C4-2040 CMOS sensor

In order to detect the laser line and transform it into usable data, a light sensitive
sensor is needed. Until recently the most commonly used sensor was the charge-
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coupled device (CCD) sensor. The CCD sensor have a semiconductor chip that is
divided into rectangular areas called pixels. The pixels are sensitive to light and
reacts when hit by photons, producing a small electrical charge which can be read
out. Pixel hit by more photons will produce a larger charge due to the increased
light intensity. In order to determine the position of the light spot, the data from
the CCD sensor must be post-processed. The light intensity profile is read out
from the sensor and the position of the light spot can then be found with sub-pixel
precision by calculating the pixel position that corresponds to some chosen inten-
sity algorithm. Another important feature in post-processing is noise filtering,
which makes the sensor more robust and less susceptible to noise. Recently the
use CCD sensors have been declining due to the introduction of low cost comple-
mentary metal-oxide-semiconductor sensors (CMOS). The CMOS sensor captures
light similarly to the CCD, via arrays of photon-detectors, but have lower power
consumption and are cheaper to produce. There are some disadvantages using a
CMOS sensor, that is it has lower performance in environment with poor lighting
and higher sensitivity to noise. Still, it has similar performance to the CCD sensor
when used together with laser light projectors, which combined with the low cost
makes it attractive in laser sensor technologies.

4.2.1. Area Of Interest (AOI)

Figure 4.5.: Area of Interest

Modern laser vision sensors have AOI-search and AOI-tracking capabilities, which
search for the laser line and continuously tracks it. Setting an AOI is crucial to
get the most effective laser line acquisition possible, since this significantly lowers
the amount of data transferred from the camera. Figure 4.5 gives an example of
how a potential area of interest is illustrated as a red box. The rightmost part
of the image represents the cropped image that is processed instead of the full
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image of the scene, this significantly reduces the amount of data and decreases
processing time without any loss of information.

4.2.2. Multiple Slope Exposure

In some cases the scene might be differently lit, for example as a result of external
light sources or in-homogeneous surface structure. The information in area with
both high and low saturation might be equally important, which means that if the
amount of light is restricted to counter the areas with high saturation, this might
result in loss of important information in parts of the scene with low saturation.
To counter this the dynamic range of the sensor can be increased through a process
called multiple-slope exposure which restricts bright pixels up to a certain preset
threshold and resets the value of those pixels. This way brighter areas of the
scene is exposed at a shorter period while the darker areas are exposed for longer
period, resulting in a high contrast image with both the dark and the bright areas
visible for image analysis.

Figure 4.6.: Multiple Slope Mode

4.2.3. Camera Modes

Vision sensors that are specialized towards laser vision can typically be operated in
a variety of modes including different 3-D profile modes as well as the default image
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mode. The most common 3-D modes are Maximum Intensity (MAX), Threshold
(TRSH) and Center of Gravity (COG). In these modes the pixel position of the
laser line is computed based on the pixel intensity profile and the corresponding
algorithm. In order to suppress signal noise, only pixels with intensity values
higher than some intensity threshold AOITRSH are processed.

Figure 4.7.: Laser line search

Figure 4.7 gives an example of how the camera extracts the laser laser line from the
image data. The image is divided into columns of pixels, that is, if the resolution
of the image is 2048× 1080 then the image is divided into 2048 columns of 1080
pixels. For each column the pixel position that corresponds to the given intensity
algorithm is extracted. In this particular example it is the COG position that is
extracted, where the pixel position of three of the imaged laser line points are

pL1 = (487, 897)
pL2 = (943, 471)
pL3 = (2025, 233)

Maximum Intensity Mode (MAX)

The maximum intensity mode calculates the position of the pixel with the max-
imum intensity of the laser beam profile. The output in this mode includes the
position as well as the maximum intensity value, PMAX and IMAX respectively.
It is worth noting that if there is more than one local maximum, that is to say,
when the intensity is saturated, the position of the first detected maximum is
returned. This could lead to a position error and should be avoided.
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Figure 4.8.: Maximum Intensity Profile Mode

Threshold Mode (TRSH)

In this mode the position of the left (PL) and the right (PR) edge of the laser
beam profile are detected for a given threshold intensity threshold AOITRSH , and
the position value of the laser line is approximated from

PTRSH = (PL + PR)
2 (4.4)

The output is either the left and right threshold position separately or the sub-
pixel position (PL + PR) and the line width (PR − PL). The maximum intensity
is also an optional output.

Figure 4.9.: Threshold Mode



Chapter 4. Laser Vision System 43

Center of Gravity (COG)

The COG mode computes the pixel position from the center of gravity of the laser
beam profile. It is considered to be more robust and resilient than the two other
algorithms with precision down to 6 subpixels [17].

When the position value of the left edge (PL) of the laser profile is given for an
intensity threshold value AOITRSH , the sum of intensity values IS and the sum
of first order moment MS can be computed from

IS =
∑

IP (4.5)
MS = IS · P (4.6)

where P is the position value along the laser beam profile.

The position value of the laser line, that is the center of gravity of the beam
profile, is then obtained from

PCOG = PL + MS

IS
(4.7)

Figure 4.10.: Center of Gravity Mode
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4.2.4. Lens

The main purpose of the lens is to collect the light reflected from the scene and
focus it on the the light sensitive image sensor inside the camera. A single lens
often has multiple layers of glass inside, which alters the image rays in different
ways in order to correct the deviations caused by aberrations which is small defects
in the lenses which causes the image rays to be offset from their true positions.
Parameters such as lens radius, distance between the internal glass in the lens,

Figure 4.11.: The idealized lens model [18]

the distance between the lens and the object (working distance) and the distance
between the lens and the image sensor all have an effect on the image.

Magnification

The ratio between the image and the actual real world object is called magnifi-
cation. It is the focal length of the lens that defines its magnification. If the lens
have fixed elements, the working distance and the magnification is also fixed. On
the other hand if the elements of the lens are adjustable, the lens can be used
at different working distances. This is more common in situations and products
where versatility is appreciated, that is commercial available cameras and mobile
phones. Industrial applications often requires custom sensor calibration and sen-
sors with high repeatability and accuracy. Having adjustable lens elements makes
the lens mechanically unstable which in turn can have an impact on the sensor
output and can result in the need for total re-calibration of the sensor.
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Figure 4.11 shows the relationship between an object and its projected image. Let
β denote the magnification of the lens, then

β = d

D
= y′

y
(4.8)

Depth Of Field

The depth of field of a lens is the "depth" at which the lens is able to keep objects
in focus. A lens with large depth of field is therefore able to keep objects located
at greater distances from each other in focus. The limits of the DOF can be
calculated from

Figure 4.12.: Depth of field

Tb = δ · F · L2

f2 − δ · F · L
(4.9)

Tf = δ · F · L2

f2 + δ · F · L
(4.10)

DOF = Tb + Tf (4.11)

where Tb and Tf is the backward and forward depth of field respectively, L is the
distance to the object, δ is the permissible circle of confusion which is dependent
on sensor format, f is the focal length and F is the F-number which is connected
to the lens aperture.
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Aperture

The aperture or iris tells us the amount of light that can pass through the lens.
It is defined by a numerical value called a F-number which is the focal length
of the lens divided by its effective aperture. A small F-number means that the
aperture is large and vice versa. Having a small aperture makes more of the
scene appear in focus which is equivalent to having a larger depth of field, this is
illustrated in Fig. 4.13a. The trade-off having a small iris opening is that it makes
the image darker since less light passes through the lens. This means that a large
aperture is often needed in environments with poor lighting, which in turn makes
the depth of field shallower. Lenses with adjustable iris normally uses increments,
see Fig. 4.13b, where each increment represents a 50% reduction in the amount
of light passing through the lens.

