
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f M
ec

ha
ni

ca
l a

nd
 In

du
st

ri
al

 E
ng

in
ee

ri
ng

M
as

te
r’

s
th

es
is

Andreas Moan

Developing a Small and Power
Efficient Depth Measuring System for
Use at Remote Locations

Master’s thesis in Mechanical Engineering
Supervisor: Bjørn Haugen

June 2019

Developing a Small and Power Efficient Depth Mea-
suring System for Use at Remote Locations

Andreas Moan

TMM4960 - Master’s thesis

at The Department of

Mechanical and Industrial

Engineering

andremoa@stud.ntnu.no

June 2019

Abstract

The hydroelectric power production company Agder Energi, wants
to develop a new depth measuring system for use at remotely located
rivers and reservoirs. This system shall be small, light, power efficient,
user friendly, reliable and cost efficient. The goal is to supplement,
and to some degree replace, the large and costly stations they are
using today. The objective of this master’s thesis is to develop this
depth measuring system for Agder Energi. The majority of the report
deals with the creation of a single-node system; one node that does all
the measurements and sends the data back to Agder Energi’s contol
central via the NB-IoT mobile network protocol. The later part of the
report deals with the development of a multi-node system, one that
is able to operate outside of areas where mobile network is available.
It does so by utilizing radio communication in addition to NB-IoT.
Agder Energi has the single-node system as their top priority, and
the work on this system will by the end of this project be concluded.
The multi-node system will however have work remaining by the end
of this project. Although long-term testing still remains for the final
version of the single-node system, the preliminary results seems quite
promising regarding all the criteria set by Agder Energi. The system
will be put into use soon after the completion of this master’s thesis.

Sammendrag (abstract in Norwegian)

Vannkraftproduksjonsselskapet Agder Energi ønsker å utvikle et nytt dybdemålingssystem tilegnet
bruk i avsidesliggende elver og reservoar. Dette systemet skal være lite, lett, energieffektivt, bruk-
ervennlig, pålitelig og kostnadseffektivt. Målet er å supplere, og til en viss grad erstatte, de store
og dyre stasjonene som blir brukt per dags dato. Formålet med denne masteroppgaven er å utvikle
dette dybdemålingssystemet for Agder Energi. Mesteparten av rapporten omhandler utviklingen av
et enkelt-node-system; én node som tar alle målingene, og sender dataen tilbake til Agder Energis
driftssentral via mobilnettverksprotokollen NB-IoT. Den senere delen av rapporten omhandler utviklin-
gen av et multi-node-system som kan operere utenfor områder med mobildekning. Den gjør dette ved
å ta i bruk radiokommunikasjon i tillegg til NB-IoT. Agder Energi har enkelt-node-systemet som sin
førsteprioritet, og arbeidet på dette systemet vil i løpet av prosjektet bli fullført. Multi-node-systemet
vil derimot fremdeles ha gjenstående arbeid ved slutten av prosjektet. Selv om langtids-testing av
den endelige versjonen av enkelt-node-systemet fremdeles gjenstår, ser de foreløpige resultatene svært
lovende ut sett opp mot kriteriene satt av Agder Energi. Systemet vil bli tatt i bruk like etter at denne
masteroppgaven er fullført.

I

Preface

First of all, I want to thank my supervisor; associate professor Bjørn Haugen, and my contact person
at Agder Energi; Trym Bjønnes. Haugen has had an open door-policy, which have allowed me to
drop by whenever I had things to discuss. This is something I have appreciated, knowing I don’t have
to wait two weeks for a scheduled meeting. My talks with Haugen have let me know whether I’m
approaching the task in an appropriate manner. Bjønnes have given valuable feedback throughout the
entire project. This feedback has been crucial for the en product becoming what it is today. I would
also like to thank Agder Energi for initiating and sponsoring this project, and NTNU for giving me
access to useful equipment and tools.

The skills I have gained during the course of my study at NTNU, including the last semester working
on this project, will become useful as I journey from being a student into my new job as a product
developer in the field of mechatronics. A lot have been learned throughout the duration of this master’s
thesis. In addition to having gained pure technical knowledge, I have also experienced how it feels to
relate to a company as both a partner and a customer.

I would like to end this preface with a quote by Maya Angelou which is both inspiring and comforting.

"Do the best you can until you know better. Then when you know better, do better."

- Maya Angelou

Andreas Moan
June 2019, Trondheim

II

III

Contents

Sammendrag (abstract in Norwegian) I

Preface II

Contents IV

Abbreviations VII

Supplementary files VIII

1 Introduction 1
1.1 Background and motivation . 1
1.2 Previous work . 1
1.3 Goals and priorities . 2

1.3.1 Must-haves and nice-to-haves . 3
1.4 Problem description . 3
1.5 Work methodology . 3

1.5.1 Structure of the report . 4

2 General theory 5
2.1 Water flow and depth measurement . 5
2.2 Basic theory of microcontrollers . 6

2.2.1 Overview . 6
2.2.2 Programming of microcontrollers . 7

2.3 Wireless communication . 8
2.3.1 Radio waves . 8
2.3.2 Peer-to-peer radio communication . 8
2.3.3 NarrowBand Internet of Things . 9

3 Analyzation of two existing depth measuring systems 9
3.1 Scanmatic . 9
3.2 Libelium . 10

4 Plan, overview and choice of microcontroller 13
4.1 Choice of microcontroller . 13
4.2 Choice of programming language . 14

5 Power consumption 14
5.1 Design strategy for reduced current leakage in peripheral units 15
5.2 Choice of battery and solar panel . 16
5.3 Voltage measurement . 17
5.4 Current measurement . 18

6 NB-IoT connectivity and usage 18
6.1 Communication between the modem and the microcontroller 18
6.2 Connecting to Telia’s network . 18
6.3 Sending data and server selection . 19

7 Depth measurement 21
7.1 Powering the sensor - Boost converter . 21
7.2 Wiring and code . 23

IV

8 Sleep and time keeping 24
8.1 Sleep mode . 24
8.2 Internal Real Time Clock . 25
8.3 Updating the time and time drifting . 25

9 First early stage long duration test 26
9.1 Setup . 26
9.2 Results and analysis of the test . 26

10 Resolving the problems from the test 28
10.1 Depth data . 28
10.2 Connectivity . 31

11 Temperature measurement 31
11.1 Wiring . 32
11.2 The code . 32

12 User interface 33
12.1 Display . 33
12.2 Input method . 34
12.3 Functionality . 34

12.3.1 Calibration . 35
12.3.2 Signal quality check . 35

13 First prototype 36
13.1 Prototype board . 36
13.2 Enclosure . 37
13.3 Field test . 38
13.4 Results from the prototype’s first week in the field . 38
13.5 Feedback from AE and discussion regarding further work 39

14 Implementing the new ideas and requests 41
14.1 Connection timeout . 41
14.2 Re-sending unsent data . 41
14.3 Local data logging . 41

15 Printed circuit board 42
15.1 Creating custom parts . 42
15.2 Design rules and creating the PCB . 43
15.3 The finished PCBs . 46

16 New requests and final touches 47
16.1 Password protection . 47
16.2 GPS . 47
16.3 Altitude calibration . 48
16.4 Fixing local data logging issues . 49
16.5 Watchdog timer . 50
16.6 New PCB and enclosure design . 50
16.7 Server update and standardization of data format . 51
16.8 Naming . 52

V

17 Final results and further work 52
17.1 Results . 52
17.2 Further plan and work . 53

18 Plan, overview and choice of microcontrollers 56
18.1 Microcontrollers, IDE and language . 56

18.1.1 Gateway node . 56
18.1.2 Sensor node . 57

19 Basic physical setup 58

20 Peripheral units 59
20.1 User interface . 59
20.2 Real-time clock . 60
20.3 Temperature sensor . 60
20.4 Depth sensor . 61
20.5 GPS . 61
20.6 Radio communication . 62
20.7 Local data logging . 63
20.8 Multiplexer and the complete schematics . 63

21 Functionality and the procedure of deploying the nodes 64
21.1 Step 1: Placing the gateway . 65
21.2 Step 2: Establishing continuous contact between the two nodes 65
21.3 Step 3: Automatic clock synchronization . 65
21.4 Step 4: Remotely putting the gateway node into its normal operation 66
21.5 Step 5: Depth measurement calibration and GPS . 67
21.6 Step 6: Normal operation . 67

22 Preliminary results and further work 67
22.1 Preliminary results . 67
22.2 Further work . 68

23 Discussion and conclusion 71

References 74

Appendix A: Schematic - Single-node system 78

Appendix B: Schematic - Sensor node of multi-node system 79

Appendix C: Schematic - Gatewat of multi-node system 80

Appendix D: Components list and prices 81

VI

Abbreviations

328P ATmega328P

3GPP 3rd Generation Partnership Project

A Ampere

ADC Analog-to-digital converter

AE Agder Energi

CAD Computer Aided Design

CRC Cyclic Redundancy Check

CSV Comma Separated Value

GPIO General-Purpose Input/Output

GSM Global System for Mobile communications

IDE Integrated Development Environment

IoT Internet of Things

ISR Interrupt Service Routines

JSON JavaScript Object Notation

MCU Microcontroller Unit

NB-IoT Narrow Band Internet of Things

NKOM The Norwegian Communication Authority

NMEA National Marine Electronics Association

NVE Norges vassdrags- og energidirektorat (Eng: The Norwegian Water Resources and
Energy Directorate)

PCB Printed Circuit Board

RF Radio Frequency

RMC Recommended Minimum Navigation Information

RSSI Received Signal Strength Indication

SAMD21 ATSAMD21J1

SCADA Supervisory Control And Data Acquisition

TCP Transmission Control Protocol

UART Universal Asynchronous Receiver-Transmitter

UDP User Datagram Protocol

V Volts

VCC Voltage common collector

WDT Watchdog Timer

XML Extensible Markup Language

VII

Supplementary files

The code referred to throughout this report can be found in the attached files. These files aren’t
needed in order to read this report. They can however give a deeper insight to some of the sub-
jects discussed. There are 42 code files, all in the format *.cpp, *.h or *.ino. The code files can
be opened and read in most text editors, although it’s recommended to use code compatible editors
like Notepad++ or Visual Studio to properly highlight the syntax. Agder Energi have chosen to
have an open source approach to this project. All the code can therefore also be found online at
https://github.com/andremoa/depthStations.

Code files for the single-node system:

• singleNode.ino
• alarmFunctions.ino
• dataProcessingFunctions.ino
• dataAquizitionFunctions.ino
• networkFunctions.ino
• userInputFunctions.ino
• portDefines.h
• globalVariables.h
• bitPatterns.h

Note: Several other files are needed to run the main code (SODAQ_node.ino). These files can however
be downloaded and included directly from the integrated development environment. They are therefore
not included in this list.

Code files for the sensor node in the multi-node system:

• main.cpp
• bitPatterns.h
• clock.cpp
• clock.h
• Framebuffer.cpp
• Framebuffer.h
• GPS.cpp
• GPS.h
• I2C.cpp
• I2C.h
• LoRa.cpp
• LoRa.h
• powerManagement.cpp
• powerManagement.h
• SDI12.cpp
• SDI12.h
• SPI.cpp
• SPI.h
• SSD1306.cpp
• SSD1306.h
• USART.cpp
• USART.h

Note: Framebuffer.cpp, Framebuffer.h, SSD1306 and SSD1306.h are not self-written. They are open
source libraries found online. Their lisence agreement can be found in their header files. The same goes
for SDI12.cpp and SDI12.h. They are not self written, but they have been modified for the purpose of

VIII

this project.

Code files for the gateway node in the multi-node system:

• multiNode_gateway.ino
• functions.ino
• bitPatterns.h
• globalVariables.h
• portDefines.h
• RHReliableDatagram.cpp
• RHReliableDatagram.h
• RH_RF95.cpp
• RH_RF95.h
• RHDatagram.cpp
• RadioHead.h

Note: RHReliableDatagram.cpp, RHReliableDatagram.h, RH_RF95.cpp, RH_RF95.h, RHDatagram.cpp
and RadioHead.h are not self-written, but they have been modified for the purpose of this project.
They are open source libraries found online. Their lisence agreement can be found in their header files.

IX

Introduction and theory

1 Introduction

1.1 Background and motivation

Agder Energi (AE) is one of the major power production companies in Norway, producing and dis-
tributing electrical power to the Agder region (Agder Energi 2018). Their production consists of 99%
hydropower, produced by their 47 hydroelectric power plants. It’s important for AE to at all times
have knowledge about the water levels of their reservoirs and the water flow in the downstream rivers.
The Norwegian Water Resources and Energy Directorate (NVE) have regulations which requires a
minimum water flow in the downstream rivers of their reservoirs. AE wants to stay as close to these
minimum requirements as possible in order to direct more of the water into their turbines. At the same
time, to avoid breach of the regulations, AE releases more water into these rivers than the minimum
specification requires. This water is released directly from the dams, and thus bypasses the turbines.
The potential loss of income due to this buffer margin from only one of AE’s dams is approximately 8
million NOK per year1,2 (Austrud 2018). In addition to the financial importance of the sensor data,
the data can also be used in flood prevention. AE serves an important role in flood control. By
knowing the depths and flows in various location, they can actively open and close their hatches to
minimize the flood (Bjønnes 2019).

AE uses depth measuring stations for both depth measurements and for water flow measurements.
By knowing the depth of the water at given locations in the rivers, they can calculate the water flow3.
The depth measuring stations AE are using today are hydrology stations delivered by Scanmatic.
Although these stations are reliable in terms of giving the right data, they do have their drawbacks.
They are large and heavy, they are expensive, they consumes a lot of power, the batteries often go flat
if the solar panel is covered by i.e. snow for a longer period of time, and they aren’t intuitive to operate,
meaning only trained personnel can operate them. Due to these inconveniences, the Scanmatic stations
are deployed at fewer location than what AE considers optimal. At some locations it takes roughly 20
hours from a valve is opened, to the results can be measured by a sensor in the downstream river. AE
therefore wants to create a new depth measuring system which don’t have the same drawbacks as the
ones they are using today. They want stations that they can deploy with a higher and more optimal
quantity.

1.2 Previous work

In the spring of 2018, AE hired two students to work on a summer project where the goal was to make
a proof of concept of a cheap, small and low powered depth measuring system. The outcome of the
summer project was a system consisting of three units. A sensor node, doing the measurements and
sending it onward using radio communication. A repeater, receiving the message from the node before
sending it onward again. And a gateway, receiving the message from a node or repeater, and storing
the data. All communication between the units happened via radio. Although the system proved suc-
cessful as a proof of concept regarding range, prize and power consumption, it also had some crucial
drawbacks. The system was unstable. Sometimes it froze during its operation. Sometimes it collected
wrong or corrupted data, and sometimes it collected no sensor data at all. Some of the desired features
like automatic time update were unsuccessfully attempted to implement. AE asked the students to
take this project onward to a specialization project and master’s thesis, whereof one of the students
(the author) accepted.

1This is the theoretical maximum saving from this dam if the water flow had been exactly on the minimum requirement
at all time.

2The dam can’t be named here for confidential reasons.
3More about this in chapter 2.1

Page 1

Introduction and theory

Figure 1: A simplified diagram of the system from the specialization project. Component names are in black
letters, while their communication protocols are in red letters.

The focus of the specialization project was to improve upon the system that was created during the
summer project. The code was rewritten from scratch in the microcontrollers native AVR-C language.
This proved to stabilize the system’s operation in terms of acquiring the correct data without freezing.
At the same time it reduced the microcontrollers RAM usage from 82% down to 17%. A simplified
diagram of the outcome of the specialization project is shown in figure 1. The system was not finished
by the end of the specialization project, and the plan was to continue and finish the project as a
master’s thesis.

1.3 Goals and priorities

The system that was begun developed in the specialization project was solely based on radio commu-
nication for transmitting the data from the field to a base station. This setup could at some locations
result in a long series of repeaters, if the nearest base station was far away. As a possible solution
to this problem, it was suggested to AE that the master’s thesis could change focus to instead use
NarrowBand-IoT (a mobile network communication protocol) in combination with radio drivers in
order to reduce the numbers of nodes needed to send data back from the field. The mobile network
coverage map form Telia (2019) shows that most locations of interest are either in a zone where mobile
network is available, or has a distance to an area with mobile network available that is shorter than
the distance to the nearest base station. AE liked the idea of utilizing NarrowBand-IoT. They had
already thought about the idea of exploring this technology themselves. It was therefore agreed that
the focus of this master’s thesis should be directed towards utilizing NarrowBand-IoT.

This new strategy means that two separate systems should be created. One of the systems can
consist of one single node that does all the measurements before sending it to AE via NarrowBand-IoT.
This node must be placed in a location where mobile network is available. The other system must
consist of two or more nodes. One sensor placed outside of the mobile network’s coverage area. This
node does the measurements and sends the data via radio to a gateway node placed inside the coverage
area, which then sends the data onward to AE via NarrowBand-IoT. If necessary, repeaters can be
placed in between these two nodes.

AE wants the single-node system to be the main priority of this master’s thesis, since the majority
of the desired measuring locations are within coverage of mobile network. The multi-node system shall
be developed only if there’s time, and if it doesn’t negatively affect the development of the single-node
system.

Page 2

Introduction and theory

1.3.1 Must-haves and nice-to-haves

AE has several goals for the systems. These goals can be split into two categories; must-haves and
nice-to-haves.

Must-haves, or requirements, are the features of the end-product that must be present in order
for AE to consider using the system. This is first and foremost that the system is able to send the
correct sensor data back from the field. AE’s operations center will perform actions based on the
received data. If the data is wrong, it can do more harm than good. The node must be able to do
measurements relatively often. AE thinks that one set of measurements every 15 minutes is a good
frequency. The end-product should also be relatively durable and maintenance free. If a remotely
stationed nodes requires physical handling every few weeks, it will become a burden to use them.

Nice-to-haves are the features that should be present in order to make the product more attractive
to use. These features are low cost, a simple and efficient user interface, small size, light weight and a
low power consumption. All of these features can be thought of as non-discrete, qualitative properties
since there aren’t any given tangible goals. It’s hard to say exactly when the properties are good
enough. These features should instead be pushed as far as possible in the right direction.

1.4 Problem description

The aim of this master’s thesis is to develop a reliable, low powered, user friendly, cheap, small and
light depth measuring system for use at remote locations. This system should send data back to Agder
Energi via NarrowBand-IoT once every 15 minutes. The primary goal is to create a single node system
which can operate at locations where mobile network is available. If there’s time, a second system
consisting of two or more nodes, using both NB-IoT and radio communication, shall be created. This
system should then be able to operate outside of the mobile network coverage area.

1.5 Work methodology

Following up on AE’s requests, this development project is executed in accordance with the given
priorities. The focus is first and foremost directed towards the primary goal of creating the single-node
system. The multi-node system is second priority, and is thus worked on after the development of the
single-node system has delivered a satisfying outcome. Work on these systems is at times also done in
parallel where it seems advantageous, since some features can be used in both setups.

The importance of user interaction in the process of product development is heavily emphasized
in the literature (Taha, Alli, and Abdul-Rashid 2011). AE is involved throughout the entire develop-
ment processes via user co-design. User co-design is the acts of participatory and cooperative creation
(Chisholm 2014). AE are both giving feedback on the choices being made, as well as suggesting new
features that can be implemented. This will in turn lead to iterations of the solutions presented to them.

Time constraints often lead engineers/designers to focus on product realization instead of iterating
on several solutions (Schrage 1999). Experiments have nonetheless shown that this is not the optimal
strategy, even when there’s a short deadline (Dow, Heddleston, and Klemmer 2009). Iterative proto-
typing helps the designer unveil both new issues and new opportunities. Several aspects of the depth
measuring system(s) created here are iterated upon several times in order to find the best solutions to
the challenges.

Since this is a practical product development project, not a pure scientific thesis, some non-
traditional sources will be used to acquire information on certain topics and problems encountered
during the process. Data sheets, product information pages, and to a small degree forums, will be used
in addition to the scientific papers to gather the necessary information.

Page 3

Introduction and theory

1.5.1 Structure of the report

This report is structured into four main parts. Part one is the introduction, theory and an analysis
of some existing depth measuring systems. Part two is the development process of the single-node
setup. Part three is the development process of the multi-node setup. Lastly, part four contains the
discussion and conclusion related to the project as a whole. The header text on each page shows which
part of the report the page belongs to. All parts, except for the first, are clearly introduced with a
headline on a separate page.

Page 4

Introduction and theory

2 General theory

This report describes the development of a remote monitoring system. A vast variety of topics will
be encountered throughout this process. Covering the theory of all the topics in a few sections at the
beginning of the report would most likely feel out of place. New theory will therefore to some degree
be introduced later on in the report when the information is needed. However, some theory which can
be useful throughout the report will be presented here.

This theory chapter consists of three subsections. First some general theory about water flow and
depth measurement will be presented. The second subsection will present some basic theory about
microcontrollers. Lastly, the third subsection will briefly explain what NarrowBand-IoT and radio
communication is and how it works. These three topics are chosen because they build the foundations
as to how the products should be designed.

2.1 Water flow and depth measurement

There are several ways of measuring a stream flow rate (Suneco Hydro 2019). For household devices
like showers, small measuring tools can be attached. The bucket method can be used to measure the
water flow of small rivers. Directly measuring the water flow of large rivers on the other hand can be
a bit trickier. A method that is often used, including by AE, is to direct the river to flow through
sections of simple geometry at certain checkpoints. If one is able to measure the height of the water
over these checkpoints, the water flow rate can then be calculated. This method is known as the weir
method.

Figure 2: Water flow measurement using the weir method. Figure by Suneco Hydro (2019).

The depth measurements shouldn’t be made directly at the geometry, since the readings will have
a tendency to get distorted by the river when it rapidly changing its geometry. Instead the measure-
ments should be taken a bit upstream, or in a nearby still backwater if available. At these close-by
locations, the water will rise and fall by the same amount at the same time as through the geometry.
The measurements must however be calibrated to correspond to the water height through the weir.
If the depth upstream is 140 mm shallower than at the weir, then 140 mm must be added to every
measurement.

Page 5

Introduction and theory

In terms of predicting the upcoming water flow rate, air temperature measurements are also of in-
terest (Bjønnes 2019). Temperature affects how the water flows from one point to another. There are
many factors playing a role here. For example if it’s hot, some water will vaporize and thus decrease
the water flow. At the same time it’s more likely that snow will melt from the mountains, increasing
the water flow. Interpreting this data to make predictions is a science of its own, and it requires
knowledge of the local geography.

There are several ways of measuring the depth itself. Some sensors use sound (Flowline Inc. 2010),
while other use floaters (Seba Hydrometrie 2019). AE uses two different sensors which they connect
to their measuring stations. These are the OTT PLS and the UNIK 5000. Although the first is a
digital sensor (OTT HydroMet 2018) and the latter is an analogue sensor (Tormatic AS 2019), they
both measure pressure in order to calculate the depth. At some locations, like in reservoirs, it’s the
depth itself that is of interest to AE. Not the water flow.

2.2 Basic theory of microcontrollers

To put it simply, a microcontroller is a toned-down version of a computer. They’re cheap, they’re small,
they use little power and they are good at interacting with the real world. This is why microcontrollers
will serve as the "processing- and command centre" of the systems that will be created in this project.
It’s therefore useful to have some general knowledge of what microcontrollers are and how they work.
The field of microcontrollers is quite vast, so what will be covered here is only the basics which is
needed to understand the topics discussed later on in the report. The book Make: AVR Programming
by Elliot Williams can be recommended if further reading is of interest.

2.2.1 Overview

A microcontroller is basically a single chip computer. It has a central processing unit (CPU), ran-
dom access memory (RAM), flash memory and an arithmetic logic unit for mathematical processing
(Williams 2015). Most microcontrollers also have additional dedicated integrated hardware for other
tasks like analog-to-digital conversion (ADC), serial communication, two-wire interface (TWI) and
more. Despite being a computer, a microcontroller is different from a normal laptop or stationary
PC. The most noticeable difference might be that a microcontroller usually don’t have an operating
system, and the computational power is lower than what a x86 (e.g. Intel or AMD) processor has.
Where the CPU of a PC has a clock speed of 2-3 GHz or more, microcontrollers usually operates in
megahertz. This gives the microcontrollers certain limitations in advanced graphical processing and
other high-demanding tasks. What microcontrollers are good at on the other hand, is interacting with
the real physical world. Microcontrollers are for example used in microwaves, electrical toothbrushes,
drones, washing machines, subsystems of cars and smoke detectors just to mention a few. They register
inputs, processes the information, and then gives the appropriate output.

