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Abstract

This thesis is testing a controller’s ability to stabilize a payload while moving along
a preset trajectory for a wide selection of scenarios. It presents the equations of
motion for a spherical pendulum with moving attachment point by using Euler
angles and Lagrangian kinematics. Damping of the pendulum payload is done by
feedback control and the stability analysis is done with Lyapunov’s second method
and LaSalle’s invariance principle. The damping is then expanded into a feedback
system consisting of a position loop and a velocity loop to ensure the stability of
the pendulum alongside with the desired movement of the attachment point. A
second velocity loop is added to prevent the need for measuring the acceleration
of the attachment point.

Further, the attachment point is set as the end-effector of a 3 DOF knuckle boom
crane. Rotation and transformation matrices, Denavit-Hartenberg convention,
and the Jacobian are used to describe the cranes kinematics. The relationship
between the joint angles and the linear actuators are found using trigonometry.
A trajectory is planned to ensure a smooth path from an initial position to a
desired final position within a preset amount of time. The trajectory is chosen
to resemble a potential crane routine with hoisting, motion from one position to
another in the horizontal plane, and lowering the payload to its initial height.

The results are presented through plots using Simulink and Matlab for a mag-
nitude of parameter values and trajectories. The robustness of the controller is
strong for most of the scenarios which make a promising basis for a practical
implementation.





Sammendrag

Denne oppgaven har som formål å teste en kontrollers evne til å stabilisere en nyt-
tlast samtidig som kranen skal bevege seg i en forhåndsinnstilt bane for en rekke
ulike situasjoner. Den presenterer bevegelsesligningene for en sfærisk pendel med
et bevegelig opphengspunkt ved bruk av Euler-vinkler og Lagrange-mekanikk.
Dampingen av svingningene til nyttelasten er gjort ved en tilbakekoblet kontroller
og systemets stabilitet er beskrevet ved bruk av Lyapunovs andre metode i sam-
spill med LaSalles teorem for invariante mengder. Dempingen blir så ekspandert
til et tilbakekoplet system der både opphengspunktets posisjon og hastighet blir
matet tilbake til kontrolleren og brukt sammen med proporsjonalkonstanter for å
sikre kranens bevegelse i tillegg til stabilisering av pendelen. Grunnet praktiske
utfordringer ved å måle opphengspunktets akselerasjon blir en hastighetssløyfe
introdusert.

Videre blir kontrolleren koblet sammen med en såkalt “knuckle boom-kran” eller
jibb-kran med tre frihetsgrader. Kinematikken til kranen er beskrevet gjennom
bruk av robotkinematikk, Denavit-Hartenberg-konvensjonen og Jacobian til kra-
nen. Forholdet mellom vinklene i leddene til kranen og de lineære aktuatorene er
funnet gjennom bruk av cosinussetningen og andre trigonometriske forhold. En
bane opphengspunktet skal følge fra en initiell posisjon til et endepunkt innen en
gitt tid. Denne banen er valgt slik at den skal ligne en potensiell løfteoperasjon
med et begynnende løft etterfulgt av en bevegelse i det horisontale planet, før den
senkes til sin initielle høyde.

Resultatene er presentert gjennom simuleringer gjort i Simulink og Matlab for
en rekke parameterverdier og baner. Kontrolleren viser seg å være robust for de
fleste scenarioer og danner et lovende grunnlag for integrering i en fysisk kran.





Chapter 1.

Introduction

1.1. Background
Heavy-lifting cranes are utilized in factories, harbours and oil platforms all over
the world. They are often involved in hazardous environments and the swaying
and unintended movement of the payload is a constant challenge and potential
hazard. Disturbances like waves, wind and other noise can make a crane operation
tedious and dangerous. The reduction of these undesired motions is an important
task by many means.

For a crane to be able to perform its various task like gripping, lifting, and trans-
port in a feasible manner is it paramount that the payload stay in an easily
controllable position. A way to achieve this is by adding passive damping devices
to the system like dashpots and viscous damping[2]. Active approaches are also
common where feedback or feed-forward systems are integrated to ensure stabil-
ity[16]. Fuzzy control systems have been thoroughly tested with promising results
[25][24][8], but will not be tested in this thesis.

Several mathematical models have been made to describe cranes, and the use of
Lagrangian equation of motion has been used especially for gantry cranes [19][15].
Knuckle boom cranes are typically used on ships or for construction [16] and there
has been research done on these, specifically[20][5][21], also with the use of La-
grangian equations of motion [4]. In [6], screw theory is used to perform dynamic
modelling and force analysis on a knuckle boom crane which is an approach that
will not be reviewed here.

A crane operator needs to be extensively trained and highly skilled to manually
steer the crane without getting unwanted motion in the payload. It is not un-
common that an assigned task is aborted in order to prevent possible hazardous
situations [16]. A controller that can ensure efficient damping of the payload and



2 Chapter 1. Introduction

at the same time get the payload to its desired location would decrease the du-
ration of each operation, and therefore, work more efficiently and therefore save
money. In addition to this the probability of accidents would decrease, and lives
could be saved.

1.2. Objective
The objectives of this thesis are

• Describe the theory behind the damping of oscillations excited by a spherical
pendulum.

• Describe the the motion of a 3 DOF knuckle boom crane using forward and
backward kinematics.

• Create a controller that damps the oscillations as well as follows a desired
trajectory.

• Test the robustness of the controller on various trajectories and parameter
values.

• Present and discuss the results using Simulink/Matlab

• Present potential further developments on the controller.

1.3. Outline
The thesis is focusing on the theory behind and testing of the controller and a
substantial part of it is used to describe the mathematics behind the system and
present the results for a wide range of situations.

• Chapter 1 presents the background and objective of this thesis.

• Chapter 2 describes the theory of Lagrangian equations of motion, Lyapunov
stability analysis, basic robotics, and trajectory planning.

• Chapter 3 describes the modeling and control of this particular system using
Lagrangian kinematics, Lyapunov stability analysis, damping by feedback
control for a simple and a spherical pendulum. The Lagrangian is executed
for all scenarios, progressively adding new features to the system.

• Chapter 4 describes the knuckle boom crane, using Denavit-Hartenberg,
homogeneous transformation matrix and the Jacobian.

• The results are described and presented in Chapter 5 where a multitude of
plots are shown to explore the range of which the controller is working.
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• The results from Chapter 5 are discussed in Chapter 6.

• Chapter 7 presents and discusses the Simulink model with reference to the
matlab files in the Appendix A.

• Finally, concluding remarks and a discussion regarding potential future work
is presented in Chapter 8.





Chapter 2.

Theory

2.1. Lagrangian Equations of Motion
Lagrangian analysis [12] is used to generate the dynamic equations, as in [14]
where the energy of mechanical systems makes the base for computation. Let
Fi be the force applied to the ith particle of a system of particles which obey
Newton’s second law. This law cam them be written as

Fi = mir̈i ri ∈ R3, i = 1, ..., n (2.1)

where mi and ri are the particle’s mass and position, respectively, and the total
amount of particles is n. Now, to apply this on an object consisting of an as-
sembling of these particles, with limited degrees of freedom, are some constraints
added between the positions of the particles. Each constraint is represented by a
function gi : R3n → R such that

gj(r1, ...rn) = 0 j = 1, ..., k. (2.2)

A constraint of this type is called a holonomic constraint. It is applied to the
system through constraint forces, which are determined in a way that ensures
that Equation 2.2 is satisfied at all times. If the constraint is viewed as a smooth
surface in Rn, the constraint forces are normal to this and restrict the velocity of
the system to be tangential to the surface. Thus,m1I 0

. . .
0 mnI


 r̈i. . .
r̈n

+
k∑
j=1

Γjλj , (2.3)

where Γ1, ...Γk ∈ R3n are a basis for the constraint forces and λj is the scale
factor and is called the Lagrangian multiplier. This is formally found by solving
the 3n + k equation in Equation 2.2 and Equation 2.3 for the 3n + k variables
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r ∈ R3n and λ ∈ Rk. This approach is demanding computationally, it is therefore
common to describe the motion of the system in terms of a smaller set of vari-
ables. Consider a system of n particles and k constraints. The desired set is of
m = 3n− k variables q1, ..., qm and smooth functions f1, ...fn. The qi’s are called
the generalized coordinates for the system.

The Lagrangian, L, is defined as the difference between the kinetic and the po-
tential energy of a system, K and U , respectively.

L(q, q̇) = K(q, q̇)− U(q) (2.4)

both written in generalized coordinates. Lagrange’s equations of motion with
generalized coordinates q ∈ Rm are given by

d
dt

(
∂L
∂q̇i

)
− ∂L
∂q

= Υi i = 1, ...,m (2.5)

where Υi is the external force acting on the ith element. If the system has no
constraints q is considered components of r making K = 1

2miṙ
2, where r is on a

vector form and Equation 2.5 is reduced to Equation 2.1. Then, Equation 2.5 can
be written as

d
dt

(
∂L
∂ṙ

)
= ∂L
∂r

+ Υi (2.6)

where the left side of the equation is the derivative of the momentum, and the right
side is the applied forces. This is Newton’s second law in generalized coordinates.

2.2. Lyapunov Stability
Lyapunov proposed two methods for stability in [13]. The first method defines
three types of stability of an equilibrium for a autonomous nonlinear dynamic sys-
tem. Conceptually it states that an equilibrium is Lyapunov stable if a solution
starts a certain distance from the equilibrium will it always remain within this
distance. It is asymptotically stable if the solution, in addition to being Lyapunov
stable, converges towards the equilibrium. Finally, the solution is exponentially
stable if it is asymptotically stable and converges faster than a particular known
rate.

The second method uses the so-called Lyapunov function. Consider a system
ẋ = f(x), where x is a vector of variables with an equilibrium point at x = 0.
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Then, consider a function V (x) : Rn → R such that

V (x) = 0, if and only if x = 0
V (x) > 0, if and only if x 6= 0
V̇ (x) ≤ 0, for x ≤ 0

(2.7)

then the system is Lyapunov stable and the function V (x) is called the Lyapunov
function. The system is asymptotically stable if V̇ < 0 for x 6= 0.

There is a way to show that a system is asymptotically stable, even though V̇ (x) =
0 when x = 0. Again, consider a system where ẋ = f(x), where x is a vector of
variables and f(0) = 0. Let V (x) be a differentiable function with a continuous
derivative, a so-called C1 function, such that V̇ ≤ 0 for all x. Now, a union of
trajectories that is made out of the set {x : V̇ (x) = 0} is defined as I. If it is
shown that the only trajectory within I is the trivial case where x = 0, then the
origin is asymptotically stable. The requirements of V (x) > 0 if and only if x 6= 0
and V (0) = 0 must still satisfied for this to be applicable. This theorem is called
LaSalle’s invariance principle [10].

2.3. The Rotation Matrix and the Homogeneous
Transformation Matrix

A rotation matrix is a common method to describe a transformation from one
coordinate system to another with the same origin and is widely used in robotics
[22][9]. The rotations are described as an angle about the respective axes. Rota-
tions about the x, y, and z axis are defined as in[7]

Rx(φx) =

 1 0 0
0 cx −sx
−0 sx cx

 (2.8)

Ry(φy) =

 cy 0 sy
0 1 0
−sy 0 cx

 (2.9)

Rz(φz) =

cz −sz 0
sz cz 0
0 0 1

 (2.10)

If the origin of the two frames are in different position, a translation has to be
done in addition to the rotation. This translation, often called r is the vector
that represents the origin of the new frame in the coordinates of the base frame.
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Figure 2.1.: Denavit-Hartenberg kinematic parameters [18]

Consider a base frame {a} which is translated and rotated to frame {b} can the
transformation be described as tab = rab +Ra

b [18]. The homogeneous transforma-
tion matrix is a matrix that describes a transformation from one frame to another.
A transformation from frame a to b, that is a rotation Ra

b and a translation rab , is

T ab =
[
Ra
b rab

0T 1

]
(2.11)

2.4. Denativ-Hartenberg Convention
To find the intermediate transformation matrices a systematic, general method
is derived to define the relative position and orientation of two consecutive links.
[18] describes the process with reference to Figure 2.1:

• Choose axis zi along the axis of Joint i+ 1.

• Locate the origin Oi at the intersection of axis zi with the common normal
to axis zi−1 and zi. Also locate the origin Oi′ at the intersection of the
common normal with axis zi−1.

• Choose axis xi along the common normal til axis zi−1 and zi with positive
direction from Joint i to Joint i+ 1.

• Choose axis yi so as to complete a right-handed frame.