(a) Aperture and Depth of field [18] (b) Aperture increments on a FujiFilm
CF16HA-1 lens

Aberrations

With a perfect lens, all light rays from a single point in the scene will be focused
on a single point on the image plane. Most lenses are only near-perfect, which
means there are some aberrations. The most common are defect aberration and
chromatic aberration. Defect aberrations are caused by small irregularities and
defects on the surface of the lens which deflects the image rays and inhibits them
to converge to a single point of focus, which causes the lens to not focus correctly.
Without proper lens design and camera calibration to counter this, performing
accurate measurements using computer vision would be impossible. The second
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form of aberrations are chromatic aberration which might occur when white light
enters the lens and disperses. This leads to blurred edges and color fringe patterns
in the image. To mitigate the error caused by chromatic aberration, a monochro-
matic sensor, which is a sensor that only outputs gray scale values, could be used
if the color of the object that is measured is of no importance. Furthermore a
single color light source like a laser could also be used to further avoid chromatic
aberration.

4.3. Laser

Figure 4.14.: Z-LASER Z185 line laser

A laser projector is capable of projecting high intensity light and focus it onto
objects forming sharp features on the surface of the object. These features can be
observed using a camera and analyzed to calculate the depth information of the
surface. This information can be used to build a height map or point cloud that
can be applied in reverse engineering or surface inspection. The the geometry of
the features depends on the type of projection, but one of the most common pro-
jection is the line projection which forms a line on the object where the laser plane
intersects with the object surface. The projection from a laser is easy to distin-
guish in a variety of lighting conditions making it the preferred choice in industrial
applications that demands measurement with high speed and accuracy.
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4.3.1. Optics and fan angle

Traditional cylindrical lenses produces a Gaussian distribution of light along the
beam profile, which results in heavy illumination at the center of the projection
and poorly illuminated edges. Powell lenses are typically preferred over Gaussian
lenses because they uniformly distribute laser light along the projection, this is
illustrated in see Fig. 4.15.

(a) Gaussian lens (b) Powell lens

Figure 4.15.: Gaussian and Powell laser line distribution

Another factor which contributes to the beam profile is the standoff distance of
the laser. The standoff is the distance at which the spot size of the laser beam
is at its smallest, which is desirable because it provides higher resolution and
accuracy. Naturally this distance should be set very close to or equal the actual
work distance of the system. The standoff distance is defined at the center of
the measurement range of the laser sensor, which is the laser-equivalent to the
depth-of-field of a camera. Typically this range is within ±50mm of the standoff
distance. Laser lenses that have adjustable focus lets the laser vision system be
used at a greater range of distances, where the trade-off having a larger standoff
distance with a large field of view results in decreased resolution and accuracy.

The fan angle of the laser determines the size of the laser projection at a specific
distance. When scanning large objects, a longer laser line is required in order to
cover the desired part of the geometry. This might be solved by increasing the
work distance, but as previously discussed this will have a negative effect on the
accuracy of the system and should be avoided. Instead a laser with a larger fan
angle at the same work distance is recommended. The fan angle can be computed
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Figure 4.16.: Fan Angle, q

from

q = 2 · arccos
(

D√
D2 + L2

4

)
(4.12)

where D is the working distance of the laser vision system, L is the length of the
laser line and q is the fan angle.

4.3.2. Wave length and spectral response

Figure 4.17.: Spectral Responce of thr AT C4-2040 [14]

The wavelength of a laser gives an indication on the color of the light that is
produced by the laser, where the two most common colored lasers are between
500 nm-600 nm (green) and 630 nm-700 nm (red). When lasers are used together
with an image sensor in a laser vision system, the choice of laser wavelength should
be consistent with the maximum spectral response of the image sensor. A camera
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with high spectral response at a certain wavelength, will have a higher saturation
capacity for that given wavelength which yields a better signal-to-noise ratio and
a higher dynamic range. The spectral response is often measured as quantum
efficiency which is the probability of how many electrons will be generated per
100 photons hitting the pixel of the image sensor.



Chapter 5.

Calibration of Robotic Laser
Vision Systems

This chapter gives an introduction to the theory and methods for calibration of
the laser triangulation system used in this thesis. The structure of the chapter
is as follows. The first section is related to the calibration of laser vision system,
that is the calibration of intrinsic and extrinsic parameters of the camera as well
as the calibration of the laser plane. In the second section hand-eye calibration
between the camera and end-effector of the robot is presented, and in the third
section a method for laser triangulation using a calibrated system is presented.

5.1. Camera Calibration

Calibration of the camera is necessary in order to extract accurate metric infor-
mation about the scene in the camera images. The method used in this thesis was
first introduced by Zhang [50] and Bouguets [5] and proposes a flexible and robust
technique for calibration of cameras that only requires the camera to observe a
checkerboard pattern from a few different orientations. The relative motion be-
tween the camera and the scene is not needed, and can be estimated from the
calibration which greatly simplifies the task.

Let the image point x̃ = [u, v, 1]T and the corresponding world point X̃ =
[X,Y, Z, 1]T be related through the usual pin-hole camera model:

λx̃ = K[R | t]X̃ = K[r1 r2 r3 t]X̃ (5.1)
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where λ is an arbitrary scale factor, K is the intrinsic parameter matrix defined
in Eq.(3.45), [R | t] is the extrinsic parameter matrix of the camera where r i
represents the column vectors of R

Equation (5.1) can be simplified by assuming that that the model plane is on Z
= 0 of the world coordinate system

X̃ = [X,Y, 0, 1]T = [X,Y, 1]T

then

λx̃ = K[r1 r2 t]X̃ (5.2)

where the camera perspective transformation matrix is

P = K[r1 r2 t] = [p1 p2 p3] (5.3)

The perspective transformation matrix P is also be referred to as a homography
because it maps points in the image plane to points in the world frame.

Since r1 and r2 are orthogonal we get the two basic constraints on the intrinsic
parameters:

pT1 K−TK−1p2 = 0 (5.4)

pT1 K−TK−1p1 = pT2 K−TK−1p2 (5.5)

Due to P having 8 degrees of freedom and 6 extrinsic parameters, (5.4) and (5.5)
are the only two intrinsic constraints that can be obtained.

Let

B = K−TK−1 =

b11 b12 b13
b21 b22 b23
b31 b32 b33

 (5.6)

The matrix B is symmetric and is defined by a 6D vector:

b = [b11, b12, b22, b13, b23, b33]T (5.7)

where

b11 = 1
α2 (5.8)
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b12 = b21 = 0 (5.9)

b13 = b31 = −u0β

α2β
(5.10)

b22 = 1
β2 (5.11)

b23 = b32 = − v0
β2 (5.12)

b33 = (−u0β)2

α2β2 + v2
0
β2 + 1 (5.13)

Let the column vectors of P be denoted as pi = [pi1, pi2, pi3]T .
We can then define:

pTi Bpj = aTijb (5.14)

where

aij =



pi1pj1
pi1pj2 + pi2pj1

pi2pj2
pi3pj1 + pi1pj3
pi3pj2 + pi2pj3

pi3pj3


(5.15)

The two intrinsic constraints Eq.(5.4) and Eq.(5.5) can then be rewritten as 2
homogeneous equations in b: [

aT12
(a11 − a22)T

]
b = 0 (5.16)

Let the camera observe n images of the checkerboard pattern, from stacking
Eq.(5.16) n-times we get:

Ab = 0 (5.17)
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where A is a 2n× 6 matrix.