Most microcontrollers have only digital outputs and inputs. The output of a microcontroller is
either a logic high voltage or a logic low voltage. The same goes for the input. A microcontroller can
only read an input voltage, and compare the voltage to a reference voltage to see if the input is higher
than the reference or not. However, microcontrollers who also have an ADC, can use the boolean
comparison to find an approximate value of an analogue input. The way an ADC works is by taking
a constant voltage, say 3.3 V, and regulate it down to 3.3V × 1

2
. Then it checks to see if the input

voltage is higher or lower than this. If the input voltage is higher, it regulates the constant voltage to
3.3V × 3

4
before comparing them again. This comparison and regulation happens as many times as

the resolution of the ADC allows. A 10-bit ADC has 10 comparisons. In the end, the microcontroller
knows which two increments the input voltage lies between.

One of many commonly used microcontrollers is the AVR ATmega328 manufactured by Microchips

Page 6

Introduction and theory

(originally made by Atmel). A diagram of this microcontroller is shown in figure 3. This is the micro-
controller that was used in the specialization project, and it might be used for the multi-node system
here as well. It will therefore be used as a general purpose example of a microcontroller.

Figure 3: Pinout diagram of the ATmega328.

The ATmega328 has a single core CPU, meaning it can execute only a single instruction at a time4.
This might seem limiting to a microcontrollers application, but it is usually not a major problem. This
is due to what is called interrupt service routines (ISR). Although microcontrollers only can execute
one instruction at a time, they can always simultaneously listen for external and internal events that,
if triggered, makes the microcontroller abort its current task, execute a separate set of instructions,
and then return to the block of code where it left of. These separate sets of instructions are the ISRs.
An internal event can for example be a timer overflow, while an external event can be a pin changing
state (going from low to high, or vice versa).

2.2.2 Programming of microcontrollers

A microcontroller can be programmed in several languages. Almost every microcontroller in existence
has associated compilers that can interpret either C, Assembly or both. The code for the microcon-
trollers can be written in any preferred text editor. After the code is written, it must be linked to
a compiler which converts the code from the chosen language to machine code in a *.hex format.
Another program then flashes5 the code onto the microcontroller.

Writing code for microcontrollers is a lot about handling registers. A register is a location in the
memory of the microcontroller whose value determines one or more properties of the microcontroller.
Modifying bits in a register can change one or several of these properties. A basic example of how to

4However, since the AVR’s registers are directly connected to the Arithmetic Logic Unit, the microcontroller can in
certain cases access two registers in a single clock cycle (Microchip Technology Inc. 2018a)

5Flashing a microcontroller means transferring the code to the microcontroller and storing it in it’s flash memory.

Page 7

Introduction and theory

edit registers is shown below, where a GPIO pin on the ATmega328 is set to a low voltage output.
GPIO is short for General-Purpose Input/Output. GPIO pins can, as the name implies, be used to
both input and output. For the ATmega328, all pins labeled PORT PIN can be used as GPIO pins.
How much current these pins can supply/drain differs from microcontroller to microcontroller. The
ATmega328 for example, can supply/drain a maximum of 40 mA per pin. Pin 12 of the ATmega328 is
used in this example. Figure 3 shows that pin 12 is labeled PD6. This means that pin 12 is the sixth
bit located in the D-bank register.

DDRD | = 0b01000000; //Set PD6 as output in the data direction register

PORTD & = 0b10111111; //Set the pin to a logical low

These commands can of course also be written in a shorter form using bit-shifting:

DDRD | = (1 << 6); //Set PD6 as output in the data direction register

PORTD & = ∼ (1 << 6); //Set the pin to a logical low

2.3 Wireless communication

Two useful types of wireless communication will be looked into here. These are peer-to-peer radio
communication and NarrowBand Internet of Things.

2.3.1 Radio waves

Radio waves, or radio frequency (RF) signals are electromagnetic waves consisting of electric and
magnetic waves with amplitudes oriented perpendicularly to each other (Moorthy, Sankar, and Kumar
2017). The distinct orientation and amplitudes of the waves gives the signal its polarity. This has
practical implications, as the receiving antennas must be oriented to match the polarity of the signal.
The frequency of radio waves are the number cycles per second the electromagnetic waves oscillates at.
This frequency is also important in practical applications for several reasons, including in the choice
of antennas. As electromagnetic waves travels nearly constant to the speed of light6, the frequency
determines the wavelength of the signal (National Radio Astronomy Observatory 2018). The design
of an antenna determines what wavelengths it’s able to transmit and receive at. Especially the length
of the antenna is an important parameter. Antennas must therefore be chosen with a design that
effectively transmit and receive at the desired frequency range.

2.3.2 Peer-to-peer radio communication

Radio communication in a peer-to-peer network structure is when two or more devices communicates
directly to each other via radio waves without the need for a central server (Tiwana 2014). A server
is a unit in the system that provides a service. A client is a unit in the system asking the server for
a service. All units in a peer-to-peer system acts as both a server and a client, sharing services like
information, processing power or storage space with each other.

The acquisition of radio transmitters can legally be done by anyone. There are however rules
as to how one are allowed to operate these radio drivers. The Norwegian Communication Authority
(NKOM) states that frequencies in the electromagnetic frequency spectrum can only be used if NKOM
or The Ministry of Transportation have given the proper permission to do so (NKOM 2019). There
are however certain exceptions to this rule. Fribruksforskriften specifies frequencies and associated
maximum power outputs that can be used by anyone (Samferdselsdepartementet 2012). It also gives

6Some variations occur depending on the medium the signal travels through.

Page 8

Introduction and theory

permission to use reserved frequencies and powers if certain criteria are met. § 7 states that the
frequency band 870–875,6 MHz, with a maximum bandwidth of 200 kHz and a maximum effective
radiated power of 500 mW with a maximum transmission time of 2.5 % can be used by among other
measuring equipment monitoring water and meteorology.

2.3.3 NarrowBand Internet of Things

An Internet of Thing (IoT) device is basically any sensory device that is able to send data via the
internet (HCL Technologies 2019). For many of these devices, battery life is one of the most important
aspects, while having a low bandwidth internet connection is enough for it to send the data. The 3rd
Generation Partnership Project (3GPP), a telecommunications standard development organizations
(3GPP 2019), have developed a telecommunication protocol from the ground up for this specific pur-
pose. This protocol is called NarrowBand IoT (NB-IoT). The maximum transmission peak is at 250
kbps at a bandwidth of 200 kHz (Ericsson 2019). This low bandwidth allows thousands of IoT devices
to connect to a singe base station by operating both at and in between the normal cellphone band-
widths. NB-IoT have a high latency of 1.5 to 10 seconds, and it’s not designed for roaming since it can
only be connected to one cell-tower at a time. Another 3GPP protocol called LTE-M can be used as a
compromise between NB-IoT and the normal LTE protocol. LTE-M have a 1 Mbps peak data-rate, a
latency of 50-100 ms, and supports continuous cell-tower connection which allows for roaming, while
at the same time use little battery. NB-IoT does however have cheaper hardware and a better signal
penetration through obstacles like concrete and trees. For stationary devices like parking meters or
depth sensors that only need to send little data once in a while, where a few seconds latency isn’t
critical, NB-IoT is usually concidered the best option.

Mobile networks also use RF signals for communication. The major difference from peer-to-peer
communication is that this communication is based on the client-server model, where a client commu-
nicates with a server which again processes or re-directs the data (IBM 2019).

3 Analyzation of two existing depth measuring systems

Two existing depth measuring stations will be analyzed here in order to see how well the solutions
they have chosen works. The positives can then be taken onward into the system to be created in this
project, while the negatives can be avoided. The depth sensors themselves will not be discussed here
since they are bought separately from the stations.

3.1 Scanmatic

AE are using two depth measuring systems as of today (Bjønnes 2019). The most used system is one
delivered by Scanmatic. These HydMet stations, as they’re called, are powered by both a 12 V battery
and by a solar panel where grid power isn’t available (Scanmatic AS 2018). One of these nodes and
its battery can be seen in figure 4. This is the mobile briefcase version of the station. Most of the
stations are inside cabinets, where there’s also room for the battery. The Scanmatic nodes sends data
via GPRS on the 2G and 3G cellular network, and some also uses a separate modem to send data via
SMS (Høgevold 2019). Where mobile network aren’t available, they use satellite communication. The
data is sent in a non-standard format, so all messages must be translated by Scanmatic software into
a standard format before being usable by AE7. In addition to depth sensors, sensors for measuring
temperature, rainfall and more can also be connected to these nodes.

7This is not the same as encryption/decryption for security reasons.

Page 9

Introduction and theory

Figure 4: One of the Scanmatic depth measuring stations.

The strengths of the Scanmatic stations is that they are reliable in giving the right measurements
every time. They have an interface which easily allows the user to change functionality like data
upload intervals. And if any technical problems should occur, Scanmatic will provide good support.
However, there are a few drawbacks. The price is quite high. Each HydMet node costs between 55,000
to 115,000 NOK, depending on technical specifications (Bjønnes 2019). The dimensions of the station
shown in figure 4 are 560 x 450 x 260 mm, excluding the battery. The pelicase and the electronics
weighs roughly 10 kg, and the 12 V battery weighs about 22 kg, giving the system a total weight of
roughly 32 kg. These stations have a relatively high power consumption, which is partially due to the
HydMet stations ability to constantly monitor the depths. At the same time, the high power consump-
tion makes the stations vulnerable to battery drainage at winter times when snow covers the solar panel.

It seems that these stations are designed using several standard general-purpose modules which
aren’t optimized for the specific job of the HydMet stations. Scanmatic delivers a range of equipment
to a variety of customers like Statkraft, Jernbaneverket and Statens Vegvesen to mention a few (Scan-
matic AS 2019). Instead of designing the stations from the ground up, they have probably chosen
components and setups they already are familiar with and that they know will work8. This however,
will in turn make the stations unnecessary big, heavy and expensive.

The HydMet station is a good and reliable product, but it’s just not specialized for the task de-
manded by AE.

The other depth measuring system that AE uses, the RTU500, will not be discussed here. This is
because the RTU500 is constantly connected to grid power and cabled network (ABB 2018). They are
in other words not concerned with many of the challenges relevant to this project.

3.2 Libelium

A IoT company called Libelium have developed a water measuring system called Smart Water, where
different sensors can be connected via easily available ports on the device. A range of compatible
sensors are available, like depth measurement and water quality (Libelium 2014). Smart Water is

8Note that these are only assumptions based on a look at the stations. The statements have not been confirmed, nor
denied, by Scanmatic

Page 10

Introduction and theory

intended for both companies, cities/official institutes, as well as private customers. The price of the
device ranges from 1,000 to 5,250 e, depending on the technical specifications. Also the size and weight
varies slightly with the model. Figure 5 shows one of the standard Smart Water nodes. Without any
sensors or solar panel attached, the weight of this node is 1000 grams, and the dimensions are 124 x
122 x 85 mm (Libelium 2018). This node would in other words be a lot more manageable to carry
around in the forest than the Scanmatic node.

Figure 5: The Libelium Smart Water node together with the standard solar panel. Photo: Libelium (2019).

Power is drawn from batteries, which again can be charged by a solar panels. Communication
happens via cellular network, radio drivers or WiFi, depending on the model. User interaction, like
choosing functionality, happens via a computer. A USB cable, connected to one of the outside sockets,
must be used with the first interaction (ibid.). Later interaction can be done via WiFi or 4G if the
model supports this feature. It seems that one of the reasons why this product is so popular, is because
of how user friendly it is. It’s a "plug-and-play" product that requires little technical knowledge from
the user. Nor does it seem to require hours of reading the instruction manual in order to understand
how to operate it. This user friendliness is a key element to keep in mind later on in this product
development project.

Page 11

System I: The single-node setup

Page 12

System I: The single-node setup

4 Plan, overview and choice of microcontroller

This part of the report will go through the process of designing and creating the single-node system.
Even though some requirements probably will change, and new ideas will be thought of as the project
goes along, it’s important to have a general overview of the challenges from the beginning. This way
it will be easier to know where to begin and what precautions to take. The list below is based on AE’s
requests so far, and thus presents the current main goals for the system.

• Measure depths
• Measure temperature
• Do measurements every 15 minutes
• Have a user friendly interface
• Use little power
• Be small and light
• Send data back to AE via NB-IoT
• Focus on cost, as long as it doesn’t interfere with the other goals

The parts chosen for the product should be as optimized for the job as possible. A good place to start
is by choosing which microcontroller the system will use. This is a good starting point since all other
units will be directly or indirectly in contact with the microcontroller.

4.1 Choice of microcontroller

As mentioned, AE have already had plans on exploring the possibilities of using NB-IoT for commu-
nication with remote sensors. They have therefore bought two development boards that has on-board
NB-IoT modems. These boards have until now been unused. The name of these boards are SODAQ
SARA AFF N211 (SODAQ 2018a). The SODAQ SARA AFF N211 (hereby referred to as the SODAQ
board) is depicted in figure 6. In addition to having an on-board NB-IoT modem, the SODAQ board
also includes a U.FL antenna connector, a microSIM slot, a Li-Ion battery charger and a GPS, among
others.

Figure 6: SODAQ SARA AFF N211 and some of the on-board components.

The SODAQ board uses the ARM ATSAMD21J18 microcontroller by Microchip Technology Inc.
The ARM ATSAMD21J18 (hereby referred to as SAMD21) has a 32-bit processor, 256 kB flash mem-

Page 13

System I: The single-node setup

ory, 32 kB SRAM9, and has a maximum clock frequency of 48 MHz. For comparison, the AVR
ATmega328P used in the specialization project is an 8-bit microcontroller. It has more modest speci-
fications with 32 kB flash memory, 2 kB SRAM and a maximum clock frequency of 8 MHz. Similarly
to the ATmega238P, the SAMD21 has integrated hardware for common communication protocols like
UART, I2C and SPI. On their website, SODAQ claims that this board has a power consumption of 26
µA while in low-power-mode (SODAQ 2018a).

The SODAQ board costs 930 NOK through the official web shop (SODAQ 2019). Although this
price is higher than what an equivalent microcontroller costs by itself, the combined cost of all the
components on the board wouldn’t be that much lower if bought separately. The board seems to be
of good quality, and the SAMD21 should be suited for the task. Since the SODAQ board seems like a
good platform to build this system on, it will for now be chosen for this single-node system.

4.2 Choice of programming language

The SAMD21 microcontroller on the SODAQ board comes pre-loaded with what is called an Arduino
Bootloader. This is a small script that runs on the microcontroller before entering the main program
that allows it to be flashed with a new code via its serial line (using USB for example) instead of the
six-wire10 SPI bus which it’s normally programmed through (Arduino 2019). The microcontroller also
has associated board files in the Arduino Integrated Development Environment (IDE). This combina-
tion allows the SAMD21 to be programmed in the Arduino IDE using the Arduino C++ language.
This language has the same syntax for all microcontrollers that has associated board files. So code
written for one type of microcontroller can be used on another type of microcontroller since the board
files can translate the common syntax into microcontroller specific syntax when being compiled. Since
the Arduino C++ doesn’t use microcontroller specific syntax, it’s more abstract, but at the same
time more intuitive, than the microcontroller specific syntax. The Arduino overlay is also a bit more
demanding on the processor. An operation in the Arduino language usually uses more clock ticks than
the same operation if written in the native language.

Whether the microcontroller should be programmed in native ARM-C or in the Arduino C++
language is not a straight forward question to answer. They both have their advantages and disad-
vantages. The Arduino language has it’s strength in being easy to use, and the same code can run on
other microcontrollers that are able to use the Arduino language. On the other hand, since the native
languages of microcontrollers are specific to every model, they are therefore faster and less resource
demanding than the Arduino language. It was because of the limited resources that it was decided to
program in native AVR-C on the ATmega328P in the specialization project. The difference now is that
the SAMD21 has much more resources than the ATmega328P, and in theory it should be more than
enough for a program like the one to be written here. It must also be taken into consideration that the
code might need to be adapted to new requirements after the end of this master’s thesis. If so, it will
be easier for AE to implement these changes themselves if the Arduino language is used. Because the
Arduino language is more user friendly and more adaptable, and it likely won’t have any downsides
when running on the SAMD21 in this project, the Arduino C++ will be chosen as the programming
language for the single-node system.

5 Power consumption

One of the goals for the system is that it should be able to use little power. Power consumption is
something that should be thought of throughout the entire development process. The components must

9SRAM (Static Random Access Memory) is a type of RAM.
10The SPI protocol requires only four wires for communication, but it also need two wires for the power supply.

Page 14

System I: The single-node setup

be chosen with respect to their power consumption in addition to fulfilling their primary function. The
physical setup and wiring must be made so that it allows for as little current leakage as possible, and the
code must be written to accommodate the low current leakage from the physical setup. The majority
of components, especially the power demanding ones, should be active as little time as possible to lower
the consumption. Lastly, the battery must be chosen to last the longest under the given conditions.
One should preferably also be able to remotely monitor the systems battery level.

5.1 Design strategy for reduced current leakage in peripheral units

This subsection will look into some general design strategies to lower the power consumption of both
peripheral units when not in use and the microcontroller itself. Even though a peripheral unit, for
example a temperature sensor, has been given the command to power down or be inactive, current
can still flow through it.

Figure 7: Different pin configurations allow for different amounts of leak current. Red wire indicates a high
voltage, black is low voltage, while green, purple and blue are undefined or unknown voltage states.

Drawing 1 in figure 7 shows a microcontroller connected to a peripheral unit. The GPIO pins are
left in an arbitrary state, marked with the green, purple and blue wires. This is the state the pins
were in after the last bit of communication with the unit. The peripheral unit is inactive, but current
still flows from some high voltage pins, via the peripheral unit, to some low voltage pins. Note that
the path of the current in the figure is mostly drawn at random, and that not all pins will necessarily
have current leakage. One way to gain more control is to set the GPIO pins of the microcontroller to
a defined state. Many microcontrollers, including the SAMD21, have the possibility to set the GPIO
pins to input in addition to pulling them high via an internal pull-up resistor (Microchip Technology
Inc. 2018e). This state is often recommended for unused pins as it both prevents the pin from being
left floating, and it protects the pin from short circuiting since its connected to high via a resistor,
contrary to an output state who is connected directly to a high or a low logic level voltage. This
scenario is shown in drawing 2 in figure 7. Even so, current can still flow from high to ground. A
solution to this could be to use a GPIO pin as either the main voltage supply or as ground when
active, and then set the pin to the inverse when not in use. The latter case is shown in drawing 3
in figure 7. Now there can be no leak current since all the pins have the same voltage level. Though
what might be a problem here is if the peripheral unit requires more current than what a GPIO pin of
the microcontroller can provide. The GPIOs of SAMD21 can supply and drain relatively little current
compared to other microcontrollers. As it’s only 7 mA, the previously presented solution will often not
be applicable. If this is the case, another solution can be to completely cut the main voltage supply
or the ground when the unit is not in use. This can for example be done using a MOSFET or a power
switch. This scenario is shown in drawing 4 in figure 7. Using an electrically controlled switch will
again introduce a new peripheral unit to the circuit, but these units are designed for this task and do
therefore themselves have low leak currents.

Two general strategies for reducing the current consumption of the microcontroller itself is to shut

Page 15

System I: The single-node setup

down as many internal unused features as possible since they consume power, and to avoid leaving
pins floating. Floating pins will cause an additional power consumption because they can pick up
interference that affects other internal components of the microcontroller, causing them to consume
unnecessary power (Microchip Technology Inc. 2018b).

5.2 Choice of battery and solar panel

The batteries used in most of the Scanmatic measuring stations that AE uses today are large 12 V
batteries. Since on of the goals for the system is to be small and light, these batteries will not be
considered here due to their weight and size. Several parameters must be taken into consideration
when deciding what battery to choose for an application. For a long-lifetime operation like the one
hoped to achieve here, self-discharge might be one of the most important factors to take into account.
Self-discharge is the phenomena of batteries loosing more capacity than what the active drainage would
imply (Simpson 2011). Primary lithium batteries are often considered the go-to battery for IoT appli-
cations. This is due to the superior weight to capacity ratio (University 2017), the close to constant
voltage over discharge cycle (Energizer 2018a) as well as the low self-discharge rate (Stoehr 2012).
They aren’t very costly either, costing 19 NOK per 1.5 V 3500 mAh battery (BatteriOnline 2019).

One downside of primary lithium batteries is that they aren’t rechargeable. As previously men-
tioned, the SODAQ board has an on-board charger which for example can be connected to a solar
panel. The schematics of the board shows that it uses the MCP73831 charge management controller
(Sikken 2018). According to the MCP73831’s datasheet, it has a maximum charge current of 500 mA
(Microchip Technology Inc. 2014a). Combined with for example a 1 W solar panel, a battery should
theoretically be able to charge at 300 mA during direct sunlight. This solar panel can be bought from
SODAQ’s own website for 47 NOK. Before deciding whether to use rechargeable or non-rechargeable
batteries, the solar panel should be tested to see what charging current it actually will provide in
typical Norwegian conditions. The solar panel is bought together with a 6000 mAh, 3.7 V, 235 NOK,
lithium ion polymer battery, which is compatible with the specifications of the charge management
controller (ibid.).

In early February with clouded sky, without enough direct sunlight to cast any visible shadow, the
solar panel was able to charge the battery through the SODAQ board with a current of 3.5 mA. Even
though this is much lower than the theoretical maximum charge current of 300 mA, it shows that the
solar panel and charger works even at poor conditions. Some calculations must be done in order to
figure out how much improvements the solar panel and rechargeable battery would bring compared
to the non-rechargeable primary lithium battery. Several assumptions must be made, so this is just a
rough estimate. It will be assumed that the solar panel is subjected to poor charging conditions for
five hours a day, as can be expected during the winter. The rest of the time it will not charge. This
means that the system will receive 3.5 mA for 5 hours every 24 hours. It’ll be assumed that the system
uses 50 µA during sleep (since the SODAQ board uses 36 µA in sleep by itself). Lastly the system
will be asleep for roughly 14.5 minutes every 15 minutes. During the 30 seconds of operation every
15 minutes, the system might be expected to use an average of 20 mA. So during 24 hours, the power
consumption would be:

This means that even in abnormally bad charging conditions, given that the assumptions are cor-
rect, the batteries will be able to gain 0.34 mAh during 24 hours. If this is correct, the battery will never
have to be replaced until the battery itself reaches the end of it’s lifetime. Lithium ion polymer bat-

Page 16

System I: The single-node setup

teries are often said to have a cycle life of ≥300 charge/discharge cycles (Tracer Power 2019), although
this isn’t relevant here since the battery most of the time will be fully charged. Unfortunately there
were no articles or datasheets to be found on the fully-charged lifetime of lithium ion polymer batteries.

The solar panel and lithium ion polymer battery combination seems like the best option since
it provides an "unlimited" battery life. Further tests will be done later in the project to see if the
previously stated assumptions, and thus the power consumption calculations, are correct. The battery
can easily be changed later in the project. For now, the lithium ion polymer battery and the 1 W solar
panel will be chosen as the power source.

5.3 Voltage measurement

In a remotely stationed, battery/solar powered instrument like the one being developed here, there is
an interest of knowing the state of the battery. This way it’s easy to see if and when the device needs
power-related maintenance. The battery level can also indicate other problems with the device, like a
sudden voltage drop due to a short circuit.

Figure 8: A voltage divider on the SODAQ board, used to lower the voltage from the battery so that the ADC
can read the value. Image by Sikken (2018).

As can be seen from the cut-out of the SODAQ boards’ schematics in figure 8, the battery voltage
can indirectly be read from pin PB5 (here labeled BAT_VOLT/A8) of the microcontroller. The current
from the battery flows through a voltage regulator, lowering the voltage from what ever voltage the
battery has11, down to a constant 3.3 V. A small part of the battery current also flows through the
voltage divider in figure 8. The battery voltage is here lowered to a voltage that is usually lower than
3.3 V, and this voltage is in direct contact with pin A8. Pin A8 is connected to the ADC of the
SAMD21. The ADC can read the voltage, and return the value as a number between 0 ≤ X ≤ 1023.
The maximum voltage the ADC can read is 3.3 V since this is the reference voltage. A voltage of 3.3
V on A8 means that V_BAT in figure 8 must be 3.3V × 10MΩ+4.6MΩ

10MΩ
= 4.851V . A returned value

of 0 simply means 0 V on V_BAT. A general formula to interpret the returned values from the ADC
can be written as:

V _BAT =
3.3V

1023
×

R10 +R9

R10
×ADC_V ALUE

where ADC_VALUE is the value returned by the ADC, V_BAT is the battery voltage, and the
values of R10 and R9 can be found in figure 8. In the code, this equation is implemented into the
function getBatteryVoltage(), which returns the battery voltage in the unit mV.

