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Sammendrag

Francisturbiner er velkjente installasjoner i norske vannkraftverk. De dynamiske egenskapene

til en Francisturbin påvirkes signifikant av miljøet den opererer i, det er derfor et stort ønske å

forstå samspillet mellom turbin og vann bedre for å sikre stabil kraftproduksjon. Denne mas-

teroppgaven betrakter en forenklet modell av en Francisturbin, modellen er nedsenket i vann og

blir utsatt for en støtkraft. Det ble utført to forskjellige analysemetoder på modellen, begge ut-

ført i Abaqus explicit dynamics. En akustisk-struktur koblet analyse og en Euler-Lagrange koblet

analyse. Det er lagt vekt på oppsett og resultater fra simuleringene for å finne den best egnede

metoden for denne type problemer. Metodene er svært ulike, og det er derfor utfordrende å ti-

legne identiske forutsetninger i simuleringene.

Den akustisk-struktur koblede analysen viste seg som en svært pålitelig metode. Tolkning av en-

ergimengdene indikerte en optimal simulering. Et dempingsforhold ble utregnet fra forskyvnin-

gens amplituder, og grunnet fravær av viskositet i de akustiske elementene ble dempingforholdet

lavt. Den Euler-Lagrange koblete analysen var tvetydig i henhold til pålitelighet. Energimeng-

dene tilstede i simuleringen indikerte en ikke-optimalisert simulering, og nødvendige tiltak er

derfor anbefalt. Dempingsforholdet ble utregnet fra forskyvningens amplituder, og det ble fun-

net et høyere dempingsforhold enn for den akustisk-struktur koblede analysen.

Euler-Lagrange metoden ble ansett best egent, selv med indikasjonene på en ikke-optimalisert

simulering. Metoden viser seg å være allsidig og har mulighet for å implementeres i mer avanserte

problemer.
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Abstract

Using software to simulate behavior of structures and components has been an important tool

in engineering for the last decades. The demand for more complex applications has arisen and

the software has developed simultaneously, thanks to the exponentially growth of faster com-

puters. This implies that one has the possibility to do what was previously unthinkable, on a

regular computer. Numerical analysis of complex geometries such as a Francis turbine interact-

ing with a fluid are still reserved high-end hardware, and not applicable to laptops. Simplified

geometries are therefore considered to keep simulation time at an acceptable level.

Fluid-structure interaction (FSI) couples the structural dynamics with the fluid dynamics and

letting them interact with each other. From a two-way coupling it is also possible the separately

examine the behavior, due to the fact that in some cases the fluid dynamics are of interest and

in other cases it is the structural dynamics which are of interest.

For the situation with an immersed steel structure with a surrounding fluid and with only in-

terest of the dynamics of the steel structure, the problem can be simulated in different ways.

This master thesis contains a coupled acoustic-structure (CAS) numerical analysis and a cou-

pled Eulerian-Lagrangian (CEL) numerical analysis. The simulations are executed in Abaqus

2017 software and primary focus will be at the structural response and energies.

Comparison of the different approaches indicates that the CAS technique is slightly more accu-

rate from a numerical point of view, has easier setup and requires less processor power. Nev-

ertheless the CAS technique is not that versatile and unable to simulate real situations, due to

the use of acoustic elements. The CEL technique offers more input parameters and easy access

for changing the parameters of the fluid. A complete overview of the fluid flow is also avail-

able. Complex setup, no possibility for re-meshing and a need for using small elements in the

Eulerian domain are the drawbacks.
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1 Introduction

The dynamic behavior of structures and fluids interacting with each other are a common chal-

lenge in engineering. The underlying theories of the domains are considerable different and

must be united in a coupled analysis. The approach for a fluid-structure interactions (FSI) can

be done in a variety of ways, depending on what is of interest.

In order to investigate the dynamics of a steel structure immersed in a fluid it can be simu-

lated with numerical analysis. This master thesis will study a coupled acoustic-structure (CAS)

simulation and a coupled Eulerian-Lagrangian (CEL) simulation. The diverse approach in the

simulation procedures posts a question about what is most realistic.

In a CAS analysis problem there has been conducted several previous studies by A.Craggs [1],G.C

Everstime [2] and by Sandberg [3] whose articles are presented in the book "Computational As-

pects of Structural Acoustics and Vibration" [4], along with other articles of importance. In the

CAS finite element analysis the meshes are coupled node to node at the boundary of each do-

main, and therefore can large mesh displacements be present. Gravity load or gravity fields are

also not applicable in the traditional way when using the acoustic elements. If this is desired

in an acoustic analysis it must be specified as an impedance condition [5]. Impedance is not

specified for this CAS analysis.

The CEL approach differs from the CAS approach, in the way that the Eulerian mesh is fixed in

space and the material flows through the elements. Previous studies on the Eulerian-Lagrangian

approach are conducted by Benson [6] [7] and Bathe [8]. This approach has now become a com-

mon implementation in most numerical software tools. A drawback with the CEL method is the

complexity it induces when defining the contact at the boundary between the two regions and

a possible loss of accuracy due to the use of Eulerian volume fraction (EVF) tool.

The choice of algorithm, either the CAS or the CEL, is a very complex problem for the user and

is very dependent on the problem definition. Using simplified geometries as a representation

for the complex geometry of a Francis turbine and investigating the numerical results achieved,

the most suitable numerical analysis approach for this type of problem is to be designated.
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The use of simplified geometries are done to keep computational costs reasonable. In the future

the results of the simplified geometries can be transferred to more complex geometries such as

a Francis turbine, and hopefully also save computation time by choosing the most appropriate

method. This master thesis seeks to investigate obtained numerical results such as displace-

ments, velocities and energies when the steel structure is immersed in a fluid and subjected to

an instantaneous force of 10 N. The damping ratios will be calculated on basis of the displace-

ments and a user evaluation of the analysis setup will also be considered when finding the most

suitable approach.

The motivation writing this master thesis is that the results obtained from the simple models

can be transferred to more complex models and save computational costs and time. A chrono-

logical reading is advised as a traditional thesis structure is chosen, starting with theory, numer-

ical methods, results and discussion, conclusion and ending with recommendations for further

work.

All numerical analysis are done in Abaqus software, version 6.17.

2



2 Theory

2.1 Acoustic-structure theory

Dynamics of different materials interacting with each other are a complex matter when using

analytical expressions and dealing with multiple dimensions. In an acoustic-structure analy-

sis both materials are treated as Lagrangian, i.e the nodes are fixed in the material and follow

the material deformation. In the Lagrangian theory, each element contains 100% of one sin-

gle material, so that the boundary of a material coincides with the element boundary [9]. For

Lagrangian problems and in possession of computers, the complex analytical equations are dis-

cretized in time and space and applied finite element formulations. This enables the use of

numerical analysis tools on the computer. The work of Craggs [1], Zienkiwics[10], Sandberg [4]

together with familiar curriculum from Fish [11] and Ottosen [12] are considered throughout

the acoustic-structure finite element (FE) derivation. The main inspirational source is from the

work of Sandberg.

2.1.1 Governing equations

The governing equations for the structural domain, acoustic domain and the coupled system

domain are presented in equations 2.1, 2.2 and 2.3.

The notation for the structural domain in equation 2.1 are as followed, σS is the stress ten-

sor, bS is the body force and ρS
∂2uS
∂t 2 = qS is the inertia force, where ρS is the density and uS is

the displacement. ∇̃ is the differential operator. For the acoustic domain, in equation 2.2 the

non homogeneous wave equation is expressed with notations, pF is the dynamic pressure, c0

is the speed of sound in the acoustic fluid, ∇ is a gradient variable and qF is the added fluid

mass per unit volume. The coupling equations represented in equation 2.3 guarantees continu-

ity between the structural and acoustic domain, and the notations are as followed, uS |n is the

displacement in normal direction for the structure and uF |n is the displacement in normal di-

rection for the fluid. The σS |n is the stress in normal directions for the structure and pF is the

acoustic fluid pressure.

3




∇̃T

σS +bS = ρS
∂2us
∂t 2 = qS ΩS

+B.C
(2.1)


∂2pF

∂2t
− c2

0∇2pF = c2
0
∂qF
∂t ΩF

+B.C
(2.2)


uS |n = uF |n ΩF S

σS |n =−pF ΩF S

(2.3)
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2.1.2 FE formulation for structural domain

Given the vector form of the displacement and body force they are expressed as in equation 2.4.

us =


uS

1

uS
3

uS
3

 and bs =


bS

1

bS
3

bS
3

 (2.4)

Remembering the definition for the stress and strain, and expressing the differential operator ∇̃
in matrix form in equation 2.5.

∇̃ =



∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0

∂
∂x3

0 ∂
∂x1

0 ∂
∂x3

∂
∂x2


(2.5)

The definition for the Green-Lagrange strain tensor ES in equation 2.6 and the Cauchy stress

tensor SS in equation 2.7.

ES =


εS

11 εS
12 εS

13

εS
21 εS

22 εS
23

εS
31 εS

32 εS
33

 (2.6)

SS =


σS

11 σS
12 σS

13

σS
21 σS

22 σS
23

σS
31 σS

32 σS
33

 (2.7)

Using infinitesimal strain theory εi j = 1
2 (ui , j + u j ,i ), and utilizing the symmetry of the stress

tensor matrix σS
12 =σS

21, σS
13 =σS

31 and σS
23 =σS

32.