If n ≥ 3 it is possible to find a non-trivial solution b, defined up to a scale, using
singular value decomposition [23].

U,Σ,V = svd(A) (5.18)

The columns of U are the left singular vectors of A, Σ is a diagonal matrix
containing the singular values of A and the coloumns of V contains the right
singular vectors of A.

The solution b to Eq.(5.17) can be computed where the solution is equal to the
last column of V.

If b is found, the intrinsic parameters can be calculated

v0 = b12b13 − b11b23

b11b22 − (b12)2 (5.19)

λ = b33 −
(b13)2 + v0(b12b13 − b11b23)

b11
(5.20)

α =
√
λ/b11 (5.21)

β =
√
λb11/(b11b22 − (b12)2) (5.22)

γ = −b12α
2β

λ
(5.23)

u0 = γv0
β
− b13α

2

λ
(5.24)

5.1.1. Lens distortion

The pin-hole camera model is an idealized model without lens [31] and does not
account for lens distortion which most cameras are affected by. Lens distortion
occurs during the initial projection of the world onto the image plane. There are
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two main types of distortion, radial distortion which causes straight lines in the
image to not appear straight, and tangential distortion which is caused by the
lens and image plane not being parallel to each other.

Figure 5.1.: Positive (barrel) and negative (pincushion) radial distortion

In distorted images the position of feature points cannot be used for accurate
measurements, therefore in order to use the pin hole model we first need to un-
distort the distorted image. The image distortion coefficients are calculated during
camera calibration and are usually given in the vector form

dcoeff = [k1, k2, p1, p2, k3] (5.25)

where k1, k2 and k3 are the radial distortion coefficients and p1 and p2 are the
tangential distortion coefficients.

Radial distortion is modeled as

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6) (5.26)

and tangential distortion is modeled as

xdistorted = x+ [2p1xy + p2(r2 + 2x2)]
ydistorted = y + [p1(r2 + 2y2) + 2p2xy] (5.27)
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where x and y is the undistorted normalized image coordinates and r = x2 +y2.

5.1.2. Reprojection error

Figure 5.2.: Reprojection error

The reprojection error is defined as the euclidean distance between a projected
feature point and the corresponding measured point in the image, this is illustrated
in Fig. 5.2. An image with large amount of deviations can be filtered out based
on its mean reprojection error and a more accurate estimation can be achieved.
The overall mean reprojection error is often used as a measure on the accuracy of
the calibration and is given as a numerical value in pixels.

5.2. Laser Plane Calibration

The laser plane calibration problem is to estimate the transformation between the
laser plane and the camera frame. The method proposed in this section is based
on Zhou and Zhang [51] which introduced a method of calibration a laser stripe
plane concurrent to the intrinsic calibration of the camera.

Let a planar object like a checkerboard be viewed from different angles to deter-
mine the intrinsic parameters of the camera. When the intrinsic parameters of
the camera are known it is possible to calculate the translation and orientation
between the camera frame and the local world frame Fig. 5.3a. Let the homoge-
neous transformation between the local calibration frame and the camera at pose
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i be given from the extrinsic camera calibration

Tc
i =

[
Rc
i tci

0T 1

]
(5.28)

where Rc
i is the relative orientation and tci is the relative translation of the camera

frame.

Consider Fig. 5.3b, when the laser plane intersect the checkerboard, a bright
line is formed across it. Using image processing techniques or cameras that are
specialized towards laser vision, this line can be extracted as an array of image
pixel points. The AT C4 camera used in this thesis have a built-in processing chip
which have 3-D functions for detecting laser lines based on gray scale intensity of
pixels along the laser line, see subsection 4.2.3.

(a) Local World Coordinate Frame (b) Laser line COG image

The laser points on the calibration target are imaged in the camera image plane
as pixel coordinates p = [u, v]T, see Fig. 5.4. In order to build a point cloud that
can be used to estimate the laser plane, the pixel coordinates along the laser line
are transformed according to Eq. (3.51)

s̃k = K−1p̃k (5.29)

where p̃k = [pk, 1]T is the k-th pixel along the laser line and K is the camera
intrinsic matrix.

At each pose the planar calibration pattern have a plane normal equal to the third
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column of the extrinsic rotation matrix Rc
i

nc
i = zci (5.30)

and a point in the plane equal to the origin of the calibration object

(p0)ci = p0 = tci (5.31)

An image ray with origin l0 = [0, 0, 0] and unit direction vector l̂, goes through
the image plane of the camera in s̃k and intersects the calibration target in point
Pk = [X,Y, Z]. According to Eq. (3.52), the actual 3-D displacement between
the image plane of the camera and the laser points in the world can be computed
from normalized image coordinates if the z-component of the actual displacement
is known. Using Eq. (3.62) and Eq. (3.83), the displacement Z can be found
from

Z = p0 · nc
i

l̂ · nc
i

(5.32)

and the k-th 3-D laser point can be computed as

Pk = Zs̃k (5.33)

Figure 5.4.: Laser line in the image plane

This process of estimation the 3-D laser points are done for each image, resulting
in a point cloud consisting of all laser points found by the camera. The point
cloud are then used to estimate the laser plane normal nc using the RANSAC
algorithm as well as a centroid pc0 which then defines the laser plane

πc =
[
nc

pc0

]
(5.34)

where the plane is defined in the camera reference frame.
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Figure 5.5.: 3-D plot of laser line in camera frame

5.3. Hand-Eye Calibration

When a laser vision system is used to estimate positions of points in the scene,
these points will be given in the camera reference frame. If the laser vision system
is attached to a robot manipulator and used to inspect the scene by moving the
robot end-effector around, the points must be related to the relative motion be-
tween the end effector and robot base. This is achieved when the relation between
the laser vision system and the robot end effector is known. The process of esti-
mating this relation is often referred to as hand-eye or eye-in-hand calibration.

There exits many different methods of performing hand-eye calibration [7, 42,
34, 48]. Many of these are very fast and powerful, but are considered to be out
of the scope of this paper. Instead the method proposed in this paper is based
on a method for hand eye calibration first introduced by Park and Martin [33],
where a system of equations AX = XB is solved with respect to the unknown
transformation X.

Consider Fig. 5.6, let frame O represent the world origin, E is the end-effector
frame, C is the camera frame and W is the work-space frame. The transformation
TO
W describes the relative position and orientation between the world origin and

the work space, TC
W describes the transformation between the work-space and the

camera, TE
C is the transformation between the end-effector and the camera and

TO
E is the transformation of the end effector relative the robot base.