11The SODAQ board uses the XC6220B311MR-G voltage regulator, which has a maximum input voltage of 6 V
(TOREX SEMICONDUCTOR LTD. 2019).

Page 17

System I: The single-node setup

5.4 Current measurement

During the development process it’s useful to measure the direct current consumption of both the
system as a whole, and of single components. The UNI-T UT33D multimeter will for the most part
be used to do this measurement. One thing to note is that when trying to measure the current con-
sumption of the SODAQ board by connecting the multimeter in series with the battery, the board
often halts or resets itself. Even when setting the multimeter to "high current reading" (200 mA), the
same thing would still happen. The reason for this is most likely because the SODAQ board at times,
like at start-up, has a short sudden spike of current consumption (SODAQ 2018b). The multimeter
might not be able to handle this sudden spike, and therefore blocks the needed current to the board.
This results in the board not being able to boot properly, thus either halting or trying to reset itself.
The solution to this problem is to short the two terminals of the multimeter against one another until
the SODAQ board has booted properly. Then the two terminals can be separated and the current
consumption can be measured.

6 NB-IoT connectivity and usage

The NB-IoT modem mounted on the SODAQ board is the SARA-N2 211 produced by u-blox. The
modem is powered by setting the microcontroller’s PA27 pin (called the SARA_ENABLE pin) high,
which then activates a load switch connected to the modem. No wiring is necessary here since the
modem is already integrated on the board. However, an antenna must be connected and a SIM card
must be inserted. The antenna is connected to the u.fl. connector on the board. The telecommuni-
cations company Telia agreed to give away two NB-IoT SIM cards to be used in this project and the
time afterwards. They did so because they themselves are interested in exploring the practical usage
and possibilities of the relatively new NB-IoT technology.

6.1 Communication between the modem and the microcontroller

The SARA-N2 modem communicates with the microcontroller via the universal asynchronous receiver-
transmitter (UART) protocol. UART is a common serial communication protocol that among others
can be used to send data between the microcontroller and the serial monitor terminal window on the
computer via USB. The SODAQ board’s schematics shows that the serial ports of the modem is sepa-
rate from the serial ports of the USB. In other words; both the modem and the serial monitor terminal
window on the computer can be used at the same time. This will come in handy when writing code
for the modem, and debugging it. When initiating the UART protocol on the microcontroller, a baud
rate must be chosen. The baud rate must be agreed upon by both units, since there are no shared
clock pulse line to synchronize the communication. Thereby the word asynchronous in UART. The
modem supports several baud rates, but 9600 bps is the default baud rate, so it will be used here.

The SARA-N2 modem uses the same command set as GSM/GPRS modems and mobile phones,
namely the AT commands. AT commands are ASCII strings that are sent to the modem, where the
modem interprets the commands and performs the appropriate actions. Every command starts with
the ’AT’ prefix. For example to make the modem reboot, the command AT+NRB is used. The com-
mand AT+NUESTATS makes the modem reply with a string containing connection statistics. The
complete list of commands can be found in the modem’s command manual (u-blox 2018).

6.2 Connecting to Telia’s network

Different telecommunications companies have different settings that needs to be configured on the
modems in order to make them connect to their network. No official information from Telia were

Page 18

System I: The single-node setup

found online regarding what settings they require. However it seems that another person have con-
tacted Telia with the same question, and have posted the answer he received on a forum (Kim 2018).
These settings will be tested before alternatively contacting Telia personally if they don’t work. The
following commands will be sent to the modem in order to change the settings to try to connect with
Telia’s network:

AT+NCONFIG: "AUTOCONNECT","TRUE"
AT+NCONFIG: "CR_0354_0338_SCRAMBLING","TRUE"
AT+NCONFIG: "CR_0859_SI_AVOID","TRUE"
AT+NCONFIG: "COMBINE_ATTACH","FALSE"
AT+NCONFIG: "CELL_RESELECTION","FALSE"
AT+NCONFIG: "ENABLE_BIP","FALSE"

In addition, the command manual specifies that the following setting also should be changed to
always remain enabled (u-blox 2018):

AT+NCONFIG: "NAS_SIM_POWER_SAVING_ENABLE","TRUE"

These commands are put into the function configureModemSettingsTelia() in order to not having
to do this configuration manually for every new modem. Once the settings have been configured, they
are stored in NVRAM, a non-volatile memory on the modem. This means that they only need to be
entered once during the modems lifetime.

The settings seems to have worked to some degree. In Trondheim the connectivity has for the most
part been good. Usually contact with the network is established within 25 seconds. Although at times,
roughly once every 10 connections, the duration increases to about 120 seconds. And a few times the
registration takes more than two hours. For the final product, this amount of time is not acceptable.
So hopefully this can be improved upon. In Setesdalen (Øst-Agder, Norway), one of the places where
the final product will be deployed, the situation is a lot worse. During a four day visit there, connection
was established only once, and it had the Received signal strength indication (RSSI) of only -101 dBm.
This is quite critical since this depth measuring system is supposed to be used in this area. Due to
the seriousness of this issue, Telia is contacted directly. Telia confirms that the previously configured
settings are correct, and they don’t know what might have caused this issue. The area in Setesdalen
should have good coverage, and there have been no other reports of the network being down. Both
parties will continue to look into this issue.

6.3 Sending data and server selection

The SARA-N2 modem sends data via the NB-IoT network using the user datagram protocol (UDP).
The transmission control protocol (TCP) is not supported on these modems. Although the plan is to
eventually be able to check if the message have been received at the other end, having a UPD-only
modem is not a problem. The server can be programmed to reply to the sender after a successful
reception. If the node then receives this acknowledgement, it can continue it’s operation. Though
if no acknowledgement is received before the timeout, the node will try to send the message once
again. This will work sort of like a simulated TCP. For now, only the basic UDP procedure will be
implemented. The first step in sending a package using the modem, is to open a UDP socket. This is
done by sending the following AT command:

AT+NSOCR="DGRAM",17,42000,0

DGRAM is the socket type and 17 is the standard internet protocol definition value for UDP. These
are the only two allowed parameters here for this modem. 42000 is the listen port when receiving a

Page 19

System I: The single-node setup

message. 42000 is the default value, but it can have any value from 0 to 65535 except for 5683. The
last parameter is the receive control, where a 0 will ignore incoming messages, while a 1 will trigger
a received message indication. After this command is sent, the modem will return a socket identifier
number. This number must be referenced later in order to use the opened socket. To send data, the
following AT command is used:

AT+NSOST=[socket identifier],"[receiver IPv4 address]",[receiver port],[data size in bytes],"[data
in hex format]"

The square brackets and their contents are to be replaced with numbers in dec format, except for
the data itself, which must be in hexadecimal format. Both the IP address and the data are passed on
to the modem as character arrays. This is denoted by the quotation marks. The modem will return
a message indicating whether the message was successfully sent or not. When all the messages have
been sent, the socket can be closed using the following command:

AT+NSOCL=[socket identifier]

The data from the node needs to be sent somewhere it can be monitored by AE. The plan is
to eventually send the data into AE’s SCADA system. This is where most of AE’s data is gathered
(Bjønnes 2019). But due to the high sensitivity of the data in AE’s SCADA system, it’s very restrictive
which devices that gets to send data here. It would take a lot of time before being able to monitor the
data stream from the device if the SCADA system is to be used during the development. Because of
this, the SCADA system will not be used for now.

There are several other servers where the data can be sent. One option is to make a Python server
on a computer or Raspberry Pi. The downside of doing this is that the server would always need to be
running (while testing the sensor node). The other problem is that private internet service provider
subscriptions often has dynamic IP addresses, as is currently the case. This means that the IP address
changes from time to time. So for long term testing, this is not a good solution. Another alternative
is to use Azure, a cloud based computing platform from Microsoft (Microsoft 2019). Though the
problem with Azure is that it has poor UDP support, and as mentioned, the SARA-N2 modems only
supports UDP. Another alternative server is one that can be accessed via a site called AllThingsTalk
Maker. AllThingsTalk Maker is an IoT cloud that receives data from an IoT device, and the data can
be displayed in graphs or monitored in a live feed. This service has UDP support and is free for an
unlimited amount of time. AllThingsTalk Maker will therefore be used as a cloud server during the
development process.

Five parameters are needed to send data to AllThingsTalk. The first two are the IP address and
the port used by AllThingsTalk Maker. These are 40.68.172.187 and 8891 respectively (AllThingsTalk
2019). To identify which device the data belongs to, each device has a unique device ID and a device
token. The format looks as presented below:

Device ID: LA1Sn4yuYx16YBAABqQQnSan
Device Token: maker:4VyRL0fr22kOm01qFyHqw3gE91MahfK1Q3zEfRg0

These are the example device ID and device token given on their UDP information page. The real
device ID and device token can be found on the ’Settings’ page after creating an account. In addition
to the four parameters mentioned so far, the message must also contain the exact asset name that has
been entered on the device page of AllThingsTalk Maker. The full UDP payload for a device sending
counter = 560, voltage = 3560 [mV], depth = 2411 [mm] and connectionTime = 32 [s] would look
like this:

Page 20

System I: The single-node setup

The data is converted into a string where each single letter and each single digit of the numbers are
represented by its ASCII character in hexadecimal format. For example the number 2411 would be-
come "32343131". The number 2 in ASCII format is represented by the dec number 50, which again is
represented by the number 32 in hex. The only exception to this rule is the ’\n’ part. This must be con-
verted to 0a, which is hex for the ASCII representation of ’\n’, instead of 5c6e where 5c = \and 6e = n.

Several support functions must be written in the code in order to create one single flexible function
which will take care of the sending. It’s important that this part of the code is user friendly since AE
themselves later will use this part of the code when entering the device ID and device token for new
devices. All the asset names can now be entered as defines on the top of the code, and the values of
the assets can be entered as arguments into the function sendToAllThingsTalk(). For example like this:

#define DeviceID "My5sVHzEqwUYcit057T3DoRu"
#define DeviceToken "maker:4IxXLoJVNIZzG0lqFyyQSHtmNOs3ZSyfO2bDM3Q1"
#define Asset1 "temperature"
#define Asset2 "date"
sendToAllThingsTalk(temperatureValue, dateToday);

Up to 10 assets can be created per device as the code is now, but this can easily be expanded.
The arguments of the function has the type uint16_t, in other words maximum a 16 bit number. As
of now, this function sends data in a format that is specific to AllThingsTalk Maker. The plan is to
later on in this project make a general purpose function which sends data in a standard format; for ex-
ample JSON. The string sent to AllThingsTalk Maker is in fact in a JSON format, all except the prefix.

7 Depth measurement

The sensor AE wants to use is the OTT PLS (Bjønnes 2019). This is the same sensor that they are
using today at many of their stations. OTT PLS is a digital pressure level sensor. The sensor measures
both water pressure and atmospheric pressure in order to determine the true depth of the sensor probe.
Air pressure is measured via a tube that goes from the sensor probe, through the cable together with
the rest of the wires, up to the microcontroller.

7.1 Powering the sensor - Boost converter

The OTT PLS was also used in the specialization project. Then the sensor was powered by a separate
battery package consisting of eight 1.5 V AA batteries in series. The reason the depth sensor was

Page 21

System I: The single-node setup

Figure 9: The OTT PLS depth sensor. Photo: OTT HydroMet (2018).

powered using its own battery package is because it requires higher voltage than the rest of the sys-
tem. The sensor’s datasheet specifies an accepted operating voltage range from 9.8 V to 28 V DC. All
other sensors used only 3.3 to 5 volts. There are some disadvantages to using a separate high voltage
battery package for a system like this. The main disadvantage is that it causes extra expense, extra
weight and requires extra space. In the system being developed here, the batteries will hopefully never
be completely discharged since the batteries are connected to a solar panel. The problem if the extra
high-voltage batteries are to be included, is that they will not be able to charge and will thus eventually
discharge. The charge management controller used in the SODAQ board, the MCP73831T-2ACI, can
charge batteries up to a maximum of 4.232 V (Microchip Technology Inc. 2014b). Although simple
calculations estimates the lifetime of the high voltage batteries to be about 15 years12, it’s still an
extra factor to keep an eye out for. Lastly, some extra components would be needed to separate the
high and low voltage levels from each other.

One way to avoid having to include an extra high-voltage battery package is by using a step-up
converter (also known as a boost or buck converter). A step-up converter can convert a lower voltage
to a higher voltage. So in this case, it can take the 3.3 V used in the rest of the system and step
it up to a voltage in the desired range. This method will be tested here. If successful, it will also
be implemented. The step-up converter MT3608 is chosen for this project due to it’s power efficient
design (Xi’ an Aerosemi Technology Co. 2018). MT3608 has a soft-start feature, meaning it prevents
a large inrush current at start-up, and thus reduces it’s power consumption (RICOH Electronic 2018).
This converter can take input voltages from 2 V to 24 V, and step them up to 28 V at a maximum of
2000 mA. According to the efficiency curves in the step-up converters datasheet, the converter should
have a total efficiency of about 91% with the voltage and current drain measured for the sensor. The
depth sensor will get an input voltage of 14 V even though it can run on as little as 9.8 V. This is to
have a buffer margin to the lower limit. It will be powered by the constant 3.3 V instead of directly
from the battery voltage in order to get a constant output voltage.

12The sensor is measured to use an average of 2.5 mA while active. The active time per measurement is 8.3 seconds.
Measurements are taken every 15 minutes. The Energizer Ultimate Lithium batteries used in the spezialization project
has a capacity of roughly 3500 mAh (Energizer 2018b). The batteries also looses about 10 % of their capacity after 10
yeas due to temperature effects and self-discharge.

Page 22

System I: The single-node setup

7.2 Wiring and code

OTT PLS uses a communication protocol called SDI-12. This protocol allows for bidirectional commu-
nication via one single wire. The official SDI-12 specification documents states that the bidirectional
three-state data line has a binary state of 1 if the voltage is between -0.5 and 1 V, a binary state of
0 if the voltage is between 3.5 and 5.5 V, and is undefined between these two intervals. This could
be a problem for two reasons. The SAMD21 is a 3.3 V logic level microcontroller. So the highest
output voltage from the microcontroller is only 3.3 V. According to the official SDI-12 documents, this
is interpreted as an undefined state. The other problem is that the SDI-12 protocol allows for high
voltage levels up to 5.5 V. A voltage this high could damage the microcontroller, since it has a maxi-
mum operating voltage of 3.63 V (Microchip Technology Inc. 2018e). No further information are to be
found on using a 3.3 V logic with the OTT PLS in the datasheet, nor on the producers website. Some
forums however say that many SDI-12 sensors actually are compatible with 3.3 V microcontrollers.
Forum-posts are quite useful and are often correct, but they aren’t considered reliable sources. Both
of these potential problems must therefore be tested for. The wiring of the sensor is quite simple, as
shown in figure 10. Any GPIO pin can be used as the data pin. A MOSFET is used to completely cut
the power to both the OTT PLS and the step-up converter when they’re not in use.

Figure 10: Wiring of the OTT PLS depth sensor.

The SDI-12 protocol works a lot like the UART protocol. The biggest difference is that it uses
only a single wire for communication instead of having dedicated transmit and receive channels. The
SAMD21 microcontroller doesn’t have dedicated hardware for SDI-12 communication. Instead the
protocol must be implemented via code. Writing communication protocols from scratch can take a
lot of work. And protocols are, as the name implies, a standard. So writing one from scratch would
most likely mean doing the exact same work as someone else have done before. Therefore it’s more
time effective to reuse somebody else’s code if the licence allows it. A library called Arduino-SDI-12,
written by Kevin M. Smith, is available on GitHub (Smith 2014). This library is distributed under
the GNU Lesser Public License (LGPL 2.1), and can thus be used for the means and purposes of this
project (Free Software Foundation Inc. 2018).

Similarly as with the u-blox modem, communication here works by sending a command to the
sensor and then listen for a reply. The OTT PLS’ datasheet lists the available commands. Before
sending any commands, the sensor needs to power up. This power-up takes five seconds according to
the datasheet. So a 5000 ms delay is added after switching on the step-ups’ MOSFET. The majority

Page 23

System I: The single-node setup

of the code for the depth sensor is put into a function called getDepth(). First the string ?M! is sent.
This tells the OTT PLS to start doing the measurements. The first character in the command string
should be the sensor address. Addressing is useful if multiple SDI-12 sensors are connected to the
same pin on the same microcontroller. Though by using "?" instead of the address, all active sensors
responds to the command. Here, where there is only one SDI-12 sensor connected to the pin, there’s no
need to bother with addresses. Each OTT PLS unit can have different addresses, so by using "?", they
don’t have to be put into the code manually for each sensor. The response from the sensor after being
given this command contains the time in seconds that the sensor needs to complete the measurements.
These sensors say that they need two seconds to do the measurements. Unfortunately the resolution
of the time is in seconds, so it’s hard to say whether it only needs 2 seconds, or 2.4 seconds, or even
2.9 seconds if it doesn’t round up. The datasheet doesn’t address this issue any further either. Most
likely it only needs two seconds. And later performed tests shows that giving a delay of two seconds is
enough to complete the measurements. Though just to be sure that any problem won’t come up later,
a delay of 3000 ms is added after sending the command. As long as the extra power consumption or
the extra duration due to the added second doesn’t become a problem, it will stay this way. The next
command sent to the sensor is ?D!, which tells the sensor to send the results from it’s measurements
to the microcontroller.

Before running the code on the SAMD21, the same setup is made with an ATmega328P running
on 3.3 V. The 328P has a maximum operating voltage of 6 V (Microchip Technology Inc. 2018a). The
voltage will be measured on the bidirectional data line to see if the voltage surpasses the maximum
operating voltage of the SAMD21. Luckily the voltage seems to stay below 3.6 V the whole time. That
means that it’s safe to use the sensor with the SAMD21 without including extra components like logic
level shifters. The reply from the sensor to the microcontroller looks like this:

20022

2 + 0.105 + 20.8

It seems that the 3.3 V communication logic from the SAMD21 microcontroller to the sensor works
fine as well since the sensor responds correctly. The whole reply is stored in a character array, but
only the ’0.105’ are of interest since that’s the depth (in millimeters)13. The output format is fixed,
therefore the depth value can be extracted by knowing their position in the character array. The ASCII
number is then converted to a uint16_t dec number, and then returned by the getDepth() function.
This is the raw depth value of the sensor probe. Depth calibration will be implemented after the
implementation of the user interface in chapter 12.

8 Sleep and time keeping

The plan is to have the node take measurements and send the data back to AE once every 15 minutes.
In between these measurements, the node will enter a low power state called sleep mode. This chapter
will look at the procedure of entering sleep mode, as well as how to wake up from sleep at the desired
intervals.

8.1 Sleep mode

SAMD21 has two types of sleep mode; one called ide mode and one called standby mode. Standby
mode uses the least power, so that’s the one that will be implemented here. Page 147 of SAMD21’s
datasheet shows the steps of putting the microcontroller in standby mode (Microchip Technology Inc.

13What the rest of the numbers mean can be found in the OTT PLS’ datasheet.

Page 24

System I: The single-node setup

2018d). The system control register of the microcontroller contains a so called SLEEPDEEP bit. This
bit controls which sleep mode the microcontroller will use. Standby mode is configured by setting
this bit to 1. Now standby mode can be initiated by using the WFI (Wait For Interrupt) command.
The microcontrollers then enters sleep mode and can only be wakened by a interrupt or a reset (ARM
2007). The code looks like this:

SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
__WFI();

All clock sources except for a select few are stopped in order to save power when entering standby
mode. Also the voltage regulator is running in a low-power mode. This means that the user must
make sure that as many peripherals and clocks as possible are stopped before entering sleep mode in
order not to overload the regulator (Microchip Technology Inc. 2018d).

8.2 Internal Real Time Clock

The microcontroller is now asleep after executing the previous commands. Now the next step is to
wake the microcontroller at the right time. The SAMD21 makes it easy to keep track of the time, as
well as providing interrupt signal at the desired times. Most microcontrollers must rely on an external
real time clock (RTC) for timekeeping long term timekeeping. The SAMD21 on the other hand has an
integrated internal RTC. In addition to keeping track of the time, the RTC can send interrupt signals,
and it has a pre-configured calendar.

Setting the time, setting alarms and reading the time is done by accessing registers and performe
read/write actions. Since the SODAQ uses the Arduino bootloader and uses the same microcon-
troller as the Arduino Zero, some convenient functions for accessing these specific registers are already
written. These functions are accessible by including the RTCZero header file. A function called setA-
larmNext15Minute() is created. This function will first check the current minute and hour value, then
it will set the alarm for the next whole 15 minutes (i.e. if the time is now 09:18, the alarm will be set
at 09:30). It will then enable the alarm upon the next match of the set minute, hour and second value.
Lastly it will attach an interrupt to this alarm. This function is the last one to be called in the event
loop before the microcontroller goes to sleep. The event loop is the part of the code that will run over
and over again indefinitely. When the interrupt is triggered, the interrupt service routine will disable
the alarm before allowing the microcontroller to continue its operations.

8.3 Updating the time and time drifting

The microcontroller can use the SARA-N2 modem to acquire the time and date, and then set the time
of the RTC thereafter. The modem returns the time and date when the AT+CCLK? command is
sent, if it has a good enough connection to the network. All subroutines of acquiring and setting the
time is put into a function called getTheTime();. This function will actually serve two purposes. One
of them, as the name partially implies, is to get and set the current time and date. Secondly it will
be used to check the network connection status. Although the modem says that it is connected to the
network when performing a signal quality check (AT+CSQ), it has shown to sometimes take a couple
of seconds more before the modem is ready to send and receive messages. Since the modem needs to
receive a message before having the time and date available, it can therefore be used as an indication
for when the modem has a true contact to the network. The function will be called once for each run
of the event loop, i.e. once every 15 minutes. Only once the updated time has been acquired, the
modem will try to send the data package containing the sensor values.

The way the function works now is by looping indefinitely until the time/date have been updated.
Eventually the plan is to have a timeout on this function so that it doesn’t try to register to the

Page 25

System I: The single-node setup

network for several days straight if the network is down. Instead it should then timeout, save the
unsent package, and try to resend on the next run of the event loop. Though for now it’s interesting
to see how long time it actually will use to get a signal, and to see how the connection time varies
throughout the day and week.

One of the downsides of the internal RTC of the SAMD21 compared to other external RTCs, is that
the measured time has an increased tendency to drift. The datasheet doesn’t mention the accuracy of
the clock, but a simple test shows that the drifting is abut 0.17 seconds per hour. That’s equivalent
to about 47 parts per million. Since the plan is to update the time once every 15 minutes, this isn’t
really a problem for this depth measuring system.

9 First early stage long duration test

From February 21st to March 5th, an early stage, long duration test will be performed. The goal of
this almost two week long test is to analyze several aspects of the system. Will the system run into a
glitch and stop working after a while? Will it do the right measurements? Will it be able to send all
the data? How will the network connection time vary? How much will the battery be drained?

9.1 Setup

The test is performed indoor in a room with low humidity and a relatively constant temperature, so
there is no need to protect the electronics. Most of the wiring is similar to the one in figure 10 since
the depth sensor is the only peripheral so far. The only difference is that a battery now is connected
to the VIN and GND of the SODAQ board. Every 15 minutes, measurements will be taken and data
will be sent to AllThingsTalk Maker.