The strain components and the stress can also be expressed as in equation 2.8 and equation 2.9.
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εi j = 1

2
(ui , j +u j ,i ) =


∂u1
∂x1

1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
1
2

(
∂u1
∂x3

+ ∂u3
∂x1

)
1
2

(
∂u2
∂x1

+ ∂u1
∂x2

)
∂u2
∂x2

1
2

(
∂u2
∂x3

+ ∂u3
∂x2

)
1
2

(
∂u3
∂x1

+ ∂u1
∂x3

)
1
2

(
∂u3
∂x2

+ ∂u2
∂x3

)
∂u3
∂x3

 (2.8)

SS =


σS

11 σS
12 σS

13

σS
12 σS

22 σS
23

σS
13 σS

23 σS
33

 (2.9)

By using the theories, definitions and formulas, the strains and stresses can be expressed in

simple 6×1 matrix notation shown in equation 2.10 and equation 2.11, where γ is the notation

for the shear strain.

∇̃uS = εS =



εS
11

εS
22

εS
33

1
2γ

S
12

1
2γ

S
13

1
2γ

S
23


(2.10)

σS =



σS
11

σS
22

σS
33

σS
12

σS
13

σS
23


(2.11)
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The constitutive matrix relates the stresses to the strains using the material properties with the

relation σS = DSεS . Given the Lamè parameters [13] in equation 2.12.

λ= νE

(1+ν)(1−2ν)
and µ=G = E

2(1+ν)
(2.12)

The constitutive matrix for an isotropic material can be represented on the tidy form given in

equation 2.13.

DS =



λ+2µ λ λ 0 0 0

0 λ+2µ λ 0 0 0

0 0 λ+2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


(2.13)

The strong form of the structural equation 2.1 are then multiplied with a weight function wS =
[w1w2w3]T and then integrated. Applying Green-Gauss theorem [12] and introducing a surface

traction vector tS = SSnS , where tS is related to the Cauchy stress tensor and a unit normal vector

nS . Then, finally the weak form for the structure can be expressed in equation 2.14.

∫
ΩS

wT
S ρS

∂2uS

∂t 2
dV +

∫
ΩS

(∇̃wS)TσSdV −
∫
∂ΩS

wT
S tSdS −

∫
ΩS

wT
S bSdV = 0 (2.14)

Using polynomials for the elementwise approximation of the shape functions NS , now allowing

a discretization the displacements, weight functions and strain with the relation in equation

2.15. Where dS is the nodal displacement and cS is the nodal weight.

uS = NSdS , wS = NScS , εS = ∇̃NSdS (2.15)

Observing that cS is a constant eliminated from the expression, the finite element formulation

for the problem is shown in integral form in 2.16 and in compressed form in equation 2.17.
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∫
ΩS

NT
S ρSNSdV︸ ︷︷ ︸

MS

d̈S +
∫
ΩS

(∇̃NS)T DS∇̃NSdV︸ ︷︷ ︸
KS

dS =
∫
∂ΩS

NT
S tSdS︸ ︷︷ ︸

fa

+
∫
ΩS

NT
S bSdV︸ ︷︷ ︸
fb

(2.16)

MS d̈S +KSdS = fa + fb (2.17)

2.1.3 FE formulation for acoustic domain

The strong form of the governing acoustic equation 2.2 must also be rewritten into a more con-

venient weak form. For a compressible acoustic fluid the assumptions that it is inviscid, irrota-

tional and undergoes small translations. The motion equation then becomes.

ρ0
∂2uF (t )

∂t 2
+∇pF (t ) = 0 (2.18)

Continuity equation are as followed.

∂ρF (t )

∂t
+ρ0∇∂uF (t )

∂t
= qF (t ) (2.19)

The constitutive equation relates the dynamic density to the dynamic pressure.

pF (t ) = c2
0ρF (t ) (2.20)

Notations for equation 2.18 to 2.20 are as followed, ρF (t ) is the dynamic density, qF (t ) is the

added fluid mass per unit volume, ∇= [ ∂
∂x1

∂
∂x2

∂
∂x3

]T is a gradient variable, uF (t ) is the displace-

ment and ρ0 is static density. Also the relation equation for the speed of sound in the acoustic

fluid are shown in equation 2.21, where KF is the bulk modulus.

c0 =
√

KF

ρ0
(2.21)
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Now with possession of equations 2.18, 2.19 and 2.20 the wave equation can be obtained by

differentiating 2.19 once with respect to time, then differentiating 2.20 twice with respect to

time. Using 2.18 for substitution and multiplying by c2
0 to move it from the denominator to the

numerator. The strong form of the homogeneous wave equation then becomes as in equation

2.22 i.e the same as earlier presented in equation 2.2.

∂2pF

∂2t
− c2

0∇2pF = c2
0
∂qF

∂t
(2.22)

To arrive to the more convenient weak form, equation 2.22 is multiplied with a weight function

wF , integrated and applied the Gauss-Green‘s theorem. The weak formulation of the equation

then becomes.

∫
ΩF

wF
∂2pF

∂t 2
dV + c2

0

∫
ΩF

∇wF∇pF dV − c2
0

∫
∂ΩF

wF∇pF nF d A− c2
0

∫
ΩF

wF
∂qF

∂t
dV = 0 (2.23)

Introducing the polynomial shape functions NF , and pF for the nodal pressures and cF for the

nodal weights.

pF = NF pF wF = NF cF (2.24)

Integral form the finite element formulation for the acoustic domain then becomes.

∫
ΩF

NT
F NF dV︸ ︷︷ ︸
MF

p̈F + c2
0

∫
ΩF

(∇NF )T∇NF dV︸ ︷︷ ︸
KF

pF = c2
0

∫
∂ΩF

NT
F ∇pF nF dS︸ ︷︷ ︸
fc

+c2
0

∫
ΩF

NT
F
∂qF

∂t
dV︸ ︷︷ ︸

fq

(2.25)

Written in a compact form the equations for the acoustic fluid can be expressed on the general

form.

MF p̈F +KF pF = fc + fq (2.26)
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2.1.4 FE formulation for the coupled system

The interface between the structure and fluid domain must be coupled in a way that ensures

continuity. A normal vector n =−nS = nF is suggested so that the dynamics of different domains

follow each other. For the displacement and pressure this becomes.

uSn|∂ΩF S = uF n|∂ΩF S (2.27)

σS |n = pF (2.28)

The structural stress tensor SS at the boundary ∂ΩF S must be expressed in desired directions.

SS =−pF


1 0 0

0 1 0

0 0 1

 (2.29)

Then fa from equation 2.17 in the structural domain is allowed to be rewritten in terms of the

coupling domain ∂ΩSF .

Remembering n =−nS , so the force on the structure is formulated as acoustic medium pressure.

fa =
∫
∂ΩF S

NT
S (−pF )


1 0 0

0 1 0

0 0 1

nSdS =
∫
∂ΩF S

NT
S npF dS =

∫
∂ΩF S

NT
S nNF dSpF (2.30)

From equation 2.26 the fc for the acoustic domain is coupled using equation 2.18 and equation

2.27. Then fc is formulated with relation to the structural acceleration.

fc =−c2
0

∫
∂ΩF S

NT
F nT∇pF dS =−ρ0c2

0

∫
∂ΩF S

NT
F nT NSdSd̈S (2.31)
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A spatial coupling matrix is defined and presented in equation 2.32.

HF S =
∫
∂ΩF S

NT
S nNF dS (2.32)

Then the fa force for the structural domain and the fc for the acoustic domain can be expressed

as the coupling forces in equation 2.33.

fa = HSF pF fc =−ρ0c2
0HT

SF d̈S (2.33)

Finally, the two way system coupling matrix is expressed in equation 2.34 for an unsymmetrical

system. And generalized in equation 2.35.

 MS 0

ρ0c2
0HT

SF MF

d̈S

p̈F

+
KS −HSF

0 KF

dS

pF

=
fb

fq

 (2.34)

MT OT Ü+KT OT U = FT OT (2.35)

2.1.5 Damped coupled system

If any material damping is applied or other acoustic energy dissipated, it is necessary to intro-

duce a damping matrix to the dynamics [14]. The FE formulation for the derivations includ-

ing damping are approximately the same as in the previous sections, and well described by,

Zienkiewics [10] and PLM Software [15].

The general dynamic equations for a damped coupled system are expressed in equation 2.36.

FT OT
S and FT OT

F are all loads for the structural and acoustic domain. An even more generalized

system is expressed in equation 2.37.

