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Preface

This is a master thesis in Manufacturing Technology at the Norwegian University of Science and

Technology (NTNU) as a part of the Master’s degree program Mechanical Engineering. The work

has been carried out during the spring semester of 2019.

The theme of the thesis is uncertainty in calibration of reference standards for dimensional

measurements. It was suggested by Knut Sørby, based on the collaboration between NTNU and

Justervesenet (JV) regarding traceable reference objects. The results from the thesis can simplify

the workload of the department.

The report is written for anyone interested in reading it. It is assumed that the reader

has some knowledge of uncertainty analysis and calibration procedures in manufacturing

technology.

Trondheim, 07.06.2019

Camilla Kjølstad
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Abstract

The metrology laboratory at NTNU is used to calibrate reference standards, used by

Justervesenet to verify other measuring devices. Reference standards, such as rectangular

parallelepipeds and cylinders, are calibrated by a dimensional measuring device. An

uncertainty analysis follows after the calibration process.

The current calibration method used by NTNU is time consuming, as it has a high measurement

density to ensure low uncertainty. When the object has an underlying geometry of a rectangular

parallelepiped, the current minimum bounding box procedure is suboptimal.

A minimum bounding box algorithm is developed. HYBBRID algorithm turned out to be exact

in practice, possible to implement in Python and have low computation time. The developed

algorithm uses data from the coordinate measuring machine or the laser tracker and calculates

the dimensional measurements.

An estimation of the uncertainty in calibration is conducted for three rectangular

parallelepipeds. While a high measurement density is desired to keep the uncertainty low,

it will lead to an increase in computational time. As it is desirable with a sensible balance

between low uncertainty and time consumption in a calibration process, the significance of the

measurement density was explored.

The results strongly indicate that measurement density currently used in calibration processes

by NTNU can be reduced. The time consumption would significantly decrease while keeping

the associated uncertainty sufficiently low. However, the results only apply for rectangular

parallelepipeds similar to the three used in the uncertainty analysis, with similar dimensions,

material and manufacturing technique.

NTNU wants to develop new working methods and enhancement when it comes to the

validation of its calibration process. The development of the HYBBRID algorithm renews the

working methods of deciding dimensional measurements of a rectangular parallelepiped in

a calibration process. The results of the uncertainty analysis indicate that the measurement

density can be reduced to improve time usage while keeping the uncertainty low.
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Sammendrag

Målelaboratoriet ved NTNU brukes til å kalibrere normaler (eng: reference standards)

som brukes av Justervesenet for å verifisere andre måleinstrumenter. Normaler, som

rektangulære parallellepiped og sylindere, blir kalibrert av en koordinatmålemaskin. Etter

kalibreringsprosessen utføres en usikkerhetsanalyse.

Den nåværende kalibreringsmetoden som brukes av NTNU er tidkrevende da den utføres med

høy måletetthet for å sikre lav måleusikkerhet. Dagens metode for å finne minste omskrevne

boks (eng: minimum bounding box) av en normal med geometri som et rektangulært

parallellepiped er suboptimal.

En minimum bounding box algoritme er utviklet. HYBBRID-algoritmen viste seg å være eksakt

i praksis, mulig å implementere i Python og å ha lav beregningstid. Den utviklede algoritmen

bruker data fra koordinatmåler eller laser tracker og beregner dimensjonene.

En estimering av måleusikkerheten ved kalibrering er utført for tre rektangulære parallellepiped.

Høy måletetthet er ønskelig for å holde måleusikkerheten lav, men dette fører til en økning i

beregningstiden. Ettersom det er ønskelig med en fornuftig balanse mellom lav usikkerhet og

tidsforbruk i en kalibreringsprosess, er betydningen av måletetthet undersøkt.

Resultatene gir gode indikasjoner på at måletettheten som blir benyttet i NTNUs

kalibreringsprosesser kan reduseres. Tidsforbruket vil minske betydelig, mens

måleusikkerheten fortsatt vil være tilstrekkelig lav. Resultatene gjelder imidlertid kun for

rektangulære parallellepiped med tilsvarende dimensjoner, material og produksjonsmetode

som de som ble brukt i usikkerhetsanalysen.

NTNU ønsker å utvikle nye arbeidsmetoder og forbedringer ved validering av deres

kalibreringsprosess. Utviklingen av HYBBRID-algoritmen fornyer arbeidsmetodene for å

bestemme de dimensjonale målene til rektangulære parallellepiped i en kalibreringsprosess.

Resultatene av usikkerhetsanalysen indikerer at måletettheten kan reduseres for å minske

tidsbruk, samtidig som måleusikkerheten forblir lav.
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Chapter 1

Introduction

The background of the problems associated with the theme of this master thesis is presented in

this chapter. The objectives are introduced and motivated.

1.1 Background

Metrology is a critical factor within research, science and innovation. While the society has

evolved to what it is today, the science of measurement has evolved to a foundation in the

society. The importance of not only the ability to measure but a universal agreement about

measurement standards is essential in both industry and trade. Measurement technologies are

essential when scientists explore their theories, as well as when measures are used as a basis for

purchases.

Justervesenet (JV), the Norwegian Metrology Service, ensures the national and international

acceptance of the Norwegian metrology infrastructure (Justervesenet, 2019). The supervisory

department of JV controls the measurements and measurement systems in the business sector

in Norway. The control is subject to instruments with a traceable chain to national reference

standards and SI units. All equipment that is subject to control needs a report to confirm that

the measuring equipment yield results within approved limits.

The metrology laboratory at NTNU is used in calibration processes of reference standards, used

by the JV. Reference standards, such as rectangular parallelepipeds and cylinders, are calibrated

by a dimensional measuring device. The device could be a coordinate measuring machine

(CMM) or a laser tracker, that senses points on the objects with a probe or a laser, respectively,

measuring the dimensions of the physical object. An uncertainty analysis, estimating the

1
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uncertainty of the dimensional measurements of the object, follows after the calibration

process. The objects are further used as reference standards for verification of other measuring

devices by the JV.

To enable documentation of dimensional measurement, the measurement results need to be

traceable. A traceable chain assures that the measurement results can be related to a reference

through an unbroken chain of comparisons, all with stated uncertainties. The calibrated

reference standards from the metrology laboratory at NTNU are a part of such a traceable

chain.

The current calibration method used by NTNU is time consuming due to the need for low

uncertainty. The calibration method is highly dependant on the number of measuring points

that are used to measure the dimensions of the object. The current method measures points

closely to ensure the low uncertainty of the results. A measurement session of a reference

standard with the current method can use up to four hours in the CMM. This results in a high

cost and creates practical challenges. The measurement session occupies the CMM for the same

amount of time, and the associated computer in the laboratory faces the challenge of going into

sleep mode, disrupting the measurement procedure.

The uncertainty of the measurement results is assumed to decrease with an increase in the

number of measuring points. However, a certain number of points that provide sufficiently

low uncertainty of the calibration process is assumed to exist. There is a lack of information

about this specific number. Another assumption is that the current procedure to decide the

minimum object that encloses all the measuring points, when the object has an underlying

geometry of a rectangular parallelepiped, is not optimal. A new method could provide a

minimum object both smaller and with lower uncertainty, than with the current method. The

uncertainty associated with the minimum bounding rectangular parallelepiped is larger than

the uncertainty associated with the minimum bounding cylinder. A new method of finding

the minimum bounding cylinder is not developed. Experience from the metrology laboratory

with reference standards with an underlying geometry of a cylinder has shown that it is easy to

implement a solution in the software of the CMM. The solution is efficient and has sufficiently

low uncertainty.

NTNU wants to develop new working methods and enhancement when it comes to the

validation of its calibration process. This master thesis is a part of this work.
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1.2 Objectives

The main objectives of this master thesis are

• A literature review on uncertainty analysis. An overview of the differences between

ANSI/ASME and ISO standards when used in uncertainty analysis should be included.

Scientific literature and other sources are used in the review.

• A literature review on finding minimal enclosing objects, both cylinder and rectangular

parallelepiped. Scientific literature and other sources are used in the review.

• Develop an algorithm in Python to find the minimal enclosing object to a measured

reference object from the metrology laboratory. The input in the algorithm will be the

measured point data, the output should be the minimum enclosing object.

• Verify the developed algorithm on simple physical parts in the metrology laboratory. Both

Leitz PMM-C 600 CMM and Leica Absolute Tracker AT960 laser tracker should be used.

The physical parts should be similar to parts used by Justervesenet.

• Conduct an estimation of the uncertainty in a calibration.

1.3 Approach

In order to cover updated and relevant information of uncertainty analysis and minimum

enclosing object algorithms, an extensive literature study limited to appropriate databases, such

as Google Scholar and Science Direct, has been conducted.

An algorithm is developed in Python during the project. I have not programmed in Python

earlier. However, Python is chosen as the programming language. The master thesis is an

excellent opportunity to learn a new programming language. Several introduction tutorials

were conducted in Python to learn the syntax of the programming language. At the beginning

of the semester, coding in Matlab® was performed to compare the results and the syntax to

Python.

Measurement procedures with both the CMM and the laser tracker was conducted in the

metrology laboratory. The created data sets were used regularly in the development of the

algorithm to verify the results, as the dimensional measurements of the parts were known.

An uncertainty analysis was performed on three rectangular parallelepipeds. The rectangular

parallelepipeds were manufactured to function as reference standards in calibration processes.
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The developed algorithm in Python is used to conduct an estimation of the uncertainty.

1.4 HSE considerations

At several occasions, I have been in the metrology laboratory at Valgrinda, NTNU. A

measurement machine, Leitz PMM-C 600, and a laser tracker, Leica Absolute Tracker AT960,

was used to measure physical parts. Both are secure devices, with no pinch hazard, fire hazard

or any sharp objects that can hurt operators or observers of the machines.

The measurement machine is extremely robust. It is not possible for the operator of the machine

to damage the machine. In the event of a collision, embedded sensors ensure that the safety and

collision system stops the measuring sequence before the collision. It will also stop if there is

short-circuiting between the cords in the machine.

The metrology laboratory is in the basement of Valgrinda, NTNU. A review of the escape routes

in case of a fire has been completed.

1.5 Outline

The report is structured as follows. In the first chapter, the theme of the master thesis

is introduced and motivated. The second chapter introduces the reader to the necessary

theoretical background, covers the basic theory and the state of the art of uncertainty analysis.

From chapter three and on, work done during the project is presented. Chapter three

introduces the reader to the development of the minimum enclosing object algorithm used in

the project. In the fourth chapter, the uncertainty of three parallelepipeds that can be used as

reference standards in calibration processes is analyzed. An uncertainty analysis is performed,

based on previous experience in the metrology laboratory and the results from the developed

minimum enclosing object algorithm. Chapter five presents conclusions based on the main

objectives. A discussion and reflection on the work done are given, and ideas or further work

are proposed.

The following table, Table 1, gives an overview of the structure in the report.
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Table 1: Report outline

Chapter Objective

1 Introduction chapter

2 A literature review on uncertainty analysis

A literature review on finding minimal enclosing objects

3 Develop an algorithm in Python to find the minimal enclosing object to a measured

reference object from the metrology laboratory

4 Verify the developed algorithm on simple physical parts in the metrology laboratory

Conduct an estimation of the uncertainty in a calibration

5 Final chapter



Chapter 2

Theoretical background

This chapter presents the essential theoretical background about uncertainty analysis,

calibration process, minimum bounding objects and bounding box algorithms. Theory about

dimensional measuring devices used in the project, computational geometry and rotation

matrices are also included.

2.1 State of the art

Engineers are bound to make decisions in their engineering tasks, and a measurement result

can be the information needed to make a decision. A measurement result consists of both a

measured value of a measurand and an uncertainty associated with the measured value. The

procedure of an uncertainty analysis is conducted to estimate the uncertainty associated with

the measured value. Thus, an uncertainty analysis gives information about the possible error

of the measurement value that a decision is based on. Stated by Dieck (2007), the uncertainty

of the measurement can be as significant as the measurement value, as a measurement value

with no knowledge of the uncertainty give little knowledge of the state or the performance of a

measurement process.

The methodical approach of uncertainty analysis is objective and standardized. However,

detailed knowledge of the measurand’s nature and the measurement procedure is crucial

to achieving a satisfying measurement result, along with critical thinking, integrity and

professional skills of those performing the uncertainty analysis (ISO/IEC 98-3:2008, 2008). As

of today, two professional documents on uncertainty analysis are accepted: The American

National Standards Institute/American Society of Mechanical Engineers (ANSI/ASME) Power

6
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Test Codes (PTC) and "Guide to the Expression of Uncertainty in Measurement" by The

International Organization for Standardization (ISO). The standard by ANSI/ASME is the

standard followed by the United States, while the guide by ISO is an international standard.

The guide by ISO is referred to as the guide and the standard by ANSI/ASME is referred to as the

standard.

Defined by Kline (1953), the uncertainty of a measurement is "A possible value the error might

have". This definition of uncertainty is still relevant. However, how to determine and perform

the methods and procedures to establish the uncertainty has not always been clear. Stated

by Abernethy and Ringhiser (1985), confusion, argument and controversy has affected several

decades of scientists, engineers and practitioners arguing about uncertainty analysis.

In the 1950s, ASME started their work on a professional document on uncertainty in

measurement for America. It was based on the work of Kline (1953). However, the methods

presented by ASME were debated and disagreed of until 1986, when ASME reached a consensus

with their developed standard of uncertainty analysis. In 1994, Steele et al. (1994) published an

article with further details of the terminology, definitions and methods in the standard.

As different methodologies to evaluate measurements affected across boarders, the highest

authority in metrology in the world, Comité International des Poids et Mesures (CIPM), asked

the Bureau International des Poids et Mesures (BIPM) in 1977, to make a recommendation of

how to evaluate a measurement. A guide providing international consensus on the expression

of uncertainty in measurement was wanted. An internationally recognized guide, "Evaluation

of measurement data - Guide for the expression of uncertainty in measurement", was presented

in 1993 after collaboration and extensive effort made by the member organization of the

Joint Committee for Guides in Metrology (JCGM): BIPM, ISO, International Electrotechnical

Commission (IEC), International Federation of Clinical Chemistry (IFCC), International Union

of Pure and Applied Chemistry (IUPAC), International Union of Pure and Applied Physics

(IUPAP), International Organization of Legal Metrology (OIML). Later, the International

Laboratory Accreditation Cooperation (ILAC) has also become a member organization of

JCGM.

After several years of different methodologies to evaluate measurements, the expression

of uncertainty was provided international consensus by the standard and the guide. The

terminology of the standard and the guide differ from each other. Both updated periodically and

from 2005, the standard adopted the methodology from the guide. As of now, proper guidance

on uncertainty analysis is available in the standard (ASME PTC 19.1-2013, 2013) and the guide

(ISO/IEC 98-3:2008, 2008).
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2.2 Uncertainty

A measurement is a procedure where the objective is to find the value of the measurand. Before

a measurement procedure of the measurand, a precise specification of the measurand, the

measurement method and the measurement procedure is defined. The measurement result

is an estimate of the value of the measurand and only complete when stated with the associated

uncertainty.

When the result of a measurement is analyzed, it is important to distinguish between the

different definitions of error, uncertainty, accuracy and precision. As written in the guide, the

definitions are as follows (ISO/IEC 98-3:2008, 2008):

• The measurement error defines the difference between the true value and the result of the

measurement.

• The measurement uncertainty defines an estimate of the probable error in the

measurement result, presented as a standard deviation.

• The measurement accuracy defines the closeness of agreement between the result of a

measurement and the true value.

• The measurement precision is the closeness of agreement between repeated measurement

results.

Figure 1 visualizes the difference between the accuracy and the precision of a measurement.

The two definitions are independent of each other. The desired quality of a measurement

result requires both high accuracy and high precision, giving closeness of agreement between a

measured value and the true value, repeatedly.
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High accuracy
Low precision

Low accuracy
High precision

Low accuracy
Low precision

High accuracy
High precision

Figure 1: Difference between accuracy and precision

The four definitions, especially the uncertainty of the measurement, can indicate the quality

of the measurement results (Figliola and Beasley, 2015). An uncertainty analysis is conducted

to determine the uncertainty. The analysis is a numeric methodical approach, defining the

potential error that is present in all data. The uncertainty of the measurement is estimated in an

objective and standardized way.

When a measurement is conducted, several sources of uncertainty can be present. The following

list is presented by the guide to identify possible sources (ISO/IEC 98-3:2008, 2008).

(a) incomplete definition of the measurand;

(b) imperfect realization of the definition of the measurand;

(c) nonrepresentative sampling — the sample measured may not represent the defined

measurand;

(d) inadequate knowledge of the effects of environmental conditions on the measurement or

imperfect measurement of environmental conditions;
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(e) personal bias in reading analogue instruments;

(f) finite instrument resolution or discrimination threshold;

(g) inexact values of measurement standards and reference materials;

(h) inexact values of constants and other parameters obtained from external sources and used

in the data-reduction algorithm;

(i) approximations and assumptions incorporated in the measurement method and

procedure;

(j) variations in repeated observations of the measurand under apparently identical

conditions.

Some of the possible sources can be considered as independent. It is assumed that the effects

of (a)-(i) can contribute to the effect of (j).

The measurand is often determined from other quantities, instead of being measured directly.

N quantities, X1, X2, ..., XN , determine the measurand, Y , through a functional relationship, f ,

defined in Equation 1.

Y = f (X1, X2, ..., XN ) (1)

y denotes the estimate of the measurand Y and the input estimates, x1, x2, ..., xN , denotes the

input quantities, X1, X2, ..., XN . The result of the measurement, being the output estimate is

defined in Equation 2.

y = f (x1, x2, ..., xN ) (2)

The combined standard uncertainty, uc (y), is determined by the standard uncertainty of each

input estimate, u(xi ). It is the estimated standard deviation of the estimate of the measurand,

y . When a statistical model is used in the estimations, the estimated variance of the uncertainty,

u2, is the statistical variance, s2, and the estimated uncertainty, u, is equal to the standard

deviation, s.

If all input quantities are independent, they are uncorrelated and the combined standard

uncertainty, uc (y), is estimated from Equation 3.
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u2
c =

N∑
i=1

(
∂ f

∂xi

)2

u2(xi ) (3)

If two or more input quantities are correlated, the standard uncertainty, uc (y), is estimated from

Equation 4. The estimated covariance between xi and x j , u(xi , x j ) = u(x j , xi ), is estimated from

a correlation coefficient between minus one and one.

u2
c =

N∑
i=1

N∑
j=1

∂ f

∂xi

∂ f

∂x j
u(xi ,u j ) (4)

When needed, the expanded uncertainty is estimated. An interval around the measurement

result is defined, based on the required level of confidence. The expanded uncertainty of the

measurement, U , is defined as the standard uncertainty of the output estimate, u(y), multiplied

with a coverage factor, k, as in Equation 5. The coverage factor decides the level of confidence

of the uncertainty if a normal distribution is used in the calculations and the reliability of

the standard uncertainty is sufficient. It is often between two and three, as k = 2 provides a

confidence level of approximately 95 % and k = 3 provides a confidence level of approximately

99 %probability.

U = ku(y) (5)

2.2.1 Comparing ANSI/ASME and ISO

The standard and the guide are similar in many ways, though they differ in some of the

terminologies. As the error is an idealized concept and can not be known precisely, it opens

for several categorizations. The main difference in the standard and the guide is how the errors

are categorized.

As stated in the standard, measurement error is present in all measurements (ASME PTC

19.1-2013, 2013). The final error of the measurement, δk , is divided into two components, a

systematic error, β, and a random error, εk , as in Equation 6.

δk =β+εk (6)
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Two other names for the systematic error and the random error are biased error and precision

error, respectively. There is a third component to the error, blunders. This component is

neglected, as the blunders are assumed to be absent with good engineering practice.

Figure 2 illustrates the relationship between the true value of the measurand and the measured

values. The illustration includes the effect of systematic and random errors. The systematic

error is a fixed value, causing the mean of the sample to shift from the mean of the true value.

When several measurements are conducted, the random errors cause the measured values to

range within a distribution around the mean of the sample.

Figure 2: The distribution of error in a repeated measurement (Figliola and Beasley, 2015)

During fixed measurement conditions, the systematic error is fixed. As the value is constant and

could be both high and low, it can be difficult to estimate it. The systematic error can be adjusted

and reduced but not eliminated. A calibration procedure of the measurement equipment can

uncover the systematic error in the equipment and indicate an associated uncertainty. The

calibration must follow a standard and method, such as presented by ANSI/ASME or ISO and be

performed by a quality instrument with an associated calibration certificate. Other methods to
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estimate the systematic error can be concomitant methodology, interlaboratory comparisons

or judgment/experience (Figliola and Beasley, 2015). When a systematic error is quantified,

a correction factor in the measurement procedure can compensate for the effect that causes

the systematic error. After an adjustment is introduced, the systematic error is assumed to be

zero.

During fixed measurement conditions and repeated measurements, the random error is

noticeable as the measurement values are scattered. Causes of the random errors can

be calibration of the equipment, repeatability and resolution of the components in the

measurement system, the technique of the measurement procedure, variations in the measured

object (measurand) and environmental conditions (Figliola and Beasley, 2015). By increasing

the number of measurements, the random error can be reduced, but not eliminated. The

deviation of the mean of the measured values indicated the uncertainty of the mean, due to

the effects that cause the random error. However, the value of the error in the mean due to the

random error cannot be estimated.

(a) Unbiased, precise, accurate (b) Biased, precise, inaccurate

(c) Unbiased, imprecise, inaccurate (d) Biased, imprecise, inaccurate

Figure 3: Visualization of the error effects of a measurement (AIAA, 1995)

All measurements have some quantity of both systematic and random errors. The idealized

graphic illustrations in Figure 3, shows how the random and systematic effects influence the

distribution of the measurement values when repeating a measurement. There are no random

effects in Figure 3a and Figure 3c. The distribution is high and thin in (a), as the measurements
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are precise and accurate. In (c), the measurements are both imprecise and inaccurate, causing

a large range in the distribution around the mean. There are random effects in both Figure 3b

and Figure 3d. The random effects, combined with the inaccuracy, shifts the mean away from

the mean of the true value. As the measurements in (b) are precise, the distribution is high and

thin. As the measurements in (d) are imprecise, the measurements are more scattered, creating

a larger distribution.

Stated by the guide of ISO, the errors are categorized by how the estimation of their uncertainties

is defined (ISO/IEC 98-3:2008, 2008). The classification indicates how the evaluation of

uncertainty components should be. It does not imply that the nature of the components is

different.

Probability distributions are the basis of both type A and type B evaluation, where variances and

standard deviations specify the uncertainty components.

Type A evaluation of uncertainty is based on a series of observations, resulting in a

statistical analysis (ISO/IEC 98-3:2008, 2008). During fixed measurement conditions,

independent measurements qk are conducted n times. The arithmetic mean is defined as in

Equation 7.

q̄ = 1

n

n∑
k=1

qk (7)

The experimental variance of the measurements, due to random effects, is defined as in

Equation 8. The experimental standard deviation is defined as the positive square root,

s(qk ).

s2(qk ) = 1

n −1

n∑
j=1

(q j − q̄)2 (8)

The experimental variance of the arithmetic mean is as defined in Equation 9.

s2(q̄) = s2(qk )

n
(9)

Type B evaluation of uncertainty is based on other methods than statistical analysis from a

series of observations (ISO/IEC 98-3:2008, 2008). The variance is estimated, based on available
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information. ISO establishes possible information sources such as "previous measured

data; experience with or general knowledge of the behaviour and properties of relevant

materials and instruments; manufacturer’s specifications; data provided in calibration and

other certificates; uncertainties assigned to reference data taken from handbooks" (ISO/IEC

98-3:2008, 2008).