Once the link frames has been chosen, the position and orientation of Frame i
relative to Frame i − 1 can be described using four parameters unique for the
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system. The parameters are ai, αi, di and θi. The transformation from one
joint to another consist of two homogeneous transformation matrices. Initially a
rotation, θ, about the current z axis is done followed by a translation, d, along
the same axis which gives the matrix

Rotz(θi)Transz(di) =


cθi

−sθi
0 0

sθi
cθi

0 0
0 0 1 di
0 0 0 1

 (2.12)

Then, a rotation, α, about the current x axis and a translation, a, along the same
axis gives the matrix

Rotx(αi)Transx(ai) =


1 0 0 ai
0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1

 (2.13)

The two parameters ai and αi is constant and only depentant of the geometry
of the system. If the joint is rotary the joint variable is θi and di if the joint is
prismatic. The homogeneous transformation matrix between Frame i to Frame
i− 1 is given as

T i−1
i (qi) = Rotz(θi)Transz(di)Rotx(αi)Transx(ai)

=


cθi

−sθi
0 0

sθi
cθi

0 0
0 0 1 di
0 0 0 1




1 0 0 ai
0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1



=


cθi

−sθi
cαi sθi

sαi aicθi

sθi
cθi
cαi −cθi

sαi aisθi

0 sαi cαi di
0 0 0 1


(2.14)

2.5. Differential Kinematics
The geometric Jacobian is a function that finds the relationship between the joint
velocities end the linear and angular velocity of the end-effector and is defined as[

ṗe
ωe

]
= J(q)q̇ (2.15)

where ṗe and ωe is the linear velocity and the angular velocity of the end-effector,
respectively. J can be divided into two parts, one for the linear velocity, JP , and
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one for the angular velocity, JO.The Jacobian can then be described as

J =
[
JP1 . . . JPn
JO1 . . . JOn

]
(2.16)

where

[
JPi
JOi

]
=



[
zi−1

0

]
for a prismatic joint[

zi−1 × (pe − pi−1)
zi−1

]
for a revolute joint

(2.17)

zi−1 is given by the third column of the rotation matrix R0
i−1 and pe is given by

the first three elements of the fourth column of the transformation matrix T 0
e .

2.6. Trajectory Planning
In a point-to-point motion, the manipulator has to move from an initial position
within a time tf . The path the manipulator takes is not defined, but the planning
algorithm should be chosen so that the following features are in place [18].

• the computation needed should not be too demanding,

• the joint positions and velocities should be continuous functions of time,

• undesirable effects should be minimized.

Choosing the motion primitive can be done from an incremental motion problem.
Consider the moment of inertia of a rigid body about its rotation axis I. The path
consists of rotating the angle q from an initial value qi to a final value qf within
a time tf . To find a suitable solution among the infinite amount of solutions that
exist is it assumed that the rotation is excited through a torque τ supplied by a
motor, and that a solution can be found from minimizing the energy consumed
by the motor. The optimization problem is set as follows. If the derivative of the
angle q is defined as q̇ = ω, the solution to the differential equation

Iω̇ = τ (2.18)

subject to the condition ∫ tf

0
ω (t) dt = qf − qi (2.19)

so as to minimize the performance index∫ tf

0
τ2dt. (2.20)



2.6. Trajectory Planning 11

It can be shown that the solution to this optimization problem is

ω (t) = at2 + bt+ c (2.21)

This brings the basis of using a third-order polynomial function to generate the
trajectory. The joint motion can therefore be found from the cubic polynomial

q (t) = a3t
3 + a2t

2 + a1t+ a0 (2.22)

can be chosen, giving the parabolic velocity profile

q̇ (t) = 3a3t
2 + 2a2t+ a1 (2.23)

and a linear acceleration profile

q̈ (t) = 6a3t+ 3a2. (2.24)

To solve for the coefficients the initial and final position qi and qf is used together
with the initial and final velocity q̇i and q̇f which are usually set to zero. This is
done by using the following system of equations

a0 = qi

a1 = q̇i

a3t
3 + a2t

2 + a1t+ a0 = qf

3a3t
2 + 2a2t+ a1 = q̇f

(2.25)

In order to ensure that the manipulator can handle the motion in practice, a
trapezoidal velocity profile is assigned, which consists of a constant acceleration
initially that turns into a cruising face with constant velocity and a constant
deceleration to finish the motion Figure 2.2. Notice the symmetry in the velocity
profile assuming that the initial acceleration is the same in magnitude as the
finishing deceleration and that the initial velocity and the final velocity is set to
zero. For the transition from qi to qf to happen in time tf some constraints must
be satisfied by the trajectory. The velocity at the end of the parabolic segment
must be equal to the velocity of the linear segment, i.e.,

q̈c = qm − qc
tm − tc

(2.26)

where qc is the value of q at the end of the parabolic segment at time tc. qm is
the average point qm = (qf + qi) /2 at time tm = tf/2. qc is then

qc = qi + 1
2 q̈ct

2
c (2.27)
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Figure 2.2.: Trapezoidal velocity profile [18]

combining (2.26) and (2.27) gives

q̈ct
2
c − q̈ctf tc + qf − qi = 0 (2.28)

It is common that q̈c is specified with the constraint that sgn (q̈c) = sgn(qf − qi),
where sgn is the signum function. tc can then be found from (2.28) as

tc = tf
2 −

1
2

√
t2f q̈c − 4 (qf − qi)

q̈c
(2.29)

it is noted that tc ≤ tf/2. The acceleration is therefore under the constraint

|q̈c| ≥
4 |qf − qi|

t2f
(2.30)

If the acceleration is set to equal the expression in (2.30), the constant veloc-
ity segment is not featured in the trajectory and has thus a triangular profile.
This also means that tc = tf/2 If qi, qf and tf is given, tc can be found from
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Equation 2.29 and the following is generated

q (t) =


qi + 1

2 q̈ct
2 0 ≤ t ≤ tc

qi + q̈ctc (t− tc/2) tc < t ≤ tf − tc
qf − 1

2 q̈c (tf − t)2 tf − tc < t ≤ tf .
(2.31)





Chapter 3.

Modelling and Control of
Pendulum

3.1. Kinematics of a Simple Pendulum
Consider a horizontal xy plane where the z axis is pointing vertically upwards.
A point mass m is attached at (0, 0, 0) with a mass-less rope with length L.
The pendulum moves in the xz plane, the position of the mass can therefore be
described as (x, 0, z). The motion of the pendulum is defined by the angle made
from the vertical z axis and the rope, called θ. Consider the distance s on the
arc from the bottom (θ = 0) and the position of the mass. The tangential force
is mg sin θ and Newton’s second law gives

m
d2s

dt2 = −mg sin θ (3.1)

The relation between s and θ is s = Lθ. Inserted in the equation above gives

d2θ

dt2
= − g

L
sin θ (3.2)

which gives the known pendulum model

θ̈ + ω2
0 sin θ = 0 (3.3)

where ω0 =
√

g
L is the frequency of the pendulum.

3.2. Lagrangian Kinematics for a Simple Pendulum
The Lagrangian formulation of these equations of motion is found from subtracting
the potential energy from the kinetic energy as, described in section 2.1. differ-
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entiating the holonomic constraints for the simple pendulum, x = −L sin θ and
z = −L cos θ, gives the velocity components ẋ = −Lθ̇ cos θ and ż = Lθ̇ sin θ. This
gives the expressions for the kinematic and potential energy as

K = 1
2m(ẋ2 + ż2) = 1

2mL
2θ̇2 (3.4)

U = mg(L+ z) = mgL(1− cos θ) (3.5)

The Lagrangian function is given as in Equation 2.4 where the generalized coor-
dinate being θ

L = K − U = 1
2mL

2θ̇2 +mgL(cos θ − 1) (3.6)

The Lagrangian equation of motion is defined as in Equation 2.5. Since there are
no applied forces becomes the expression

d
dt

(
∂L
∂θ̇

)
− ∂L
∂θ

= 0 (3.7)

For this system
∂L
∂θ̇

= mL2θ̇ (3.8)

which gives
d
dt

(
∂L
∂θ̇

)
= d

dt
(
mL2θ̇

)
= mL2θ̈ (3.9)

and
∂L
∂θ

= −mgL sin θ (3.10)

which inserted into (3.7) gives

mL2θ̈ +mgL sin θ = 0 (3.11)

3.3. Damping by Feedback Control
A damper can be made by the feedback velocity loop

ẍ0 = −2Lζω0θ̇ (3.12)

where ζ is the damping ratio and is set to a certain value. In practice this feedback
means that if the angular velocity θ̇ being fed back is large, will the acceleration
of the attachment point be proportionally large. Inserting this into (3.20) gives

θ̈ + 2ζω0θ̇ cos θ + ω2
0 sin θ = 0 (3.13)
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Using the small angle approximation which states that for small angles sin θ ≈ θ
and cos θ ≈ 1 gives

θ̈ + 2ζω0θ̇ + ω2
0θ = 0 (3.14)

which is a linear damped oscillator with undamped natural frequency ω0 and a
damping ratio ζ. The damping ratio ζ is in [3] defined as the proximity to critical
damping. ζ = 1 means that a system is critically damped. If ζ < 1 the system is
said to be underdamped and overdamped if ζ > 1. For a second order system, the
value ζ = 1√

2 is the smallest value of damping ratio for which the system shows
no amplification at any input frequence [1].

3.4. Moving Attachment Point
If the attachment point is able to move in the x direction, it can be defined as
(x0, 0, 0). The holonomic constraints are now x = x0 − L sin θ and z = −L cos θ,
which gives the velocity components ẋ = ẋ0 − Lθ̇ cos θ and ż = Lθ̇ sin θ. The
kinetic energy is

K = 1
2m(ẋ2 + ż2)

= 1
2m

(
(ẋ0 − Lθ̇ cos θ)2 + (Lθ̇ sin θ)2

)
= 1

2mL
2θ̇2 −mLẋ0θ̇ cos θ + 1

2mẋ
2
0

(3.15)

while the potential energy is still U = mgL(1 − cos θ). The Lagrangian function
(L = K − U) then becomes

L = 1
2mL

2θ̇2 −mLẋ0θ̇ cos θ + 1
2mẋ

2
0 +mgL(cos θ − 1) (3.16)

The equations of motion is then

d
dt

(
∂L
∂θ̇

)
= d

dt
(
mL2θ̇ −mLẋ0 cos θ

)
= mL2θ̈ −mLẍ0 cos θ +mLẋ0θ̇ sin θ

(3.17)

and
∂L
∂θ

= mLẋ0θ̇ sin θ −mgL sin θ (3.18)

(3.7) gives
mL2θ̈ −mLẍ0 cos θ +mgL sin θ = 0 (3.19)
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which can be written
θ̈ + ω2

0 sin θ = 1
L
ẍ0 cos θ (3.20)

3.5. Lyapunov Stability Analysis for a Simple
Pendulum

The system should be stable for all practical values of θ, the mechanical energy
is therefore set as the Lyapunov function from section 2.2

V = K + U = 1
2mL

2θ̇2 +mgL(1− cos θ) (3.21)

Lyapunov’s second method for stability states that the Lyapunov must satisfy
V (θ) = 0 if and only if θ = 0. θ = 0 inserted into Equation 3.21 gives V = 0,
which is intuitive since the pendulum then hangs straight down and has now
energy. The second requirement is V (θ) > 0 if and only if θ 6= 0. Neither of the
terms in Equation 3.21 can be negative which means that this is met. Finally, the
last requirement is V̇ (θ) ≤ 0 for all values of θ 6= 0. The time derivative of the
function is

V̇ = θ̇(mL2θ̈ +mgL sin θ) (3.22)

From (3.19) this can be written as

V̇ = mLẍ0 cos θθ̇ (3.23)

Inserting ẍ0 from (3.12) gives

V̇ = −2ζmL2ω0θ̇
2 cos θ (3.24)

It is seen that this V̇ ≤ 0 when −π
2 < θ < π

2 and is therefore Lyapunov stable
for all values of θ. For the system to be asymptotically stable, must the LaSalle’s
invariance principe be checked. Let the set of trajectories I = {θ, θ̇ : V̇ (θ) = 0}
which is the same as I = {θ, θ̇ : θ̇ = 0} which means that there are no trajectories
within I which again means that the equilibrium is asymptotically stable.