 MS 0

HT
SF MF

d̈S

p̈F

+
CS 0

0 CF

ḋS

ṗF

+
KS HSF

0 KF

dS

pF

=
FT OT

S

FT OT
F

 (2.36)

MT OT Ü+CT OT U̇+KT OT U = FT OT (2.37)
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2.2 Eulerian-Lagrangian theory

In an Eulerian-Lagrangian analysis the materials involved is treated with two very different the-

ories. The Eulerian material can be said to flow through the elements. The nodes are fixed

in space, so that the elements are also fixed in space, but within an Eulerian element the vol-

ume fraction of material is not constant, as in the Lagrangian theory. This means that a single

element have a material volume fraction ranging from 0 to 1, called Eulerian volume fraction

(EVF) [9]. Previous work from Benson [6, 7] and Bathe [8] are considered through the follow-

ing sections, among work from Belytschko [16],Hughes [17],Donèa [18] and Sahu [19]. Coupled

Eulerian-Lagrangian (CEL) are a method developed to take benefit from the strengths in each

method. The advantage is that the Eulerian mesh nodes always stays fixed so there will be no

distortion of the mesh. This is a big advantage in case of large distortions. The property of the

Eulerian formulation, and the EVF, i.e that the elements can possess a material volume fraction,

induces difficulties at the contact regions of the different domains. A loss of accuracy, issues

tracking free surfaces as the nodes does not coincide, and problems that the Eulerian material is

penetrating through the Lagrangian [9]. However the CEL technique is a branch of the arbitrary

Lagrangian-Eulerian (ALE) which offers more sophisticated methods to model complex prob-

lems. In some cases it might be necessary to allow a moving mesh together with the moving

fluid. Even heat variation and compressibility might be evaluated in advanced systems. The

complete explanation for such system will be described in the following sections. Figure 2.1

from Benson [7], illustrates the Lagrangian and Eulerian properties.

Figure 2.1: Lagrangian and Eulerian formulation.

12



2.2.1 Governing equations

The equation 2.38 for the structure are now presented where σS is the stress tensor, bS is the

body forces, ρS is the structural density and uS is the displacement.


ρS

∂2uS
∂t 2 = ∇̃T ·σS +bS ΩS

+B.C
(2.38)

The fluid is described trough the Navier-Stokes equations which is also called Euler equations

when thermal conductivity and viscosity is zero.

Equations 2.39a, 2.39b, 2.39c are the momentum equation, conservation of mass equation and

conservation of energy equation. The notations are as follows, σF is the fluid stress tensor, bF is

the body forces for the fluid, ρF is the fluid density and vF is the velocity of the fluid.

The previously discussed need for an analysis with moving mesh or thermal properties are de-

scribed with notation, ṽ for the mesh velocity for the moving arbitrary Lagrangian-Eulerian

frame, gF is the heat flux vector and gF is the rate of heat per unit volume. Also DF is the ve-

locity strain tensor and e is the specific internal energy.

For a fluid problem assumed to be incompressible, inviscid and not with a moving mesh, the

momentum equation 2.39a can be solved for ṽ = 0 and equation 2.39b for the conservation of

mass reduces to ∇·vF = 0. The energy equation 2.39c then becomes excessive.

However, in the simulation the fluid is dedicated with a viscosity but a moving mesh is not con-

sidered.




ρF

∂vF
∂t +ρF [(vF − ṽ) ·∇]vF =∇·σF +bF ,ΩF

+BC
∂ρF
∂t + (vF − ṽ) ·∇ρF +ρF∇·vF = 0 ,ΩF

+BC
ρF

∂e
∂t +ρ(vF − ṽ) ·∇e =σF ·DF −∇·gF + gF ,ΩF

+BC

(2.39a)

(2.39b)

(2.39c)
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To ensure compatibility at the boundaries, the coupling equations 2.40 must be satisfied. Nota-

tions are as follows, uS is the displacement of the structure, u̇S is the velocity of the structure and

üS is the acceleration of the structure. uF is the displacement of the fluid, u̇F = vF is the velocity

of the fluid and üF = v̇F is the acceleration of the fluid. σS and σF are the stress tensors of the

structure and fluid. n is a unit normal vector.



σS ·n =σF ·n ΩF S

uS = uF ΩF S

u̇S = u̇F = vF ΩF S

üS = üF = v̇F ΩF S

(2.40)

2.2.2 FE formulation for structural domain

The derivation for the solid structure will be the same as described in chapter 2.1.2, where fb is

external forces and fa are known linearizations.

MSüS +KSuS = fb − fa (2.41)

2.2.3 FE formulation for Eulerian domain

The constitutive equation for the fluid is expressed in equation 2.42 where I is the identity tensor,

pF is the fluid pressure and η and κ are the first and second coefficients for the viscosity. The

velocity strain tensor 2DF =∇vF + (∇vT
F )

σF = [−pF +η∇·vF ]I+2κDF (2.42)

The relation between the viscosity coefficients are.

η=−2

3
κ (2.43)
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For application with heat transfer the constitutive relation is shown in equation 2.44, where gF

is the heat transfer, T is the temperature and k is the conductivity tensor.

gF =−k∇T (2.44)

The density ρF and energy e also becomes a function of both pressure and temperature so the

relations in equation 2.45 needs to be taken into account when solving 2.39a, 2.39b and 2.39c.

ρF = ρF (pF ,T )

e = e(pF ,T )
(2.45)

For the case of an operating Francis turbine or just a general fluid-fluid interface it might be

favorable to simulate with a moving mesh at the boundaries. A displacement ũ would then

represent the moving mesh at the boundary ΩF S . The unit normal vector n and unit tangential

vector t are used to describe the motion of the mesh in the desired directions. The expression of

the displacements can then be expressed in ũn and ũt .

ũ ·n = ũn ΩF s

ũ · t = ũt ΩF S

(2.46)

The finite element equations for the fluid with assumed moving mesh is then described in equa-

tion 2.47, where ṽ and ũ are the velocity and displacement vectors of the moving mesh. Note that

these vectors may be overlapping and contain vectors of different units.

v̇F and vF are the fluid acceleration and velocity vectors. M̃ and K̃ are the tangent mass and stiff-

ness matrix for the arbitrary Lagrangian-Eulerian that couples the acceleration and displace-

ment of the mesh. fq are the external forces and fc are known.

[
MF M̃

]v̇F

ṽ

+
[

KF K̃
]vF

ũ

= fq − fc (2.47)
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2.2.4 FE formulation for the coupled system

The coupled system of equations can again be described by the general dynamic equation for a

coupled system, shown in equation 2.48. R are all forces in the system. The T2 matrix contain-

ing both masses and stiffness due to the moving mesh. Therefore the displacement vector U

also contains new vectors representing displacement, velocities or both in uF S . The complexity

beyond this simple generalization is crude, and comes as a result of the implementation of the

moving mesh.

T1Ü+T2U̇+T3U = R (2.48)

Equation 2.49 shows how the U vector can be represented and contains new vectors.

U =


uS

uF S

uF

 (2.49)

2.2.5 Damped coupled system

For additional damping applied to the system a T4 matrix is added to represent the damping at

any of the domains, i.e the whole system. This is more comprehensible than implementing the

additional damping into the already complex T2 matrix .

T1Ü+ (T2 +T4)U̇+T3U = R (2.50)

2.3 Logarithmic decrement and damping ratio

The logarithmic decrement δ definition in equation 2.51 are defined as the natural log of the

ratio between two amplitude peaks [20, 21]. Figure 2.2 illustrates such amplitude peaks. In

the case where the the peaks are next to each other n = 1, but the argument is valid for any

amplitude peak n = N . The logarithmic decrement is an experimental way for determination of

the damping ratio ζ, equation 2.52 shows the damping ratio equation.
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δ= 1

n
ln

∣∣∣∣ x(t )

x(t +nT )

∣∣∣∣ (2.51)

ζ= 1√
1+ ( 2π

δ )2
(2.52)

Figure 2.2 illustrates a system with damped oscillations. A system with a damping ratio, ζ< 1 is

an underdamped system. Assuming that equation 2.53 is the characteristic equation of motion

for the underdamped system. This enables us to express the response of the oscillating system

at any time. Equation 2.54 describes one period of the oscillations , i.e from one peak to the next

peak.

Figure 2.2: Logarithmic decrement determination from response graph.
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x(t ) = A exp(−ζωn t ) sin(ωd t +φ) (2.53)

T = 2π

ωd
(2.54)

Using the definition for the logarithmic decrement and plug in the characteristic motion equa-

tion with correct time for each amplitude peak, a proof for the validation of equation 2.52 will

be derived. Keep in mind the relation expressed in equation 2.55, and the definition for the

damping frequency ωd of an underdamped system in equation 2.56.

sin[ωd (t +nT )+φ]
2.54= sin(ωd t +2πn +φ) = sin(ωd t +φ) (2.55)

ωd =ωn

√
(1−ζ2) (2.56)
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δ= ln

[
x(t )

x(t +nT )

]
= ln

[
A exp(−ζωn t ) sin(ωd t +φ)

A exp−ζωn (t+nT ) sin[ωd (t +nT )+φ]

]

= ln

[
A exp(−ζωn t ) sin(ωd t +φ)

A exp−ζωn t ·exp−ζωn nT sin[ωd (t +nT )+φ]

]

= ln

[
sin(ωd t +φ)

exp−ζωn nT sin[ωd (t +nT )+φ]

]

= ln

[
sin(ωd t +φ)

exp−ζωn nT sin(ωd t +ωd nT +φ)

]

= ln

[
sin(ωd t +φ)

exp−ζωn nT sin(ωd t +2πn +φ)

]

= ln

[
1

exp−ζωn nT

]

= ζωnnT

= ζωnn2π

ωd

= ζωnn2π

ωn

√
(1−ζ2)

= ζn2π√
(1−ζ2)

n=1= ζ2π√
(1−ζ2)

⇒ ζ= 1√
1+ ( 2π

δ )2
q.e.d

(2.57)

After some algebra the damping ratio ζ can finally be expressed as previous presented in equa-

tion 2.52.
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2.4 Abaqus units

Abaqus has no built-in unit system, which presupposes that the user keeps track of all units [22].