Four parameters are to be measured: Depth, connection time, voltage and the accumulated numbers
of times data have been sent. The depth sensor is placed in a small container filled with water, with
an initial depth of 102 mm. The container is left untouched for the duration of the test, so the depth
is expected to decrease slowly as the water naturally evaporates. The connection time is the time it
takes for the u-blox modem to connect to a base station and acquire the time/date. The voltage should
have been the voltage of the battery mentioned in chapter 5.2. Unfortunately this rechargeable 3.7 V
lithium ion polymer battery was unavailable at the beginning of this test. Instead three 1.5 V primary
lithium batteries in series are used. A multimeter is used to find that this battery package have an
initial voltage of 5.16 V. This voltage, even through the voltage divider, is higher than the maximum
voltage the ADC can measure, so the microcontroller will interpret it as a constant 4.85 V until it goes
below 4.85 V (see chapter 5.3). A multimeter must therefore be used at the end to see how the battery
voltage have changed. It’s important to note that this voltage won’t damage the microcontroller since
the voltage delivered to the sensor pin via the voltage divider is 5.16V × 10MΩ

14.7MΩ
= 3.51V , which is

lower than the maximum input voltage (Microchip Technology Inc. 2018e). Lastly, the counter counts
how many times the data has been sent to the server. At power-up/reset of the system, the number
starts at 1 with the first transmission. This counter will show if the system for some reason has reset
itself, or if packages have been sent but not received.

9.2 Results and analysis of the test

After 13 days, the results can now be analyzed. It seems that the microcontroller as been running
continuous without encountering glitches causing it to freeze. The graph from AllThingsTalk Maker in
figure 11 shows the data from one week of the test. The counter started at 1 with the first upload and
ended at 1155 at the last upload, before the power was deliberately cut. This shows that the counter,

Page 26

System I: The single-node setup

and thus the system, has not reset itself during the test. When zooming in on the graph and scrolling
through the days, one can see that the counter has incremented by one every time, which means that
all the uploads have been successful.

Figure 11: The graph from AllThingsTalk Maker showing seven days of the test. Each dot shows the data
averaged over one hour, while the colored area shows the minimum and maximum value.

As expected, the voltage measurement is shown to be stable, with a constant reading of 4.850 V.
As mentioned, this abnormally stable measured voltage is because of the battery being at a higher
voltage than what the microcontroller can differentiate between. The voltage now measures 5.15 V
using the same multimeter as earlier. Due to the flat voltage discharge curve of the primary lithium
batteries (Energizer 2018b), it’s hard to say how many mAh that has been used. At least it shows
that the batteries haven’t been drastically discharged.

For the most part the connection time seems to be between 8 to 23 seconds. Though there are two
interesting characteristics here. Firstly there seems to be a pattern in how long it takes to connect to
the network throughout the day. The time seems to repeat in a "wave pattern". A 24 hour graph of
this pattern is shown in figure 12. There are no clear indications as to when the time is the shortest
and the longest, since the "wave" is shifted from day to day. The other interesting characteristic is
that the connection time is usually between 8 to 23 seconds, 60 to 80 seconds or 118 to 130 seconds.
And sometimes up around 170 to 180 seconds. The connection time is rarely outside of these intervals.
One might wonder if it’s the timer keeping track of the connection time that might have a bug, making
it show numbers only in these intervals. One of few exceptions is when the connection time reached
it’s highest value of 1038 seconds. According to private conversations with Telia, the non-roaming14

connection time should never be more than 60 seconds. The long connection times experienced here
are therefore most likely a bug that should be fixed.

14When the device isn’t moving.

Page 27

System I: The single-node setup

Figure 12: The repeating wave pattern of the connection time.

The data from the depth sensor were for the most part stable, slowly decreasing from 102 mm to 72
mm. But as can be seen in the graph in figure 11, there are some major deviations. These deviations
displays the depth as a lot deeper than it should be. When studying the graph, two different patterns
can be seen. The depth is either a little more than 2000 mm, or it’s ten times plus two more than the
correct number. In the first case, if the true depth for example is 100 mm, the false data is 2010 mm.
If the correct depth is 75 mm, the false data shows 2007 mm. In the latter case, if the true depth is
68 mm, the false data would be 682 mm. These false measurements happened 11 times during the
13-day test. In other words in about 1 out of 100 measurements. False depth data is not acceptable in
a system like this where the primary purpose is to report back on this very measurement. This issue
must therefore be fixed.

10 Resolving the problems from the test

The two issues discovered in the test, being the occasional long connection time and the occasional
false depth data, must be fixed. The depth data will be looked into first since it’s the most critical.

10.1 Depth data

A potential cause of the data corruption is that the boost converter causes interference in the data line
of the depth sensor. Figure 13 shows a simplified schematics of a boost converter. A boost converter
works by rapidly switching on and off a transistor (S). Current flows through the transistor when its
base is saturated, which means that current also flows through the inductor (L) making it build up an
electric field. Then when no current flows through the transistor, the magnetic field collapses, inducing
a lesser current with a higher voltage to flow through the diode (D) before the energy gets stored in
the capacitor (C). The diode is there to prevent the current from flowing back when the transistor
opens again. For each cycle of the transistor turning on and off, the capacitor builds up more and
more charge. The rapid fluctuating magnetic field created by the coil can induce unwanted currents
in nearby wires. This unwanted induced current might interfere with the data line to such extent that

Page 28

System I: The single-node setup

the data gets corrupted.

Figure 13: Schematics of a basic boost converter. Figure is taken from Electrical Engineering Stack Exchange
(Granger 2016)

The hypothesis that the step-up converter causes interference in the data line of the depth sensor
can be tested using an oscilloscope. If the hypothesis is correct, noise in the same frequency as the
step-up’s switching frequency should be detectable on top of the 1200 bits per second communication
of the depth sensor. The MT3608 step-up converter has a constant switching frequency of 1.2 MHz.
The first test, shown in figure 14, is where the signal wire gives a constant output of 0 V. Half way
through, the step-up is activated. The wire is as close to the coil of the step-up as possible. The chart
shows a significant increase in noise. So yes, the coil does cause interference at very close range. The
interference shows to have a peak-to-peak of approximately 0.9 V.

Figure 14: A constant low signal being distorted by the step-up converter. The oscilloscope used here is the
Rohde & Schwarz RTB2004.

However when moving the wire away from the coil, the amplitude of the noise rapidly decreases.
The noise is no longer detectable at a distance of 5 mm. Figure 15 shows the actual communication
between the microcontroller and the depth sensor. Here the data wire is at a distance of approximately
5 mm away from the coil. No noise from the step-up converter can be seen. In the setup of the 13-day
test, the distance between the wires and the coil were more than 5 mm, so it seems that this is not the
cause of the issue. So a solution to the problem needs to be found somewhere else. Though it should

Page 29

System I: The single-node setup

be noted for later that all wires must have a safe distance from the coil.

Figure 15: Communication between the microcontroller and the OTT PLS depth sensor. The wires have a
distance of approximately 5 mm from coil of the step-up converter. No noise is detected.

Another possible cause of the problem might be that the SAMD21 microcontroller is a 3.3 V micro-
controller, while the SDI-12 protocol should be used with a 5 V logic (SDI-12 Support Group Technical
Committee 2017). If this is the problem, a logic level shifter can be used to convert the data signal
in between these two voltage levels. To test this hypothesis, the setup from the 13-day test is used,
except that the ATmega328P running on 5 V has replaced the SAMD21. Now the microcontroller
uses the same logic level as the one recommended by the official SDI-12 documents. Unfortunately the
problem still occurs at about the same rate.

The same setup as in the 13-day test was made once again, except this time the measurements are
to be taken once every 16 seconds, and the full response string from the sensor are to be printed to
the terminal window of the computer. After doing 1000 measurements, 14 responses were corrupted.
Figure 16 shows a typical response with corrupted data15. It seems that the corrupted response has
either added or removed characters from the supposed-to-be fixed-length response string. In figure
16, three extra characters (or symbols) has been added. The position of the depth data in the string
has been shifted, so reading the data from the position where the depth was supposed to be gives the
wrong output. The positive thing is that the corruption only happens at the beginning of each line.
The raw depth data, as well as the two "+/-" signs, never shows to get corrupted. This means that
the data still can be extracted even when the beginning of the string is corrupted. The code just needs
to be improved upon.

A new and improved getDepth() function is written, that works by exploiting a few characteristics
of the response string. If there are two, and only two "+" or "-" signs, and if the distance between
these signs are six characters, then extract and convert the characters at position 1, 3, 4 and 5 away
from the first "+" or "-" sign. If some of these criteria are not met, then the function shall return the
number 50000. This is a value that is out of range for the depth sensor itself. So if this number is

15The string "Opening SDI-12 bus..." generated by the microcontroller, not the sensor.

Page 30

System I: The single-node setup

Figure 16: Typical sample of corrupted data output from the depth sensor. Here the microcontroller has read
more characters than it was supposed to do.

returned, then the viewer of the data knows not to trust that specific measurement. Now the function
can return the correct depth even if the position of the depth data in the string has changed. After
flashing the new code and running 1000 new measurements, the function never returns a false value.
Although the root cause of the problem haven’t been solved, the practical issues of the problem have
been fixed.

10.2 Connectivity

The problem with the connectivity is that the connection time is varying more than it should. At times
it goes far beyond the 30-60 seconds that Telia said is normal. This strange behaviour might have
correlations with the long roaming time when connecting to a new base station, and the abnormally
bad connection in Setesdalen.

After doing some research online, it was found that u-blox have released a new firmware update for
their N211 modems. The update specifications reads as follows: "Faster network registration using a
roaming SIM. The first time module attempts a network registration in “automatic operator selection”
mode (AT+COPS=0), the registration procedure is completed in 1- 2 minutes." This is one of the men-
tioned problems experienced with this modem. u-blox had to be contacted via e-mail in order to get
log-in information to the firmware download site. The firmware update process works by connecting
the microcontroller to a PC via USB and flashing it with a serial pass-through sketch. This sketch
makes the microcontroller pass all the data received via USB directly onward to the u-blox modem.
Then another program on the PC sends the new firmware to the microcontroller. The whole process
takes about five minutes.

The update process were successful, and the modem confirms that the new firmware has been
installed. So far, the impressions after the update have been satisfying. Except for the first network
connection which took about 70 seconds, all connections are made within about 10 seconds with only
a few seconds variation. Prior to this update, the modem had quite the difficulty to get any network
connection in Setesdalen (see chapter 6.2). Now the results are just as good there as in Trondheim.
Connection time is at a stable 9-12 seconds, and the signal quality is mostly equivalent to what Telia’s
coverage map claims it to be. Experiences so far indicates that the firmware update have solved all
the connectivity issues.

11 Temperature measurement

As discussed in chapter 2.1, temperature affects how water flows from one location to another. It
is therefore of interest to the operators at AE to know the temperatures in addition to the water
depths/flow. Public services like www.yr.no can be used to get this information, but it’s more trou-
blesome than getting the local temperatures displayed along with the depth data in real time. A
temperature sensor will therefore be included in this system.

The temperature sensor chosen for this job is the BMP280 produced by Bosch. This is an accurate,
low powered and relatively cheap sensor. The price for the sensor mounted on a breakout board with

Page 31

System I: The single-node setup

convenient pinouts, is as little as $1. Although the sensor itself has an accuracy of ±0.01°C, the
resolution can become as fine as ±0.0003°C due to oversampling (Bosch Sensortec 2015). The peak
current consumption during measurement is only 325 µA at 3.3 V.

11.1 Wiring

This sensor can communicate using both I2C and SPI. I2C will be chosen as the communication pro-
tocol simply because it requires only two wires for communication, compared to four wires for SPI.
I2C is also a more commonly used protocol for temperature sensors. So this setup will also make it
easier to swap the temperature sensor in the future if desired. SCK and SDI of the sensor is connected
to the microcontrollers SCL and SDA pins respectively. Since the BMP280 uses so little current, the
sensor can easily be powered directly by one of the microcontrollers GPIO pins. In order to set all the
pins as input with pull-up resistors when the sensor is inactive, the ground pin of the sensor must be
connected to a GPIO pin. Pin PB1 (also labeled A1) will be chosen here as ground. The power supply
pin of the sensor, VIN, is connected directly to the 3.3 V rail. The wiring can be seen in the complete
schematics of the node, shown in appendix A.

The temperature sensor can’t be placed inside the enclosure together with the microcontroller.
The enclosure will from time to time be subjected to direct sunlight, which in turn will increase
the temperature inside the enclosure more than the surrounding air. So instead of soldering the
temperature sensor onto the board, it’s instead connected via a screw terminal.

11.2 The code

There are two operations that must be performed before reading the temperature data from the
BMP280. First some settings in the modules control register must be altered. As can be seen in the
memory map of the BMP280 in figure 17, the ctrl_meas register contains three parameters. Bit 7, 6
and 5, named osrs_t, controls the oversampling of the temperature. Bit 4, 3, and 2 controls the over-
sampling of pressure. And bit 1 and 0 controls the power mode of the device. This register will be set
to 0b00100011. Doing so gives temperature an oversampling of x1, pressure measurement is skipped
entirely, and the power mode is set to normal mode. An oversampling of x1 of the temperature gives
a resolution and accuracy of 16 bits (0.0050°C). This is accurate enough since the plan is to display
the temperature with two decimals.

Figure 17: Memory map of the BMP280. Found on page 24 in the BMP280’s datasheet (Bosch Sensortec
2015).

Secondly, the temperature data from the sensor needs to be calibrated. The BMP280 uses ana-
logue sensors to measure both the air temperature and air pressure. Although the sensing elements

Page 32

System I: The single-node setup

used in the different BMP280 devices behave roughly the same way, there are some minor differences.
Calibration is therefore needed. Three 16-bit numbers are factory programmed onto the BMP280’s
non-volatile memory which are used for this calibration. The addresses of these numbers can be found
in table 17 of the datasheet. These numbers will later be used in the compensation formula.

The 24-bit raw temperature sensor data can now be read from the three 8-bit temperature data
registers. This number is then used in the compensation formulas found on page 22 in the datasheet,
together with the three compensation parameters found earlier. The formulas are shown in figure
18. All the code for the temperature sensor is put in a function called getTemperature(). The only
exception is the powering of the sensor, which is done in the event loop.

Figure 18: The compensation formulas for calculating the correct temperature. Found on page 22 in the
BMP280’s datasheet (Bosch Sensortec 2015).

Most of the code written in this chapter is specific to this very brand of temperature sensor. If
the sensor is to be swapped for another I2C temperature sensor, the device address, register addresses,
settings and calibration formulas (if any) must be edited. This is however usually not too difficult or
time demanding if the datasheet is used properly.

12 User interface

The node should have a user interface so that the technician deploying the node can calibrate the
depth, as well as use it to check other parameters if necessary. The user interface must consist of two
basic parts; a way of getting information from the system to the user, and a way of getting information
from the user into the system. A principle to follow throughout the process is that the interface should
be as simple and easy to use as possible, while at the same time have all the required functionality.

12.1 Display

A small amount of data can be transmitted to the user via LEDs, like power status or connection
status. However a display can be used to transmit more detailed information clearly. The display that
is chosen is the SSD1306. This is a monochrome, 0.96" OLED screen, with a resolution of 128x64
pixels. It can be seen in figure 19. There are several reasons for why this screen is chosen. Firstly it
has a low power consumption. At 3.3 V it usually consumes 4-15 mA, depending on how much of the
screen is lit. The screen is also cheap, costing about 20 NOK. The display also has a convenient way of
communicating with microcontrollers by having a built in I2C driver. Where some other displays, like
the popular 1602A LCD uses up to 16 pins for communication, the I2C driver can get by with only two
pins in addition to power and ground. Wiring will almost be the same as the temperature sensor: SCL
and SDA of the display to SCL and SDA of the microcontroller respectively, and VIN to 3.3 V. The
difference is that the GPIO pins of the SAMD21 can’t provide, nor drain, enough current for the dis-

Page 33

System I: The single-node setup

play. A MOSFET will therefore be used in between the ground of the display and the common ground.

The display works by either lighting up or not lighting up pixels on the screen. Each pixel is
represented by one bit of data in the code. This way of building a picture is known as a bitmap
(Techopedia 2019). If the bit is 1, the pixel is lit up (if the inverted option is in its default state).
The library ssd1306.h by Dynda (2019) is used to ease the work of displaying images on the display.
The library includes a function that places a bitmap image of a given size on a given position on the
screen. Bitmap images can be generated using the software LCD Assistant (Kwiecień 2019). This
program takes a monochrome .bmp image file as input, and outputs the corresponding hexadecimal
bitmap representation of the image in a .txt file. The .bmp image can be created using a photo editing
program like Microsoft Paint.

A full screen image is 128x64 = 8192 bits = 1024 bytes. If every image to be displayed were
to be stored in the RAM of the microcontroller, most microcontrollers would fill up their RAM with
relatively few images. To avoid this problem, the bitmaps can instead be stored in the microcontrollers
flash memory, in which there usually is a lot more storage capacity. The 256 KB flash storage of the
SAMD21 has a maximum guaranteed write cycles of 10,000. This is due to the degradation of oxide
layers of the memory cells caused by each erase/write cycle (National Instruments 2019). Since the
flash is only written to when the microcontroller is being programmed, this will not be a problem.
Reading from flash on the other hand, which will be done a lot more often, doesn’t have a maximum
theoretical limit.

12.2 Input method

To enable user interaction, the KY-040 rotary encoder is acquired. This is a cheap (8 NOK) input
method with a practical design. It can rotate indefinitely in both directions, and it has a built-in
push-button. This 20-step rotary encoder have five pins. Two pins for constant high and low reference
voltage, two pins for determining which way the knob is being rotated and one pin for the push-
button. A good overview of the technicality and the inner workings of the encoder can be found
on henrysbench.capnfatz.com (Henry 2015). A rotary encoder doesn’t keep track of the position of
the rotor, only its movement. The code for interpreting the movement can be found in the code in
the file userInputFunctions.ino. The main procedure of this code is to read the current states of the
pins, and then see which pins change state and in what order. The programmer must also be aware
of the debouncing effect. When a connection is made or broken, like what’s happening inside the
encoder, what really happens is that the two connectors connects and disconnects rapidly within a
few milliseconds (or less) before settling at their final state (Williams 2015). Although it all happens
too fast for humans to observe it with the naked eye, the microcontroller is able to register each state
within this bouncing as separate input states.

12.3 Functionality

The primary function of the user interface is to allow the user to calibrate the depth measurements.
As discussed in chapter 2.1, the probe of the sensor is placed at an arbitrary depth, whereas the depth
of interest is the height of the water over a threshold. The change in water height the two places are
equivalent, so the microcontroller only has to calculate an offset and then add or subtract this offset
at every measurement. It would also be practical if the user could be able to check the signal quality
while moving around before deciding where to place the node. In other words; the system should have
two modes. One mode to check signal quality, and one mode to calibrate the measurements. A mode
switch is added to the circuit in order to change between the two modes.

When asked about their language preference in the user interface, AE said that Norwegian would
be nice. The whole user interface will therefore be in Norwegian.

Page 34

System I: The single-node setup

12.3.1 Calibration

If the switch is in position one (later defined as the calibrate position) before the system is powered,
the interface will go into calibration mode. Here the user will be able to use the encoder to input the
manually measured depth over the threshold. If the knob is rotated, the selected digit will change its
value. If the knob is pushed down, the next digit will be selected. The calibration screen is shown in
figure 19. The interface displayed here consists of six different bitmaps. The static text is one image,
each number is one image, and the dash below the digit being changed is one image. The screen is
refreshed each time one of these parameters are changed. It would take some time to explain the code
here, so the reader is instead recommended to look at the documented code if interested. The code
for calibrating the node can be found in the functions inputCurrentDepth() in userInputFunctions.ino
and line 226 to 245 in the main program.

Figure 19: Here the depth is being calibrated. It’s currently the second digit from the left that is being changed.
The mode switch was not implemented yet at the time this picture was taken.

After the manually measured depth has been entered by the user, the node reads the measurement
of the OTT PLS’ probes depth, and then calculates an offset and whether to add or subtract this
offset. These two parameters should be stored in a non-volatile memory so that the node doesn’t have
to be re-calibrated every time the power is cut or the node is restarted. Many microcontrollers use
EEPROM (Electrically Erasable Programmable Read-Only Memory) for storage of data that mustn’t
get lost by a reset or a power loss. Unfortunately EEPROM is a feature that the SAMD21 lacks.
Instead the flash memory can be used as a simulated EEPROM by including the FlashAsEEPROM
library (Maglie 2018). In practice these two methods works almost the same way. One must just
be aware that contrary to EEPROM, the flash memory gets erased and re-written every time the
microcontroller is flashed with a program. Two additional functions must be created in order to use
the flash memory as intended. The included library only deals with single bytes, but the depth data
needs to be stored as a uint16_t. So the functions FlashUpdate16bits() and FlashRead16bits() are
created to handle writing and reading of two-byte numbers. Now the two values can be stored in flash
memory.

12.3.2 Signal quality check

If the switch is in position two (later referred to as the normal position before the system is powered,
the modem will try to register with the network, and then the signal quality will be displayed on the

Page 35

System I: The single-node setup

screen. The position is called normal because after displaying the signal quality for five seconds, the
system is supposed to go straight down to the event loop, skipping the calibration. If the system were
to reset itself for some reason during it’s normal operation, it will show the signal quality and then go
back to normal operations. These two features are combined in order to not have to include an extra
button or a three-position button, and thus ease the user experience.

When sending the command to the modem to return the signal quality, the returned value is a
unitless number from 0 to 31 (or the number 99 if there is no connection). A table in the modems
datasheet shows how these numbers maps to the RSSI value. 0 means a quality of -113 dBm or worse,
31 means a quality of -51 dBm or better. The rest of the numbers are mapped in between these values.
Unless the user has specific experience with the SARA-N2 modems, it’s hard to understand what
these unitless numbers mean. The microcontroller will therefore be programmed to map the numbers
to their corresponding RSSI [dBm] values before displaying them on the screen. Then again, a user
without experience within telecommunication might have a hard time understanding the RSSI values
as well. A more user friendly approach is to display the signal quality as a percentage. Although dBm
isn’t a linear scale, a linear mapping gives a good enough approximation for the user to understand
how good the signal is. In some use cases, Agder Energi might actually want to display the signal
quality in terms of dBm. Both options are therefore kept in the code. Agder Energi can choose to
switch back and forth between these two displaying options by un-commenting or commenting out two
lines of code in the displaySignalStrength() function.

13 First prototype

Now that the most important features of the system have been implemented, it’s time to make the first
prototype. This prototype will be tested out in the field, subjected to the same conditions as the final
product will be subjected to. The wiring of the preliminary design have been tested and validated on
the breadboard, so the next step is to make the same circuitry on a prototype board. A waterproof
and practical enclosure will also be designed, where all the electronics can be safely placed while out
in the field.

13.1 Prototype board

A prototype board (also called a perfboard) is a thin board, usually about 1.5 mm thick, with pre-
drilled holes (Cunningham 2018). These holes have the same spacing as the holes on a breadboard, 2.54
mm, and they often have a ring of copper around them. The components are manually placed on the
board, and the connections can be made by either soldering on wires, or by making the paths directly
on the board using soldering tin. A prototype board allows the developer to test the physical layout
of the design before ordering a manufactured circuit board. A prototype board reduces the chance
of wires falling loose, compared to having the same design on a breadboard. This will be convenient
when the prototype is to be tested in the field.

The board is created as a shield that can be put directly on top of the SODAQ board as shown to
the right in figure 20. The three screw terminals serve as entrances for the depth sensor, the battery
and the temperature sensor. The solar panel will be connected via its original socket on the SODAQ
board. Since the rotary encoder is relatively tall, it’s connected to the bottom of the prototype board
so that the base of the encoder is on the same level as the SODAQ board. Two capacitor are added to
the circuit to stabilize the power delivery. One capacitor is placed between the positive battery voltage
and common ground. The other one is placed between the positive regulated 3.3 V and common
ground.

Page 36

System I: The single-node setup

Figure 20: Soldering components to the prototype board. One switch is the Mode switch, while the other one
turns on and off the power once a battery is connected. The screw terminals serve as inputs for the depth
sensor, the temperature sensor, and the battery.

13.2 Enclosure

This depth measuring system, including the prototype, shall be deployed out into the field where there
at times will be a harsh environment. The electronics must therefore be protected in a waterproof and
robust enclosure. A custom enclosure shall be made. One which is designed for the specific usage of
this system. Whether a custom made enclosure will be used for the final product is not yet decided.
For the first field testing, a pre-made industrial IP68 rated enclosure will be used. It’s likely that the
finished system will continue to use one of these pre-made enclosure for the first period. Producing
custom enclosure adds more expense to each node. If AE thinks that the pre-made enclosure works
fine, they will most likely continue to use them. The custom enclosure will be made either way in
order to show the potential of what a design from the ground up for this system could look like.

Figure 21: The 3D-model of the enclosure created using Siemens NX, and a 3D-print of it. The dimensions
are 100 mm x 100 mm, with a combined height of 52 mm.

