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Abstract

This Master’s thesis is aimed to study the camera pose estimation problem through
using line segments, Perspective-n-Lines (PnL). Pose estimation is essential for
mobile robots to navigate or operate a robot only using vision. Another aspect
of the thesis has been to look into use cases and comprehending methods that
is necessary for real world cases. Perspective-n-Lines uses line correspondences
between the image 2D plane and the available 3D model of the surroundings.

DLT-Plücker-Lines is the method that has been implemented and tested on real
world datasets. Experiments were conducted on two different surroundings and
both orientation and translation errors were measured along with the speed. The
results were then compared to three other state of the art algorithms and the
results were very promising. One of the methods had a slightly better accuracy,
however it is worth mentioning this method is found to be slower by other sources.

A point worth mentioning from the test is the speed of the algorithm. The
results were somewhat worse than expected, but there has not been that much
focus on making the algorithm as fast as possible either. However, if being used
in a real time system, this has to be looked further into.

Through the thesis there are described methods that are necessary for estimat-
ing camera pose without using predescribed datasets, wheres one of these methods
are the Line Segment Detector. This method has been implemented in code us-
ing the open source library OpenCV and then been compared to the data in the
datasets. Using the standard parameterization gave a result of five times as many
line segments than were in the datasets, however this can be lowered by changing
the parameters from the standards to customized. Finally there is a proposed
suggestion for solving the Simultaneous Localization and Mapping (SLAM) prob-
lem using the described methods, where camera pose estimation is an essential
part.





Sammendrag

Denne masteroppgaven har som mål å se nærmere på estimering av kamerapo-
sisjon ved å benytte seg av linjer samt bruksområder rundt dette feltet. Po-
sisjonsestimering med linjer bruker korrespondansen mellom linjer gjenkjent i 2D
kamerabilde og linjer fra tilgjengelig 3D-modell av omgivelsene. Estimering av po-
sisjon er essensielt ved mobile roboter eller dersom en robot estimerer bevegelser
kun ved hjelp av syn.

DLT-Plücker-Lines er metoden som har blitt implementert og testet på datasett
fra virkelige scenarioer. Det ble gjort målinger på avviket mellom estimert og
virkelige målinger på både translasjon samt orientering. Resultatene ble sammen-
lignet med tre andre anerkjente metoder og viste seg å være svært gode. En av
disse algoritmene ga bedre nøyaktighet, dog bare med små marginer. Det må
også påpekes at denne algoritmen er funnet å være en tregere algoritme av andre
kilder.

Et annet punkt verdt å bemerke seg fra resultatene er hastigheten til algoritmen.
Det virker noe tregt, uten at det har vært spesielt i fokus i denne omgang å gjøre
algoritmen så effektiv som mulig. Skulle det derimot være behov for å bruke den
i sanntidssystemer må dette fokuseres mer på.

Gjennom oppgaven er det beskrevet metoder som må til for at estimering av
kameraposisjon skal være mulig uten bruk av ferdige datasett, hvor en av disse
metodene er Line Segment Detector. Denne metoden er også implementert i kode
ved hjelp av open-source biblioteket OpenCV for å sammenligne resultater med
data fra datasett. Med standardparametrene blir det funnet om lag fem ganger
flere linjer i bildene enn det er oppgitt i datasettet, men dette kan enkelt løses ved
å manuelt stille parametrene. Til slutt er det foreslått hvordan problemet rundt
Simultaneous Localization and Mapping (SLAM) kan bli løst ved hjelp av disse
metodene, hvor estimering av kameraposisjon er helt essensielt.
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Chapter 1.

Introduction

As automation gets an increasing importance in industry and society in general
the focus on finding new robots and computer vision solutions is essential. In
some way a lot of these solutions is about simulating human tasks, which could
include simulating our movements or vision.
The goal of computer vision is to allow computers to see, like a human or even
better. A big part for this to happening is achieved through the exploitation of
features. These features are parts of an image that contains distinctive information
in some way, which can be lines, points, regions, shape etc. If having a scene of
images geometric relations can be obtained using these features, which makes it
possible to construct a 3D model of the scene, localize as well as navigate a mobile
robot.
A well known challenge within robotics is Simultaneous Localization and Mapping
(SLAM), which is the problem of determine both the localization as well as the
surroundings of a mobile robot if placed in an unknown environment. This has
to be solved by incrementally make and update a map of observed features as
well as keeping track of the robots localization within it. A crucial part for this
application to work is pose estimation, which is the task of determining the relative
position and orientation of a camera and an object to each other in 3D space.
Pose estimation methods using point features have been in the main focus for
some time as the mathematical complexity is lower. While points hold information
about an exact location, lines describes directions and are also more robust as they
can still be viewed be used even if partially occluded, hence could be very useful
in some cases. Line pose estimation uses line-line correspondences between lines
segments found in the image plane and lines from a 3D model. The advantage of
an accurate camera pose estimation in a SLAM system is both getting the location
and orientation as accurate as possible which in turn results in better accuracy of
new features discovered.
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1.1. Objective
The aim of this project is to examine the DLT-Plücker-Lines method, and look into
the theory that lies behind. Through the period there is planned implementing
the algorithm and test it on two different datasets, with different properties. The
goal is to get results that can be compared to various state of the art methods
as well as looking into methods that are necessary for implementation into a real
world applications. Looking into use cases where the method is applicable is also
desired, such as how it can be used improving mobile robots. Hence, a major part
of the study will be used looking into methods that are necessary to combine with
DLT-Plücker-Lines, such as feature detection, to make a system like this work.
Ultimately there will be a proposal for how this can be implemented with other
methods to become a SLAM system.

1.2. Scope
This thesis will focus on pose estimation using line segments and the methods,
such as detecting features and matching of features from different images, that
are essential for it to work in real world applications. The DLT-Plücker-Lines
method will be coded and results will be compared to other state of the art
methods. Finally there is proposed a potential SLAM application, based on the
methods described, where pose estimation is essential. Because a total system for
these kind of applications consist of several complex methodologies, only a few
will be described in the thesis. The ones described are selected on the basis of the
background research of which methods seems most fitted.



Chapter 2.

Background theory

2.1. Bayes filtering
One of the most general algorithms for calculating beliefs is given by the Bayes
Filter algorithm. The algorithm calculates the posterior distribution belt over
state, xt based on measurement, zt, and control inputs, ut, at a given time, t.
The belief bel(xt) is calculated from the belief bel(xt−1) at time t− 1.
The Bayes Filter makes a Markov assumption which means the state is describing
all past states and implies that the belief is adequate to represent the robot’s
moves.

Algorithm 1 Bayes Filter
1: procedure Bayes(bel(xt−1), ut, zt)
2: for all xt do
3: bel(xt) =

∫
p(xt|ut, ztbel(xt−1)dxt−1)

4: bel(xt) = ηp(zt|xt)bel(xt)
5: end for
6: return bel(xt)

The algorithm above consists of mainly two steps, the prediction step and the
update step. In the prediction step, the previous belief, or posterior distribution, is
extrapolated to the time of the measurement according to the control input. While
in the update step, the new measurement is taken into account for improving the
prediction.

2.1.1. Kalman Filter

The Kalman Filter is one of the most used techniques for implementing Bayes
filters [21] and is a method for filtering and prediction in linear Gaussian systems.
A linear Gaussian is a state transition probability on the form xt = Atxt−1 +
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Btut + ε, which as seen is linear in its arguments with additive Gaussian noise.
The Kalman Filter represents posterior distribution by the moment parametriza-
tion: for each time t, the posterior distribution µt and covariance Σt. For the
posterior to be Gaussian the following three properties are required:

1. The state transition probability p(xt|ut, xt−1) must be a linear function with
added Gaussian noise, expressed as:

xt = Atxt−1 +Btut + ε (2.1)

Both xt and xt−1 are state vectors, and ut is the control vector at the time t.
At and Bt are matrices representing the linear state transition (n× n) and
control input models (n×m respectively. n being the dimension of xt and m
of ut. ε is a random noise variable and represents the uncertainty introduced
by the state transition. The random noise is a Gaussian distributed vector
with zero mean and covariance Qt. The mean of the posterior state is given
by 2.1 and the covariance Qt as shown in 2.2.

p(xt|ut, zt) = det(2πQt)−1/2

exp{−1
2(xt −Atxt−1 +Btut)TQ−1

t (xt −Atxt−1 +Btut)} (2.2)

2. The measurement probability p(zt|xt) also have to be linear with added
Gaussian noise:

zt = Ctxt + δt (2.3)

zt is the measurement vector with dimension k, while Ct is the linear mea-
surement model, with the size k × n. The vector δt represent measurement
noise and its distribution is a multivariate Gaussian with zero mean and
covariance Rt. The measurement probability will then become:

p(zt|xt) = det(2πRt)−1/2exp{−1
2(zt −Rtxt)TR−1

t (zt −Rtxt)} (2.4)

3. The last and third property required is that the initial belief bel(x0) need
to be normally distributed with mean µ0 and covariance Σ0:

bel(x0) = p(x0) = det(2πRt)−1/2exp{−1
2(x0 − µ0)TΣ−1

0 (z0 − µ0)} (2.5)

With these three assumptions the posterior bel(xt) is assured to alway be Gaus-
sian, for any time and state.
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The algorithm of the Kalman filter [21], as illustrated in 2, is similar to the
algorithm for the Bayes filter with a prediction and a update step.

Algorithm 2 Kalman Filter
procedure KalmanFilter(µt−1,Σt−1, ut, zt)

Prediction s
¯
tep:

µt = Atµt−1 +Btut
Σt = AtΣt−1A

T
t +Rt

Correction s
¯
tep:

Kt = ΣtC
T
t (CtΣtC

T
t +Qt)−1

µt = µt +Kt(zt − Ctµt)
Σt = (I −KtCt)Σt

return µt,Σt

In the correction step, the measurement is used to estimate the posterior distri-
bution bel(xt). The variable K is the Kalman gain, which decides whether or not
the new measurement should be included in the new state estimate. In µt in the
correction step the mean is adjusted in proportion to the Kalman gain and the
innovation. The innovation is the difference between the measurement zt and the
expected measurement Ct and µt in the last line in the algorithm.

2.2. Transformations
A homography is a linear transformation on homogeneous 3-vectors represented by
a homogeneous, non-singular 3×3 matrix. A characteristic of homographies is that
they preserve lines and the homographies can be divided into seven subgroups.

2.2.1. Translation

A translation transformation is the simplest homography with only two degrees
of freedom which is described as

x′ = x + t (2.6)

where the only transformation is a movement of the object.
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2.2.2. Euclidean

An eucledian is a transformation with three degrees of freedom described as x′1
x′2
x′3

 =

 r11 r12 tx
r21 r22 ty
0 0 1


 x1
x2
x3

 (2.7)

where the object is both translated as well orientated.

2.2.3. Similarity

A similarity has four degrees of freedom and described as x′1
x′2
x′3

 =

 sr11 sr12 tx
sr21 sr22 ty

0 0 1


 x1
x2
x3

 (2.8)

where the object is translated, oriented and scaled between each image frame.
However, corresponding lines are still parallel.

2.2.4. Affine

An affine translation has six degrees of freedom described as x′1
x′2
x′3

 =

 a11 a12 tx
a21 a22 ty
0 0 1


 x1
x2
x3

 (2.9)

where the object is transformed just as in the similarity, but the corresponding
lines are not longer parallel. However the length ratios between corresponding
lines in each image frame are the same for all lines.

2.2.5. Projectivity

A full homography, or projectivity, is an invertible mapping from P 2 to P 2. The
mapping can be represented by a non-singular 3× 3 matrix H, which is referred
to as the homography. The mapping is written x′ = Hx, which can be written
out as  x′1

x′2
x′3

 =

 h11 h12 h13
h21 h22 h23
h31 h32 h33


 x1
x2
x3

 (2.10)

The homography H has 9 entries. As the scale is arbitrary and H is homogeneous,
there are 8 independet entries.
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In a projective transformation

H =
[
A t
vT v3

]
(2.11)

where A is an nonsingular matrix, the H matrix can be be decomposed in the
three matrices Hs, HA and HP

H = HsHAHP =
[
sR t
0T 1

] [
K 0
0T 1

] [
I 0
vT v3

]
=
[
sRK + tνT 0

νT ν

]
(2.12)

here the Hs matrix is the similarity transformation, describing rotation, scaling
and translation. The HA matrix is the affine transformation and, K being the
upper triangular with det K = 1. The las matrix HP is the projective transfor-
mation,

2.2.6. Transformation of lines

Just as points between two image planes can be described by a homography, so
can lines. Lines are transformed according to

`′ = H−T ` (2.13)

like points, four lines are needed to calculate the homography.