This imposes the user to be extra careful defining the parameters used in the models, setup of

the analysis and interpretation of the results.

Through this master thesis, SI(mm) units are used. The choice of SI(mm)) units are mainly due

to convenience when dealing with small scale models.

Figure 2.3: Abaqus unit system.

2.5 Energy

To evaluate the validity of the model setup and results from an Abaqus explicit analysis, the

concept of energy balance can be utilized. This gives the user insight whether the simulation is

responding sufficiently within the demands, or is diverging [23]. If the numerical analysis are

"leaking energy", it indicates that it may be something wrong with the analysis setup or an even

more complicated issue with the model. This section will introduce a simplified version of the

energy concept, and for the interesting reader the integral forms of the energy equations can be

found in the Abaqus theory [24].

The total energy, ETOTAL should be constant for an ideal system. It is important to underline

that the total energy should not be necessarily zero in a dynamic analysis, but constant. In a

finite element analysis, the total energy may vary due to many reasons, such as the numerical
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approximations in the finite element algorithms and meshing, non-linearity, hour glassing or

energies not taken into account in the model.

"The sum of these energy components is Etot al , which should be constant. In the numerical

model Etot al is only approximately constant, generally with an error of less than 1%"[25].

Equation 2.58 is the energy balance equation for the CAS analysis and CEL analysis.

For other types of numerical analysis a more complementary set of energy variables may be

taken into account, if the case of contact penalties, heat, friction forces or other parameters. It

is up to the user to decide the importance of the parameters and their associated energies. The

total energy balance is only available for the whole model in Abaqus explicit.

ET OT AL = ALLI E + ALLV D + ALLF D + ALLK E − ALLW K =CON ST AN T (2.58)

• ETOTAL is the total energy

• ALLIE is the internal energy

• ALLVD is the energy absorbed by viscous dissipation

• ALLFD is the frictional dissipation energy

• ALLKE is the kinetic energy

• ALLWK is the work of external forces
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3 Numerical methods

The differences of the CAS and the CEL simulations are significant, and the trade-off between

advantages and disadvantages from one method to the other, becomes very clear when applied

to the same problem. The domains representing the surrounding water, i.e the acoustic domain

and Eulerian domain have different features and behaviour, especially from a simulation point

of view. For example the acoustic elements are not applicable with a gravity load, while the Eule-

rian elements offer this choice. For the acoustic elements the gravity load must be represented

with an impedance, which can be challenging. In order to have two comparable simulations

the gravity load is therefore left out from both analysis, as the gravity load is left out from the

simulations so its potential damping effect from gravity. A broad variety of parameters need to

be considered trying to unify the complex nature of the problems. The immersed structure and

the surrounding fluid are therefore subjected with different assumptions trying to unify them as

equal simulations. This is described through the following sections and in detail described in

appendix A and appendix C. Both simulation are executed with Abaqus dynamic explicit [26],

which eliminates the problem for the user to define the time step increments.

The explicit solver calculates the stable time increments for the analysis.

3.1 Acoustic-structure method

3.1.1 Material properties and dimensions

Material properties and dimensions for the structural domain and acoustic domain are tabu-

lated in table 3.1 and table 3.2. In the structural domain ρS , is the density, E is the elastic mod-

ulus and ν is the Poisson ratio. For the acoustic domain, ρF is the density and KF is the bulk

modulus.

Par ameter ρS

[
ton

mm3

]
E

[
N

mm2

]
ν
[
−

]
L
[

mm
]

W
[

mm
]

H
[

mm
]

V alue 7850e−12 200e3 0.3 200 20 5

Table 3.1: Properties and dimensions of structural domain.
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Par ameter ρF

[
ton

mm3

]
KF

[
N

mm2

]
L
[

mm
]

W
[

mm
]

H
[

mm
]

V alue 1000e−12 2200 400 60 400

Table 3.2: Properties and dimensions of acoustic domain.

3.1.2 Mesh

To ensure coincide nodes at the boundary of the domains, both meshes are of structured hex-

ahedron type. This avoids difficulties connecting the elements associated with the domains

and reduces the error and computation time due to automatic node adjustment. The structural

mesh is of 2.5 mm in y-direction and 5 mm in the z-direction and x-direction, while the acoustic

mesh is 2.5 mm in the y-direction and 10 mm in the z-direction and x-direction in the bound-

ary region and surrounding region of importance. Elsewhere the global acoustic mesh size is 10

mm. Figure 3.1 illustrates that nodes will be perfect coincide in an assembly.

Structural elements are of type C3D8R and the acoustic elements are of type AC3D8R, this im-

plies that both meshes offers reduced integration with hourglass control [27]. Hourglass control

is a method controlling that the elements do not exceed a certain limit of deformation.

Figure 3.1: Structural and acoustic mesh

Domain Number of elements
Structural 320
Acoustic 11440
Total 11760

Table 3.3: Mesh statistic CAS.
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3.1.3 Interactions, boundary conditions and loads

In the acoustic domain all outer surface walls are assigned non-reflecting planar acoustic

impedance. This assumption gives that the acoustic waves will not reflect back and forth in the

model and eliminate the vibrations caused by reflection of the acoustic waves. For a real situa-

tion this will replicate that the structure is immersed in a almost infinite big fluid container.

The structure is fixed in all directions at one end and free to oscillate at the other. Connecting

the structural mesh to the acoustic mesh is done by using tie constraints at the boundary, also

the feature acoustic interface will then be automatic set to the regions where the tie constrains

are applied. All connected nodes are within the default position tolerances of the software.

An instantaneous load of 10 N is applied in negative the y-direction, i.e at the xz-plane. The po-

sition is chosen to be centered and 10 mm from the tip of the structure. This completes the setup

of boundary conditions, interactions and loads of the acoustic-structure numerical analysis. A

detailed explanation of the complete model setup can be found in appendix A.

Figure 3.2: Transparent view of load, boundary conditions and interactions.
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3.1.4 Step and job

The total duration for the analysis is 0.2 seconds and non-linear geometry of toggled on. The

default option of automatic incrementation is chosen, and the stable time increment is calcu-

lated to be 3.68479e −07s for the analysis.

In the job module the choice of using multiple processors are toggled on, the computer have

four available and all are chosen. In addition the Abaqus explicit precision is set to double for

analysis only. This is to reduce accumulation of numerical errors in the case of a large number

of total increments, which for the analysis are 542773 increments.

3.2 Eulerian-Lagrangian method

3.2.1 Material properties and dimensions

The structural parameters and dimensions are constant throughout both analysis and therefore

exactly the same as described in table 3.1.

Parameters for the Eulerian domain are shown in table 3.4, where ρF is the density, κ is the

dynamic viscosity and c1 is the speed of sound in the fluid. Using the Eulerian formulation gives

the opportunity to follow the fluid flow passing through the fixed Eulerian mesh. To fill and

assign the qualities of an Eulerian fluid to a domain, the volume fraction tool must be utilized

[28]. Together with the feature, predefined field, this gives a complete material assignment.

The Eulerian volume fraction (EVF) tool now enables an element to be fully, partially or empty

of a material. An element completely empty of material is just filled with void and possesses no

integrity.

Par ameter ρF

[
ton

mm3

]
c1

[
mm

s

]
κ
[

N s
mm2

]
L
[

mm
]

W
[

mm
]

H
[

mm
]

V alue 1000e−12 1.5e6 1e−9 400 60 400

Table 3.4: Properties and dimensions of Eulerian domain.
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3.2.2 Mesh

Producing the mesh for the CEL analysis is done under the same prerequisites as for the CAS

analysis to obtain consistency between the two methods. The volume fraction tool needed to be

used for filling purposes of the Eulerian properties into the region, requires a dummy container

to be designed and meshed. This is a discrete rigid container, meshed with R3D4 mesh. This

part is suppressed during the simulation and therefore not accounted for in total numbers of

elements in table 3.5.

The Eulerian region are assigned EC3D8R mesh and are only available in Abaqus explicit. This

mesh are as mentioned fixed in space, but allows the fluid to flow freely between the elements

due to the advanced volume fraction tool.

Figure 3.3 illustrates the volume fraction principle in the fixed Eulerian mesh [29].

Figure 3.3: Fixed grid with containing VOF.

The structural mesh are consistent and same in both analysis, and of element type C3D8R.

From figure 3.4 it can be observed that the Eulerian mesh and the dummy mesh, are both dedi-

cated the dimensions given above in table 3.4. Due to the suppression of the dummy mesh these

elements are not taken into consideration for the total number of elements in the analysis, given

in table 3.5.
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Figure 3.4: Structural,Eulerian and dummy mesh

Domain Number of elements
Structural 320
Eulerian 11520
Dummy* 5064
Total 11840
*Suppressed,just for filling purpose.