The desired transformation is the transformation between end-effector and camera
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Figure 5.6.: Transformation and frames of hand-eye calibration

TE
C , that is

X = TE
C (5.35)

The base to end-effector transformation TO
E can be computed using forward kine-

matics when the joint vector of the robot is known. The transformation between
the camera and the work space TC

W can be estimated from the camera calibration.
From Fig. 5.6 it can be verified that

TO
W = TO

ETE
CTC

W (5.36)

For convenience it is often helpful to assume that the world frame is located at
the base of the robot

TO
W =


1 0 0 bx
0 1 0 by
0 0 1 bz
0 0 0 1

 (5.37)

where [bx, by, bz] is the position of the work space origin relative the robot base
frame. This way we can relate the 3-D points estimated from the laser vision sensor
when we know the transformation between the camera and the robot base.
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To find the unknown hand-eye transformation X the robot is moved to pairs of
different poses. Let the two different poses be denoted q1a and q1b, where q is the
robot joint vector. The transformation between the end effector and the robot
base at each pose is denoted as

(TO
E)1a

(TO
E)1b

and the transformation between the workpiece and the camera at each pose is

(TC
W )1a

(TC
W )1b

The position and orientation of the work space origin with respect to the base of
the robot never change for each different pose, that is

(TO
E)1aX(TC

W )1a = (TO
E)1bX(TC

W )1b (5.38)

Let

A1 = (TO
E)−1

1b (TO
E)1a and B1 = (TC

W )1b(T
C
W )−1

1a (5.39)

then Eq.(5.38) can be rewritten into

A1X = XB1 (5.40)

In order to accurately estimate X at least 2 pairs (n ≥ 2) of different poses are
required. This will give n sets of Eq.(5.42)

A1X = XB1

A2X = XB2
... (5.41)

AnX = XBn

If we define

A =


A1
A2
...
An

 and B =


B1
B2
...
Bn
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Figure 5.7.: Illustration of two pairs of four different poses

then the basic hand-eye equation can be written as

AX = XB (5.42)

Equation (5.42) can be expanded into[
Ra ta
0T 1

] [
Rx tx
0T 1

]
=
[
Rx tx
0T 1

] [
Rb tb
0T 1

]
(5.43)

which can be written into two equations

RaRx = RxRb (5.44)
Ratx + ta = Rxtb + tx (5.45)

These equations can be solved by first finding Rx from Eq.(5.44) and then compute
tx from Eq.(5.45). It is worth noting that we can find an expression for Ra from
Eq.(5.44)

Ra = RxRbRT
x (5.46)

Let θa, ka, θb and kb be the angle-axis representations of Ra and Rb respectively.
Then Ra and Rb can be written on the exponential form as

Ra = exp(θak×a ) = I + sin θak×a + (1− cos θa)k×a k×a (5.47)
Rb = exp(θbk×b ) = I + sin θbk×b + (1− cos θb)k×b k×b (5.48)
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where k× is the skew symmetric matrix form of k = [kx, ky, kz]

k× =

 0 −kz ky
kz 0 −kx
−ky kx 0

 (5.49)

The matrix exponential function of a skew-symmetric matrix is defined as

exp(k×) = I + k× + 1
2!(k

×)2 + 1
3!(k

×)3 + . . . (5.50)

Since RTR = I Eq.(3.4) we can verify that

R exp(k×)RT = I + Rk×RT + 1
2!(Rk×RT )2 + 1

3!(Rk×RT )3 + . . . (5.51)

which according to Eq.(5.50) gives the result

R exp(k×)RT = exp(Rk×RT ) (5.52)

Using Eq.(5.47),Eq. (5.48) and Eq. (5.52), Eq.(5.46) can be written as

Ra = exp(θak×a ) = Rx(exp(θbk×b )RT
x = exp[Rx(θbk×b )RT

x ] (5.53)

it follows that

θak×a = Rx(θbk×b )RT
x (5.54)

Equation (5.54) can be written on vector form as

θaka = Rx(θbkb) (5.55)

This equation is called an orthogonal Procrustes problem. The solution for the
rotation matrix Rx can be found from the minimization problem

min
R
Lr =

n∑
i=1
||(θaka)i −Rx(θbkb)||2 = tr(KaKT

a + KbKT
b − 2RKbKT

a ) (5.56)

where

Ka = ((θaka)1, . . . , (θaka)n) =
[
θa1ka1 θa2ka2 . . . θankan

]
Kb = ((θbkb)1, . . . , (θbkb)n) =

[
θb1kb1 θb2kb2 . . . θbnkbn

]
and tr(. . .) is called the trace-function which returns the sum of the diagonal
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elements of a matrix. Let such a matrix be

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


then the trace of A is computed as

tr(A) = a11 + a22 + a33

Equation (5.56) can be solved by the maximization problem

max
R

tr(RH) (5.57)

where

H = KbKT
a (5.58)

Using the singular value decomposition of H we can find the optimal solution R

[U,Σ,V] = svd(H) (5.59)
Rx = R = VSUT (5.60)

where

S = diag[1, 1, det(VUT )] (5.61)

is called the Umeyama correction, which ensures that R is a rotation matrix.

When Rx is found, the equation for the unknown translation tx can be solved

(Ra − I)tx = Rxtb − ta (5.62)

The solution can be found as the usual least squares solution

tx = (CTC)−1CTd (5.63)

where

C =

Ra1 − I
...

Ran − I

 and d =

Rxtb1 − ta1
...

Rxtbn − tan

 (5.64)
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5.4. Laser Triangulation with Calibrated System

Figure 5.8.: Laser triangulation

In order to perform 3-D measurements with a laser vision system, a method of
triangulation is needed. The method used in this thesis is influenced by the work
done by Tingelstad and Egeland at the Department of Mechanical and Industrial
Engineering NTNU [45]. The method is based on the assumption that calibration
of the camera, laser and hand-eye calibration is already achieved.

When the parameters of the laser plane, the intrinsic and extrinsic parameters
of the camera and the robot-camera transformations are known it is possible to
reconstruct the 3-D point. Let an extracted image point of the laser line profile
be p̃ = [u, v, 1]T. The pixel coordinates are transformed into normalize image
coordinates, using the intrinsic camera calibration matrix

s̃c = K−1p̃

where the image coordinates are referenced in the camera frame s̃c = [x/z, y/z, 1]T

The pinhole model does not take into account the lens distortion of the camera,
and the normalized image coordinates needs to be undistorted before transforming
them into another reference frame. This can be done using the OpenCV-library
in Python if the distortion coefficients and the intrinsic matrix is known. The
image coordinates referenced in the world frame can be found from the rigid
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transformation between the world frame and the camera frame

s̃w = Rw
c s̃c + twc (5.65)

where s̃c is now the undistorted image coordinates given in the camera frame.
The normalized image coordinates can be used to find the direction of the line
from the camera origin l0, which is given in terms of the world frame, through
the pixel in the image plane

l = s̃w − l0 (5.66)

where the line l is also referred to as an image ray. The unit direction vector of l
is computed by normalizing l

l̂ = l
|l| (5.67)

The distance from the camera center, along l̂ to the intersection point between
the image ray and the laser plane can be computed from

d = (p0 − l0) · n
l̂ · n

(5.68)

where p0 is a point in the laser plane given in world coordinates, and n is the
normal to the laser plane. The desired point P = [X,Y, Z] given in the world
coordinate frame is then

P = dl + l0 (5.69)



Chapter 6.