2.2.7. Camera model

The perspective camera model is a mathematical model describing the correspon-
dence between world coordinates and pixels in the image. The transformation
between 3D world coordinates and the 2D image plane is found by using a coor-
dinate frame to represent the camera. Normally the perspective camera model is
divided into two parts, extrinsic and intrinsic, both commonly represented by a
homogeneous matrix.
The extrinsic parameters describes the position and orientation of the camera in
space. This camera pose is found through a transition from the world to the
camera coordinate system, first by a translation followed by a rotation.
The intrinsic parameters describes how coordinates in the 2D image plane mat
to its image coordinates in pixels. This mapping can be expressed by an upper
triangular 3× 3 camera calibration matrix as

K =

 sx k x0
0 sy y0
0 0 1

 (2.14)
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Figure 2.1.: The world coordinate frame (right), the camera coordinate sys-
tem(left), where the transition between them are through a translation bmT and
rotation R

where sx is the scale factor in the x direction while sy is the scale factor in the
y direction of an image. k is the skew factor, found by k = sy tan θ, θ being the
angle between the x and y image axis. (x0, y0) is the coordinate of the point in
the image plane where the plane meets the camera Z-axis.
Putting the camera calibration matrix (the intrinsic parameters) together with
the translation and rotation (the extrinsic parameters) gives the full perspective
camera model. This model is typically presented as

ũ = K[R t]W X̃ (2.15)

which describes the relation between the 3D point X and its projection u in the
image. Expanded this will look like

ũ =

 sx k x0
0 sy y0
0 0 1


 1 0 0 0

0 1 0 0
0 0 1 0

[ R3×3 t3×1
01×3 1

]W
X̃ (2.16)

The Euclidean transformation of points from W to C is described by the ex-
trinsic part. Further, the pose of the camera relative to the world frame can be
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represented by a homogeneous transformation

W ζC =
[
WRC

W tC
01×3 1

]
(2.17)

W X̃ =W ζC
CX̃

The other way around, the Euclidean transformation from W to C is given as[
R3×3 t3×1
00×3 1

]
=W ζ−1

C =
[
WRC

W tC
00×3 1

]−1

=
[
WRTC −WRTCW tC
00×3 1

]
(2.18)

CX̃ =W ζ−1
C

W X̃

2.2.8. Plücker coordinates

Plücker coordinates is a way to assign six homogeneous coordinates to each line
in the projective 3D space. While a 3D line has 4 DOF, Plücker coordinates is
a vector with 6 DOF which has the benefit being a convenient linear projection
of 3D lines onto the image plane. Given a line joining two distinct 3D points
in homogeneous coordinates, X = (X1X2X3X4)T and Y = (Y1Y2Y3Y4)T , the
projected line in 2D image plane is

λ1x = X, and λ2y = Y (2.19)

where λ is a shared constant while x and y are the two corresponding endpoints
in the 2D image plane, defined as x = (x1x2x3)T and y = (y1y2y3)T . Given that

xT ` = 0 and yT ` = 0 (2.20)

and the fact that λ is just a constant gives

XT ` = 0 and Y T ` = 0 (2.21)

which also means that the line ` can be defined with the two 3D coordinates as

` = X × Y (2.22)

The normal of the line can be defined as

U = (X,Y )× V (2.23)

where V is the directional vector of the line L. Hence, from this, the 3D line can
be represented in Plücker coordinates as L ≈ (UTV T )T = (L1L2L3L4L5L6)T ,
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where
UT = (L1L2L3) = (X1X2X3)× (Y1Y2Y3) (2.24)

V T = (L4L5L6) = X4(Y1Y2Y3)− Y4(X1X2X3)

here U describes the position of the line in space, while V describes the direction
of the line. Because U is a normal of the plane made up by the line L and
the origin of the camera coordinate system, L must satisfy a bilinear constraint
UTV = 0.

Figure 2.2.: 3D line projection. L is parameterized by its direction vector V
and a normal U of its interpretation plane, and the projected 2D line l lies at the
intersection of the interpretation plane and the image plane.

2.3. Line feature detection
Line detection is the process of finding line features in an image by taking a
collection of n edge points and find all the lines which these points lie. The most
common line detectors are the Hough transform and convolution based techniques.

2.3.1. Edge detection

One of the first steps in detecting features and identities in images are to find
edges that are distinctive and can easily be restored and found in other images.
Edges are defined as places in the image where there are strong signs of change
in form of boundaries. These boundaries may come in the form of object shapes,
shadows etc. Further edges may be grouped into curves or contours, straight line
segments and piecewise linear contours. A challenge however is to determine how
much change will be considered as an edge.
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Sudden changes in pixel intensities in images is used to find these edges. By
calculating the first derivative of the image intensity function, the extremas will
illustrate the edges. The image gradient can be described as

∇f =
[
∂f

∂x
,
∂f

∂y

]
(2.25)

which is a vector made up by the derivative in both x and y direction. This vector
will hence have the magnitude

‖ ∇f ‖=

√√√√(∂f
∂x

)2(
∂f

∂y

)2

(2.26)

and the gradient orientation can be estimated as

θ = arctan

 ∂f
∂y
∂f
∂x

 (2.27)

however, while this method reacts badly on image noise the derivative of Gaus-
sian would give a smoother result

∂

∂u
hσ(u, v) (2.28)

where
hσ(u, v) = 1

2πσ2 e
−(u

2+v2
2σ2 ) (2.29)

σ representing the width of the kernel, where a small σ meaning a finer feature is
detected while a large σ on the other hand meaning only large scale edges have
been detected.

2.3.2. Edge operators

A concern already mentioned is to determine how much change would be catego-
rized as an edge. A way to remove spikes and noise as well as create an image to
emphasise edges is to apply an edge operator. Depending on what kind of noise
is represented in the image there are different edge operators suited for each case.
These edge operators are also known as correlation filters using a weighted moving
average, and can be sorted in either uniform or nonuniform filters. The general
form of theses filters can be

G = H ⊗ F (2.30)

H being the kernel or mask that is used to change the intensity in the images and
F represents each pixel in the image.
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A uniform filter can be expressed as

G[i, j] = 1
(2k + 1)2

k∑
u=−k

k∑
v=−k

H[i+ u, j + v] (2.31)

where the first fraction of the equation is a uniform weight for each pixel, while
the last part is a loop for all pixels in the neighbourhood around image pixel
F [i, j]. The window size would be 2k+ 1× 2k+ 1. An example of a kernel in this
filter could look like

H(u, v) = 1
9

1 1 1
1 1 1
1 1 1

which would be an averaging filter that could be used to blur images, and k = 1.
The non-uniform filter can be expressed as

G[i, j] =
k∑

u=−k

k∑
v=−k

H[u, v]F [i+ u, j + v] (2.32)

An example of a non-uniform filter could be a Gaussian kernel as described in
2.29 could look like

H(u, v) = 1
16

1 2 1
2 4 2
1 2 1

In an 1D signal from an image, applying a Gaussian kernel would have the effect
that is illustrated in 2.3. The signal is first smoothed by adding it to the kernel
and after finding the first derivative the peak represents the location of the edge.

Some of the most common operators for computing gradient are the Prewitt op-
erator and the Sobel operator, where there are two kernels applied, both for x
and y axis. The Prewitt operator is described as

Gx =
-1 0 1
-1 0 1
-1 0 1

, Gy =
-1 -1 -1
0 0 0
1 1 1

While the Sobel operator is described as

Gx =
-1 0 1
-2 0 2
-1 0 1

, Gy =
-1 -2 -1
0 0 0
1 2 1

Using both Prewitt and Sobel can transform the images to binary images with
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Figure 2.3.: A noisy signal f is smoothed by added the kernel h, and then by
finding the first derivative the edge is found.

isolated edges. The gradient being ∇I = [Gx, Gy]T .

2.3.3. Canny Edge detector

Even though the Canny Edge detector came out in the late 80s, it is still the
most widely used edge operator [referanse]. The Canny operator gives single pixel
wide images with good continuation between adjacent pixels. The Canny edge
algorithm can be composed in five steps:

1. Noise reduction

2. Gradient calculation

3. Non-maximum suppression

4. Double treshold

5. Edge tracking by hysteresis

The first step in the Canny Edge Detector is to smooth the image with Gaussian
filter with spread θ. The next step is to find regions of significant gradient, using
edge detection operators, to detect the edge intensity and direction. As an optimal
solution the final image should have as thin edges as possible, which is conducted
using Non-Maximum Suppression. In this step the algorithm goes through all
points in the gradient intensity matrix and finds the pixel with the maximum
value in edge directions. After thinning the double treshold step is aimed to sort
each pixel into: strong, weak or non-relevant. If the pixel intensity value is so
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that it is certain it contributes to the final edge, the pixel is sorted into strong.
Weak pixels have an intensity value that is not enough to be considered as strong,
but still not small enough to be discarded. The rest of the pixels are considered
non-relevant for the edge. The final step is Edge Tracking by Hysteresis, which
builds on the results from the double treshold step and sorts the weak pixels
further. Looping over all weak pixels, they are transformed either into strong
pixels or non-relevant. If one (or more) out of the nine pixels surrounding a weak
pixel turns out to be strong, the weak pixel will be transformed to a strong pixel,
otherwise set to non-relevant.

2.3.4. Line detection - Hough transform

The purpose of the Hough Transform for finding line segments is detecting groups
of edge points by a voting procedure over a set of parameterized objects. This way
imperfections in the image data, like missing points or spatial deviations between
the ideal line and noisy edge points, have less impact compared to using an edge
detector previously described.
Hough transform can be used to detect several shapes, however straight lines is
the simplest case. A straight line is typically represented as y = ax+ b, however
because vertical lines will cause a problem lines are instead represented as

ρ = x cos θ + y sin θ (2.33)

where ρ is the shortest distance from the origin to the straight line, while θ is
the angle between the x-axis and the line connecting origin to the closest point.
Therefore each line can be associated with (ρ, θ), often referred to as Hough Space.
Given a single point in the plane, the set of all straight lines going through that
point corresponds to a sinusoidal curve in the (ρ, θ) plane. Therefore a set of two
or more points that form a straight line will produce sinusoids which will cross at
(ρ, θ) for that line.
For each pixel at (x, y) and its neighborhood, the algorithm determines weather
or not there is enough evidence of a straight line at that pixel. Further the line
hypothesis’ get their parameters (ρ, θ) calculated and sorts it into accumulator
bins. Adding a new item to the bin then increments the value of that bin, and
the bins with the highest values are most likely to be a straight line. These are
observed through local maxima, combined with some sort of threshold, in the
accumulator space.
As lines discovered do not come with information about the length, different
techniques are required to find which parts of the image that match up with each
lines.
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Figure 2.4.: The left illustrates the pixel parameters while the right side illus-
trates the accumulated space and detected line segment.





Chapter 3.

Theory

3.1. Line detection - Line Segment Detector (LSD)
The classic line segment detection methods usually starts with applying Canny [6]
edge detector followed by a Hough transform [3] for extracting all lines contained
by a number of edge points exceeding a treshold [9]. However, the Line Segment
Detector method defines line segments as regions using only gradient informa-
tion based on Burns’ algorithm [5], combined with the validation criterion from
Desolneux [1]. The algorithm is consisting of the following 4 steps: finding the
line support regions, finding the rectangular approximation of every line-support
regions, validation of each potential line segment and finally an improved approx-
imation of line-support region and validation.

Step 1: in the first step, a line segment is defined as a region of a cluster of points
in a connected region. To find the line-support region those pixels that share
an approximately same gradient orientation angle as well as having a gradient
magnitude greater than a treshold, ρ, is clustered. The pixels are grouped and
then sorted into a finite number of groups based on their gradient. Each region
starts with a single pixel and initializes the line-support region angle with the
gradient angle of this pixel. If an adjacent pixel share the same characteristics
and the following is satisfied

abs(angle(p− θregion)) < τ (3.1)

the pixel is added to the line-support region. Here p is the adjacent pixel, while
τ is the treshold of the difference between adjacent pixel’s angle and line-support
region angle, where τ = 22.5◦. Line-support region angle is updated as it grows
and expressed as

θregion = arctan( Σi sin(anglei)
Σi cos(anglei)

) (3.2)
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Figure 3.1.: The growing process of a region of aligned points.