Table 3.5: Mesh statistic CEL.

3.2.3 Interactions, boundary conditions and loads

Interaction properties between the structural and Eulerian domain are specified to general con-

tact. The assumptions are frictionless tangential behavior and hard contact in normal direction.

The need for using the general contact interaction in this analyse are due to the properties of the

Eulerian behavior. Node to node contact are therefore impossible.

For the Eulerian domain the outer walls are assigned with free inflow and non-reflecting outflow

assumption. This boundary condition also eliminates vibrations caused by reflecting waves in-

side the domain and keep the fluid volume constant. The structure is fixed at one end with the

encastre condition, and free to oscillate at the other.

An instantaneous load of 10 N is applied in negative y-direction, i.e at the xz-plane. The position

is chosen to be centered and 10 mm from the tip of the structure. The Eulerian representation

together with the EVF tool gives the opportunity to visually follow the fluid flow passing through

the fixed mesh in the whole Eulerian domain. A detailed explanation of the complete model

setup can be found in appendix C.
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Figure 3.5: Transparent view of load, boundary conditions and interactions.

3.2.4 Step and job

The total duration for the analysis is 0.2 seconds and non-linear geometry are toggled on. The

default option of automatic incrementation is chosen and stable time increment is calculated

to be 3.1298e −07s for the analysis.

In the job module the choice of using multiple processors are also toggled on, the computer

have four available and all are chosen. In addition, the Abaqus explicit precision is set to double

for the analysis only. This is to reduce accumulation of numerical errors in case of large number

of total increments. The total number of increments in the analysis are 639019.
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4 Results and discussion

4.1 Displacement and damping

For the CAS analysis a displacement versus time plot in figure 4.1 is provided with 500 evenly

spaced data points during the total analysis time. The plotted displacements are requested to

be at the node where the instantaneous force of 10 N is exerted. In figure 4.2 a plot with the exact

same prerequisites are provided for the CEL analysis. Comparison plot is provided in figure 4.3.

Figure 4.1: Displacement at the force node CAS analysis.

Figure 4.2: Displacement at the force node CEL analysis.
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By visualizing the results from the CAS analysis and CEL analysis in the same plot, the differ-

ences become clear. The decay rates of the amplitudes are of significant differences.

Reintroducing the logarithmic decrement equation 2.51, a measurement for the decaying har-

monic oscillations are provided. Also reintroducing the equation for the damping ratio, earlier

presented in equation 2.52, the tools for a mathematical evaluation of the harmonic oscillations

are now in possession. Due to the numerical errors in the analysis there is a slight difference in

the equilibrium lines, assuming that the average equilibrium line for both graphs are the same

and equal −0.710mm. Note that the line for equilibrium are at this displacement because the

instantaneous force is not released. The amplitude peaks from [0 : 0.1] seconds are chosen for

calculation of the logarithmic decrement and damping ratio for both analysis. The interval is

mainly chosen because of the rapid decay in the CEL analysis, and it is therefore difficult to

measure exact values out of this range.

Figure 4.3: Comparison of displacement at the force nodes.
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δC AS = 1

7
ln

∣∣∣∣−0.710− (−0.077)

−0.710− (−0.321)

∣∣∣∣= 0.070 ζC AS = 1√
1+ ( 2π

0.070 )2
= 0.011 (4.1)

δC EL = 1

6
ln

∣∣∣∣−0.710− (−0.348)

−0.710− (−0.685)

∣∣∣∣= 0.445 ζC EL = 1√
1+ ( 2π

0.445 )2
= 0.071 (4.2)

Parameter CAS CEL

Logarithmic decrement δ δC AS = 0.070 δC EL = 0.445

Damping ratio ζ ζC AS = 0.011 ζC EL = 0.071

Period T TC AS = 0.0132s TC EL = 0.0156s

Frequency f fC AS = 75.75H z fC EL = 64.10H z

Table 4.1: Schematic representation.

The schematic representation of the results in table 4.1 shows that the logarithmic decrement re-

sults are non homogeneous for the CAS and CEL analysis. This also give rise for unequal damp-

ing ratios. A damping ratio ζC AS = 1.1% for the CAS analysis and a damping ratio ζC EL = 7.1% for

the CEL analysis. A lower damping ratio for the CAS analysis was expected due to the fact that

no viscosity was applied to the acoustic elements.

In order to compare the CAS and CEL analysis at equal conditions, a dynamic explicit sim-

ulation where run for both. By default, the dynamic explicit analysis introduce a linear and

quadratic bulk viscosity. See appendix B and appendix D for values of the parameters. The

linear and quadratic bulk viscosity are by default included in the explicit analysis for several

reasons, such as to distribute a point shock load over several elements to avoid collapse. The

properties of these parameters will lead to damping in the system. Documentation for the lin-

ear and quadratic bulk viscosity can for the interested reader be found at Abaqus user guide [26].

For the CAS analysis the results for the damping ratio ζC AS = 1.1%, period TC AS = 0.0132s and

frequency fC AS = 75.75H z are assumed to be strictly a consequence of the added mass of the

surrounding acoustic elements and a small fraction from the linear and quadratic bulk viscos-

ity.
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In the CEL analysis a viscosity is specified for the Eulerian elements and therefore the damping

ratio results are plausible and more realistic. Difference in the period TC EL = 0.0156 compared

to the period for the CAS analysis are also explained by the viscosity dedicated to the Eulerian

elements. The viscosity applied to the Eulerian elements decrease the displacement already at

the first oscillation peak of the immersed structure compared to the structure immersed in the

acoustic elements.

The differences between the periods in the simulations are not remarkable big, but the pres-

ence of viscosity is clearly present. The frequencies are directly related to the period with the

relation f = 1
T , so the frequency fC EL = 64.10H z are therefore lower than for the CAS analysis.

The damping ratio ζC EL = 7.1% are considerable higher than for the CAS analysis, so the effects

of the viscosity becomes clearly visible. It is therefore assumed in the CEL analysis, that the

damping ratio is a consequence of the added mass of the water, liner and quadratic bulk and

the viscosity applied.

An eigenfrequency analysis is not performed to any of the models, so it is yet to know if the

frequencies are critical in regards to resonance.
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4.2 Velocities

For the CAS and CEL analysis velocity versus time plots are provided in figure 4.4 and figure 4.5.

The plots are made of 500 evenly spaced data points during the total analysis time. The plotted

velocities are requested to be at the node where the instantaneous force of 10 N is exerted. A

comparison plot for the velocities are also provided in figure 4.6.

Figure 4.4: Velocity at the force node CAS analysis.

Figure 4.5: Velocity at the force node CEL analysis.
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Figure 4.6: Comparison of velocities.

The tendency for the velocities are the same as for the displacements and are also justified by

the presence of viscosity added to the Eulerian elements in the CEL analysis. As previously not

pointed out but worth noticing, is the strong influence the viscosity has in reduction of the first

velocity amplitude peak. For an imagined case of surrounding structure containing critical com-

ponents such as a valve or sensor, a pressure wave with the velocities plotted in the CEL analysis

could have been within the limits, while a pressure wave with the velocities plotted for the CAS

analysis could have been above. A similar analogy are also relevant or even more critical for the

displacements, as that could have meant contact between structures.

This substantiate the importance of adding correct properties to achieve reliable results in dy-

namical simulations.
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4.3 Kinetic energy

The kinetic energy for both models are plotted with 200 evenly spaced data points during the

total analysis time. Figure 4.7 shows the kinetic energy for the CAS analysis and figure 4.8 shows

the kinetic energy for the CEL analysis. In figure 4.9 a comparison of the kinetic energies are

presented with associated polynomial trendlines of fifth degree. A polynomial line of this degree

are exaggerated for the CAS analysis but a suitable fit for the CEL analysis.

Figure 4.7: Kinetic energy CAS model.

Figure 4.8: Kinetic energy CEL model.

35



Kinetic energy is the energy the system possesses due to its motion, also known as mechanical

energy. The decrease of kinetic energy is clearly visible in both figures, meaning that the kinetic

energy is converting into other types of energies. The conversion from kinetic energy into other

types implies that less and less energy is left to oscillate the steel structure, so it is said to be

damped.

For the CAS analysis a slow decay of kinetic energy can be observed, and the system still holds a

substantial amount of kinetic energy at the end of the simulation period. The strong conserva-

tion of kinetic energy in the CAS analysis is due to the absence of acoustic impedance, damping

or volumetric drag defined inside the model. Acoustic impedance is only defined at the outer

surfaces of the model. For the record, acoustic impedance and volumetric drag in acoustic ele-

ments, can be thought of as the counterpart of damping mechanisms the viscosity causes in the

Eulerian elements.

In the CEL analysis a rapid decay of kinetic energy is observed and an almost complete conver-

sion of kinetic energy is registered at the end of simulation time 0.2s. An assumption that the

viscosity added to the Eulerian elements are the main reason to the rapid decay, implies that the

kinetic energy is mainly converted into viscous dissipation energy. The viscous dissipation can

be thought of as the damping mechanisms in the system, and the viscosity is therefore a large

contributor to the damping.

