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2 Abstract

As produced (AP) blunt V-notched and unnotched specimen of Inconel 718 (IN718)
were additively manufactured (AM) by means of selective laser melting (SLM)
and then statically tensile tested. Subsequently, the strain energy density (SED)
of the notched specimen was computed with four different equations for sharp
and blunt V-notches, using both elastic and plastic notch stress intensity factor
(NSIF)(P-NSIF). Values of critical radii were determined by analytical, numerical
and graphical methods. The failure accuracy was obtained using four different
critical SED values. These values were computed employing brittle, ductile, lin-
ear elastic-perfectly plastic and perfectly plastic material models. When using
the equation for blunt V-notches with NSIF and perfectly plastic failure criteria,
the failure force was underestimated by 12.5%. The accuracy is comparable with
elasto-plastic theory of critical distance (TCD), with reported deviation of±12%,
which is regarded as accurate. Nevertheless, the linear elastic SED approach
can be recommended for estimation of both static and fatigue failure forces as
less computationally demanding than TCD method. This stems from low mesh
sensitivity in numerical analysis an the size effect of the NSIF. A new failure cri-
terion was suggested based on analysis of material notch sensitivity ratio (NSR).
However, further research needs to be conducted so as to verify the method and
failure criterion by varying materials and geometries.
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3 Sammendrag

En glatt prøvestav og prøvestav med butt V-kjerv av Inconel 718 (IN718) ble
additiv produsert (AM) ved hjelp av selektiv lasersmelting (SLM) uten etterbe-
handling. Senere ble de statisk strekkprøvet. Styrken til prøvestaven med butt
V-kjerv ble deretter estimert med fire forskjellige ligninger av strain energy den-
sity (SED) for skarpe og butte V-kjerver, ved bruk av både elastisk og plastisk
kjervsensitivitets- og intensitetsfaktor (NSIF)(P-NSIF). Kritisk radius ble utledet
ved hjelp av både analytisk, numerisk og ved grafisk metode. Nøyaktigheten ble
sammenlignet ved bruk av fire forskjellige utledede kritiske SED-verdier. Disse
var basert på en sprø, duktil, lineærelastisk-perfekt plastisk og et perfekt plas-
tisk materialmodell. Materialmodelene var basert på materialegenskapene til
den glatte prøvestaven. Nøyaktigheten ved å bruke ligningene for butt V-kjerv
med NSIF var på 12.5% med feilkriteriet for det perfekt plastiske materialet.
Nøyaktigheten er sammenlignbar med elasto-plastisk theory of critical distance
(TCD) med rapportert feilmargin på ±12%. Imidlertid kan den lineære-elastiske
SED-tilnærmingen bli anbefalt som en enkel måte å estimere statisk- og tretthets-
brudd. Dette skyldes lav følsomhet for størrelsen på mesh i de numerisk anal-
ysene og at størrelseseffekten er inkludert i NSIF. Et nytt feilkriterium med en
inkludering av kjervfølsomhetsforholdet (NSR) ble foreslått. Men for å verifisere
både fremgangsmåte og feilkriteriet må flere materialer og geomtrier bli testet.
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Nomenclature

Symbol Description Units

α Angle Rad

ε Engineering strain -

εn Strain until necking -

εp Plastic strain -

εt True strain -

γ Angle Rad

µ Notch opening angle parameter -

ν Poisson -

ω Stress angle referring to coordinate system Rad

W Average strain energy density Nmm
mm3

ρ Radius mm

σ Engineering stress MPa

σθ Stress according to figure 5.14 MPa

σm Mean stress MPa

σt True stress MPa

σy Yield stress MPa

σuts Ultimate tensile stress MPa

τ Shear stress MPa

A Area mm2

A0 Initial area mm2

F Force N

H Strain hardening coefficient MPa

Ie, Ip Elastic and plastic stress integral -

K f Notch sensitivity factor -

Ki Elastic stress intensity factor MPa1−λ

iv



KN
i Elastic notch stress intensity factor MPa1−λ

Kt Elastic stress concentration factor -

KIC Fracture toughness MPa
√

m

Kip Plastic stress intensity factor MPas

KN
ip Plastic notch stress intensity factor MPas

Kth Fracture threshold stress intensity MPa
√

m

l Length mm

l0 Initial length mm

m,q Creep rate exponents -

n Strain hardening exponent -

N f Cycles to failure -

Q Activation energy J

R Load ratio -

R0 Critical radius m

WC Critical strain energy density Nmm
mm3

x Distance mm

a Crack length mm

A,b Power law components -

d Average grain diameter m

E Young’s modulus MPa

f Geometry function -

G Shear modulus MPa

N Cycles -

q Notch sensitivity factor -

R Load factor -

r Radius m

s Stress singularity for an elastoplastic material -

T Temperature Kelvin

U Strain energy Nmm
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4 Introduction

4.1 Background and motivation

The need for materials with greater strength at elevated temperatures escalated
with the invention of the gas turbine and jet engine in the early nineteen hun-
dreds. This industry needed stronger, lighter and more temperature resistant
materials. This created a new class of alloys called superalloys. They consist of
greater number of alloy elements than the previous alloys. Beside having a gen-
eral content of nickel, the alloy compound ranges from five to ten other elements
[1].