Figure 21 shows the 3D-model of the enclosure. It’s created using Siemens NX. All parts of the
system are measured using a caliper in order to get the correct dimensions for the model. The model
measures 100 mm x 100 mm, and the two parts has a combined height of 52 mm. The part on the left
has room for the battery, as well as fasting points for cords to keep the battery in place. On the top
it has an indent going all the way around where there’s room for a gasket. In each corner there are
holes for bolts to fasten the two parts together. The right part is where the rest of the electronics is
going to be placed. The outline at the bottom shows where the microcontroller with the shield will be
placed. The circular hole is where the water resistant grommet for the depth- and temperature senor

Page 37

System I: The single-node setup

will be mounted. The extruded part next to the rectangular hole is an anchor point for the depth and
temperature sensor. By having them anchored here, the potential pulling force from the wires will be
unloaded here instead of in the screw terminals. The rectangular hole is a pass-through for the wires
to the solar panel. The solar panel itself is mounted in a groove on the backside.

A full scale version of the enclosure is 3D-printed using an Ultimaker 2+. The settings are set to
low quality since it for now only will be used for demonstration and user-testing, not field testing. The
enclosure will be shown and given demonstration of to AE in order to get feedback on the design from
the ones who will become the end-user of the product.

13.3 Field test

A thorough NB-IoT network signal quality check is performed at several important locations in Setes-
dalen. Both the standard small PCB antenna used so far, and a larger antenna in the same frequency
range is tested. Close to the main roads and in villages, the large antenna proved a little bit better, but
no major difference is seen. However on the mountains and other remote locations where the signal
quality is worse, the larger antenna performed significantly better. Some places the large antenna was
able to send messages where the small antenna couldn’t get any reception. The larger antenna will
therefore be used from this point onward.

The 3D-printed enclosure were printed for demonstration purposes only, and is therefore not suitable
for actual field testing. A pre-purchased IP68 rated box is going to be used instead. This temporary
enclosure has the dimensions 160 x 240 x 90 mm, and weighs roughly 300 grams. Holes are drilled into
the box in order to fit the IP-67 vent, the grommets for the antenna and the cables, and a hole in the
lid for the wires to the solar panel. The electronics are secured inside along side with a silica gel bag
that will absorb potential moisture. The "ready to go" prototype can be seen in figure 22. Five values
will be sent back from the field to AllThingsTalk Maker. These are the depth, the battery voltage, the
connection time, the temperature and the counter value.

The prototype is placed a few kilometers away from AE’s operations center in Brokke, Setesdalen.
This is a good location to deploy the prototype because it has easy access to one of the larger rivers.
In addition, AE already has another depth measuring station a little bit further downstream that can
be used to check if the measurements from the prototype are correct. The picture on the left in figure
23 shows the prototype where it’s been placed, calibrated, and has started it’s normal operation. The
probe of the depth sensor is placed and secured in the banks of the relatively still backwater of the
river behind the enclosure. The river flows onward to the right of the backwater. The picture to the
right in figure 23 is taken about 6 meters away from the prototype. The water height over the concrete
threshold (the weir) seen here is the height that prototype has been calibrated to match. At the time
of deployment, the height over the threshold was 110 mm.

13.4 Results from the prototype’s first week in the field

The results from the prototypes’ first week seems promising. The node has sent every package it was
supposed to at the correct time. There have been no false or corrupted depth measurements. The
connection time have always been between 9 and 11 seconds. Figure 24 shows the battery voltage from
the first week of the test. This graph shows that the battery has been charging during the day, and that
the voltage have been quite stable during the night. The graph shows that the voltage measurements
overshoots a bit during the day before getting stable during the night. This is probably because of the
constant 4.2 V output voltage of the charge regulator while the solar panel provides charging current
(Microchip Technology Inc. 2014b). Before deploying the prototype, the sleep current of the system
was measured. Measurements showed it to be 30 µA with all the peripherals connected. Although this

Page 38

System I: The single-node setup

Figure 22: The prototype inside the temporary enclosure.

power consumption is well within the acceptable range, attempts will be made to lower it even further.

One obvious mistake that was discovered after the first night in the field, was that the code was
not able to interpret negative values. The temperature the first night went down to minus 0.41°C. The
node sent this data back as the value 65495. Luckily this is an easy fix that will be changed for the
next version. The prototype will stay in the field for for as long as it seems useful.

13.5 Feedback from AE and discussion regarding further work

AE are generally pleased with the prototype (Bjønnes 2019). They especially liked how easy it was to
use, how small and light it was able to become, and that it had such a low power consumption.

Høgevold (2019), engineer at ICT and process control at AE, have some constructive feedback
regarding the 3D-printed enclosure after having tested it. Firstly, the enclosure was missing the hole
for the vent. The vent is used to make the air pressure inside the enclosure equal to the air pressure
outside. This allows the depth sensor to use its tube to compensate for atmospheric pressure. The
tube should also be pointing downwards inside the enclosure. This makes less moisture escape from

Page 39

System I: The single-node setup

Figure 23: First field test. The picture to the right shows the node mounted to a thin steel rod. The picture
to the right shows the threshold that depth measurements are calibrated to.

Figure 24: Battery voltage the first week of the test. AllThingsTalk Maker is used to display the data.

the tube into the enclosure. AE liked how small the enclosure was able to become while still fitting
all the electronics inside. In fact, it was a bit too small. A enclosure of this size gives too little room
for cold fingers without fine motor skills, which often is the case half the year. It would also be easier
to lose the node with a enclosure this small. So the enclosure should be a bit bigger. Lastly, it was
discussed whether the new big antenna should be on the inside or the outside of the enclosure. If
the antenna is on the outside, it’s less likely to be covered in snow than what the enclosure itself is.
Especially if it is pointing downward under the enclosure. The antenna will therefor be on the outside,
and the new enclosure will thus need a hole for the antenna.

Some ideas are thought of as the project goes along. For example in addition to sending data back
from the field, AE would now also like all the data to be stored locally on the sensor node. This is to
have the possibility to retrieve the data history in case something were to happen to the antenna or
the modem or some other network-related feature.

Page 40

System I: The single-node setup

At this point it’s also time to add two features that have intentionally been left out so far. These
are the network registration time-out and re-sending of unsent data. The network registration time-out
has not been implemented before because it’s interesting to see how long it takes for the modem to
connect if it’s always given an unlimited amount of time. Now that the first prototype reports back
on this matter, the timeout can be implemented for the next prototype.

14 Implementing the new ideas and requests

14.1 Connection timeout

As discussed in chapter 8.3, the getTheTime() function is used to check the network connection in
addition to updating the time and date. The timeout must therefore be implemented in this function.
In the NB-IoT’s firmware update specifications it said that the roaming connection time should be
less than two minutes. This is the time it takes to get connection if the modem switches base station.
Although the modem should be connected to the same base station the whole time after the first
connection, it might happen to switch if one station goes down for a while. The connection timeout
should therefore be set to 130 seconds, so that it will have time to reconnect to a new base station if
needed. Ten seconds is added to the two minutes as a buffer margin. The implementation is relatively
simple. A timer is started inside the function once it’s called. If it connects to the network within
130000 ms, it sets the time/date and returns 1. If not, the function returns 0. getTheTime() is renamed
getTime130sTimeout().

14.2 Re-sending unsent data

Ideally, the data from the node should be sent to a server that forwards the messages to AE’s SCADA
system, which is the plan eventually. This server will be able to send an acknowledgement message
back to the sensor node, informing it that the data has been received. As of today the data is sent
to AllThingsTalk Maker. AllThingsTalk Maker does not acknowledge received data. The node is thus
not informed whether or not a package has been successfully delivered. The criterion for saving and
re-sending data will now instead be based on whether the modem has connected successfully or not.
The functions for saving and re-sending will be the same either way. So the criterion can simply be
changed later once the server is up and running.

Two functions are created. One named storeUnsentData(), which is called if getTime130sTimeout()
returns 0. This function stores the data in an array along with a unsent status identifier. If the identifier
is 1, this set of data has not yet been sent. If it’s 0, the data has been re-sent earlier, and the content
in this position of the array can be overwritten. The other function is called sendUnsentData(), and
is called if the modem is able to connect. This data checks the array used by storeUnsentData(). If
the identifier is 1, the function sends the data and clears the identifier.

14.3 Local data logging

All the data, both the sent and the unsent, should be stored locally on the node itself so that it later
can be manually extracted. The SAMD21 microcontroller does have some memory to spare. The
program uses only 17% of the total 256 KB in-system flash memory. As of today the node produced 10
bytes of data every 15 minutes, which gives enough free flash memory for 221 days of data. This is not
enough, as the node is supposed to operate for many years without needing physical handling. Also,
extracting data from the flash memory of the microcontroller means unnecessary work as the SODAQ
board needs to be connected to a computer. A better solution is to log the data onto a commonly used
external storage unit. A relatively cheap and effective solution is to use a microSD card for storage. A

Page 41

System I: The single-node setup

microSD card breakout board can be bought for 10 NOK, and a 16 GB microSD card can be bought
for 100 NOK (OmegaVerkstedet 2019). 16 GB is more than enough for hundreds of years of storage.

The microSD module contains no drivers at all. It only provides logic level shifters, resistors, and
convenient pinouts. Communication happens directly with the card itself (SD Association 2006). SD
cards can communicate using two different protocols. One called SD and one called SPI. The SD
protocol is a lot faster, and is the one used by for example video cameras. The problem is that this
protocol is quite complex and is generally not recommended as the interface with a microcontroller.
SPI on the other hand is simple to use with microcontrollers. As mentioned in chapter 4.1, SAMD21
has dedicated hardware for this very communication protocol. With a bit rate of 6 MB/s, SPI is more
than fast enough for this project. Storing data to-, and reading data from an SD card in an organized
way is a bit tricky. It’s not as simple as handling a few registers as with the temperature sensor. A
library called SD made by SparkFun Electronics (2010) will therefore be used to handle the reading
and writing of the SD card. Using a pre-written library for more than just communication protocols
can be a bit risky because it allows external code to take control of the microcontroller. This isn’t
necessarily bad. The problem is if the code changes the configuration of registers in the microcontroller
that affects later operations, without the programmer being aware of it. One should therefore make
oneself familiar with the procedures of the code in the libraries before using them.

Data is stored onto the microSD in a .txt document in a comma separated value (CSV) format.
Each set of measurements are separated by a new line. A new .txt fil is created for each month. By
creating a new file every month, there won’t be one single large file on the card after a few years.
Opening that one large file before being able to write to it would take longer and longer time as it gets
larger. The name of the files are on the format mmyy.txt, where mm is the month and yy is the last
two digits of the year. A few functions are created to get the data in the right format for storage, but
all the read/write operations are handled by the functions in the SD library.

In an unfortunate scenario, the the microcontroller could be unable to communicate with the mi-
croSD card, or the files on the microSD card are unable to open. This could leave the microcontroller
in a waiting state, waiting for the files to open. As a fail-safe for this not to happen, the microcontroller
now writes to the file only if the microcontroller establishes contact, and if the file opens. Otherwise
it skips this part of the code.

15 Printed circuit board

Now that the prototype has been tested, the new features has been added, and everything seems to
work fine, it is time to create a printed circuit board (PCB).

A computer program called Fritzing will be used to create the PCB design. When the design is
finished, Fritzing can export the PCB files into a format that can be sent to a PCB manufacturer.
Fritzing has a part-list containing components which can be used in the PCB design. Although there
are many components in this list, and components files can be downloaded form communities and
manufacturers online, there are some components used in this project that aren’t to be found. These
components must therefore be created. Some parts must be created from scratch, while others can be
made by modifying existing parts.

15.1 Creating custom parts

The component files used in Fritzing are created using vector graphics. A free and open source vector
editor program called Inkscape will be used here. Figure 25 shows the creation of the PCB part file

Page 42

System I: The single-node setup

for a flat-laid MOSFET using Inkscape. There are three important features that are essential for the
PCB components file. These are the holes, the copper and the silkscreen. The components used in
this project are all through-hole components, meaning they have pins that goes through the board16.
The copper feature tells Fritzing where the copper pads should be and how they should look. Lastly,
the silkscreen is the visual markings on the board, which among others are used to draw the layout
of the components. The silkscreen lets the designer know how big the components are so that they
won’t be placed on top of each other. It also helps when soldering, to show where the components are
supposed to be placed.

Figure 25: The creation of a new PCB part in Inkscape. Here a laid-down MOSFET is created. The XML-
editor is the window to the right of the part.

The XML editor in Inkscape contains the code for the graphical representation of the part. This
is a useful tool when designing components. Fritzing recognizes certain names in the XML Editor as
features. Like the name "copper1" is the copper connector on the top side of the board, "copper0"
the copper connector on the bottom of the board, "silkscreen" is the outer markings of the parts etc.
The "levels" of the features in the editor are also important. For example must copper must always
be on the top level, which in Inkscape is on the bottom of the XML Editor.

When the component is finished in Inkscape, the vector graphic .svg file can be imported into
Fritzing. Here the pins and ports designed in Inkscape can be associated with corresponding pins
and ports labels in Fritzing. The final PCB design process can start once all the part files have been
created and properly imported.

15.2 Design rules and creating the PCB

A common myth in the engineering world is that the traces on a PCB never should have 90 degree
angles. This is due to the fear of electromagnetic interference caused by electron bouncing when high
frequency signals must pass sharp corners. This myth has however been proven wrong for most prac-
tical cases (Johnson 2000). If the frequency of a signal is in the 10 GHz range, unwanted noise may
occur. However since the maximum clock frequency of the MCU used in this project is 48 MHz, and no
peripheral components talk directly to each other, it’s given that none of the signals passing through

16Contrary to surface-mount components.

Page 43

System I: The single-node setup

the traces on the PCB created here will be anywhere near the "danger zone".

A PCB can have several layers. A simple PCB might only need one layer, but here there are too
many crossing connections that needs to be made for only a single layer. Having two layers greatly
helps routing. A tool called autoroute can automatically create the routes on the board. Even though
this tool works, autoroute is rarely recommended. Most of the time autoroute creates quite messy
and overly complex routes. Therefore it’s often best to do it manually. The list below presents some
criteria to take into consideration when placing the components and creating the routes.

• Convenient placement of the screw terminals.
• Encoder and switches should be easily accessible.
• The two switches should not be too close to one another to prevent that one gets flipped by

mistake.
• Traces should not go too close to coil of the step-up converter in order to not get interference.
• The main power supply should have thick tracks.
• It must be easy to insert and remove the microSD card from the reader.
• The functions of the switches and the screw terminals inputs should be labeled.

Figure 26: The design rules check have here been used to check for crossing- or too close connections. None
were found, and it says that the PCB is ready for production. The only thing missing on this PCB is the
ground fill connection all the common ground pins.

The PCB shown in figure 26 was created by following the previously presented criteria. Several
layouts were tested before concluding with this one. With the components placed as tight as prac-
tically doable, the board’s dimensions are 62 mm × 79 mm. The routes have two different colors.
Yellow routes are on the top layer of the board, while orange routes are on the bottom. Some places
the routes changes which layers they are on. This is done using a feature called vias. Vias makes a

Page 44

System I: The single-node setup

copper-filled hole between the two layers of the board. The black box with the inverted Agder Energi
logo is a silkscreen image that will be printed on the bottom side of the board. In the bottom right
corner of the microSD reader, there is a black circle. This is simply a hole where the module can be
fastened to unload some of the force from the soldered pins when inserting and ejecting cards.

A tool called Design Rules Check is used to check if routes overlap or are too close to each other.
As can be seen from figure 26, no problems are reported in this design. An observant eye will notice
that there still are some connections that have not been made yet. These are the common ground
connections. The reason they’re not connected using routes is because both the top and bottom layer
will serve as a ground plane. This is done using a tool called ground fill. Ground filling the unused
parts of the layers is a common practice since fewer connections needs to be made. Also, the ground
plane can serve as a heat sink, although this will hopefully not be necessary here since the goal is to
use little power and thus create little access heat. Before applying the ground fill, two parameters must
be set. The ground fill seeds and the ground fill keepout. Ground fill seeds are the connections which
will serve as common ground. Ground fill keepout is the buffer zone between the routes/connectors
and the ground plane. Here the ground fill keepout is set to 14 mills17. Note: figure 26 does not
display the PCB with the ground fill because the ground fill makes it hard to see some of the routes.
After the ground fill has been added, Fritzing can export the design into a format called Extended
Gerber (RS-274X) which consist of several files containing different properties of the different layers of
the PCB. These files must be compressed into a singe file (like .zip) before being sent to a manufacturer.

Figure 27: Gerbv is used to check the final design of the PCB. The top layer is to the left, the bottom layer is
to the right.

One last check should be made before sending the file to the manufacturer. A program called Gerbv
can open each single file contained in the extended gerber file, and visualizes the properties. To the
left in figure 27, Gerbv shows the top copper layer and the drill holes. Note that the middle connector
in the bottom right corner is disconnected from the rest of the common ground pins even though the
plane has a ground fill. This could be a problem. Luckily the bottom layer connects this connector to
some of the other common ground pins, which again is connected to the rest via the top layer. The
middle connector of the power switch (as seen in figure 26) at the top of the board had to be given an

17The unit mils is equal to 0.001 inches.

Page 45

System I: The single-node setup

additional trace above it in order to get it connected to common ground. This trace can be seen on
the top layer in figure 27. Things like these are important to check in programs like Gerbv.

The gerber file is uploaded to a manufacturer called JLCPCB. JLCPCB offers five 2-layered high
quality PCBs for only $2 plus shipping (JLCPCB 2019). A final check of the PCB can be performed
on their web page using the tool Gerber Viewer before placing the final order.

15.3 The finished PCBs

Five PCSs arrived after six days. All the connections on the board is tested using a multimeter, and
everything seems to be in order. The plane PCBs and a PCB with the components solders on can be
seen in figure 28. Both the PCB and the system as a whole seems to be working as intended.

Figure 28: Left: Front of the PCB. Middle: Back of the PCB. Right: The PCB with all the components
soldered on.

There are however some design choices that will be changed before ordering the next batch. These
are as follows:

• Some of the silkscreen text, like the marking of the screw terminals inputs, are too small. They
must be enlarged.

• Some of the components silkscreen markings, like the MOSFET, is a bit off. This can be changed
to fit better.

• It’s easy to inset the microSD card, but a bit more troublesome to eject it. The microSD card
module will therefore be placed so that the card is pointing out of the board.

• The encoder should be placed further down on the board so that it’s not so close to the wires
from the screw terminals.

• There haven’t been any problem with interference from the coil of the step-up converter. However
the MOSFET closest to the coil can be moved a bit further down since there is room for it.

After using the PCB for a while, a periodically occurring problem was discovered. At times the
microSD card module wouldn’t write data to the card. An attempt to solve this problem will be made
in the next chapter.

Page 46

System I: The single-node setup

16 New requests and final touches

In addition to fixing the issues discussed in the previous chapter, AE have also come up with some
additional features they would like to have implemented in the system.

16.1 Password protection

To be able to calibrate or re-calibrate the depth measurement of the stations AE are using today, the
user must enter a four digit password. AE would like this feature on this new system as well.

Figure 29: If the password is wrong, the user must wait for two seconds before being able to try again. If the
password is correct, the program goes to the calibration screen.

The previously created inputCurrentDepth() function can be used to implement this feature with
just a few tweaks. The function is duplicated, and the new copy is renamed inputPassword(). Instead
of using the user input to calibrate the depth sensor, the function will be used to input a password.
The password will be defined in the code, and can easily be changed by AE later. The inputPassword()
function is put inside a while loop with the function’s return statement as the criteria. If the password
input is correct, the function returns 1, and the program will continue to the depth calibration. If the
password is wrong, the function returns 0, and the user is displayed a wrong password screen before
being given the chance to try again. This scenario is shown in figure 29. In addition to informing the
user that the password is wrong, the wrong password screen also serves as a delay so that it will take
longer to guess the password if someone is trying to "hack" the system.

16.2 GPS

The subject of whether or not to use GPS to log the position of the nodes have been discussed with
AE before. It was decided that in order to save power, the user/operator would instead manually log
the position when the nodes are being deployed. However, now that the system has proven to charge
it’s batteries more than it’s using them, the extra one-time power consuming operation is no longer an
issue. AE would therefore like a GPS position acquisition feature included. The SODAQ board already
includes a GPS with a built in antenna, so no additional components are required to implement this
feature.

When the position of the node is changed, the depth measurements also needs re-calibration. The
GPS will therefore be activated only when the user chooses to re-calibrate the depth senor. However,
the depth measurements might need re-calibration without the node having changed its position. It
should therefore be an option to abort the position acquisition in order not to use unnecessary time.

To make the user experience more time efficient, the GPS will be powered, and thus start searching
for satellite connection before the user starts to calibrate the depth measurements. After the depth

Page 47

System I: The single-node setup

calibration is done, the user is presented with a information screen explaining how to abort the GPS
position acquisition. Tests with the GPS have shown that the GPS needs contact with six satellites or
more in order to get a reasonably accurate location (within a 10 meter radius). The microcontroller
will therefore be programmed to automatically store the location once the GPS have had contact with
six satellites for eight seconds. However, if the GPS uses an unreasonably long time to achieve contact
with six satellites, the user is given the possibility to abort the operation and instead store the less
precise location given by the current numbers of satellites. The abortion is done by flipping the mode
switch. Whether the process is aborted, or if the desired numbers of satellites is reached, the latitude
and longitude will be stored in the non-volatile flash memory. The number of satellites the GPS has
contact with are shown on the display as shown in figure 30. In the top right corner there is an image
of a satellites with some signal bars coming out of it. The number of bars will change each second,
going from zero to three before starting over again. This is to show the user that the system hasn’t
run into a glitch if the numbers of satellites hasn’t changed for a while.

Figure 30: The GPS searching for contact with satellites. If the GPS establishes contact with six satellites, or
if the user aborts the process, the current GPS data will be stored in non-volatile memory. The satellite icon
changes the numbers of bars every second.

Both latitude and longitude are represented by nine digit numbers. Having numbers this large have
implications on several other functions used in the program. The program have until now operated
using 16-bit or smaller numbers. This is however too few bits to store numbers as large as the
longitude and latitude. The numbers can of course be partitioned into several smaller numbers before
being re-assembled as a ASCII hex character array18 before being sent, but this makes the procedure
more complex than it has to be. Instead the whole program will be modified to handle up to 32-bit
numbers. 32-bit numbers can be as large as 232 = 4294967296, which is more than enough for both
the longitude and latitude.

16.3 Altitude calibration

The way the depth calibration works now is by entering the water height over a threshold at the time
of deployment. After this, the system measures the depth of the depth sensor’s probe and calculates
the offset. The possible values that can be entered are from 0 mm to 9999 mm, which is well within the
range that the water normally can be above the threshold. In addition to being able to calibrate the
depths relative to a local threshold, AE would also like to be able to calibrate the height of the water
plane relative to a global reference, namely the height above the sea level. This is of interest at some
locations. Especially at reservoirs, where the potential energy is given by the absolute water height
(minus the height of the turbines at the power plant). There are permanent markings at the locations
where this is of interest that shows the meters above sea level. So the way that AE wants to be able

18See chapter 6.3 for more information about the format.

Page 48

System I: The single-node setup

to calibrate the measurements isn’t really much different to the way it’s done now: Entering the water
height relative to some reference, being either a local or a global reference, and then calculate an offset.
However, the current calibration range is too short if the 1 mm precision is to be kept. If a node is
to be placed on top of a 2000 meter mountain, the input must contain four digits for whole meters
and three digits for millimeters. A total of seven digits are needed. Now that the whole program has
been adapted to handle 32-bit numbers (see chapter 16.2), the range can easily be extended. Though
some graphical work is needed to make the display show the extended calibration screen. To make
the calibration more intuitive, the graphical interface now says Vannhøyde nå: (Water height now:)
instead of Dybde nå: (Depth now:) when calibrating. This instruction should be easier to understand
for both reference systems.