The uncertainties associated with errors due to systematic or random effects are evaluated

by type A in some cases and type B in other cases. ISO/IEC 98-3:2008 (2008) argues that the

categorization of uncertainty components based on the origin of the effect, such as systematic

and random errors, may be ambiguous. The uncertainty components in one category may be

estimated with different methods. Categorization by the standard of ISO maintains a precise

evaluation and discussion of the uncertainty components, as the evaluation method categorizes

them (ISO/IEC 98-3:2008, 2008).

If the standard of ANSI/ASME or the guide of ISO is utilized to perform an uncertainty analysis,

the resulting uncertainty to the measurement should be similar. Where ANSI/ASME categorizes

the error into systematic and random errors, ISO categorizes errors into type A and type B. The

effects that cause the errors classify the systematic and random errors. Type A and type B errors

are classified by how the uncertainties of the effects causing the errors are estimated.

The article, "Comparison of ANSI/ASME and ISO models for calculation of uncertainty", by

Steele et al. (1994) explored how the use of either method of the two standards affected the

outcome of an uncertainty analysis. The robust statistical tool, Monte Carlo simulations, was

used to simulate several experiments to obtain an uncertainty interval, with a confidence

interval defined as either 95 % or 99 %. The methodology in the two standards was

different, resulting in different outcomes depending on which model was used to estimate the

uncertainty. Both the calculated uncertainty intervals and the confidence level provided by the

intervals were different. The study of Steele et al. (1994) concluded with ISO providing the most

accurate results. The models presented by ISO were more appropriate for uncertainty analysis

than those presented by ANSI/ASME. Later, after the revision of the ANSI/ASME standard, the

models of ISO were incorporated in the standard of ANSI/ASME. In the current versions of the

standard and the guide, the main difference is how the errors are categorized. However, the

outcome of an uncertainty analysis following either of the standards is similar (Figliola and

Beasley, 2015). Both standards define that the categorization of each error has no impact on

the methods used in the uncertainty analysis. The categorization of error is for convenience.

As all uncertainty components are treated the same in the methods, the combined standard

uncertainty or expanded uncertainty of a measurement result is unaffected of the categorization

of errors.
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2.2.2 Uncertainty analysis

The true value of the measurand cannot be known. As the uncertainty is a property of the

measurement result, valuable knowledge of how close the measured value possibly is to the true

value is gained through an uncertainty analysis. While a number defines the uncertainty, errors

are defined as effects (Figliola and Beasley, 2015), causing the measured value to be different

from the true value. The uncertainty analysis identifies, quantifies and combines the different

errors of the measured value, resulting in an interval around the measured value. It is expected,

with a stated probability, that the true value of the measured object lies within the interval

around the measurement result. The measured value can be very close to the true value, even

though the measured value has a large uncertainty.

The following assumptions, following the ANSI/ASME categorization of errors, are made when

an uncertainty analysis is conducted (Figliola and Beasley, 2015):

1. The measurement process is clearly defined and the objectives of the test are known.

2. When possible, a correction factor is applied in the measurement procedure to

compensate for the effect causing a systematic error. The uncertainty of the correction

is assumed to be the uncertainty of the systematic error.

3. A normal distribution of reporting of uncertainties and errors is assumed unless otherwise

stated.

4. Independent, thus uncorrelated of each other, errors are assumed, unless otherwise

stated.

5. The engineer has some "experience" with the system components.

All steps of an uncertainty analysis require the experience and judgment of an engineer. The

flow chart in Figure 4 shows clear guidance of the order in the performance of the analysis, as

presented in the guide.
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1. The relationship between the measurand Y and the 
input quantities Xi , that Y  are dependent 

on are defined mathematical:
Y = f(X1, X2,..., XN )

2. xi , the value of input quantity Xi , is determined. 

3. u(xi), the standard uncertainty of input estimate xi , is estimated. 

4. Any covariances of any correlated input estimates are evaluated.

5.  The result of the measurement, is calculated from f.

6. The combined standard uncertainty uc(y) is determined. 

7. If necessary, an expanded uncertainty, U, is given.

Initialize uncertainty
analysis

8. Result: 
The measurement y is

reported with its associated
combined standard uncertainty 
uc(y) or expanded uncertainty U.

Figure 4: Flow chart of an uncertainty analysis (ISO/IEC 98-3:2008, 2008)
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The guide presents the following steps of an uncertainty analysis. The steps complement the

corresponding numbers in the flowchart. Chapters in the guide are referred in the list.

1. Express mathematically the relationship between the measurand Y and the input

quantities Xi on which Y depends: Y = f (X1, X2, ..., XN ). The function f should contain

every quantity, including all corrections and correction factors, that can contribute a

significant component of uncertainty to the result of the measurement (see 4.1.1 and

4.1.2).

2. Determine xi , the estimated value of input quantity Xi , either on the basis of the statistical

analysis of series of observations or by other means (see 4.1.3).

3. Evaluate the standard uncertainty u(xi ) of each input estimate xi . For an input estimate

obtained from the statistical analysis of series of observations, the standard uncertainty

is evaluated as described in 4.2 (Type A evaluation of standard uncertainty). For an

input estimate obtained by other means, the standard uncertainty u(xi ) is evaluated as

described in 4.3 (Type B evaluation of standard uncertainty).

4. Evaluate the covariances associated with any input estimates that are correlated (see 5.2).

5. Calculate the result of the measurement, that is, the estimate y of the measurand Y , from

the functional relationship f using for he input quantities Xi the estimates xi obtained in

step 2 (see 4.1.4).

6. Determine the combined standard uncertainty uc (y) of the measurement result y from the

standard uncertainties and covariances associated with the input estimates, as described

in Clause 5. If the measurement determines simultaneously more than one output

quantity, calculate their covariances (see 7.2.5, H.2, H.3, and H.4).

7. If it is necessary to give an expanded uncertainty U , whose purpose is to provide an

interval y −U to y +U that may be expected to encompass a large fraction of the

distribution of values that could reasonably be attributed to the measurand Y , multiply

the combined standard uncertainty uc (y) by a coverage factor k, typically in the range 2

to 3, to obtain U = kuc (y). Select k on the basis of the level of confidence required of the

interval (see 6.2, 6.3, and especially Annex G, which discusses the selection of a value of k,

that produces an interval having a level of confidence close to a specified value).

8. Report the result of the measurement y together with its combined standard uncertainty

uc (y) or expanded uncertainty U as discussed in 7.2.1 and 7.2.3; use one of the formats

recommended in 7.2.2 and 7.2.4. Describe, as outlined also in Clause 7, how y and uc (y)

or U were obtained.
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2.3 Calibration process

A calibration process in metrology is a procedure where a device is tested by comparing the

measurement values of the device to a calibration standard. The calibration standard has a

calibration certificate where the known uncertainty is stated. By regularly calibrating a device,

the created measurement data is ensured to have low uncertainty and be within the MPE.

The calibration process can lead to a significant error being discovered. If no significant error

is discovered, there is no need for an adjustment. If a significant error is discovered, either no

adjustment is made, or an adjustment to correct the error is made. A calibration process is to

be conducted once more after a correction to ensure that the error is at an acceptable level. The

potential adjustment is not a part of the calibration process itself, as the calibration process is

the process of comparison.

A National Metrological Institute, in Norway - Justervesenet, has national standards that the

calibration standard often is traceable to.

A scientific guidance standard is made by the European Accreditation (EA), "Evaluation of

the Uncertainty of Measurement in Calibration". It encourages to make a report after a

calibration process. It should include a title describing the calibration, a description of

how the measurement is conducted and the applied evaluation model with a description of

applied symbols. All inputs data with descriptions of how they are obtained, the evaluation

of statistical parameters and the observations listed, a table of an uncertainty budget, the

expanded uncertainty of measurement and the complete result of measurement to be reported

should also be included. (EA-4/02 M, 2013)

2.4 Dimensional measuring devices

As metrology is dependent on high numerical accuracy in a measurement process, it is

necessary with highly specialized metrology equipment. The metrology laboratory at NTNU

possesses two measuring devices, both from Hexagon Manufacturing Intelligence. A coordinate

measurement machine (CMM), Leitz PMM-C 600 with the software PC-DMIS, and a laser

tracker, Leica Absolute Tracker AT960 with the software Inspire.

The CMM has a higher accuracy than the laser tracker. The functionality is better, however,

the associated software, PC-DMIS, is advanced and requires more from the operator than the

associated software of the laser tracker. When ’up-close’ measurement is not an option, due to
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the size or complexity of the geometric object, the laser tracker is used.

2.4.1 Coordinate measurement machine: Leitz PMM-C 600

Leitz PMM-C 600 is an ultra-high precision CMM and gear measuring machine. By sensing

discrete points on the surface of a physical object with a probe, the machine measures the

geometry.

Figure 5: Leitz PMM-C 600

Figure 5 shows the CMM. The closed frame design and the materials used to build it will

ensure long-term stability. The base is made of granite and has a fixed portal made of cast

iron and a crossbeam made of granite. To ensure consistent accuracy over the complete

measurement volume, the stiffness of the measurement axes are high. The moving measuring

table ensures efficient courses of motion, with no twisting or tilting, as well as ensuring a

constant dimensional relationship. The measurement results are highly repeatable because of

the high-resolution scales. An active pneumatic damping system eliminates any influence of

vibrations.

The measurement machine uses tactile probes to ensure the highest accuracy. It can also be

equipped with optical probes for non-contact measurements.

The maximum permissible error (MPE) in the measurement machine, as defined by the
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ISO 10360 Standards for CMMs (ISO 10360-2:2009, 2009) (ISO 10360-4:2000, 2000) (ISO

10360-5:2010, 2010), is defined in Equation 10, where L is measured in mm. The probing

frequency is 40 points/min.

MPEC M M =
(
0.6+ L

600

)
µm (10)

2.4.2 Laser tracker: Leica Absolute Tracker AT960

The laser tracker is a portable laser measurement system available with probe, reflector and

non-contact scanner measurement. It can be looked at as a walk-around CMM.

Figure 6a shows the laser tracker. It is easier to operate than the stationary CMM. It can be

transported, as well as unpacked and powered up in any location in minutes.

NTNU possesses a probe, seen in Figure 6b. It is a hand-held, wireless device that lets the

operator walk around with the device. It is installed with an automated probe identification,

ensuring the connection with the laser tracker and reduces operator errors. The probe can be

exchanged without any need for calibration. The measurement device is applicable for volumes

up to �40m.

(a) Leica Laser Tracker AT960 (b) Leica T-Probe

Figure 6: The laser tracker and the probe associated to the laser tracker
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The MPE of the laser tracker is defined in Equation 11.

MPEl aser _tr acker =
(
± 15 + 0.006

1

mm

)
µm (11)

The probe has an MPE as defined in Equation 12. To find the complete accuracy of the

measurement, the MPE of the probe needs to be added to the MPE of the laser tracker.

MPEpr obe =± 35 µm (12)

2.5 Computational geometry

The branch within computer science that applies to the study of geometric algorithms is

called computational geometry. It can be divided into two, combinatorial computational

geometry and numerical computational geometry. Where numerical computational geometry

is devoted to the problems of representing real-world objects, for example in CAD or CAM

systems, combinatorial computational geometry is devoted to algorithms where discrete

entities describe the geometry. An example could be a convex hull problem of a data set of

points in three dimensions.

2.5.1 Convex hull

Given a two- or three-dimensional set of n points, P = p1, p2, ..., pn , a fundamental problem in

computational geometry is to construct an efficient, unambiguous representation of the needed

convex configuration. The convex hull is the subset of points that creates the smallest convex

contour, containing P .

The hull is convex if any two points, pi , p j , where i , j ≤ n, in the set can connect and the segment

is entirely inside the hull.

In two dimensions, the convex hull is a polygon. It can be seen as the remaining points that hold

an elastic rubber band from collapse, if the rubber band can not go through a point, as seen in

Figure 7.
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Figure 7: Convex hull of points in two dimensions

In three dimensions, the convex hull is a polyhedron. A polyhedron is a region of space

consisting of faces, edges and vertices, where all the faces intersect and the surface is connected,

as seen in Figure 8.

Figure 8: Convex hull of points in three dimensions (Moritz, 2013)

Common algorithms to find the convex hull of a set of points in three dimensions are gift

wrapping (Jarvis, 1973), divide and conquer(Preparata and Hong, 1977) and QuickHull(Bykat,

1978; Eddy, 1977; Green and Silverman, 1979; Preparata and Shamos, 1985), among

others.
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2.6 Rotation matrix

A 3 x 3 rotation matrix defines a rotation of points in the three-dimensional Euclidean space.

An axis of rotation and an angle, defining the amount of rotation about an axis, can define any

arbitrary rotation. To find an arbitrary rotation, an element wise rotation can be performed

around the x−, y− and z−axis. The arbitrary rotation matrix, R, can be found by matrix

multiplication of Rx , Ry , Rz .

A rotation about the x−axis with an angle α is defined in Equation 13, a rotation about the

y−axis with an angle of β is defined in Equation 14 and a rotation about the z−axis with an

angle of γ is defined in Equation 15.

Rx(α) =


1 0 0

0 cosα −sinα

0 sinα cosα

 (13)

Ry (β) =


cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ

 (14)

Rz(γ) =


cosγ −sinγ 0

sinγ cosγ 0

0 0 1

 (15)

The order of the element wise rotation decide the final rotation, R. There are six different orders

to rotate around the x−, y−, and z−axis. It can be RxRy Rz , RxRzRy , Ry RxRz , Ry RzRx , RzRxRy ,

RzRy Rx , all six orders resulting in different rotations. The standard is to rotate around the

z−axis, then the y−axis and then the x−axis, as this corresponds to roll, pitch and yaw. This

gives the arbitrary rotation as in Equation 16.

R = Rz y x = Rz(γ)Ry (β)Rx(α) (16)

To rotate a point, the original point (x, y, z) is represented as a row vector, [x, y, z] or a column
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vector, [x, y, z]T , and multiplied with the rotation matrix, R, giving the rotated point (x ′, y ′, z ′),

shown in Equation 17.


x ′

y ′

z ′

=


x

y

z

R (17)

2.7 Minimum bounding objects

There exist several methods and algorithms to find the minimal enclosing object to a data set of

points. Both brute force methods and optimization algorithms can be used. The development

of a solution, when a data set consists of points in two dimensions, can be quite straight

forward. However, even with two dimensions, the methods differ from simple solutions to

more advanced, depending on the accuracy expected from the result. When a data set consists

of points in three dimensions, such as a data set from a measured object in the metrology

laboratory at NTNU, the development of a solution is more advanced. As the minimal enclosing

object to a data set may not be axis-aligned, the algorithm needs to try different orientations to

find the minimal enclosing object. Especially when the object is a parallelepiped, the optimal

orientation of the parallelepiped can be advanced.

2.7.1 Minimum bounding cylinder

A cylinder is a three-dimensional geometric solid. Figure 9 shows a standard cylinder with

circular ends of radius r . The ends of the cylinder are perpendicular to the axis of the cylinder,

and the perpendicular distance between them is the height h. The radius and the height define

the size of the cylinder.

Figure 9: A cylinder with radius r and height h
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The volume, defined in Equation 18, is minimized to find the minimum cylinder.

Vc =πr 2h (18)

The minimum enclosing cylinder of a data set of 3D points minimizes the volume while all the

points are within the boundaries of the shape of the cylinder. The two-dimensional problem is

explored, where the object is to find the minimum enclosing circle to a data set of 2D points in

one plane, before the three-dimensional problem is explored.

Minimum enclosing circle in 2D

The problem of finding the minimum enclosing circle in 2D was first presented by Sylvester

(1857). The area of a circle with radius r , defined in Equation 19 is minimized to find the

minimum circle.

Ac =πr 2 (19)

A common technique to solve the geometric problem is to find the minimum circle defined

by two or three points in the data set, that lay on the boundary of the minimum circle. If

three points define the minimum circle, the triangle defined by the respective points cannot

be obtuse. Thus it has to be acute (all three angles are less than 90◦). If two points define the

minimum circle, the line segment of the respective points must be defined as the diameter of

the minimum circle. The minimum circle is defined to be unique.

Several solutions to the two-dimensional problem are available as open-source code in different

programming languages. A program, "Smallest enclosing circle" produced by Project Nayuki

(2018), is used in this project for exploration. It is free software, open to redistribution and

modification under the terms of the GNU Lesser General Public License as published by the

Free Software Foundation. The algorithm is included in section A.4.
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Figure 10: Minimum enclosing circle

Figure 10 shows a plot of the smallest circle enclosing data points on a plane. The input in

the algorithm is 20 random generated points and the output is the center of the circle, defined

by an x- and y-coordinate, and the radius of the circle. As visualized in the figure, three of

the data points lay on the boundary of the circle and the remaining points are enclosed by the

circle.

Minimum bounding cylinder in 3D

In some applications, such as a calibration process of a cylinder in a CMM in the industry, high

numerical accuracy is crucial to the results. The object is to find the minimum circumscribed

cylinder from a data set of 3D points. For other applications, such as object detection,

autonomous navigation, manufacturing and quality control, a robust cylinder fitting can be

sufficient (Nurunnabi et al., 2019).

In Figure 11, the least square circle (LSC), the maximum inscribed circle (MIC) and the

minimum circumscribed circle (MCC) to a cross-section of a cylinder is drawn to visualize the

differences between the definitions.
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Maximum inscribed 

Cross section of a cylinder

Figure 11: Cross section of a cylinder

Figure 12 shows three cross-sections of a cylinder drawn with exaggeration. The cylinder

fitted with the least squares method, the maximum inscribed cylinder and the minimum

circumscribed cylinder is drawn. It visualizes how the dimensions of the cylinder can vary,

depending on the relation of the cylinder to the underlying geometry. Note that the height of

the cylinders in the figure is the same and is affected by the longest distance measured and a

potential rotation. A potential rotation is not included in this figure.

Least squares 

Minimum circumscribed 
Maximum inscribed 

Cross sections of a cylinder

Figure 12: A measured object in the shape of a cylinder
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Pan (2017) has developed an algorithm in Python, based on Eberly (2019) pseudo-code of

"Fitting a Cylinder to 3D Points". The algorithm is suitable where the underlying geometry

of the data is in the shape of a cylinder with possibly small errors. However, this is not a

suitable algorithm for cylinders measured in the metrology laboratory as the resulting cylinder

is fitted with the least squares method. Nurunnabi et al. (2019) proposes two new variants

of robust cylinder fitting, comparing them to existing known approaches such as the least

squares method, singular value decomposition (SVD) and principal component analysis (PCA).

An algorithm presented by Schömer et al. (2000), combines a general linearization technique

with a parametric search, that is efficient for finding the smallest cylinder. However, as stated

by Schömer et al. (2000), the results seem mainly of theoretical interest and not for practical

applicability, such as metrology. Chan and Tan (2004) has developed an algorithm to check if

a given object can fit inside a cylindrical bounded volume. They propose that the algorithm

can be a solution to the optimization problem of the smallest enclosing cylinder of a data set

of 3D points. However, their solution is restricted to find the minimum height or the minimum

diameter of the enclosing cylinder, but not both. An algebraic method to compute the smallest

enclosing and circumscribing cylinder of a data set of 3D points is presented by Brandenberg

and Theobald (2004). This solution is only applicable when the finite point set P consists of n = 4

points. Petitjean (2012) proposes an algebraic algorithm to compute the smallest enclosing

cylinder. As well as in the algorithm of Brandenberg and Theobald (2004), the algorithm is

limited by the number of points in the data set. Petitjean (2012) pays special attention to n = 4

and n = 5, n being the number of points in the data set.

2.7.2 Minimum bounding box

In this project, a box is defined as a parallelepiped; a three-dimensional geometric figure,

formed by six parallel planes. All parallelepipeds in this project are rectangular. Hence the

planes are either perpendicular or parallel to each other. Figure 13 shows how the dimensions

of a rectangular parallelepiped is defined by the width, w , the length, l and the height, h.
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Figure 13: A rectangular parallelepiped with width w , length l and height h

The volume, defined in Equation 20, is minimized to find the minimum parallelepiped.

Vp = wlh (20)

The minimum enclosing parallelepiped of a data set of 3D points is found when the volume is

minimized while all the points are within the boundaries of the shape of the parallelepiped. The

problem is explored in two dimensions before the three-dimensional solution is explored and

presented.

Minimum enclosing rectangle in 2D

The minimum enclosing rectangle also called the minimum bounding rectangle (MBR) and

minimum area rectangle (MAR), is a two-dimensional case of the minimum bounding box in

three dimensions. It is also a subproblem of the minimum volume box enclosing a convex

polyhedron presented by O’Rourke (1985) and discussed in subsection 2.8.2.

The area of a rectangle with width w and length l , defined in Equation 21, is minimized to find

the minimum rectangle. With a data set of 2D points in one plane, the minimum bounding

rectangle contains all the points.

Ar = wl (21)
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Given a data set of 2D points, a convex polygon, also defined as the convex hull, can be created.

Freeman and Shapira (1975) presented three theorems to prove that one side of the minimum

enclosing rectangle must be coincident with one of the edges of the convex hull.

Convex hull 
Rectangle 1 
Rectangle 2 
Rectangle 3 
Rectangle 4 

P1 P2

P3

P4

Figure 14: A convex hull with four enclosing rectangles in two dimensions

Figure 14 shows a convex hull of a data set of m points in 2D. The convex hull is defined as

P = (P1,P2, ...,Pn), enclosing all the points in the data set. Shown in the figure, n = 4. n is possibly

much larger than m. Rectangle 1, 2, 3 and 4 are drawn to visualize different bounding rectangles.

From the proof of Freeman and Shapira (1975), the four rectangles are the candidates of the

minimum area rectangle. Rectangle 1 coincide with the edge P3P4 of the convex hull, Rectangle

2 is coincide with the edge P1P4, Rectangle 3 coincide with the edge P1P2 of the convex hull,

while Rectangle 4 is coincide with the edge P2P3. Calculation of the areas of the rectangles give

AR1 < AR3 < AR2 < AR4 . Rectangle 1, which is the minimum bounding rectangle of the convex

hull, coincide with the longest edge of the convex hull.

The brute force approach to find the minimal bounding rectangle of the convex hull, presented

in Freeman and Shapira (1975) will use O(n2) time. First, n bounding rectangles are constructed,

one for each edge of the convex hull, and then the rectangle with the minimum area is chosen

as the minimum bounding rectangle. Another method, presented by Toussaint (1983) finds the

minimal bounding rectangle of the convex hull in O(n) time. The algorithm is more efficient, as

it uses the rotating calipers method (Shamos, 1978).

Regardless of which of the two algorithms that are used, the brute force approach or the more
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efficient method with rotating calipers, the convex hull of the data set needs to be computed.

This applies to both two-dimensional and three-dimensional cases.

Types of bounding boxes

There are different definitions of bounding boxes. The different types are used for different

purposes and give very different results.

The axis aligned bounding box (AABB) is defined as the minimized bounding box with

axes parallel to the coordinate frame. Figure 15 shows the AABB of a convex hull, in two

dimensions.