Inconel 718 (IN718) was introduced in the early 1960’s [2]. It is a nickel-based
super alloy that combines high creep strength with great resistance against ox-
idation and contrary to previous super alloys, also exhibiting great weldability
[3] [4]. Ordinary steel alloys can not operate at more than approximately 50% of
the absolute melting temperature (MT), but some nickel-based superalloys such
as IN 718 can operate at an excess of 70% of the absolute MT. This is because of
its two-phase equilibrium of γ/γ’ which locks the dislocations [1]. This makes
In718 popular in the aerospace industry and for other extreme conditions with
complex design [3]. However it is difficult to produce by conventional produc-
tion methods, with complex geometries desired [5].

Additive manufacturing (AM) is contrary to traditional manufacturing, adding
material instead of removing. AM enables superior component complexity with
large gains in topology optimization [6]. However, it needs further refinement
because of the inherent flaws materials undergo during production [7]. These
refinements are such as residual stresses, high surface roughness and porosity
because of lack of fusion, reasons why AM often needs treatment after produc-
tion.

Strain energy density (SED) is used as failure criteria for both brittle- and semi-
brittle behavior [8]. It states that failure occurs when the strain energy density
is equal to the critical energy, WC. This method enables FE-analysis using very
course mesh, contrary to other failure assessments [9]. Which is why it is con-
sidered as a powerful tool to asses failure of notched and welded components.
However, SED analysis of static failure of notched materials are not substantially
studied and predicting ductile failure often involves heavy elasto-plastic analy-
sis.

4.2 Problem description

It is important to be able to accurately compute the failure force on components.
Additive manufactured components enables more complex geometries than be-
fore, creating perturbations in the material acting. The strain energy density
approach has been verified extensively for brittle and quasi-brittle material as
a great prediction method of failure. This thesis investigates if it is possible to
accurately predict static failure force of blunt V-notched specimen made of the
ductile material Inconel 718.
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4.3 Project scope

4.3.1 Objectives

The objective of this thesis is to determine the accuracy of the different computa-
tional methods.

4.3.2 Research questions

• What is the static mechanical properties of AM IN 718?

• Is it possible to give accurate estimations of static failure of AM IN 718
with blunt notch geometry, based on different linear calculation methods
of the strain energy density criteria, with equations for sharp and blunt V-
notches by use of NSIF and P-NSIF, when the failure criteria is based on
brittle, ductile or simplified ductile materials?

4.3.3 Limitations

One material and one notch geometry limits the certainty of the conclusion of
the method. Only Mode I load was considered.

4.4 Thesis structure

A chapter of literature review is included to provide some necessary knowledge
of relevant topics. The review goes through stress, material response and static
failure criteria. Further it contain other fatigue failure assessments, before intro-
ducing the theory of critical distance, the average strain energy density approach
based on elastic NSIF as well as the equivalent strain energy density based on
plastic P-NSIF. After which follows a brief intro to additive manufacturing, se-
lective laser melting and hot isostatic pressing before giving a more extensive
review of Nickel-based superalloys. This review includes mechanical properties
of conventionally manufactured IN 718 as well as produced by additive man-
ufacturing. The method of material testing are explained and how the strain
energy density analysis was performed with numerical analysis, as well as the
strain energy density approach in this thesis with all the necessary parameters
for computation. Results of computed failure force and accuracy of the different
methods are given, and these are discussed in the following chapter. The thesis
ends with a conclusion and suggested further work.
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5 Literature Review

5.1 Stress

Stress is the force applied divided by area [10]. When a component is subjected
to a load it responds with a deflection, strain.

σ =
dF
dA

, dε =
dl
l0

(1)

The stress tensor can in Cartesian coordinates be expressed as:

σ =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 , or σ =

σ11 τ12 τ13
τ12 σ22 τ23
τ13 τ23 σ33

 (2)

With Cartesian coordinate system:

Figure 5.1: Illustrated stress tensors in Cartesian coordinates

5.2 Material response

The relation between stress and strain for isotropic materials in three dimensions
is given in Hooke’s law in equation 3.

σ11
σ22
σ33
σ23
σ13
σ12

 =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2





ε11
ε22
ε33

2ε23
2ε13
2ε12

 (3)

Strain can also be affected by changes of temperature, which effects the amount
of vibration of the atoms in the solid. The effect is equally large in all directions
in an isotropic material, and is proportional with the temperature change ∆T,
this is given in the equation (4).

ε = α(T − T0) = α(∆T) (4)

We differ from engineering stress σ and true stress σt, and thereby also of engi-
neering strain ε and true strain εt.

σ =
F

A0
, σt = σ(1 + ε), ε =

l − l0
l0

, εt = ln(1 + ε). (5)
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Mechanical strength properties is often extracted from monotonic stress-strain
tensile tests. Materials will either exhibit behavior from, or in between brittle to
ductile manner as seen under in figure 5.2.

Figure 5.2: Different material response. A: Brittle, B: Partly ductile and C: Ductile
behavior.