36



Figure 4.9: Comparison of kinetic energy.

The comparison figure 4.9 illustrates the large differences of the change of kinetic energy for

both analysis. Both trendlines are approximated with a fifth degree polynomial as previously

stated.

For the CAS analysis the trendline is almost linear, while for the CEL analysis the line could

be described by an exponential function. The rapid decay of kinetic energy in the CEL analysis

between 0s to 0.05s indicated that most of the conversation of kinetic energy into other energies

are within this interval and almost constant after 0.05s.
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4.4 Viscous dissipation energy

The viscous dissipation for both models are plotted with 200 evenly spaced data points during

the total analysis time. Figure 4.10 shows the viscous dissipation for the CAS analysis, and fig-

ure 4.11 shows the viscous dissipation for the CEL analysis. The viscous dissipation energy can

be thought of as the mechanical energy the system convert into energy used for damping. The

viscous dissipation energy is also irreversible, so the energy can not be converted back to me-

chanical energy. If there would be no viscous dissipation energy or other losses, the mechanical

energy for the system would be conserved and fluctuate between kinetic and potential energy.

The viscous dissipation energy includes the material damping, viscosity and bulk viscosity, and

can in general be thought of as the damping mechanisms for the system. The reader is advised

to note the scales of the vertical axes in the figures.

As no viscosity is defined for the acoustic elements, the viscous dissipation energy in the CAS

analysis is quite small, and most likely induced by the previous discussed default values of lin-

ear and quadratic bulk viscosity which induces damping, or due to numerical errors. The ap-

plied acoustic impedance at the outer boundaries does also come into account. The expected

dissipation for the CAS analysis are ideally equal to zero disregarded the default bulk viscosity

parameter values and the boundary conditions. The total quantity of viscous dissipation energy

for the CAS analysis are calculated to be 0.04994773m J during the simulation period of 0.2s.

For the CEL analysis the values of the vertical axis are 1000 times greater than the values for the

CAS analysis. This indicated that the Eulerian elements, with the added dynamic viscosity, have

a strong ability to convert the mechanical energy into irreversible viscous dissipation energy.

The high share of dissipation energy in the CEL analysis must therefore be the main contributor

to the damping effects in the analysis. The total quantity of viscous dissipation energy for the

CAS analysis are calculated to be 660.3630m J during the simulation period of 0.2s.
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Figure 4.10: Viscous dissipation CAS model.

Figure 4.11: Viscous dissipation CEL model.

Figure 4.12 illustrates the viscous dissipation energies in a bar graph, and the fraction of viscous

dissipation energy for the CAS analysis are very small in comparison to the CEL analysis The

fraction of viscous dissipation energy for the CAS analysis, calculated in equation 4.3 and are

only 0.0000756 or 0.00756% of the CEL analysis.

∑
di ssi pati onC AS∑
di ssi pati onC EL

= 0.04994773m J

660.363005m J
≈ 0.0000756 (4.3)
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Figure 4.12: Viscous dissipation energy comparison.

4.5 Total energy

The total energy output, ETOTAL, can be used to see if the analysis are yielding a proper re-

sponse. In table 4.2 the total energy output over the simulation period are presented for the CAS

analysis and CEL analysis, to give the reader insight of the quantities involved.

In figure 4.13 for the CAS analysis a small change in total energy is observed as the instanta-

neous load is applied. The change may seem significant but observing the scale of the vertical

axis gives an understanding of the small change. Almost no change in total energy can be ob-

served afterwards, so it is approximately constant.

Figure 4.14 illustrates the total energy for the CEL analysis. A change in total energy is seen

throughout the simulation which indicates that energy is "leaking" out of the model. By looking

at this graph alone it would not pass a sanity test for acceptable finite element results. The result

needs to be further investigated to see the bigger picture of the analysis. This will be done in the

next section .
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Analysis Energy [mJ]
CAS -0.0013
CEL -132.5765

Table 4.2: Total energy.

Figure 4.13: Total energy CAS model.

Figure 4.14: Total energy CEL model.
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4.6 Energy balance and variation

The energy balance principle was presented in equation 2.58, where the total energy should

be equal to the sum of all energies taken into account. The total energy or sum of all energies

should be constant throughout the simulation. For a numerical analysis this is not completely

true. The total energy or sum of energies will vary throughout the simulation due to numerical

errors, hour-glassing, non-linearity, energies not taken into account and general Abaqus capa-

bilities. Instead of claiming the total energy or sum of energies should be constant, the variation

of energies throughout the analysis will be investigated. The variation of energy will be used as

a basis for a sanity check to control if the analysis are yielding a proper response.

For the CAS analysis figure 4.15 is a direct output of all energies considered. The total energy

seems absolutely constant and zero compared to the other energies. The result is promising

and indicates that the simulation is adequate. The frictional energy also seems to be zero from

the plot, which it should be, as no friction forces are applied to the system. The viscous dissipa-

tion energy seems to follow the same path, but as observed from figure 4.10, this energy is not

zero but very small. The kinetic energy is oscillating with a slow decay. The external work and

internal energy follows the same oscillating path, also with a slow decay.

Figure 4.15: Energies CAS model.
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By individually summing up all energies over the whole simulation period, an overview of how

the quantities of energy are distributed to each of the energies taken into account, this can be

seen in table 4.3. Calculation below shows an equal quantity of energy at both sides of the en-

ergy conservation equation. As these energy quantities are over the total simulation period, no

variation will be calculated. Anyhow, the energy quantity on the left hand side and right hand

side are equal, and the total energy is constant through the simulation, therefore it can now be

assumed that the numerical analysis are yielding correct response.

ET OT AL = ALLI E + ALLV D + ALLF D + ALLK E − ALLW K

ET OT AL = 1275.0823+0.0499+0+94.5729−1369.7064︸ ︷︷ ︸
−0.0013

−0.0013 =−0.0013

Variable name ALLWD ALLFD ALLIE ALLKE ETOTAL ALLVD
Energy total [mJ] 1369.7064 0 1275.0823 94.5729 -0.0013 0.0499

Table 4.3: Energies CAS analysis.

In figure 4.16 a plot of the variation, total energy and sum of all energies are presented. Equation

4.4 are the basis for representation of the variation. The subscript (i) denotes the time increment

and the variation can now be shown for each increment. For the record, variation is meant as the

difference between the total energy and sum of all energies in each time increment. In the graph

describing the variation in energy very small fluctuations around the zero line are observed, and

the same fluctuations are seen in the graph describing the total energy. The small fluctuations

are neglected and the total energy is close to constant after the instantaneous load is applied.

Using figure 4.15 to see the bigger picture and figure 4.16 for closer investigation, the results

seems reasonable. In regards to a sanity check, it is therefore basis to claim that all results pro-

duced in the CAS analysis are correct with the given preconditions. But it is important to keep

in mind that the preconditions in the CAS analysis might not be a good representation for a real

situation.
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V ARI AT ION(i ) = ET OT AL(i ) −
[

ALLI E(i ) + ALLV D(i ) + ALLF D(i ) + ALLK E(i ) − ALLW K(i )

]
(4.4)

Figure 4.16: Energy and variation plot CAS.
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For the CEL analysis, figure 4.17 is a direct output of the energies accounted for in the simu-

lation. A frictionless behaviour was chosen for the model, and from the rough scale graph it

also seems that no friction energy is present. The viscous energy dissipation was the energy

dissipated by damping mechanisms. This portion is relatively large for the analysis so a lot of

energy is used for damping. By inspecting the graph and from previous figure 4.11, it is clear

that the viscous energy dissipation becomes almost constant after some time. This implies that

the damping also becomes relative constant.

The internal energy oscillates in the same way as the work done by external forces oscillates, but

does not overlap as in the CAS analysis due to the large portion of energy transferred to viscous

dissipation energy. The kinetic energy has a rapid decay and becomes constant and close to zero

as previously stated in the kinetic energy section 4.3.

In the graph for total energy it is clear that it is not constant in the first 0.05s of the simulation,

but seems stabilized and approximated constant from 0.05s to 0.2s in the figure. The figure

does provide a great perception of development of all the energies as they plotted together, but

as previously observed in figure 4.14 it was clear that the total energy were not constant.

For a sanity check this is a case of doubt. Argument for a pass of the analysis would be that there

are no sudden jumps in total energy, and that it seems almost constant and stable after 0.05s

when compared to the other energies. Argument for discard of the analysis would be that it is

not constant before 0.05s and is slightly "leaking" energy after. The reasons for the not constant

total energy are probably the instantaneous force applied, and that the instant deflection of the

structural domain might not have been captured perfectly by the Eulerian domain. Remember-

ing that the Eulerian elements are fixed in space so there are no node to node contact between

the domains.

The leakage of fluid through the structural domain might also be a contributor as well as the

transition from smaller to bigger elements in the Eulerian domain. The leakage problem are a

well known problem for CEL analysis and may be improved by smaller element size for the part

acting as a sieve. A finer mesh, with no transition to courser mesh, should have been applied to

the whole model and probably limited some of the leakage of energy issue.
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The boundary conditions may also have an influence on the energy leakage, even if at this point

there is no evidence for such an allegation. But it is experienced that the boundary conditions

does influence the damping effect and therefore the viscous dissipation energy. In general, CEL

analysis are known to have a reduced accuracy compared to other analysis.