3.6. Pendulum with Moving Attachment point in the
x and z Direction

The attachment point is now able to move in both x and y direction and can be
defined as (x0, 0, z0), which gives the following holonomic constraints. In the x
direction nothing is changed, x = x0−L sin θ, but the equation for the z direction
becomes z = z0 − L cos θ. These give the velocity components ẋ = ẋ0 − Lθ̇ cos θ
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and ż = ż0 + Lθ̇ sin θ. Kinetic energy is

K = 1
2m(ẋ2 + ż2)

= 1
2m

(
(ẋ0 − Lθ̇ cos θ)2 + (ż0 + Lθ̇ sin θ)2

)
= 1

2mL
2θ̇2 −mLẋ0θ̇ cos θ −mLż0θ̇ sin θ + 1

2m(ẋ2
0 + ż2

0)

(3.25)

The potential energy remains unchained and is U = mgL(1 − cos θ). The La-
grangian function becomes

L = 1
2mL

2θ̇2−mLẋ0θ̇ cos θ+mLż0θ̇ sin θ+ 1
2m(ẋ2

0 + ż2
0)−mgL(1−cos θ) (3.26)

The Lagrangian equations of motion is then

d
dt

(
∂L
∂θ̇

)
= d

dt
(
mL2θ̇ −mLẋ0 cos θ +mLż0 sin θ

)
= mL2θ̈ −mLẍ0 cos θ +mLẋ0θ̇ sin θ +mLz̈0 sin θ +mLż0θ̇ cos θ

(3.27)

∂L
∂θ

= mLẋ0θ̇ sin θ +mLż0θ̇ cos θ −mgL sin θ (3.28)

which from (3.7) gives

mL2θ̈ −mLẍ0 cos θ +mLz̈0 sin θ +mgL sin θ = 0 (3.29)

3.7. Pendulum with Varying Rope Length
If the rope length is varying, the velocity components become ẋ = ẋ0−Lθ̇ cos θ−
L̇ sin θ and ż = Lθ̇ sin θ − L̇ cos θ. The kinetic energy is then

K =1
2m(ẋ2 + ż2)

=1
2m

(
(ẋ0 − Lθ̇ cos θ − L̇ sin θ)2 + (Lθ̇ sin θ − L̇ cos θ)2

)
=1

2m(ẋ2
0 + L2θ̇2 cos2 θ + L̇2 sin2 θ)−mẋ0Lθ̇ cos θ −mẋ0L̇ sin θ

+mLL̇θ̇ cos θ sin θ + 1
2m(L2θ̇2 sin2 θ + L̇ cos2 θ)−mLL̇θ̇ cos θ sin θ

=1
2mL

2θ̇2 −mLẋ0θ̇ cos θ −mẋ0L̇ sin θ + 1
2mẋ

2
0 + 1

2mL̇
2

(3.30)
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while the potential energy is U = mgL(1− cos θ). The Lagrangian is

L =1
2mL

2θ̇2 −mLẋ0θ̇ cos θ −mẋ0L̇ sin θ + 1
2mẋ

2
0

+ 1
2mL̇

2 −mgL(1− cos θ)
(3.31)

Then the Lagrangian equation of motion is found from

d
dt

(
∂L
∂θ̇

)
= d

dt
(
mL2θ̇ −mLẋ0 cos θ

)
= mL2θ̈ + 2mLL̇θ̇ −mLẍ0 cos θ −mL̇ẋ0 cos θ +mLẋ0θ̇ sin θ

(3.32)

and
∂L
∂θ

= mLẋ0θ̇ sin θ −mẋ0L̇ cos θ −mgL sin θ (3.33)

which gives
mL2θ̈ −mLẍ0 cos θ + 2mLL̇θ̇ +mgL sin θ = 0 (3.34)

which can be written as

θ̈ − 1
L
ẍ0 cos θ + g

L
sin θ = − 2

L
L̇θ̇ (3.35)

3.8. Pendulum with Moving Attachment Point and
Varying Rope Length

A pendulum that moves in the xz plane with moving attachment point in the
x direction and in the z direction together with a varying rope length gives the
following velocity components, ẋ = ẋ0 −Lθ̇ cos θ− L̇ sin θ and ż = ż0 +Lθ̇ sin θ−
L̇ cos θ. The kinetic energy is

K =1
2m(ẋ2 + ż2)

=1
2m

(
(ẋ0 − Lθ̇ cos θ − L̇ sin θ)2 + (ż0 + Lθ̇ sin θ − L̇ cos θ)2

)
=1

2m(ẋ2
0 + L2θ̇2 cos2 θ + L̇2 sin2 θ + ż2

0 + L2θ̇2 sin2 θ + L̇2 cos2 θ) (3.36)

−mẋ0Lθ̇ cos θ −mẋ0L̇ sin θ +mLL̇θ̇ sin θ cos θ +mż0Lθ̇ sin θ
−mż0L̇ cos θ −mLL̇θ̇ sin θ cos θ

=1
2m(ẋ2

0 + ż2
0 + L2θ̇2 + L̇2)−mẋ0Lθ̇ cos θ −mẋ0L̇ sin θ +mż0Lθ̇ sin θ −mż0L̇ cos θ
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The potential energy is still U = mgL(1− cos θ). The Lagrangian is therefore

L =1
2m(ẋ2

0 + ż2
0 + L2θ̇2 + L̇2)−mẋ0Lθ̇ cos θ −mẋ0L̇ sin θ +mż0Lθ̇ sin θ

−mż0L̇ cos θ −mgL(1− cos θ)
(3.37)

The Lagrangian equation of motion is found from

d
dt

(
∂L
∂θ̇

)
= d
dt
(
mL2θ̇ −mLẋ0 cos θ +mLż0 sin θ

)
=mL2θ̈ + 2mLL̇θ̇ −mLẍ0 cos θ −mL̇ẋ0 cos θ +mLẋ0θ̇ sin θ

+mLz̈0 sin θ +mL̇ż0 sin θ +mLż0θ̇ cos θ

(3.38)

and

∂L
∂θ

=mLẋ0θ̇ sin θ −mL̇ẋ0 cos θ +mLż0θ̇ cos θ

+mż0L̇ sin θ −mgL sin θ
(3.39)

which gives

mL2θ̈ + 2mLL̇θ̇ −mLẍ0 cos θ +mLz̈0 sin θ +mgL sin θ = 0 (3.40)

which can be written as

θ̈ = 1
L
ẍ0 cos θ − 1

L
z̈0 sin θ − g

L
sin θ − 2

L
L̇θ̇ (3.41)

3.9. Simple Spherical Pendulum with Euler Angles
A frame {n} is defined as the inertial frame with the z axis pointing vertically
upwards and the x and y axis are both in the horizontal plane (Figure 3.1). The
attachment point is in the xy plane with position rnb = [0, 0, 0]T in the coordinates
of frame n, which means the attachment point is fixed. The pendulum is defined
as a mass m connected to a mass-less wire of length L. Frame {b} is fixed at the
attachment point where the z axis is defined as an elongation of the wire. The
motion of the point mass is caused by a rotation of angle φx about the x axis,
Rx(φx), and a rotation φy about the y axis, Ry(φy). These rotation matrices are
defined as in section 2.3

Rx(φx) =

 1 0 0
0 cx −sx
−0 sx cx

 (3.42)
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Figure 3.1.: Spherical Pendulum

and

Ry(φy) =

 cy 0 sy
0 1 0
−sy 0 cx

 (3.43)

The composite rotation from frame {n} to frame {b} is therefore

Rn
b = Rx(φx)Ry(φy) =

 cy 0 sy
sxsy cx −sxcy
−cxsy sx cxcy

 (3.44)

where sα = sinφα and cα = cosφα.

The position of the point mass m is given as rn = Rn
b r

b
r where rbr = [0, 0,−L]T is

the position of the point mass in the coordinates of frame {b}.

rn =

 cy 0 sy
sxsy cx −sxcy
−cxsy sx cxcy


 0

0
−L

 =

 −LsyLsxcy
−Lcxcy

 (3.45)

The velocity of the point mass is the derivative with respect to time of the position
vector rn

υn =

 −Lcyφ̇y
Lcxcyφ̇x − Lsxsyφ̇y
Lsxcyφ̇x + Lcxsyφ̇y

 (3.46)
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In the same way as in section 3.2 is Lagrange’s equations derived from the energy
equations. The kinetic energy for a spherical pendulum is found from 1

2m(υn)2

and is

K =1
2m(L2c2

yφ̇
2
y + L2c2

xc
2
yφ̇

2
y − 2L2sxcxsycyφ̇xφ̇y + L2s2

xs
2
yφ̇

2
y

L2s2
xc

2
yφ̇

2
x + 2L2sxcxsycyφ̇xφ̇y + L2c2

xs
2
yφ̇

2
y)

=1
2mL

2
(
φ̇2
xc

2
y + φ̇2

y

) (3.47)

The potential energy is U = −mgL(cxcy−1). The Lagrangian equation of motion
for φx is derived by finding ∂L

∂φ̇x
and differentiating this with respect to time. Then

finding ∂L
∂φx

and setting the difference between the two expressions equal to zero.

L = 1
2mL

2
(
φ̇2
xc

2
y + φ̇2

y

)
+mgL(cxcy − 1) (3.48)

This gives

d
dt

(
∂L
∂φ̇x

)
= d

dt
(
mL2φ̇xc

2
y

)
= mL2

(
φ̈xc

2
y − 2φ̇xφ̇ysycy

)
(3.49)

d
dt

(
∂L
∂φ̇y

)
= d

dt
(
mL2φ̇y

)
= mL2

(
φ̈y
)

(3.50)

and
∂L
∂φx

= −mgLsxcy (3.51)

and
∂L
∂φy

= −mL2φ̇2
xsycy −mgLcxsy (3.52)

The resulting equations of motion are then

mL2φ̈xc
2
y − 2mL2φ̇xφ̇ysycy = −mgLsxcy (3.53)

mL2φ̈y − 2mL2φ̇2
xsycy = −mgLcxsy (3.54)

which can be written as

φ̈x = 1
cy

(2φ̇xφ̇ysy − ω2
0sx) (3.55)

φ̈y = φ̇2
xsycy − ω2

0cxsy (3.56)
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Figure 3.2.: Spherical Pendulum with Moving Attachment Point

3.10. Spherical Pendulum with Moving Attachment
Point with Euler Angles

Now lets consider the spherical pendulum with a moving attachment point both in
the xy plane in the z direction. Frame {n} is still defined with the z axis pointing
vertically upwards and the x and y axis makes the horizontal plane (Figure 3.2).
Frame {b} has its origin at the attachment point. The position of the attachment
point in the coordinates of frame {n} is rnb = [x0, y0, z0]T. The position of the
point mass m is rn = rnb +Rn

b r
b
r where rbr = [0, 0,−L]T. The position of the point

mass is given as

rn =

x0
y0
z0

+

 cy 0 sy
sxsy cx −sxcy
−cxsy sx cxcy


 0

0
−L

 =

 x0 − Lsy
y0 + Lsxcy
z0 − Lcxcy

 (3.57)

The velocity of the point mass is the derivative with respect to time of rn

υn =

 ẋ0 − Lcyφ̇y
ẏ0 + Lcxcyφ̇x − Lsxsyφ̇y
ż0 + Lsxcyφ̇x + Lcxsyφ̇y

 (3.58)

In the same way as in section 3.2 the Lagrange equations are derived from the
energy equations. The kinetic energy for a spherical pendulum is found from
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1
2m(υn)2 and is

K =1
2mL

2
(
φ̇2
xc

2
y + φ̇2

y

)
+ 1

2m(ẋ2
0 + ẏ2

0 + ż2
0)

−mLẋ0φ̇ycy +mLẏ0
(
φ̇xcxcy − φ̇ysxsy

)
+mLż0

(
φ̇xsxcy + φ̇ycxsy

) (3.59)

and the potential energy is

U = mgL(1− cxcy) (3.60)

The Lagrangian equations of motion is then found from (3.6)

L =1
2mL

2
(
φ̇2
xc

2
y + φ̇2

y

)
+ 1

2m(ẋ2
0 + ẏ2

0 + ż2
0)

−mLẋ0φ̇ycy +mLẏ0
(
φ̇xcxcy − φ̇ysxsy

)
+mLż0

(
φ̇xsxcy + φ̇ycxsy

)
−mgL(1− cxcy)

(3.61)

The derivative with respect to time for φx is

d
dt

(
∂L
∂φ̇x

)
= d
dt
(
mL2φ̇xc

2
y −mLẏ0cxcy +mLż0sxcy

)
=mL2φ̈xc

2
y +mLÿ0cxcy − 2mL2φ̇xφ̇ysycy +mLz̈0sxcy

−mLẏ0(φ̇xsxcy + φ̇ycxsy) +mLż0(φ̇xcxcy − φ̇ysxsy)

(3.62)

and

∂L
∂φx

= −mLẏ0(φ̇xsxcy + φ̇ycxsy) +mLż0(φ̇xcxcy − φ̇ysxsy)−mgLsxcy (3.63)

From (3.7) the resulting equation of motion for φx is

mL2φ̈xc
2
y +mLÿ0cxcy +mL2z̈0sxcy + 2mL2φ̇xφ̇ysycy −mgLsxcy = 0 (3.64)

The same procedure for φy

d
dt

(
∂L
∂φ̇y

)
= d
dt
(
mL2φ̇y −mLẋ0cy −mLẏ0sxsy +mLż0cxsy

)
=mL2φ̈y −mLẍ0cy −mLÿ0sxsy +mLz̈0cxsy

+mLẋ0φ̇ysy −mLẏ0(φ̇xcxsy + φ̇ysxcy) +mLż0(φ̇xsxsy − φ̇ycxcy)
(3.65)
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and

∂L
∂φy

=−mL2φ̇2
xsycy +mLẋ0φ̇ysy

−mLẏ0(φ̇xcxsy + φ̇ysxcy) +mLż0(φ̇xsxsy − φ̇ycxcy)
−mgLcxsy

(3.66)