Yield strength σy is defined as the largest stress before deforming plastically. This
is where the material will return to its original shape when removing the applied
load. Often materials don’t have an easily defined yield point, instead the offset
yield strength is defined as the limit which give an strain of 0.2% often called
Rp0.2 or σO. The linear relationship between stress and strain below the yield
strength is the modulus of elasticity, or Young’s modulus (σ = Eε). Shear modu-
lus is the ratio of shear stress to shear strain denoted often as G =

τxy
γxy

. Ultimate
tensile strength σuts is the greatest engineering stress the material can withhold,
before we reach stress at failure σf , shown in figure 5.3. ¨

Figure 5.3: Stress-strain curve showing different material strengths

Plastic deformation of materials happens after exceeding the yield strength. Of-
ten it does not result in a significant change in volume, contrary to elastic de-
formation which does when the Poisson’s ratio is less than 0.5. The plasticity is
determined by different mechanisms such as dislocations, which travel through
the lattice even at low stress but is rapidly growing in numbers when exceeding
the yield limit.

4



The Ramberg-Osgood relation assumes that plastic stress is proportional to the
plastic strain raised to a power [11]. It is therefor applied beyond the yield
strength σy, with the elastic strain being proportional to stress according to εe =
σ/E.

σ = Hεn
p, εp = ε− σ

E
. (6)

H is the strain hardening constant and n is the strain hardening exponent. The
plastic strain, εp = ε− σ

E , is the strain that deviates from the slope of the elastic
modulus E. The total strain can be given as:

ε =
σ

E
+
( σ

H

) 1
n

(7)

Figure 5.4: The Ramberg-Osgood relationship.

Beside elastic and plastic deformation, materials also undergo a time-dependent
deformation behavior, called creep. Different types of physical mechanisms oc-
cur, but is in general divided into two different classes, diffusional flow and
dislocation creep. Sometimes also grain boundary sliding is considered to be
a distinct mechanism. Steady state creep rate can be calculated for crystalline
materials by the equation:

ε̇ =
A2σm

dqT
exp

−Q
RT (8)

d is the average grain diameter, T the absolute temperature. A2, the exponents
m and q, and the activation energy Q depends on the material and which creep
mechanism that is dominant. Creep is heavily influenced by temperature, indi-
cating that the mechanisms are thermally activated.

5.2.1 Failure Criteria

Different failure criterion’s exits. Two of the most widely used are the octahedral
shear stress yield criterion and the maximum shear stress yield criterion. They
are graphically compared in figure 5.5, where it is evident that the maximum
shear criterion, or Tresca, is more conservative than the octahedral criterion (also
known as von Mises).

5



Figure 5.5: Graphical comparison of Von Mises- and Tresca criterion, with σ3 = 0.

These criterion’s are used both for static and fatigue failure assessment, primarily
with the use of safety factors which often range from 1.5− 3.0, depending on the
amount of uncertainty in the engineering assessment.

5.2.2 Fracture toughness

The material property K is a measure of the severity of a combination of crack
length and shape, geometry and load. The materials resistance to brittle fracture
with the presence of this crack is called the fracture toughness, KIC, obtained
from where the material fails, see figure 5.7. Figure 5.6 shows the different crack
load modes, giving different crack intensity. They are separated into different
modes for mechanical reason but real components often show mixed mode load-
ing.

Figure 5.6: a) Mode I, tension, b) Mode II, shear, c) Mode III, tear.

Figure 5.7: Fracture toughness test with specimen dimensions equal to 5.11 b).
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5.3 Fatigue

Fatigue is when a material is subjected to an alternating load until failure [10].
A typical measure of fatigue limit is numbers of cyclic loads before failing, with
either stress or strain response. Many factors control the fatigue limit of com-
ponents such as, material properties, geometry, size effect, surface roughness,
environment etc. The mean stress σm is also determining for the fatigue limit.
This is because of inherent flaws in the material which make the material weaker
in tensile fatigue load. In compressive loads, the flaws does not have the same
effect. Fatigue parameters of stress are shown in the figure 5.8 below, with expla-
nation in equation 9.

Figure 5.8: Parameters of a stress cycle.

Fatigue parameters of describing the cyclic loads are given as:

∆σ = σmax − σmin, σa =
∆σ

2
, σm =

σmax + σmin

2
, R =

σmin

σmax
(9)

The mean stress effect can be incorporated into the fatigue equations in the two
next chapters.

5.3.1 Stress based approach

A stress versus cycle curve or S-N diagram is often used to design components,
where life of specimens are dominated by crack initiation. Tests are usually run
until components reach life of 107 cycles. This is to cover conventional life spans
of components and for time limiting factors. Lower stress amplitude gives in
general greater scatter of life expectancy. Many material exhibit a linear trend
of the fatigue lives when plotting the fatigue data in a S-N diagram. This linear
trend can be fitted to the Basquin equation in 10 with explanation in figure 5.9
[12].

∆σ

2
= σ′f (N f )

b (10)

Some materials will exhibit an "endurance limit" where the material will not fail
below. A low probability of fracture is obtained by applying a safety factor. Life
span of real components can be predicted by introducing life limiting factors.
These can easily be multiplied the fatigue data obtained.