16.4 Fixing local data logging issues

As mentioned, at times there seems to be a problem writing to the microSD card. The code is thor-
oughly examined to see if there has been some mistake here. No bugs are found in the software, so
maybe the fault is in the hardware. All conventional SD cards operates at 3.3 V (SD Association
2019), the same voltage as the SAMD21 microcontroller. The microSD card module used here has
logic level shifters and a voltage regulator to make the module compatible with 5 V microcontrollers.
Many regulators can have a varying input voltage from V OUT ≤ V IN ≤ V IN_MAX. However, it seems
that the voltage regulator used on this module, the AMS1117-3.3, must have a fixed input voltage of
around 4.8 V to give an output at around 3.3 V (Advanced Monolithic Systems 2019). This seems
to match the the characteristics of the issue, since the regulator has a hard time converting the 3.3
V when it’s expecting a higher one. To test if this is the problem, and the only problem, the voltage
regulator can simply be removed with a pincer. The regulator isn’t needed since the SODAQ board
has its own 3.3 V regulator. As shown in figure 31, the pads where the input and output terminal of
the regulator used to be can now be soldered together.

Figure 31: The voltage regulator on the microSD module can’t handle 3.3 V, nor is it needed. So it is removed
and bypassed.

Bypassing the voltage regulator seems to have worked. The data gets written to the microSD
card every time now. Although bypassing the regulator is a simple procedure, it’s still an operation
that shouldn’t be required for the final product. Instead of continuing to use these modules, a pre-
compatible module is bought. The Adafruit Micro SD Card Breakout Board is chosen since it’s from

Page 49

System I: The single-node setup

a renowned producer who uses high quality components on their breakout boards. The module itself
is more expensive than the previous one, costing 64 NOK per unit. AE sees this as a good investment.

The new module has pin-outs for both VCC, going through the the voltage regulator, and for a
direct 3.3 V pin bypassing the regulator (Adafruit 2019). VCC is the voltage common collector, a
generic term used for a positive-voltage supply. Both pins can be used to power the microSD card
since the LP298X voltage regulator on the breakout board can take input voltages down to 2.1 V
(Texas Instruments 2019). Though only voltages between 3.3 V and 16 V gets regulated down to 3.3
V. Tests with this regulator shows that there is a slight voltage drop of approximately 80 mV when
the input voltage is 3.3 V. This isn’t critical since SD cards (including microSD cards) has a operating
voltage from 2.7 to 3.6 V (SD Association 2019). However, since the 3.3 V voltage regulator on the
SODAQ board combined with both a high side and a low side capacitor have shown to provide a stable
voltage, the LP298X regulator on the Adafruit module will be bypassed in the new design by using
the 3.3 V pin on the module.

16.5 Watchdog timer

The plan was initially to use a watchdog timer (WDT) on the system. A WDT is an integrated timer
in the microcontroller that runs independently from the CPU. This timer can be activated at one point
in the code, and must be stopped or started over again later in the code. If the WDT experiences a
timeout, it’s able to reset the microcontroller, starting the whole system over. A WDT can be useful
in a system that has a tendency to freeze, or in devices that are hard to physically get to, like a
satellite. However, seeing that this system never have frozen, it’s questionable whether or not a WDT
should be included here. Even when there were problems with the local storage, the system did what
it was supposed to do by skipping the operation instead of waiting for the card to respond. And the
first field test prototype described in chapter 13.3 have been running for 67 days continuously without
encountering any errors. In theory there aren’t many downsides to using a WDT. It does use a little
extra power, but nothing more than what is manageable. However, it does introduce an extra process
that one must be aware of if new features are to be implemented in the future. This means that there
would be an extra element that could go wrong.

In other words; if the WDT isn’t needed, including it would do more harm than good. However, it’s
hard to say if it later on turns out that a WDT should have been included after all. As a compromise,
some functions and notes related to the WDT will be included in the code so that the process of
activating it at a later time will be easy if it turns out that it’s needed.

16.6 New PCB and enclosure design

Both the PCB and the enclosure design is updated based on the feedback from AE, and to accommo-
date the new features. The updated PCB and enclosure design can be seen in figure 32. Their designs
are updated with the following features:

PCB: The new microSD module is included, the microSD card is now pointing out of the board with
room below it, the smallest labeling is enlarged to become more readable, all pins and screw terminal
inputs are labeled, the encoder is moved further away from the screw terminals, the silkscreen now
match the components’ actual size better, and components are moved even further away from the coil
of the step-up converter as an extra safety margin. The new PCB has the dimensions 63 mm x 78
mm, one millimetre wider but one millimetre shorter than the previous one.

Enclosure: Generally a larger box which gives more room inside and it’s harder to lose. There are
now holes for the antenna, the vent, and the cable grommet. The antenna is pointing downwards below

Page 50

System I: The single-node setup

the box so that it won’t be covered in snow19. The vent and the atmospheric pressure compensation
tube from the depth sensor are now physically isolated from the rest of the electronics by a separate
compartment to avoid moisture. The compartment gets closed when the top and the bottom of the
enclosure are screwed together. All electronics, including the solar panel and the battery, are now
mounted in the same part of the enclosure. Lastly, the wires from the depth- and temperature sensor
now goes through a tract before reaching the screw terminals. The tract blocks the wires from getting
in the way of the rotary encoder. The dimensions of the new enclosure are 204 x 140 x 50 mm.

Figure 32: The new PCB and enclosure design.

16.7 Server update and standardization of data format

Telenor have been contacted regarding an agreement on server rental and an NB-IoT subscription.
Some of the Scanmatic HydMet stations that are being used today, sends their data via GPRS on
Telenor’s network to Telenor’s servers, before being re-transmitted to AE’s servers and then passed on
to the SCADA system. This is concidered as a secure way of sending data into the SCADA system.
The plan is to extend this agreement to also include Telenor’s NB-IoT network.

Since AllThingsTalk Maker soon no longer will be needed, there will be no need to keep sending
the data in the specific format required for this application. AE now wants the data to be sent in a
standard format that they can use without the need for further translation (Bjønnes 2019). AE have
experienced problems related to data translators before. A lot of the equipment they are using, sends
data in non-standard format that are specific to the model or the brand. Translators must therefor
be placed in between the units and the SCADA system, and in between the units themselves if two
different brands are to speak to each other. If this could be avoided in this system, it would be appre-
ciated. The JavaScript Object Notation (JSON) format is one of the data formats AE would prefer.
Information about the JSON format can be found on https://json.org.

A function called convertDataToJSON() is created, which takes the raw data as arguments and
converts them into a JSON objects. It also uses definitions defined at the top of the main code to
match the input arguments to the corresponding asset names and the values’ logarithmic factor. The
structure, as suggested by Bjønnes (ibid.), is shown in figure 33. This string is the output of the JSON
conversion function, which is then sent to another conversion function to turn the string into to the
hexadecimal representation of the ASCII characters. This ASCII hex string can now be passed as an
argument to a newly written function called NBIoTSendData(). The NBIoTSendData() function uses
three parameters; the server IP-address, the server port and the data itself. The function is created to
be more flexible and user friendly than the previously used sendToAllThingsTalk() function.

19A downward pointing and a upward pointing antenna are equivalent in terms of RF signal polarity.

Page 51

System I: The single-node setup

Figure 33: The JSON data format structure suggested by Bjønnes (2019) at AE. This type of string is the
output of the new convertDataToJSON() function.

16.8 Naming

The last thing this system is missing for now, is a name. The single-node system will hereby be called
MiniMåler’n (The small measurer). This name is chosen because it describes what the product is, it
is short, and some might even find it catchy.

17 Final results and further work

17.1 Results

A new low powered depth- and temperature measurement system for use at remote locations have
been developed in this project. This system have been given the name MiniMåler’n. MiniMåler’n
is designed with the aim to be reliable, use little power, be small and light, be easy and intuitive to
operate, while at the same time be cost-effective. The schematics of the node can be seen in figure 34,
as well as in a larger scale in appendix A.

Figure 34: The schematic of the node in the single-node system. The schematic is made using Fritzing.

Page 52

System I: The single-node setup

Communication from the field to the operations central happens via the power efficient NB-IoT
protocol. The power consumption of the device is now 16 µA during sleep, and an average of approxi-
mately 20 mA while awake. With an average connection time to the mobile network of 10 seconds, the
node is awake about 13 seconds every 15 minutes. Since the battery used as of today has a capacity
of 6000 mAh, the battery life of the system without the use of a solar panel should be two years and
two months. However, the prototype have shown that the energy calculation is positive when a solar
panel is attached.

MiniMåler’n weighs 212 grams including the battery and the solar panel. All the electronics can
fit inside the dimensions of 100 x 100 x 53 mm of the original custom designed enclosure. However,
to give more room for the operator to work inside the enclosure, and to make it easier to spot, a new
enclosure have been designed with the dimensions 140 x 204 x 53 mm. Whether this new enclosure
will be used or not, haven’t been decided yet. A pre-made IP67 rated enclosure will be used at least
for the first five nodes to be placed in the field. The combined weight of the electronics, the battery,
the solar panel and the IP67-enclosure, is 594 grams.

The user interface consists of two slide-switches, one rotary encoder which also includes a push-
button, and a display. One of the slide-switches is used to turn on and off the power to the micro-
controller, while the other one chooses which mode the system should be in. If the mode switch is
in the Calibrate position, the user must enter a password before being allowed to calibrate the depth
measurements. The password-input and the calibration is done using the rotary encoder. Once the
calibration is done, the interface will continue to a GPS information screen. If the user wants to skip
this part, he/she must slide the mode switch to the Normal position before continuing. Otherwise
the GPS will try to connect to satellites. Once the GPS has a good enough accuracy (contact with
six satellites) or the user chooses to abort half way through, the system will store the latitude and
longitude. If the user haven’t aborted the GPS search, the mode switch will still be in the Calibrate
position. The interface will tell the user to flip it back to the Normal position. Once this is done, the
display says thank you and goodbye to the user before modifying some internal settings, setting the
alarm and going to sleep. If the mode switch already is in the Normal position when the system is
powered, it will try to register with the mobile network, display the signal quality on the screen, and
then go straight into its normal operation after modifying some internal settings and setting the alarm.

The total cost for the parts to make one node is 1667 NOK. Table 1 in appendix D shows the
prize of all the components used to build one single node. Weight, dimensions and cost all excludes
the OTT PLS depth sensor and the SIM card subscription, since these must be bough separately no
matter what system is being used.

Other features on this system includes temperature measurements, local data logging to a microSD
card, date- and time stamping of data, battery voltage measurement, JSON formatting of the data,
connection timeout and re-sending of unsent data. Data such as depth measurement compensation,
latitude and longitude are stored in a non-volatile memory so that they aren’t lost if the microcon-
troller loses power or is reset.

17.2 Further plan and work

Long-term testing: Five new prototypes of MiniMåler’n, with all the features included, will be de-
ployed in Setesdalen by the end of June 2019. Hopefully the agreement with Telenor will be in place
by then. Although everything seems to be working fine with the for-now finished system, long term
testing is still required. These five new prototypes will give new insight to how the system works over
a longer period of time, through various seasons.

Page 53

System I: The single-node setup

Pre-soldered PCB: The components on the PCB shield now have to be soldered on manually.
Several manufacturers, like Seeed Studio, offers PCB assembly services. If AE are going to mass
produce this system, it might be advantageous ordering the PCB pre-soldered.

Page 54

System II: The multi-node setup

Page 55

System II: The multi-node setup

18 Plan, overview and choice of microcontrollers

This is the second depth measuring system that Agder Energi want to develop. The goal of the system
is much the same as the previous one; do depth and temperature measurements every 15 minutes and
send the data back to AE’s servers. The main difference is that this system will be able to operate
where there aren’t any mobile network reception. Although the end goal is the same, measure and
send data, the new requirements imposes new technical challenges.

The plan is to use two or more nodes in this system. One of them is the sensor node. This node
will do the measurements at the desired measuring location where there aren’t any mobile reception.
When the measurements are done, the node will send the data onward via radio communication to
a gateway node stationed at a location with mobile reception. This node will then send the data to
Agder Energi’s servers via NB-IoT. Repeaters can also be used in between the sensor and the gateway
if the distance is too long for them to communicate directly. The focus will however be on the sensor
node and gateway node for now. The list below presents criteria and challenges for the system.

• Measure depths
• Measure temperature
• Do measurements every 15 minutes
• Have a user friendly interface
• Use little power
• Be small and light
• Store data locally
• Send data from the gateway node to Agder Energi via NB-IoT

New criteria and challanges:

• Send data from the sensor node to the gateway node via radio
• Re-send data if the gateway node doesn’t acknowledge the message
• Ensure that the two nodes are synchronized at all times
• Ensure that the two nodes have contact between them
• Make the deployment procedure as convenient as possible

Some of the challenges presented here have been solved in parallel with the development of the single-
node system, since they were solvable with the same technical solutions. Unfortunately there isn’t too
much time left before the deadline of the project. The development of this multi-node system will
therefore most likely not be concluded. The ground work will however be laid down for a continuation
of the development, and further remaining work will be discussed at the end.

As with the single-node system, the process will start of by choosing an appropriate microcontroller
for the nodes.

18.1 Microcontrollers, IDE and language

The sensor node and the gateway node will have different tasks they need to perform, and they will
thus have different requirements. Both the microcontrollers as well as all other components will be
chosen separately for each node, in order to choose the ones that are most suited for the specific tasks.

18.1.1 Gateway node

The gateway node will send data back to AE via NB-IoT. The SODAQ board used in the single-node
setup, is, as previously discussed, a good NB-IoT platform. A lot of the code that has already been
written for the single-node system can probably be re-used here, either directly or with minor tweaks.
The SODAQ board, and thus the on-board SAMD21 microcontroller, will therefore be chosen for the
gateway node. Also the Arduino IDE and its compiler will be used here to program this node.

Page 56

System II: The multi-node setup

18.1.2 Sensor node

Since the sensor node will be stationed somewhere without mobile reception, there is no use for the
NB-IoT modem found on the SODAQ board. So continuing to use the SODAQ board will add an
unnecessary expense to the project. The SODAQ board will therefore not be used here. A suitable
option for the microcontroller is the ATmega328P. This is the same microcontroller as the one used
in the specialization project. The microcontroller was chosen for the specialization project because
of its low power consumption, its useful integrated hardware (UART, I2C, SPI) and its low cost (16
NOK). The 8-bit microcontroller has 32KB flash memory, 1024B EEPROM and 2KB SRAM. Using
the Arduino language and IDE along with its libraries works well for small hobby projects. However,
the microcontrollers limited resources, especially the RAM, can easily overflow when using the non-
specialized libraries for larger projects. Instead, the code can be written from scratch in the low-level
AVR-C language. By using AVR-C to write the code for this project’s specific tasks, limited resources
shouldn’t be a problem with this microcontroller. The RAM consumption was, as previously men-
tioned, reduced from 82 % to 17 % for the code in the specialization project by switching from Arduino
C++ to AVR-C. Resource usage must of course be kept in mind when writing the code in AVR-C in
order to achieve this low resource usage.

Although it’s possible to write code in AVR-C for the ATmega328P in the Arduino IDE, a better
option is to use Atmel Studio. Atmel Studio is an IDE created by Atmel (which is now a part of
Microchips Technology Inc.), the creators of the AVR microcontrollers. The advantage of using Atmel
Studio is that it has a more practical graphical interface20, it has auto-completion for the code, and
it properly highlights the microcontroller-specific syntax. Since the microcontroller doesn’t have an
Arduino bootloader, an in-system programmer must be used to flash the code onto the chip. The
in-system programmer that will be used here is the AVR Dragon. The AVR Dragon is a relatively
cheap programmer that also can be used as a debugger (Microchip Technology Inc. 2018c). The SPI
protocol (the same protocol used by the microSD card) is used to flash programs onto the microcon-
troller. Both the ATmega328P and the AVR Dragon is shown in figure 35.

Figure 35: The in-serial programmer AVR Dragon connected to the ATmega328P.

20This is a personal opinion.

Page 57

System II: The multi-node setup

Some of the code written in the specialization project can probably be re-used for this node, since
many of the peripheral units most likely will be the same. However, much work still remains. Both
the structure of the main program as well as subroutines, must be modified to fit the tasks of this
new system. Extra components for user interface, local storage, solar panel, charge controller, step-up
converter etc. that was not used in the specialization project must be introduced here.

19 Basic physical setup

The SAMD21 mounted to the SODAQ board includes all the necessary support components for the
microcontroller to work. The standalone ATmega328P on the other hand needs a couple of components
and wires to ensure a stable operation. The ATmega328P and its support components are shown in
figure 36. The 100 µF capacitor provides a stable main power voltage to the microcontroller. Pin 1
(the pin numbering starts at 1 in the bottom left corner, and increases counter clockwise) is the reset
pin. If this pin is pulled low (0V ≤ X ≤ 0.3V CC) for more than one clock cycle, the microcontroller
will reset (Microchip Technology Inc. 2018a). A 10 kΩ pull-up resistor is therefore added here, in
addition to the internal pull-up resistor which also will be activated. Pin 8 and 22 connects each side
of the board to ground. There is an internal connection between the grounds of both sides, but this
line has a 2 Ω resistance. Although it’s not much, it’s better to avoid the extra resistance if possible.
Pin 7 is the VCC, and will therefore be connected to the positive power supply. Lastly, pin 20, AVCC, is
the power supply to the internal analog-to-digital converter, and pin 21, AREF, is the ADC’s reference
voltage. These are also connected to the main power supply.

Figure 36: The basic setup of the ATmega328P. This schematic is made using Eagle.

To increase and stabilize the clock frequency, it’s normal to include a quartz crystal (often 16 MHz
as the one used by the Arduino Uno) and two 22 pF capacitors on pin 9 and 10 of the microcontroller.
Initially, the plan was to not include these components here. The microcontroller could instead use it’s
own internal 8 MHz clock, which is fast enough since none of the planned tasks are very demanding
on the processor. However, if non-synchronized communication protocols21 are to be used, i.e. UART
or SDI-12, the internal 8 MHz clock might be too off its targeted frequency for the communication to
work. The ATmega328P’s datasheet specifies that the factory calibration can only guarantee a ±10%
accuracy. UART can allow a half bit error on the last bit (Cook 2012). This means that it requires
a 5% accuracy with a 10-bit transmission word. If the factory calibration is more than 5% off, the
data will be corrupted. The plan was to not include an external crystal because it will consume some
extra power, and the standard 16 MHZ crystal would reduce the possible operating voltage range

21Where two devices communicates without a shared time pulse. An agreed upon baud rate must be used instead.

Page 58

System II: The multi-node setup

of the microcontroller as can be seen from the graph in figure 37. However, seeing that one of the
microcontrollers used in this project have been more than 5 % off in their calibration, it was decided
that it is worth including a crystal. Having to check each microcontroller and potentially having to
calibrate some of them would introduce extra work for AE in the future. An 8 MHz crystal oscillator
will be used in order to keep the high operating voltage range.

Figure 37: The accepted voltage range of the ATmega328P at different clock frequencies. The image is taken
from the ATmega328P’s datasheet (Microchip Technology Inc. 2018a).

20 Peripheral units

This chapter will discuss the choices of the peripheral units, how they are wired as well as briefly
discuss their coding for initialization and communication with the microcontroller. Several of these
aspects have been gone through more in-depth earlier. The communication with-, and wiring of the
peripherals will therefore be discussed relatively briefly here. The components presented below are the
once that have been found suiting to fulfill the requirements presented earlier. A complete schematics
of the sensor node will be presented in figure 41 in the last subsection of this chapter.

20.1 User interface

As with the single-node system, this system also needs a user interface. The same SSD1306 display and
the same KY-040 encoder will be used here. Both the gateway node and the sensor node will be given
a display, but only the sensor node will be given an encoder. This is because no calibration is needed
on the gateway. All user inputs on the gateway node can be done via the power- and mode-switches,
which will be included om both nodes.

The user interface code for the ATmega328P looks quite similar to the one on the SAMD21. The
biggest difference is how the communication protocol works "under the hood". Where the I2C on
the SAMD21 is controlled by an external library, the setup for the communication will be done from
scratch on the ATmega328P. The datasheet of the microcontroller shows which bits in which registers
to toggle to get the desired functionality. One thing to note is that the term I2C is a registered trade-
mark by Philips. Microchips Technologies have therefore avoided using this term in their datasheets.
Instead they have created a protocol called Two wire interface (TWI), which is fully compatible with
I2C. This report will continue to use the term I2C because it is the most common term used in other
literature, and because the datasheets of the peripheral units uses this name for the protocol.

Page 59

System II: The multi-node setup

Contrary to the gateway node, the sensor node don’t need a MOSFET to control the powering of
the display. The ATmega328P can deliver 20 mA through the GPIO pins, which is enough to power
the display. Instead of setting all high when the module is not in use, all pins will instead be set to low
(GND). This is because of the external RTC, as will be explained shortly. A GPIO pin will therefore
control the VIN pin of the display, while GND of the display is connected directly to the common
ground. The rest of the wiring for both the display and the encoder can be seen in the schematics in
chapter 20.8.

20.2 Real-time clock

Both the gateway node and the sensor node needs to be able to keep track of the time quite accurately.
If their clocks are synchronized, then the time window that the gateway needs to be awake to listen
for incoming messages from the sensor node can be shorter. Unlike the SAMD21, the ATmega328P
doesn’t have an internal RTC. The RTC chosen for the ATmega328P in the specialization project will
also be used here. This is the DS3231 by Maxim Integrated mounted, on a breakout board created
by Adafruit. Normal crystal oscillators will have a varying frequency with varying temperature. The
DS3231 however has an integrated temperature compensated crystal oscillator which is able to give it
an accuracy of ±3.5 parts per million from -40°C to +85°C (Maxim Integrated 2015). An integrated
calendar includes leap year compensation up to the year 2100, and the alarm can be set to trigger
a falling signal on any combination of matching seconds, minutes, hours, date, month or year. This
falling signal can then be used to trigger an interrupt on the microcontroller to for example wake it
from sleep. Communication between the RTC and the ATmega328P happens via the I2C protocol,
the same protocol used for the display.

The DS3231 can be powered from two different sources. The VIN pin on the breakout board is
the main power supply. The RTC must be powered via this pin when communication between the
microcontroller and RTC is needed. The secondary power supply is the BAT pin. When the RTC is
powered only through this pin, not the VIN, it reduces the power consumption to a minimum. This
reduces it’s power consumption from about 70 µA to about 1 µA. An important thing to note is that
the RTC by default won’t keep the oscillator running when powered only through the BAT pin, even
though it’s crucial for timekeeping. The functionality of keeping the oscillator running, must be set
manually by setting the EOSC bit to 0 in the control register.

Since the RTC needs to be powered even when it’s not directly in use, the ground pin of the RTC
must also be connected to common ground all the time. This means that the strategy of setting all
pins high when not in use, as done previously, can not be done here. Instead, all pins must be set
low except the BAT pin. This has shown to reduce the current consumption in the low power state
from 300 µA due to current leakage when all pins except ground are set high, down to the expected
1 µA when all pins except BAT are set low. Since this RTC uses the I2C communication protocol,
it means that all other devices connected to the ATmega328P via the common I2C bus must use the
same strategy by setting all pins to low when not in use.

20.3 Temperature sensor

Only the sensor node will have a temperature sensor. The sensor to be used will be the BMP280,
which were also used for the single-node system. This sensor has not yet been configured for the
ATmega328P. However now that the code for the I2C protocol have been written, and convenient
start-, send-, receive- and stop-functions have been created, it’s easy to copy the getTemperature()
function from the single-node system and replace the I2C function with the ones for the ATmega328P.
Nothing else needs to be done code-wise to get the temperature. The wiring will almost be the same
as previously, except that VCC now will be connected to a GPIO pin instead of GND. This is so that

Page 60

System II: The multi-node setup

all pins can be set to low instead of high when not in use due to the requirements from the RTC, which
uses the same I2C bus.

20.4 Depth sensor

The OTT PLS depth sensor will be used for the sensor node here as well. Since the ATmega328P
doesn’t have dedicated hardware for the SDI-12 protocol either, the protocol must be implemented via
software. Luckily, this work doesn’t have to be done from scratch. A programmer named Frank Natvi-
dad has rewritten the Arduino-SDI-12 library to work on the ATtiny85 microcontroller (Natividad
2015). The ATtiny85 also uses the AVR architecture, which means that it’s easy to rewrite Natvidad’s
modified code to work on the ATmega328P as well. Some register names and addresses needs to be
changed to correspond to the ones of the ATmega328P. Both Natvidad’s library, and the one it’s based
on, is free to modify and use as long as the modified code is shared.

The physical setup will almost be the same as with the single-node system. Since the step-up
converter already have been proved to work successfully, it will be used here as well.