AABB 
Convex hull 

x

y

Figure 15: AABB of a convex hull in two dimensions

The dimensions of the AABB are decided by the minimum and maximum values along the axes,

xmi n , ymi n , zmi n , xmax , ymax , zmax . The region S of the AABB is defined in Equation 22.

S = { (x, y, z) | xmi n ≤ x ≤ xmax , ymi n ≤ y ≤ ymax , zmi n ≤ z ≤ zmax } (22)

An AABB can be simple to compute within a short amount of time. However, it often does not

fit the underlying geometry.

The oriented bounding box (OBB) is defined as a rectangular parallelepiped, arbitrarily oriented

around the axes of the coordinate frame. No axes limit the OBB that is minimized around the

convex hull, enclosing all the points in the data set. Figure 16 shows the OBB of a convex hull, in

two dimensions.
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y

Figure 16: OBB of a convex hull in two dimensions

An OBB is defined by a center, defined in Equation 23, by dimensions, defined in Equation 24,

and by an orientation, defined in Equation 25.

X ∈ IR3 (23)

4∈ IR3 (24)

R ∈ SO(3, IR) (25)

2.8 Bounding box algorithms

When a bounding box is computed, the solution can be found by a brute force search or by

mathematical optimization. A brute force search is a very general problem-solving technique.

It will search through all possible solutions to decide the best one. As it always finds an optimal

solution and can be easy to implement, it is a popular method when the number of possible

solutions is low. The cost of the function is proportional to the number of possible solutions.

Thus the method is not preferred to use when the size of a problem grows. When a problem

is complex and is subject to specific limitations, conditions and assumptions, mathematical
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optimization can be the right solution. An optimization algorithm will seek an optimal solution

within the specifications.

2.8.1 Available bounding box algorithms

Several algorithms to compute a bounding box in three dimensions are available. Some of them

use a brute force method, while others are optimization algorithms. The algorithm of choice

is dependent on the application. The most important factors are the computation time of a

solution and the accuracy of this solution.

Table 2 shows selected algorithms that are looked into. The complexities of the algorithms are

dependant on either n, the number of points describing an object, or nv , the number number

of points in the convex hull (number of vertices).

Table 2: Available bounding box algorithms

Algorithm Features

Accuracy

Exact Exact in practice suboptimal
Complexity

O’Rourke x x O
(
n3

v

)
TriangleMesh_IntersectRay_SSE x O

(
n

3
2
(
log n

)2
)

HYBBRID x O(nv )

PCA x O (n)

All-pairs x O
(
n3

v

)
Korsawe x O

(
n2

v

)
or O

(
n3

v

)

There exist several PCA-based methods. Common for the algorithms is that they are easy to

implement. However, the algorithms are sensitive to the distribution of points in the geometry.

Found by Dimitrov et al. (2009), the most complex PCA-based method still provide a volume

of the OBB that is four times larger than the exact solution in some instances. A brute force

method, solving the three-dimensional problem by computing the associated two-dimensional

problem is called "all-pairs" by Barequet and Har-Peled (2001). An algorithm developed by

Korsawe, J. (2008) uses a two-dimensional minimum bounding rectangle approach to find a

bounding box with one side coincide with one face of the convex hull.
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(a) One optimal OBB and two fitted OBBs (Chang et al., 2011)

(b) One optimal OBB and two fitted OBBs (Chang et al., 2011)

Figure 17: Two examples of optimal OBB versus fitted OBBs

The PCA-based methods, "all-pairs" algorithm and the algorithm of Korsawe are suboptimal

solutions more suitable for OBB fitting than finding the minimal OBB. Figure 17 shows the

bounding box solution from the HYBBRID algorithm (optimal OBB), the "all-pairs" algorithm

and the most complex PCA method. To be able to use a minimum bounding box algorithm in

the measurement technology, the suboptimal solutions are not sufficient.
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The algorithm of O’Rourke is an algorithm giving the exact solution of the minimum

bounding box (O’Rourke, 1985). However, the algorithm has a high complexity giving a

high computation time. The algorithm is described in subsection 2.8.2. The algorithm

"TriangleMesh_IntersectRay_SSE" by Jylänki (2015) is not exact by proof. However, thorough

testing by Jylänki (2015) has not discovered any scenarios where the found bounding box is not

optimal. The complexity of the algorithm provides a lower computation time than the algorithm

of O’Rourke. The HYBBRID algorithm by Chang et al. (2011) has a complexity providing a lower

computation time than the algorithms of both O’Rourke and Jylänki. Even though the algorithm

is an approximation algorithm, the bounding box found by the algorithm is exact in practice

(Chang et al., 2011). The algorithm is described in subsection 2.8.3.

An implementation of the HYBBRID algorithm by Chang et al. (2011) in this master thesis turned

out to be easier than an implementation of the "TriangleMesh_IntersectRay_SSE" algorithm by

Jylänki (2015).

2.8.2 O’Rourke’s algorithm

An exact algorithm to find the minimum enclosing box is described in an article of O’Rourke

(1985). He investigated how to find the minimal volume box, circumscribing a given set of points

in three dimensions.

As written in section 2.7.2, Freeman and Shapira (1975) proved that the solution to the

corresponding two-dimensional problem, must have one edge coincident with one of the edges

of the convex hull. A simple search for the three-dimensional solution could be to follow the

corresponding strategy. However, O’Rourke shows that such a solution is problematic. The

minimum volume box does not need to have any sides in flush with a face of the convex hull

of the set of points (O’Rourke, 1985).

It is addressed that the solution to the minimum enclosing box can be arbitrarily oriented and

the faces must meet orthogonally. However, the box is not necessarily unique.

Two conditions are stated to simplify the problem(O’Rourke, 1985): "First, it is obvious that

every box circumscribing a set of n points also circumscribes the convex hull of those points."

and "Second, it is obvious that a minimal box must touch the inscribed polyhedron on each of

its six faces; otherwise a face would be moved inwards reducing the volume." A third condition

that is less obvious is stated: "every minimal box must have at least two adjacent faces flush with

the edges of the enclosed polyhedron." and proved by two theorems in the article (O’Rourke,

1985).
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The algorithm described by O’Rourke requires O(n3
v ) time to find the minimum bounding box,

where nv is the number of points in the convex hull. The algorithm provides an exact solution,

but as the complexity is high, O’Rourke admits that the algorithm may not be optimal.

2.8.3 HYBBRID algorithm

A new approach to find the optimized minimum bounding box was introduced by Chang

et al. (2011). The name HYBBRID was decided as it combines both genetic- and Nelder-Mead

algorithms, resulting in a HYbrid Bounding Box Rotation IDentification algorithm (Chang et al.,

2011). It is inspired by the algorithm of O’Rourke, described in subsection 2.8.2, and based

on the method (a combination of Nelder-Mead and genetic algorithm) presented by Durand

and Alliot (1999). HYBBRID was developed to result in an easily implemented optimization

algorithm with a fast computation time, in contrast to the algorithm of O’Rourke, which is

extremely hard to implement and has slow computation time (Chang et al., 2011).

HYBBRID solves the problem of finding the minimum volume of an arbitrarily oriented

bounding box, enclosing a given set of N points, denoted as X ⊂ IR3. That results in a rectangular

parallelepiped with a minimum volume enclosing X . The solution is based on an unconstrained

optimization problem of the rotation group SO(3, IR). The solutions should have good accuracy

and find the optimal OBB in most cases, with low computational time. If a sub-optimal solution

is returned, it should be close to the optimal solution.

X ∈ IR3, 4∈ IR3 and R ∈ SO(3, IR) denotes the center, dimensions and orientation, respectively.

The rotation group is defined as follows:

SO(3, IR) = { R ∈ GL(3, IR) | RT R = I = RRT , det(R) = 1 } (26)

GL(3, IR) is a set of three by three invertible real matrices, defined as the general linear group of

degree three.

The problem to be solved can be written as follows:

min
R∈SO(3,IR)

f (R) (27)

where the volume of the AABB of X rotated by R, defines the objective function f (R). f (R) is
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defined in Equation 28, where Xi ∈ X . 4=4ξ4η4ζ specifies the dimensions of the OBB. The

center after rotation by R is defined as Ξ.

f (R) =
 min

4,Ξ∈IR
s.t .

4ξ4η4ζ

−4
2 ≤ R Xi −Ξ≤ 4

2 ∀i ∈ {1,...,N }

 (28)

The iterative optimization solution ensures that the position, dimensions and orientation

minimize the volume of the OBB while enclosing X . It is a derivative-free solution, as the

objective function in Equation 28 is non-differentiable, with a global search technique and

a fast convergence rate. The genetic algorithm is used as the global exploration component

and the Nelder-Mead simplex algorithm ensures a high convergence rate. More precisely, the

genetic algorithm finds a global optimum and the Nelder-Mead algorithm converges to a local

minimum. The combination of these two finds a global minimum of the volume function in

Equation 28.

As described in Chang et al. (2011), the HYBBRID algorithm can be decomposed into six steps.

Since the rotation group has three dimensions, four rotation matrices, R = {R1,R2,R3,R4}, define

a simplex. With the R j at its vertices, a tetrahedron is formed at the manifold. Ak , an element

of the population A has a simplex R and a "fitness" defined as min j∈{1,...,4} f (R j ). As stated by

Chang et al. (2011), the HYBBRID algorithm is decomposed in the following steps:

1. Initialization. Let M be the size of the total population. It is initialized with random

simplices, that is, the four vertices R j of each simplex are obtained by QR factorization

of random 2-by-2 matrices.

2. Selection. The fitness of all the simplices is evaluated. The best M
2 simplices are selected,

the other are discarded. From this reduced population, four groups AI
1, AI

2, AI I
1 , AI I

2 are

created at random using a uniform distribution. Each group has M
2 elements, and one

population member can be in one group, several groups, or none, and can be selected any

number of times in each group.

3. Crossover I. A standard mixing crossover is applied between AI
1 and AI

2. A pair of parents

is constituted by choosing the k th element of both subpopulations: A1 ∈ AI
1 and A2 ∈ AI

2.

They produce an offspring A0,i . Each vertex of the simplex A0 is either the corresponding

vertex of A1 or of A2, the selection being random, but the parent with the best fitness

having higher probability of being chosen. This give us M
2 new simplices.

4. Crossover II. The other M
2 new simplices are given by an affine crossover between AI I

1 and
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AI I
2 . Let A1 ∈ AI I

1 , A2 ∈ AI I
2 be the k th pair of parents as before. The four vertices A0, j of the

corresponding offspring A0 are defined by A0, j = λA1, j + (1−λ)A2, j , where the value of λ

depends on whether A1 is better or worse than A2. For example, λ can have the value 0.4

(respectively 0.6) if the fitness of A1 is smaller than that of A2.

5. Mutation. K Nelder-Mead iterations are applied on all these M new simplices to obtain

the new generation of the population.

6. Stopping criterion. This process (Selection - Crossover - Mutation) is repeated until

a stopping criterion is met, usually if the fitness of the best simplex stalls for several

iterations with respect to the desired tolerance, or if a maximal number of iterations

is reached. In our case, the algorithm stops after k consecutive generations where the

objective value does not improve by at least x% compared to the current best value, with

k = 5 and x = 1 as default values for these parameters.

The steps of the HYBBRID algorithm benefit from the correlations between the initial conditions

computed by the genetic component. If the genetic component of the algorithm computes the

initial conditions as intended, the Nelder-Mead algorithm will converge to a global minimum.

The minimum volume of the arbitrarily oriented bounding box is found.

Nelder-Mead algorithm

The Nelder-Mead algorithm was first presented by Nelder and Mead (1965). It is a numerical

method, using a direct search to find the minimum/maximum of an objective function in

a multidimensional space. It is a derivative-free method that can be applied to nonlinear

optimization problems. Due to the simplicity and empirical efficiency of the algorithm, the

heuristic method is well known and used for problems with dimensions less than five (Chang

et al., 2011).
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(a) Reflection (b) Expansion (c) Contraction (d) Reduction

Figure 18: Steps of the Nelder-Mead algorithm (Chang et al., 2011)

Figure 18 shows the steps of the Nelder-Mead algorithm in two dimensions. The objective

function f (X ), where X ∈ IR2 is minimized. A simplex S ⊂ IR2 is formed by S1S2S3, where

f (S1) ≤ f (S2) ≤ f (S3). The worst point is removed at each iteration, in this illustration it is

S3. S0 is defined as the centroid of the remaining points and Sr is defined as the reflection of

S3 through S0. If Sr is better than the worst remaining point, in this case S2, a new simplex is

defined, S1Sr S2, as seen in Figure 18a. If Sr is better than the current best point, in this case

S1, the simplex is expanded, as Figure 18b shows. This happens in the direction of S0Sr , so that

Se = Sr + (Sr −S0). Se S1S2 is the new simplex. If Sr is worse than all of the current points, the

algorithm aims to contract the simplex. Figure 18c shows the contracted point Sc , defined as

Sc = 1
2 (S0 +S3). If Sc is better than S3, Sc S1S2 defines the new simplex. Finally, after all steps are

repeated possibly several times, a reduction, as in Figure 18d, is performed. All points, except

the current best, which here is S1, is reduced to Si ′ = 1
2 (S1 + Si ) for all i . The new simplex is

S1S2′S3′ .

The algorithm needs a termination criterion for the iterative process to break. Another critical

aspect of the algorithm is the initial simplex, as the search can get stuck and lead to a local

search. In the HYBBRID algorithm, the initial simplex is decided by the genetic algorithm.
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Genetic algorithm

A genetic algorithm is inspired by the evolution and the principles of natural selection; heredity,

variation and selection. As written in Mitchell (1996), genetic algorithms have a population and

a selection based on a fitness function. New offspring are produced by a crossover function and

from random mutation.

2. Selection

3. Reproduction  
(a) Selection 

3. Reproduction  
(b) Crossover

3. Reproduction  
(c) Mutation

 
Termination 

criterion 
met? 

4. Replace

1. Initialize

Yes

No

Result

3. Reproduction  
(d) Add

Figure 19: Flow chart of the main steps of the optimization process in a genetic algorithm

The flow chart in Figure 19 visualizes the main steps of the optimization process in the genetic

algorithm. They could be as follows:
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1. Initialize. Create a random population of N elements.

2. Selection. Calculate and evaluate fitness f (x) for all the N elements in the population.

3. Reproduction. Until N offspring are created:

(a) Pick a pair of "parents" from the current population, with the probability of selection

according to the fitness.

(b) Crossover. Cross over the parents at a random point, chosen with uniform probability,

to create an offspring, based on the crossover probability. With no crossover taking

place, the offspring is an exact copy of the parents.

(c) Mutation. Mutate the offspring data, based on the mutation probability.

(d) Add the offspring to the new population.

4. Replace the current population with the new population.

5. Return to step 2.

Each iteration in the algorithm is defined as a generation, where the entire set of generations is

defined as a run. A run often ends with one or more elements with high fitness. The result often

relies on the chosen values of the crossover and mutation probabilities.

The algorithm needs a termination criterion to break the iterative process. This can be when

some generations or a minimum criterion are reached.



Chapter 3

Development of HYBBRID in Python

An algorithm to find the minimal enclosing object to a measured object from the metrology

laboratory is developed in Python and presented in this chapter. The measured object has an

underlying geometry as a rectangular parallelepiped. The developed algorithm is based on the

minimum bounding box algorithm HYBBRID, presented in subsection 2.8.3. The algorithm,

developed by Chang et al. (2011), is originally developed in Matlab®.

3.1 HYBBRID in Python

For this master thesis, Python is the chosen programming language. Python is an open-source

language. This means that Python is free software, there is no financial expense for

NTNU, redistribution is free and the source code is available for everyone. As Python is

a technical programming language, the open-source library SciPy can be used for scientific

and technical computing with packages such as NumPy, numerical Python. NumPy enables

multi-dimensional array objects to be defined and associated math functions to be used.

HYBBRID is free software, open to redistribution and modification under the terms of the GNU

General Public License as published by the Free Software Foundation. The algorithm, developed

by Chang et al. (2011), is available in Matlab®. During this master thesis, a new algorithm

converted from the HYBBRID algorithm in Matlab®, is developed in Python.

Included in Appendix A are the 14 scripts of the developed HYBBRID algorithm in Python. The

main functions are "HYBBRID.py", "genetic.py", "localOptiRC.py", "rotatingCalipers.py",

"nelderMeadBreed.py", "nelderMead.py", "volumeOBB.py" and "volumeAABB.py".

"Params.py" is a class defining parameters, "affine.py" and "karcher.py" are helping functions.
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To extract the 3D data points from the raw data measured from the laser tracker and the CMM,

the algorithms "PCDMIS_to_numpy_array.py" and "Laser_tracker_to_numpy_array.py" are

developed. They extract the 3D data points, represented as x-, y- and z-coordinates from the

raw data, a .txt- or .csv file, and translates them into NumPy arrays, arranged as a matrix with

one 3D data point in each row. The script "run_HYBBRID_algorithm_on_data.py" runs the

program with the 3D data points.

Figure 20 shows the layout of the algorithm. The program "starts" at the top of the figure

and is initiated by running "run_HYBBRID_algorithm_on_data.py". The arrows in the figure

explain in what order the scripts are called and how they are connected. The initiating script,

"run_HYBBRID_algorithm_on_data.py", receive data from both "PCDMIS_to_numpy_array.py"

and "Laser_tracker_to_numpy_array.py", where only one of the two data sets is used in the

algorithm.

run_HYBBRID_algorithm_on_data

HYBBRID Laser_tracker_to_numpy_arrayPCDMIS_to_numpy_array

Params volumeOBB nelderMeadBreed genetic

volumeAABB nelderMead affine localOptiRC

rotatingCalipersaffinekarcher

'data_PCDMIS.txt' 'data_laser_tracker.csv'

Figure 20: Layout of the HYBBRID algorithm in Python

Converting a data set of 3D points to NumPy array in Python

After a complete calibration process in the metrology laboratory, the measured 3D data points

are saved. A data set from the CMM or the laser tracker is saved in a .txt and .csv file, respectively.

The 3D data points need to be arranged as a matrix in a NumPy array, with one point per row,
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to be used in the HYBBRID algorithm. The open-source library Pandas in Python enables data

structures and data analysis tools to be used to extract the desired information from the files

and convert the 3D data points into a NumPy array.

In section B.2 a .txt file is included. Planes of the object are named PLN_X+, PLN_X-, PLN_Y+,

PLN_Y-, PLN_Z+ and PLN_Z- to identify lines with a data point. Every line with one of these

names followed by HITS is identified as a line with a data point. Lines and columns without a

coordinate from a data point are removed. The remaining data frame consists of three columns

with the x-, y- and z-coordinates of the 3D data points. This data frame is converted into a

NumPy array. The full algorithm is attached in subsection A.1.3.

A .csv file is included in section B.1. Every line in the file contains coordinates of a 3D data point.

The algorithm in "Laser_tracker_to_numpy_array", included in subsection A.1.2, only needs to

remove unnecessary columns. The remaining data frame consists of six columns, x-, y- and

z-coordinates and the corresponding decimal numbers of the 3D data points. The integer is put

together with the corresponding decimal number. This data frame is converted into a NumPy

array.

Params

A class Params, attached in subsection A.1.14, is created to keep track of different parameters

in the algorithm. The parameters are defined as attributes of Params, and described in

Table 3.

Table 3: Parameters in the HYBBRID algorithm

Params

Attribute Description Default value

test_repeat Number of times the program is executed 1

opt_convhull if == 1: Data is preprocessed by extracting the convex hull 1

g_popsize Size of the population in the genetic algorithm 30

g_maxiter Maximum number of generations in the genetic algorithm 100

The stopping criterion in the genetic algorithm:
g_tolval, g_toliter

if the relative improvement is less than g_tolval during g_toliter iterations
10−2, 5

g_verbose if == 1: information is displayed at each generation in the genetic algorithm 1

g_randmut The probability of random mutations at each generation of the genetic algorithm 0.0

nm_maxiter The number of Nelder-Mead iterations at each generation 20

The default values are carefully defined after exploration by Chang et al. (2011). The

performance of the algorithm is highly dependent on the parameters, especially g_popsize and
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nm_maxiter, defining the size of the population in the genetic algorithm and the number of

Nelder-Mead iterations at each generation, respectively. An increase in these two parameters

increases both the reliability and the computation time. The default values are a trade-off

between the two qualities. The default value of nm_maxiter is set to 20, as Chang et al. (2011)

discovered that the performance of the algorithm increased significantly until this number. The

population size should be defined according to the needs of the algorithm, where 30 provides

sufficient reliability, with acceptable computation time.

nelderMead and nelderMeadBreed

The nedlerMeadBreed algorithm breeds a new population from a successful generation in the

genetic algorithm, using the nelderMead simplex algorithm. The input in the nelderMeadBreed

algorithm is the current population, the fitness value of each current population member, the

volumeOBB function, a data set of 3D data points and the parameters defined in Params.

Each population member is defined as a simplex. As the rotation group is in three dimensions,

a set of four rotation matrices define a simplex , R = {R1,R2,R3,R4} ⊂ SO(3, IR). The volumeOBB

function is called to obtain the fitness value of each population member. The parameter used

in the nelderMeadBreed algorithm is g_randmut; the probability of random mutations at each

generation of the genetic algorithm.

The output of the nelderMeadBreed algorithm is a new population of simplices.

The nelderMead simplex algorithm has four inputs; a simplex, the volumeOBB function, a data

set of 3D data points and the parameters defined in Params. The simplex is the starting point.

The function, volumeOBB, is called to obtain the value of a simplex and minimizes the simplex.

The parameter nm_maxiter is the only parameter used in the algorithm, deciding the number

of Nelder Mead iterations for each generation.

The output of the nelderMead algorithm is the simplex after the decided number of Nelder Mead

iterations.

Genetic

The genetic algorithm computes the initial conditions of the HYBBRID algorithm and

approximates the optimal OBB enclosing a data set of 3D data points. The input of the algorithm

is the volumeOBB function, the nelderMeadBreed function, a data set of 3D data points and the

parameters defined in Params. The parameters used in the genetic algorithm is the g_popsize;
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the size of the population, g_maxiter; the maximum number of generations, g_tolval, g_toliter;

defining the stopping criterion, g_verbose; defining if the information is displayed at each

generation.

The fitness of the OBB is defined as the volume, where the optimal OBB has the minimum

fitness, hence the minimum volume. The initial population is generated at random. When the

current minimum fitness value is improved, a local optimization, with the function localOptiRC,

is performed. The function volumeOBB is called to decide the fitness of an OBB. The function

nelderMeadBreed is called to obtain the population’s next generation, modifying the current

population with mutation and crossover steps. The population and the fitness are sorted by

their value of fitness, by increasing order.

The output of the function is the minimum fitness of a population member, the respective

population member, the log of the elapsed time and the best fitness and the log of the best

argument.

localOptiRC and rotatingCalipers

The localOptiRC algorithm performs a local optimization of an OBB in three directions. The

input of the algorithm is a data set of 3D points in a NumPy array, arranged as a matrix with one

3D point per row, and a rotation matrix, defining three axes.

The convex hull of the 3D data points, a convex boundary fitting around the points, is computed

as a preprocessing step in the algorithm. Figure 21 shows the convex hull of a data set measured

with the laser tracker.
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Figure 21: The convex hull of the data from laser tracker

By using the rotating calipers method in 2D on one of the three axes, different OBBs are

obtained. These OBBs define a neighborhood. The algorithm computes the volumes of the

OBBs in this neighborhood. The OBB in the neighborhood with the minimum volume is defined

as the optimal OBB. The volume of the optimal OBB and the associated rotation matrix is

returned.