7



Figure 5.9: Basquin fit

The effect of a notch is predicted by modifying the unnotched fatigue data with
a factor K f . This sometimes differ from the elastic stress concentration factor Kt.
Where Kt is the maximum stress of the notch root divided by the nominal stress,
whereas K f is the average stress over a finite volume.

K f = 1 + q(Kt − 1) (11)

The factor q determines the notch sensitivity of the material, 1 indicating fully
notch sensitive and 0 no sensitivity. Neuber developed an approximation for
determining the notch sensitivity factor for load factor of R =−1, with ρ being a
material factor and the radius of the notch given as r [13].

q =
1

1 +
√

ρ
r

(12)

While Peterson had developed a similar approach with the same load factor,
where a is a different material factor [14].

q =
1

1 + a
r

(13)

These approximations were developed because of the difficulties of describing
the linear-elastic stress fields in the vicinity of the notch root or other stress ris-
ers. Peterson also observed that his approach at describing the notch fatigue
sensitivity could not be recommended when dealing with small stress riser radii.

5.3.2 Strain based approach

A components deflections with an alternating load can be illustrated in a Hys-
teresis loop, were the material undergo plastic deformation and is either weak-
ened or strengthened. The Coffin-Manson law describes the plastic LCF with
constant strain amplitude [15], while the Basquin law in equation 10 describes
the elastic part of fatigue regards to stress amplitude.

∆ε

2
=

∆εe

2
+

∆εp

2
→ ∆ε

2
=

σ′f
E
(2N f )

b + ε′f (2N f )
c (14)

8



Figure 5.10: a) Hysteresis loop. b) Plastic and elastic dominated parts of fatigue.

5.3.3 Fracture mechanics

Fracture mechanics asses fatigue based on crack propagation [16]. The crack in
this theory is initiated early in the cyclic life of an component and propagate until
instability or failure. The crack is initiated at the threshold stress intensity, ∆KTH,
in which represents a stress intensity where cracks will not propagate below. The
linear trend fit of the crack propagation in a log-log form can be approximated
using Paris law in equation 15.

Figure 5.11: a) Crack growth rate in log-log coordinates. b) Test specimen design
for crack length a.

K is determined by the stress and geometry factor f , the stress and crack length.
The geometry factor is determined according to the shape of the test specimen,
with an example shown in figure b) 5.11.

da
dN

= C(∆K)m, ∆K = ∆σ
√

πa f (15)

9



5.4 Theory of Critical Distance

The theory of critical distance (TCD) was invented in the early part of the 1900’s
century by Neuber to predict the strength of notched members [13]. His attempt
to create a formal theory was based on the idea that the stress of the vicinity of
the notch do not reach the values predicted in continuum mechanics theory. At
that time the knowledge about the stress field in the vicinity of the notch was
low, which made Neuber develop empirical models. But the combined use of
TCD with modern FEM analysis of the stress field, gives an accurate method for
fatigue [17] and static failure assessment [18]. The theory is based on a material
length scale seen in equation 16.

L =
1
π

(
KIC

σre f

)2

(16)

Where KIC is the plain strain fracture toughness of the given material and σre f is a
material reference strength experimentally derived. This reference strength is in
cases of brittle materials similar to the ultimate tensile strength [19]. But in other
materials exhibiting miner plasticity greater than it [17]. It is useful to show the
relative link between LEFM and TCD:

σf =
KIc√

πa
(17)

σ(r) = σ

√
a
2r

(18)

Equation 18 is only valid for a being infinitely larger than r. If combining these
two equations with the PM criterion we get equation 16.
The traditional theory of critical distance consist of three fundamental approaches
with the difference being how to define the failure stress σe f f . The simplest of the
approaches is the point method (PM), which Peterson formulated not long af-
ter Neuber’s line method [14]. This approach states that the σe f f is determined
at a point half of the critical distance from the notch root as seen in figure 5.12.
When the reference strength is greater than the ultimate tensile strength, it can
be estimated as shown in the figure 5.12 below by using the point method by
Peterson.

Figure 5.12: Stress versus distance curve with two different notch radii. σe f f is
experimentally derived using numerical analysis.
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Peterson evaluated the critical length based on empirical values, fitting fatigue
predictions to obtained material data. But he saw a possible correlation between
the the critical distance and the inverse of the material strength of a particular
class of materials, such as steels [14].

σe f f = σ1(r =
L
2

,θ = 0) = σre f (19)

Neuber invented the method called line method [13]. He overcome the problem
of material inhomogeneity by averaging the classical theory over a length of a
structural particle starting from the notch root, 2L.

σe f f =
1

2L

∫ 2L

0
σ1(r,θ = 0)dr = σre f (20)

The area- and volume method are not commonly used, mainly because PM and
LM reportedly gives accuracy in the same range but involve less complicated
calculations.