Step 2: the second step is to define a line segment that is made up by the line-
support region. This line-support region is characterized as an approximation of
a rectangle, defined with parameters such as center, orientation angle, length and
width.

Figure 3.2.: Line segment characterized by a rectangle.

As shown in 3.2 the centroid of mass of the rectangular approximation is set as
the center, when the gradient magnitude is used as pixel’s mass.

Step 3: after the rectangular approximations of the line-support regions is found,
each line segment approximation is validated using the number of aligned points
and total number of pixels. Aligned points are defined as pixels with a gradient
angle is the same as the line segment, within a tolerance of τ .
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Figure 3.3.: The number of aligned points up to the angular tolerance is counted
for each line segment. There are nine points among twenty in this case.

All potential line segments in the image are to be tested, and those that satisfy
a treshold criterion based on length and number of aligned points k are kept as
valid line segments. If there are r potential rectangles in the image x, a same
amount of tests needs to be conducted to detect the final amount of lines. Each
test relies on the statistics k(r, x), where the H0 is to be rejected if k(r, x) ≥ kr.
Here H0 is a Gaussian white noise model of the image background, that represents
well isotropic zones, while straight edges are highly anisotropic zones. However,
in practice a set of pixels will not be accepted as a line segment if it could have
been formed by an isotropic process. Hence, kr must be fixed to have a control of
the expected number of false alarms under H0, where the number of false alarms
of a rectangle rεR in an image x is

NFA(r, x) = ]R · IPH0 [k(r,X) ≥ k(r, x)] (3.3)

where X is a random image under model H0, ]R is the number of potential
rectangles in image X and IPH0dk(r,X) ≥ k(r, x)e is the probability of k(r,X)
being greater or equal to k(r, x). The smaller the NFA value is, the more significant
the rectangle r is. Because each pixel’s gradient is independent in rectangle, the
number of aligned point k(r) have a binomial distribution so that

IPh0 [k(r,X) ≥ k(r, x)] = b(n(r), k(r), p) (3.4)

where b(n, k, p) = Σn
i=k(n/i)pi(1−p)n−i, which makes it possible to calculate NFA

as
NFA(r) = N5 · b(n(r), k(r), p) (3.5)

as there are N4 potential line segments in a N ×N image for the start and end
point both have N2 possible (with one pixel accuracy), hence ]R = N5.
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If NFA is less than a treshold ε, the rectangle is accepted as a plausible line
segment.

Step 4: To get an even better NFA five dyadic precision steps are applied to
adjust the width of the approximation and the probability p followed by another
five dyadic steps.

3.2. Matching of lines
The methods for finding the pose estimation based on lines is based on finding
the the corresponding 3D lines and 2D image lines. These methods are either
based on geometric constraints, on their appearance, or a combination. Matching
based on appearance, a descriptor is used to find a feature vector out of the line’s
appearance, for instance using its neighbour.

3.2.1. Fast Directional Chamfer Matching

Micusik and Wildenauer [16] has developed a descriptor free visual indoor local-
ization using line segments. The approach is searching through the parameter
space of camera poses to generate tens of thousands of virtual camera views, and
then compared with the real line segments by Fast Directional Chamfer Matching
[14].
Using Chamfer Distance [4] will get rid of the problem where the complexity
of aligning one set of line segments with a second set (given a pair of images
containing line segments) is quadratic, as each line in the first set needs to be
compared to all of lines in the second. This method measures the discrepancy
of two contours, defined as the cost of aligning two edge maps ε = {xei}Nεi=1 and
τ = {xti}Nτi=1 as

d(ε, τ) = 1
Nτ

Σxt∈τmin
xt∈ε
‖ xe − xt ‖ (3.6)

However, the min function can be replaced by a look-up in the distance transform
(DT ) image IDTε of the edge map ε so that

d(ε, τ) = 1
Nτ

Σxt∈τIDTε(xt, γ) (3.7)

Where γ is a threshold for truncating the DT values, to achieve robustness against
noise in edgels.
The edge map and the template is divided into discrete orientation channels θi,
and sum the individual Chamfer scores. Then line detection algorithms, such
as Line Segment Detector, are used to split Edgels in ε into piece-wise linear
segments. A well-used segmentation is using 16 discrete orientation channels,
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0, 14, 26.6 . . . 166◦, and assign each edgel the discrete orientation closest to the
orientation of the fitted line segment. This means sixteen DT images IθiDTε are
computed on filtered binary images, which is an image composed of edgels from
edge map ε assigned with discrete orientation θ.
Given the 3D model consisting of line segments, the space of possible locations and
orientations of the query image is sampled. At each sampled location line segments
are projected into virtual views. In the template map τ , which corresponds to a
virtual view, the projected lines of the 3D model are splitted in smaller ones and
snapped into the discrete orientations. Then the template map becomes a map
of line segments expressed as

τ l = {l}Nτli=1 (3.8)

where li = [xsi , xei ] is a four element vector. The distance between the two edge
maps is then

d(ε, τ) = 1
N l
τ

Σxt∈τ ld(ε, l) (3.9)

Because the sum operation in 3.7 is expensive, [14] suggests to use integral con-
tours. Integral distance transform (IDT) images IθiDTEε are made by summing
pixels along a respective scan line. To compute it off-line, it needs one pass
though the query image. As a result, instead of summing along hundreds of pixels
of the edgels, only the endpoints of the line segments are used in IθiDTEε and then
divided by its length so that

d(ε, l) = I
θ(l)
IDTε(xe, γ)− Iθ(l)IDTε(xs, γ))

lleng
(3.10)

where the function θ(l) assigns a discrete orient to a line segment l as its closest
snapping orientation. The length of the line is found by ‖ xe − xs ‖.
Finally the template τ is found searching through the set of templates τset which
minimizes the distance d

τ∗ = arg min
τ∈τset

d(ε, τ) (3.11)

however [16] suggests to rather find the best template by replacing shortest dis-
tance with a cost function as

τ∗ = arg max
τ∈τset

c(ε, τ) (3.12)

where
c(ε, τ) = 1

Nτ l

∑
l∈τ l

δ(d(ε, l) < γ) (3.13)

with Nτ l being the number of line segments in the template map τ l, γ is the tresh-
old and the summed expression being a binary function returning 0 if expression
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is equal, and 1 otherwise. In this way, the algorithm selects the template map
with the highest number of matched lines.
Applying a search optimization will allow the algorithm to reach the maximum
without going through all elements in the sum operation. All template maps are
processed at the same time switching between, and one line is evaluated at the
time, the upper bound of the cost will then become

c(ε, τ1:i) = Nτ l − i+ i ∗ c(ε, τ1 : i)
Nτ l

(3.14)

where τ1:i represents the template map with the ith first line segments.
The algorithm in its full is then

Algorithm 3 Search for the K best alignments to a query
1: procedure LineSegmentDetection(ε)
2: Detect line segments in query, from ε
3: Compute integral contour images IθIDTε at 16 orientations of θ
4: Set upper bounds c(ε, τ)← 1 for all virtual views τ ∈ τset
5: set counters of processed lines iτ ← 1 for all τ
6: set counters of best matches k ← 0
7: push c(ε, τ) of all τ into the priority queue
8: repeat until k = K
9: take τ from the priority queue with the highest c(ε, τ)

10: evaluate iτ th line by scoring c(ε, τ1iτ )
11: iτ ← iτ + 1
12: ifiτ = Nτ l

13: k ← k + 1
14: else
15: push c(ε, τ1iτ ) into the priority queue
16: return(K)

3.3. Structure from motion
Structure from motion is the problem of simultaneously estimate the structure of
the environment as well as motion from visual input of a moving camera. Typically
points are used as they are easily detected and matched in images of natural scenes,
however especially when considering man-made objects, line segments contain far
more information about a scene.
There are several ways to solve this problem, however Micusik and Wildenauer
[15] suggest this method that consists of three stages:
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1. Initial 3D model is this stage the main goal is to form an initial 3D
structure building a base to which follow-up frames have to be incremen-
tally added. When building this model, both estimating relative camera
motion and triangulation corresponding features from the images needs to
be estimated simultaneously.
When working with lines, a minimum of three views are necessary for mak-
ing an initial 3D model. The relative pose is estimated in two stages by
decoupling rotation and translation. This way, only five correspondences
are necessary to find the translation with a linear solver, instead of 13 other-
wise. At the same time the line segment matching algorithm has to establish
a sufficient number of initial 2D-2D correspondences. From this available
information the translation and 3D model can be made by i.e. a RANSAC
procedure[7].

2. Pose in 3D model The absolute pose of each new input image are cal-
culated using the 3D model built so far. A matching algorithm is used to
establish enough correspondences between line segments in the query and
the 3D model.

3. Update 3D model As the initial 3D model is somewhat incomplete and in-
accurate, the 3D model is continuously updated. Using the pose estimation
from the previous step and then triangulate the detected line segments.

3.4. PnP - Perspective-n-Point
The Perspective-n-point problem was first introduced in 1981 by Fischler and
Bolles [8] for estimating the camera pose. This estimation is made by finding
point correspondences between known real features and their image plane coun-
terparts. Going from n 3D reference points to their 2D projections at least 3
points are needed, hence there are 6 degrees of freedom in the form of rotation
and translation, which follows the perspective project model for cameras:

spc = K[R |T ]pw (3.15)

where pc = [u, v, 1]T is the homogeneous image point, while pw = [x, y, z, 1]T is
the corresponding homogeneous world point. K is the matrix of intrinsic camera
parameters, s is a scale factor for the image point and R and T are 3D rotation
and translation matrices of the camera.
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s

 u
v
1

 =

 fx γ u0
0 fy v0
0 0 1


 r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



x
y
z
1

 (3.16)

In the K matrix, fx and fy are scaled focal lengths, γ is the skew parameter,
while (u0, v0) is the principal point.
A solution for the PnP problem can be classified in two ways, either as an iterative
or a noniterative method[20]. The noniterative methods are more efficient, but
have less accuracy when affected by noise (especially when number of features are
low) compared to the iterative method.
EPnP, DLT and P3P are some of the most common solutions for this problem
which will be further described.

3.4.1. P3P

The minimal form of the PnP problem is when n = 3, solved with three correspon-
dences[11] and is usually used in combination with RANSAC to remove outliers
[24].
To find the camera projection center point C, given three observed feature points
P1, P2 and P3, assuming the vectors pointing toward these points ~f1, ~f2 and ~f3
also are known. The new camera frame is defined as τ = (C, ~tx, ~ty, ~tz) where

~tx = ~f1

~tz =
~f1 × ~f2

‖ ~f1 × ~f2 ‖
~ty = ~tz × ~tx
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Figure 3.4.: Illustraion of the camera frame τ and the world frame η.

Through the transformation matrix T = [~tx, ~ty~tz]T , feature vectors can be trans-
formed to τ by

~fTi = T · ~fi (3.17)

The new world frame η from the world points P1, P2 and P3. The new spatial
frame is defined as η = (P1, ~nx, ~ny, ~nz) where

~nx =
~P1P2

‖ ~P1P2 ‖

~nz = ~nx × ~P1P3

‖ ~nx × ~P1P3 ‖
~ny = ~nz × ~nx

Using the transformation matrix N = [ ~nx, ~ny, ~nz]T the world points can be trans-
formed to µ using

Pµi = N(Pi − P1) (3.18)

The points P1 and P2 combined with the camera center C form a triangle where
two parameters are known, the distance d12 between P1 and P2. The second
parameter is the angle β between ~f1 and ~f2 which can be obtained by the dot-
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product cosβ = ~f1 . . . ~f2. Further the sine-law can give a way to obtain d12

‖ ~CP1 ‖
d12

= sin(π − α− β)
sin β (3.19)

A plane π containing P1, P2 and C, hence also ~nx, ~tx, ~ty, ~f1 and ~f2, can be defined
where the position of the camera center C inside the plane is

Cπ(α)(α) =

 cosα· ‖ ~CP1 ‖
cosα· ‖ ~CP1 ‖

0

 =

 d12 cosα sin(α+ β) sin−1 β
d12 sinα sin(α+ β) sin−1 β

0

 (3.20)

where α is the angle between ~nx and ~tx. For C, ~tx, ~ty and tz to be inside µ, a new
parameter is introduced, the rotation θ of π around ~nx. This rotation matrix is
expressed by

Rθ =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (3.21)

the camera center C is then defined as

Cη(α, θ) = RθC
π

 D12 cosα(sinα · cotβ + cosα)
D12 sinα cos θ(sinα · cotβ + cosα)
D12 sinα sin θ(sinα · cotβ + cosα)

 (3.22)

the tranformation matrix from µ to τ is given by

Q(α, θ) = [Rθ(~tπx,~tπy ,~tπz )]T
 − cosα − sinα cos θ − sinα sin θ

sinα − cosα cos θ − cosα sin θ
0 − sinα cos θ

 (3.23)

The values α and θ can be found by transforming the third point P η3 into τ , setting
the direction of the point equal to one of ~fT3 .