Experimental setup

Figure 6.1.: Proposed test scenario

This chapter describes the experimental setup of the laser vision system with
robot manipulator built in the lab at the Department of Mechanical and Industrial
Engineering Valgrinda. Furthermore, the calibration process is also described and
discussed, and at the end of the chapter some of the factors which had an impact on
the accuracy of the system is presented. For a simplified schematic representation
of the system architecture see Appendix A.1.
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6.1. System configuration

In order to perform scanning using a laser vision sensor, the scene and the sensor
need to be moved relative each other. In most cases it is easier to move the sensor
rather than the scene. To move the sensor, the system is mounted on the end
effector of an industrial KUKA KR16-2 [1] robot in a hand-eye configuration, see
Fig. 6.2. The mounting adapter is designed using CAD-software, based on machine
drawings of the end effector flange, and made in the workshop at Valgrinda. The
camera and laser are mounted on a Montech aluminum rail with clamp elements
that can rotate and translate along the rail. This is done in order to be able to
change the triangulation configuration if needed. The laser vision sensor is then
mounted to the robot end effector via the mounting adapter.

Figure 6.2.: Laser vision sensor mounted on the KUKA KR16-2 end effector

The system is calibrated at a work distance of approximately 500 mm, which is
based on the assumption that this system is to be used on large multi-pass welding
groves. The distance between the camera and the laser is measured with a tape
measure to be approximately 325 mm, this gives the configuration a triangulation
angle of approximately 49.5◦.

The camera used in this project is the Automation Technology C4-2040 [14] image
sensor, which is a fast CMOS sensor specialized towards laser vision. The camera
has an integrated processor unit with internal functions for detecting laser lines
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in the image plane up to 340 frames each second. The camera lens is a FUJINON
CF16HA-1 [13] fixed focal lens with manual operated aperture and focus which is
designed for industrial environments. The laser projector is a Z-LASER ZM18 [19]
industrial diode line laser with Powell lens, red color light and 45◦ fan angle.
The manufacturer of the laser recommend using max 80% of the total length
of the laser line when performing measurements, this is the area where the lens
ensures homogeneous distribution of light. At a work distance of 500 mm this is
equivalent to a line length of approximately 331mm. The desired wavelength of
the laser with respect to the maximum spectral response of the AT C4 camera is
given in the specification of the camera, see Appendix 4.17. It shows that lasers
with wavelength ranging between 580 nm - 670 nm yields the largest quantum
efficiency. The ZM18 laser has a wavelength of 635 nm which is well within the
acceptable range of the camera.

To control the robot, PyMoCo [27] is used which is a motion control framework
in Python for industrial robots developed by Morten Lind at SINTEF Manufac-
turing, enabling real-time sensor based motion control at the application level.
From PyMoCo the end effector frame can be computed with respect to the robot
base and saved in numpy-arrays for later use or for real-time processing. The
control and configuration of the AT-C4 camera requires Windows with a software
development kit (SDK) and a standalone version of Python that is provided by
Automation Technology. The parameters of the 3-D mode on the camera is con-
figured using the Python SDK, with the help of calibration software developed by
the manufacturer.

6.2. Calibration Process

The calibration target used in the calibration of the camera is a cardboard with
a glued on 7× 10-checkerboard pattern with 20 mm squares, printed from a laser
printer. During the camera calibration the chessboard is stationary while the
camera is moved relative the target by the KUKA-robot. In order to obtain
a good calibration the laser vision system requires between 15 to 20 different
positions where the camera views the entire checkerboard. A position-check is
done manually to ensure that both the calibration object is in focus and that the
laser line can be viewed in the image, this is achieved by streaming images from the
camera to Python. It is important that the laser line obstructs as little as possible
of the square pattern in the image, otherwise it will interfere with the calibration
of the camera. When the view of the target and the laser line is acceptable, an
image of the calibration object as well as a pixel array of laser points positions
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can be extracted from the camera. At the same time, the end effector position in
reference to the robot base is registered and stored via PyMoCo. This process is
repeated until enough positions are visited to ensure a good calibration. After the
camera is calibrated, the laser plane can be estimated using RANSAC and a point
cloud generated by triangulating the laser points with respect to the camera.

Figure 6.3.: Calibration in progress

Before performing hand-eye calibration, pre-processing of the pose data is needed.
Schmidt et.al [39, 38] presents a well suited method of selecting data for hand
eye calibration, and the authors lists some important factors that needs to be
considered when performing hand eye calibration. In this thesis the data from the
camera- and end effector-poses are pre-processed where camera and end effector
poses are permuted into different combinations with the inverse combinations
excluded. This means that if the combination is (i, j) then its inverse (j, i) is not
computed. This is done in order to mitigate singularities which might occur in
the estimation process caused by inverse orientations. The method is called the
handshake principle in Combinatorics and yields N unique combinations

N = n(n− 1)
2 (6.1)

where n is the number of unique poses used in the estimation. As long as N > 3
the estimation should converge towards a solution.
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6.3. Test Scanning of a Single-V Weld Grove

To analyze the performance of the system the laser vision sensor is tested on a
single-v weld grove. Different configurations of the camera parameters was tried
out, but the best suited configuration was found to having an AOI threshold of
120, aperture of F1.4 with an exposure time of 500 µs. A total of 44 snap shots
where taken of the weld joint surface where the camera is moved parallel to the
ground with 5 mm increments between each snap shot. At each increment the
laser line profile is saved as well as the position of the end effector, similar to the
calibration process.

(a) System test (b) V-weld test piece

Figure 6.4.: Test Scene

In order to mitigate the effect of the reflective surface of the weld grove and the
overhead lighting from the lab, the camera views the scene at an angle and an
improvised shade is applied, as seen in Fig. 6.4a. The laser points captured in the
camera frame are related to the robot base by the hand eye transformation and
the end effector to base transformations, thus building a point cloud.
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6.4. System Accuracy

6.4.1. Internal Factors

The internal factors are defined as elements of the laser vision system that can
have an impact on the accuracy the system. The re-projection errors tied to the
intrinsic calibration of the camera, mechanical defects and defects in the camera
lens and mounting rig can all be defined as intrinsic to the laser vision system.
The compatibility of the components that are used in the laser triangulation
configuration is also a contributing factor to the total accuracy of the system.
This includes the sensor and resolution of the camera with respect to the use
case, choice of lens, the compatibility between the laser and the camera, and the
triangulation configuration itself.

Figure 6.5.: Error caused by corrupted pixels

There have been reports [17] that the ideal working temperature of the AT-C4
camera is between 40C◦- 45C◦ and that the integrated circuits of the camera are
increasingly affected by noise with rising temperatures. This will have an effect on
the image quality of the image sensor, and corrupted frames can occur if the image
acquisition is started right after the camera has been turned on. This phenomena
have indeed been present during the calibration of the camera which in some cases
resulted in the need for re-calibration. A workaround have been implemented into
the calibration where the camera image and the laser pixel coordinates are plotted
on the same image in order to validate the pixel data. As seen in Fig. 6.5 the laser
pixels from the COG-mode are plotted on the corresponding image as red points.
If the laser points are properly extracted from the camera the points should lie
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along the line, which in this instance is not the case because due to the data being
corrupted.

6.4.2. External Factors

The external factors which affects the accuracy of the system, are environmental
elements that are independent to the laser vision system. This includes the mate-
rial and reflective properties of the surface that is scanned as well as light pollution
caused by ambient lighting. The test piece used in this thesis can be viewed as an
extreme test case because it has a very fine machined surface, which is not optimal
for performing accurate measurements using structured light. In reality the weld
groves on large offshore structures have a much more rough surface, which might
make them better suited for measurements performed using structured light.