σe f f =
4

πL2

∫ π
2

−π
2

∫ L

0
σ1(r,θ)drdθ ≈ σre f (21)

5.4.1 TCD in high-cycle fatigue

TCD are good methods of approximating HCF, with an usual 20% of in the con-
servative range compared to experimental results [17]. Susmel et al. [20] made
successful modifications to approximate fatigue in the medium cycle fatigue area
(MCF). In fatigue assessments, the ultimate tensile strength is changed with the
plain fatigue limit ∆σ0, and the range of the threshold value for the stress inten-
sity factor ∆Kth [21].

L =
1
π

(
∆Kth

∆σ0

)2

(22)

And the fatigue limit for notched components is reached when the effective stress
∆σe f f , which depends on the stress distribution in the close vicinity of the notch
tip, equals ∆σ0.

∆σe f f = ∆σ0 (23)

With the line method of predicting fatigue equals to:

∆σe f f =
1

2L

∫ 2L

0
∆σ1(r,θ = 0)dr = ∆σ0 (24)

Lazzarin et al. [22] argued that the line method should be corrected by using an
a-dimensional function depending on length scale L and the notch root radius,
rn, formulated as:

∆σe f f = ∆σ1(r = L,θ = 0)
1 +
√

2 L
rn

1 + L
rn

(25)
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5.5 Strain Energy Density

Strain energy is the energy stored in materials undergoing elastic or plastic de-
formation. Strain energy denoted as U can be expressed by.

U =
1
2

∫
V

σijεijdV (26)

Strain energy density (SED) criteria states that failure occurs when it reaches a
critical value W = WC [23]. The critical strain energy density can be calculated
for brittle behavior by using the ultimate tensile strength σUTS in the relation
WC = σ2

UTS/2E . The SED volume, and thereby also the distance R0 is determined
by the material properties. This distance differ in static and dynamic loads. The
critical volume is shown in figure 5.13 below for a crack and notches.

Figure 5.13: Mode I load. a) sharp V-notch. b) A crack. c) Critical volume for
blunt V-notch [8]

In blunt notches there is a distance between the origin of the coordinate system
and the notch root, see figure 5.14. The strain energy volume is defined by using
Lazzarin’s stress fields with an auxiliary coordinate system. This make it more
efficient to impose the boundary conditions of the stress field [24].

Figure 5.14: Coordinate system for the notch system with symbols used for the
stress field components. r0 = ρ((π − 2α)/(2π − 2α)).

The stress components of the stress field can according to LEFM be linked to
a field parameter in such a way that when the notch opening angle and notch
radius is zero, the parameters will be equal to the stress intensity factors. This
means the definitions made by Gross [25] for open cracks is applicable in equa-
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tion 27. Load Mode is shown in figure 5.6.

K1 =
√

2π lim
r→0

(σθ)θ=0r1−λ1 , K2 =
√

2π lim
r→0

(τrθ)θ=0r1−λ2 . (27)

Ki is the stress intensity factor, crack stress intensity factor (SIF) for an opening
angle of 2α = 0, or notch stress intensity factor (NSIF) when 2α > 0.

a1 =
K1

λ1
√

2π[(1 + λ1) + X1(1− λ1)]
, a2 =

K2

λ2
√

2π[(1− λ2) + X2(1 + λ2)]
.

(28)
The stress field for mode 1, or pure tensile stress can be calculated by using equa-
tion (29) and (30). (See Appendix).

σθ

σr
τrθ

 =
1√
2π

rλ1−1K1

(1 + λ1) + X1(1− λ1)

(1 + λ1)cos(1− λ1)θ
(3− λ1)cos(1− λ1)θ
(1− λ1)cos(1− λ1)θ


+X1(1− λ1)

 cos(1 + λ1)θ
−cos(1 + λ1)θ

sin(1 + λ1)θ


+

(
r
r0

)(µ1−λ1)

[(3− λ1)− X1(1− λ1)]

 cos(1 + λ1)θ
−cos(1 + λ1)θ

sin(1 + λ1)θ


(29)

And for shear force, Mode II:

σθ

σr
τrθ

 =
1√
2π

rλ2−1K2

(1− λ2) + X2(1 + λ2)

−(1 + λ2)cos(1− λ2)θ
−(3− λ2)cos(1− λ2)θ
(1− λ2)cos(1− λ2)θ


+X2(1 + λ2)

−sin(1 + λ2)θ
sin(1 + λ2)θ
cos(1 + λ2)θ


+

(
r
r0

)(µ2−λ2)

[(1− λ2) + X2(1 + λ2)]

 sin(1 + λ2)θ
−sin(1 + λ2)θ
−cos(1 + λ2)θ


(30)

The parameters, λi, µi and Xi are dependent on the notch opening angle 2α and
are listed in table 14. The critical radius of static load, R0s, is analytically de-
termined using Poisson’s ratio, ultimate tensile strength and the fracture tough-
ness. Depending on plane strain or plain stress condition it is calculated either
by equation (31) or by equation (32) [26].

R0s =
(1 + ν)(5− 8ν)

4π

(
KIC

σUTS

)2

plane strain (31)

R0s =
(5− 3ν)

4π

(
KIC

σUTS

)2

plane stress (32)
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Plane strain condition is when the fracture toughness is lower than the value
defined in equation (33). Where B is the specimen thickness and σy the yield
strength [27].