The rotatingCalipers algorithm finds the volume of the minimal oriented rectangle, enclosing

a data set of 2D points. The volume and the orientation, in radians, of the minimal oriented

bounding rectangle, is returned to the local optimization algorithm.

volumeOBB and volumeAABB

The algorithm volumeOBB computes the volume of an OBB. The input in the algorithm is a set

of rotation matrices, where one rotation matrix is associated with one OBB, and a data set of 3D

points in a NumPy array arranged as a matrix with one 3D point per row. After the calculation,

the volume of the minimal OBB in the set and an array of all the volumes of the OBBs in the

set is returned to the genetic algorithm. To compute the volume of the OBBs, the algorithm

volumeAABB is used.

The volumeAABB algorithm is used in the computation of the volume of the minimal AABB of

the data set of 3D points. The input in the algorithm is a data set of 3D points and a rotation

matrix. The calculated volume is returned to the volumeOBB algorithm.
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HYBBRID

The 3D points in the data set, measured in the metrology laboratory, are described by the

Cartesian coordinate system, as in Figure 22.

Figure 22: Cartesian coordinate system in three dimensions

When the rotation of the optimal OBB is found, there is a need for translating the points in the

data set to a new coordinate frame. The rotation matrix rotates the points around the axis of

the coordinate system. Figure 23 shows an arbitrary rotation from xa-, ya- and za-frame to xb-,

yb- and zb-frame. The HYBBRID script rotates the points in the convex hull of the measured

points from the coordinate frame of the measurement table in the metrology laboratory, to the

coordinate frame of the optimal OBB.
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Figure 23: Rotation of coordinate frame a to b

The input of the HYBBRID algorithm is a data set of 3D points. The optimal OBB enclosing all

the points in the data set is approximated. The output of the algorithm is the rotation matrix of

the optimal OBB, the minimum volume of the optimal OBB, a log of the elapsed time and the

best fit (minimum volume), a log of the best argument (rotation matrix), and the data set after

the preprocessing (the points of the convex hull).

In the algorithm "run_HYBBRID_algorithm_on_data", the dimensions of the optimal OBB are

calculated. When the data set originates from the laser tracker, a radius compensation of the

radius of the stylus tip of the laser tracker is necessary.



Chapter 4

Uncertainty in a calibration process

This chapter presents the results and discussions of the work done during the project. Three

rectangular parallelepipeds are manufactured to function as reference standards in calibration

processes. JV will bring the reference standards to different laboratories in Norway, evaluating

their dimensional measuring devices. In the metrology laboratory at NTNU, the dimensional

measurements of the reference standards are measured. The developed HYBBRID algorithm

estimates the dimensional measurements and is used in the uncertainty analysis, on which the

calibration certificates are based.

4.1 Uncertainty analysis

As the true value of the measurand cannot be known, the uncertainty analysis identifies,

quantifies and combines the different contributions to error. This section described the

procedure and the contributors to uncertainty in the calibration process.

4.1.1 Procedure of a calibration process of a rectangular parallelepiped

The procedure of a calibration process of a reference object in the CMM is as follows. The

reference object, a rectangular parallelepiped, is placed on the measurement table of the CMM.

The side with the serial number is facing up, and the measurement table of the CMM defines

the surface of the bottom side of the object. The CMM measures the five visual sides with a

measurement density of 30 mm, thus a distance of 30 mm between each measuring point.
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The current procedure used by NTNU defines the distance from the measurement table to the

highest measured point on the top surface as the height of the reference object. The surface

normals of the four vertical surfaces are calculated and projected down to the measurement

table — the projection results in four possible references for the orientation of the reference

object. The orientation of the rectangular parallelepiped enclosing the reference object with the

smallest volume defines the ultimate reference.

The use of the HYBBRID algorithm renews the procedure of a calibration process of a

rectangular parallelepiped. The orientation and the dimensional measurement of the

rectangular parallelepiped, enclosing the measured points of the reference object, is calculated

by the HYBBRID algorithm, as described in chapter 3.

4.1.2 Contribution A: Repetition

Repeatability is investigated by repeating measurements several times, with the same

measuring points each time. Repeatability tests have been conducted at the metrology

laboratory at NTNU with similar manufactured objects as the reference objects. The repeated

measurements were done with a measurement density of 30 mm and resulted in a calculation

of the standard deviation.

Based on previous results from the metrology laboratory at NTNU, the standard uncertainty

associated with repeatability is estimated to be 0.02 mm.

4.1.3 Contribution B: Reproducibility

Reproducibility is investigated by repeating measurements where the measuring points are

moved between each repeated measurement. Reproducibility tests are conducted at the

metrology laboratory at NTNU with similar manufactured objects as the reference objects. The

movement of the measuring points is achieved by rotating the coordinate frame of the object

with 180°.

Based on previous results from the metrology laboratory at NTNU, the standard uncertainty

associated with reproducibility is estimated to be 0.02 mm.
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4.1.4 Contribution C: Number of measuring points

It is desirable with a sensible balance between low uncertainty and time consumption in a

calibration process. While a high number of measuring points is desired to keep the uncertainty

low, a lower number of measuring points is desired for lower time consumption. Thus it

is valuable to explore the significance of the number of measuring points and decide an

uncertainty associated with the number of measuring points.

The analysis uses data sets of three reference objects. The intended dimensions of the

parallelepipeds are 200 mm x 300 mm x 900 mm. The three reference objects are measured

in the metrology laboratory with a measurement density of 10 mm; thus, the original data sets

consist of measuring points with this measurement density. Extracting data points from the

original data sets creates new data sets representing a lower number of measuring points.

Figure 24, Figure 25 and Figure 26 shows the relation between the measurement density and the

measured length, width and height, respectively, of the reference object with the original data

set "DkS10".
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Figure 24: DkS10 length

The measured value of the length of DkS, visualized in Figure 24, ranges from 900.5598 mm to
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900.57617 mm. Maximum and minimum value are given by the following:

• Maximum value: Measurement density of 20 mm

• Minimum value: Measurement density of 80 mm
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Figure 25: DkS10 width

The measured value of the width of DkS, visualized in Figure 25, ranges from 202.16744 mm to

202.17043 mm. Maximum and minimum value are given by the following:

• Maximum value: Measurement density of 10 mm, 20 mm, 30 mm, 60 mm, 90 mm

• Minimum value: Measurement density of 80 mm, 100 mm
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Figure 26: DkS10 height

The measured value of the height of DkS, visualized in Figure 26, ranges from 301.69908 mm to

301.75208 mm. Maximum and minimum value are given by the following:

• Maximum value: Measurement density of 10 mm

• Minimum value: Measurement density of 90 mm
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Figure 27, Figure 28 and Figure 29 shows the relation between the measurement density and the

measured length, width and height, respectively, of the reference object with the original data

set "DkN10".
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Figure 27: DkN10 length

The measured value of the width of DkN, visualized in Figure 27, ranges from 901.51186 mm to

901.53582 mm. Maximum and minimum value are given by the following:

• Maximum value: Measurement density of 10 mm

• Minimum value: Measurement density of 90 mm
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Figure 28: DkN10 width

The measured value of the width of DkN, visualized in Figure 28, ranges from 202.02067 mm to

202.020606 mm. Maximum and minimum value are given by the following:

• Maximum value: Measurement density of 10 mm, 20 mm, 40 mm

• Minimum value: Measurement density of 100 mm
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Figure 29: DkN10 height

The measured value of the width of DkN, visualized in Figure 29, ranges from 301.63428 mm to

301.67266 mm. Maximum and minimum value are given by the following:

• Maximum value: Measurement density of 10 mm

• Minimum value: Measurement density of 90 mm
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Figure 30, Figure 31 and Figure 32 shows the relation between the measurement density and the

measured length, width and height, respectively, of the reference object with the original data

set "DkMn10".
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Figure 30: DkMn10 length

The measured value of the length of DkMn, visualized in Figure 30, ranges from 901.15947 mm

to 901.20938 mm. Maximum and minimum value are given by the following:

• Maximum value: Measurement density of 70 mm

• Minimum value: Measurement density of 80 mm
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Figure 31: DkMn10 width

The measured value of the width of DkMn, visualized in Figure 31, ranges from 201.64009 mm

to 201.64358 mm. Maximum and minimum value are given by the following:

• Maximum value: Measurement density of 10 mm

• Minimum value: Measurement density of 80 mm
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Figure 32: DkMn10 height

The measured value of the height of DkMn, visualized in Figure 32, ranges from 301.15667 mm

to 301.16684 mm. Maximum and minimum value are given by the following:

• Maximum value: Measurement density of 10 mm

• Minimum value: Measurement density of 70 mm
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Table 4 presents the results of the measured dimensions when the measurement densities are

10 mm, 30 mm, 50 mm and 70 mm.

Table 4: Measured dimensions at different measurement densities

Reference object Measurement density [mm] Length [mm] Width [mm] Height [mm]

DkS 10 900.57599 202.17043 301.75208

DkS 30 900.56697 202.17043 301.739

DkS 50 900.56697 202.16762 301.73155

DkS 70 900.56242 202.16749 301.71706

DkN 10 901.53582 202.02606 301.67266

DkN 30 901.51627 202.024 301.67153

DkN 50 901.51455 202.02424 301.67122

DkN 70 901.51451 202.02261 301.65713

DkMn 10 901.20925 201.64358 301.16684

DkMn 30 901.19569 201.64304 301.16253

DkMn 50 901.19571 201.64304 301.16193

DkMn 70 901.20938 201.64223 301.15667

A measurement density of 10 mm is assumed to measure all extrema on the surface. There is an

uncertainty associated with a measured value with a measurement density other than 10 mm.

Calculation of the deviation between a measured value with a measurement density of 10 mm

and a measurement density other than 10 mm estimates this. The uncertainty associated with

a measurement value due to a measurement density other than 10 mm is twice the value of the

maximum estimated deviation.

The graphs in Figure 24 to Figure 32 and the values in Table 4 estimates that a measurement

density of 30 mm provides an uncertainty of 0.039 mm, a measurement density of 50 mm

provides an uncertainty of 0.043 mm and a measurement density of 70 mm provides an

uncertainty of 0.07 mm.

4.1.5 Contribution D: Calculation of the minimum bounding box from

measured points

The current procedure of selecting reference direction for a parallelepiped in a calibration

process, described in subsection 4.1.1, has an associated uncertainty. The standard uncertainty

is estimated to be 0.1 mm.
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The use of the developed HYBBRID algorithm is assumed to eliminate the standard uncertainty.

Thus it is zero.

4.1.6 Contribution E: Maximum permissible error in the CMM

As described in subsection 2.4.1, the supplier of the CMM used in the metrology laboratory

specifies that the MPE of the CMM as in Equation 10. In addition to the MPE, there are

uncertainties associated with probes that are extra long or other conditions in the CMM.

Based on previous results from the metrology laboratory at NTNU, the maximal permitted error

of the measured reference objects is assumed to contribute to a standard uncertainty of 3 µm =

0.003 mm.

4.1.7 Contribution F: Temperature effects

The material of the reference objects is RenShape BM 5460 (polyurethane). During the

calibration process, the temperature in the metrology laboratory is assumed to range between

19.5 °C and 20.5 °C with a rectangular distribution. It is also assumed that the reference objects

have been in the metrology laboratory for sufficient time for the temperature of the reference

objects to the same as in the room. The coefficient of thermal expansion (CTE) of the CMM is

assumed to be small in comparison with the CTE of the reference objects. Thus the temperature

effect associated with the CTE of the CMM is neglected.

Equation 29 specifies the CTE of the material of the reference objects at 20 °C.

C T E = 55 ·10−6 K−1 = 55 ·10−6 °C−1 (29)

Equation 30 specifies the estimated uncertainty due to the temperature effects. The estimation

is associated to the reference objects with length l = 900 mm and a difference between the actual

temperature and the reference temperature ∆T =± 0.5 °C.

utemp = ∆Tp
3
·C T E · l = 0.5 °Cp

3
·55 ·10−6 °C−1 ·900 mm = 0.014 mm (30)
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4.1.8 Calculation of the combined uncertainty

Table 5 presents an uncertainty budget with a combined uncertainty and the expanded

uncertainty. The expanded uncertainty has a coverage factor of two, k = 2, providing a

confidence level of approximately 95 %.

The standard uncertainty associated to contribution C, the number of measuring points, is

estimated for a measurement density of 30 mm, 50 mm and 70 mm, which gives three different

estimations of the combined uncertainty.

Table 5: Estimated uncertainty budget

Contribution Standard uncertainty [mm]

A: Repetition 0.02

B: Reproducibility 0.02

C: Measurement density (= 30 mm) 0.039

C: Measurement density (= 50 mm) 0.043

C: Measurement density (= 70 mm) 0.07

D: Reference of dimensional measurement 0

E: MPE in the CMM 0.003

F: Temperature effects 0.014

Combined uncertainty (=
√

u2
A +u2

B +u2
C +u2

D +u2
E +u2

F )

Combined uncertainty (k=1)

Measurement density (= 30 mm)
0.0503

Expanded uncertainty (k=2, 95 %) 0.1006

Combined uncertainty (k=1)

Measurement density (= 50 mm)
0.0534

Expanded uncertainty (k=2, 95 %) 0.1069

Combined uncertainty (k=1)

Measurement density (= 70 mm)
0.0769

Expanded uncertainty (k=2, 95 %) 0.1537

The expanded uncertainty when the measurement density is 30 mm is estimated to be 0.1006

mm, the expanded uncertainty when the measurement density is 50 mm is estimated to be

0.1069 mm and the expanded uncertainty when the measurement density is 70 mm is estimated

to be 0.1537 mm.
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4.2 Discussion of the uncertainty analysis

All the steps of the uncertainty analysis require the experience and judgment of an engineer.

This section discusses the evaluation of some of the contributions in the uncertainty analysis,

the obtaining of the estimations, and other possible contributors to uncertainty.

4.2.1 Procedure of a calibration process of a rectangular parallelepiped

As described in subsection 4.1.1, the reference object is fastened in the measurement table

during a measurement procedure with the CMM. One side is facing down on the table. As a

result of the fastening method, the CMM measures five out of six sides of the parallelepiped.

The five visual sides are measured. However, the side facing down is not measured as it is not

accessible for the probe.

There is an uncertainty associated with the fastening of the object to the measuring machine.

However, this uncertainty is not included in the uncertainty analysis. It is assumed to be at an

acceptable level for a calibration process. The minimum rock requirement is used to minimize

the uncertainty, ensuring that the positioning of the object eliminates the amount of rock in all

directions. In practice, adding a piece of paper beneath the corner of the object that causes the

object to rock accomplishes this. Removing all noticeable rock in any direction is assumed to

minimize the uncertainty to an acceptable level.

If other fastening methods enabled the object to have all six sides measured, the possible impact

from the current fastening method could be discovered. The uncertainty associated with the

lack of measuring points on the sixth side and the uncertainty associated with an unnoticeable

rock that is not eliminated by the minimum rock requirement could be estimated.

4.2.2 Procedure of generating data sets

Independent of the number of measuring points in a measurement process, it is desired to

spread the measuring points evenly on the surface, ensuring measurement close to all edges

of the surface. Figure 33 shows a desired and an undesired situation when reducing the

measuring points in a measurement procedure. The number of measuring points in both the

desired and the undesired situation is approximately half of the original number of measuring

points. The original number of measuring points is 40. In the desired situation, the number

of measuring points is 18, covering the surface evenly, out to all the corners and edges. In
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the undesired situation, every second measuring point is removed from the original measuring

points, resulting in 20 measuring points.

Desired

Undesired  

Figure 33: A desired and undesired situation when removing measuring points

The method of generating the data sets used in the uncertainty analysis can result in the

undesired situation in Figure 33. The original data sets are created by measuring the visible

surfaces of the parallelepipeds, evenly with a measurement distance of 10 mm. The other data

sets, with measurement density of 20 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm,

90 mm and 100 mm are generated by extracting every second, third, fourth, ..., tenth point,

respectively, from the original data set.

As described in subsection 4.1.1, the CMM measures five out of six sides of the rectangular

parallelepiped due to the fastening method. To be able to use the developed HYBBRID

algorithm to estimate the dimensional measurements of the objects, measuring points of the

sixth surface are necessary. Changing the z-coordinates of the top surface to zero creates the

points of the bottom surface.

Estimation of the possible uncertainties associated with data generation is not included in the

uncertainty analysis. Possible uneven spreading of the measuring points on the surfaces and the

plausible incorrect generation of the bottom surface with z-coordinates of zero could generate

an uncertainty. However, the assumption of the uncertainties being at an acceptable level

excludes them from the analysis.

4.2.3 Number of measuring points

The number of measuring points is established before a measurement procedure. The

uncertainty of a dimensional measurement is assumed to decrease with an increase in the
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number of measuring points. The probability of detecting extrema is increasing with a shorter

distance between each measuring point. However, an increase in the number of measuring

points increases the time consumption. A measurement density of 10 mm is assumed to detect

all extrema, thus providing the highest measured value, and a measurement density of 100 mm

is too high. A measurement density lower than 10 mm introduces an uncertainty associated

with the number of measuring points.

All manufactured surfaces have some degree of irregularity. When the distance between each

measuring point is higher than 10 mm, there is an uncertainty of whether the extrema of the

surface is measured. As the highest points are more likely to be measured when the number

of measuring points is high, it follows that the estimated length of an object increases with the

number of measuring points. This assumption indicates that there should be a negative trend

in the measured values in Figure 24 to Figure 32. However, the visualizations do not show a

consistent negative trend between the measured values and the measurement density.

Figure 34 shows the surface of an object seen from the side. The surface in the figure has a visual

roughness. A measurement procedure with a measurement density of 10 mm, 30 mm and 50

mm are shown with blue, orange and red dots, respectively. The figure shows a situation where

a measurement conducted with a lower number of measuring points cover a higher point than

a measurement conducted with a higher number of measuring points. A similar situation can

explain the lack of negative trends in the graphs in Figure 24 to Figure 32.

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1010

Measurement density 50 mm
Measurement density 50 mm
Measurement density 50 mm

Figure 34: Side view of a measurement procedure with different measurement densities

Figure 24 to Figure 32 shows that the width of all three parallelepipeds (200 mm) has the

most even measured values, independent of the measurement density. The length of all

three parallelepipeds (900 mm) has the most uneven measured values with the different

measurement densities. This could indicate that surfaces with a longer distance between
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them require a higher number of measuring points than surfaces that are closer. However,

as the manufacturing technique is similar for the three parallelepipeds, it is possible that the

measured surfaces giving the most even measured values have very low roughness, due to the

manufacturing process.

A measurement procedure with a measurement density of 10 mm measures the largest (or

second-largest) measured values of the different widths, lengths and heights. The underlying

assumption, of a measurement density of 10 mm detecting all extrema in a measured surface

is likely to be correct. However, it could be interesting to have a data set with measuring points

with a measurement density of 5 mm.

The convex hull of the data set is defined in the calculation of the minimum bounding box in

the HYBBRID algorithm before the minimum bounding box is estimated. Figure 35, Figure 36

and Figure 37 show the relation between the number of measuring points in the data sets and

the number of points in the convex hull by the different measurement densities.
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Figure 35: The number of points in the data set (DkS10) versus in the convex hull
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Figure 36: The number of points in the data set (DkN10) versus in the convex hull
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Figure 37: The number of points in the data set (DkMn10) versus in the convex hull
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The graphs in Figure 35 to Figure 37 and the values in Table 6 show a significant decrease in

the number of measured points as the distance between two measured points increases. The

number of points in the convex hull stays quite stable. A measurement density of 10 mm

causes 10200 measured points during a measurement procedure, while a measurement density

of 30 mm, 50 mm and 70 mm causes 3400, 2040 and 1458 measured points, respectively. With

a measurement density of 30 mm, 50 mm or 70 mm, the number of points in the convex

hull ranges from 121 to 125, from 105 to 111 and from 89 to 94 for DkS, DkN and DkMn,

respectively.

Table 6: Number of points at different measurement densities

Reference object Measurement density [mm]
Number of points

Measured In the convex hull

DkS 10 10200 155

DkS 30 3400 125

DkS 50 2040 120

DkS 70 1458 121

DkN 10 10200 119

DkN 30 3400 110

DkN 50 2040 105

DkN 70 1458 111

DkMn 10 10200 79

DkMn 30 3400 93

DkMn 50 2040 89

DkMn 70 1458 94

The difference between the number of points visualizes the importance of measuring the

highest points of a surface, as the estimation of the dimensions only includes points in the

convex hull. This is achieved by having a high number of measuring points. However, the

difference also visualizes how much impact the measurement density has on the number of

measured points, hence the time of the calibration process.
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4.2.4 Calculation of the minimum bounding box from measured points

The developed HYBBRID algorithm is not an exact algorithm as the algorithm of O’Rourke

is. However, it is exact in practice. Thus, the associated uncertainty is assumed to be zero.

When computing the dimensional measurements of the data sets in Python, the program runs

five times. Often the dimensional measurements of four of the results were equal to the fifth

decimal, while one result where off. The repeated result was chosen, assumed to be the exact

answer. However, it could be interesting to calculate the dimensional measurements of the data

set with the algorithm of O’Rourke and compare the results.

4.3 Laser tracker vs CMM

A measurement procedure with the laser tracker was conducted to create a data set on which

the developed HYBBRID algorithm practiced. The data set was not representative to conduct

an uncertainty analysis, as the laser tracker measured a random number of measuring points

randomly on the surfaces of a parallelepiped. The resulting data set contributed to create the

program to translate data points from the laser tracker to the HYBBRID algorithm.

4.4 Discussion of laser tracker vs CMM

It could be interesting to compare data sets from the laser tracker and the CMM. A measurement

procedure of the same parallelepiped with both the laser tracker and the CMM could

accomplish this. In a measurement procedure with the laser tracker, all six sides are available

for measurement. A measurement procedure with the laser tracker has two associated

uncertainties, one with the laser tracker and one with the probe. A measurement procedure

with the CMM has only one associated uncertainty. With two representative data sets, it could

be interesting to compare the uncertainties.



Chapter 5

Conclusions and further work

The work of this master thesis has provided knowledge of uncertainty analysis and minimum

bounding box algorithms. The objectives of this project have been achieved.

5.1 Conclusions

In section 2.1, a literature review on uncertainty analysis is performed and presented. The

procedure of an uncertainty analysis is conducted to estimate the uncertainty associated

with the measured value. The uncertainty of the measurement can be as significant as the

measurement value. An uncertainty analysis is a methodical approach that is objective and

standardized. However, detailed knowledge of the measurand’s nature and the measurement

procedure is crucial to achieve a satisfying measurement result — in addition to the critical

thinking, integrity and professional skills of those performing the uncertainty analysis. The

guide by ISO and the standard by ANSI/ASME are the two professional documents accepted

on uncertainty analysis. They differ in terminology. However, the different categorizations are

for convenience. The resulting uncertainty of a measurement is similar using the standard or

the guide.

A literature review on finding minimal enclosing objects, both cylinder and rectangular

parallelepiped, is performed and presented in section 2.7 and section 2.8. A data set from a

measured object in the metrology laboratory at NTNU consists of points in three dimensions.