This gives the resulting equation of motion for φy

mL2φ̈y −mLẍ0cy −mLÿ0sxsy +mL2z̈0cxsy +mL2φ̇2
xsycy +mgLcxsy = 0 (3.67)

which gives the following expressions for φ̈x and φ̈y

φ̈x = 1
cy

(
2φ̇xφ̇ysy −

ÿ0cx
L
− z̈0sx

L
− ω2

0sx

)
(3.68)

φ̈y = −φ̇2
xsycy + ẍ0cy

L
+ ÿ0sxsy

L
− z̈0cxsy

L
− ω2

0cxsy (3.69)

For a moving attachment point in the xy plane (ż = 0) makes the expressions

φ̈x = 1
cy

(
2φ̇xφ̇ysy −

ÿ0cx
L
− ω2

0sx

)
(3.70)

φ̈y = −φ̇2
xsycy + ẍ0cy

L
+ ÿ0sxsy

L
− ω2

0cxsy (3.71)

3.11. Damping
In order to damp the oscillations a damping controller is defined using the ac-
celerations of the attachment point (ẍ0, ÿ0, z̈0), under the assumption that rn0 is
fixed, as

ẍ0 = −2ζω0Lφ̇y −
1
cy
ÿ0sxsy (3.72)

ÿ0 = 2ζω0Lφ̇x (3.73)

3.12. Spherical Pendulum with Varying Rope Length
The position of the point mass is the same as in section 3.10

rn =

 x0 − Lsy
y0 + Lsxcy
z0 − Lcxcy

 (3.74)
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since the rope length L is varying as a function of time, it has to be implemented
in the velocity expression

υn =

 ẋ0 − Lcyφ̇y − L̇sy
ẏ0 + Lcxcyφ̇x − Lsxsyφ̇y + L̇sxcy
ż0 + Lsxcyφ̇x + Lcxsyφ̇y − L̇cxcy

 (3.75)

The kinetic energy is found to be

K =1
2mL

2(φ̇2
xc

2
y + φ̇2

y) + 1
2mL̇

2 + 1
2m(ẋ2

0 + ẏ2
0 + ż2

0)

−mLẋ0φ̇ycy +mLẏ0(φ̇xcxcy − φ̇ysxsy)

+mLż0(φ̇xsxcy + φ̇ycxsy)−
1
2mL̇(ẋ0sy − ẏ0sxcy + ż0cxcy)

(3.76)

The potential energy is still U = mgL(1 − cxcy). The Lagrangian is found using
the same procedure as before.

L =1
2mL

2(φ̇2
xc

2
y + φ̇2

y) + 1
2mL̇

2 + 1
2m(ẋ2

0 + ẏ2
0 + ż2

0)

−mLẋ0φ̇ycy +mLẏ0(φ̇xcxcy − φ̇ysxsy) +mLż0(φ̇xsxcy + φ̇ycxsy)

− 1
2mL̇(ẋ0sy − ẏ0sxcy + ż0cxcy)−mgL(1− cxcy)

(3.77)

The derivative with respect to time for φx is going to be the same as without the
varying rope length.

d
dt

(
∂L
∂φ̇x

)
= d
dt
(
mL2φ̇xc

2
y +mLẏ0cxcy +mLż0sxcy

)
=mL2φ̈xc

2
y +mLÿ0cxcy +mLz̈0sxcy −mLẏ0(φ̇xsxcy + φ̇ycxsy)

+mLż0(φ̇xcxcy − φ̇ysxsy)− 2mL2φ̇xφ̇ysycy

+mL̇(ẏ0cxcy + ż0sxcy) + 2mLL̇φ̇xc2
y

(3.78)

and

∂L
∂φx

=−mLẏ0(φ̇xsxcy + φ̇ycxsy) +mLż0(φ̇xcxcy − φ̇ysxsy)

+mL̇(ẏ0cxcy + ż0sxcy)−mgLsxcy
(3.79)

the resulting equation of motion is

mL2φ̈xc
2
y +mLÿ0cxcy +mLz̈0sxcy − 2mL2φ̇xφ̇ysycy

+2mLL̇φ̇xc2
y +mgLsxcy = 0

(3.80)
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For φy is the derivative with respect to time the same,

d
dt

(
∂L
∂φ̇y

)
= d
dt
(
mL2φ̇y −mLẋ0cy −mLẏ0sxsy +mLż0cxsy

)
=mL2φ̈y −mLẍ0cy −mLÿ0sxsy +mLz̈0cxsy

+mLẋ0φ̇ysy −mLẏ0(φ̇xcxsy + φ̇ysxcy)−mLż0(φ̇xsxsy − φ̇ycxcy)
−mL̇(ẋ0cy + ẏ0sxsy − ż0cxsy) + 2mLL̇φ̇y

(3.81)

and

∂L
∂φy

=−mL2φ̇2
xsycy +mLẋ0φ̇ysy

−mLẏ0(φ̇xcxsy + φ̇ysxcy)−mLż0(φ̇xsxsy − φ̇ycxcy)
−mL̇(ẋ0cy + ẏ0sxsy − ż0cxsy)−mgLcxsy

(3.82)

which gives the resulting equation of motion for φy

mL2φ̈y −mLẍ0cy −mLÿ0sxsy +mLz̈0cxsy

+mL2φ̇2
xsycy + 2mLL̇φ̇y +mgLcxsy = 0

(3.83)

which gives the following expressions for φ̈x and φ̈y

φ̈x = 1
cy

(
2φ̇xφ̇ysy −

1
L
ÿ0cx −

1
L
z̈0sx − ω2

0sx

)
− 2
L
L̇φ̇x (3.84)

φ̈y =− φ̇2
xsycy + 1

L
ẍ0cy + 1

L
ÿ0sxsy −

1
L
z̈0cxsy

− 2e
L
L̇φ̇y − ω2

0cxsy

(3.85)

3.13. Lyapunov Stability Analysis for a Spherical
Pendulum

The stability of the system is ensured for the spherical pendulum, as in section 3.5.
Consider the energy function V = K+U where the motion of the attachment point
is assumed to be an exogenous variable (independent from the other variables in
the system). The function becomes

V = 1
2mL

2
(
φ̇2
xc

2
y + φ̇2

y

)
+mgL(1− cxcy) (3.86)
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The time derivative of the function is

V̇ = φ̇x(mL2φ̈xc
2
y) + φ̇y(mL2φ̈y)−mL2φ̇2

xφ̇ysycy

+mgL(φ̇ycxsy + φ̇xsxcy)
(3.87)

From (3.64) and (3.67) gives

mL2φ̈xc
2
y = mLÿ0cxcy + 2mL2φ̇xφ̇ysycy −mgLsxcy (3.88)

and
mL2φ̈y = −mLẍ0cy −mLÿ0sxsy −mL2φ2

xsycy −mgLcxsy (3.89)

which gives the expression for V̇

V̇ = φ̇x(mLÿ0cxcy + 2mL2φ̇xφ̇ysycy −mgLsxcy)
+ φ̇y(−mLẍ0cy −mLÿ0sxsy −mL2φ2

xsycy −mgLcxsy)
−mL2φ̇2

xφ̇ysycy +mgL(φ̇xsxcy + φ̇ycxsy)
(3.90)

which gives the resulting

V̇ = mLÿ0φ̇xcxcy −mLφ̇y(ẍ0cy + ÿ0sxsy) (3.91)

Replacing ẍ0 and ÿ0 with the damping expressions from (3.72) and (3.73) and get

V̇ = −2mL2ζω0(φ̇2
xcxcy + φ̇2

ycy) (3.92)

This means that V̇ is negative for all −π
2 < φx < π

2 and −π
2 < φy < π

2 ,
which means that the system is Lyapunov stable. Similarly to what was done
in section 3.5 must LaSalle’s invariance principle be checked. Let the set of tra-
jectories I = {φ, φ̇ : V̇ (φ) = 0}, where φ = [φx, φy]T, which is the same as
I = {φ, φ̇ : φ̇ = 0} which means that there are no trajectories within I which
again means that the equilibrium is asymptotically stable.

3.14. Additions to the Damping
Additional terms have to be inserted into (3.72) and (3.73) to ensure the system’s
ability to follow a trajectory. Two feedback loops as in are added. The updated
damping becomes

ÿ0 = 2ζω0Lφ̇x +Kp(ry − y0)−Kdẏ0 (3.93)

and
ẍ0 = −2ζω0Lφ̇y −

ÿ0sxsy
cy

+Kp(rx − x0)−Kdẋ0 (3.94)
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where Kp and Kd are proportional control gains, as in a P-regulator. rx and ry
are trajectories in the x and y direction, respectively. Since the movement in the
z direction does not affect the damping of the oscillations, a position and velocity
can be used to control the attachment point’s movement in that direction.

z̈0 = Kp(rz − z0)−Kdż0 (3.95)

For the rope length a simple position loop system is used

L̇ = Kp(rL − L) (3.96)

where L is the current rope length, while rL is the desired rope length.

The additions to the damping equation takes the difference between the desired
position and the velocity of the attachment point into consideration when deter-
mining the acceleration. The first loop, referred to as the position loop, of (3.93)
and (3.94) takes the difference in position and multiplies it with the proportional
control gain Kp. The second loop, referred to as the velocity loop, takes the veloc-
ity and multiplies it with another control gain Kd. In practice this means that the
gains determine how much the difference in position, and velocity should affect the
acceleration of the attachment point. The position loop (e.g. Kp(x0 − rx)) works
well when the difference between x0 and rx is large, but struggles to follow the
reference when it changes rapidly. The velocity loop (e.g. Kdẋ0) takes the velocity
of the attachment point into account. If the velocity is large the acceleration is
reduced to provide overshooting.

3.15. Velocity as Input
In practice it is not possible to use the acceleration as an input [17]. The desired
velocity vx and vy are therefore used. The alternative accelerations are given by
the formula

ax0 = (vx − ẋ0)
Tυ

(3.97)

ay0 = (vy − ẏ0)
Tυ

(3.98)

az0 = (vz − ż0)
Tυ

(3.99)

Tυ is here a time constant as used in [11]. It is paramount that these acceleration
are as close to similar as possible.
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Knuckle Boom Crane
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Figure 4.1.: Description of Crane
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Link ai θi di θi
1 0 π

2 l1 θ∗1
2 l2 0 0 θ2(q2)∗
3 l3 0 0 θ3(q3)∗

Table 4.1.: Denavit-Hartenberg parameters of knuckle boom crane

4.1. Description of Crane
The knuckle boom crane is a 3 DOF crane consisting of three joints, all rotational,
see Figure 4.1. The first joint is a slewing joint that makes the crane rotate about
the vertical axis with an angle θ1. The second joint is rotational with the joint
variable θ2. The joint rotates due to the extension of a linear actuator. θ2 is
depending on the length of the linear actuator q2. The third joint is similar to
the second with joint variable θ3(q3). This is similar to what was presented in [6]
and [23].

Considering the crane without the linear actuators the system can be described
using Denavit-Hartenberg convention. The joint variables q is [θ1, θ2(q2), θ3(q3)]
and the forward kinematics is given by its parameters and is generally presented
as in Table 4.1. The position and orientation of the crane tip can be described
using the Homogeneous Transformation Matrix. Here the parameters describing
the transformation from one joint to another, for the knuckle boom crane the
matrices are found using Equation 2.14

T 0
1 =


c1 0 s1 0
s1 0 −c1 0
0 1 0 l1
0 0 0 1

 (4.1)

T 1
2 =


c2 −s2 0 c2l2
s2 c2 0 s2l2
0 0 1 0
0 0 0 1

 (4.2)

T 2
3 =


c3 −s3 0 c3l3
s3 c3 0 s3l3
0 0 1 0
0 0 0 1

 (4.3)

In order to find the position and orientation of the attachment point of the knuckle
boom crane in the coordinates of frame {0}, the homogeneous transformation
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matrix from frame {0} to frame {3} is found from a the composite transformation
matrix

T 0
3 = T 0

1 T
1
2 T

2
3 (4.4)

which is an expression for the position and orientation of the attachment point in
the coordinates of frame {0}.