20.5 GPS

Both the sensor node and the gateway node will use GPS to acquire information about their locations.
The GPS mounted on the SODAQ board will be used on the gateway node since it’s already there
and it already has been configured. The GPS to be used on the sensor node will be the same as the
one used in the specialization project. This is the FGPMMOPA6H by GlobalTop Technology Inc.,
which again is mounted on an Adafruit breakout board for easy access to it’s ports. This GPS has an
integrated 15 × 15 × 2.5 mm ceramic patch antenna (GlobalTop Technology Inc. 2011). The current
consumption of the GPS is usually between 25 and 30 mA, but the consumption will at times peak
above 40 mA. So even the ATmega328P can’t power it using it’s GPIO pins. So a MOSFET must be
included to cut the ground connection when not in use.

Communication between the GlobalTop GPS and the microcontroller happens via the UART pro-
tocol. Since the ATmega328P has integrated hardware for the UART protocol, the initial setup can
be done using the same logic as when setting up the I2C protocol. This GPS by GlobalTop doesn’t
need any input signal or commands before transmitting information to the microcontroller. When
it’s powered up, it immediately starts transmitting the available data from it’s transmit (TX) pin to
the microcontrollers receive (RX) pin. Data is sent as ASCII characters in the The National Marine
Electronics Association (NMEA) format. The NMEA data is organized in five categories, and the
information useful for this project can be found in the Recommended Minimum Navigation Informa-
tion (RMC) category. Figure 38 shows the output from the GPS, and the RMC category marked in red.

Figure 38: The data transmitted to the microcontroller by the GPS. The content in the red box is the data of
interest.

The output data is not a fixed-length string. Instead, the latitude and longitude data must be
extracted using the commas as position indicators. Once the GPS has satellite connection and the
data is valid (indicated by the ’A’ close to the end of the RMC category string), the extraction can
begin. All the code for the GPS is put inside a function called getGPSData(). This function has no

Page 61

System II: The multi-node setup

return value, but all its arguments are taken in as references. This way the global variables latitude
and longitude can be altered directly inside the function. See GPS.h and GPS.cpp for the full details
of the code.

20.6 Radio communication

The two nodes will communicate with each other using radio communication. The radio drivers that
has been chosen is the LoRa SX1276 by Semtech. These drivers uses Semtech’s patented spread spec-
trum modulation technique to provide long range communication with high interference immunity,
while at the same time use little power (Augustin et al. 2016). Self-performed tests show that these
drivers can reach a range of more than 9 km while still using omni-directional antennas22. The range
and location of this test can be seen in figure 39. Current consumption is about 120 mA when sending
and 20 mA while listening. In accordance with Fribruksforskriften (see chapter 2.3.2), the drivers can
use its maximum power of 100 mW at the compatible frequency of 870.1 MHz.

Figure 39: At a range of 9.36 km, the LoRa radio drivers were still able to communicate with each other. The
lake seen here is Vatnedalsvatn in Setesdalen.

In terms of programming, the radio driver is the most complex of all the peripheral units. The
driver uses the SPI communication protocol for communicating with the microcontroller. A protocol
which by itself is convenient to use once the initialize-, read- and write-functions has been created.
The tricky part is to figure out the proper way to handle the radio driver. A 132 page datasheet
can be downloaded from the producers product page (Semtech 2019). This datasheet presents a lot of
considerations that must be taken when initializing and using the driver. Contrary to most datasheets,
this datasheet can not simply be used as a look-up table. To understand how to operate the driver,
the datasheet must be read from start, up to page 89. Some of the content might however already be
familiar to experienced radio programmers.

On the ATmega328P, both the communication protocol and the code for handling the radio driver
will be written from scratch. The code snipped in figure 40 shows how the chosen settings for initial-
izing the LoRa radio driver on the ATmega328P.

These settings puts the driver in its most powerful and most robust (most immunity to interference)
state. It also makes the transmitting of data quite slow. Sending 16 bytes of data with these settings
takes about 1150 ms. When deciding which settings to choose, there are two factors that needs special
consideration. These are the time usage and the power usage. If these radio drivers were to be used
to for example control a drone, the time usage of each transmission would be critical. Here however,

22At 90 cm, these antennas were however longer than the 19 cm ones to be used in this system.

Page 62

System II: The multi-node setup

Figure 40: Initialization of the radio driver on the ATmega328P. The SPI_writeToLoRaRegister() function is
a routine using the SPI protocol in order to use fewer lines per LoRa-command.

one second give or take for the transmission is nothing to worry about. The most important thing is
that the message gets received. The extra power consumption from the extra second of transmission
shouldn’t be anything to worry about either if this system performs as well as the single-node system
in terms of power consumption. For the SAMD21, there exists pre-made libraries for both the SPI
protocol and for controlling the radio driver. It will use the standard Arduino SPI library as well as
a library for the radio driver called RadioHead. This library will have to be modified to include all
the functionality desired for this project. Luckily the RadioHead library is offered under a free GPL
V2 license, which means that it can be used and modified as long as the code is shared (Free Software
Foundation Inc. 2018). As with all the code written in this project, the files can be found publicly on
https://github.com/andremoa/depthStations.

20.7 Local data logging

Local data logging will only be done on the sensor node. The only additional information the gateway
node provides is its own location, which is static information. Local data logging could also happen
on the gateway node instead of on the sensor node, but then there might be a chance that data is lost
if the radio communication on one or both of the nodes breaks down for some reason.

Both the radio driver and the microSD card uses SPI for communication. This isn’t a problem since
the SPI bus allows for multiple devices to be attached at the same time. Instead of using addresses
for for choosing which device to address, like the I2C protocol does, SPI uses a chip select line (often
called slave select) to tell the devices which device the microcontroller (called the master) intends to
communicate with. The chip select line is pulled low on the active device, while the rest must be pulled
high. No functions related to storing data on the microSD card have been written yet. The microSD
module will still be included in the schematics in order to show how it can be included in the system.

20.8 Multiplexer and the complete schematics

The ATmega328P have a total of 28 pins, whereof 8 are reserved for the reset pin, the crystal oscillator,
the reference voltage, power and ground. This leaves 20 pins as GPIO pins. 20 pins are not enough
for all the peripherals to directly connect to the microcontroller. A solution to this problem is to use
a multiplexer. A multiplexer provides the ability to send one common digital input signal out to one
out of many output ports, or vice versa (Crowe and Hayes-Gill 1998). Most multiplexers, including
the CD4051B that will be used here, are designed for carrying signals, not high currents for powering

Page 63

System II: The multi-node setup

(Texas Instruments 2018b). This means that the multiplexer can’t directly be used to provide power to
the peripherals. It can however be used to give either a high or a low signal the gate of the MOSFETs,
either saturating or desaturating the MOSFETs. A multiplexer connects the chosen output pin to the
common input signal, while all other output pins are disconnected. They’re not pulled high or low.
The gate of a MOSFET must be given a high logic voltage to be saturated, or a low logic voltage to
be desaturated. Leaving the gate floating will result in an unpredictable saturation state. Since the
default state of all the MOSFETs are desaturated, the multiplexer will be used to saturate the gates
one by one, since only one can be chosen at a time. A pull-down resistor of 100 kΩ will be used to pull
the gates low when the pins would otherwise be floating. The multiplexer is given the common input
signal of 4.5 V from VCC. The resistor values are chosen to be large enough to not lead too much
current when the multiplexer connects 4.5 V to it, while at the same time be small enough keep the
MOSFETs desaturated when they’re not connected to 4.5 V.

The gateway node only needs to be connected to two peripheral units; the display and the radio
driver. A multiplexer is therefore not needed here. The schematics of the gateway node can be seen
in appendix C, while the schematics of the sensor node can be seen if figure 41, and in a larger scale
in appendix B.

Figure 41: The preliminary schematic for the sensor node. A larger format of this schematic can be found in
appendix B. The schematic is made using Fritzing.

21 Functionality and the procedure of deploying the nodes

The procedure of deploying the nodes should be made as simple and effective as possible. For the
single-node system, this was relatively easy since everything happens at one location. Here however,

Page 64

System II: The multi-node setup

there are two nodes at different locations that are going to communicate with each other. The gateway
node must be placed somewhere with mobile network coverage, while the sensor node must be at a
point of interest for depth measurements. At the same time, one must know that these two nodes are
able to communicate with each other via radio communication. The clocks of the two nodes must also
be synchronized so that both nodes will wake up from sleep at the same time every fifteen minutes.

21.1 Step 1: Placing the gateway

The gateway needs to be placed somewhere with mobile network coverage. In the same way as with
the single-node setup, the function showSignalStrength() will be used display the signal quality on
the screen. The operator will have to put the Mode switch in the Normal position before flipping the
Power switch to access this feature. A good location for the gateway should be as close as possible,
and preferably in line of sight to the desired position of the sensor node. Once a good location has
been found, the gateway can be fastened to a pole, a tree or something similar.

21.2 Step 2: Establishing continuous contact between the two nodes

AE says that the deployment of a multi-node system like this normally would require two persons; one
at each node (Bjønnes 2019). However, if this procedure could be made so that only one person were
required, it would be considered a major advantage. This is what will be attempted here.

When the gateway node has been placed in its final position, the Mode switch can be flipped into
position two, which for this system will be be called the Deployment position. This is the last time
the operator have to touch the gateway node. Once the switch is in this position, the microcontroller
will initiate the LoRa radio driver and start listening for incoming messages via the radio driver. The
sensor node can now be powered with its Mode switch also in the Deployment position23. This will
make the senor node start sending messages every two seconds via its radio driver. This message
contains the ID of the sender (sensor node), the ID of the intended receiver (gateway node) as well as
a short meaningless string of numbers, which for now are all equal to 255. When the gateway node
receives this message, it will acknowledge it with its own message.

When the sensor node receives the acknowledgement, it will display the signal quality of the re-
ceived message on the display so that the operator at all time can see whether he/she is still within
radio range of the gateway node. This screen is shown in image 42. The operator can now start
moving toward the desired location of the sensor node. The "ball" to the right on the sensor node’s
screen will rotate one position every two seconds, i.e. once every time the node is expecting to receive
a confirmation message. This is to show the user that the system hasn’t run into a glitch if it shows
the same signal quality for a longer period of time.

21.3 Step 3: Automatic clock synchronization

As previously mentioned, it’s important that the clocks of the two nodes are synchronized at all times.
Synchronization is something that the user doesn’t have to worry about at all since the system will take
care of this on its own. The acknowledgement messages that the gateway node sends while the sensor
node is being deployed, contains a time stamp. Upon the reception of the first valid acknowledgement
message, i.e. a message that passes the cyclic redundancy check (CRC), the sensor node will set it’s
RTC equal to this time stamp plus one second, due to the time it takes to transmit the message. All
following time stamps received while being deployed will be ignored since the time is already set.

23The mode switch on the sensor node is for now only a wire that is either disconnected from-, or connected to common
ground.

Page 65

System II: The multi-node setup

Figure 42: The radio driver on the sensor node (barely showing to the top right) is here communicating with
the radio driver on the gateway node, located in another room about 15 meters away. A simple wire antenna
is used. The signal strength is updated once per second. The power rail of the breadboard can be connected
to a battery, and the whole node can then be moved around to see how the signal quality changes.

When the nodes goes into their normal operation after the deployment, the sensor node will update
its RTC once every 15 minutes. After the sensor node has sent its sensor data to the gateway node,
the gateway node will acknowledge that it has received the data. This acknowledgement contains the
updated time stamp. If the acknowledgement message passes the CRC, the clock of the RTC on the
sensor node will be updated.

21.4 Step 4: Remotely putting the gateway node into its normal operation

Once the operator has reached/found a final location for the sensor node, there is no longer a need
for the gateway node to continuously keep listening for messages. The operator can now flip the Mode
switch of the sensor node from Deploy to Normal. The meaningless string of numbers that has been sent
to the gateway node until now, are changed to a defined string of numbers that both nodes are aware
of. When the gateway node receives this string, it will acknowledge that it has received it, then listen
for 10 more seconds, before setting its alarm for the next whole 15 minute and go into sleep mode. The
gateway listens for 10 seconds after acknowledging the message in case the acknowledgement weren’t
received by the sensor node, and the sensor node tries to send the same message again. The sensor
node will send the go-to-normal-operation-message until it has received the acknowledgement, or until
it hasn’t received an acknowledgement for five turns. One weakness of this procedure is if the gateway
node don’t receive any of the five go-to-normal-operation-messages. Then it will keep on listening after
the sensor node is done sending. The sensor node could of course acknowledge the acknowledgement,
but then the gateway node should acknowledge the acknowledgement of the acknowledgement etc. The
two nodes can’t bi-laterally know that the other node knows what it knows. On the other hand, if one
node sends five messages in a row which the other node can’t receive, they are probably too far apart
in the given terrain, and one of them should thus be moved. As a final safety, the gateway node will
always go into its normal operation if it has been one hour since the last received message.

Page 66

System II: The multi-node setup

Figure 43: The sensor node sends a command to the gateway node to stop listening for/acknowledging messages.
The gateway node will acknowledge this command, listen for 10 more seconds, then enter its event loop. The
sensor node can now continue to the depth calibration.

21.5 Step 5: Depth measurement calibration and GPS

After the sensor node has told the gateway node to stop continuously listening for messages, and the
depth sensor probe has been placed in the water, the depth measurement can be calibrated. This will
happen the same way as with the single-node system. The code is a bit difference since it happens on
another microcontroller, but from the user’s perspective it looks all the same.

When the depth measurement calibration is done, the microcontroller will search for a GPS signal
and get the position. Also this will to the user look the same as on the single-node system. The
acquisition can be aborted by flipping the Mode switch back and forth. Where the GPS data on the
SAMD21 are stored in simulated EEPROM in Flash, the data is here stored in actual EEPROM.

21.6 Step 6: Normal operation

If the Mode switch is in the correct (Normal) position, and the GPS has stored its data, the node sets
the alarm of the RTC for the next whole 15 minutes and then goes to sleep.

22 Preliminary results and further work

22.1 Preliminary results

Unfortunately there is not enough time to conclude the work on this multi-node system. The de-
ployment procedure as described in the previous chapter, is finished, all except for a proper GPS
implementation. Improvements to the procedure can be made. This will be discussed in the next
subsection. Though for now it now works as intended.

The sensor node of this multi-node system uses the ATmega328P microcontroller. In sleep mode,
the sensor node uses 4 µA. The microcontroller alone have been registered to use 2 µA in sleep mode,
so there is a tiny bit of current leakage somewhere. Many of the components used to make this node
are the same as the ones used for the previous system. This includes the display, the encoder and the
local storage module, the step-up converter and the temperature sensor. The DS3231 external RTC is
used for timekeeping and to initiate an interrupt at the desired times. The SX1276 LoRa radio driver
is used for communication with the gateway node.

Page 67

System II: The multi-node setup

The gateway node uses the same SODAQ board, and thus the same SAMD21 microcontroller as
the node in the single-node system. Several important subroutines for this system have not been im-
plemented yet. This includes routines for lowering the power consumption. The current consumption
in sleep mode of this node is measured to be 35 µA. In addition to support components like switches,
MOSFETs and capacitors, this node uses only two peripheral modules. These are the SSD1306 dispaly,
and the SX1276 LoRa radio driver.

Some routines for the two node’s event loops have been written. This includes functions for handling
the time and alarm, general purpose sending and receiving functions of data using the radio driver,
temperature measurement and depth measurement. These functions have yet to be implemented into
the main program.

22.2 Further work

Finish the code and test for stability: The code for both the sensor node and the gateway node
of the multi-node system is still unfinished. Although some subroutines for the event-loops of the two
nodes have been written, much work still remains. This includes designing the structure and function-
ality of the event-loops, and writing the necessary subroutines to archive this functionality if they have
not already been written. The routines that have been written, have yet to be tested for stability in
order to find out how well they perform over a longer period of time, and how they perform together
in a complete program.

Replace the multiplexer: A high load multiplexer can be used to replace the multiplexer used on the
sensor node. The difference between these two multiplexers is that the high load multiplexer can lead
high currents, often a few amps (Texas Instruments 2018a). A high load multiplexer would probably
be a better suited component than the one used now, since it can directly connect the main power
supply of the components to VCC, and thus also make the MOSFETs redundant.

Charging and battery level indication: As the physical setup is now, the sensor node is not
compatible with solar panel charging like the gateway node is. A charge management controller and
required supporting components can be included in the setup to make this possible. The sensor node
can’t read the battery voltage either as of today. There are two reasons for this. Firstly, there aren’t
any unused pins left on the microcontroller. A power switch, as described earlier, can be used to
free one of the ATmega328P’s analogue ADC pins. Secondly, the ADC reference voltage pin on the
ATmega328P isn’t fed with any constant reference voltage. This is however easy to fix since several
of the peripheral units, like the microSD card module, has a pin-out for the constant 3.3 V from the
on-board voltage regulator. The ADC can then be used to read the battery voltage via a voltage
divider, in the same way as on the SODAQ board.

Improved placement procedure: In hindsight, it would probably be better to place the sensor node
before placing the gateway node. There is often a specific location where it’s the most convenient to
do the depth measurements, while the placement of the gateway node is more flexible. The procedure
of placing the nodes could therefore be reverted so that the sensor node is placed first. Or maybe even
better; a feature where the operator chooses which node to place first could be implemented.

Physical design: All the wiring of the components are now done using breadboards. A robust physi-
cal design, including a PCB desing, must be created. The circuitry for the gateway node can probably
be made as a shield, like with the single-node system. The sensor node on the other hand has a more
flexible design since all the components for the system can be included directly on the PCB (excluding
the battery, the solar panel, the depth sensor and the temperature sensor.). If AE chooses to produce
the custom made enclosures for the single-node system, custom enclosures can be made for this system
as well.

Page 68

System II: The multi-node setup

Create repeaters: The distance from some desired locations of depth measurement might be in too
tough terrain or be too far away from an area with mobile reception for the radio drivers to be able
to communicate directly with each other. If this is the case, a repeater, or even several repeaters, can
be placed in between the two nodes to receive and re-transmit the data. It would therefore be an
improvement to the system if compatible repeaters were created.

Page 69

Discussion and conclusion

Page 70

Discussion and conclusion

23 Discussion and conclusion

The aim of this master’s thesis was to develop a reliable, low powered, user friendly, cheap, small and
light depth measuring system for use at remote locations. Agder Energi wanted this system so they
could supplement, and to some degree replace, the large, heavy and expensive stations they are using
today. By having cheaper and smaller measuring stations, AE can do measurements at more locations
than they were able to before (Bjønnes 2019). This will in turn make the operators at AE’s control
central able to regulate the water flow in the rivers more precisely than they used to. Better regulation
of water flow is good for both AE and the community/environment. AE will be able to release less
excess water from their dams, staying closer to the healthy lower limit set by NVE, thus being able to
send more water through their turbines to increase their power production. AE will also be less likely
to breach the lower limit due to their improved overview. Lastly, AE will be better suited to actively
prevent flood by acting upon the larger quantity of data available.

The choices made during this development project have been discussed in details throughout the
report. This chapter will not repeat this discussion. It will rather discuss based upon the results from
the project.

Setups
Two different setups have been under development. A single-node system which is able to operate
where mobile network communication is available, and a multi-node system that should be able to op-
erate outside the coverage area of mobile network communication. The single-node system was AE’s
top priority, while the multi-node system was to be worked on if there were time after the development
of the first-priority system. The work on the single-node system is concluded, while the multi-node
system is still unfinished. Since only the single-node system have proper results to discuss, it is the only
system that will be discussed here. Some of the topics can however relate to both systems. The dis-
cussion of the multi-node system alone is for the most part covered under Further work in chapter 22.2.

The node of the single-node system have been named MiniMåler’n. Although long term testing
still remains before a proper conclusion can be drawn on how the final version of the system performs,
the preliminary results looks promising.

Reliability
As previously mentioned, the finished system still requires long term testing throughout various seasons
in order to determine how well it works. During an early stage test, there were some issues regard-
ing false depth measurements and long network registration times. These issues do however seem to
have been solved. After fixing the issues as discussed in chapter 10, they have never appeared since.
The first field prototype have now been running for 67 days straight without loosing any message or
sending wrong depth data. The connection time is usually between 9 to 11 seconds, with a maximum
of about 20 seconds once or twice a week. There were some issues with the temperature data on the
field prototype when the temperature went below zero. The temperature was then shown to be very
high. This wasn’t actually a false measurement. It was merely because the microcontroller wasn’t
programmed to handle two’s complement representation of negative numbers. This issue have been
resolved for the later prototypes.

The final version of the system have only been tested for shorter periods of time. No false data, nor
any other glitches or bugs, have been registered so far. Five nodes of the final version of MiniMåler’n
will be deployed into the field by the end of June 2019. More data regarding this subject will be
available after this.

Power consumption
Power consumption have been an important aspect of the system, and a focus have been directed

Page 71

Discussion and conclusion

toward reducing the consumption as much as possible. MiniMåler’n has shown to have a power con-
sumption of 16 µA while in sleep mode. This is actually lower than what SODAQ themselves reported
the sleep current of the board alone to be (SODAQ 2018a). The most likely explanation for this is
the fact that the pins of the microcontroller are given a defined pin state instead of being left float-
ing. Having a defined pin state has proved to reduce current consumption (Microchip Technology Inc.
2018b). The example sketch SODAQ was using to demonstrate the power consumption, did not define
most pin states.

The long-running field prototype shows that the node gets charged by the solar panel more than
the power it uses. After being charged the first week, the battery level have been full and stable
since. Calculations with the measured current consumption shows that the battery of the node will
last for about two years and two months using the 6000 mAh lithium ion polymer battery, without
being charged by a solar panel. One of the downsides with the HydMet stations from Scanmatic is
that they sometimes experiences power-downs during the winter because their solar panels are covered
with snow. This is an issue that shouldn’t be relevant to MiniMåler’n since it can operate on battery
power alone for a longer period of time than there is snow during the winter.

User experience
The user interface have been designed with the aim of being easy and intuitive to operate. This goes
for both the navigation on the display, and the physical handling of the device. All user interaction
happens via two slide-switches and one rotary encoder which includes a push-button. The system
communicates with the user via a 0.69" OLED display. The goal seems to have been accomplished
since AE finds the interface convenient to use. One drawback if the system ever is going to be sold to
a consumer market, is that layout of the interface isn’t exactly pretty. Both the display, the buttons
and the encoder is located so the user can see much of the open electronics of the system while using
the interface. Though this shouldn’t be of any concern as long as AE is the only one using the system.

User experience extends further than just the interface on the node. The fact that data can be sent
in a standard, universally used format, is seen as a major advantage. AE have experienced issues with
different equipment using different data formats (Bjønnes 2019). Translator units are often needed in
between equipment and the control central, as well as in between equipment that needs to communi-
cate with each other. This translation can at times cause trouble. Also the Scanmatic stations that
AE are using today, needs translation by a Scanmatic software before being usable by AE. The data
sent from the system developed here is on the standard JSON format. A format that can be read by
the software AE already are using.

Further comparison to other systems
The Libelium’s Smart Water nodes have a smaller volume than what is practically convenient with
MiniMåler’n as of today. This is because user interaction, like using the interface or connection exter-
nal sensors, must be done from the inside of MiniMåler’ns enclosure. With Smart Water on the other
hand, almost all interaction happens from the outside of the enclosure (Libelium 2018). Though at
594 grams including battery, solar panel and enclosure, MiniMåler’n weighs a bit less than the 1 kg
Smart Water node. Both nodes do however weigh considerably less than the 32 kg HydMet node.

Just like MiniMåler’n, the HydMet stations sends data from the field to Agder Energi at certain
intervals. The main difference between these two systems regarding this subject is that MiniMåler’n
does measurements once every 15 minutes and sends the data back right afterwards, while the Hy-
dMet stations can continuously monitor the depths before sending a sample of the measurements at
given intervals. This adaptable interval is often set to be once per hour. Being able to continuously
monitor the depth, as well as having an adaptable transmit-interval, could be an advantage. If the
depth is changing very rapidly, the HydMet stations can give a data series with a higher resolution.
For monitoring the depths of rivers and reservoirs however, a 15 minute resolution is usually more

Page 72

Discussion and conclusion

than good enough for AE (Bjønnes 2019). When monitoring the data from the first field prototype,
which is still operating, one can see that the depth is usually changing quite slowly. One exception
was during heavy rainfall and snow melting on May 21st. At times the depth changed by as much as
27 mm during 15 minutes. Continuous measurement could be interesting at times like these, but it is
however not a necessity.