Figure 4.17: Energies CEL model.

Each of the energy quantities are summed up over the total simulation period in table 4.4. This

is to provide an impression of where the energy quantities are distributed. In equation below,

the total energy are on the left hand side and summation of all other energies on the right hand

side. The left and right hand side does not add up which indicates that it is a problem with the

simulation or model.

ET OT AL = ALLI E + ALLV D + ALLF D + ALLK E − ALLW K

ET OT AL = 825.7416+660.3630+0+55.1435−1431.9414︸ ︷︷ ︸
109.3067

−132.3423 6= 109.3067
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Variable name ALLWD ALLFD ALLIE ALLKE ETOTAL ALLVD
Energy [mJ] 1431.9414 0 825.7416 55.1435 -132.3423 660.3630

Table 4.4: Energies CEL analysis.

Figure 4.18 provides a comparison of the total energy, sum of all energies and variations. Also

here it is worth notice that the variations are meant as the difference between the total energy

and the sum of all energies, so equation 4.4 are still the basis, where the variation is for each

time increment. A relative stable but big variation can be observed, also approximated constant

from 0.05s. This indicated that the main issues in the simulation are at the beginning of the

simulation.

For the question of the sanity of the analysis it is still a case of doubt, but for engineering pur-

poses of the results, recommendation would be to discard the analysis. The total energy must be

very close to constant to ensure perfect results. That being said, the purpose of this master the-

sis was to investigate whether the CEL technique was implementable on immersed structures,

which it has been proven to be.

Figure 4.18: Energy and variation plot CEL.
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5 Conclusion

The two numerical analysis methods presented in the master thesis have very different ap-

proaches for the FSI problem. Both methods are implementable and good approaches for the

problem with a structure immersed in a fluid. However the results in the CAS analysis are

sprawling compared to the CEL analysis due to the different preconditions in the model setup.

The CAS analysis should have been provided with an acoustic impedance and/or drag force to

replicate the viscosity in the CEL analysis. But implementing such parameters are difficult and

probably not yield desired response.

On basis of the different preconditions for the two numerical analysis, a damping ratio of ζC AS =
1.1% for the CAS analysis and a damping ratio of ζC EL = 7.1% for the CEL analysis, are calculated

for the submerged structures. In lack of experimental results it is impossible to determine which

is most appropriate, but experience would suggest that the CEL analysis is closest to reality. The

added viscosity in the CEL analysis are definitely the main contributor to the damping effect. As

the damping ratios are calculated from the displacements, the displacements for the CEL anal-

ysis tends to decay faster then for the CAS analysis. The same does also apply to the velocities.

In the energy aspect for the two analysis, table 4.3 and 4.4 shows how the energy quantities are

distributed in the simulation period of 0.2s. A larger quantity of energy is reserved for the damp-

ing mechanisms in the CEL analysis than in the CAS analysis, i.e the viscous dissipation energy.

This is also related to the values of damping ratios.

The total energy in the CAS analysis are approximated constant throughout the simulation and

therefore it can be concluded that all results are reliable with the given preconditions. The total

energy in the CEL analysis are seen not to be constant throughout the simulation and the re-

sults are recommended to be discarded. This might be a strict decision or even incorrect, but

decision is based in the change of total energy from 0s to 0.05s.
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However, one of the main reasons with this master thesis was to investigate whether the CEL

technique was suitable for this type of problem. Without doubt it is very suitable. Issues re-

garding the change in total energy can most likely be bypassed by refining the mesh, no mesh

transitions and apply the load in a different manner.

Overall both simulation techniques are suitable for this kind of problem, despite the issues with

the total energy and the complex setup, the CEL technique is the preferred numerical method.

This method can be provided to a larger variety of problems, such as a moving fluid. A conver-

gence study should also have been implemented for both methods for optimizing the choice of

mesh size and therefore simulation time.
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6 Further Work

The simplified model of a Francis turbine used in this master thesis has shown that both CAS

technique and CEL technique can be used for this type of problems. The lack of experimental

results has been a drawback, so it is highly recommended to obtain experimental results. With

experimental results it would be much easier to determine which type of simulation that pro-

vides the best results compared to model setup effort. The numerical model must be redesigned

to fit a model available to do experiments on, or a experimental model must be created to verify

or discharge results obtained in this master thesis. Procedures of model setup are well described

in appendix A and appendix C, so a new model build up should be possible. A refinement of the

meshes are highly recommended.

It is also recommended to study and implement the analysis performed in signatory‘s special-

ization project [30] to the model available for experimental results. These simulations gives a

foundation for understanding the Abaqus software and the complexity of the physical problem.
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Appendix A CAS model setup

Geometries and properties for the structural and acoustic domains are to be found in table 3.1

and table 3.2. The parts need to be created with given dimensions in the part module. A space

equal to the dimension of the structural geometry need to be created inside the acoustic geome-

try using the create cut and extrude. It is wise to create datum planes off-centered ±2.5mm from

the principle xz-plane to create the cut. Alternatively the merge/cut instances in the assembly

module. This feature is recommended for fit of more complex models. A reference point is also

created in the center of both parts. The structural geometry must be partitioned on the top face

to ensure that a node will be placed where the concentrated load is applied.

In the property module all the material properties are applied to each of the parts, in addition

an acoustic interface is created under create section. This feature will automatically be set to

the correct region when later applying the tie constraints. In the assembly module both parts

are mounted so the structural geometry is centered inside the acoustic geometry. Now the ref-

erence points are used for translating or rotating the geometries to the correct position.

The mesh module is then opened and the structural geometry is selected. This part is given

global seeds of 5mm and local seeds of 2.5 mm in the height, i.e y-direction. Elements of type

C3D8R are assigned, and the mesh control used to ensure that only hexahedral elements are

applied. Then mesh the part. The acoustic geometry is then ready to be meshed, and applied

hexahedral elements. Some partitioning must be done to make the model ready for the hex-

ahedral mesh. Use the toolbar to create more datum planes, ±12.5mm off centered from the

principle xz-plane and ±100mm from the yz-plane. Use these datum planes to partition the

part. Note that the same partitioning can be obtained using other approaches. The acoustic

geometry is now ready to be assigned hexahedral elements of type AC3D8R. Global seeds of 10

mm, and local seeds of 2.5 mm in the y-direction region between the ±12.5mm partitioning is

done. This is to ensure smaller mesh in the contact and interesting regions. See figure A.1 for

complete partitioning of the models.
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Interaction module is then opened and tie constraints are applied. All surface regions of the

structural geometry are chosen to be the master surface, and the created space inside the acous-

tic geometry is the slave surface. Due to the meshing, the nodes in both surfaces should now be

coincide in the y-direction, so the default options for position tolerance is chosen to complete

the tie constraint feature. A planar, non-reflecting acoustic impedance interaction is also cre-

ated at all outer surfaces of the acoustic medium. This is an assumption and prevents acoustic

waves reflecting back and forth inside the medium creating noise. Next is to create a dynamic

explicit step in the step module, a time period of 0.2 seconds is chosen to be appropriate and all

other parameters stays as default options.

Load module is then opened and a boundary condition type encastre is chosen and applied at

the end surface of the structural geometry. The boundary condition holds the geometry fixed in

all direction at the end. It is wise to apply this as an initial condition in case of later changes to

the model. A concentrated instantaneous force of 10 N is applied to the geometry in the nega-

tive y-direction. The force is centered 10 mm from the tip of the steel plate.

A job is created in the job module, with a double precision output only for the analysis, and use

of multiple processors for faster analysis. From the model tree a new history output is created

for the point where the load is applied. A displacement/velocity/acceleration history output for

this point is set to be 500 points during the analysis period. The job are then ready to be submit-

ted.

When the job is completed, the visualization module is used for visual control and inspection

of the dynamic behaviour of the model. See figure A.2.
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Figure A.1: Geometry and partitioning CAS analysis.

Figure A.2: Acoustic pressure for control and dynamics.
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Appendix B CAS simulation input file

*Heading

** Job name: expMAST Model name: Model-1

** Generated by: Abaqus/CAE 2017

*Preprint, echo=NO, model=NO, history=NO, contact=NO

-----------------------------------------------------

** PARTS

**

*Part, name=beam

*Element, type=C3D8R

*Part, name=medi

*Element, type=AC3D8R

-----------------------------------------------------

** ASSEMBLY

**

*Instance, name=beam-1, part=beam

*Instance, name=medi-1, part=medi

** Constraint: TIED

*Tie, name=TIED, adjust=yes

-----------------------------------------------------

** MATERIALS

**

*Material, name=medivann

*Acoustic Medium

2200.,

*Density

1e-09,

*Material, name=steel

*Density
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7.85e-09,

*Elastic

200000., 0.3

*Time Points, name=TimePoints-1, GENERATE

0., 0.2, 0.0001

-------------------------------------------------------

** BOUNDARY CONDITIONS

**

** Name: fixed Type: Symmetry/Antisymmetry/Encastre

*Boundary

Set-2-fixed, ENCASTRE

-------------------------------------------------------

** STEP: expMASTER

**

*Step, name=expMASTER, nlgeom=YES

*Dynamic, Explicit

, 0.2

*Bulk Viscosity

0.06, 1.2

-------------------------------------------------------

** LOADS

**

** Name: force10mm Type: Concentrated force

*Cload

Set-6-kraften10mm, 2, -10.