T 0
2 = T 0

1 T
1
2 =


c1c2 −c1s2 s1 c1c2l2
s1c2 −s1s2 −c1 s1c2l2
s2 c2 0 s2l2 + l1
0 0 0 1

 (4.5)

T 0
3 = T 0

2 T
2
3 =


c1c2c3 − c1s2s3 −c1c2s3 − c1s2c3 s1 c1c2c3l3 − c1s2s3l3 + c1c2l2
s1c2c3 − s1s2s3 −s1c2s3 − s1s2c3 −c1 s1c2c3l3 − s1s2s3l3 + s1c2l2
s2c3 + c2s3 −s2s3 + c2c3 0 s2c3l3 + c2s3l3 + s2l2 + l1

0 0 0 1


(4.6)

For simplicity, the notation si = sin θi and ci = cos θi is used. As described in
section 2.5 is the joint axis z in the coordinates of frame 0, the three first elements
in the thirds column in T 0

i . Which gives

z0 = [0, 0, 1]T, z1 = z2 = z3 = [s1,−c1, 0]T (4.7)

and the position vector of the origin of frame i in the coordinates of frame 0 is
the first three elements of the last column of T 0

i

p0 =[0, 0, 0]T

p1 =[0, 0, l1]T

p2 =[c1c2l2, s1c2l2, s2l2 + l1]T

p3 =[c1c2c3l3 − c1s2s3l3 + c1c2l2, s1c2c3l3 − s1s2s3l3

+ s1c2l2, s2c3l3 + c2s3l3 + s2l2 + l1]T

(4.8)

4.2. Jacobian
For this particular system, with three rotary joints is the Jacobian given, from
Equation 2.17, as

J =
[
JP
JO

]
=
[
z0 × (p3 − p0) z1 × (p3 − p1) z2 × (p3 − p2)

z0 z1 z2

]
(4.9)
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which with the a z vectors inserted becomes

J =
[
JP
JO

]
=


z0 × (p3 − p0) z1 × (p3 − p1) z2 × (p3 − p2)

0 s1 s1
0 −c1 −c1
1 0 0

 (4.10)

It is seen that the three rows at the bottom is not linearly independent, and with
the crane’s 3 DOFs is only JP considered. The velocity of the end-effector in the
coordinates of frame 0 is therefore

ṗe = JP q̇ =
[
z0 × (p3 − p0) z1 × (p3 − p1) z2 × (p3 − p2)

] θ̇1
θ̇2
θ̇3

 (4.11)

The derivation of the Jacobian is found in section A.1.

The relationship between the derivative of the joint angles and the velocity of
the end-effector is ṗe = JP q̇. When given the velocity of the end-effector, the
derivative of the joint angles is found using the inverse Jacobian

q̇ = J−1
p Ṗe (4.12)

4.3. Defining the Angles θ2 and θ3

For the second link, θ2 is found from using the law of cosine on the triangle made
by b21, b22 and q2 (Figure 4.2) where b21 and b22 are used to divide the geometry
into three triangles. b21 is the hypotenuse of the triangle with catheti ab2 and eb2
and b22 is the hypotenuse of the triangle with catheti ap2 and ep2. From the left
figure in Figure 4.2 it is seen that

θ∗2 = π − θ2 − β2 − γ2 (4.13)

where θ2 = arctan ab2
eb2

, β2 = arctan ap2
ep2

. Due to the use of the Denavit-Hartenberg
convention is the angle θ2 to be zero when the two arms make a 90 deg angle
between them. θ2 is therefore defined as

θ2 =π

2 − θ
∗
2

=θ2 + β2 + γ2 −
π

2

(4.14)

The law of cosine is applied to find γ2 using the triangle made by b21, b22 and q2.

q2
2 = b2

21 + b2
22 − 2b21b22 cos γ2 (4.15)
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Figure 4.2.: Shoulder Joint

solving for γ2 gives

γ2 = arccos q
2
2 − b2

21 − b2
22

−2b21b22
(4.16)

which gives the following expression for θ2

θ2 = θ2 + β2 + arccos q
2
2 − b2

21 − b2
22

−2b21b22
− π

2 (4.17)

The third link is similar to the second, the angle is to be zero when it is parallel
to the second link. The expression for θ3 becomes

θ3 = θ3 + β3 + γ3 − π (4.18)

γ3 is found in the same way as for γ2 and is

γ3 = arccos q
2
3 − b2

31 − b2
32

−2b31b32
(4.19)

and
θ3 = θ3 + β3 + arccos q

2
3 − b2

31 − b2
32

−2b31b32
− π (4.20)
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px

py

r

θ

s(t)

Figure 4.3.: Arc length

Solving for q2 and q3 gives the expression for the linear actuators as a function of
the angles θ2 and θ3

q2
2 − b2

21 − b2
22

−2b21b22
= cos

(
θ2 − θ2 − β2 + π

2

)
q2

2 = −2b21b22 cos
(
θ2 − θ2 − β2 + π

2

)
+ b2

21 + b2
22

q2 =
√
−2b21b22 cos

(
θ2 − θ2 − β2 + π

2

)
+ b2

21 + b2
22

(4.21)

q2
3 − b2

31 − b2
32

−2b31b32
= cos (θ3 − θ3 − β3 + π)

q2
3 = −2b31b32 cos (θ3 − θ3 − β3 + π) + b2

31 + b2
32

q3 =
√
−2b31b32 cos (θ3 − θ3 − β3 + π) + b2

31 + b2
32

(4.22)

4.4. Trajectory planning
The planning of the trajectory of a robot arm, or in this case a crane, can be found
using the joint variables determined by the end-effector position and orientation
specified by the user. The expression in (2.31) can also be used to find an analytic
expression for the arc length s of the path. The arc goes from value s = 0 at t = 0
to the value s = sf at t = tf . The expression then becomes

s (t) =


si + 1

2 s̈ct
2 0 ≤ t ≤ tc

si + s̈ctc (t− tc/2) tc < t ≤ tf − tc
sf − 1

2 s̈c (tf − t)2 tf − tc < t ≤ tf .
(4.23)
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With the acceleration defined as in (2.30) is set with an equal sign, gives tc = tf−tc
which would make the expression of the arc length

s (t) =
{
si + 1

2 s̈ct
2 0 ≤ t ≤ tc

sf − 1
2 s̈c (tf − t)2 tc < t ≤ tf .

(4.24)

This finds a trajectory in the xy plane. For a given angle θ and a radius r the
arc length is defined as s = rθ. The position of a point on the arc is found using
Figure 4.3, where it can be seen that the position in the x direction can be found
from

θ = arccos
(
px
r

)
(4.25)

which means that
s = rθ = r arccos

(
px
r

)
(4.26)

which ultimately gives
px = r cos

(
s

r

)
(4.27)

the same derivation gives
py = r sin

(
s

r

)
(4.28)

In order to find a trajectory in the z direction, the parameter is simply changed
to z in (4.29)

z (t) =
{
zi + 1

2 z̈ct
2 0 ≤ t ≤ tc

zf − 1
2 z̈c (tf − t)2 tc < t ≤ tf .

(4.29)

The position vector then becomes

p =

pxpy
z

 =

r cos
(
s
r

)
r sin

(
s
r

)
z

 (4.30)





Chapter 5.

Simulations

5.1. About the Simulations
When tuning Kp and Kd a trial and error approach has been used. Starting with
both values set to zero and then attempting to find a value that damps both the
angles φx, φy and follows the trajectory rx and ry adequately. Initial angles are set
to φx = 5 deg and φy = −10 deg. The trajectories are initially set as constants,
meaning that the attachment point is moved to constant x and y values. These
values are set to rx = 2.5 m and ry = −2.5 m. The damping ratio is initially set
to ζ = 0.7. The rope length is set to L = 1 m. The duration of the simulations is
100 s. Note that all dotted lines are trajectories and are not named in the plots.

In Figure 5.1 the program is run with both parameters equal to zero to see how
the systems work without taking the attachments point’s position or velocity into
consideration.

In Figure 5.2-Figure 5.4 different constant values for the gains are used to see
how the added damping will affect the system. The values used are Kp = 10 and
Kd = 10, Kp = 5 and Kd = 5, Kp = 0.5 and Kd = 0.5 (notice that the time
span is longer for Figure 5.4 than for the previous plots). How a difference in
the parameters will affect the system is also of interest, therefore, Kp = 0.75 and
Kd = 0.25, Kp = 0.25 and Kd = 0.75 are also tested and displayed in Figure 5.5
and Figure 5.6.

To ensure the controller’s robustness towards change in rope lengths, periods
and frequencies. some of these parameters are included in the control gains. In
Figure 5.7 a new parameter ωXY is introduced and it is defined as ω0/10 (remem-
ber that ω0 =

√
g
L). The damping coefficients are then set as Kp = ω2

XY and
Kd = 2ζωXY . The numerical value of these coefficients will for all practical rope
lengths and periods be between 0 and 1.
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Figure 5.8 shows the impact the damping ratio ζ has on both the damping of the
oscillations and also the converging towards the trajectory of the motion in the x
and y direction.

To further test the controller’s ability to damp the oscillations while following a
trajectory, are cyclical trajectories applied in section 5.3. The trajectories are set
to rx = 1

2 sin(0.15t) and ry = 1
2 cos(0.15t). The period for these trajectories are

≈ 40 s and gives a consistent movement of the attachment point.

In section 3.15 a velocity loop is introduced and the acceleration resulting from
this loop is compared to the acceleration exiting from the controller. Figure 5.10
shows the comparisons of the two accelerations. In Figure 5.11 the motion of
the end-effector in x and y direction is depicted for both accelerations. The time
constant is set to Tυ = 0.3.

Until now, the attachment point has been moving in the xy plane. Figure 5.12
shows the damping of the oscillations alongside the motion of the end-effector in
the x, y and z direction. In section 5.6 the variation of the rope length is added.
In Figure 5.13 and Figure 5.15 the rope length goes from 2.5 m to 0.1 m and from
0.1 m to 2.5 m respectively. In Figure 5.14 the gain for the rope length loop is
doubled to ensure a quicker reaching of the desired rope length and to test how
this effects the tasks given.

The simulations thus far have been executed in Matlab. For the rest of the simu-
lations, Simulink has been used in order to simulate a complete system with the
knuckle boom crane’s end-effector as the attachment point.

For a more practical situation, a planned trajectory is applied using the theory
from section 2.6. Forward kinematics found from using the Denavit-Hartenberg
convention from section 2.4, gives the initial position of the end-effector given the
initial joint angles θ1, θ2, and θ3. The path the end-effector is instructed to take
is a quarter-circle in the xy plane. Two situations are looked at: one where the
crane moves in the z direction, section 5.7, and one where the crane moves in the
xy plane and hoisting of the cable stands for the movement in the z direction,
section 5.8. For both situations, the movement in the z direction is done before
the motion in the xy plane begins. Four different scenarios are simulated within
each of the two situations. tf = 100 s and ts = 20 s; tf = 100 s and ts = 10 s;
tf = 50 s and ts = 10 s and tf = 50 s and ts = 20 s, where tf and ts is defined
as in section 2.6. The initial movement in the z direction is set to be finished at
ts. The planar movement is set to be finished at tf − ts before the lowering of
the point mass is done before tf . For example, when tf = 100 s and ts = 20 s,
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will the system use the first 20 s to rise the payload, the next 60 s to move the
payload to its desired position in the xy plane, before lowering the payload to its
final position for the last 20 s.

The path of the end-effector for each simulation is plotted in Figure 5.16 and
Figure 5.21.

Figure 5.17-Figure 5.20 consist of nine plots where the motion, velocity, and ac-
celeration of the end-effector in the x, y and z direction are shown in addition to
the damping of the angles φx and φy. Initial conditions are L = 1 m, φx = 5 deg,
φy = −10 deg, θ1 = 0 deg, θ2 = 45 deg and θ3 = 45 deg. The crane is instructed
to rise 1.5 m before ts and lower 1.5 m before tf .

Figure 5.22-Figure 5.25 consist of seven plots where the motion, velocity and ac-
celeration of the end-effector in the x and y direction in addition to the rope
length and the damping of angles phix and φy. The initial conditions are similar
to the ones above, but this time it is the rope length that is instructed to rise and
lower 1.5 m and L0 = 1.6m. (The rope length can not be zero).

Lastly the motion of the linear actuators q2 and q3 alongside the change in the
joint variables θ1, θ2 and θ3 using the equations from section 4.3. These are
shown in Figure 5.26-Figure 5.29 for the constant rope length and in Figure 5.30-
Figure 5.33 for the varying rope length.

It should be noted that more values than the ones shown here were tested.
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5.2. Constant Trajectories
(a) (b)

Figure 5.1.: Simulations when Kp = 0 and Kd = 0: (a) angles φx and φy and
(b) motion of attachment point.

(a) (b)

Figure 5.2.: Simulations when Kp = 10 and Kd = 10: (a) angles φx and φy and
(b) motion of attachment point.
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(a) (b)

Figure 5.3.: Simulations when Kp = 5 and Kd = 5: (a) angles φx and φy and
(b) motion of attachment point.

(a) (b)

Figure 5.4.: Simulations when Kp = 0.5 and Kd = 0.5: (a) angles φx and φy
and (b) motion of attachment point.
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(a) (b)

Figure 5.5.: Simulations when Kp = 0.75 and Kd = 0.25: (a) angles φx and φy
and (b) motion of attachment point.

(a) (b)

Figure 5.6.: Simulations when Kp = 0.25 and Kd = 0.75: (a) angles φx and φy
and (b) motion of attachment point.
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(a) (b)

Figure 5.7.: Simulations when Kp = ω2
XY and Kd = 2ζωXY : (a) angles φx and

φy and (b) motion of attachment point.