P τ3 = Q(α, θ)(P η3 − Cη(α, θ))

=

 − cosα · p1 − sinα cos θ · p2 + d12(sinα · cotβ cosα)
sinα · p1 − cosα cos θ · p2

− sin θ · p2

 (3.24)

φ1 =
f τ3,x
f τ3,z

, φ2 =
f τ3,y
f τ3,z

(3.25)
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these two conditions combined with 3.24 will finally result in

cotα =
φ1
φ2
p1 + cos θ · p2 − d12 · cotβ
φ1
φ2

cos θ · p2 − p1 + d12
(3.26)

expanding φ2 gives

sin2 θ · f2
2 p

2
2 = sin2 α(p1 − cotα cos θ · p2)2

(1− cos2 θ)(1 + cot2 α)f2
2 p

2
2 = p2

12 cotα cos θ · p1p2 + cot2 α cos2 θ · p2
2 (3.27)

Combining 3.26 and 3.27, expanding eventually leads to a fourth order polynomial
in the form of

a2 cos4 θ + a3 cos3 +a2 cos2 +a1 cos1 +a0 = 0 (3.28)

where

a4 = −φ2
2p

4
2 − φ2

1p
4
2 − p4

2

a3 = 2p3
2d12 cotβ + 2φ2

2p
3
2d12 cotβ − 2φ1φ2p

3
2d12

a2 = −φ2
2p

2
1p

2
2 − φ2

2p
2
2d

2
12 cot2 β − φ2

2p
2
2d

2
12 + φ2

2p
4
2 + φ2

1p
4
2 + 2p1p

2
2d12

+ 2φ1φ2p1p
2
2d12 cotβ − φ2

1p
2
1 + 2φ2

2p1p
2
2d12 − p2

2d
2
12 cot2 β − 2p2

1p
2
2

a1 = 2p2
1p2d12 cotβ + 2φ1φ2p

3
2d12 − 2φ2

2p
3
2d12 cotβ − 2p1p2d

2
12 cotβ

a0 = −2φ1φ2p1p
2
2d12 cotβ + φ2

2p
2
2d

2
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1d

2
12 + φ2

2p
2
1p

2
2 − p4

1

− 2φ2
2p1p

2
2d12 + φ2

1p
2
1p

2
2 + d2

12 cot2 β

Solving this fourth order polynomial give four real solutions for cos θ. Each value
for θ will also lead to one value for α, which makes it possible to solve the camera
center position and rotation

C = P1 +NTCη, R = NTQTT (3.29)

As the P3P provides many solutions with just three points, a fourth point is often
used in practice which gives a Å4P problem [12].

3.4.2. Direct linear transformation

A direct linear transformation is an algorithm to solve for a homography from a
set of point mappings. There are several algorithms for DLT, all have in common
that four point mappings are needed to find the eight independent entries. The
transformation in DLT is given by the equation

x′i = Hxi (3.30)
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where the transformation matrix H is to be found. If the jth row of H is denoted
by hTj 3.30 can be rewritten to

λx′i = Hxi =

 hT1 xi
hT2 xi
hT3 xi

 (3.31)

writing x′i = (x′i, y′i, w′i)T the cross product will be given as

x′i ×Hxi =

 y′ih
T
3 xi − w′ihT2 xi

w′ih
T
1 xi − x′ihT3 xi

w′ih
T
2 xi − y′ihT1 xi

 (3.32)

As hTj xi = xTi hj , this gives a set of three equations for solving H, which can be
expressed as  0T −w′ixTi y′ix

T
i

w′ix
T
i 0T −x′ixTi

−y′ixTi x′ix
T
i 0T


 h1
h2
h3

 = 0 (3.33)

finally giving the equation to be solved as

x′i ×Hxi = 0 (3.34)

to give a simple linear solution for H to be derived. Further to find all elements
in matrix H is rewritten as

Aih = 0 (3.35)

where h is a 9× 1 vector consisting all elements in H, all of whom unknown, and
Ai being a 3 × 9 matrix consisting a function of measurements. The equation
gives two independent equations to be solved as [10]

A1h
A2h
...

ANh

 = Ah = 0 (3.36)

which gives a homogeneous system. This system can be solved by applying Sin-
gular Value Decomposition which is in the form of

Pm×n = U2N×9Σ9×9V
T

9×9 (3.37)

both Um×n and V T
n×n are orthogonal matrices, and the last column of V will give

h.
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3.4.3. EPnP

Efficient PnP is a non-iterative solution to the PnP problem developed by Lepetit
[13]. The solution is expressed as a vector that lies in the kernel of a matrix,
denoted as M, either of size 2n×12 or 2n×9. In this case n reference points in the
camera coordinate system is expressed as a weighted sum of virtual control points.
The four control points used to express world coordinates will be cj , j = 1, ..., 4
while the known 3D coordinates known in the world coordinate system will be
pi, i = 1, ..., n. For describing which coordinate system the point coordinates are
expressed, pwi are used for the world coordinate system, while pci is used for the
camera coordinate system. Each reference point is then expressed as a weighted
sum of the control points

pi =
4∑
j=1

aijcj ,
4∑
j=1

aij = 1 (3.38)

To derive the matrix M first step is to let K be the camera internal calibration
matrix and expand

wi

[
ui
1

]
= Kpci = K

4∑
j=1

aijc
c
j (3.39)

where ui = 1, ..., n are the 2D projections of the pi = 1, ..., n reference points,
while wi are scalar projective parameters. Expanding the expression for specific
3D coordinates [xcj , ycj , zcj ] of each ccj control point, 2D coordinates [ui, vi]T of the
ui projections, as well as focal lengths coefficients fu, fv and the (uc, vc) principal
point gives

wi

 ui
vi
1

 =

 fu 0 uc
0 fv vc
0 0 1

 4∑
j=1

aij

 xcj
ycj
zcj

 (3.40)

There are 12+n unknown parameters of this linear system, which are the 12 con-
trol point coordinates (xcj , ycj , zcj)i=j,...,4 and the n projective parameters wii=1,...,n.
In the last row it is implied that wi = Σ4

j=1aijz
c
j , which gives two linear equations

from the first two rows for each reference point

4∑
j=1

aijfux
c
j + aij(uc − ui)zcj = 0 (3.41)

and
4∑
j=1

aijfvy
c
j + aij(vc − vi)zcj = 0 (3.42)



30 Chapter 3. Theory

linking these equations for all n reference points can give a linear system in the
form of

Mx = 0 (3.43)

where M is a 2n × 12 matrix made up by 3.41 and 3.42 for each reference
point. On the other side, x is a vector with the size of 12, expressed as x =
[cc1T , cc2T , cc3T , cc4T ]T and are made up by the unknowns. Further, x can be ex-
pressed as

x =
N∑
i=1

βivi (3.44)

here vi represent the columns of the right-singular vectors of M and N being the
number of null singular values in M .

3.5. SLAM
Simultaneous Localization and Mapping (SLAM) is the process of updating a map
of an unknown environment while keeping track of the position of the robot.
When applying SLAM, there are two givens, the robot’s controls or path and
relative observations and landmarks. These can represented as:
The robot controls:

U1:t = {u1, u2, ..., ut}

Already observed landmarks:

Z1:t = {z1, z2, ..., zt}

On the other hand, there are two unknowns that are wanted, the actual path
of the robot, and the map of all landmarks. These can be represented as:
Path of the robot:

X1:t = {x1, x2, ..., xt}

Map of features:
m = {m1,m2, ..., zk}

As shown in figure 3.5 this problem can be illustrated graphical where the top
layer illustrates the robot’s path, next layer control inputs, third layer observed
landmarks and final layer a map of the observed landscape. However, putting
these four factors together gives the following equation for the SLAM problem:

p(x0:t,m|z1:t, u1:t) (3.45)

There are three main paradigms within solving the SLAM problem. The first
is using an Extended Kalman filter, the second is using a particle filter and the
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Figure 3.5.: Illustration of the SLAM problem

third is Graph-based [2]. All three all have their different use cases and different
setbacks. However, in this thesis, only EKF SLAM is described further.

3.5.1. EKF SLAM

SLAM based on the Extended Kalman Filter is one of the first SLAM methods
introduced [21] and also one the more simple ones. The method uses a linearized
Gaussian probability distribution model and is based on online SLAM using max-
imum likelihood data association. A limitations using this method is because of
computational difficulties the number of landmarks are quite low (<1000), hence
the most ideal map is feature based. This is a result of the complexity of the
algorithm as it exponentially grows with the number of landmarks. As the EKF
algorithm also makes a Gaussian noise assumption for robot motion and percep-
tion, the amount of uncertainty in the posterior must be relative small, otherwise
the linearization results in intolerable errors and the algorithm fails. When using
EKF SLAM with maximum likelihood it uses EKF framework to find a solution
to:

p(xt,m|z1:t, u1:t) = η p(zt|pt,m)︸ ︷︷ ︸
Observation model

∫
p(pt|pt−1, ut)︸ ︷︷ ︸
Motion model

p(pt−1|z1:t−1, u1:t−1)︸ ︷︷ ︸
Prior distribution

dpt−1

(3.46)

To represent the localization of the robot there is a 3x1 pose vector and a 3x3
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covariance matrix.

xk =

 xk
yk
θk

 , Ck =

 σ2
x σxy σxθ

σyx σ2
y σyθ

σθx σθy σ2
θ


This can be expanded to include every observed landmarks, for every timestep k,
growing both the state vector and the covariance matrix.

xk =



xR
m1
m2
...
mn


k

, Ck =



CR CRM1 CRM2 . . . CRMn

CM1R CM1 CM1M2 . . . CM1Mn

CM2R CM2M1 CM2 . . . CM2Mn

...
...

... . . . ...
CMnR CMnM1 CMnM2 . . . CMn


k

Using these representations can be put together making a state representation
of both the robots pose and every observed landmark. Using Gaussian distribu-
tion, this will become a (3+2N)-dimensional matrix that can handle hundreds of
dimensions.

Bel(xt,mt) =





x
y
θ
l1
l2
...
ln


︸ ︷︷ ︸

µ

,



σ2
x σxy σxθ σxl1 σxl2 . . . σxln

σxy σ2
y σyθ σyl1 σyl2 . . . σyln

σxθ σyθ σ2
theta σθl1 σθl2 . . . σθln

σxl1 σyl1 σθl1 σ2
l1

σl1l2 . . . σl1ln
σxl2 σyl2 σθl2 σ2

l1l2
σ2
l2

. . . σl2ln
...

...
...

...
... . . . ...

σxln σyln σθln σ2
l1ln

σl2ln . . . σ2
ln


︸ ︷︷ ︸

Σ



(3.47)

Next, when having the state representations and a matrix to store the observed
landmarks, it is time to set up the EKF Algorithm. As described in chapter 2.1.1
on a higher level, the Kalman Filter consists of two steps, the prediction step,
and then the correction step. However, to fill these matrices demands a lot of
calculations as will be described.
The first step in the Prediction step, µt = g(ut, ut−1) will be calculated as in 3.48.
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Algorithm 4 Extended Kalman Filter Algorithm
procedure ExtendedKalmanFilter(µt−1,Σt−1, ut, zt)

Prediction s
¯
tep:

µt = g(ut, ut−1)
Σt = GtΣt−1G

T
t +Rt

Correction s
¯
tep:

Kt = ΣtH
T
t (HtΣtH

T
t +Qt)−1

µt = µt +Kt(zt − h(µt))
Σt = (I −KtHt)Σt

return µt,Σt


x′

y′

θ′

...

 =


x
y
θ
...

+


1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0︸ ︷︷ ︸

2N cols


T

︸ ︷︷ ︸
FTx

 −
vt
ωt

sin θ − vt
ωt

sin(θ + ωt∆t)
vt
ωt

cos θ − vt
ωt

cos(θ + ωt∆t)
ωt∆t


︸ ︷︷ ︸

g(ut,xt)
(3.48)

The second and last step in the Prediction step is a little more complex. However,
Σt = GtΣt−1G

T
t + Rt will be calculated as in 3.50. Gxt is found by calculating

the Jacobian of the motion model, but for simplicity, only the result is shown in
refunder.