KIc = σy

(
B

2.5

) 1
2

plane strain (33)

While plane stress condition is when the fracture resistance is higher than that of
KIC in equation (34) [27].

KIc = σy(πB)
1
2 plane stress (34)

An interpolation is needed to determine R0 from equation (31) and (32) if the
condition is between plane strain (33) and plane stress (34). Under plane stress
or plane strain conditions, the elastic strain energy density averaged over a small
sector with radius R0 is given in equation 35. It is valid only when considering
the first leading therms of the William’s solution for sharp V-notches [23].

W =
1
E

e1

[
K1

R1−λ1
0s

]2

+ e2

[
K2

R1−λ2
0s

]2
 (35)

When the Poisson’s ratio is equal to ν = 0.3, the e1 and e2 becomes [23]:

e1 = −5.373 · 10−6 · (2α)2 + 6.151 · 10−4 · (2α) + 0.1330 (36)

e2 = 4.809 · 10−6 · (2α)2 − 2.346 · 10−3 · (2α) + 0.3400 (37)

With geometries of blunt notches it is possible to link the parameter a1 to the
maximum principal stress at the notch tip by [8]:

a1 =
σtipr1−λ1

0

1 + ω̃1
(38)

Introducing the parameter H, with values depending on the opening angle and
Poisson’s ratio. Values of H are shown graphically in figure 6.13. The mean value
of SED for blunt notches of mode 1 can be expressed as [28]:

W1 =
H
(

2α, R0
ρ

)
E

[
KV

R,1

R1−λ1
0s

]2

(39)

The radius of the volume for fatigue loads R0 f , is calculated using Poisson’s ratio
as for static load, but instead of using σUTS and the KIC, the use of ∆σa and K1C
are substituted into the equation 40 [23].

R0 f =

(
∆KN

IC
f1(2α)∆σA

) 1
(1−λ1)

(40)

Where f1(2α) is calculated by the simplified expression below for Poisson’s ratio
still equal to 0.3. With the same simplified estimations as for ei given in equation
41 [23].

f1(2α) = 4.897 · 10−5 · (2α)2 − 5.598 · 103 · (2α) + 1.959 (41)
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Substituting the NSIF to the NSIF-based fatigue strength ∆Ki in the relevant
equation. Fatigue SED can be graphically displayed with a ∆W − N curve with
∆σA at a given cycles to failure. SED offers a good failure approximation of brit-
tle and quasi-brittle notched components with a graphical display of over 900
experimental data of various steels in figure 5.15.

Figure 5.15: Example of ∆W-N curve. 900 experimental data including butt
welded joints, three-dimensional models and hollow section joints performed
by Berto et al. [8].

Mesh sensitivity for SED calculations in FEA was demonstrated by Lazzarin et
al. [29] [9], with difference in results of SED between the finest and the coarsest
mesh reported to be less than 5%. The FE analysis is not mesh sensitive because
the elastic strain energy is directly determined by the nodal displacements. This
is without calculations involving stress and strains, where derivatives of the dis-
placements take place [30]. The total strain energy stored in the finite element
is:

Et =
∫

V
WdV =

1
2
{d}t

(∫
V
[B]t[E][B]dV

)
{d} = 1

2
{d}t[K]{d} (42)

Where V is the volume and the stiffness matrix [K] of the finite element being:

[K] =
∫

V
[B]t[E][B]dV (43)

The theoretical approach for the FE methods starts with the vectors of the dis-
placement and the forces.

{d}: vector of nodal displacements.
{ f }: vector of nodal forces.

It is possible to express the displacement vector {u} and thereby also the strain
vector {ε}, by introducing the displacement interpolation matrix [N]. Which is
dependent on the FE type.

{u} = [N]{d}, {ε} = ∂{u}
∂xi

= [B]{d} (44)
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[B] is the strain-displacement matrix, which is obtained by differentiating the
rows of [N]. Stress and strain are linked together by linear elastic hypothesis
{σ} = [E]{ε}. Returning to equation 26, giving the strain energy density in a
point, belonging to an finite element W:

W =
1
2
{ε}t{σ} = 1

2
{d}t[B]t[E][B]{d} (45)

5.5.1 Equivalent Material Concept

Torabi proposed in 2012 his theory of Equivalent Material Concept (EMC) [31]
where he equated a real ductile material with elastic-plastic behaviour with a
virtual brittle material with perfect elastic behavior. Similar to that proposed by
Glinka et al. [32], but with a different approach. He fitted the tensile stress-strain
relationship in the plastic region of the ductile material by the power law and
computed the total SED to the peak point, see figure 5.16.

Figure 5.16: A typical stress-strain curve showing absorbed SED till necking

Then the assumption was made that the ductile and virtual elastic material ab-
sorbed the same amount of tensile SED until a brittle fracture occur. The total
SED of the real ductile material was calculated by adding the elastic with the
plastic SED until necking as shown in the equation below.

(SED)tot = (SED)elastic + (SED)plastic =
1
2

σyεy +
∫ εp

ε
y
p

σdεp (46)

Combining the previous equation with the power law 6 into a single equation
for total SED.