The development of an algorithm to find the minimum enclosing object in three dimensions

is advanced. Especially when the object is a parallelepiped, the optimal orientation can be

complex to find. Several algorithms to compute a bounding box in three dimensions are

72
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available. The HYBBRID algorithm turned out to be exact in practice, possible to implement in

Python and have a low computation time. No new algorithm of finding the minimum bounding

cylinder was developed. When the object has an underlying geometry of a cylinder, effective

algorithms implemented in the CMM finds the minimum bounding cylinder.

An algorithm is developed in Python to find the minimal enclosing object to a measured

reference object from the metrology laboratory. The underlying geometry of the reference object

is a rectangular parallelepiped. The development of the algorithm is presented in chapter 3. It

consists of 14 scripts and is based on the minimum bounding box algorithm HYBBRID. A data

set of 3D points is the input in the algorithm approximating the optimal OBB. The optimal OBB

encloses all the points in the data set. The algorithm rotates the computed convex hull with

the rotation matrix associated with the optimal OBB. Then the dimensional measurements are

calculated. The algorithm can use data sets from the CMM or the laser tracer.

The developed algorithm has been verified on simple physical parts in the metrology laboratory.

Measurement procedures with both the CMM and the laser tracker created data sets. The

data sets were used regularly in the development of the algorithm to verify the results, as the

dimensional measurements of the parts were known. During the development of the programs

converting raw data to NumPy arrays in Python, the data sets were also used.

An estimation of the uncertainty in calibration is conducted. The results of the uncertainty

analysis are presented in chapter 4. Three rectangular parallelepipeds, manufactured to

function as reference standards in calibration processes by the JV, are used in the uncertainty

analysis. A measurement procedure with a measurement density of 10 mm created the original

data sets. Data sets with measurement densities of 20 mm, 30 mm, ..., 100 mm were generated

from the original data sets and used in the analysis.

The uncertainty of a dimensional measurement is assumed to decrease with an increase in the

number of measuring points. However, the time consumption of a measurement procedure

increases with the number of measuring points. The chosen measurement density decides the

number of measuring points. As it is desirable with a sensible balance between low uncertainty

and time consumption in a calibration process, the significance of the measurement density

was explored. The uncertainty associated with the different measurement densities was

estimated.

The results strongly indicate that the number of measuring points, given by a measurement

density of 30 mm, currently used in calibration processes by NTNU can be reduced. The time

consumption would significantly decrease, while keeping the associated uncertainty sufficiently

low. The associated uncertainty with a measurement density of 30 mm is 0.039 mm, while
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the uncertainty associated with a measurement density of 50 mm is 0.043 mm. By using a

measurement density of 50 mm instead of 30 mm, the time of a measurement process will

significantly decrease. A measurement density of 30 mm results in 3400 points measured. A

similar box and a measurement density of 50 mm results in 2040 points measured.

Even though the results indicate that the measurement density can be decreased, the results

only apply for rectangular parallelepipeds similar to the three used in the uncertainty analysis,

with similar dimensions, material and manufacturing technique. A similar analysis of

rectangular parallelepipeds manufactured with different processes, different materials and in

different sizes will make it easier to conclude if the measurement density can be reduced in

general.

NTNU wants to develop new working methods and enhancement when it comes to the

validation of its calibration process. The development of the HYBBRID algorithm renews the

working methods of deciding the dimensional measurements of a rectangular parallelepiped

in a calibration process. The results of the uncertainty analysis indicate that the measurement

density can be reduced to improve time usage while keeping the uncertainty low.

5.2 Recommendations for further work

It would be interesting to explore the possibilities of measuring all six sides of a parallelepiped.

This requires the development of a new fastening method. It would also be desirable to conduct

several measurement procedures with rectangular parallelepipeds with different dimensional

measurements and measurement densities, as well as different materials and manufacturing

techniques.
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Source code

A.1 HYBBRID algorithm in Python

A.1.1 run_HYBBRID_algorithm_on_data.py

1 from HYBBRID import HYBBRID

2 import numpy as np

3 ##############################################################

4 # GET DATA FROM ONE OF THE FOLLOWING SCRIPT :

5 ##############################################################

6 # from PCDMIS_to_numpy_array import data_PCDMIS

7 # from dataset_HYBBRID1 import data_PCDMIS

8 # from dataset_HYBBRID2 import data_PCDMIS

9 # from dataset_HYBBRID3 import data_PCDMIS_10

10 # from dataset_HYBBRID4 import data_PCDMIS_10

11 from dataset_HYBBRID5 import data_PCDMIS_10

12 # from Laser_tracker_to_numpy_array import data_Laser_tracker

13

14

15 # Run HYBBRID algorithm : Find the minimum enclosing box to data

16 best_t , bestvalue_t , log_elapsedtime_best_fit_t , log_best_arg_t , data_t = \

17 HYBBRID( data_PCDMIS_10 )

18

19 # The data rotated with the R associated to the optimal OBB

20 data_optimal_OBB = np . matmul( data_t , best_t . conj ( ) . transpose ( ) )

21

22 # Find the dimensions of the optimal OBB

23 dimension_optimal_OBB = np .max( data_optimal_OBB , axis =0) − \
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24 np . min( data_optimal_OBB , axis =0)

25

26 # Print the r e s u l t s of the HYBBRID( data ) algorithm

27 print ( ’Minimum volume ( bestvalue ) : ’ , bestvalue_t )

28 print ( ’ Rotation matrix ( best , a l l decimals ) : \n ’ , best_t )

29 print ( ’ Rotation matrix ( best , around to 5 decimals ) : \n ’ , np . around ( best_t , decimals =5) )

30 print ( ’ Dimensions of the optimal OBB: ’ , dimension_optimal_OBB . round ( 5 ) )

31 print ( ’Convex hull : \n ’ , data_t )

32 print ( ’ Log of elapsedtime and b e s t _ f i t : \n ’ , log_elapsedtime_best_f i t_t )

33 print ( ’ Log of best_arg : \n ’ , log_best_arg_t )

34

35

36 # Check the volume

37 check_volume = dimension_optimal_OBB [ 0 ] * dimension_optimal_OBB [ 1 ] * dimension_optimal_OBB [ 2 ]

38 i f check_volume == bestvalue_t :

39 print ( ’Volume i s the same ! ’ )

40 else :

41 print ( ’ while check volume = ’ , check_volume , ’ while bestvalue_t = ’ , bestvalue_t )

42

43 ’ ’ ’

44 # WHEN DATA FROM LASER TRACKER: RADIUS COMPENSATION

45 d_laser_tracker = 6 # diameter i s 5 or 6 mm, have to check

46 dimension_optimal_OBB [ 0 ] −= d_laser_tracker

47 dimension_optimal_OBB [ 1 ] −= d_laser_tracker

48 dimension_optimal_OBB [ 2 ] −= d_laser_tracker

49

50 print ( ’ true dimensions : (−d) ’ , dimension_optimal_OBB . round ( 5 ) )

51 ’ ’ ’

A.1.2 Laser_tracker_to_numpy_array.py

1 import pandas as pd

2

3

4 # Create a data frame df from a t x t f i l e

5 df = pd . read_csv ( ’ Boks−Laser_Tracker . csv ’ , header=None)

6

7 # Create names of each column . Need to know the number of columns ( Seven columns )

8 df . columns = [ " Point " , "X" , " x_decimal " , "Y" , "y_decimal" , "Z" , " z_decimal " ]

9

10 # Print the data frame

11 # print ( df ) # debug

12
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13 # A l l l i n e s in the df contain information of a coordinate

14

15 # Create data frame with only X Y Z coordinates of the measured points

16 df_data_temp = pd . DataFrame ( { ’X ’ : df . X , ’Y ’ : df . Y , ’Z ’ : df . Z } )

17 df_data_decimals = pd . DataFrame ( { ’ x_decimal ’ : df . x_decimal , ’ y_decimal ’ : df . y_decimal ,

18 ’ z_decimal ’ : df . z_decimal } )

19

20

21

22 # Print the data frame

23 # print ( ’ df_data_temp ’ , df_data_temp ) # debug

24 # print ( ’ df_data_ decimals ’ , df_data_decimals ) # debug

25

26 # Convert data frame to numpy array ( matrix )

27 data_Laser_tracker = df_data_temp . to_numpy( dtype= f l o a t )

28 data_Laser_tracker_decimals = df_data_decimals . to_numpy ( )

29

30 # Updating the NumPy array with decimals

31 number_of_data = len ( data_Laser_tracker )

32

33 for i in range ( number_of_data ) :

34 len_x_decimal = len ( s t r ( abs ( data_Laser_tracker_decimals [ i , 0 ] ) ) )

35 len_y_decimal = len ( s t r ( abs ( data_Laser_tracker_decimals [ i , 1 ] ) ) )

36 len_z_decimal = len ( s t r ( abs ( data_Laser_tracker_decimals [ i , 2 ] ) ) )

37

38 x_decimal = data_Laser_tracker_decimals [ i , 0]*(10**− len_x_decimal )

39 y_decimal = data_Laser_tracker_decimals [ i , 1]*(10**− len_y_decimal )

40 z_decimal = data_Laser_tracker_decimals [ i , 2]*(10**− len_z_decimal )

41 i f data_Laser_tracker [ i , 0] >= 0 :

42 data_Laser_tracker [ i , 0] += x_decimal

43 else :

44 data_Laser_tracker [ i , 0] −= x_decimal

45 i f data_Laser_tracker [ i , 1] >= 0 :

46 data_Laser_tracker [ i , 1] += y_decimal

47 else :

48 data_Laser_tracker [ i , 1] −= y_decimal

49 i f data_Laser_tracker [ i , 2] >= 0 :

50 data_Laser_tracker [ i , 2] += z_decimal

51 else :

52 data_Laser_tracker [ i , 2] −= z_decimal

53

54 # Print the numpy array of data

55 # print ( ’ data_Laser_tracker , numpy array : \n ’ , data_Laser_tracker ) # debug
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A.1.3 PCDMIS_to_numpy_array.py

1 import pandas as pd

2

3 # Create a data frame df from a t x t f i l e

4 # A l t 1 :

5 df = pd . read_csv ( ’2019−03−05−boks . t x t ’ , header=None)

6 # A l t 2 :

7 # df = pd . read_csv ( ’ boks_200x300x120 . csv ’ , header=None, skiprows =2 ,

8 # f l o a t _ p r e c i s i o n = ’ .6 f ’ )

9

10 # Create names of each column . Need to know the number of columns ( Seven columns )

11 df . columns = [ " Feature " , "X" , "Y" , "Z" , "x" , "y" , "z" , " extra " ]

12

13 # Print the data frame

14 # print ( df ) # debug

15

16 # Remove l i n e s without necessary information

17 # A l t 1 :

18 count = 0

19 for l i n e in df . Feature :

20 i f l i n e == ’PLN_X+ HITS ’ or l i n e == ’PLN_X− HITS ’ or l i n e == ’PLN_Y+ HITS ’ or \

21 l i n e == ’PLN_Y− HITS ’ or l i n e == ’PLN_Z+ HITS ’ or l i n e == ’PLN_Z− HITS ’ :

22 pass

23 else :

24 df = df . drop ( [ count ] , axis =0)

25 count = count + 1

26 ’ ’ ’

27 A l t 2 :

28 count = 0

29 for l i n e in df . Feature :

30 i f l i n e == ’PLN_X_PLUS HITS ’ or l i n e == ’PLN_X_MINUS HITS ’ or

31 l i n e == ’PLN_Y_PLUS HITS ’

32 or l i n e == ’PLN_Y_MINUS HITS ’ or l i n e == ’PLN_Z_PLUS HITS ’ or

33 l i n e == ’PLN_Z_MINUS HITS ’ :

34 pass

35 else :

36 df = df . drop ( [ count ] , axis =0)

37 count = count + 1

38 ’ ’ ’

39 # Print the data frame

40 # print ( df ) # debug

41
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42 # Create data frame with only X Y Z coordinates of the measured points

43 df_data = pd . DataFrame ( { ’X ’ : df . X , ’Y ’ : df . Y , ’Z ’ : df . Z } )

44

45 # Print the data frame

46 # print ( ’ df_data \n ’ , df_data ) # debug

47

48 # Convert data frame to numpy array ( matrix )

49 data_PCDMIS = df_data . to_numpy ( )

50

51 # Print the numpy array of data

52 print ( ’data_PCDMIS , numpy array : \n ’ , data_PCDMIS)

A.1.4 HYBBRID.py

1 import numpy as np

2 from datetime import datetime

3 from scipy . s p a t i a l import ConvexHull

4 from Params import Params

5 from genetic import genetic

6 from volumeOBB import volumeOBB

7 from nelderMeadBreed import nelderMeadBreed

8

9

10 def HYBBRID( data ) :

11 # HYBBRID( data ) approximates the minimum−volume OBB enclosing

12 # the set of points described in data

13 # ( one point per row in the matrix (numpy array ) )

14

15 # Default parameters

16 params = Params ( 1 , 1 , 30 , 100 , 1e−2, 5 , 1 , 0 . 0 , 20)

17

18 # Create a s i x element array containing the current date and

19 # time in decimal form :

20 now = datetime .now( )

21 startt ime = np . array ( [now. year , now. month, now. day , now. hour , now. minute ,

22 now. second + 0.000001 * now. microsecond ] )

23

24 # Preprocessing with convex hull ( default )

25 i f params . opt_convhull == 1 :

26 idx = ConvexHull ( data ) . simplices

27 data = data [np . unique ( idx ) , : ]

28 i f params . test_repeat == 1 :

29 # Genetic Nelder−Mead
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30 bestvalue , best , log_elapsedtime_best_fit , log_best_arg = \

31 genetic (volumeOBB, nelderMeadBreed , data , params )

32 l a t e r = datetime .now( )

33 newtime = np . array ( [ l a t e r . year , l a t e r . month, l a t e r . day , l a t e r . hour , l a t e r . minute ,

34 l a t e r . second + 0.000001 * l a t e r . microsecond ] )

35 etime_array = newtime − startt ime

36 etime = round ( etime_array [ 5 ] , 5)

37 print ( ’ Elapsed time : %6.3g s ’ % etime )

38

39 best = np . around ( best , decimals =3) # changed from 4 to 3

40 bestvalue = np . around ( bestvalue , decimals =3) # changed from 4 to 3

41 return best , bestvalue , log_elapsedtime_best_fit , log_best_arg , data

A.1.5 genetic.py

1 import numpy as np

2 import numpy. matlib as M

3 from scipy import l i n a l g

4 import math

5 from datetime import datetime

6 from localOptiRC import localOptiRC

7

8

9 def genetic (volumeOBB, nelderMeadBreed , data , params ) :

10 # Randomly generate i n i t i a l population . data i s a n x p matrix

11 n , p = np . shape ( data )

12 m = params . g_popsize

13

14 # Pre a l l o c a t i n g empty zeros matrix :

15 # m x 1 matrix consist ing (p+1) x (p x p) matrices .

16 # pop [ ] [ ] access a p x p matrix

17 pop = np . zeros ( (m, p + 1 , p , p) )

18

19 for i in range (m) :

20 for j in range (p + 1) :

21 q , r = l i n a l g . qr (M. random . rand (p , p) )

22 pop[ i ] [ j ] = q

23

24 best_arg = pop [ 0 ]

25 b e s t _ f i t = volumeOBB( best_arg , data ) [ 0 ]

26 # print ( ’ b e s t _ f i t f r a volumeOBB ’ ) # debug

27 check_f i t = math . i n f

28 stop = 0
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29

30 # Evolution

31 # Create a s i x element array containing the current date and time in decimal form

32 now = datetime .now( )

33 startt ime = np . array ( [now. year , now. month, now. day , now. hour , now. minute ,

34 now. second + 0.000001*now. microsecond ] )

35

36 # Log divided into log of elapsed time [ 0 ] and b e s t _ f i t [ 1 ] and log of

37 # best_arg ( rotation matrix 3x3 )

38 log_elapsedtime_best_fit = np . zeros ( ( params . g_maxiter , 2) )

39 log_best_arg = np . zeros ( ( params . g_maxiter , 3 , 3) )

40

41 for i t e r in range ( params . g_maxiter ) :

42 # Compute f i t n e s s

43 f i t n e s s = np . zeros ( (m, 2) )

44 for i in range (m) :

45 # the smallest volume of the OBBs

46 f i t n e s s [ i ] [ 0 ] , d e t a i l s = volumeOBB(pop[ i ] , data )

47 # the index of the smallest volume in d e t a i l s

48 f i t n e s s [ i ] [ 1 ] = np . argmin ( d e t a i l s )

49 # s o r t s the rows of f i t n e s s in ascending order

50 f i t s o r t = f i t n e s s [ f i t n e s s [ : , 0 ] . argsort ( ) , ]

51 # returns the indices of the sorted rows

52 f i t i d x = f i t n e s s . argsort ( axis =0) [ : , 0]

53 o l d _ f i t = b e s t _ f i t

54

55 # Check best f i t n e s s

56 i f f i t s o r t [ 0 ] [ 0 ] < check_f i t :

57 check_f i t = f i t s o r t [ 0 ] [ 0 ]

58 candidate , b e t t e r _ f i t = localOptiRC ( data ,

59 pop[ f i t i d x [ 0 ] ] [ f i t s o r t [ 0 ] [ 1 ] . astype ( i n t ) ] )

60 i f b e t t e r _ f i t < b e s t _ f i t :

61 best_arg = candidate

62 b e s t _ f i t = b e t t e r _ f i t

63 # data_optimal_OBB = noe

64

65 # Create new population

66 pop = nelderMeadBreed (pop[ f i t i d x ] , f i t s o r t , volumeOBB, data , params )

67 l a t e r = datetime .now( )

68 newtime = np . array ( [ l a t e r . year , l a t e r . month, l a t e r . day , l a t e r . hour , l a t e r . minute ,

69 l a t e r . second + 0.000001* l a t e r . microsecond ] )

70 elapsedtime_array = newtime − startt ime

71 elapsedtime = round ( elapsedtime_array [ 5 ] , 5)
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72 i f params . g_verbose == 1 :

73 print ( ’ [%7.5g ] I t e r #%3d : objective value = %17.15g −−− best value = ’

74 ’ %17.15g ’ % ( elapsedtime , i t e r +1 , f i t s o r t [ 0 ] [ 0 ] , b e s t _ f i t ) )

75 log_elapsedtime_best_fit [ i t e r ] [ 0 ] = elapsedtime

76 log_elapsedtime_best_fit [ i t e r ] [ 1 ] = b e s t _ f i t

77 log_best_arg [ i t e r ] = best_arg

78

79 # Stopping c r i t e r i o n

80 i f np . abs ( b e s t _ f i t − o l d _ f i t ) < params . g _ t o l v a l * b e s t _ f i t :

81 stop += 1

82 i f stop >= params . g _ t o l i t e r :

83 break

84 else :

85 stop = 0

86 # the f i r s t i t e r rows of log

87 log_elapsedtime_best_fit = log_elapsedtime_best_fit [ 0 : i t e r + 1 , : ]

88 # the f i r s t i t e r rows of log

89 log_best_arg = log_best_arg [ 0 : i t e r + 1 , : ]

90 return b e s t _ f i t , best_arg , log_elapsedtime_best_fit , log_best_arg

A.1.6 localOptiRC.py

1 import numpy as np

2 from scipy . s p a t i a l import ConvexHull

3 from rotat ingCal ipers import rotat ingCal ipers

4

5

6 def localOptiRC ( data , R) :

7 # Preprocessing step

8 idx = ConvexHull ( data ) . simplices

9 data = data [np . unique ( idx ) , : ]

10 # Using the complex conjugate transpose of R :

11 rotatedData = np . dot ( data , R . conj ( ) . transpose ( ) )

12

13 # Apply the rotat ing c a l i p e r s on the three axes

14 rangeData = np .max( rotatedData , axis =0) − np . min( rotatedData , axis =0)

15 volx , anglex = rotat ingCal ipers ( rotatedData [ : , [ 1 , 2 ] ] )

16 voly , angley = rotat ingCal ipers ( rotatedData [ : , [ 0 , 2 ] ] )

17 volz , anglez = rotat ingCal ipers ( rotatedData [ : , [ 0 , 1 ] ] )

18 volx *= rangeData [ 0 ]

19 voly *= rangeData [ 1 ]

20 volz *= rangeData [ 2 ]

21



APPENDIX A. SOURCE CODE 83

22 vol_xyz = np . array ( [ volx , voly , volz ] )

23 Vopt = np . min( vol_xyz ) # Smallest value of volx , voly , volz

24 idx = np . argmin ( vol_xyz ) # index of the smallest value of volx , voly , volz

25

26 i f idx == 0 :

27 Ropt = np . matmul(np . array ( [ [ 1 , 0 , 0 ] , [ 0 , np . cos ( anglex ) , np . sin ( anglex ) ] ,

28 [ 0 , −np . sin ( anglex ) , np . cos ( anglex ) ] ] ) , R)

29 e l i f idx == 1 :

30 Ropt = np . matmul(np . array ( [ [ np . cos ( angley ) , 0 , −np . sin ( angley ) ] , [ 0 , 1 , 0 ] ,

31 [np . sin ( angley ) , 0 , np . cos ( angley ) ] ] ) , R)

32 e l i f idx == 2 :

33 Ropt = np . matmul(np . array ( [ [ np . cos ( anglez ) , np . sin ( anglez ) , 0 ] ,

34 [−np . sin ( anglez ) , np . cos ( anglez ) , 0 ] , [ 0 , 0 , 1 ] ] ) , R)

35 else :

36 Ropt = np . zeros ( ( 3 , 3) )

37 print ( ’ Error in localOptiRC , idx i s not 0 , 1 or 2 . Ropt set to zeros ( ( 3 , 3 ) ) ’ )

38

39 return Ropt , Vopt

A.1.7 volumeOBB.py

1 import numpy as np

2 from volumeAABB import volumeAABB

3

4

5 def volumeOBB( set , data ) :

6 # For s e ts with one rotation matrix

7 i f len ( set . shape ) < 3 :

8 set = np . array ( [ set ] )

9

10 p = len ( set ) # number of rotation matrices

11 d e t a i l s = np . zeros ( ( 1 , p) )

12 for idx in range ( 0 , p) :

13 # set [ idx ] accesses a rotation matrix (3 x3 ) .