Gxt =

1 0 − vt
ωt

cos θ + vt
ωt

cos(θ + ωt∆t)
0 1 − vt

ωt
sin θ + vt

ωt
sin(θ + ωt∆t)

0 0 1

 (3.49)

Σt =
(
Gxt 0
0 I

)
︸ ︷︷ ︸

Gt

(
Σxx Σxl

Σlx Σll

)
︸ ︷︷ ︸

Σt−1

(
(Gxt )T 0

0 I

)
︸ ︷︷ ︸

GTt

+F Tx R
x
t Fx︸ ︷︷ ︸

Rt

(3.50)

For the second step of the algorithm, the correction step, what is necessary to
finish is the Kt. To solve this the Jacobian is needed. First the low dimensional
Jacobian is calculated, further it is mapped to the high dimensional space.
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lowH i
t = 1

q

(
−√qδx −√qδy 0 √

qδx
√
qδy

δy −δx −q −δy δx

)
(3.51)

H i
t = lowH i

tFx,j , where Fx, j =



1 0 0 0 · · · 0 0 0 0 · · · 0
0 1 0 0 · · · 0 0 0 0 · · · 0
0 0 1 0 · · · 0 0 0 0 · · · 0
0 0 0 0 · · · 1 0 0 0 · · · 0
0 0 0 0 · · · 0︸ ︷︷ ︸

2j−2

1 0 0 · · · 0︸ ︷︷ ︸
2N−2j


(3.52)

This step happens when a new landmark with index j is observed at measurement i
at time t. The expected observation is computed using the Jacobian of h according
to the current estimates:

δ =
(
δx
δy

)
=
(
µj,x − µt,x
µj,y − µt,y

)
, q = δT δ, ẑit =

( √
q

atan2(δy, δx)− µt,θ

)
= h(µt)



Chapter 4.

Line pose estimation

This chapter contains the work that has been conducted through the master
thesis. First, the latest development within pose estimation and computer vision
has been discussed and analyzed. The main focus with this thesis has been to
look at methods for finding the camera pose estimation based on detected line
segments, hence this will be the majority of this chapter. Another part of this
chapter will consist of methods and algorithms that would be necessary to make
an independent top of the state SLAM system. This includes among other things
feature detection, matching of features detected and structure from motion.

4.1. Perspective-n-Lines
Camera pose estimation based on 3D/2D correspondences is a fundamental task
required for various applications within robotics and computer vision, such as
localization and navigation of a robot, augmented reality or operation of robots
based on visual information. While PnP is a well studied topic, PnL is lagging a
little behind because of its mathematical complexity of handling lines. However,
lines are more robust as they can still be viewed be used even if partially occluded
[18].
DLT-Plücker-Lines are the PnL method that has been in focus in this thesis and
described in depth in 4.2. Some other state of the art PnL methods are ASPnL,
Mirzaei and RPnL.
RPnL [23] works with four lines or more for retrieved the optimal solution from a
sixteenth order cost. The method uses an intermediate model coordinate system
which is aligned with a 3D line of the longest projection. These lines are divided
into triples, and for each a P3L (the same method as explained in 3.4.1, but using
lines instead) polynominal is formed. The optimal solution of the polynomial
system is found from the roots of its derivative in terms of a least squares residual.
ASPnL (Accurate Subset based PnL)[22] is a modified version of RPnL, to be
used on small line sets for better accuracy. A drawback of this method however,
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it is stated in the article that the speed is not among the best.
Mirzaei and Roumeliotis [17] proposed the PnL problem as nonlinear least squares,
by solving it as an eigenvalue problem. It is solved through the eigendecomposi-
tion of a 27×27 multiplication matrix obtained through constructing a polynomial
system with 27 candidate solutions.

4.2. DLT-Plücker-Lines
The process of DLT-Plücker-Lines can be devided into three parts[19]. First the
input data is prenormalized to achieve good conditioning. Then there is estimated
a projection matrix using homogeneous linear least squares, hence the effect of
prenormalization will be reversed. Finally the pose parameters are extracted from
the estimated projection matrix.
DLT Plücker-Lines takes advantage of the linear projection of 3D lines parame-
terized using Plücker coordinates onto the image plane, which have the benefit of
higher accuracy, compared to for instance regular DLT-lines. The transformation
between the 3D line L and its projection l is described by the projection matrix
P as

l ≈ PL (4.1)

where P is a 3× 6 matrix. Hence, as P has 18 entries, a minimum of 9 lines are
needed. l is a homogeneous 2D line in the normalized image plane, described as
(lx, ly, lw).

Figure 4.1.: A 3D line L parameterized using Plücker coordinates is defined by
a normal U and direction vector V
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The transformation from the world coordinate system to camera coordinate sys-
tem can be transcribed as

LC = TC
WLW (4.2)

where T is a 6× 6 line motion matrix defined as

T =
(

R R(−t)×
03×3 R

)
(4.3)

R being a 3×3 rotation matrix and t being the translation vector, used for finding
the skew-symmetric matrix (t)×. As shown in 2.2.8, the line projection matrix P
is equal to the upper half of T and can be found by

P =
(

R R(−t)×
)

(4.4)

Having defined the core of camera pose estimation, using the line projection matrix
P , which contains all parameters to be found, tx, ty, tz, α, β, γ. This system of
linear equations can in 4.1 be solved as in 3.4.2 by transforming each equation of
4.1 into a homogeneous system

Mp = 0 (4.5)

where M being a 2n×18 measurement matrix containing coefficients of equations
from 3D lines and projection correspondences. The matrix M is given by

m(2i−1) = [liwLi1 0 − lixLi1 − liwLi2 0 − lixLi2 · · · − liwLi6 0 − lixLi6]
m(2i) = [0 − liwLi1 − liyLi1 0 − liwLi2 − liyLi2 · · · 0 − liwLi6 − liyLi6]

where m(j) is row j of M , and where the rows m(2i−1) and m(2i) are due to
line correspondence i between Li and li where i = 1 . . . n, n ≥ 9. Here li =
[lix, liy, liz]T are the homogeneous coordinates of a 2D line li in the normalized
image plane, while Li = [Li1, Li2, Li3, Li4, Li5, Li6]T are the Plücker coordinates
of a corresponding 3D line Li

Further the known elements in 4.1 need to be prenormalized as shown in 4.2.1.
After the data is prenormalized the given equations in 4.5 can be solved by finding
the Singular Value Decomposition of M . Further the projection matrix P can be
made from the 18-vector p.
Even though P has 18 entries it only has 6 degrees of freedom, tx, ty, tz, α, β, γ.
Of 12 independent linear constraints left, the first 6 are imposing the rotation
matrix R and the last 6 imposed by the skew-symmetric matrix (t)×.
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4.2.1. Prenormalization

The choice of coordinate system is important for the DLT method to work prop-
erly, hence it is necessary to prenormalize the data to get the measurement matrix
M properly conditioned. However, the optimal transformations are unknown so
in practice the forcus is to reduce the large values of point coordinates. A way to
do this is to center the data around the origin as well as scaling the coordinates
so the average absolute value is 1. Hence, the average distance to the origin is

√
2

in 2D, and
√

3 in 3D.

Algorithm 5 Prenormalization of 3D lines
1: procedure Prenormalization(Lj , j = 1 . . .m)
2: For all lines: Lj =

√
3

‖Vj‖

3: For all lines: Lj =
[
I [−T ]×
0 I

]
Lj

4: Sx = mean(Vj)
mean(Lj,1)

5: Sy = mean(Vj)
mean(Lj,2)

6: Sz = mean(Vj)
mean(Lj,3)

7: For all lines: Lj =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1


8: return Set of m prenormalized 3D lines Lj , j = 1 . . .m

In this case, because the V -part of the 3D line L is the direction of the line,
only the U -part is affected by both translation and scaling. Hence L is first
multiplied so that ‖ V ‖=

√
3, followed by an applied translation so that the

average magnitude of U is minimized.

4.2.2. Estimation of projection matrix

The corresponding measurement matrix M has 18 columns and is made up by the
line projection matrix P and its estimate P ′, both of whom with size 3× 6. The
number of rows are determined from the number of 3D/2D line correspondences.
Each of these correspondences generates three rows structured as

M (3j−2:3j,:) = LT
j ⊗ [lj ]× (4.6)

which will be a 3m × 18 matrix, with the line correspondences Lj ↔ lj , (j =
1 . . .m).
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4.2.3. Pose parameters

Before extracting the pose parameters from the estimated projection matrix P it
is first necessary to scale the matrix to sP ′ so that all three singular values are
equal to 1.

Algorithm 6 Extraction of pose parameters from P
′

1: procedure PoseExtract(P ′, s)
2: P

′
2 ← right 3× 3 submatrix of P ′

3: UΣV T ← SV D(sP ′2)

4: Z =

 0 1 0
−1 0 0
0 0 0


5: W =

 0 −1 0
1 0 0
0 0 1


6: q = Σ1,1+Σ2,2

2
7: Compute 2 candidate solutions (A,B):

RA = UWdiag(11± 1)V T , [T ]×A = qV ZV T

RB = UWdiag(11± 1)V T , [T ]×B = qV ZV T

8: Use the most physically plausible solution so that the scene lies in front of
the camera

R = RA, T = TA or
R = RB, T = TB

9: return(R,T )

From this, the camera pose parameter is found from the right part of sP ′, getting
an estimated 3 × 3 skew-symmetric matrix multiplied with a rotation matrix.
From this matrix, the translation can be found by

T = qV ZV T (4.7)

where V is from the SVD process, z is a where q is a variable found by

q = Σ1,1Σ2,2
2 (4.8)

which is the average of the first two singular values of sP ′2. The rotation matrix
R is found Also, so that det(RA) = det(RB) = 1, either +1 or −1 needs to be put
in the last diagonal.
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4.3. Premises for PnL
As the datasets that were used already consisted of predefined line segments, and
matched lines, there were conducted experiments to look into the deviations. This
to check whether or not the algorithm is suitable for real world applications, or
the potential in different situations.

4.3.1. OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer
vision and machine learning software library. This library, with its 2500 optimized
algorithms, has been proven useful for the thesis in the way of testing several
vision methods in a time efficient way. It is written natively in C/C++ and are
very well documented for both C++ and Python. As most of the coding has been
conducted using Python, this is a major advantage. OpenCV is built in a modular
structure, some of whom that has been used in the thesis are described below:

1. Core: this module defines basic data structure and basic functions used by
all other modules.

2. Imgproc: is the module for image processing, which includes functions
to manipulate images, like image filtering, finding image gradients, edge
detection, Hough transform etc.

3. line descriptor: is a module for binary descriptors for lines extracted from
an image, like Line Segment Detector.

4. calib3d: is a module for multiple-view algorithms, like camera calibration,
3D reconstruction and object pose estimation.

4.3.2. Line Segment Detector

The OpenCV library has a built in Line Segment Detector which can be found in
the "Image Processing" module. When programming in Python the first step is
to import the library by writing

import cv2

The input needed is an image that first need to be converted to grey scale for the
algorithm to work. Next step is to create a smart pointer to a LineSegmentDe-
tector Object and initialize it. There are seven different parameters that can be
tweaked for specific use cases, or the standard values can be applied

img = cv2 . imread ( image , 0 )
LSD = cv2 . createLineSegmentDetector ( [ r e f i n e [ , s c a l e
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[ , s igma_scale [ , quant [ , ang_th [ , log_eps
[ , density_th [ , n_bins ] ] ] ] ] ] ] ] )

where the parameters are

• refine: this parameter set if the standard parameters is to be used or to
customized.

• scale: the scale of the image that will be used to find the lines, in the range
of 0 to 1.

• sigma scale: sigma for the Gaussian filter.

• quant: bound to the quantization error on the gradient norm.

• ang th: gradient angle tolerance, given in degrees.

• log eps: detection treshold.

• density th: the minimum density of aligned region points in the enclosing
rectangle.

• n bins: the number of bins in pseudo-ordering of gradient modulus.

Next information of the line segments can be found from

LSD. de t e c t ( image [ , l i n e s [ , width [ , prec [ , nfa ] ] ] ] )

where the output parameters are

• lines: gives a vector of four elements as an output, representing the end-
points of a line as (x1, y1, x2, y2).

• width: gives a vector describing the widths of the regions.

• prec: vector of precision with which the lines are found.

• nfa: vector containing number of false alarms in the region.





Chapter 5.