-------------------------------------------------------

** INTERACTIONS

**

** Interaction: Int-1-PLANARIMP

*Simpedance, nonreflecting=PLANAR
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Surf-4-planIMP

------------------------------------------------------

** OUTPUT REQUESTS

**

*Restart, write, number interval=1, time marks=NO

**

** FIELD OUTPUT: F-Output-1

**

*Output, field, number interval=200

*Node Output

A, PABS, POR, RF, U, V

*Element Output, directions=YES

CTSHR, EVF, LE, MISES, MISESMAX, MISESONLY, PE, PEEQ, PEEQVAVG, PEVAVG, PRESSONLY, PS, S, SFABRIC, SSAVG, SVAVG

TRIAX, TSHR, VS

*Contact Output

CSTRESS,

**

** FIELD OUTPUT: F-Output-2

**

*Node Output

A, PABS, POR, RF, U, V

*Element Output, directions=YES

EDCDEN, EDT, ELEDEN, ELEN, ENER, EVF, LE, PE, PEEQ, PEEQVAVG, PEVAVG, S, SVAVG

*Contact Output

CSTRESS,

**

** HISTORY OUTPUT: H-Output-1

**

*Output, history, variable=PRESELECT, frequency=200

**
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** HISTORY OUTPUT: H-Output-2

**

*Output, history, time interval=0.0004

*Node Output, nset=Set-5-forceTIP

A1, A2, A3, AR, AR1, AR2, AR3, AT

CF1, CF2, CF3, CM1, CM2, CM3, RF1, RF2

RF3, RM, RM1, RM2, RM3, RT, RWM, U1

U2, U3, UR, UR1, UR2, UR3, UT, V1

V2, V3, VR, VR1, VR2, VR3, VT

**

** HISTORY OUTPUT: H-Output-3-U10mm

**

*Node Output, nset=Set-6-kraften10mm

A1, A2, A3, AR, AR1, AR2, AR3, AT

U1, U2, U3, UR, UR1, UR2, UR3, UT

V1, V2, V3, VR, VR1, VR2, VR3, VT
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Appendix C CEL model setup

The geometries for the structural geometry, Eulerian geometry and the dummy container ge-

ometry are created in the part module with dimensions given in table 3.1 and table 3.4. The

dummy container and the Eulerian domain have the same dimensions, due to the fact that the

Eulerian properties are going to be filled inside the dummy container and this is the only region

of interest. The dummy container must be created as a discrete rigid type. A space equal to the

dimensions of the structural geometry is created centered inside the dummy container. This is

done by creating datum planes off centered ±2.5mm from the principle xz-plane, and use the

create cut and extrude feature.

The rigid dummy container must be transformed from a solid to a shell. This option is found in

the tool bar. Reference points are created for all three parts in the center of each of them. The

structural geometry is partitioned at the top face to ensure that a node will be placed where the

load is going to be applied. The Eulerian domain is also partitioned at all faces ±12.5mm off

centered from the principle xz-plane. The dummy container undergoes the same partitioning.

Se figure C.1.

In the property module the structural geometry and Eulerian geometry are assigned properties

from table 3.1 and table 3.4, while the dummy are not assigned any properties. The parts are

then ready to be meshed in the mesh module. The structural geometry is assigned hexahedral

elements, global seeding of 5mm and local seeding of 2.5 mm in the y-direction, then meshed

with C3D8R type elements. The Eulerian geometry is assigned global seeds of 10 mm and local

seeds of 2.5 mm in y-direction in the region partitioned ±12.5mm from the xz-plane. Hexahe-

dral mesh of type EC3D8R is then applied. The dummy is assigned global seeds of 10 mm, and

2.5 mm in y-direction in the same region as the Eulerian. Since the dummy is a shell, local seeds

of 2.5 mm in y-direction must be applied to the space inside where the structural geometry is to

be mounted. This completes the meshing.
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The interaction module must now be opened and from the toolbar the discrete field–>volume

fraction tool is found. Selecting the Eulerian, and then the dummy container as the reference

part, to begin the filling of the volume. Filling accuracy is chosen to high, and a node set and

element set is selected to be created. Now the volume is filled but it is crucial to assign the ma-

terial it is filled with. Open the load module, go to predefined field, choose "other" and material

assignment. Choose the Eulerian part instance and the edit predefined field opens, choose the

discrete field definition to assign the material.

In the step module a dynamic explicit step can now be created with time period of 0.2 s. All op-

tions stays as default. Go back to the interaction module and create interaction property. This is

set to be frictionless tangential behaviour and hard contact normal behavior. Go to the interac-

tion manager and apply general contact to all surfaces. This becomes the only contact between

the structural domain and the Eulerian domain, since dummy is going to be suppressed.

In the load module, encastre boundary conditions are applied to the end surface of the struc-

tural geometry. At the outer surfaces of the Eulerian geometry, an Eulerian boundary condition

is applied. This is set to be free inflow and non-reflecting outflow. This assumption will prevent

the fluid from reflecting back and forth in the domain and produce vibrations. The instanta-

neous concentrated force of 10 N is applied to the centred node 10 mm from the tip of the struc-

tural geometry. A displacement/velocity/acceleration history output are created for the node,

and set to 500 points during the analysis. Now suppress the dummy container.

In the job module a job is created, with double precision only for analysis and use of multiple

processors for speeding up the analysis. The job is now ready to be submitted. When the job is

completed the visualization module provides a wide variety of visual effects. See figure C.2 and

figure C.3.
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Figure C.1: Geometry and partitioning CEL analysis.

Figure C.2: Volume fraction averaged stress.

Figure C.3: Vectors illustrating displacements.
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Appendix D CEL simulation input file

*Heading

** Job name: expEULdisplace Model name: Model-1

** Generated by: Abaqus/CAE 2017

*Preprint, echo=NO, model=NO, history=NO, contact=NO

------------------------------------------

** PARTS

**

*Part, name=Beam

*Element, type=C3D8R

*Part, name=EUL

*Element, type=EC3D8R

-----------------------------------------

** ASSEMBLY

**

*Instance, name=Beam-1, part=Beam

*Instance, name=EUL-1, part=EUL

-----------------------------------------

** MATERIALS

**

*Material, name=steel

*Density

7.85e-09,

*Elastic

200000., 0.3

*Material, name=water

*Density

1e-09,

*Eos, type=USUP
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1.5e+06,0.,0.

*Viscosity

1e-09,

-------------------------------------------

** INTERACTION PROPERTIES

**

*Surface Interaction, name=IntProp-1

*Friction

0.,

*Surface Behavior, pressure-overclosure=HARD

** INTERACTIONS

**

** Interaction: Int-1

*Contact, op=NEW

*Contact Inclusions, ALL EXTERIOR

*Contact Property Assignment

, , IntProp-1

-------------------------------------------

** BOUNDARY CONDITIONS

**

** Name: fixed Type: Symmetry/Antisymmetry/Encastre

*Boundary

Set-4, ENCASTRE

** BOUNDARY CONDITIONS

**

** Name: BC-5-EULBOUND Type: Eulerian boundary

*Eulerian Boundary, inflow=FREE, outflow=NONREFLECTING

Surf-1-EulBOUNARYnr

-------------------------------------------

** PREDEFINED FIELDS
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**

** Name: Predefined Field-1 Type: Material assignment

*Initial Conditions, type=VOLUME FRACTION

------------------------------------------

** STEP: expEULERIANdisp

**

*Step, name=expEULERIANdisp, nlgeom=YES

*Dynamic, Explicit

, 0.2

*Bulk Viscosity

0.06, 1.2

-------------------------------------------

** LOADS

**

** Name: Load-1-force10mm Type: Concentrated force

*Cload

Set-8, 2, -10.

------------------------------------------

** OUTPUT REQUESTS

**

*Restart, write, number interval=1, time marks=NO

**

** FIELD OUTPUT: F-Output-1

**

*Output, field, variable=PRESELECT, number interval=200

**

** HISTORY OUTPUT: H-Output-1

**

*Output, history, variable=PRESELECT

**
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** HISTORY OUTPUT: H-Output-3-tip

**

*Output, history, time interval=0.0004

*Node Output, nset=Beam-1.Set-2-tip

A1, A2, A3, AR, AR1, AR2, AR3, AT

U1, U2, U3, UR, UR1, UR2, UR3, UT

V1, V2, V3, VR, VR1, VR2, VR3, VT

**

** HISTORY OUTPUT: H-Output-2-Uforce

**

*Node Output, nset=Set-8

A1, A2, A3, AR, AR1, AR2, AR3, AT

U1, U2, U3, UR, UR1, UR2, UR3, UT

V1, V2, V3, VR, VR1, VR2, VR3, VT
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