The effect of having a highly reflective surface combined with light pollution can
be seen in Fig. 6.6, where the bottom part of the weld grove is lit up by the
overhead lights in the robot cell. The reflective property, also known as specular
reflection, of the scanned surface can be addressed by changing the inspection
angle of the camera, or by applying a finish to the weld grove. When the light
pollution is combined with the laser light it can saturate the image sensor and
make it impossible to make accurate measurements. In order to prevent this from
happening, ambient lighting should be kept at a minimum, and polarising filters
and lens filters can be applied to counter reflection and to block out light at a
certain wavelength. Modern image sensors also have adjustable parameters like
exposure time and lens aperture which can limit the amount of light reaching the
sensor, and thus preventing saturation. Care should be taken when restricting
the amount of light reaching the sensor, so that the amount of data required to
make a good measurement is still present. To further mitigate the effect of over-
saturation, an image sensor with functions to increase the dynamic range of the
sensor, also known as HDR, should be used. This allows for both strong and
weak signals to be captured at the same time, which is very useful on objects with
in-homogeneous surface structures or in situations where parts of the image-scene
is saturated.

The error in robot positioning can also be viewed as an external factor since it
is intrinsic to the robot and not the laser vision system. The manufacturers of
KUKA KR16-2 is reports that the robot have a repeatability in positioning of
approximately ±0.05 mm. This is usually lower or on pair with the accuracy
achieved with vision based sensors.
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Figure 6.6.: Light pollution and specular reflection

A vision system requires the scene to be in focus in order to make accurate mea-
surements. The scene’s focus is tied to the depth of field of the camera which in
turn is dependent on the work distance. Since the error in work distance and the
depth of field both describes the allowed boundaries along the z-axis where the
scene should be in focus, the accepted error in work distance can be computed as
the depth of field. The work distance itself have a direct impact on the error of
the measurements, which increases as the work distance increases. To achieve the
best possible accuracy the work distance should therefore be as small as possible.
In a laser vision sensor there will be a trade-off between having a minimum work
distance and size of the area that is inspected. If the area is large, the work
distance have to be set according to the field of view of the camera and the size
of the laser projection. The size of the laser projection is also dependent on the
fan angle of the laser, which means that if the work distance is set, while the area
requires a larger laser projection to properly cover it, then a laser with a larger fan
angle is required. Furthermore, the triangulation angle between the optical axis
of the camera and the laser projection also have an impact on the work distance
of the laser vision system, where a larger angle gives a shorter work distance and
better accuracy.

6.4.3. Other factors

The calibration of the sensor systems have a significant effect on the total accuracy
of the system and is often the main source explaining deviations in the final
performance of the system.
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During the hand eye estimation, the error in translation and rotation did not con-
verge when data for pose 9 to 18 where input to the algorithm, as can be seen in
Fig. 6.7. This might imply that some of the poses could be indexed wrongly dur-
ing the process of storing the different poses, or when later re-uploading them in
the calibration. This could mean that the object-to-camera pose is related to the
wrong end-effector-to-base transformation causing the abnormality. Implement-
ing better code, for calibration and for storing the poses is a potential solution.
Instead of using MATLAB for estimating the intrinsic and extrinsic camera pa-
rameters, and Python for estimating the hand eye transformation, OpenCV could
be used to both implement camera calibration and hand eye calibration in Python.
This would remove the need for intermediary functions and help automate the
process further.

Figure 6.7.: Diverging error in hand eye estimation

Another potential source of the error is in the process of positioning the cam-
era [38], which was done by manually jogging the robot end effector. If the
distance especially in rotation, between the relative poses is not sufficiently large
enough, large meaning ∆θ ≈ ±90◦, this can result in a bad estimation because
for angle close to zero the rotation axes are not well defined. Additionally, angles
close to 180◦ can result in singularities in the hand-eye calibration and should be
avoided. A solution would be to pre-plan the different orientations, by setting the
range of the rotation magnitude so that the rotation is sufficiently large enough
for the estimation to be good, but low enough so that singularities in the hand
eye calibration don’t occur. However, in order to accurately estimate the laser
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plane the camera must detect both the calibration target and the laser line. This
complicates the planning and are the main reason pre-planning was not developed
in this thesis.



Chapter 7.

Results and Discussion

In this chapter the results from the calibration of the laser vision system, as well
as the results from the scanning of the test piece is presented. The result from
the calibration includes the intrinsic and extrinsic camera parameters, as well as
the estimated hand eye transformation.

7.1. System calibration

During the calibration process, the robot is moved to 20 different poses. At each
pose an image of the calibration object and the laser line are both extracted from
the camera via Python. The robot base to end effector transformation is also
extracted using PyMoCo. The camera calibration is performed using the Camera
Calibration Toolbox [5] in MATLAB where the calibration feature points where
found on 18 of the 20 images. The estimated intrinsic parameters and distortion
coefficients as well as the error in estimation are

Parameters Estimation Error
α = 3026.4 σα = 2.8419
β = 3029.8 σβ = 2.7976
u0 = 1039.8 σu0 = 0.8751
v0 = 570.5 σv0 = 1.1340

k1 = −0.0468 σk1 = 0.0028
k2 = 0.3704 σk2 = 0.0324
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where all of the units are given in pixels and the estimation errors σ are given as
standard error in pixels. The intrinsic parameters are estimated with an overall
mean reprojection error

µ = 0.1955 (7.1)

which is given in pixels.

(a) Laser point cloud (b) Side view

The laser plane is calibrated based on the intrinsic and extrinsic parameters found
from the camera calibration as well as laser point images taken by the COG-mode
of the camera. The extrinsic rotation and translation of the camera image plane
relative to the calibration plane is given in 3-D vectors, where the rotation is given
as the angle-axis representation. The laser points are triangulated based on input
from the camera calibration matrix and the relative transformation between the
image plane and the calibration target plane. A plot of the triangulated points
can be seen in Fig. 7.1a. Using RANSAC the laser plane is estimated from the
point cloud where the estimated plane coefficients are

A = −0.00665 B = −0.09164 C = −0.04003 D = 271.33819

The plane normal are represented by A, B and C, while the parameter D repre-
sents the shortest distance along the plane normal between the laser plane and
the origin of the camera. The measure of accuracy is the mean of the euclidean
distances between each point along the plane normal

µ = 0.17376 mm

In order to evaluate the RANSAC estimation, a least square plane is also estimated
from the same point cloud data. The estimated least square coefficients are
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A = −0.00689 B = −0.09170 C = −0.03988 D = 270.42456

with a mean error

µ = 0.20620 mm

The results shows that the difference in error (∆µ ≈ 0.032 mm) is small. This is
most likely due to the low amount of noise in the laser images, resulting in very
low ratio of points deviating from the consensus along the plane normal, as seen in
Fig.7.1b. In this case LS and RANSAC have similar performances as can be seen
in Fig.7.2 where the green RANSAC plane and the blue LS plane are overlapping.

Figure 7.2.: Plot of RANSAC and least squares plane

The estimated hand eye transformation is

RX =

−0.002155 −0.003825 0.99999
0.000247 −0.999993 −0.003525
0.999998 −0.000256 0.000715

 , tX =

 63.486
134.772
107.075


Due to erroneous data in poses from 9 to 18, the hand eye calibration where per-
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Figure 7.3.: Error in translation and rotation

formed using the first 8 poses. The solution are estimated from permutation com-
puted based on the handshake principle previously described, which for 8 unique
poses returns 21 different combinations. This should be enough combinations to
achieve a good estimate for the hand eye transformation, which is indicated in
Fig. 7.3 where the error converges toward sub-millimeter in translation

et = [ex, ey, ez] = [0.1610, 0.3738, 0.3207] (7.2)

and a low quaternion error in rotation

|1− |qe|| = 7.6641 · 10−7 (7.3)

The translation tX is in accordance with rough measurements between the end
effector and the back of the camera on the actual setup

tmeasured =

 22
138
102

 (7.4)

The deviation in the x-direction and y-direction between the estimate and the
measurement might be due to the actual origin of the camera frame being inside
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of the camera, which makes it difficult to measure physically. Furthermore the
origin might not be perfectly aligned at the physical center of the camera due to
the calibration of the camera.