14 d e t a i l s [ 0 ] [ idx ] = volumeAABB( data , set [ idx ] )

15 volume = np . min( d e t a i l s )

16 d e t a i l s = d e t a i l s . f l a t t e n ( )

17 return volume , d e t a i l s
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A.1.8 volumeAABB.py

1 import numpy as np

2

3

4 def volumeAABB( data , R=None) :

5 i f R i s not None :

6 data = np . matmul( data , R . conj ( ) . transpose ( ) ) # complex conjugate transpose of R

7 vol = np . prod (np .max( data , axis =0) − np . min( data , axis =0) )

8 return vol

A.1.9 nelderMeadBreed.py

1 import numpy as np

2 from nelderMead import nelderMead

3 from a f f i n e import a f f i n e

4

5

6 def nelderMeadBreed (pop , f i t n e s s , volumeOBB, data , params ) :

7 m = len (pop)

8 p = len (pop [ 0 ] )

9 mmf = i n t (np . f l o o r (m/2) )

10 mmc = i n t (np . c e i l (m/2) )

11

12 # Creation of the four groups

13 idx = np . f l o o r (mmc*np . random . random ( (mmf, ) ) ) . astype ( i n t )

14 pop1 = np . zeros ( ( len ( idx ) , len (pop [ 0 ] ) , len (pop [ 0 ] [ 0 ] ) , len (pop [ 0 ] [ 0 ] ) ) )

15 for i in range ( len ( idx ) ) :

16 pop1 [ i ] = pop[ idx [ i ] ]

17 f i t 1 = np . zeros ( ( len ( idx ) , 1) )

18 for i in range ( len ( idx ) ) :

19 f i t 1 [ i ] = f i t n e s s [ idx [ i ] ] [ 0 ]

20

21 idx = np . f l o o r (mmc * np . random . random ( (mmf, ) ) ) . astype ( i n t )

22 pop2 = np . zeros ( ( len ( idx ) , len (pop [ 0 ] ) , len (pop [ 0 ] [ 0 ] ) , len (pop [ 0 ] [ 0 ] ) ) )

23 for i in range ( len ( idx ) ) :

24 pop2 [ i ] = pop[ idx [ i ] ]

25 f i t 2 = np . zeros ( ( len ( idx ) , 1) )

26 for i in range ( len ( idx ) ) :

27 f i t 2 [ i ] = f i t n e s s [ idx [ i ] ] [ 0 ]

28

29 idx = np . f l o o r (mmf * np . random . random ( (mmc, ) ) ) . astype ( i n t )

30 pop3 = np . zeros ( ( len ( idx ) , len (pop [ 0 ] ) , len (pop [ 0 ] [ 0 ] ) , len (pop [ 0 ] [ 0 ] ) ) )



APPENDIX A. SOURCE CODE 85

31 for i in range ( len ( idx ) ) :

32 pop3 [ i ] = pop[ idx [ i ] ]

33 f i t 3 = np . zeros ( ( len ( idx ) , 1) )

34 for i in range ( len ( idx ) ) :

35 f i t 3 [ i ] = f i t n e s s [ idx [ i ] ] [ 0 ]

36

37 idx = np . f l o o r (mmf * np . random . random ( (mmc, ) ) ) . astype ( i n t )

38 pop4 = np . zeros ( ( len ( idx ) , len (pop [ 0 ] ) , len (pop [ 0 ] [ 0 ] ) , len (pop [ 0 ] [ 0 ] ) ) )

39 for i in range ( len ( idx ) ) :

40 pop4 [ i ] = pop[ idx [ i ] ]

41 f i t 4 = np . zeros ( ( len ( idx ) , 1) )

42 for i in range ( len ( idx ) ) :

43 f i t 4 [ i ] = f i t n e s s [ idx [ i ] ] [ 0 ]

44

45 # Crossover I : pop1 x pop2

46 # Preal locate a mmf x 1 matrix consisting of p x (3 x 3) matrices .

47 # pop [ ] [ ] access a p x p matrix

48 newpop1 = np . zeros ( (mmf, p , len (pop [ 0 ] [ 0 ] ) , len (pop [ 0 ] [ 0 ] ) ) )

49 cuto f f = 0.5 + 0.1 * ( f i t 1 <= f i t 2 ) − 0.1 * ( f i t 1 >= f i t 2 )

50 for i in range (mmf) :

51 for j in range (p) :

52 i f np . random . random ( ) < cu tof f [ i ] :

53 newpop1[ i ] [ j ] = pop1 [ i ] [ j ]

54 else :

55 newpop1[ i ] [ j ] = pop2 [ i ] [ j ]

56

57 # Crossover I I : pop2 x pop3

58 # Preal locate a mmc x 1 matrix consisting of p x (3 x 3) matrices .

59 # pop [ ] [ ] access a p x p matrix

60 newpop2 = np . zeros ( (mmc, p , len (pop [ 0 ] [ 0 ] ) , len (pop [ 0 ] [ 0 ] ) ) )

61 cuto f f = 0.5 + 0.1 * ( f i t 3 <= f i t 4 ) − 0.1 * ( f i t 3 >= f i t 4 )

62 for i in range (mmc) :

63 for j in range (p) :

64 newpop2[ i ] [ j ] = a f f i n e (pop3 [ i ] [ j ] , np . array ( [ ] ) , cu to f f [ i ] ,

65 pop3 [ i ] [ j ] , 1−cutof f [ i ] , pop4 [ i ] [ j ] )

66

67 # Nelder−Mead mutation

68 newpop = np . concatenate ( ( pop1 , pop2) , axi s =0)

69 for i in range (m) :

70 newpop[ i ] = nelderMead (newpop[ i ] , volumeOBB, data , params )

71

72 return newpop
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A.1.10 nelderMead.py

1 import numpy as np

2 from karcher import karcher

3 from a f f i n e import a f f i n e

4

5

6 def nelderMead ( simplex , volumeOBB, data , params ) :

7 p = len ( simplex ) # number of rotation matrices

8 N = p−1

9

10 # Standard values for Nelder−mead simplex algorithm

11 rho = 1/2

12 sigma = 1/2

13 Rg = simplex [ 0 ]

14

15 for i t e r in range ( params . nm_maxiter ) :

16

17 # Step 1 : Reordering

18 # simplex_val gives an array with a l l the volumes

19 simplex_val = volumeOBB( simplex , data ) [ 1 ] . f l a t t e n ( )

20 # f i i s simplex_val sorted

21 f i = np . sort ( simplex_val )

22 # the o r i g i n a l indexes a f t e r sorted

23 idx = np . argsort ( simplex_val )

24

25 # Sort the rotation matrices with the index

26 # from smallest volume

27 simplex_copy = simplex . copy ( )

28 # print ( ’ simplex ’ , simplex ) # debug

29 # print ( ’ simplex [ 0 ] rot mat ’ , simplex [ 0 ] ) # debug

30 for i in range ( len ( simplex ) ) :

31 simplex [ i ] = simplex_copy [ idx [ i ] ]

32

33 # Step 2 : Computation of the center of g r a v i t y

34 Rg = karcher (Rg , simplex [ 0 :N] [ : ] )

35 Rr_temp = np . dot (Rg , simplex [p−1]. conj ( ) . transpose ( ) )

36 Rr = np . dot ( Rr_temp , Rg)

37 f r = volumeOBB( Rr , data ) [ 0 ]

38 i f f r < f i [N−1]:

39 i f f r >= f i [ 0 ] :

40 # Step 3 : Reflection

41 simplex [p−1] = Rr
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42 else :

43 # Step 4 : Expansion

44 Re_temp = np . dot (Rg , simplex [p−1]. conj ( ) . transpose ( ) )

45 Re = np . dot (Re_temp , Rr )

46 fe = volumeOBB(Re , data ) [ 0 ]

47 i f fe < f r :

48 simplex [p−1] = Re

49 else :

50 simplex [p−1] = Rr

51 else :

52 # Step 5 : Contraction

53 Rc = a f f i n e (Rg , simplex [p−1] , rho , Rg , −rho , simplex [p−1])

54 fc = volumeOBB( Rc , data ) [ 0 ]

55 i f fc <= f i [p−1]:

56 simplex [p−1] = Rc

57 else :

58 # Step 6 : Reduction

59 for i in range ( 1 , p) :

60 simplex [ i ] = a f f i n e (Rg , simplex [ 0 ] , sigma ,

61 simplex [ i ] , −sigma , simplex [ 0 ] )

62 return simplex

A.1.11 rotatingCalipers.py

1 import numpy as np

2 from scipy . s p a t i a l import ConvexHull

3 import math

4

5

6 def rotat ingCal ipers ( data ) :

7 # Computation of the convex hull

8 convHull = ConvexHull ( data ) . v e r t i c e s

9 hullData = data [ convHull , : ]

10 nbVertices = np . shape ( hullData ) [ 0 ]

11 minxy = np . min( hullData , axis =0) # unused

12 argminxy = np . argmin ( hullData , axis =0)

13 maxxy = np .max( hullData , axis =0) # unused

14 argmaxxy = np . argmax ( hullData , axis =0)

15

16 # I n i t i a l i z a t i o n

17 Theta = 0

18 Right = argmaxxy [ 0 ]

19 Up = argmaxxy [ 1 ]
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20 Left = argminxy [ 0 ]

21 Down = argminxy [ 1 ]

22 NextRight = np .mod( Right +1 , nbVertices )

23 NextUp = np .mod(Up+1 , nbVertices )

24 NextLeft = np .mod( Left +1 , nbVertices )

25 NextDown = np .mod(Down+1 , nbVertices )

26 DeltaRight = hullData [ NextRight ] [ : ] − hullData [ Right ] [ : ]

27 DeltaUp = hullData [NextUp ] [ : ] − hullData [Up ] [ : ]

28 DeltaLeft = hullData [ NextLeft ] [ : ] − hullData [ Left ] [ : ]

29 DeltaDown = hullData [NextDown ] [ : ] − hullData [Down ] [ : ]

30 AngleRight = np . arccos ( DeltaRight [ 1 ] / np . l i n a l g .norm( DeltaRight , 2) )

31 AngleUp = np . arccos(−DeltaUp [ 0 ] / np . l i n a l g .norm( DeltaUp , 2) )

32 AngleLeft = np . arccos(−DeltaLeft [ 1 ] / np . l i n a l g .norm( DeltaLeft , 2) )

33 AngleDown = np . arccos (DeltaDown [ 0 ] / np . l i n a l g .norm(DeltaDown , 2) )

34

35 volume = math . i n f

36 angle = math . nan

37

38 # Rotate the c a l i p e r s

39 while (2* Theta ) < math . pi :

40 rotatedData = np . dot ( hullData , np . array ( [ [ np . cos ( Theta ) , −np . sin ( Theta ) ] ,

41 [np . sin ( Theta ) , np . cos ( Theta ) ] ] ) )

42 minxy = np . min( rotatedData , axis =0)

43 argminxy = np . argmin ( rotatedData , axis =0) # unused

44 maxxy = np .max( rotatedData , axi s =0)

45 argmaxxy = np . argmax ( rotatedData , axis =0) # unused

46 curVolume = (maxxy [ 0 ] − minxy [ 0 ] ) * (maxxy [ 1 ] − minxy [ 1 ] )

47 i f curVolume < volume :

48 volume = curVolume

49 angle = Theta

50

51 Theta = np . min ( [ AngleRight , AngleUp , AngleLeft , AngleDown ] )

52 argminth = np . argmin ( [ AngleRight , AngleUp , AngleLeft , AngleDown ] )

53

54 i f argminth == 0 :

55 Right = NextRight

56 NextRight = np .mod( Right +1 , nbVertices )

57 DeltaRight = hullData [ NextRight ] [ : ] − hullData [ Right ] [ : ]

58 AngleRight = np . arccos ( DeltaRight [ 1 ] / np . l i n a l g .norm( DeltaRight , 2) )

59 e l i f argminth == 1 :

60 Up = NextUp

61 NextUp = np .mod(Up+1 , nbVertices )

62 DeltaUp = hullData [NextUp ] [ : ] − hullData [Up ] [ : ]



APPENDIX A. SOURCE CODE 89

63 AngleUp = np . arccos(−DeltaUp [ 0 ] / np . l i n a l g .norm( DeltaUp , 2) )

64 e l i f argminth == 2 :

65 Left = NextLeft

66 NextLeft = np .mod( Left +1 , nbVertices )

67 DeltaLeft = hullData [ NextLeft ] [ : ] − hullData [ Left ] [ : ]

68 AngleLeft = np . arccos(−DeltaLeft [ 1 ] / np . l i n a l g .norm( DeltaLeft , 2) )

69 e l i f argminth == 3 :

70 Down = NextDown

71 NextDown = np .mod(Down+1 , nbVertices )

72 DeltaDown = hullData [NextDown ] [ : ] − hullData [Down ] [ : ]

73 AngleDown = np . arccos (DeltaDown [ 0 ] / np . l i n a l g .norm(DeltaDown , 2) )

74

75 return volume , angle

A.1.12 karcher.py

1 import numpy as np

2 from scipy import l i n a l g

3

4

5 def karcher (P , X) :

6 # Karcher mean of Xi ’ s with respect to the point P

7 # P i s a rotation matrix , X i s an array of rotation matrices

8 kmean = 0

9 for i in range ( len (X) ) :

10 kmean = kmean + X[ i ]

11 kmean = kmean/ len (X)

12 q , r = l i n a l g . qr (kmean)

13 kmean = q/np . l i n a l g . det (q)

14

15 return kmean

A.1.13 affine.py

1 import numpy as np

2 from scipy import l i n a l g

3

4

5 def a f f i n e ( foot , base , factd , dest , facto , orig ) :

6 # Aff ine combinations

7 # foot : rotation matrix

8 # base = simplex {p} : rotation matrix

9 # factd = rho : number
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10 # dest = Rg : rotation matrix

11 # facto = −rho : −number

12 # orig = simplex {p } : rotation matrix

13

14 res = np . zeros (np . shape ( foot ) )

15

16 i f base . s i z e != 0 :

17 res += base

18 i f dest . s i z e != 0 :

19 res += factd * dest

20 i f orig . s i z e != 0 :

21 res += facto * orig

22 q , r = l i n a l g . qr ( res )

23 res = q/np . l i n a l g . det (q)

24

25 return res

A.1.14 Params.py

1 c l a s s Params :

2

3 def _ _ i n i t _ _ ( s e l f , test_repeat , opt_convhull , g_popsize , g_maxiter ,

4 g_tolval , g _ t o l i t e r , g_verbose , g_randmut , nm_maxiter ) :

5 s e l f . test_repeat = test_repeat

6 s e l f . opt_convhull = opt_convhull

7 s e l f . g_popsize = g_popsize

8 s e l f . g_maxiter = g_maxiter

9 s e l f . g _ t o l v a l = g _ t o l v a l

10 s e l f . g _ t o l i t e r = g _ t o l i t e r

11 s e l f . g_verbose = g_verbose

12 s e l f . g_randmut = g_randmut

13 s e l f . nm_maxiter = nm_maxiter
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A.2 Data set generation

A.2.1 DkS10

1 import pandas as pd

2 import numpy as np

3 import sys

4

5

6 ’ ’ ’

7 # DATASET 5 : Paral lelepiped 900 x 300 x 200

8 # High measurement density : 10 mm

9 # Change the PLN_Z_PLUS z−coord to zero to get the PLN_Z_MINUS.

10

11 # Create a data frame df from a t x t f i l e

12 df = pd . read_csv ( ’ DkS10 . t x t ’ , header=None, skiprows =2 , f l o a t _ p r e c i s i o n = ’ .6 f ’ )

13

14 # Create names of each column . Need to know the number of columns ( Seven columns )

15 df . columns = [ " Feature " , "X" , "Y" , "Z" , "x " , "y " , "z " , " extra " ]

16

17 # Print the data frame

18 # print ( df ) # debug

19

20

21 # Remove l i n e s without necessary information

22

23 # Store values of x− y− coord in PLN_Z_PLUS to create PLN_Z_MINUS

24 nb_of_pln_z_plus = 0

25 count = 0

26 for l i n e in df . Feature :

27 i f l i n e == ’PLN_X_PLUS HITS ’ or l i n e == ’PLN_X_MINUS HITS ’ or

28 l i n e == ’PLN_Y_PLUS HITS ’ or l i n e == ’PLN_Y_MINUS HITS ’ :

29 pass

30 # Count the number of points in PLN_Z_PLUS

31 e l i f l i n e == ’PLN_Z_PLUS HITS ’ :

32 nb_of_pln_z_plus += 1

33 # Remove to o r i g i n a l PLN_Z_MINUS

34 e l i f l i n e == ’PLN_Z_MINUS HITS ’ :

35 df = df . drop ( [ count ] , axis =0)

36 else :

37 df = df . drop ( [ count ] , axis =0)

38 count = count + 1

39
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40 # Print the number of points on PLN_Z_PLUS

41 # print ( ’number of pln z plus ’ , nb_of_pln_z_plus ) # debug

42

43 # Print the data frame

44 # print ( df ) # debug

45

46 # Create data frame with only X Y Z coordinates of the measured points

47 df_data_temp = pd . DataFrame ( { ’ X ’ : df . X , ’Y ’ : df . Y , ’Z ’ : df . Z } )

48

49 # Print the data frame

50 # print ( ’ df_data \n ’ , df_data ) # debug

51

52 # Convert data frame to numpy array ( matrix )

53 data_PCDMIS_temp = df_data_temp . to_numpy ( )

54

55 # Create PLN_Z_MINUS

56 PLN_Z_MINUS = np . zeros ( [ nb_of_pln_z_plus , 3 ] )

57 for i in range ( nb_of_pln_z_plus ) :

58 PLN_Z_MINUS[ i ] [ 0 ] = data_PCDMIS_temp [ i ] [ 0 ]

59 PLN_Z_MINUS[ i ] [ 1 ] = data_PCDMIS_temp [ i ] [ 1 ]

60

61 # print (PLN_Z_MINUS) # debug

62 # print ( nb_of_pln_z_plus ) # debug

63

64 # Add PLN_Z_MINUS to the r e s t of the data set

65 data_PCDMIS_temp2 = np . concatenate ( ( data_PCDMIS_temp , PLN_Z_MINUS) , axis =0)

66

67 # Print the numpy array of data

68 #np . set_printoptions ( threshold=sys . maxsize )

69 # print ( ’ data_PCDMIS , numpy array : \n ’ , data_PCDMIS)

70

71 # Create a data frame ( only s i x decimals )

72 data_PCDMIS = pd . DataFrame (data_PCDMIS_temp2)

73 data_PCDMIS = data_PCDMIS . round ( 6 )

74

75 # Print the data frame

76 # print (data_PCDMIS) # debug

77

78 # Only do t h i s once

79 data_PCDMIS . to_csv ( ’ dataset_5_200x300x900_10 . t x t ’ , header=None, index=None,

80 sep = ’ , ’ , mode= ’a ’ )

81 ’ ’ ’

82



APPENDIX A. SOURCE CODE 93

83 # VOL 2 :

84 # DATASET 5 : Paral lelepiped 900 x 300 x 200

85 # High measurement density : 10 mm, correct z coord

86

87 # Create a data frame df from a t x t f i l e

88 df = pd . read_csv ( ’ dataset_5_200x300x900_10 . t x t ’ , header=None)

89

90 # Create names of each column . Need to know the number of columns ( Three )

91 df . columns = [ "X" , "Y" , "Z" ]

92

93 # Print the data frame

94 # print ( df ) # debug

95

96 # Convert data frame to numpy array ( matrix )

97 data_PCDMIS_10 = df . to_numpy ( )

98 data_PCDMIS_20 = np . array ( data_PCDMIS_10 ) [ : : 2 ]

99 data_PCDMIS_30 = np . array ( data_PCDMIS_10 ) [ : : 3 ]

100 data_PCDMIS_40 = np . array ( data_PCDMIS_10 ) [ : : 4 ]

101 data_PCDMIS_50 = np . array ( data_PCDMIS_10 ) [ : : 5 ]

102 data_PCDMIS_60 = np . array ( data_PCDMIS_10 ) [ : : 6 ]

103 data_PCDMIS_70 = np . array ( data_PCDMIS_10 ) [ : : 7 ]

104 data_PCDMIS_80 = np . array ( data_PCDMIS_10 ) [ : : 8 ]

105 data_PCDMIS_90 = np . array ( data_PCDMIS_10 ) [ : : 9 ]

106 data_PCDMIS_100 = np . array ( data_PCDMIS_10 ) [ : : 1 0 ]

107

108 # Print length of the arrays

109 # print ( ’ length data_PCDMIS_10 : , ’ , len ( data_PCDMIS_10 ) ) # debug # 10200

110 # print ( ’ length data_PCDMIS_20 : , ’ , len ( data_PCDMIS_20 ) ) # debug # 5100

111 # print ( ’ length data_PCDMIS_30 : , ’ , len ( data_PCDMIS_30 ) ) # debug # 3400

112 # print ( ’ length data_PCDMIS_40 : , ’ , len ( data_PCDMIS_40 ) ) # debug # 2550

113 # print ( ’ length data_PCDMIS_50 : , ’ , len ( data_PCDMIS_50 ) ) # debug # 2040

114 # print ( ’ length data_PCDMIS_60 : , ’ , len ( data_PCDMIS_60 ) ) # debug # 1700

115 # print ( ’ length data_PCDMIS_70 : , ’ , len ( data_PCDMIS_70 ) ) # debug # 1458

116 # print ( ’ length data_PCDMIS_80 : , ’ , len ( data_PCDMIS_80 ) ) # debug # 1275

117 # print ( ’ length data_PCDMIS_90 : , ’ , len ( data_PCDMIS_90 ) ) # debug # 1134

118 # print ( ’ length data_PCDMIS_100 : , ’ , len ( data_PCDMIS_100 ) ) # debug # 1020

119

120 # Print the numpy array

121 # print ( data_PCDMIS_10 , ’\n ’ ) # debug

122 # print ( data_PCDMIS_20 , ’\n ’ ) # debug

123 # print ( data_PCDMIS_30 , ’\n ’ ) # debug

124 # print ( data_PCDMIS_40 , ’\n ’ ) # debug

125 # print ( data_PCDMIS_50 , ’\n ’ ) # debug
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A.2.2 DkN10

1 import pandas as pd

2 import numpy as np

3 import sys

4

5 ’ ’ ’

6 # DATASET 4 : Paral lelepiped 900 x 300 x 200

7 # High measurement density : 10 mm

8 # Change the PLN_Z_PLUS z−coord to zero to get the PLN_Z_MINUS.