Results

The main goals of this thesis was to implement the DLT-Plücker-Lines algorithm
and then determine the possibility of using the method in SLAM. To verify, the
accuracy and speed were measured on two different use cases and compared to
different state of the art methods. These measurements should cover majority of
applications for which pose estimation are used.
To determine the possibility of using the method in SLAM also included looking
into the premises of the algorithm to work, such as detecting the line segments.
Hence, the Line Segment Detector method were also evaluated, as this is consid-
ered as a crucial step.

5.1. Data
The experiments where conducted on datasets from University of Oxford and even
though quite some time were used on understanding, converting and implementing
the data into the code, the results were satisfactory. An advantage of using these
datasets is that a lot of methods and algorithms have used the same data, hence
it is easy to compare the results. Also, there are information about what is to be
found which means results can easily be checked.
The datasets used in this case consisted of three images of a building as well as
eleven images of a hallway, all from different views. For each image, there were
three corresponding files attached, line segments given as (x0, y0, x1, y1) for each
line, then affine multiscale Harris corners given as (x, y), and finally a 3×4 camera
projection matrix per image. In addition, the dataset consists of four more files.
One file consisting 3D points in the image given as (x y z) for each detected
point, one with 3D line segments given as (x0, y0, z0, x1, y1, z1) for each line. In
addition, the last two files are information about the matching of features, one
for corner matches and the other for line matches. These files describes which
features that corresponds to each other in all images.
The files essential for the PnL algorithm are the line segments for each image,
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the camera projection matrix’, the 3D line segment file and the matching file for
lines. The images has also been implemented for illustrating the results.
The dataset can be retrieved at: http://www.robots.ox.ac.uk/ vgg/data/data-
mview.html

5.2. Experiments
The experiments were conducted on data described in 5.1 on two quite different
use cases. The first one is a corridor or hallway where the camera can clearly be
observed moving further inwards. The second dataset is an outdoor environment,
with a building from Oxford in focus. Another differences between the datasets
except the environments are the number of lines, camera movement and number
of images. The error measurements have been found by:

• Rotation error: is calculated as the absolute value of (RTR′) and then
converted from radians to degrees.

• Translation error: is the absolute value of the difference between esti-
mated and true position, ‖ test − t ‖.

The third measurement is the speed. The efficiency of all results was found by
measuring runtime on a desktop PC with Intel core i7-6500U 2.50GHz CPU and
8GB of RAM.

5.2.1. Results hallway

The hallway dataset consists of eleven camera views, five of whose results are
displayed, and a total of 69 line segments. In 5.2 the different images, or camera
views, are overlaid with reprojections of 3D line segments found from the DLT-
Plücker-Lines algorithm.

The results from each view is shown in 5.2.1, which are rotation and translation
error from image to image as well as time spent for each.
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Figure 5.2.: Results of the hallway from five angles.

Image nr. 1 2 3 4 5
Rotation error (◦) 0.158 0.062 0.086 0.161 0.347

Translation error (m) 0.322 0.0154 0.0175 0.0303 0.0614
Time (s) 0.327 0.206 0.225 0.209 0.240

5.2.2. Results Oxford building

The Oxford building dataset consists of three camera views, all of whom are
displayed, and a total of 302 line segments. In 5.3 the different images, or camera
views, are overlaid with reprojections of 3D line segments found from the DLT-
Plücker-Lines algorithm.

Figure 5.3.: Results of the Oxford building from three angles.

The results from each view is shown in 5.2.2, which are rotation and translation
error from image to image as well as time spent for each.

Image nr. 1 2 3
Rotation error (◦) 0.224 0.095 0.694

Translation error (m) 0.062 0.101 0.291
Time (s) 0.527 0.309 0.297
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5.2.3. Results compared

The table 5.2.3 consists of all measurements from the different datasets, where
the errors are the average of all views.

Dataset Rotation
error

Translation
error

Time per
image

Nr. of line
segments

Hallway 0.163 0.031 0.241 69
Oxford building 0.338 0.151 0.378 302

As can be seen in the data the calculation time of the building is a little higher than
the hallway, which is not unexpected as the number of lines are higher. However,
the time does not seem to increase drastically with the number of lines. What
might be more surprisingly is that both the translation as well as the rotation
error is smaller for the hallway than for the building. Even though there are more
lines in the building dataset there can be seen from the images that the distance
between each camera view is far further. While the camera moves a long distance
between each image in the building data, the hallway camera barely moves from
image to image that can explain these results. The speed of the algorithm seems
to be some high, especially if using the algorithm in a real time SLAM. That
being said, the code can be written more efficient and in C/C++.
Further the results have been compared to results from other state of the art PnL
methods.

Hallway Oxford building
Dataset Rotation

error
Translation
error

Rotation
error

Translation
error

Dlt-Plücker-Lines 0.163 0.031 0.338 0.151
ASPnL 0.10 0.03 0.20 0.08
Mirzaei 0.22 0.10 15.47 7.37
RPnL 0.40 0.13 0.43 0.22

As can been seen in the table 5.2.3 there is not much difference from the best
displayed. The ASPnL algorithm doing only slightly better. The time is also a
part of the factor, but as the results from this theses can not be directly compared,
because of different hardware, programming language etc., these numbers has
been left out. However, the ASPnL method has been referred to as a considerable
slower compared to the rest.

5.2.4. Line Segment Detector

The Line Segment Detector algorithm were applied on the images from the datasets
to compare the results to the line segments in the datasets. The results are shown
in 5.4 for the line detected in the hallway images and 5.5 for the Oxford building.
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Figure 5.4.: Line segments found in different images from hallway.

Figure 5.5.: Line segments found in the different camera views of the Oxford
building.

In 5.2.4 both the number of line segments found and in the data is listed from each
images. No refinements were applied in this case and standard parameters were
used. As can be seen from the results, the number of lines found is approximately
five times as high. This will result in a way higher time spent on running the
matching and PnL algorithms. From the images there can be seen that the lines
lies very close together in the Oxford building images, which can make them hard
to match as they are so close together as well as it would be unnecessary with
so many for a good results in the matching process. To get fewer and keep the
better line segments, the detection treshold or the sigma for the Gaussian filter
can be changed and tweaked.

1 2 3

Hallway From LSD 378 395 358
From data 69 69 64

Building
exterior

From LSD 1827 1699 1758
From data 302 302 302





Chapter 6.

Discussion

As shown in the results, the accuracy of the DLT-Plücker-Lines method is very
good as well as stable through all images. An interesting point worth mentioning
is that the accuracy error for the Oxford building dataset is actually worse than
the hallway, even the number of line segment was close to five times more. A rea-
sonable reason for this could be that the movement between each image Hallway
dataset is much smaller, hence the error with respect to total distance could be
a better measurement, but unfortunately unavailable. However, the results from
each images are very volatile and because there were only three images in the
Oxford building dataset, the peak drastically increases the average.
The speed of the algorithm has been mentioned as an issue in the previous chapter,
and if implemented into a real time system this should be focused more on. Coding
in C/C++ instead of python could be a solution for making the program more
efficient, but is hard to quantify. Decreasing the number of lines could also be a
solution, as can be read from the results, the time spent on estimating each pose
was 50% higher for the Oxford building. On the other hand, reducing the number
of line segment could decrease the accuracy, and would need to be considered and
evaluated from cases to case.
The Line Segment Detector results seems to have an accuracy within reason,
though the output gave about five times as many line segments were detected
compared to the datasets. Having in mind that there is advantageous to improve
the speed for pose estimation. Because of this, the standard parameters from
OpenCV should be changed for filtering the line segments, and reduce the total
amount. Both the treshold as well as the sigma parameter in the Gaussian filter
can be changed for this to happen.

6.1. Implementation in SLAM
As seen from the results, DLT-Plücker-Lines is a method that has great accuracy
and would therefor be suitable for estimating the camera pose in a SLAM system.
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However, a concern would be the speed of the algorithm and if not improved
significantly, there would only be about two calculations per second. This might
work if the camera is not moving at a high speed, but improving the speed would
be beneficial anyway. As the methods mentioned in this thesis is based upon using
line segments, man made features such as indoor environments would be very well
fitted use case.
A version of SLAM is proposed in 6.1, which combines different methods described
and discussed so far. The suggestion is based on EKF SLAM, using only a single
monocular camera as input source.

Figure 6.1.: Block diagram of how a SLAM application could be made using the
methods explained in the thesis.

Fast Directional Chamfer Matching [16] has been referred to by [18] as one of the
most suitable methods for such cases. However, the implementation of this method
would take some time as it is somewhat advanced. The Line Segment Detector
is as previous described one of the best available line segment detectors at the
moment, both with respect to speed as well as accuracy. The implementation
of this method is a lot harder than the well known and often used Hough Line
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Transform, but using OpenCV the implementation time would be slightly longer.
Using line segment instead of points, which has been the most common problem
to research, will give results of higher quality when it comes to texture-less scenes,
such as indoor environments. This is a result of line features being more stable
than point features and more robust to occlusions. In addition, point based pose
estimation is only limited to cases with enough distinctive points, which can be
challenging considering indoor environments. On the other side, detecting lines
is a lot more challenging than detecting points with respect to the mathematical
difficulty.





Chapter 7.

Conclusion

This thesis has been focusing on pose estimation through lines along with pre-
conditions for it to work in an independent system, such as SLAM. Some of the
preconditions described are state of the art methods, both for finding line segment
as well as matching line segments from a 3D model to line segments found. The
DLT-Plücker-Lines method were programmed and tested on real world datasets
and compared to other state of the art methods.
The results from the datasets were very promising, with an accuracy that was the
second best on the datasets used and only slightly behind the best. The method
were tested on two surroundings, one outdoor environment with relatively long
distance between the camera views and more than 300 line segments and the
other of an indoor environment with 69 line segments. The algorithm took a little
more time to run on the dataset with the most lines, however, the time does not
increase dramatically. On both datasets the results were among the best compared
to the other methods. On the other side, a concern is the speed measured on the
implemented algorithm. If being used in real-time systems 0.3 seconds per image
seems a little too high. This can be improved by focusing on making the code
more efficient or programming in C/C++ language.
Testing the line segment detection gave satisfying results in the form of accuracy
but implemented in a system it would be beneficial to decrease the number of line
segments. Being more selective when choosing line segments to use makes the
system more efficient without compromising the accuracy.
Finally there were proposed a SLAM composed of the Line Segment Detector, Fast
Direct Chamfer Matching, Extended Kalman Filter and DLT-Plücker-Lines. This
shows a new way of using the pose estimation algortihm, DLT-Plücker-Lines, in a
real world and real time applicant/system for determine the location of a moving
robot simultaneously as mapping the surroundings.
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Appendix A.