The estimated orientation RX is equivalent to a 180◦ counterclockwise rotation
about the z-axis followed by a 90◦ clockwise rotation about the current y-axis

RX ≈ Rz(π)Ry(−
π

2 ) =

0 0 1
0 −1 0
1 0 0

 (7.5)

The relative frame transformation is illustrated in Fig. 7.4

(a) End effector frame (b) Estimated camera frame

Figure 7.4.: Estimated orientation between end effector and camera

7.2. Results from scanning of test piece

The result of the test scan is a point cloud containing approximately 35200 points,
which is roughly 800 points pr. snap taken. By inspecting the point cloud in
Fig. 7.5 the effect of the overhead lighting can be seen as less points are detected
on the front left side of the weld grove due to reflection and illumination, while
more points are detected in the weld grove at the back of the image, where the
shade is at its strongest, see Fig. 6.4b. This indicates the importance of having
adequate lighting conditions in order to accurately extract information from highly
reflective surfaces when using vision based sensing. An argument can be made
that the configuration suffers from occlusion since the left side of the scan have
almost no points visible in the point cloud. However, this is due to pre-processing
of the laser points which is done with respect to the camera having a large field
of view caused by the relatively large work distance. By cutting out part of the
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Figure 7.5.: Point Cloud

scene, unwanted information can be filtered away, thus increasing processing time.
A caveat is that this should be done with caution when the system is used in real
time scanning of larger complex-shaped surfaces, because it limits the information
from the scene, and therefore might exclude important data. For the purposes of
this test, which is a proof of concept performed on a relatively linear test piece
with small dimensions, this can be allowed as long as enough information about
the most critical part, that is the weld grove, is present.

The point cloud can be used to estimate information about the weld grove, which
is used to parameterize the geometry for path planning. One way of doing this is to
compute the cross product between each point and its neighbour, which will result
in a vector perpendicular to the vector between the points. If the points lie in the
same plane the cross product between neighbours should approximately be equal
to the plane normal, this is illustrated in Fig. 7.6a where each normal represent the
mean of a neighbourhood consisting of ten points. The edges of the weld grove can
be detected as the points at which the normal between one neighbourhood largely
deviates from the next neighbourhood normal, this is illustrated in Fig. 7.6b.
This way the weld grove can be identified and parameterized similarly to what
was shown in Fig. 2.2.
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(a) Point-to-point normals

(b) Edge points
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To validate the accuracy of the scanning, the thickness of the test piece is measured
in the point cloud and compared to measured values of the actual test piece. The
measurements of the actual test piece are performed manually at ten random
selected points using a Mitutoyo caliper with standard uncertainty of 0.05 mm.
The measurements are found in Appendix A.4 and the resulting mean is

µ = 15.01 mm (7.6)

with a experimental standard deviation sX = 0.05/
√

10 = 0.0158 mm.

The thickness of the point cloud is found by estimating the upper plane of the
test piece and the bottom plane, that is the table that the test piece is resting
on, see Fig. 7.7. These planes should be approximately parallel to each other,
and at a relative distance that is equal to the thickness of the test piece. The
plane estimation is achieved by applying RANSAC to the point cloud, estimate
a plane, remove the inliers to that plane from the point cloud and then run the
plane estimation again. This procedure will estimate the planes with the most
and second most points, which in this case is the top of the table and the top
surface of the test piece.

(a) Table plane (b) Top plane

Figure 7.7.: Multiple plane segmentation

The planes are estimated to be

πtable = [−0.0053,−0.0014,−1, 285.39] (7.7)
πtop = [−0.0045,−0.0016,−1, 301.10] (7.8)

where it can be seen that both planes is approximately parallel to the xy-plane
of the coordinate system. The distance between the two planes can be computed
according to the point to plane distance Eq.(3.79), where the point p is defined
in the first plane and the centroid of second plane p0 is defined where the z-axis
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of the coordinate system intersects the plane.

p = [0, 0, 285.39] (7.9)
p0 = [0, 0, 310.10] (7.10)

n = ntop = [−0.0045,−0.0016,−1] (7.11)

The plane to plane distance can then be computed as

δ = nT(p − p0)
|n| = 15.71 mm (7.12)

Compared to the mean of the measurements done with the caliper this shows that
the measurements from the laser vision sensor have a deviation of approximately
0.7 mm. A source of error in this estimation might be in the process of estimating
the table plane. Since the table top has a rubbery v-grove surface, which is
actually detected by the laser (Fig. 7.5), the table plane might be offset due to
the unevenness. Another source of deviation is in the choice of working distance,
which in this case is rather large given the dimensions of the test piece. The camera
could be calibrated to a shorter distance, which would decrease the error in depth
measurements. Nevertheless a sub-millimeter deviation might be considered to
be adequate in welding processes, especially of large subsea structures with larger
weld grove dimensions that typically operates with deviations on a millimeter-
scale. Compared to similar processes, previously mentioned in this thesis, where
deviations are reported to be < 0.5 mm, the sensor is close to this range and can
possibly obtain similar results given a better calibration and configuration of the
sensor.



Chapter 8.

Conclusion and Future Work

The focus of the thesis have been on building a laser vision sensor and identify-
ing important system parameters of laser vision systems that is used in robotic
welding of large subsea structures. A final test have been performed, where the
system is first calibrated with respect to hand-eye, intrinsic calibration and laser
plane calibration, and then used to inspect a weld grove in order to build a 3-D
representation that can be used to parameterize the weld grove. The calibration,
configuration and system design is of critical importance when performing mea-
surements using structured light and vision based sensors. The main source of
error in system calibration is usually tied to the process of acquiring and pre-
process of data used in the calibration. The triangulation setup of the sensor is
highly dependent on the use case, and knowledge about the scene and environment
is key to implement the correct configuration.

The intrinsic parameters of the camera was estimated with a mean reprojection
error of 0.1955 pixels based data from 18 pictures of a checkerboard. The laser
plane was estimated using RANSAC with a resulting mean error of 0.17376 mm
and the hand-eye calibration where calibrated with an error in translation et =
[0.1610, 0.3738, 0.3207] and a quaternion error in rotation |1 − |qe|| = 7.6641 ·
10−7. The final test shows that the system performs adequately, with deviation
in measurements around 0.7 mm. However, this is still somewhat larger compared
to previously achieved results from similar processes using visual sensors [36, 49,
26] where the reported mean deviation is as low as < 0.5 mm.

This is most likely due to the calibration of the system as well as the system being
vulnerable to external factors like ambient lighting and specular reflection. Steps
can be taken during the design and configuration of the system to mitigate errors
from such factors, for example by changing the triangulation configuration, reduce
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the working distance or augment the scene by applying shade to block out the
ambient light. Given that the sensor is calibrated and configured correctly to the
specific use case, achieving higher accuracy should be possible with the proposed
setup.