(SED)tot =
σy

2

2E
+
∫ εp

ε
y
p

Hεn
pdεp =

σy
2

2E
+

H
n + 1

[
(εp)

n+1 − (ε
y
p)

n+1
]

(47)

ε
y
p is the true plastic strain at yield point and is considered to be equal to the 0.2%

offset (0.002) giving:

(SED)necking =
σy

2

2E
+

H
n + 1

[
(εu,True)

n+1 − (0.002)n+1
]

(48)

With both materials exhibiting the same Young’s modulus and fracture tough-
ness, the SEDEMC until fracture can be written as:
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(SED)EMC =
σf
∗2

2E
= (SED)necking (49)

Figure 5.17: A perfectly elastic stress-strain curve of an equivalent brittle material
showing absorbed SED before failure

With eventually creating a closed-form equation of the EMC for calculating the
fracture stress σf

∗.

σf
∗ =

√
σy +

2EH
n + 1

[(εu,True)n+1 − (0.002)n+1] (50)

With σf
∗ computed together with a valid fracture toughness can form the basis of

different brittle failure criteria such as TCD and SED, predicting crack initiation
in ductile materials weakened by stress risers.
Research made by Fuentes et al. [33] showed that EMC combined with SED
or TCD made good failure predictions without any previous calibration of the
model. But in members with larger notch radii the results where under-conservative
for both methods. Still they are recommended because they are easy to per-
form with no time-consuming elasto-plastic analysis. EMC-SED discrepancy are
shown in figure 5.18

Figure 5.18: Fracture load prediction for longitudinal and transverse specimen
by EMC combined with SED from [33]. Most results within ±20%, with conser-
vative results for all but notch radius equal to 2mm.
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5.5.2 Equivalent Strain Energy Density

Equivalent strain energy density (ESED) criterion was formulated by Glinka and
Molski [32] and [34], and later re-formulated by Lazzarin et al. [35]. This the-
ory states that the elasto-plastic strain energy density of a finite volume in the
vicinity of the notch tip is coincident with that determined under pure elastic
conditions. Through the use of plastic notch stress intensity factor makes it pos-
sible to quantify the intensity of the elasto-plastic stress and strain field in the
vicinity of a sharp V-notch tip described in equation 51.

WE(r,θ) ∝ r2(λ1−1), WP(r,θ) ∝ r−s(n+1). (51)

Where the elasto plastic singularity, s, is calculated using:

s =
2(1− λ1)

(n + 1)
(52)

The local plastic SED is determined using both strain hardening parameters,
stress singularity, as well as the elastic- and plastic integral of the stress field
shown in equation 53. The angle γ is explained in figure 5.19.

WP
local(R) =

n
(n + 1)Hn ·

Ip(γ,n)
γ(2− s(n + 1))

·
(

KN
1p

Rs
0

)n+1

(53)

Figure 5.19: Angle γ in the coordinate system of a V-notch.

With the plastic integral of the angular stress functions in equation 54, where σ̃e
is the angular distribution of the equivalent stress for Mode I loading.

Ip(γ,n) =
∫ +γ

−γ
σ̃e(θ)

n+1dθ (54)

Under the hypothesis that the amount of energy concentration, KW , are equal
under elastic and plastic conditions:

KP
W(R) = KE

W(R) (55)

Gives equal energy concentration condition the plastic NSIF (P-NSIF) can be de-
termined by an elastic FE-analysis, where the elastic NSIF is [36]:

KN
1 = k1t(1−λ1)σnom (56)
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Then the P-NSIF can be expressed as:

KN
1p =

[
n + 1

n
· Hn · Ie(γ)

Ip(γ)
· (k1t(1−λ1))2 ·

(
σ2

nom
2E

+
n

n + 1
· σn+1

nom
Hn

)] 1
n+1

(57)

The P-NSIF can also be calculated through the use of the NSIF, the opening angle
and material parameters, but only if localized yielding conditions are present in
equation 58 and a comparison in figure 5.21.

KN
1p = A · (KN

1 )b (58)

A =

(
n + 1

n
· Hn

2E
· Ie(γ)

Ip(γ)

) 1
n+1

, b =
(

2
n + 1

)
. (59)

Lazzarin et al. reported an accurate correlation between equation 57 and 58 with
FEM below large scale plasticity. Equation 57 has no upper limit for applicability
both for tensile and bending condition, while 58 show a reasonably high accu-
racy for both low and large scale plasticity with bending. The analytical- and
numerically obtained stressfields are shown in figure 5.20.

Figure 5.20: Plots of σθ along the notch bisector. AISI 1008; 1/n = 4, H = 600MPa
and σy = 125MPa. AISI 1045, 1/n = 8.33 and H = 950MPa and σy = 450MPa
[35].

Figure 5.21: Difference of accuracy between traction and bending for two differ-
ent steels [35]. a) Equation 57, and b) equation 58.
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5.6 Additive Manufacturing

Additive manufacturing (AM), according to ASTM (2012). “Can be defined as a
collection of technologies able to join materials to make objects from 3D model
data, usually layer upon layer, as opposed to subtractive manufacturing method-
ologies”. Charles Hull was the first to receive a patent for a machine creating
3D objects using stereolitograph [37]. Modelling components by AM was first
a popular choice for rapid prototyping, but in recent days it has become a pos-
sible production method for components too [38]. The three main branches of
AM productions methods are shown in figure 5.22. Powder material produc-
tion is most common when making components of metal, but is also used for
polymers.