9

10 # Create a data frame df from a t x t f i l e

11 df = pd . read_csv ( ’DkN10. t x t ’ , header=None, skiprows =2 , f l o a t _ p r e c i s i o n = ’ .6 f ’ )

12

13 # Create names of each column . Need to know the number of columns ( Seven columns )

14 df . columns = [ " Feature " , "X" , "Y" , "Z" , "x " , "y " , "z " , " extra " ]

15

16 # Print the data frame

17 # print ( df ) # debug

18

19

20 # Remove l i n e s without necessary information

21

22 # Store values of x− y− coord in PLN_Z_PLUS to create PLN_Z_MINUS

23 nb_of_pln_z_plus = 0

24 count = 0

25 for l i n e in df . Feature :

26 i f l i n e == ’PLN_X_PLUS HITS ’ or l i n e == ’PLN_X_MINUS HITS ’ or

27 l i n e == ’PLN_Y_PLUS HITS ’ or l i n e == ’PLN_Y_MINUS HITS ’ :

28 pass

29 # Count the number of points in PLN_Z_PLUS

30 e l i f l i n e == ’PLN_Z_PLUS HITS ’ :

31 nb_of_pln_z_plus += 1

32 # Remove to o r i g i n a l PLN_Z_MINUS

33 e l i f l i n e == ’PLN_Z_MINUS HITS ’ :

34 df = df . drop ( [ count ] , axis =0)

35 else :

36 df = df . drop ( [ count ] , axis =0)

37 count = count + 1

38

39 # Print the number of points on PLN_Z_PLUS

40 # print ( ’number of pln z plus ’ , nb_of_pln_z_plus ) # debug

41
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42 # Print the data frame

43 # print ( df ) # debug

44

45 # Create data frame with only X Y Z coordinates of the measured points

46 df_data_temp = pd . DataFrame ( { ’ X ’ : df . X , ’Y ’ : df . Y , ’Z ’ : df . Z } )

47

48 # Print the data frame

49 # print ( ’ df_data \n ’ , df_data ) # debug

50

51 # Convert data frame to numpy array ( matrix )

52 data_PCDMIS_temp = df_data_temp . to_numpy ( )

53

54 # Create PLN_Z_MINUS

55 PLN_Z_MINUS = np . zeros ( [ nb_of_pln_z_plus , 3 ] )

56 for i in range ( nb_of_pln_z_plus ) :

57 PLN_Z_MINUS[ i ] [ 0 ] = data_PCDMIS_temp [ i ] [ 0 ]

58 PLN_Z_MINUS[ i ] [ 1 ] = data_PCDMIS_temp [ i ] [ 1 ]

59

60 # print (PLN_Z_MINUS) # debug

61 # print ( nb_of_pln_z_plus ) # debug

62

63 # Add PLN_Z_MINUS to the r e s t of the data set

64 data_PCDMIS_temp2 = np . concatenate ( ( data_PCDMIS_temp , PLN_Z_MINUS) , axis =0)

65

66 # Print the numpy array of data

67 #np . set_printoptions ( threshold=sys . maxsize )

68 # print ( ’ data_PCDMIS , numpy array : \n ’ , data_PCDMIS)

69

70 # Create a data frame ( only s i x decimals )

71 data_PCDMIS = pd . DataFrame (data_PCDMIS_temp2)

72 data_PCDMIS = data_PCDMIS . round ( 6 )

73

74 # Print the data frame

75 # print (data_PCDMIS) # debug

76

77 # Only do t h i s once

78 data_PCDMIS . to_csv ( ’ dataset_4_200x300x900_10 . t x t ’ , header=None, index=None,

79 sep = ’ , ’ , mode= ’a ’ )

80 ’ ’ ’

81

82 # VOL 2 :

83 # DATASET 4 : Paral lelepiped 900 x 300 x 200

84 # High measurement density : 10 mm, correct z coord
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85

86 # Create a data frame df from a t x t f i l e

87 df = pd . read_csv ( ’ dataset_4_200x300x900_10 . t x t ’ , header=None)

88

89 # Create names of each column . Need to know the number of columns ( Three )

90 df . columns = [ "X" , "Y" , "Z" ]

91

92 # Print the data frame

93 # print ( df ) # debug

94

95 # Convert data frame to numpy array ( matrix )

96 data_PCDMIS_10 = df . to_numpy ( )

97 data_PCDMIS_20 = np . array ( data_PCDMIS_10 ) [ : : 2 ]

98 data_PCDMIS_30 = np . array ( data_PCDMIS_10 ) [ : : 3 ]

99 data_PCDMIS_40 = np . array ( data_PCDMIS_10 ) [ : : 4 ]

100 data_PCDMIS_50 = np . array ( data_PCDMIS_10 ) [ : : 5 ]

101 data_PCDMIS_60 = np . array ( data_PCDMIS_10 ) [ : : 6 ]

102 data_PCDMIS_70 = np . array ( data_PCDMIS_10 ) [ : : 7 ]

103 data_PCDMIS_80 = np . array ( data_PCDMIS_10 ) [ : : 8 ]

104 data_PCDMIS_90 = np . array ( data_PCDMIS_10 ) [ : : 9 ]

105 data_PCDMIS_100 = np . array ( data_PCDMIS_10 ) [ : : 1 0 ]

106

107 # Print length of the arrays

108 # print ( ’ length data_PCDMIS_10 : , ’ , len ( data_PCDMIS_10 ) ) # debug , = 10200

109 # print ( ’ length data_PCDMIS_20 : , ’ , len ( data_PCDMIS_20 ) ) # debug , = 5100

110 # print ( ’ length data_PCDMIS_30 : , ’ , len ( data_PCDMIS_30 ) ) # debug , = 3400

111 # print ( ’ length data_PCDMIS_40 : , ’ , len ( data_PCDMIS_40 ) ) # debug , = 2550

112 # print ( ’ length data_PCDMIS_50 : , ’ , len ( data_PCDMIS_50 ) ) # debug , = 2040

113 # print ( ’ length data_PCDMIS_60 : , ’ , len ( data_PCDMIS_60 ) ) # debug , = 1700

114 # print ( ’ length data_PCDMIS_70 : , ’ , len ( data_PCDMIS_70 ) ) # debug , = 1458

115 # print ( ’ length data_PCDMIS_80 : , ’ , len ( data_PCDMIS_80 ) ) # debug , = 1275

116 # print ( ’ length data_PCDMIS_90 : , ’ , len ( data_PCDMIS_90 ) ) # debug , = 1134

117 # print ( ’ length data_PCDMIS_100 : , ’ , len ( data_PCDMIS_100 ) ) # debug , = 1020

118

119 # Print the numpy array

120 # print ( data_PCDMIS_10 , ’\n ’ ) # debug

121 # print ( data_PCDMIS_20 , ’\n ’ ) # debug

122 # print ( data_PCDMIS_30 , ’\n ’ ) # debug

123 # print ( data_PCDMIS_40 , ’\n ’ ) # debug

124 # print ( data_PCDMIS_50 , ’\n ’ ) # debug
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A.2.3 DkMn10

1 import pandas as pd

2 import numpy as np

3 import sys

4

5

6 ’ ’ ’

7 # DATASET 3 : Paral lelepiped 900 x 300 x 200

8 # High measurement density : 10 mm

9 # Change the PLN_Z_PLUS z−coord to zero to get the PLN_Z_MINUS.

10

11 # Create a data frame df from a t x t f i l e

12 df = pd . read_csv ( ’DkMn10. t x t ’ , header=None, skiprows =2 , f l o a t _ p r e c i s i o n = ’ .6 f ’ )

13

14 # Create names of each column . Need to know the number of columns ( Seven columns )

15 df . columns = [ " Feature " , "X" , "Y" , "Z" , "x " , "y " , "z " , " extra " ]

16

17 # Print the data frame

18 # print ( df ) # debug

19

20

21 # Remove l i n e s without necessary information

22

23 # Store values of x− y− coord in PLN_Z_PLUS to create PLN_Z_MINUS

24 nb_of_pln_z_plus = 0

25 count = 0

26 for l i n e in df . Feature :

27 i f l i n e == ’PLN_X_PLUS HITS ’ or l i n e == ’PLN_X_MINUS HITS ’ or

28 l i n e == ’PLN_Y_PLUS HITS ’ or l i n e == ’PLN_Y_MINUS HITS ’ :

29 pass

30 # Count the number of points in PLN_Z_PLUS

31 e l i f l i n e == ’PLN_Z_PLUS HITS ’ :

32 nb_of_pln_z_plus += 1

33 # Remove to o r i g i n a l PLN_Z_MINUS

34 e l i f l i n e == ’PLN_Z_MINUS HITS ’ :

35 df = df . drop ( [ count ] , axis =0)

36 else :

37 df = df . drop ( [ count ] , axis =0)

38 count = count + 1

39

40 # Print the number of points on PLN_Z_PLUS

41 # print ( ’number of pln z plus ’ , nb_of_pln_z_plus ) # debug
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42

43 # Print the data frame

44 # print ( df ) # debug

45

46 # Create data frame with only X Y Z coordinates of the measured points

47 df_data_temp = pd . DataFrame ( { ’ X ’ : df . X , ’Y ’ : df . Y , ’Z ’ : df . Z } )

48

49 # Print the data frame

50 # print ( ’ df_data \n ’ , df_data ) # debug

51

52 # Convert data frame to numpy array ( matrix )

53 data_PCDMIS_temp = df_data_temp . to_numpy ( )

54

55 # Create PLN_Z_MINUS

56 PLN_Z_MINUS = np . zeros ( [ nb_of_pln_z_plus , 3 ] )

57 for i in range ( nb_of_pln_z_plus ) :

58 PLN_Z_MINUS[ i ] [ 0 ] = data_PCDMIS_temp [ i ] [ 0 ]

59 PLN_Z_MINUS[ i ] [ 1 ] = data_PCDMIS_temp [ i ] [ 1 ]

60

61 # print (PLN_Z_MINUS) # debug

62 # print ( nb_of_pln_z_plus ) # debug

63

64 # Add PLN_Z_MINUS to the r e s t of the data set

65 data_PCDMIS_temp2 = np . concatenate ( ( data_PCDMIS_temp , PLN_Z_MINUS) , axis =0)

66

67 # Print the numpy array of data

68 #np . set_printoptions ( threshold=sys . maxsize )

69 # print ( ’ data_PCDMIS , numpy array : \n ’ , data_PCDMIS)

70

71 # Create a data frame ( only s i x decimals )

72 data_PCDMIS = pd . DataFrame (data_PCDMIS_temp2)

73 data_PCDMIS = data_PCDMIS . round ( 6 )

74

75 # Print the data frame

76 # print (data_PCDMIS) # debug

77

78 # Only do t h i s once

79 data_PCDMIS . to_csv ( ’ dataset_3_200x300x900_10 . t x t ’ , header=None, index=None,

80 sep = ’ , ’ , mode= ’a ’ )

81

82 ’ ’ ’

83 # VOL 2 :

84 # DATASET 3 : Paral lelepiped 900 x 300 x 200
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85 # High measurement density : 10 mm, correct z coord

86

87 # Create a data frame df from a t x t f i l e

88 df = pd . read_csv ( ’ dataset_3_200x300x900_10 . t x t ’ , header=None)

89

90 # Create names of each column . Need to know the number of columns ( Three )

91 df . columns = [ "X" , "Y" , "Z" ]

92

93 # Print the data frame

94 # print ( df ) # debug

95

96 # Convert data frame to numpy array ( matrix )

97 data_PCDMIS_10 = df . to_numpy ( )

98 data_PCDMIS_20 = np . array ( data_PCDMIS_10 ) [ : : 2 ]

99 data_PCDMIS_30 = np . array ( data_PCDMIS_10 ) [ : : 3 ]

100 data_PCDMIS_40 = np . array ( data_PCDMIS_10 ) [ : : 4 ]

101 data_PCDMIS_50 = np . array ( data_PCDMIS_10 ) [ : : 5 ]

102 data_PCDMIS_60 = np . array ( data_PCDMIS_10 ) [ : : 6 ]

103 data_PCDMIS_70 = np . array ( data_PCDMIS_10 ) [ : : 7 ]

104 data_PCDMIS_80 = np . array ( data_PCDMIS_10 ) [ : : 8 ]

105 data_PCDMIS_90 = np . array ( data_PCDMIS_10 ) [ : : 9 ]

106 data_PCDMIS_100 = np . array ( data_PCDMIS_10 ) [ : : 1 0 ]

107

108 # Print length of the arrays

109 # print ( ’ length data_PCDMIS_10 : , ’ , len ( data_PCDMIS_10 ) ) # debug

110 # print ( ’ length data_PCDMIS_20 : , ’ , len ( data_PCDMIS_20 ) ) # debug

111 # print ( ’ length data_PCDMIS_30 : , ’ , len ( data_PCDMIS_30 ) ) # debug

112 # print ( ’ length data_PCDMIS_40 : , ’ , len ( data_PCDMIS_40 ) ) # debug

113 # print ( ’ length data_PCDMIS_50 : , ’ , len ( data_PCDMIS_50 ) ) # debug

114 # print ( ’ length data_PCDMIS_60 : , ’ , len ( data_PCDMIS_60 ) ) # debug

115 # print ( ’ length data_PCDMIS_70 : , ’ , len ( data_PCDMIS_70 ) ) # debug

116 # print ( ’ length data_PCDMIS_80 : , ’ , len ( data_PCDMIS_80 ) ) # debug

117 # print ( ’ length data_PCDMIS_90 : , ’ , len ( data_PCDMIS_90 ) ) # debug

118 # print ( ’ length data_PCDMIS_100 : , ’ , len ( data_PCDMIS_100 ) ) # debug

119

120 # Print the numpy array

121 # print ( data_PCDMIS_10 , ’\n ’ ) # debug

122 # print ( data_PCDMIS_20 , ’\n ’ ) # debug

123 # print ( data_PCDMIS_30 , ’\n ’ ) # debug

124 # print ( data_PCDMIS_40 , ’\n ’ ) # debug

125 # print ( data_PCDMIS_50 , ’\n ’ ) # debug
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A.3 Plot generation

1 import numpy as np

2 import matplotlib . pyplot as p l t

3 # This import r e g i s t e r s the 3D projection , but i s otherwise unused :

4 from mpl_toolkits . mplot3d import Axes3D

5 from mpl_toolkits . mplot3d . art3d import Poly3DCollection , Line3DCollection

6 from matplotlib import cm

7 import pandas as pd

8 from sys import argv

9

10

11 ##############################################################################

12 # DkN10 ! ! ! !

13 ##############################################################################

14 ’ ’ ’

15 length = np . array ([901.53582 , 901.51706 , 901.51627 , 901.51872 , 901.51455 ,

16 901.51627 , 901.51451 , 901.51484 , 901.51186 , 901.51455])

17 width = np . array ([202.02606 , 202.02606 , 202.024 , 202.02606 , 202.02424 ,

18 202.02364 , 202.02261 , 202.02089 , 202.02288 , 202.02067])

19 height = np . array ([301.67266 , 301.6716 , 301.67153 , 301.66325 , 301.67122 ,

20 301.67153 , 301.65713 , 301.66325 , 301.63428 , 301.67121])

21

22 x = np . array ( [ 1 0 , 20 , 30 , 40 , 50 , 60 , 70 , 80 , 90 , 100])

23 p l t . x t i c k s (np . arange (min( x ) −10, max( x ) +10 , 10) )

24 p l t . x label ( ’ Measurement density [mm] ’ )

25 p l t . grid ( True )

26

27 # LENGTH

28

29 # p l t . plot ( x , length )

30 # p l t . plot ( x , length , ’ ro ’ )

31 # p l t . y label ( ’ Measured value [mm] ’ )

32 # p l t . y t i c k s (np . arange (901.53−0.04 , 901.53+0.04 , 0 .01) )

33

34 # WIDTH

35

36 # p l t . plot ( x , width )

37 # p l t . plot ( x , width , ’ ro ’ )

38 # p l t . y label ( ’ Measured value [mm] ’ )

39 # p l t . y t i c k s (np . arange (202.025−0.055 , 202.025+0.055 , 0 .01) )

40

41 # HEIGHT
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42

43 p l t . plot ( x , height )

44 p l t . plot ( x , height , ’ ro ’ )

45 p l t . y label ( ’ Measured value [mm] ’ )

46 p l t . y t i c k s (np . arange (301.670−0.050 , 301.670+0.050 , 0 .01) )

47

48 p l t . t i t l e ( ’DkN10: Height ’ )

49 p l t . s a v e f i g ( ’ DkN10_height . pdf ’ )

50 ’ ’ ’

51 #############################################################################

52 # DkMn10 ! ! ! !

53 #############################################################################

54 ’ ’ ’

55 length = np . array ([901.20925 , 901.19566 , 901.19569 , 901.17169 , 901.19571 ,

56 901.19381 , 901.20938 , 901.15947 , 901.18216 , 901.19355])

57 width = np . array ([201.64358 , 201.6423 , 201.64304 , 201.64112 , 201.64304 ,

58 201.64223 , 201.64223 , 201.64009 , 201.64304 , 201.64026])

59 height = np . array ([301.16684 , 301.16251 , 301.16253 , 301.16078 , 301.16193 ,

60 301.15903 , 301.15667 , 301.16039 , 301.16166 , 301.1581])

61 x = np . array ( [ 1 0 , 20 , 30 , 40 , 50 , 60 , 70 , 80 , 90 , 100])

62 p l t . x t i c k s (np . arange (min( x ) −10, max( x ) +10 , 10) )

63 p l t . x label ( ’ Measurement density [mm] ’ )

64 p l t . grid ( True )

65

66 # LENGTH

67

68 # p l t . plot ( x , length )

69 # p l t . plot ( x , length , ’ ro ’ )

70 # p l t . y label ( ’ Measured value [mm] ’ )

71 # p l t . y t i c k s (np . arange (901.2 −0.1 , 901.2+0.1 , 0 .01) )

72

73 # WIDTH

74

75 # p l t . plot ( x , width )

76 # p l t . plot ( x , width , ’ ro ’ )

77 # p l t . y label ( ’ Measured value [mm] ’ )

78 # p l t . y t i c k s (np . arange (201.64−0.04 , 201.64+0.04 , 0 .01) )

79

80 # HEIGHT

81

82 # p l t . plot ( x , height )

83 # p l t . plot ( x , height , ’ ro ’ )

84 # p l t . y label ( ’ Measured value [mm] ’ )
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85 # p l t . y t i c k s (np . arange (301.16−0.05 , 301.16+0.05 , 0 .01) )

86

87 # p l t . t i t l e ( ’DkMn10: Height ’ )

88 # p l t . s a v e f i g ( ’ DkMn10_height . pdf ’ )

89 ’ ’ ’

90 #############################################################################

91 # DkS10 ! ! ! !

92 #############################################################################

93 length = np . array ([900.57599 , 900.57617 , 900.56697 , 900.56958 , 900.56697 ,

94 900.56697 , 900.56242 , 900.5598 , 900.57258 , 900.56697])

95 width = np . array ([202.17043 , 202.17043 , 202.17043 , 202.17026 , 202.16762 ,

96 202.17043 , 202.16749 , 202.16744 , 202.17043 , 202.16744])

97 height = np . array ([301.75208 , 301.74541 , 301.739 , 301.7357 , 301.73155 ,

98 301.7298 , 301.71706 , 301.73563 , 301.69908 , 301.72417])

99 x = np . array ( [ 1 0 , 20 , 30 , 40 , 50 , 60 , 70 , 80 , 90 , 100])

100 p l t . x t i c k s (np . arange (min( x ) −10, max( x ) +10 , 10) )

101 p l t . x label ( ’Measurement density [mm] ’ )

102 p l t . grid ( True )

103

104 # LENGTH

105

106 # p l t . plot ( x , length )

107 # p l t . plot ( x , length , ’ ro ’ )

108 # p l t . y label ( ’ Measured value [mm] ’ )

109 # p l t . y t i c k s (np . arange (900.57−0.05 , 900.57+0.05 , 0 .01) )

110

111 # WIDTH

112

113 # p l t . plot ( x , width )

114 # p l t . plot ( x , width , ’ ro ’ )

115 # p l t . y label ( ’ Measured value [mm] ’ )

116 # p l t . y t i c k s (np . arange (202.17−0.05 , 202.17+0.05 , 0 .01) )

117

118 # HEIGHT

119

120 # p l t . plot ( x , height )

121 # p l t . plot ( x , height , ’ ro ’ )

122 # p l t . y label ( ’ Measured value [mm] ’ )

123 # p l t . y t i c k s (np . arange (301.73−0.05 , 301.73+0.05 , 0 .01) )

124

125 # p l t . t i t l e ( ’ DkS10 : Height ’ )

126 # p l t . s a v e f i g ( ’ DkS10_height . pdf ’ )

127



APPENDIX A. SOURCE CODE 103

128 #############################################################################

129 # Measured points vs points in the convex hull ( pre processing )

130 #############################################################################

131 x = np . array ( [ 1 0 , 20 , 30 , 40 , 50 , 60 , 70 , 80 , 90 , 100])

132 p l t . x t i c k s (np . arange (min( x ) −10, max( x ) +10 , 10) )

133 p l t . x label ( ’Measurement density [mm] ’ )

134 p l t . grid ( True )

135

136 nb_measured_points = np . array ([10200 , 5100 , 3400 , 2550 , 2040 , 1700 , 1458 ,

137 1275 , 1134 , 1020])

138 # DkS10 :

139 nb_points_convex_hull = np . array ( [ 1 5 5 , 145 , 125 , 123 , 120 , 106 , 121 , 110 ,

140 105 , 95])

141

142 # DkN10:

143 #nb_points_convex_hull = np . array ( [ 1 1 9 , 125 , 110 , 131 , 105 , 100 , 111 , 120 ,

144 # 97 , 84])

145

146 # DkMn10:

147 #nb_points_convex_hull = np . array ( [ 7 9 , 97 , 93 , 99 , 89 , 83 , 94 , 101 , 81 , 66])

148

149 p1 = p l t . plot ( x , nb_measured_points , ’−− ’ )

150 p2 = p l t . plot ( x , nb_measured_points , ’bo ’ )

151 p3 = p l t . plot ( x , nb_points_convex_hull , ’−− ’ )

152 p4 = p l t . plot ( x , nb_points_convex_hull , ’ rs ’ )

153

154 p l t . y label ( ’Number of points ’ )

155 p l t . y t i c k s (np . arange ( 0 , 10200 , 1000) )

156 # p l t . legend ( ( p2 [ 0 ] , p4 [ 0 ] ) , ( ’Number of measured points ’ ,

157 # ’Number of points in the convex hull ’ ) )

158 p l t . t i t l e ( ’DkS10 : Measured points vs points in the convex hull ’ )

159 # p l t . s a v e f i g ( ’ DkS10_measured_points_vs_convex_hull_2 . pdf ’ )

160

161 ################################################################################

162 # Include for a l l plots

163 ################################################################################

164

165 p l t . show ( )
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A.4 Smallest enclosing circle

1 # Smallest enclosing c i r c l e − Library ( Python )

2 #

3 # Copyright ( c ) 2018 Project Nayuki

4 # https : / /www. nayuki . io /page/ smallest−enclosing−c i r c l e

5 #

6 # This program i s free software : you can r e d i s t r i b u t e i t and/ or modify

7 # i t under the terms of the GNU Lesser General Public License as published by

8 # the Free Software Foundation , ei ther version 3 of the License , or

9 # ( at your option ) any l a t e r version .

10 #

11 # This program i s distr ibuted in the hope that i t w i l l be useful ,

12 # but WITHOUT ANY WARRANTY; without even the implied warranty of

13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

14 # GNU Lesser General Public License for more d e t a i l s .

15 #

16 # You should have received a copy of the GNU Lesser General Public License

17 # along with t h i s program ( see COPYING. t x t and COPYING. LESSER . t x t ) .

18 # I f not , see <http : / /www. gnu . org / l icenses / >.

19 #

20

21 import math

22 import random

23 import matplotlib . pyplot as p l t

24

25

26 # Data conventions : A point i s a pair of f l o a t s ( x , y ) .

27 # A c i r c l e i s a t r i p l e of f l o a t s ( center x , center y , radius ) .

28

29 # Returns the smallest c i r c l e that encloses a l l the given points .

30 # Runs in expected O(n) time , randomized .

31 # Input : A sequence of pairs of f l o a t s or ints , e . g . [ ( 0 , 5 ) , (3 .1 , −2.7) ] .

32 # Output : A t r i p l e of f l o a t s representing a c i r c l e .

33 # Note : I f 0 points are given , None i s returned . I f 1 point i s given ,

34 # a c i r c l e of radius 0 i s returned .