8.1. Recommendations for future work

The proposed method of calibration and scanning is quite tedious and requires
multiple systems in order to properly function, never mind the process of interme-
diate storing information which might lead to a erroneous calibration. A system
where both the camera and robot is controlled by the same operating system and
API is potentially a huge advantage because it would be possible to further auto-
mate the process and to achieve real-time performance. There exist libraries and
software for GeniCam based cameras which operates on both Linux and Windows
with the Python API, which should be further investigated. One of them are
Common Vision Blox (CVB) [16], which is a powerful vision software for imple-
menting imaging and machine vision applications developed by Stemmer Imaging.
Unfortunately it is not open source and requires a license, furthermore as of today
the Linux compatibility is limited and doesn’t have the full range of tools that
CVB offers. Another alternative would be Aravis [4] which is a open source library
for video acquisition using cameras with the Genicam standard that is compatible
with Python and Linux. Besides the camera software, the robot software could
also be changed or altered to fit the needs of this project. It should be possible
to run PyMoCo on Windows, however this would require some alterations to the
software. Another solution, which also would need some alterations to be able to
function with the Python API would be to use KukaVarProxy [20, 37] which is
a software application installed in the KR C4 robot controller. KukaVarProxy is
capable of, among other things, reading and writing variables that can be used to
control the KUKA robot.

Future work would also include applying multiple image sensors, for example by
applying stereo vision in the laser vision sensor, see Fig. 8.1. The advantage of
using multiple cameras to view the same scene from different angles would po-
tentially result in a more accurate sensor since the additional camera introduces
redundancy in the data through the epipolar geometry of the stereo vision config-
uration. Also because using one image sensor have been shown to suffer from the
effects of ambient light, specular reflection and occlusion, a second sensor would
possibly mitigate many of these effects due to the changed viewing angle. Further-
more, the cameras could also be configured differently with respect to parameters
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such as aperture, exposure time, threshold values and HDR thus giving the laser
vision sensor a broader sensing range.

A robust method for parameterizing the scanned surface for path planning should
also be investigated. A more elegant edge detection of the test piece than what
was done in this thesis would be to perform multiple plane segmentation on the
point cloud, and compute the line of intersection between the different planes.
This method would also be more robust to edges where the points are not well
defined. However when scanning complex geometries this may not be adequate or
even possible. A more general approach should be investigated using other edge
detection methods or by applying neural networks to increase the generality of
the system.

Figure 8.1.: Stereo vision scenario

8.1.1. Python Code

Some of the code snippets developed during this project are includes as a .zip
attachment to this this thesis. A git repository have also been made and can
be found at https://github.com/trymdh/tpk4940Master. As a disclaimer, the
intention was to not include the code because it is still a work in progress, and the
required dependencies are not well documented. However, since a lot of time and
effort have been spent on developing this code it is provided as an attachment.
As of this moment the camera functions is able to control and to configure the
camera and it should be possible to use this as a basis for further development of
the camera software. The repository also includes some utility functions as well
as code for calibrating the laser vision sensor based on the methods described in
this thesis.

https://github.com/trymdh/tpk4940Master
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A.1. Technical spesifications

Parameters Specifications
Sensitivity 16000 LSB / µJ / cm2 @ 550nm

Max. Spectral Response 0.290 A / (Wnm) @ 665nm
Resolution 2048× 1088 pixels
Pixel Size, ρ 5.5µm

Sensor Size, W ×H 11.264mm× 5.98mm, diag: 14.638mm
Sensor Format 2/3 inches

Sensor ADC Resolution 10 bit
Sensor Dynamic Range 90 dB with HDR

Max. Internal Full-Frame Rate 340 fps
Max. External Full-Frame Rate 50 fps

Table A.1.: AT C4-2050 specifications [18]
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A.2. Tables

Pose nr. v1 v2 v3 σv1 σv2 σv3

1 -0.0485 0.1148 0.0658 0.0007213 0.00060727 8.1658e-05
2 -0.0623 0.1386 0.0657 0.00071061 0.00062202 7.9519e-05
3 -0.0882 0.1801 0.0650 0.00074317 0.00057405 8.5522e-05
4 -0.0724 0.1604 0.0639 0.00069307 0.00059336 8.1253e-05
5 -0.1712 0.0426 0.1112 0.00065501 0.00058764 8.8327e-05
6 -0.2070 0.0988 0.1064 0.00074328 0.0006172 8.2053e-05
7 -0.2207 0.0689 -0.1599 0.00058936 0.00051624 9.0865e-05
8 -0.2207 0.0678 -0.1598 0.00066622 0.00053364 9.1294e-05
9 -0.3083 0.2367 -0.1740 0.00050952 0.00045176 0.00010749
10 0.2800 0.1941 0.2718 0.00043612 0.00043872 0.00010179
11 0.2819 0.1928 0.2723 0.00050531 0.0004417 9.7382e-05
12 0.3777 -0.2587 0.1138 0.0005002 0.00043207 9.6404e-05
13 0.2898 -0.2892 0.1704 0.00056899 0.00047737 9.5941e-05
14 0.2938 -0.2968 0.1698 0.00059774 0.00049893 9.9365e-05
15 0.2888 -0.2840 -0.0341 0.0006067 0.00050238 9.4322e-05
16 0.2953 -0.2380 -0.0072 0.00052885 0.00044849 9.0203e-05
17 0.2841 -0.2488 -0.0108 0.000573 0.00049138 9.2227e-05
18 0.2797 -0.0820 0.0393 0.00058087 0.00046159 7.7577e-05

Table A.2.: Rotation vectors and standard error,NOTE: |v| = [v1, v2, v3] 6= 1
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Pose nr. x y z σx σy σz
1 -117.7312 -89.0088 592.9758 0.1688 0.2211 0.5448
2 -121.3699 -48.8360 596.9720 0.1691 0.2225 0.5415
3 -75.5357 -66.2965 587.2141 0.1660 0.2182 0.5224
4 -112.0050 -47.5979 591.4106 0.1672 0.2203 0.5314
5 -148.2737 -88.4358 620.4198 0.1781 0.2309 0.5725
6 -136.0338 -26.5030 635.7404 0.1805 0.2370 0.5710
7 -141.4928 -56.6046 607.9349 0.1738 0.2264 0.5573
8 -54.0100 -63.1582 614.9710 0.1760 0.2280 0.5517
9 -149.0814 -12.2305 652.8577 0.1852 0.2437 0.5732
10 -151.1517 -74.6119 59.3849 0.1605 0.2114 0.5272
11 -96.0257 -70.2350 558.8427 0.1598 0.2103 0.5181
12 -58.6775 -74.6965 520.1076 0.1508 0.1961 0.5117
13 -113.4978 -64.3221 518.2079 0.1516 0.1945 0.5097
14 -130.2513 -66.2855 534.5669 0.1569 0.2004 0.5275
15 -138.7720 -57.2738 511.5158 0.1497 0.1917 0.5032
16 -89.3682 -49.0878 505.4651 0.1471 0.1900 0.4921
17 -97.2930 -60.6064 532.9273 0.1551 0.2003 0.5192
18 -45.0161 -60.7441 520.8133 0.1525 0.1964 0.4964

Table A.3.: Translation vectors and standard error given in millimeters

Measurements (mm), X
15.01
15.00
15.05
15.01
15.01
15.00
15.01
15.00
15.01
15.00

Table A.4.: Caliper measurements of test piece
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