(a) (b)

(c) (d)

Figure 5.8.: Simulations of damping ratios ζ = 0.1, ζ = 0.7 and ζ = 3: (a) angle
φx (b) angle φy (c) motion of attachment point in the x direction and (d) in the
x direction.
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5.3. Cyclical Trajectories

(a) (b)

(c)

Figure 5.9.: Simulations with cyclical trajectories rx = 0.5 sin(0.15t) and ry =
0.5 cos(0.15t) for Kp = ω2

XY and Kd = 2ζωXY : (a) angles φxnd φy, (b) motion in
the x direction and (c) in the y direction
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5.4. Velocity as Input
(a) (b)

(c) (d)

Figure 5.10.: Simulations where the acceleration in the velocity loop is compared
to the acceleration out the controller: (a) acceleration in the x direction, (b)
acceleration in the y direction, (c) a zoomed plot of the acceleration in x direction
and (d) in the y direction.
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(a) (b)

(c) (d)

Figure 5.11.: A comparison of the attachment point’s motion using the two
accelerations: (a) the acceleration out of the controller in the x direction, (b) the
acceleration from the velocity loop in the x direction, (c) the acceleration out of
the controller in the y direction and (d) in the y direction
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5.5. Moving Attachment Point in x, y and z Direction
(a) (b)

(c) (d)

Figure 5.12.: Simulations when attachment point is moving in 3D: (a) angles φx
and φy, and motion of attachment point in the (b)x direction, (c) y direction and
(d) z direction with cyclical trajectories.
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5.6. Moving Attachment Point and Varying Rope
Length

(a) (b)

(c) (d)

(e)

Figure 5.13.: Simulations for increasing rope length and cyclical trajectories: (a)
rope length, (b) angles φx and φy, (c) motion in the x direction, (d) motion in
the y direction, and (e) motion in the z direction.
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(a) (b)

(c) (d)

(e)

Figure 5.14.: Simulations for increasing rope length and cyclical trajectories
with change damping: (a) rope length, (b) angles φx and φy, (c) motion in the x
direction, (d) motion in the y direction, and (e) motion in the z direction.
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(a) (b)

(c) (d)

(e)

Figure 5.15.: Simulations for decreasing rope length and cyclical trajectories:
(a) rope length, (b) angles φx and φy, (c) motion in the x direction, (d) motion
in the y direction, and (e) motion in the z direction.
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5.7. Planned Trajectory - Constant Rope Length
(a) (b)

(c) (d)

(e)

Figure 5.16.: Simulation for the planned trajectory when the rope length is
constant: (a) trajectory of end-effector, (b) motion of end-effector when tf = 100 s
and ts = 10 s, (c) tf = 100 s and ts = 20 s, (d) tf = 50 s and ts = 10 s, and (e)
tf = 50 s and ts = 20 s
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.17.: Simulations for tf = 100 s and ts = 10 s with constant rope length:
(a) motion of end-effector in the x and y direction, (b) velocity in the x direction,
(c) acceleration in the x direction, (d) motion of end-effector in z direction, (e)
velocity in the y direction,(f) acceleration in the y direction, (g) angles φx and
φy, (h) velocity in the z direction, and (i) acceleration in the z direction
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.18.: Simulations fortf = 100 s and ts = 20 s with constant rope length:
(a) motion of end-effector in the x and y direction, (b) velocity in the x direction,
(c) acceleration in the x direction, (d) motion of end-effector in z direction, (e)
velocity in the y direction,(f) acceleration in the y direction, (g) angles φx and
φy, (h) velocity in the z direction, and (i) acceleration in the z direction
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.19.: Simulations fortf = 50 s and ts = 10 s with constant rope length:
(a) motion of end-effector in the x and y direction, (b) velocity in the x direction,
(c) acceleration in the x direction, (d) motion of end-effector in z direction, (e)
velocity in the y direction,(f) acceleration in the y direction, (g) angles φx and
φy, (h) velocity in the z direction, and (i) acceleration in the z direction
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.20.: Simulations fortf = 50 s and ts = 20 s with constant rope length:
(a) motion of end-effector in the x and y direction, (b) velocity in the x direction,
(c) acceleration in the x direction, (d) motion of end-effector in z direction, (e)
velocity in the y direction,(f) acceleration in the y direction, (g) angles φx and
φy, (h) velocity in the z direction, and (i) acceleration in the z direction
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5.8. Planned Trajectory - Varying Rope Length
(a) (b)

(c) (d)

(e)

Figure 5.21.: Simulation for the planned trajectory when the rope length is
varying: (a) trajectory of end-effector, (b) motion of end-effector when tf = 100 s
and ts = 10 s, (c) tf = 100 s and ts = 20 s, (d) tf = 50 s and ts = 10 s, and (e)
tf = 50 s and ts = 20 s
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.22.: Simulations fortf = 100 s and ts = 10 s with varying rope length:
(a) motion of end-effector in the x and y direction, (b) velocity in the x direction,
(c) acceleration in the x direction, (d) motion of end-effector in z direction, (e)
velocity in the y direction,(f) acceleration in the y direction, (g) angles φx and φy
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.23.: Simulations fortf = 100 s and ts = 20 s varying rope length: (a)
motion of end-effector in the x and y direction, (b) velocity in the x direction,
(c) acceleration in the x direction, (d) motion of end-effector in z direction, (e)
velocity in the y direction,(f) acceleration in the y direction, (g) angles φx and φy
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.24.: Simulations fortf = 50 s and ts = 10 s with varying rope length:
(a) motion of end-effector in the x and y direction, (b) velocity in the x direction,
(c) acceleration in the x direction, (d) motion of end-effector in z direction, (e)
velocity in the y direction,(f) acceleration in the y direction, (g) angles φx and φy
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.25.: Simulations fortf = 50 s and ts = 20 s with varying rope length:
(a) motion of end-effector in the x and y direction, (b) velocity in the x direction,
(c) acceleration in the x direction, (d) motion of end-effector in z direction, (e)
velocity in the y direction,(f) acceleration in the y direction, (g) angles φx and φy
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5.9. Actuators - Constant Rope Length
(a) (b)

Figure 5.26.: Simulations of actuators when rope length is constant and tf =
100 s and ts = 10 s: (a) angles θ1, θ2 and θ3 and (b) the resulting motion in the
linear actuators of the knuckle boom crane.

(a) (b)

Figure 5.27.: Simulations of actuators when rope length is constant and tf =
100 s and ts = 20 s: (a) anglesθ1, θ2 and θ3 and (b) the resulting motion in the
linear actuators of the knuckle boom crane.
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(a) (b)

Figure 5.28.: Simulations of actuators when rope length is constant and tf = 50 s
and ts = 10 s: (a) angles θ1, θ2 and θ3 and (b) the resulting motion in the linear
actuators of the knuckle boom crane.

(a) (b)

Figure 5.29.: Simulations of actuators when rope length is constant and tf = 50 s
and ts = 20 s: (a) angles θ1, θ2 and θ3 and (b) the resulting motion in the linear
actuators of the knuckle boom crane.
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5.10. Actuators - Varying Rope Length
(a) (b)

Figure 5.30.: Simulations of actuators when rope length is varying and tf = 100 s
and ts = 10 s: (a) angles θ1, θ2 and θ3 and (b) the resulting motion in the linear
actuators of the knuckle boom crane.

(a) (b)

Figure 5.31.: Simulations of actuators when rope length is varying and tf = 100 s
and ts = 20 s: (a) angles θ1, θ2 and θ3 and (b) the resulting motion in the linear
actuators of the knuckle boom crane.
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(a) (b)

Figure 5.32.: Simulations of actuators when rope length is varying and tf = 50 s
and ts = 10 s: (a) angles θ1, θ2 and θ3 and (b) the resulting motion in the linear
actuators of the knuckle boom crane.

(a) (b)

Figure 5.33.: Simulations of actuators when rope length is varying and tf = 50 s
and ts = 20 s: (a) angles θ1, θ2 and θ3 and (b) the resulting motion in the linear
actuators of the knuckle boom crane.
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Discussion

6.1. Constant Trajectories
The system’s ability to follow the desired path as well as stabilizing the payload
based on the control gains Kp and Kd is shown in section 5.2. Both gains are
inactive and the system only damps the oscillations, which is seen in Figure 5.1,
where the angels φx and φy are damped within five seconds, while the position of
the attachment point is nowhere near the trajectories. Without any constraints
on where the attachment can move, the attachment point will drift off since its
only assignment is to damp the oscillations.

When the gains are set to Kp = 10 and Kd = 10 does the system not follow
the trajectories, nor damps the oscillations. From Figure 5.2 is seen that the
high gains overrule the damping of the oscillation and are also overshooting the
attempt to follow the trajectory of the attachment point. It is obvious that this
solution is not feasible for any practical matter. There is progress When the
gains are lowered to Kp = 5 and Kd = 5 in Figure 5.3, even though the φx takes
off after 60 s, and none of the angels nor position converges towards their respec-
tive trajectories, the oscillate around the desired values, which is an improvement.

Further, the gains are lowered to below 1, and the contours of a functional sys-
tem can be seen in Figure 5.4. Both of the angles and the position converge
towards their trajectories and are more or less stable after 45 s. It is seen that φy
has a bigger amplitude which is logical given its initial value is greater than for φx.

When examining the situation where the gains are not equal to each other a ten-
dency is shown in Figure 5.5 and Figure 5.6. When Kp > Kd the oscillations am-
plifies gradually, leading to a non-functioning system. According to section 3.14,
the term Kdẋ0 slows down the acceleration when the velocity is high. This does
not affect the system now, and the main contributor to the acceleration is the
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difference between the desired and the actual position of the attachment point.
when Kp < Kd the result is more satisfactory, and the oscillations and position
converge within 10 s which is an improvement from when the gains were equal.

As mentioned in section 5.1, to ensure a robust system concerning varying rope
lengths, periods and frequencies are the variables L and ω0 included, through ωXY
into the damping equations. If Figure 5.7 is compared to Figure 5.6 the positions
of the attachment point converging faster for Kp = 0.25 and Kd = 0.75 than for
Kp = ω2

XY and Kd = 2ζωXY . The angles are stable at approximately the same
time, but the amplitude is greater for the previous values. It is logical that a quick
converging of the position excites larger oscillations of the pendulum. It might be
more desirable for the system to have a smooth converging, than for it to reach
the equilibrium as rapidly as possible.

In section 3.3 the assets of the damping ratio were described and Figure 5.8 shows
that for positions are reacting according to the theory. For ζ = 0.1 the system
is clearly underdamped and oscillating with a slowly decreasing amplitude. For
ζ = 3.0 the system is overdamped and the positions never reach their trajectories.
Both of these values of ζ result in undesired oscillations of the pendulum. The
chosen ζ = 0.7 is slightly overshooting the positions and has small oscillations of
the payload, but is quickly in a stable state.

6.2. Cyclical Trajectories
More is required of the controller when the cyclical trajectory of the attachment
point is inserted. Figure 5.9 shows that both angles φx and φy converge at about
15 s which is similar to when the trajectories were constant. When the desired
position of the attachment point was constant at 2.5m a longer change in position
was demanded so that the converging occurs after a similar duration is not surpris-
ing. Worth noting is that the angles do not oscillate after the initial stabilization.
For the attachment point’s position, it is clear that the stabilization of the pen-
dulum is requiring unwanted motion in the first 10 s where the position is over
1m away from its desired location in the x direction, and about 1m away in the
y direction. It should also be noted that there is a 10 s delay which is due to pro-
cessing time and should be taken into account when applying to a physical system.
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6.3. Velocity as Input
In section 3.15 an alternative way of determining the acceleration of the attach-
ment point was introduced, and the comparison of the two is shown in Figure 5.10.
It shows that the two accelerations coincide within a reasonable amount of accu-
racy, and the zoomed plots in Figure 5.10 show that the difference is about 1/100 s.
The resulting plots of the attachment point’s motion are shown in Figure 5.11.
The differences are unnoticeable which confirms that it is a feasible alternative to
the actual acceleration.

6.4. Moving Attachment Point in x, y and z Direction
In section 5.5 the working space of the attachment point is extended to a three
dimensional motion. The motion in the z direction seems to have little to none
impact on the systems ability to follow the trajectory in the x and y direction. In
Equation 3.84 and Equation 3.85 the term that includes the acceleration in the z
direction is 1

L z̈0sxsy and 1
L z̈0cxsy. With the angles φx and φy being close to zero

makes the values of sx and sy close to zero which results in the impact on the
system minimal.

6.5. Moving Attachment Point and Varying Rope
Length

Another addition to the system is the varying rope length. In Figure 5.13 change
in rope length from 0.1m to 2, 5m is tested. Similarly to the adding of 3D motion,
seems the system to take little effect of this change, other than that the amplitude
of the motion in all directions is slightly less than their respective trajectories. It
seems that the control gains for the rope length are too small to reach the desired
rope length within a time that is satisfactory, so in Figure 5.14 the gain is dou-
bled, and the system reaches L = 2.5m after about 40 s. The controller is now
struggling slightly more to follow the trajectory for the first part of the simulation
but is still not far off. Again must the a compromise be regarding what is most
important of reaching the desired rope length or following the trajectory closely.