35 #

36 # I n i t i a l l y : No boundary points known

37

38

39 def make_circle ( points ) :

40 # Convert to f l o a t and randomize order

41 shuff led = [ ( f l o a t ( x ) , f l o a t ( y ) ) for ( x , y ) in points ]
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42 random . s h u f f l e ( shuff led )

43

44 # Progressively add points to c i r c l e or recompute c i r c l e

45 c = None

46 for ( i , p) in enumerate ( shuff led ) :

47 i f c i s None or not i s _ i n _ c i r c l e ( c , p) :

48 c = _make_circle_one_point ( shuff led [ : i + 1 ] , p)

49 print ( " center x , center y : " , c [ 0 ] , " , " , c [ 1 ] , " \n radius : " , c [ 2 ] )

50 return c

51

52

53 # One boundary point known

54 def _make_circle_one_point ( points , p) :

55 c = (p [ 0 ] , p [ 1 ] , 0 . 0 )

56 for ( i , q) in enumerate ( points ) :

57 i f not i s _ i n _ c i r c l e ( c , q) :

58 i f c [ 2 ] == 0 . 0 :

59 c = make_diameter (p , q)

60 else :

61 c = _make_circle_two_points ( points [ : i + 1 ] , p , q)

62 return c

63

64

65 # Two boundary points known

66 def _make_circle_two_points ( points , p , q) :

67 c i r c = make_diameter (p , q)

68 l e f t = None

69 r i g h t = None

70 px , py = p

71 qx , qy = q

72

73 # For each point not in the two−point c i r c l e

74 for r in points :

75 i f i s _ i n _ c i r c l e ( circ , r ) :

76 continue

77

78 # Form a circumcircle and c l a s s i f y i t on l e f t or r i g h t side

79 cross = _cross_product ( px , py , qx , qy , r [ 0 ] , r [ 1 ] )

80 c = make_circumcircle (p , q , r )

81 i f c i s None :

82 continue

83 e l i f cross > 0.0 and (

84 l e f t i s None or _cross_product ( px , py , qx , qy , c [ 0 ] , c [ 1 ] ) >
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85 _cross_product ( px , py , qx , qy , l e f t [ 0 ] , l e f t [ 1 ] ) ) :

86 l e f t = c

87 e l i f cross < 0.0 and (

88 r i g h t i s None or _cross_product ( px , py , qx , qy , c [ 0 ] , c [ 1 ] ) <

89 _cross_product ( px , py , qx , qy , r i g h t [ 0 ] , r i g h t [ 1 ] ) ) :

90 r i g h t = c

91

92 # Select which c i r c l e to return

93 i f l e f t i s None and r i g h t i s None :

94 return c i r c

95 e l i f l e f t i s None :

96 return r i g h t

97 e l i f r i g h t i s None :

98 return l e f t

99 else :

100 return l e f t i f ( l e f t [ 2 ] <= r i g h t [ 2 ] ) e lse r i g h t

101

102

103 def make_diameter ( a , b) :

104 cx = ( a [ 0 ] + b [ 0 ] ) / 2.0

105 cy = ( a [ 1 ] + b [ 1 ] ) / 2.0

106 r0 = math . hypot ( cx − a [ 0 ] , cy − a [ 1 ] )

107 r1 = math . hypot ( cx − b [ 0 ] , cy − b [ 1 ] )

108 return ( cx , cy , max( r0 , r1 ) )

109

110

111 def make_circumcircle ( a , b , c ) :

112 # Mathematical algorithm from Wikipedia : Circumscribed c i r c l e

113 ox = (min( a [ 0 ] , b [ 0 ] , c [ 0 ] ) + max( a [ 0 ] , b [ 0 ] , c [ 0 ] ) ) / 2.0

114 oy = (min( a [ 1 ] , b [ 1 ] , c [ 1 ] ) + max( a [ 1 ] , b [ 1 ] , c [ 1 ] ) ) / 2.0

115 ax = a [ 0 ] − ox

116 ay = a [ 1 ] − oy

117 bx = b [ 0 ] − ox

118 by = b [ 1 ] − oy

119 cx = c [ 0 ] − ox

120 cy = c [ 1 ] − oy

121 d = ( ax * ( by − cy ) + bx * ( cy − ay ) + cx * ( ay − by ) ) * 2.0

122 i f d == 0 . 0 :

123 return None

124 x = ox + ( ( ax * ax + ay * ay ) * ( by − cy ) + ( bx * bx + by * by ) *
125 ( cy − ay ) + ( cx * cx + cy * cy ) * ( ay − by ) ) / d

126 y = oy + ( ( ax * ax + ay * ay ) * ( cx − bx ) + ( bx * bx + by * by ) *
127 ( ax − cx ) + ( cx * cx + cy * cy ) * ( bx − ax ) ) / d
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128 ra = math . hypot ( x − a [ 0 ] , y − a [ 1 ] )

129 rb = math . hypot ( x − b [ 0 ] , y − b [ 1 ] )

130 rc = math . hypot ( x − c [ 0 ] , y − c [ 1 ] )

131 return x , y , max( ra , rb , rc )

132

133

134 _MULTIPLICATIVE_EPSILON = 1 + 1e−14

135

136

137 def i s _ i n _ c i r c l e ( c , p) :

138 return c i s not None and math . hypot (p [ 0 ] − c [ 0 ] , p [ 1 ] − c [ 1 ] ) <= \

139 c [ 2 ] * _MULTIPLICATIVE_EPSILON

140

141

142 # Returns twice the signed area of the t r i a n g l e defined by

143 # ( x0 , y0 ) , ( x1 , y1 ) , ( x2 , y2 ) .

144 def _cross_product ( x0 , y0 , x1 , y1 , x2 , y2 ) :

145 return ( x1 − x0 ) * ( y2 − y0 ) − ( y1 − y0 ) * ( x2 − x0 )

146

147

148 # points = { ( 0 , 0) , ( 0 , 2) , ( 1 , 1) }

149 points = set ( )

150 while len ( points ) < 20:

151 x , y = random . randint ( 0 , 10) , random . randint ( 0 , 10)

152 points . add ( ( x , y ) )

153 # print ( points )

154

155 x_cord , y_cord , rad = make_circle ( points )

156 xs = [ x [ 0 ] for x in points ]

157 ys = [ x [ 1 ] for x in points ]

158 p l t . s c a t t e r ( xs , ys )

159

160 c i r c l e _ 1 = p l t . C i r c l e ( ( x_cord , y_cord ) , rad , color= ’ r ’ , f i l l =False )

161 ax = p l t . gca ( )

162 ax . cla ( ) # clear things for fresh plot

163

164 # change default range so that new c i r c l e s w i l l work

165 ax . set_xlim ( ( x_cord − 3/2* rad , x_cord + 3/2* rad ) )

166 ax . set_ylim ( ( y_cord − 3/2* rad , y_cord + 3/2* rad ) )

167 ax . plot ( xs , ys , ’o ’ , color= ’ blue ’ , l ab el = ’ Points ’ )

168 ax . add_art ist ( c i r c l e _ 1 )

169 ax . set_aspect ( ’ equal ’ )

170 ax . s e t _ x l a b e l ( ’ x axis ’ )
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171 ax . s e t _ y l a b e l ( ’ y axis ’ )

172 ax . legend ( )

173 ax . s e t _ t i t l e ( " Smallest enclosing c i r c l e " , fonts i z e =10 ,

174 verticalal ignment= ’bottom ’ )

175 p l t . s a v e f i g ( ’ 190226 _smallest_enclosing_circle . pdf ’ )

176 p l t . show ( )



109
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Appendix B

Raw data

B.1 Raw data - Laser tracker

P1 -38 599210244100988 -1 884437094638298 20 580877545358401

P2 -21 113531458201546 -1 919277938254828 23 97231990785524

P3 3 6017806847964362 -1 9749401832466389 22 415964742101721

P4 44 340726775577018 -2 0223979672802441 22 751260454463281

P5 46 591122074296536 -1 9552566918082164 6 9753185235985207

P6 10 003111797636294 -1 9209767387222996 6 5821459309348755

P7 -20 264978584843149 -1 8850504841555447 6 7403405815295185

P8 -41 321455519143591 -1 8069674231296062 4 6503155922046373

P9 -40 402180531050121 -1 6408437795220834 -11 474366562794097

P10 -9 1728756344027076 -1 6669607341232278 -13 278555732087849

P11 16 97012079977733 -1 7044346037333753 -13 775122307059402

P12 47 249920795005188 -1 7389338876009788 -12 872845437659699

P13 -38 153009064570142 8 2048767367009017 32 063844527529994

P14 -13 312990346653216 8 1196999979462419 31 892521319964612

P15 16 370098669424262 6 8658025315526112 31 702621970810355

P16 45 503601627017424 7 349411905589454 31 54109518044773

P17 47 138375071064083 27 472896121799753 31 640701445416685

P18 24 148340920025866 24 595163174301632 31 770032525409427

P19 20 465291304211327 40 560742686103133 31 855707114631393

P20 42 05279474282662 40 835365858619205 31 754328963449552

P21 45 920728280798564 63 697488204107337 31 636464245264047

P22 21 443419983372465 61 811023931776035 31 783848928277202

P23 -3 7830027950369525 61 888113538769545 31 944086235210353

P24 -35 788196225552134 58 797651503393844 32 195253562603448

P25 56 136916907794266 8 0661812134519373 21 847411941366971

P26 56 088440030080783 7 0329845370561088 5 0885903457499104

P27 56 07973963700465 6 174631652275405 -11 690753597231451

P28 56 074442455836774 26 650482797236247 -10 678965163990394

P29 56 040101353314093 26 070713231914333 7 8641815711928373

P30 56 205404843670387 26 896093796089485 22 529216562434335

P31 56 213349205259206 45 75264023947588 23 208892182981877

P32 56 167149154096755 47 307925766769614 6 0117694660885066

P33 56 058497799816188 48 651213236272014 -9 8828504368829897

P34 56 174827560813441 63 311441978495047 -8 3668468682967561

P35 56 201159339475453 63 314225975766384 5 8248307015861585
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P1 -38 599210244100988 -1 884437094638298 20 580877545358401

P36 56 273060883583966 64 268311395731857 22 287621636703424

P37 46 359589564714391 73 829088734355395 21 359582973666647

P38 21 022599280127672 73 859331723047958 22 063130669642831

P39 -2 6590240519984731 73 922711507994052 24 301248003639529

P40 -39 713657155600878 74 056483488835838 21 045350093609134

P41 -35 388918888089002 74 212516934925191 4 7799894414905699

P42 -11 494043748326886 74 147579559364459 3 1519709115421177

P43 10 305468278945604 74 095072073206509 4 8975309075558107

P44 43 331052390242398 73 991651768282324 5 2008422773367871

P45 47 87410335919823 74 082402482838845 -11 055496581843412

P46 20 616163301166189 74 156986513536538 -10 639188837671371

P47 -2 3397830209796608 74 180079077188481 -11 53119325928863

P48 -26 680694603261109 74 239317823381427 -12 050501608754276

P49 -41 148196432550549 74 217074798470946 -10 465238417920139

P50 -49 308954882931616 63 721524706008715 23 652883007854445

P51 -49 350648892241267 62 054405362782788 5 712199122414388

P52 -49 362158200215667 62 893286503217908 -9 8890181222492402

P53 -49 381693949258484 42 935731268904561 -8 5529962040853498

P54 -49 34095337998383 42 350556236185525 6 3505895380114401

P55 -49 289817795668561 42 82843982613992 21 801762751240087

P56 -49 54269094367443 8 3937629256504227 -10 423254780721354

P57 -49 479048970997169 9 3865715571103294 7 6435228498796874

P58 45 417082631544325 60 315355092852428 -23 95616260276033

P59 23 613805568214048 62 556346617598166 -23 799205188062366

P60 48 011233362910332 38 392958709773062 -23 990241671197069

P61 35 237268062380579 37 759329619041722 -23 940264341352059

P62 41 779970222188112 8 4307146008308909 -23 906584639128656

P63 19 832727963240742 10 989005064113098 -23 759516357566483

P64 -13 480455307778923 59 602713229270343 -24 110843760971015

P65 -39 620148021555195 63 155934427284002 -23 924462741136264

P66 -40 360535509201242 51 474525029357302 -24 012005257738597

P67 -41 482408999512941 19 977514596972963 -23 932429170546683

P68 -42 230715294308638 6 3540031519849203 -23 883113197181473

P69 -17 267279205675209 12 961427119312065 -23 983542966705773
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B.2 Raw data - CMM

LIN1, 7.682373, -0.000000, 23.933180, 1.000000, 0.000000, 0.000000, 80.488592
LIN1 HITS, 7.682373, -0.000000, 23.933570, 0.000000, -1.000000, 0.000000
LIN1 HITS, 88.170965, -0.000000, 23.932790, 0.000000, -1.000000, 0.000000
PNT1, -0.000000, 2.622369, 23.937910, -0.999927, -0.012079, 0.000000
PNT1 HITS, -0.000000, 2.622369, 23.937910, -0.999927, -0.012079, 0.000000
PNT2, 8.240182, 10.486465, 0.000000, 0.000000, 0.000000, -1.000000
PNT2 HITS, 8.240182, 10.486465, 0.000000, 0.000000, 0.000000, -1.000000
PLN_Y+, 53.326138, 70.074703, 26.398789, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 95.280256, 70.208220, 9.666484, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 82.147171, 70.236140, 9.664844, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 72.733278, 70.231680, 9.664674, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 59.972681, 70.255319, 9.666954, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 39.372693, 70.259075, 9.665344, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 23.557890, 70.277251, 9.665424, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 10.352599, 70.280377, 9.666964, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 10.328983, 70.192105, 22.379464, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 27.051958, 70.190899, 22.378824, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 45.423137, 70.167830, 22.378524, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 63.247387, 70.140525, 22.378174, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 76.950652, 70.112733, 22.377654, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 92.744767, 70.094326, 22.378464, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 92.725413, 69.785680, 44.055484, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 82.674084, 69.804433, 44.054494, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 72.371923, 69.816745, 44.055464, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 59.474087, 69.866878, 44.055524, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 46.716248, 69.885759, 44.054954, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 33.814414, 69.904241, 44.054034, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 23.421840, 69.923702, 44.056954, 0.001350, 0.999933, 0.011478
PLN_Y+ HITS, 9.487449, 69.934841, 44.055864, 0.001350, 0.999933, 0.011478
PLN_X+, 99.697511, 35.248401, 26.721370, 1.000000, -0.000424, 0.000074
PLN_X+ HITS, 99.754052, 65.583298, 44.087312, 1.000000, -0.000424, 0.000074
PLN_X+ HITS, 99.726536, 52.797663, 44.086752, 1.000000, -0.000424, 0.000074
PLN_X+ HITS, 99.688203, 40.347832, 44.087242, 1.000000, -0.000424, 0.000074
PLN_X+ HITS, 99.667183, 28.488113, 44.086322, 1.000000, -0.000424, 0.000074
PLN_X+ HITS, 99.673663, 29.442731, 31.677742, 1.000000, -0.000424, 0.000074
PLN_X+ HITS, 99.714786, 38.375669, 31.678122, 1.000000, -0.000424, 0.000074
PLN_X+ HITS, 99.686660, 47.338803, 31.678692, 1.000000, -0.000424, 0.000074
PLN_X+ HITS, 99.719128, 58.740907, 31.679042, 1.000000, -0.000424, 0.000074
PLN_X+ HITS, 99.722828, 58.762414, 8.319982, 1.000000, -0.000424, 0.000074
PLN_X+ HITS, 99.650946, 51.727562, 8.167592, 1.000000, -0.000424, 0.000074
PLN_X+ HITS, 99.661881, 43.803446, 8.167992, 1.000000, -0.000424, 0.000074
PLN_X+ HITS, 99.706907, 30.032045, 8.167812, 1.000000, -0.000424, 0.000074
PLN_X+ HITS, 99.734175, 10.756945, 8.681544, 1.000000, -0.000424, 0.000074
PLN_X+ HITS, 99.727326, 10.757652, 13.445554, 1.000000, -0.000424, 0.000074
PLN_X+ HITS, 99.695247, 10.754844, 22.009674, 1.000000, -0.000424, 0.000074
PLN_X+ HITS, 99.663672, 10.756733, 30.323304, 1.000000, -0.000424, 0.000074
PLN_X+ HITS, 99.664499, 10.756153, 43.918614, 1.000000, -0.000424, 0.000074
PLN_Y-, 51.165648, 0.008902, 27.095528, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 93.130209, -0.170626, 43.942995, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 82.488682, -0.171403, 43.943245, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 70.290179, -0.150446, 43.943225, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 57.455828, -0.140069, 43.943695, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 40.589439, -0.148456, 43.943265, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 30.606991, -0.147713, 43.943655, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 22.976698, -0.147118, 43.943665, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 14.924338, -0.151102, 43.944095, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 14.696220, -0.018497, 25.858715, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 22.485416, -0.018293, 25.858875, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 35.768087, -0.024304, 25.858575, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 53.752504, -0.028813, 25.858225, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 67.040076, -0.034875, 25.858155, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 80.882720, -0.038512, 25.858095, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 95.019817, -0.031491, 25.858275, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 95.010428, 0.289549, 6.074225, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 80.193162, 0.269262, 6.074675, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 55.779722, 0.260945, 6.074805, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 36.773581, 0.262932, 6.074915, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 20.226725, 0.251284, 6.075185, -0.000146, -0.999940, -0.010986
PLN_Y- HITS, 4.387777, 0.274680, 6.075515, -0.000146, -0.999940, -0.010986
PLN_X-, -0.002314, 31.699787, 23.793011, -0.999999, 0.001295, -0.000080
PLN_X- HITS, -0.047068, 2.008152, 6.050401, -0.999999, 0.001295, -0.000080
PLN_X- HITS, -0.061644, 2.118684, 9.553771, -0.999999, 0.001295, -0.000080
PLN_X- HITS, -0.059442, 2.001792, 14.488981, -0.999999, 0.001295, -0.000080
PLN_X- HITS, -0.057085, 2.005341, 20.761091, -0.999999, 0.001295, -0.000080
PLN_X- HITS, -0.022878, 2.027365, 29.997491, -0.999999, 0.001295, -0.000080
PLN_X- HITS, -0.014265, 2.135577, 41.277421, -0.999999, 0.001295, -0.000080
PLN_X- HITS, -0.025243, 28.149393, 41.277831, -0.999999, 0.001295, -0.000080
PLN_X- HITS, 0.016359, 28.137104, 35.133781, -0.999999, 0.001295, -0.000080
PLN_X- HITS, -0.004054, 28.143818, 28.937261, -0.999999, 0.001295, -0.000080
PLN_X- HITS, 0.028100, 28.142886, 23.646931, -0.999999, 0.001295, -0.000080
PLN_X- HITS, -0.012503, 28.142906, 19.462131, -0.999999, 0.001295, -0.000080
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PLN_X- HITS, -0.011547, 28.199522, 10.644261, -0.999999, 0.001295, -0.000080
PLN_X- HITS, 0.009320, 64.914066, 46.336080, -0.999999, 0.001295, -0.000080
PLN_X- HITS, 0.020305, 64.893867, 35.754140, -0.999999, 0.001295, -0.000080
PLN_X- HITS, 0.042967, 64.892961, 26.723700, -0.999999, 0.001295, -0.000080
PLN_X- HITS, 0.045988, 64.893757, 19.756300, -0.999999, 0.001295, -0.000080
PLN_X- HITS, 0.046969, 64.893659, 13.174240, -0.999999, 0.001295, -0.000080
PLN_X- HITS, 0.064070, 64.895316, 5.298390, -0.999999, 0.001295, -0.000080
PLN_Z-, 49.161839, 108.510974, 0.296012, -0.000140, 0.003254, -0.999995
PLN_Z- HITS, 6.174643, 205.411376, 0.620607, -0.000140, 0.003254, -0.999995
PLN_Z- HITS, 11.238602, 205.472638, 0.619377, -0.000140, 0.003254, -0.999995
PLN_Z- HITS, 19.989684, 205.580018, 0.616777, -0.000140, 0.003254, -0.999995
PLN_Z- HITS, 41.312077, 205.837727, 0.651867, -0.000140, 0.003254, -0.999995
PLN_Z- HITS, 56.390598, 206.019712, 0.650897, -0.000140, 0.003254, -0.999995
PLN_Z- HITS, 66.711976, 206.144331, 0.640227, -0.000140, 0.003254, -0.999995
PLN_Z- HITS, 75.429035, 206.250031, 0.649867, -0.000140, 0.003254, -0.999995
PLN_Z- HITS, 90.071646, 206.426190, 0.653657, -0.000140, 0.003254, -0.999995
PLN_Z- HITS, 90.196566, 189.031210, 0.506307, -0.000140, 0.003254, -0.999995
PLN_Z- HITS, 90.262358, 181.258408, 0.472447, -0.000140, 0.003254, -0.999995
PLN_Z- HITS, 90.407996, 167.442709, 0.468797, -0.000140, 0.003254, -0.999995
PLN_Z- HITS, 8.796654, 199.086296, 0.567557, -0.000140, 0.003254, -0.999995
PLN_Z- HITS, 8.889763, 188.463385, 0.500097, -0.000140, 0.003254, -0.999995
PLN_Z- HITS, 8.988552, 167.201308, 0.488927, -0.000140, 0.003254, -0.999995
PLN_Z- HITS, 92.587084, -135.532539, -0.529975, -0.000140, 0.003254, -0.999995
PLN_Z- HITS, 81.740746, -135.662760, -0.515965, -0.000140, 0.003254, -0.999995
PLN_Z- HITS, 58.241267, -135.947198, -0.487245, -0.000140, 0.003254, -0.999995
PLN_Z- HITS, 27.374256, -135.402516, -0.458475, -0.000140, 0.003254, -0.999995
PLN_Z- HITS, 9.271445, -135.371825, -0.491515, -0.000140, 0.003254, -0.999995
PLN_Z+, 60.176838, 3.782908, 49.771480, 0.001437, -0.003628, 0.999992
PLN_Z+ HITS, 13.883842, -135.464166, 49.312907, 0.001437, -0.003628, 0.999992
PLN_Z+ HITS, 28.085473, -135.295714, 49.287327, 0.001437, -0.003628, 0.999992
PLN_Z+ HITS, 41.871336, -135.126645, 49.230747, 0.001437, -0.003628, 0.999992
PLN_Z+ HITS, 58.303834, -134.927034, 49.224587, 0.001437, -0.003628, 0.999992
PLN_Z+ HITS, 71.874413, -134.763025, 49.218737, 0.001437, -0.003628, 0.999992
PLN_Z+ HITS, 85.506160, -134.600947, 49.195567, 0.001437, -0.003628, 0.999992
PLN_Z+ HITS, 93.922404, -134.498341, 49.180257, 0.001437, -0.003628, 0.999992
PLN_Z+ HITS, 93.619899, -109.486551, 49.380097, 0.001437, -0.003628, 0.999992
PLN_Z+ HITS, 83.808198, -109.608654, 49.406597, 0.001437, -0.003628, 0.999992
PLN_Z+ HITS, 72.001582, -109.749064, 49.414217, 0.001437, -0.003628, 0.999992
PLN_Z+ HITS, 64.828041, -109.836969, 49.420157, 0.001437, -0.003628, 0.999992
PLN_Z+ HITS, 11.274540, 206.837004, 50.638849, 0.001437, -0.003628, 0.999992
PLN_Z+ HITS, 21.426169, 206.960453, 50.595009, 0.001437, -0.003628, 0.999992
PLN_Z+ HITS, 38.414029, 207.169033, 50.526189, 0.001437, -0.003628, 0.999992
PLN_Z+ HITS, 54.982167, 207.366181, 50.503599, 0.001437, -0.003628, 0.999992
PLN_Z+ HITS, 71.922155, 207.570462, 50.461639, 0.001437, -0.003628, 0.999992
PLN_Z+ HITS, 83.733119, 207.713515, 50.452819, 0.001437, -0.003628, 0.999992
PLN_Z+ HITS, 93.725727, 207.832813, 50.437329, 0.001437, -0.003628, 0.999992
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