DLT-Plücker-Lines

import csv
import math
import numpy as np
import matp lo t l i b . pyplot as p l t
import matp lo t l i b . image as mpimg
import s t a t i s t i c s
import time

l3DFileName = ’ bt . l3d ’
l ineMatchFileName = ’ bt . nview− l i n e s ’
img1Nr = 0
imgNrs = 11
imgPartName = str ( ’ 00 ’ )
imgExt = ’ . jpg ’

for imgNr in range ( imgNrs ) :
t0=time . time ( )
#Read 3D l i n e endpo in t s ( x0 , y0 , z0 , x , y , z ) :
endPts3D_raw = read_from_fi le ( ’ bt . l3d ’ )
endPts3D_raw = np . array ( [ f loat ( x ) for x in

endPts3D_raw . s p l i t ( ) ] )
l engde=int ( len ( endPts3D_raw) /6)
endPts3D = np . reshape ( endPts3D_raw , ( lengde , 6 ) )

#Read 2D l i n e s
endPtsImg_temp = read_from_fi le ( ’ bt . 00 ’+str ( imgNr )+’ .

l i n e s ’ )
endPtsImg_temp = [ f loat ( x ) for x in endPtsImg_temp .

s p l i t ( ) ]
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lengde=int ( len ( endPtsImg_temp ) /4)
endPtsImg_temp = np . reshape ( endPtsImg_temp , ( lengde , 4 )

)
endPtsImg = np . array ( [ 0 , 0 , 0 , 0 ] )

#Read 3D−2D l i n e endpo in t s :
matches_raw = read_from_fi le ( l ineMatchFileName ) #nview

l i n e s , which l i n e matches
matches_raw = [ x for x in matches_raw . s p l i t ( ) ]
matches_temp = [ ]
for i in range ( imgNr , len (matches_raw ) , imgNrs ) :

matches_temp . append (matches_raw [ i ] )
NLINES=0
matches = [ ]
line3DEndPts = np . array ( [ 1 , 1 , 1 , 1 ] )
for i in range ( len (matches_temp ) ) :

i f matches_temp [ i ] != ’ ∗ ’ :
matches . append ( int (matches_temp [ i ] ) )
line3DEndPts = np . vstack ( ( line3DEndPts , np .

ones ( ( 2 , 4 ) ) ) )
n = NLINES∗2
line3DEndPts [ n ] [ 0 ]= endPts3D [ i ] [ 0 ]
line3DEndPts [ n ] [ 1 ]= endPts3D [ i ] [ 1 ]
line3DEndPts [ n ] [ 2 ]= endPts3D [ i ] [ 2 ]
line3DEndPts [ n+1][0]= endPts3D [ i ] [ 3 ]
line3DEndPts [ n+1][1]= endPts3D [ i ] [ 4 ]
line3DEndPts [ n+1][2]= endPts3D [ i ] [ 5 ]

endPtsImg = np . vstack ( ( endPtsImg ,
endPtsImg_temp [ matches [NLINES ] ] ) )

NLINES += 1
line3DEndPts = line3DEndPts [ : − 1 , : ]
endPtsImg = endPtsImg [ 1 : , : ]

#Read camera p r o j e c t i on matrix
matches_raw = read_from_fi le ( ’ bt . 00 ’+str ( imgNr )+’ .P ’ )
matches_raw = [ f loat ( x ) for x in matches_raw . s p l i t ( ) ]
P_pm = [ [ ] , [ ] , [ ] ]
l ength = len (matches_raw ) /3
for j in range (3 ) :

l a s t = int ( l ength ∗( j +1) )
f i r s t = int ( j ∗ l ength )
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P_pm[ j ]=matches_raw [ f i r s t : l a s t ]
K_R_T = KR_from_P(P_pm)
K = K_R_T[ 0 ]
R = K_R_T[ 1 ]
t = K_R_T[ 2 ]

lineEndPtsImg_estim = np . array ( [ [ f loat (1 ) for c o l in
range (3 ) ] for row in range (2∗NLINES) ] )

for i in range ( len ( line3DEndPts ) ) :
i f i % 2 == 0 :

n=int ( i /2)
lineEndPtsImg_estim [ i ] [ 0 ]= endPtsImg [ n ] [ 0 ]
l ineEndPtsImg_estim [ i ] [ 1 ]= endPtsImg [ n ] [ 1 ]
l ineEndPtsImg_estim [ i +1][0]= endPtsImg [ n ] [ 2 ]
l ineEndPtsImg_estim [ i +1][1]= endPtsImg [ n ] [ 3 ]

line2DEndPts_estim = np . dot (np . l i n a l g . inv (K) ,np .
t ranspose ( lineEndPtsImg_estim ) )

#Camera pose e s t ima t ion
R_t_estim = l inePoseEst imat ion ( line3DEndPts ,

line2DEndPts_estim , NLINES)
R_estim = R_t_estim [ 0 ]
t_estim = R_t_estim [ 1 ]

ro tEr ro r (R, R_estim )
t ransErro r ( t , t_estim )

R_cam = rotMatr ix2EulerAngles (R_estim )
rotX_cam = R_cam[ 0 ]
rotY_cam = R_cam[ 1 ]
rotZ_cam = R_cam[ 2 ]
TM_estim = getTransformationMatr ix ( rotX_cam , rotY_cam ,

rotZ_cam , t_estim )

line2DEndPts_estim = np . dot (TM_estim , np . t ranspose (
line3DEndPts ) )

lineEndPtsImg_estim = np . dot (K, line2DEndPts_estim )

for i in range (3 ) :
l ineEndPtsImg_estim [ i ] = lineEndPtsImg_estim [ i , : ] /

lineEndPtsImg_estim [ 2 , : ]
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im = p l t . imread ( ’ bt . 00 ’+str ( imgNr )+’ . pgm ’ )
implot = p l t . imshow ( im)

t1=time . time ( )
t o t a l = t1−t0
print ( ’ Tid : ␣ ’ , t o t a l )

p l t . p l o t ( [ l ineEndPtsImg_estim [ 0 , : : 2 ] ,
l ineEndPtsImg_estim [ 0 , 1 : : 2 ] ] , [ l ineEndPtsImg_estim
[ 1 , : : 2 ] , l ineEndPtsImg_estim [ 1 , 1 : : 2 ] ] )

p l t . show ( )

def ro tEr ro r ( r_real , r_est ) :
r_real_t = np . t ranspose ( r_rea l )
r_ab = np . dot ( r_real_t , r_est )
e r r o r = np . rad2deg (np . a r c co s ( ( np . t r a c e ( r_ab ) − 1) / 2)

)
print ( ’ rError ’ , e r r o r )
return e r r o r

def t ransErro r ( t_real , t_est ) :
e r r o r = (np . sq r t ( ( t_rea l [0 ]+ t_est [ 0 ] ) ∗∗2)+np . sq r t ( (

t_rea l [1 ]+ t_est [ 1 ] ) ∗∗2)+np . sq r t ( ( t_rea l [2 ]+ t_est
[ 2 ] ) ∗∗2) ) /3

print ( ’ tError ’ , e r r o r )
return e r r o r

def c l o s e s tPo in t2Se tO fL ine s ( line3DEndPts ,NLINES) :
#minimizes sum of squared d i s t anc e s

dim = len ( line3DEndPts [ 0 ] )−1
#normal ize the homogeneous coord ina t e s o f endpo in t s
l ine3DEndPts = np . array ( [ np . d i v id e ( line3DEndPts [ : , 0 ] ,

l ine3DEndPts [ : , 3 ] ) , np . d i v id e ( line3DEndPts [ : , 1 ] ,
l ine3DEndPts [ : , 3 ] ) , np . d i v id e ( line3DEndPts [ : , 2 ] ,
l ine3DEndPts [ : , 3 ] ) , np . d i v id e ( line3DEndPts [ : , 3 ] ,
l ine3DEndPts [ : , 3 ] ) ] )

e = np . subt rac t ( line3DEndPts [ : dim , 1 : : 2 ] , l ine3DEndPts [ :
dim , 0 : : 2 ] )

l2norm = np . sq r t ( ( e ∗ e ) .sum( ax i s=0) )
e = np . d i v id e ( e , ( l2norm . reshape (1 , len ( e [ 0 ] ) ) ) )
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e [ np . i snan ( e ) ] = f loat (0 )
oned = e . f l a t t e n ( ’F ’ )
A = np . array ( [ oned , oned , oned ] ) ∗ np . kron ( e , np . ones ( ( 1 ,

dim) ) )
M = np . eye (dim)
for i in range (NLINES−1) :

M = np . concatenate ( (M, np . eye (dim) ) )
M = M−np . t ranspose (A)

C = line3DEndPts [ 0 : dim , : : 2 ]
C = np . kron (np . t ranspose (C) ,np . ones ( ( dim , 1 ) ) )
c=np . array ( [ ] )
for i in range ( len (M) ) :

c = np . append ( c , np . dot (M[ i ] ,C[ i ] ) )

c l o s e s t_po in t = np . l i n a l g . s o l v e (np . dot (np . t ranspose (M)
,M) , ( np . dot (np . t ranspose (M) , c ) ) )

return c l o s e s t_po in t

def p lucke rL ine s ( line3DEndPts ) :
np . array ( line3DEndPts )
pts_star t = line3DEndPts [ : , : : 2 ]
pts_end = line3DEndPts [ : , 1 : : 2 ]
pluck_mat_part1 = np . array ( [ pt s_star t . f l a t t e n ( ’F ’ ) ,

pt s_star t . f l a t t e n ( ’F ’ ) , pt s_star t . f l a t t e n ( ’F ’ ) ,
pt s_star t . f l a t t e n ( ’F ’ ) ] ) ∗ np . kron ( pts_end , np . ones
( ( 1 , 4 ) ) )

pluck_mat_part2 = np . array ( [ pts_end . f l a t t e n ( ’F ’ ) ,
pts_end . f l a t t e n ( ’F ’ ) , pts_end . f l a t t e n ( ’F ’ ) , pts_end .
f l a t t e n ( ’F ’ ) ] ) ∗ np . kron ( pts_start , np . ones ( ( 1 , 4 ) ) )

p lucker_matr ices = pluck_mat_part1 − pluck_mat_part2

u = np . array ( [ p lucker_matr ices [ 2 , 1 : : 4 ] ,
p lucker_matr ices [ 0 , 2 : : 4 ] , p lucker_matr ices [ 1 , 0 : : 4 ] ] )

v = np . array ( [ p lucker_matr ices [ 0 , 3 : : 4 ] ,
p lucker_matr ices [ 1 , 3 : : 4 ] , p lucker_matr ices [ 2 , 3 : : 4 ] ] )

p lucke rL ine s = np . concatenate ( ( u , v ) )
return p lucke rL ine s

def getMeasurementMatrix ( lines_3D , lines_2D , NLINES) :
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M1 = np . array ( [ l ines_2D [ 2 , : ] ∗ l ines_3D [ 0 , : ] , np . z e r o s (
NLINES) , −l ines_2D [ 0 , : ] ∗ l ines_3D [ 0 , : ] , l ines_2D
[ 2 , : ] ∗ l ines_3D [ 1 , : ] , np . z e r o s (NLINES) , −l ines_2D
[ 0 , : ] ∗ l ines_3D [ 1 , : ] , l ines_2D [ 2 , : ] ∗ l ines_3D [ 2 , : ] ,
np . z e r o s (NLINES) , −l ines_2D [ 0 , : ] ∗ l ines_3D [ 2 , : ] ,
l ines_2D [ 2 , : ] ∗ l ines_3D [ 3 , : ] , np . z e r o s (NLINES) , −
l ines_2D [ 0 , : ] ∗ l ines_3D [ 3 , : ] , l ines_2D [ 2 , : ] ∗ l ines_3D
[ 4 , : ] , np . z e r o s (NLINES) , −l ines_2D [ 0 , : ] ∗ l ines_3D
[ 4 , : ] , l ines_2D [ 2 , : ] ∗ l ines_3D [ 5 , : ] , np . z e r o s (NLINES
) , −l ines_2D [ 0 , : ] ∗ l ines_3D [ 5 , : ] ] )

M2 = np . array ( [ np . z e r o s (NLINES) , l ines_2D [ 2 , : ] ∗
l ines_3D [ 0 , : ] , −l ines_2D [ 1 , : ] ∗ l ines_3D [ 0 , : ] , np .
z e r o s (NLINES) , l ines_2D [ 2 , : ] ∗ l ines_3D [ 1 , : ] , −
l ines_2D [ 1 , : ] ∗ l ines_3D [ 1 , : ] , np . z e r o s (NLINES) ,
l ines_2D [ 2 , : ] ∗ l ines_3D [ 2 , : ] , −l ines_2D [ 1 , : ] ∗
l ines_3D [ 2 , : ] , np . z e r o s (NLINES) , l ines_2D [ 2 , : ] ∗
l ines_3D [ 3 , : ] , −l ines_2D [ 1 , : ] ∗ l ines_3D [ 3 , : ] , np .
z e r o s (NLINES) , l ines_2D [ 2 , : ] ∗ l ines_3D [ 4 , : ] , −
l ines_2D [ 1 , : ] ∗ l ines_3D [ 4 , : ] , np . z e r o s (NLINES) ,
l ines_2D [ 2 , : ] ∗ l ines_3D [ 5 , : ] , −l ines_2D [ 1 , : ] ∗
l ines_3D [ 5 , : ] ] )

M = np . concatenate ( (M1,M2) , ax i s=1)
return M

def f i tL i n ePro j e c t i onMat r i x ( lines_3D , lines_2D ,NLINES) :
M = getMeasurementMatrix ( lines_3D , lines_2D ,NLINES)
W = np . eye (NLINES∗2)

u , s , v = np . l i n a l g . svd (np . dot (W, np . t ranspose (M) ) ,
f u l l_mat r i c e s=True )

proj_mat_lines = v [ −1 , : ]
P = np . t ranspose (np . reshape ( proj_mat_lines , ( 6 , 3 ) ) )

P_M = [P,M]
return P_M

def rotMatr ix2EulerAngles (R) :
Y1 = −math . a s in (R [ 0 ] [ 2 ] )
Y2 = math . p i − Y1
Z1 = math . atan2 (R[ 0 ] [ 1 ] / math . cos (Y1) ,R [ 0 ] [ 0 ] / math . cos (