The price of one MiniMåler’n node is 1667 NOK, which is less than both the 55,000 to 115,000
NOK HydMet node and the 1,000 to 5,250 e Smart Water node. Some of these savings does of course
come from the fact that there have been no additional development or marketing cost, and no profit
margin, when creating this system. AE will now own this depth measurement system, so there will
be no second or third party costs that needs to be covered other than to the retailers of the required
components. Owning the entirety of the system has both advantages and disadvantages. The advan-
tage is, as just discussed, the cost. Owning the system also means access to the source code of the
microcontroller, making it possible to adapt the features of the system. However, if AE chooses to
continue to use the HydMet stations, or chooses to buy the Smart Water system or any other depth
measuring system on the market for that sake, they will get a finished and complete product that
has customer support if anything is to go wrong. If anything goes wrong with the system they own
themselves, AE is the one that needs to find a solution to the problem.

Adaptability
In later discussions with AE, they said that they have thoughts about using the basic design and
framework of MiniMåler’n to develop other measurement systems. For example snow measurement,
which today is done manually. Doing so does require knowledge in both programming and electronics.
AE does however have skilled people within these fields, so expanding upon the framework of the
single-node system is achievable.

Concluding words
Agder Energi wanted to create their own measuring station suited for their specific needs. Whereas
stations like HydMet and Smart Water are designed to suit different customers with different needs,
the system developed in this master’s thesis does exactly what AE needs it to do. Nothing more,
nothing less. If AE want to add new features, they have the possibility to do so in an even greater
extent than with a purchased system. They do however have to arrange for this adaptation themselves.
The fact that this system is designed to fulfill AE’s exact needs, is an important part to why it was
able to become so cheap, small and power efficient as it is.

AE is pleased with the results from this project. Although the multi-node system isn’t finished,
the ground work for the continuation has been laid down. The single-node system on the other hand,
is finished, and long term test of the final setup will show if it performs as well over time as the
preliminary results indicates.

Page 73

References

3GPP (2019). About 3GPP. url: https://www.3gpp.org/about-3gpp.
ABB (2018). RTU500 series Intelligence distributed across your power grid. url: https://new.abb.

com/substation-automation/products/remote-terminal-units.
Adafruit (2019). adafruitproductsschem.png. url: https://learn.adafruit.com/assets/35635.
Advanced Monolithic Systems (2019). “Adjustable/Fixed Low Dropout Linear Regulator”. In: url:

https://static.chipdip.ru/lib/552/DOC001552809.pdf.
Agder Energi (2018). Om Agder Energi. url: https://www.ae.no/konsernet/.
AllThingsTalk (2019). UDP Messaging API. url: https://docs.allthingstalk.com/developers/

api/udp-messaging/.
Arduino (2019). Bootloader Development. url: https://www.arduino.cc/en/Hacking/Bootloader?

from=Tutorial.Bootloader.
ARM (2007). “Application Note 179 Cortex™-M3 Embedded Software Development”. In: p. 147. url:

http://infocenter.arm.com/help/topic/com.arm.doc.dai0179b/AppsNote179.pdf.
Augustin, Aloÿs et al. (2016). “A Study of LoRa: Long Range Low Power Networks for the Internet

of Things”. In: Sensors 16.
Austrud, Bjørn (2018). Agder Energi Kraftforvaltning. Personal communication.
BatteriOnline (2019). Energizer Ultimate Lithium L91 / AA B2B Batterier (10 Stk. Pakning). url:

https://batterionline.no/energizer-lithium-l91-aa-b2b-batterier-10-stk-pakning?

gclid=CjwKCAjw8e7mBRBsEiwAPVxxiB5V0iNMis-wgIa0kiRDmWFmtjMpjfjSACyF-Vf87F8ZFWyAQ-

CzIhoC8wsQAvD_BwE.
Bjønnes, Trym (2019). System engineer and Process control at Agder Energi Vannkraft AS. Personal

communication.
Bosch Sensortec (2015). “BMP280 Digital Pressure Sensor”. In: url: https://ae-bst.resource.

bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001.pdf.
Chisholm, John (2014). “What is co-design?” In: Design For Europe.
Cook, David (2012). Timing Errors in Serial Communication. url: http://www.robotroom.com/

Asynchronous-Serial-Communication-2.html.
Crowe, John and Barrie Hayes-Gill (1998). “Introduction to Digital Electronics”. In: Newnes, pp. 88–

124. url: http://www.sciencedirect.com/science/article/pii/B978034064570350006X.
Cunningham, Collin (2018). “Collin’s Lab: Breadboards Perfboards”. In: Adafruit learning system.

url: https://cdn-learn.adafruit.com/downloads/pdf/collins-lab-breadboards-and-
perfboards.pdf?timestamp=1559909863.

Dow, Steven P., Kate Heddleston, and Scott R. Klemmer (2009). “The Efficacy of Prototyping Under
Time Constraints.” In: Stanford University HCI Group, Department of Computer Science.

Dynda, Alexey (2019). SSD1306/SSD1331/SSD1351/IL9163/ILI9341/ST7735/ILI9341 OLED display
driver, PCD8544 LED display driver. url: https://github.com/lexus2k/ssd1306.

Energizer (2018a). Cylindrical Primary Lithium - Handbook and Application Manual. Page 11. url:
http://data.energizer.com/pdfs/lithiuml91l92_appman.pdf.

— (2018b). “ENERGIZER L91 Ultimate Lithium PRODUCT DATASHEET”. In: url: http://data.
energizer.com/pdfs/lithiuml91l92_appman.pdf.

Ericsson (2019). Know the difference between NB-IoT vs. Cat-M1 for your massive IoT deployment.
url: https://www.ericsson.com/en/blog/2019/2/difference-between-NB-IoT-CaT-M1.

Flowline Inc. (2010). EchoPod DX10 Ultrasonic Level Sensor (Voltage or Frequency). url: https:
//docs-emea.rs-online.com/webdocs/1425/0900766b814258f4.pdf.

Free Software Foundation Inc. (2018). GNU Lesser General Public License, version 2.1. url: https:
//www.gnu.org/licenses/old-licenses/lgpl-2.1.html.

GlobalTop Technology Inc. (2011). “FGPMMOPA6H GPS Standalone Module Data Sheet”. In: url:
https://cdn-shop.adafruit.com/datasheets/GlobalTop-FGPMMOPA6H-Datasheet-V0A.pdf.

Granger, Joshua (2016). Boost converter help. url: https://electronics.stackexchange.com/
questions/273938/boost-converter-help.

Page 74

HCL Technologies (2019). WHAT IS AN IOT DEVICE? url: https://www.hcltech.com/technology-
qa/what-is-an-iot-device.

Henry (2015). Keyes KY-040 Arduino Rotary Encoder User Manual. url: http://henrysbench.
capnfatz.com/henrys-bench/arduino-sensors-and-input/keyes-ky-040-arduino-rotary-

encoder-user-manual/.
Høgevold, Knut (2019). ICT and Process control at Agder Energi Vannkraft AS. Personal communica-

tion.
IBM (2019). The client/server model. url: https://www.ibm.com/support/knowledgecenter/en/

SSAL2T_8.1.0/com.ibm.cics.tx.doc/concepts/c_clnt_sevr_model.html.
JLCPCB (2019). Fast, Reliable Deliveries. url: https://jlcpcb.com/.
Johnson, Dr. Howard (2000). “Who’s Afraid of the Big Bad Bend?” In: EDN magazine. url: http:

//www.sigcon.com/Pubs/edn/bigbadbend.htm.
Kim (2018). IoT in Norway, settings? url: http://forum.sodaq.com/t/iot-in-norway-settings/

1578.
Kwiecień, Radosław (2019). LCD Assistant. url: http://en.radzio.dxp.pl/bitmap_converter/.
Libelium (2014). Smart Water Sensors to monitor water quality in rivers, lakes and the sea. url:

http://www.libelium.com/smart-water-sensors-to-monitor-water-quality-in-rivers-

lakes-and-the-sea/.
— (2018). “Smart Water Technical Guide”. In: url: http : / / www . libelium . com / downloads /

documentation/smart_water_sensor_board.pdf.
— (2019). IoT made easy! url: http://www.libelium.com/products/plug-sense/technical-

overview/.
Maglie, Cristian (2018). FlashStorage library for Arduino. url: https://github.com/cmaglie/

FlashStorage.
Maxim Integrated (2015). “Datasheet: DS3231 Extremely Accurate I2C-Integrated RTC/TCXO/Crystal”.

In: url: https://cdn-shop.adafruit.com/product-files/3013/DS3231.pdf.
Microchip Technology Inc. (2014a). “Miniature Single-Cell, Fully Integrated Li-Ion, Li-Polymer Charge

Management Controllers”. In: url: http://ww1.microchip.com/downloads/en/DeviceDoc/
20001984g.pdf.

— (2014b). “Miniature Single-Cell, Fully Integrated Li-Ion, Li-Polymer Charge Management Con-
trollers”. In: url: http://ww1.microchip.com/downloads/en/DeviceDoc/20001984g.pdf.

— (2018a). “ATmega48A/PA/88A/PA/168A/PA/328/P Data Sheet”. In: url: http://ww1.microchip.
com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf.

— (2018b). “ATmega48A/PA/88A/PA/168A/PA/328/P Data Sheet”. In: pp. 88–89. url: http://
ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-

DS40002061A.pdf.
— (2018c). AVR Dragon. url: https://www.microchip.com/Developmenttools/ProductDetails/

ATAVRDRAGON#additional-summary.
— (2018d). “SAM D21 Family”. In: p. 147. url: http://ww1.microchip.com/downloads/en/

DeviceDoc/SAMD21-Family-DataSheet-DS40001882D.pdf.
— (2018e). “SAM D21 Family (Datasheet)”. In: url: http://ww1.microchip.com/downloads/en/

DeviceDoc/SAMD21-Family-DataSheet-DS40001882D.pdf.
Microsoft (2019). What is Azure? url: https://azure.microsoft.com/en-us/overview/what-is-

azure/#most-popular-questions.
Moorthy, C.Ganesa, G. Udhaya Sankar, and Raj Kumar (2017). “WHAT IS THE POLARITY OF AN

ELECTROMAGNETIC WAVE?” In: Indian Journal of Scientific Research 13.
National Instruments (2019). Understanding Life Expectancy of Flash Storage. url: http://www.ni.

com/product-documentation/10126/en/.
National Radio Astronomy Observatory (2018). How Radio Waves Are Produced. url: https://web.

archive.org/web/20140328011153/http://www.nrao.edu/index.php/learn/radioastronomy/

radiowaves.
Natividad, Frank (2015). SDI-12-ATTiny84a. url: https://github.com/frankyn/SDI-12-ATTiny84a.

Page 75

NKOM (2019). Hva er frekvenstillatelser. url: https://www.nkom.no/teknisk/frekvens/tillatelser/
hva-er-frekvenstillatelse-spektrumstillatelser.

OmegaVerkstedet (2019). Component search: SD. url: https://omegav.ed.ntnu.no/komp?search=
sd.

OTT HydroMet (2018). “Operating instructions Pressure Probe OTT PLS”. In: url: https://www.
ott.com/en-us/products/download/operating-instructions-pressure-probe-ott-pls/.

RICOH Electronic (2018). Soft-Start Function. url: https://www.e-devices.ricoh.co.jp/en/
products/power/ap_note/dcdc/softstart.html.

Samferdselsdepartementet (2012). Forskrift om generelle tillatelser til bruk av frekvenser (fribruks-
forskriften). url: https://lovdata.no/dokument/SF/forskrift/2012-01-19-77.

Scanmatic AS (2018). “Hydrologistasjon”. In: url: https://www.scanmatic.no/energi/hydrologistasjoner/.
— (2019). Referanser. url: https://www.scanmatic.no/referanser/.
Schrage, Michael (1999). “Serious Play: How the World’s Best Companies Simulate to Innovate.” In:

Harvard Business School Press.
SD Association (2006). “SD Specifications”. In: url: http://users.ece.utexas.edu/~valvano/

EE345M/SD_Physical_Layer_Spec.pdf.
— (2019). SD Standard Overview. url: https://www.sdcard.org/developers/overview/index.

html.
SDI-12 Support Group Technical Committee (2017). “SDI-12 A Serial-Digital Interface Standard for

Microprocessor-Based Sensors”. In: p. 3. url: http://www.sdi-12.org/specification.php.
Seba Hydrometrie (2019). FLOAT LEVEL SENSOR / FOR WATER / STAINLESS STEEL / IP65.

url: http://www.directindustry.com/prod/seba- hydrometrie- gmbh- co- kg/product-
63216-1983299.html.

Semtech (2019). “Datasheet: SX1276/77/78/79 - 137 MHz to 1020 MHz Low Power Long Range
Transceiver”. In: url: https://www.semtech.com/uploads/documents/DS_SX1276- 7- 8-

9_W_APP_V6.pdf.
Sikken, Jasper (2018). SODAQ Sara schematics. url: http://support.sodaq.com/wp-content/

uploads/2018/10/SODAQ-SARA-AFF-Rev3-Schematic-sheet-1.png.
Simpson, Chester (2011). Characteristics of Rechargeable Batteries. url: http://www.ti.com/lit/

an/snva533/snva533.pdf.
Smith, Kevin M. (2014). Arduino-SDI-12. url: https://github.com/Kevin-M-Smith/Arduino-

SDI-12.
SODAQ (2018a). SODAQ SARA AFF N211. url: https://support.sodaq.com/sodaq-one/sara/.
— (2018b). SODAQArcMainCurrent. url: http://support.sodaq.com/wp-content/uploads/

2018/03/sodaq_sara_sleep_no_led.png.
— (2019). SODAQ SARA Arduino Form Factor (AFF) N211 including PCB Antenna. url: https:

//shop.sodaq.com/sodaq-sara-aff-n211.html.
SparkFun Electronics (2010). SD Library for Arduino. url: https://github.com/arduino-libraries/

SD.
Stoehr, Martin (2012). Getting Started With A Short-Range Radio Design. url: http : / / www .

electronicdesign.com/communications/getting-started-short-range-radio-design.
Suneco Hydro (2019). How to Measure Water Flow. url: https://www.micro-hydro-power.com/

how-to-measure-water-flow.htm.
Taha, Zahari, Hassan Alli, and Salwa Abdul-Rashid (2011). “Users Involvement in New Product Devel-

opment Process: A Designers’ Perspectives”. In: Industrial Engineering and Management Systems
10.

Techopedia (2019). Bitmap (BMP). url: https://www.techopedia.com/definition/792/bitmap-
bmp.

Telia (2019). DEKNINGSKART. url: https://www.telia.no/dekning/.
Texas Instruments (2018a). “Basics of Power MUX”. In: url: http://www.ti.com/lit/an/slvae51/

slvae51.pdf.

Page 76

Appendices

Texas Instruments (2018b). “CD405xB CMOS Single 8-Channel Analog Multiplexer/Demultiplexer
With Logic-Level Conversion”. In: url: http://www.ti.com/lit/ds/symlink/cd4051b.pdf.

— (2019). “LP2981-N Micropower 100-mA Ultralow Dropout Regulator in SOT-23 Package”. In: url:
http://www.ti.com/lit/ds/symlink/lp2981-n.pdf.

Tiwana, Amrit (2014). “Platform Architecture”. In: Elsevier B.V. url: https://www.sciencedirect.
com/book/9780124080669/platform-ecosystems.

TOREX SEMICONDUCTOR LTD. (2019). “XC6220 Series”. In: url: https://no.mouser.com/
datasheet/2/760/XC6220-837466.pdf.

Tormatic AS (2019). UNIK 5000 - Trykksensorserie i 316 SS. url: http://www.tormatic.no/

prosess/trykk/unik-5000---trykktransmitterserie.
Tracer Power (2019). “LITHIUM ION POLYMER BATTERIES – DATA SHEET”. In: url: http:

//www.tracerpower.com/user/pdf/Li-Poly_Data_Sheet.pdf.
u-blox (2018). “SARA-N2 Modules - Power-optimized NB-IoT modules - AT Commands Manual”. In:

url: https://www.u-blox.com/sites/default/files/SARA-N2_ATCommands_%5C%28UBX-
16014887%5C%29.pdf.

University, Battery (2017). BU-106: Advantages of Primary Batteries. url: batteryuniversity.com/
learn/article/primary_batteries.

Williams, Elliot (2015). Make: AVR Programming. Maker Media, Inc.
Xi’ an Aerosemi Technology Co. (2018). “High Efficiency 1.2MHz 2A Step Up Converter”. In: url:

https://www.olimex.com/Products/Breadboarding/BB-PWR-3608/resources/MT3608.pdf.

Page 77

Appendices

Appendix A: Schematic - Single-node system

Page 78

Appendices

Appendix B: Schematic - Sensor node of multi-node system

Page 79

Appendices

Appendix C: Schematic - Gatewat of multi-node system

Page 80

Appendices

Appendix D: Components list and prices

Table 1: All the components required for one node of the single-node system.

Component Price (NOK) Example site
SODAQ SARA AFF N211
(including PCB Antenna)

928 https://shop.sodaq.com/sodaq-sara-aff-n211.html

Lithium Ion Polymer Battery
6000 mAh

234 https://shop.sodaq.com/battery-lithium-polymer-6000-mah.html

Casing IP67 CHDX8-323 189
https://www.elfadistrelec.no/no/robust-boks-med-hengsler-185x
135x85mm-gra-abs-ip66-ip67-camdenboss-chdx8-323/p/30113299

Antenna IP67 including
U.FL connector cable

92
https://no.mouser.com/ProductDetail/Pycom/LoRa-Antenn
a?qs=sGAEpiMZZMve4%2FbfQkoj%252BCdToa3Jb5byS
pbgGrc4L1I%3D

MicroSD Card Breakout Board 64
https://no.mouser.com/ProductDetail/Adafruit/254?qs= sGAEpi
MZZMsMyYRRhGMFNu9gxkKdu10TYKPWLeYCwDQ%3D

1W Solar Panel 46 https://shop.sodaq.com/1w-solar-panel.html

Vent IP67 22
https://www.data-alliance.net/vent-plug-for-network-enclosure-
waterproof-ip67/

I2C Display SSD1306
0.96" 128X64 OLED

21
https://www.ebay.com/itm/0-96-Yellow-Blue-White-128X64-OLED
-I2C-IIC-Serial-LCD-LED-SSD-Display-SSD1306/28265858470
0?hash=item41cfc3b87c:m:motyoLeb9AuoziMk8Mb2VBw

3 x MOSFET N-chanel IRLB8721 18 https://omegav.ed.ntnu.no/komp?search=irlb8721
Cable Grommet IP68 Polyamide 13 https://uk.rs-online.com/web/p/cable-glands/8229684/

BMP280 Temperature and
Pressure Sensor Module

9
https://www.ebay.com/itm/BMP280-3-3V-Pressure-Sensor-Module
-High-Precision-Atmospheric-Arduino-BMP180/201511252133?ep
id=1655551950&hash=item2eeb01b0a5:g:EA0AAOSwBSxbIIlB

MT3608 Step-up converter 5
https://www.ebay.com/itm/2pcs-MT3608-Step-Up-Power-Apply-
Booster-Module-DC-DC-2V-24V-2A-NEW/171907688472?hash=
item28067f2818:g:8G8AAOSwxYxUsl2k

Rotary Encoder KY-040 8
https://www.ebay.com/itm/10PCS-KY-040-Rotary-Encoder-Modu
le-Brick-Sensor-Axle-Plastic-Button-Cap/172226545771?epid=506
379107&hash=item281980886b:g:bVQAAOSwzJ5XTu-R

Custom PCB shield 4 https://jlcpcb.com/quote

2 x SPDT Slide Switch 2
https://www.ebay.com/itm/20PCS-3-Pin-SS12D00G3-2-Position-
SPDT-1P2T-PCB-Panel-Mini-Vertical-Slide-Switch/31165483578
2?hash=item4890136646:g:tVwAAOSw0kNXhD-R

2-pin screw terminal 2
https://www.kjell.com/se/produkter/el-verktyg/elektronik/monter
ing/luxorparts-skruvplint-5-mm-2-pol-10-pack-p90760

3-pin screw terminal 3
https://www.kjell.com/se/produkter/el-verktyg/elektronik/monter
ing/luxorparts-skruvplint-5-mm-3-pol-10-pack-p90761

4-pin screw terminal 4
https://www.kjell.com/se/produkter/el-verktyg/elektronik/monter
ing/luxorparts-skruvplint-5-mm-4-pol-10-pack-p90762

2 x Capacitor ∼5 µF Ceramic 1 https://omegav.ed.ntnu.no/komp?search=kondensator

Single Row Straight Female
Pin Header Strip 2.54mm

1
https://www.ebay.com/itm/10PCS-Male-Female-40pin-2-54mm-
Header-Socket-Row-Strip-PCB-Connector-Cool/382264400396?h
ash=item5900bbda0c:g:8B4AAOSwzXxZ80Hu

Single Row Straight Male
Pin Header Strip 2.54mm

1
https://www.ebay.com/itm/10PCS-Male-Female-40pin-2-54mm-
Header-Socket-Row-Strip-PCB-Connector-Cool/382264400396?h
ash=item5900bbda0c:g:8B4AAOSwzXxZ80Hu

SUM 1667

Page 81

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f M
ec

ha
ni

ca
l a

nd
 In

du
st

ri
al

 E
ng

in
ee

ri
ng

M
as

te
r’

s
th

es
is

Andreas Moan

Developing a Small and Power
Efficient Depth Measuring System for
Use at Remote Locations

Master’s thesis in Mechanical Engineering
Supervisor: Bjørn Haugen

June 2019

	Sammendrag (abstract in Norwegian)
	Preface
	Contents
	Abbreviations
	Supplementary files
	Introduction
	Background and motivation
	Previous work
	Goals and priorities
	Must-haves and nice-to-haves

	Problem description
	Work methodology
	Structure of the report

	General theory
	Water flow and depth measurement
	Basic theory of microcontrollers
	Overview
	Programming of microcontrollers

	Wireless communication
	Radio waves
	Peer-to-peer radio communication
	NarrowBand Internet of Things

	Analyzation of two existing depth measuring systems
	Scanmatic
	Libelium

	Plan, overview and choice of microcontroller
	Choice of microcontroller
	Choice of programming language

	Power consumption
	Design strategy for reduced current leakage in peripheral units
	Choice of battery and solar panel
	Voltage measurement
	Current measurement

	NB-IoT connectivity and usage
	Communication between the modem and the microcontroller
	Connecting to Telia's network
	Sending data and server selection

	Depth measurement
	Powering the sensor - Boost converter
	Wiring and code

	Sleep and time keeping
	Sleep mode
	Internal Real Time Clock
	Updating the time and time drifting

	First early stage long duration test
	Setup
	Results and analysis of the test

	Resolving the problems from the test
	Depth data
	Connectivity

	Temperature measurement
	Wiring
	The code

	User interface
	Display
	Input method
	Functionality
	Calibration
	Signal quality check

	First prototype
	Prototype board
	Enclosure
	Field test
	Results from the prototype's first week in the field
	Feedback from AE and discussion regarding further work

	Implementing the new ideas and requests
	Connection timeout
	Re-sending unsent data
	Local data logging

	Printed circuit board
	Creating custom parts
	Design rules and creating the PCB
	The finished PCBs

	New requests and final touches
	Password protection
	GPS
	Altitude calibration
	Fixing local data logging issues
	Watchdog timer
	New PCB and enclosure design
	Server update and standardization of data format
	Naming

	Final results and further work
	Results
	Further plan and work

	Plan, overview and choice of microcontrollers
	Microcontrollers, IDE and language
	Gateway node
	Sensor node

	Basic physical setup
	Peripheral units
	User interface
	Real-time clock
	Temperature sensor
	Depth sensor
	GPS
	Radio communication
	Local data logging
	Multiplexer and the complete schematics

	Functionality and the procedure of deploying the nodes
	Step 1: Placing the gateway
	Step 2: Establishing continuous contact between the two nodes
	Step 3: Automatic clock synchronization
	Step 4: Remotely putting the gateway node into its normal operation
	Step 5: Depth measurement calibration and GPS
	Step 6: Normal operation

	Preliminary results and further work
	Preliminary results
	Further work

	Discussion and conclusion
	References
	Appendix A: Schematic - Single-node system
	Appendix B: Schematic - Sensor node of multi-node system
	Appendix C: Schematic - Gatewat of multi-node system
	Appendix D: Components list and prices