When the rope length decreases instead of increases, shown in Figure 5.15, the
trajectory is initially harder to follow, but when the system has caught opp with
the trajectory follows it very closely. The motion, will initially cause a bigger off-
set in the angles and therefore a bigger impact on the position of the attachment
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point, when the rope length is large.

6.6. Planned Trajectory - Constant Rope Length
For a more practical approach with a planned trajectory is tested. With a con-
stant rope length initially shown in Figure 5.16-Figure 5.20. It is seen from Fig-
ure 5.16 that the system is able to follow that trajectory within a few seconds
when tf = 100 s, but not as well when tf = 50 s. The controller is instructed to
move along the trajectory within the time defined. When tf = 50 s and ts = 20 s
is the time this path has to be made 10 s, which is not enough. And the last figure
in Figure 5.16 confirms that.

In Figure 5.13 it could be seen that the system struggled with the first seconds
where all the movement happens at the same time. The instruction the system is
receiving, is therefore, to raise the crane before starting on the trajectory in the
xy plane. When the total duration of the simulation is set to tf = 100 s, shown
in Figure 5.17 and Figure 5.18 the system is able to follow the trajectories in the
x, y, and z direction. It seems as the initial angles of φx and φy are demanding
some drastic changes in the velocity and acceleration which might be a problem
when integrating the controller in a physical system.

When tf = 50, Figure 5.19 and Figure 5.20, it is seen that the system is finding
difficulties reaching the desired velocity and acceleration, but the motion is also
here not far from the trajectories.

6.7. Planned Trajectory - Varying Rope Length
Instead of using the crane to move the payload in the z direction, hoisting is at-
tempted in section 5.8. As expected is the initial disturbances more crucial here,
given that the rope length is 0.5m longer than in section 5.7. From Figure 5.22
and Figure 5.23 it is shown that after the rope length has reached its desired value,
the trajectory is followed by only a small error. It seems as if this approach is
superior to the previous if the situations where tf = 50 s. The hoisting itself does
not cause much noise to the damping of the oscillations, and after it is hoisted to
its desired length, it follows the trajectory well.
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6.8. Actuators
For implementing this on a physical crane, the motion of the joint angles θ1, θ2
and θ3 are plotted in section 5.9. It is desirable and crucial that the plots are
smooth. When the rope length is constant is it seen from Figure 5.26-Figure 5.29
that both the joint variables and linear actuators are moving smoothly except for
when tf = 50 s and ts = 20 s. It is not surprising that the action demanded by
the actuators are more present when the hoisting is done by the crane than when
it is done by varying the rope length, as seen in Figure 5.30-Figure 5.33. The
actuators should ideally be constant when the rope length is varying, which is not
the case. This means that the system uses the actuators actively to stabilize the
payload.
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Simulink Implementation
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Figure 7.1.: Flowchart of Simulink system: (1) trajectory, (2) controller, (3)
velocity loop, (4) spherical pendulum, (5) actuator, and (5-9) integrators. (The
variables are placed under their respective lines.)

For the simulations, Simulink was used with build-in Matlab functions. The sys-
tem is depicted in Figure 7.1. The blue boxes are Matlab functions, the green
boxes are subsystems and the cyan boxes are integrals. Note that an asterisk is
used for the acceleration and velocity that goes into the velocity loop, while the
acceleration and resulting velocity out of the velocity loop is without the asterisk.

All Matlab functions and the can be found in the section A.2

7.1. Matlab Functions

7.1.1. Trajectory

The desired trajectory of the end-effector is found using the theory from sec-
tion 2.6. The function, which can be found in subsection A.2.1, has the following
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inputs, which corresponds to the variables used in Chapter 4.

• Time, t

• Trajectory time, tf

• Start time, ts

• Distance from base to end-effector

• Angle of trajectory, θ

• Initial position of end-effector

and outputs the motion and velocity of the end-effector. The refernece to the rope
length is included in the output via an external “repeating sequence” block or a
step function.

7.1.2. Controller

The controller function (subsection A.2.2) takes in the following inputs

• Position of end-effector, P

• Velocity of end-effector, Ṗ

• Rope length, L

• Reference from “Trajectory”, Ref

• The angles φx and φy, and their derivatives φ̇x and φ̇y, φ

and outputs the acceleration of the end-effector, P̈∗ = [ẍ0, ÿ0, z̈0]T, and the deriva-
tive of the rope length, L̇, applying the damping equations from section 3.14. The
initial values are set to g = 9.81, ω0 =

√
(g/L), ζ = 1/

√
2 and ωXY = ω0/10 as

described in Chapter 5.

7.1.3. Spherical Pendulum

The function for the spherical (subsection A.2.3) has the following inputs

• Angles φx and φy, φ

• Acceleration of the end-effector, P̈

• Rope length, L

• Derivative of the rope length, L̇
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Length l1 l2 l3
Value, m 6.0 7.5 5.0
Offset ab2 ap2 ab3 ap3 eb2 ep2 eb3 ep3

Value, m 2.5 2.5 2.5 2.0 1.0 0.5 0.4 0.4

Table 7.1.: System parameters of knuckle boom crane

The output from this function is a vector

φ̇ =


φ̇x
φ̈x
φ̇y
φ̈y

 (7.1)

where φ̈x and φ̈y are defined as in Equation 3.84 and Equation 3.85.

7.2. Subsystems

θ̇ θ qṖ 5-1 5-2

Figure 7.2.: Subsystem 5: (5-1) joint angle function, (5-2) is the actuator func-
tion.

Block 3 in Figure 7.1 is the velocity loop mentioned in section 3.15. The output
from the controller, P̈∗ is run through an integrator block and the resulting ve-
locity Ṗ∗ fed into an adding block which subtracts the velocity Ṗ and divides the
sum by the time constant, Tυ = 0.3 which is a preset value.

Block 5 consists of two Matlab functions as shown in Figure 7.2. The first (sub-
section A.2.4) one takes in the velocity of the end-effector, as in Equation 4.12, Ṗ,
and the joint angles θ = [θ1, θ2, θ3]T being fed back in a closed loop. The output
is the derivative of the joint angle θ̇ which is run through an integrator before
being fed back. The joint angle vector is then the input in the second function
in the subsystem (subsection A.2.5) which uses the equations from section 4.3.
θ1 is not used in this function, and the output is a vector q = [q2, q3]T, which
is the position of the linear actuators in the crane. The lengths of the system
parameters are taken from [6] and are shown in Table 7.1.





Chapter 8.

Conclusion and Future Work

In this thesis, the stabilization of a spherical crane with a moving attachment
point has been simulated by using Lagrangian kinematics and Euler angles. The
simulations were done in Simulink and Matlab. The objective of the paper was
to test a controller’s ability to ensure both the stability and the desired position
of the payload.

Several values of the control gains, Kp and Kd were tested in the simulations. Val-
ues between 0 and 1 were established as the best solution after extensive testing,
and in order to define a system that is applicable for more than the specific initial
values tested here, the values Kp = ω2

XY and Kd = 2ζωXY were found to produce
an output that was satisfactory. With these values of the control gains, was the
system able to keep the angles close to equilibrium and followed the trajectory
efficiently.

It is clear that when choosing the parameters one has to compromise between
damping the payload oscillations and the ability to follow the trajectory. In prac-
tice, a crane in the right position can not lower an oscillating load. Therefore it
is more crucial to damp the oscillation than to reach the desired position quickly.
With the values found in this project, the oscillations are damped rapidly and the
attachment point reaches the trajectory in a smooth fashion.

When applied to a practical scenario where the system tasks were split into three
parts: Rising the payload 1.5m, move the payload in a quarter-circular path, and
ultimately lowering it 1.5m. Various time spans were tested, and the joint an-
gles and motion of the linear actuators were plotted to see if the output would be
feasible for a physical crane. The system’s outputs were satisfactory and the actu-
ators were moving smoothly except for when the total duration of the simulation
was 50 s, and the rise and lowering were executed by hoisting of the rope. The
duration of the rise and lowering was 20 s which left 10 s to move the end-effector
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in the xy plane.

Another objective was to explore the opportunity to use a velocity loop to rep-
resent the acceleration of the end-effector using desired velocities vx, vy and vz.
The acceleration found using the loop was close the actual accelerations of the
attachment point ẍ0 and ÿ0, and would be a natural par of the controller.

In order to get closer to a real-life situation, disturbances like wind or a moving
base could be implemented to further test the controller’s robustness. The rope
in this thesis is considered stiff and mass-less. A crane with a heavy payload can
behave like a double pendulum, which also could be interesting to use to test the
controller. Knuckle boom cranes are, as mentioned in the introduction, used to do
heavy lifting, usually outside. A good extension would be to simulate a payload
with a certain geometry, for instance, a container. Together with a wind model
could this be a very relevant task.

For the instances where a high-frequency oscillations occurred could it be possi-
ble to apply a low-pass filter to avoid potential challenges with implementing the
controller to a physical crane, which is the most natural step - to implement the
controller in a practical system and to see if the simulations match the practical
experiments. In order to do so, the angles φx and φy must be measured. A possi-
ble solution could be computer vision for the detection, which is another potential
extension to this thesis.

There are a lot of parameters included in this model, and choices had to be
made regarding which parameters to test and which to leave constant. The time
constant Tυ used in the velocity loop was not tuned to find an optimal value. In
order to ensure an acceleration as close to the theoretical value as possible would
be a natural extension to this system. More situations and more trajectories could
be tested, to further test the robustness of the controller.
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Appendix

A.1. Derivation of the Jacobian

p3 − p0 = p3 =

c1c2c3l3 − c1s2s3l3 + c1c2l2
s1c2c3l3 − s1s2s3l3 + s1c2l2
s2c3l3 + c2s3l3 + s2l2 + l1


p3 − p1 =

c1c2c3l3 − c1s2s3l3 + c1c2l2
s1c2c3l3 − s1s2s3l3 + s1c2l2

s2c3l3 + c2s3l3 + s2l2


p3 − p2 =

c1c2c3l3 − c1s2s3l3
s1c2c3l3 − s1s2s3l3
s2c3l3 + c2s3l3


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This gives the velocity in the respective directions

[z0 × (p3 − p0)]θ̇1 =

0 −1 0
1 0 0
0 0 0


c1c2c3l3 − c1s2s3l3 + c1c2l2
s1c2c3l3 − s1s2s3l3 + s1c2l2
s2c3l3 + c2s3l3 + s2l2 + l1

 θ̇1

=

−s1c2c3l3 + s1s2s3l3 − s1c2l2
c1c2c3l3 − c1s2s3l3 + c1c2l2

0

 θ̇1

[z1 × (p3 − p1)]θ̇2 =

 0 0 −c1
0 0 −s1
c1 s1 0


c1c2c3l3 − c1s2s3l3 + c1c2l2
s1c2c3l3 − s1s2s3l3 + s1c2l2

s2c3l3 + c2s3l3 + s2l2

 θ̇2

=

 −c1(s2c3l3 + c2s3l3 + s2l2)
−s1(s2c3l3 + c2s3l3 + s2l2)

c1(c1c2c3l3 − c1s2s3l3 + c1c2l2) + s1(s1c2c3l3 − s1s2s3l3 + s1c2l2)

 θ̇2

[z2 × (p3 − p2)]θ̇3 =

 0 0 −c1
0 0 −s1
c1 s1 0


c1c2c3l3 − c1s2s3l3
s1c2c3l3 − s1s2s3l3
s2c3l3 + c2s3l3

 θ̇3

=

 −c1(s2c3l3 + c2s3l3)
−s1(s2c3l3 + c2s3l3)

c2
1(c2c3l3 − s2s3l3) + s2

1(c2c3l3 − s2s3l3)

 θ̇3

=

−c1l3(s2c3 + c2s3)
−s1l3(s2c3 + c2s3)
l3(c2c3 − s2s3)