Y1) )
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Z2 = math . atan2 (R[ 0 ] [ 1 ] / math . cos (Y2) ,R [ 0 ] [ 0 ] / math . cos (
Y2) )

X1 = math . atan2 (R [ 1 ] [ 2 ] / math . cos (Y1) ,R [ 2 ] [ 2 ] / math . cos (
Y1) )

X2 = math . atan2 (R [ 1 ] [ 2 ] / math . cos (Y2) ,R [ 2 ] [ 2 ] / math . cos (
Y2) )

angleX = (X1+math . p i )%(2∗math . p i )−math . p i
angleY = (Y1+math . p i )%(2∗math . p i )−math . p i
angleZ = (Z1+math . p i )%(2∗math . p i )−math . p i

ang l e s = [ angleX , angleY , angleZ ]
return ang l e s

def ro tat ionMatr ix ( rot_x , rot_y , rot_z ) :
Rx = np . array ( [ [ 1 , 0 , 0 ] , [ 0 , math . cos ( rot_x ) , math . s i n

( rot_x ) ] , [ 0 , −math . s i n ( rot_x ) , math . cos ( rot_x ) ] ] )
Ry = np . array ( [ [ math . cos ( rot_y ) , 0 , −math . s i n ( rot_y )

] , [ 0 , 1 , 0 ] , [ math . s i n ( rot_y ) , 0 , math . cos ( rot_y ) ] ] )
Rz = np . array ( [ [ math . cos ( rot_z ) , math . s i n ( rot_z ) ,

0 ] , [−math . s i n ( rot_z ) , math . cos ( rot_z ) , 0 ] , [ 0 , 0 ,
1 ] ] )

R = np . eye (3 )
R = np . dot (Rx , np . dot (Ry , np . dot (Rz ,R) ) )
return R

def getTransformationMatr ix ( rotX_cam , rotY_cam , rotZ_cam ,
t_estim ) :
tv = np . array ( [ [ t_estim [ 0 ] ] , [ t_estim [ 1 ] ] , [ t_estim

[ 2 ] ] ] )
Rm = rotat ionMatr ix ( rotX_cam , rotY_cam , rotZ_cam)

T = np . dot (Rm, np . concatenate ( ( np . eye (3 ) , tv ) , ax i s=1) )
return T

def getProjParam ( P_line_est ) :
P1 = P_line_est [ : , : 3 ]
s = 1/np . l i n a l g . det (P1)
i f s <0:

s = (−s ) ∗∗(1/3)
s = −s

else :
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s = s ∗∗(1/3)

Psca le = s ∗P_line_est
P2sca le = Psca le [ : , 3 : ]
U, sigma ,V = np . l i n a l g . svd ( P2sca le )
Z = [ [ 0 , 1 , 0 ] , [ − 1 , 0 , 0 ] , [ 0 , 0 , 0 ] ]
W = [ [ 0 , − 1 , 0 ] , [ 1 , 0 , 0 ] , [ 0 , 0 , 1 ] ]
ave_sigma_val = ( sigma [0 ]+ sigma [ 1 ] ) /2
da = np . l i n a l g . det (np . dot (U, np . dot (np . t ranspose (W) ,np .

t ranspose (V) ) ) )
db = np . l i n a l g . det (np . dot (U, np . dot (np . t ranspose (W) ,np .

t ranspose (V) ) ) )

Ra = np . dot (np . dot (np . dot (U,W) ,np . d iag (np . array ( [ 1 , 1 ,
da ] ) ) ) ,V)

Rb = np . dot (np . dot (np . dot (U, np . t ranspose (W) ) ,np . d iag (
np . array ( [ 1 , 1 , db ] ) ) ) ,V)

angles_a = rotMatr ix2EulerAngles (Ra)
angles_b = rotMatr ix2EulerAngles (Rb)

tXa = np . dot ( ave_sigma_val , np . dot (np . t ranspose (V) ,np .
dot (Z ,V) ) )

tXb = np . dot ( ave_sigma_val , np . dot (np . t ranspose (V) ,np .
dot (np . t ranspose (Z) ,V) ) )

ta = np . array ( [ tXa [ 2 ] [ 1 ] , tXa [ 0 ] [ 2 ] , tXa [ 1 ] [ 0 ] ] ) #skew
symmetric

tb = np . array ( [ tXb [ 2 ] [ 1 ] , tXb [ 0 ] [ 2 ] , tXb [ 1 ] [ 0 ] ] )

x = [− ta [0 ] ,− tb [ 0 ] ]
y = [− ta [1 ] ,− tb [ 1 ] ]
z = [− ta [2 ] ,− tb [ 2 ] ]

rot_x = [ angles_a [ 0 ] , angles_b [ 0 ] ]
rot_y = [ angles_a [ 1 ] , angles_b [ 1 ] ]
rot_z = [ angles_a [ 2 ] , angles_b [ 2 ] ]

projParam = [ x , y , z , rot_x , rot_y , rot_z ]
return projParam

def l i nePoseEst imat ion ( line3DEndPts , line2DEndPts , NLINES) :
#Centroid o f 3D l i n e s endpo in t s
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line3DEndPts = np . array ( line3DEndPts )
center_3D = [ np .mean(np . d i v id e ( line3DEndPts [ : , 0 ] ,

l ine3DEndPts [ : , 3 ] ) ) , np .mean(np . d i v id e ( line3DEndPts
[ : , 1 ] , l ine3DEndPts [ : , 3 ] ) ) , np .mean(np . d i v id e (
line3DEndPts [ : , 2 ] , l ine3DEndPts [ : , 3 ] ) ) ]

#Pre−norma l i za t ion o f 3D p lucke r l i n e s
shift_3D = c lo s e s tPo in t2Se tO fL ine s ( line3DEndPts ,

NLINES)
pre_tform_3D_pts = [ [ f loat (1 ) for i in range (4 ) ] for j

in range (4 ) ]
pre_tform_3D_pts = np . diag (np . diag ( pre_tform_3D_pts ) )
for i in range ( len ( pre_tform_3D_pts )−1) :

pre_tform_3D_pts [ i ] [ 3 ] = −shift_3D [ i ]
line_3D_end_pts = np . dot ( pre_tform_3D_pts , np . t ranspose

( line3DEndPts ) )

#Create Plucker r ep r e s en t a t i on o f 3D l i n e s
l ines_3D = plucke rL ine s ( line_3D_end_pts )

#Construct 2D l i n e equa t ions from pro j e c t e d endpo in t s
l ines_2D = [ ]
l ines_2D = np . c r o s s (np . t ranspose ( line2DEndPts [ : , 0 : : 2 ] )

, np . t ranspose ( line2DEndPts [ : , 1 : : 2 ] ) )
#Pre−norma l i za t ion o f 2D l i n e s − t r e a t as 2D po in t s
l ines_2D_nl ines = np . dot (np . t ranspose ( lines_2D ) ,np .

d i a g f l a t (np . ones (NLINES) ) ) #se t c en t ro i d o f l i n e s
as o r i g i n

shift_2D = [ s t a t i s t i c s .mean(np . d i v id e ( l ines_2D_nl ines
[ 0 ] , l ines_2D_nl ines [ 2 ] ) ) , s t a t i s t i c s .mean(np . d i v id e
( l ines_2D_nl ines [ 1 ] , l ines_2D_nl ines [ 2 ] ) ) ] #sk j e r
noe grums her ! !

pre_shift_2D_lines = np . array ( [ [ 1 , 0 , −shift_2D
[ 0 ] ] , [ 0 , 1 , −shift_2D [ 1 ] ] , [ 0 , 0 , 1 ] ] )

l ines_2D_shi f t = np . array (np . dot ( pre_shift_2D_lines , np
. t ranspose ( lines_2D ) ) )
#Sca le l i n e s

scale_2D = math . sq r t (2 ) / s t a t i s t i c s .mean(np . s q r t (np .
square (np . d i v id e ( l ines_2D_shi f t [ 0 , : ] , l ines_2D_shi f t
[ 2 , : ] ) )+np . square (np . d i v id e ( l ines_2D_shi f t [ 1 , : ] ,
l ines_2D_shi f t [ 2 , : ] ) ) ) )

pre_scale_2D_lines = np . z e r o s (9 ) . reshape (3 , 3 )
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pre_scale_2D_lines = np . diag ( [ scale_2D , scale_2D , 1 ] )
pre_tform_2D_lines = np . dot ( pre_scale_2D_lines ,

pre_shi ft_2D_lines ) #combine s c a l e and
t r a n s l a t i o n

l ines_2D = np . dot ( pre_tform_2D_lines , np . t ranspose (
lines_2D ) )

#Estimate camera pose
p_line_est = f i tL i n ePro j e c t i onMat r i x ( lines_3D , lines_2D

,NLINES)
P = p_line_est [ 0 ]
M = p_line_est [ 1 ]

P_line_est = np . l i n a l g . s o l v e ( pre_tform_2D_lines ,P)
cam_pose_param = getProjParam ( P_line_est )
cam_pose_x0 = cam_pose_param [ 0 ]
cam_pose_y0 = cam_pose_param [ 1 ]
cam_pose_z0 = cam_pose_param [ 2 ]
cam_rot_x0 = cam_pose_param [ 3 ]
cam_rot_y0 = cam_pose_param [ 4 ]
cam_rot_z0 = cam_pose_param [ 5 ]

R1 = rotat ionMatr ix ( cam_rot_x0 [ 0 ] , cam_rot_y0 [ 0 ] ,
cam_rot_z0 [ 0 ] )

t1 = np . array ([−cam_pose_x0 [0 ] ,− cam_pose_y0 [0 ] ,−
cam_pose_z0 [ 0 ] ] )

R2 = rotat ionMatr ix ( cam_rot_x0 [ 1 ] , cam_rot_y0 [ 1 ] ,
cam_rot_z0 [ 1 ] )

t2 = np . array ([−cam_pose_x0 [1 ] ,− cam_pose_y0 [1 ] ,−
cam_pose_z0 [ 1 ] ] )

t e s t 1 = −1 ∗ np . dot (R1 [ 2 ] , ( center_3D−shift_3D−t1 ) /np .
l i n a l g . norm( center_3D−shift_3D−t1 ) )

t e s t 2 = −1 ∗ np . dot (R2 [ 2 ] , ( center_3D−shift_3D−t2 ) /np .
l i n a l g . norm( center_3D−shift_3D−t2 ) )

i f t e s t1 >0 and t e s t2 <0:
R = R1
t = t1−shift_3D

else :
R = R2
t = t2−shift_3D
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pose = [R, t ]
return pose

def read_from_fi le ( f i l ename ) :
f = open( f i l ename , ’ r ’ )
innhold=f . read ( )
f . c l o s e ( )
return innhold

#Extrac t K and R from camera matrix
def KR_from_P(P) :

P = np . array (P)
L = int ( len (P) )
H = np . z e ro s ( [ L ,L ] )
for i in range (L) :

for j in range (L) :
H[ i ] [ j ]=P[ i ] [ j ]

#H = np . array (P [ : , : L ] )

A = np . array (np . t ranspose (H) )
R, K = np . l i n a l g . qr (A[ : : −1 , : : −1 ] )
K = np . t ranspose (K)
R = np . t ranspose (R)
K = K[ : : −1 , : : −1 ]
R = R[ : : −1 , : : −1 ]

K = K/(K[L−1] [L−1])
t = np . l i n a l g . s o l v e (−H,P[ : , −1 ] )
K_R_t = [K,R, t ]
return K_R_t





Appendix B.

Line Segment Detector

import cv2
import math
import numpy as np

imgNrs = 9

for imgNr in range ( imgNrs ) :
#Read gray image
img = cv2 . imread ( ’ bt . 00 ’+str ( imgNr )+’ . pgm ’ ,0 )

#Parametr i za t ion LSD
l s d = cv2 . createLineSegmentDetector (2 , 0 . 8 , 0 . 6 , 2 . 0 ,

22 . 5 , 0 , 0 . 7 , 1024)

#Detect l i n e s in the image
l ines_2D = l sd . de t e c t ( img ) [ 0 ] #f i r s t row i s the

de t e c t e d l i n e s . Each row i s a de t e c t e d l i ne ,
expres sed as ( x0 , y0 , x1 , y1 )

nfa = l sd . de t e c t ( img )
print ( len ( l ines_2D ) )
drawn_img = l sd . drawSegments ( img , np . array ( lines_2D ) )
#Show image
cv2 . imshow( "LSD" ,drawn_img )
cv2 . waitKey (0 )