 θ̇3
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A.2. Matlab Files

A.2.1. Trajectory Function

f unc t i on [ x , y , z , dx , dy , dz ] = Tra jec tory ( t f , t , ts , r , ang , p0 )
%For the xy plane
s=0;
ds=0;
t f 1=t f −2∗ t s ;
t1=t−t s ;
s f=r ∗ang ;
ddsc=4∗ s f / t f 1 ^2 ;
tc=t f 1 /2−0.5∗ s q r t ( ( t f 1 ^2∗ddsc−4∗ s f ) /ddsc ) ;
i f t1 <= 0

s =0;
ds =0;

e l s e i f t1 <= tc
s=0.5∗ddsc∗ t1 ^2;
ds=ddsc∗ t1 ;

e l s e i f t1 <= t f 1
s=s f −0.5∗ddsc ∗( t f1−t1 ) ^2 ;
ds=ddsc ∗( t f1−t1 ) ;

e l s e
s=s f ;
ds=0;

end

%For the z d i r e c t i o n
t f 2=t s ;
z=p0 (3) ;
z i=z ;
dz=0;
z f=p0 (3) +1.5 ;
ddzc=4∗abs ( z f−z i ) / t f 2 ^2;
tc=t f 2 /2−0.5∗ s q r t ( ( t f 2 ^2∗ddzc−4∗( z f−z i ) ) /ddzc ) ;
i f t <= 0

z =z i ;
dz =0;

e l s e i f t <= tc
z=z i +0.5∗ddzc∗ t ^2 ;
dz=ddzc∗ t ;

e l s e i f t <= tf2−tc
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z=ddzc∗ tc ∗( t−tc /2) ;
dz=ddzc∗ t ;

e l s e i f t <= t f 2
z=zf −0.5∗ddzc ∗( t f2−t ) ^2 ;
dz=ddzc ∗( t f2−t ) ;

e l s e
t f 3=t f 2 ;
t3=t−( t f−t s ) ;
z i=p0 (3 ) +1.5 ;
dz=0;
z f=p0 (3) ;
i f t3 <= 0

z =z i ;
dz =0;

e l s e i f t3 <= tc
z=zi −0.5∗ddzc∗ t3 ^2 ;
dz=−ddzc∗ t3 ;

e l s e i f t3 <= t f 3
z=z f +0.5∗ddzc ∗( t f3−t3 ) ^2 ;
dz=−ddzc ∗( t f3−t3 ) ;

e l s e
z=z f ;
dz=0;

end
end

%Transforming to po s i t i o n and v e l o c i t y
p=[ r ∗ cos ( s / r ) , r ∗ s i n ( s / r ) , z ] ’ ;
dpds=[− s i n ( s / r ) , cos ( s / r ) ] ’ ;
dp=[dpds∗ds ; dz ] ;

%Outputs
x=p (1) ;
y=p (2) ;
z=p (3) ;
dx=dp (1) ;
dy=dp (2) ;
dz=dz ;
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A.2.2. Contoller Function

f unc t i on [ ddp , dL ] = Cont r o l l e r (p , dp , L , Lr , r e f , Phi )

%inputs
phix = Phi (1 ) ; dphix = Phi (2 ) ;
phiy = Phi (3 ) ; dphiy = Phi (4 ) ;
x0 = p (1) ; dx0 = dp (1) ;
y0 = p (2) ; dy0 = dp (2) ;
z0 = p (3) ; dz0 = dp (3) ;

%I n i t i a l va lue s
g = 9 . 8 1 ;
omega0 = 0 . 7 ;
ze ta = 1/ sq r t (2 ) ;
omegaXY = omega0 ∗ 0 . 1 ;

%Control ga in s
Kp = omegaXY^2; Kd=2∗zeta ∗omegaXY ;

rx = r e f (1 ) ;
ry = r e f (2 ) ;
rz = r e f (3 ) ;

%Abbrev iat ions
w0 = omega0 ;
sx = s i n ( phix ) ;
sy = s i n ( phiy ) ;
cy = cos ( phiy ) ;

%Damping
ddy0 = 2∗L∗ zeta ∗w0∗dphix + Kp∗( ry−y0 ) − Kd∗dy0 ;
ddx0 = − 2∗L∗ zeta ∗w0∗dphiy − (1/ cy ) ∗ sx∗ sy∗ddy0 + Kp∗( rx−x0

) − Kd∗dx0 ;
ddz0 = Kp∗( rz−z0 ) − Kd∗dz0 ;

dL = 4∗Kp∗( rL−L) ;
ddp=[ddx0 , ddy0 , ddz0 ] ’ ;
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A.2.3. Spherical Pendulum Function

f unc t i on dPhi = SphericalPendulum (Phi , ddp , dL ,L)

%inputs
phix = Phi (1 ) ; dphix = Phi (2 ) ;
phiy = Phi (3 ) ; dphiy = Phi (4 ) ;

%I n i t i a l va lue s
g = 9 . 8 1 ;
omega0 = sq r t ( g/L) ;

%Abbrev iat ions
w0 = omega0 ;
sx = s i n ( phix ) ;
cx = cos ( phix ) ;
sy = s i n ( phiy ) ;
cy = cos ( phiy ) ;

ddx0 = ddp (1) ;
ddy0 = ddp (2) ;
ddz0 = ddp (3) ;

%Equations o f Motion
dPhi = [ dphix ;

(1/ cy )∗(−ddy0∗cx/L − ddz0∗ sx/L . . .
+ 2∗dphix∗dphiy∗ sy − 2/L∗dL∗dphix − w0^2∗ sx ) ;
dphiy ;
ddx0∗cy/L + ddy0∗ sx∗ sy/L − ddz0∗cx∗ sy/L . . .
− dphix^2∗ sy∗cy − 2/L∗dL∗dphiy − w0^2∗ cx∗ sy ] ;

A.2.4. Joint Angles Function

f unc t i on dtheta = JointAngles (dp , q )
DH = [0 , p i /2 , 6 , 0 ;

7 . 5 , 0 , 0 , 0 ;
5 , 0 , 0 , 0 ] ;

[ J , ~ ] = ForwKin (DH, q ) ;
invJp = inv ( J ( 1 : 3 , 1 : 3 ) ) ;
dtheta = invJp∗dp ;
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A.2.5. Actuators Function

f unc t i on [ q2 , q3 ] = Actuators (~ , theta2 , theta3 )
a_b2 = 1 . 0 ;
a_p2 = 0 . 5 ;
e_b2 = 2 . 5 ;
e_p2 = 2 . 5 ;
b_21 = sq r t (a_b2^2+e_b2^2) ;
b_22 = sq r t (a_p2^2+e_p2^2) ;

a_b3 = 0 . 4 ;
a_p3 = 0 . 4 ;
e_b3 = 2 . 5 ;
e_p3 = 2 . 0 ;
b_31 = sq r t (a_b3^2+e_b3^2) ;
b_32 = sq r t (a_p3^2+e_p3^2) ;

alpha2 = atan (a_p2/e_p2) ;
beta2 = atan (a_b2/e_b2) ;

alpha3 = atan (a_p3/e_p3) ;
beta3 = atan (a_b3/e_b3) ;

q2 = sq r t (−2∗b_21∗b_22∗ cos ( theta2−alpha2−beta2+pi /2) . . .
+b_21^2+b_22^2) ;

q3 = sq r t (−2∗b_31∗b_32∗ cos ( theta3−alpha3−beta3+pi ) . . .
+b_31^2+b_32^2) ;



A.2. Matlab Files 91

A.2.6. Initial Simulink Function

%Denavit−Hartenberg Parameters
DH = [0 , p i /2 , 6 , 0 ;

7 . 5 , 0 , 0 , 0 ;
5 , 0 , 0 , 0 ] ;

%I n i t i a l Angles
theta10 = 0 ;
theta20 = 45 ;
theta30 = −45;

the ta_ in i t =[ theta10 , theta20 , theta30 ] ’∗ pi /180 ;

%Jacobian and Transformation Matrix
[ J ,T]=ForwKin (DH, the ta_ in i t ) ;

%I n i t i a l Po s i t i on o f End−e f f e c t o r
p0=T(1 : 3 , 4 ) ;

%I n i t i a l Rope Length
L0=1;
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A.2.7. Complementary Functions

%Forward Kinematics
func t i on [ J , T] = ForwKin (DH, q )

%Transformation matr i ce s
T01 = DH2T( [DH(1 , 1 : 3 ) , q (1 ) ] ) ;
T02 = T01∗DH2T( [DH(2 , 1 : 3 ) , q (2 ) ] ) ;
T03 = T02∗DH2T( [DH(3 , 1 : 3 ) , q (3 ) ] ) ;

%Pos i t i on vec to r s
P0 = [ 0 ; 0 ; 0 ] ;
P1 = T01 ( 1 : 3 , 4) ;
P2 = T02 ( 1 : 3 , 4) ;
P3 = T03 ( 1 : 3 , 4) ;

%z vec to r s
Z0 = [ 0 ; 0 ; 1 ] ;
Z1 = T01 ( 1 : 3 , 3) ;
Z2 = T02 ( 1 : 3 , 3) ;

%Jacobian
J = [ c r o s s (Z0 , P3−P0) , c r o s s (Z1 , P3−P1) , c r o s s (Z2 , P3−P2) ;

Z0 , Z1 , Z2 ] ;

%Transformation Matrix
T = T03 ;
end
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%Tranformation Matrix from Denavit−Hartenberg
func t i on [T] = DH2T(DH)

%Denavit−Hartenberg Parameters
a = DH(1) ;
alpha = DH(2) ;
d = DH(3) ;
theta = DH(4) ;

%Transformation matrix
T = HRotZ( theta ) ∗ TranslZ (d) ∗ TranslX ( a ) ∗ HRotX( alpha ) ;

end

%Rotation in Tranformation Matrix in the X Di r e c t i on
func t i on [T] = HRotX( ang le )

T = [ rotx ( ang le ) [ 0 0 0 ] ’ ; 0 0 0 1 ] ;

end

%Rotation in Tranformation Matrix in the Y Di r e c t i on
func t i on [T] = HRotY( ang le )

T = [ roty ( ang le ) [ 0 0 0 ] ’ ; 0 0 0 1 ] ;

end

%Rotation in Tranformation Matrix in the Z Di r e c t i on
func t i on [T] = HRotZ( ang le )

T = [ ro t z ( ang le ) [ 0 0 0 ] ’ ; 0 0 0 1 ] ;

end
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%Trans la t i on in the X Di r e c t i on
func t i on [T] = TranslX (x )

T = eye (4 ) ;
T(1 , 4 ) = x ;

end

%Trans la t i on in the Y Di r e c t i on
func t i on [T] = TranslY (y )

T = eye (4 ) ;
T(2 , 4 ) = y ;

end

%Trans la t i on in the Z Di r e c t i on
func t i on [T] = TranslZ ( z )

T = eye (4 ) ;
T(3 , 4 ) = z ;

end

%Rotation Matrix in the X Di r e c t i on
func t i on R = rotx ( theta )

R = [1 0 0 ; . . .
0 cos ( theta ) −s i n ( theta ) ; . . .
0 s i n ( theta ) cos ( theta ) ] ;

end

%Rotation Matrix in the Y Di r e c t i on
func t i on R = roty ( theta )

R = [ cos ( theta ) 0 s i n ( theta ) ; . . .
0 1 0 ; . . .
−s i n ( theta ) 0 cos ( theta ) ] ;

end
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%Rotation Matrix in the Z Di r e c t i on
func t i on R = rot z ( theta )

R = [ cos ( theta ) −s i n ( theta ) 0 ; . . .
s i n ( theta ) cos ( theta ) 0 ; . . .
0 0 1 ] ;

end



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f M
ec

ha
ni

ca
l a

nd
 In

du
st

ri
al

 E
ng

in
ee

ri
ng

M
as

te
r’

s 
th

es
is

Didrik Fjeld Elset

Crane Payload Stabilization using
Lagrangian Kinematics and Euler
Angles

Position Control of Crane Payload with Moving
Attachment Point and Hoisting

Master’s thesis in Mechanical Engineering
Supervisor: Olav Egeland

June 2019


	Preface
	Introduction
	Background
	Objective
	Outline

	Theory
	Lagrangian Equations of Motion
	Lyapunov Stability
	The Rotation Matrix and the Homogeneous Transformation Matrix
	Denativ-Hartenberg Convention
	Differential Kinematics
	Trajectory Planning

	Modelling and Control of Pendulum
	Kinematics of a Simple Pendulum
	Lagrangian Kinematics for a Simple Pendulum
	Damping by Feedback Control
	Moving Attachment Point
	Lyapunov Stability Analysis for a Simple Pendulum
	Pendulum with Moving Attachment point in the x and z Direction
	Pendulum with Varying Rope Length
	Pendulum with Moving Attachment Point and Varying Rope Length
	Simple Spherical Pendulum with Euler Angles
	Spherical Pendulum with Moving Attachment Point with Euler Angles
	Damping
	Spherical Pendulum with Varying Rope Length
	Lyapunov Stability Analysis for a Spherical Pendulum
	Additions to the Damping
	Velocity as Input

	Knuckle Boom Crane
	Description of Crane
	Jacobian
	Defining the Angles Lg and Lg
	Trajectory planning

	Simulations
	About the Simulations
	Constant Trajectories
	Cyclical Trajectories
	Velocity as Input
	Moving Attachment Point in x, y and z Direction
	Moving Attachment Point and Varying Rope Length
	Planned Trajectory - Constant Rope Length
	Planned Trajectory - Varying Rope Length
	Actuators - Constant Rope Length
	Actuators - Varying Rope Length

	Discussion
	Constant Trajectories
	Cyclical Trajectories
	Velocity as Input
	Moving Attachment Point in x, y and z Direction
	Moving Attachment Point and Varying Rope Length
	Planned Trajectory - Constant Rope Length
	Planned Trajectory - Varying Rope Length
	Actuators

	Simulink Implementation
	Matlab Functions
	Trajectory
	Controller
	Spherical Pendulum

	Subsystems

	Conclusion and Future Work
	Appendix
	Derivation of the Jacobian
	Matlab Files
	Trajectory Function
	Contoller Function
	Spherical Pendulum Function
	Joint Angles Function
	Actuators Function
	Initial Simulink Function
	Complementary Functions