Figure 5.22: Branches of AM [39].

AM is usually performed by an layer-upon-layer manner, where a digital model
is required in a computer assisted design (CAD) program, either drawn or made
from scanning a pre-made component. The file is later converted to a STL fil for-
mat, where the 3D model is «sliced» into layers. Lindemann et al. [7] reported in
2012 the main advantages and disadvantages of AM listed below.

Advantages:

• More flexible development.

• Freedom of design and construction.

• Less assembly.

• No production tools necessary.

• Less spare parts in stock

• Less complexity in business because of less parts to manage.

• Less time-to-market for products.

• Faster deployment of changes
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Disadvantages:

• High machine and material costs.

• Quality of parts is in need of improvement.

• Rework is often necessary (support structures).

• Building time depends on the height of the part in the building chamber

Production costs of AM are almost independent of component complexity and
by production number, contrary to ordinary manufacturing where high costs are
associated with complex geometry and low production numbers [38]. The com-
ponent can be made anywhere there is an appropriate AM production facility.
However, larger cost of machine and materials, together with lower quality of
parts prohibits companies of investing in this technology. Many researches are
therefore focused on improving it.

5.6.1 Selective laser melting

SLM uses a high-energy laser beam in which to fuse together powder materi-
als in a selective manner. It was first developed by Dr. M. Fockele and Dr. D.
Schwarze of F S Stereolithographietechnik GmbH, with Dr. W. Meiners, Dr. K.
Wissenbach, and Dr. G. Andres of Fraunhofer ILT and introduced to the marked
in 1998 [40]. It was invented for the purpose of making components of metal.
The process consist of a powder bed on a moving platform within an inert gas
atmospheric chamber. The components are built on the moving platform where
the laser first melts a thin layer of powder material to the substrate platform.
Metal powders are usually of the size 20-100 µm [40] seen in figure 5.23.

Figure 5.23: Schematic view of a SLM machine [41].

This platform moves in the z-direction after a layer has been made, where a new
layer of powder is evenly distributed by a coating mechanism. A new layer is
selectively melted according to the STL model, partly melting and fusing it to
the previous layer, repeating until a complete model is made. The model is then
removed from the substrate platform and later separated from the build sup-
ports. Producing components by laser involves parameters such as; laser power,
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scanning speed, hatch spacing, and layer thickness are the common process pa-
rameters adjusted to optimize the process seen in figure 5.24.

Figure 5.24: Powder bed additive manufacturing settings by laser scanning.

An example of a complex component geometry is shown in figure 5.25, which my
roommate mistakenly thought was the traditional Norwegian Christmas food
"pinnekjøtt".

Figure 5.25: AM offers great geometry complexity. This figure shows twelve
wheel bearings on a base plate with build supports underneath made by SLM.
(Image courtesy of Fraunhofer EMI.)

The component properties by SLM give a rougher surface finish than most con-
ventional methods, and inherent flaws such as porosity and surface defects of
inclining surfaces are still a concern, where some geometries needs build sup-
port that must be removed afterwards. AM components also contain residual
stresses and distortions due to the complex thermal and phase transformation
stresses during the localized heating [41]. The expansion and contraction of the
previously solidified layers happens frequently and can cause devastating ther-
mal stress and stress gradients surpassing the yield strength. Residual stress can
be minimized by means of heat treatments [39]. Surface roughness can be han-
dled by shoot-peening, and porosity can be minimized by means of hot isostatic
pressing. Materials such as Ti-6Al-4V, 316L stainless steel together with IN 718
have all been reported to achieve more than 99.9% relative density in Yap et al.
[40] by SLM.
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5.6.2 Hot Isostatic Pressing

Hot isostatic pressing (HIP) is a common means to treat post-manufacturing,
with main focus to remove pores within the component [42]. It is already in use
on castings, to densify presintered components, solidification of powders and
interfacial bonding of similar or different materials. HIP is a procedure where
the component is exposed to both heat and pressure. The process consists of a
pressurized and heated chamber with an inert gas seen in figure 5.26. Here the
component is subjected to an uniform pressure and a temperature approximately
70% of the melt temperature (TM).

Figure 5.26: Example of HIP chamber [43].

By combining heat and pressure creates a lower temperature needed than in sin-
tering [44], and a lower pressure than chipping. This avoids unwanted grain
growth and eliminate the need of additives to enhance densification. HIP com-
presses the material without changing the size and shape, densifing it by dis-
solving pores into the matrix down to pore sizes of approximately 40nm. Figure
5.27 show properties enhanced by HIP such as internal porosity in as cast com-
ponents, creating comparable properties as forged components. HIP can also be
beneficial in reducing property scatter. It is because of high costs, associated with
more exotic material which is difficult to fabricate or treat by other means [44].

Figure 5.27: Fatigue strength and creep resistance enhanced by HIP on as cast
members [44]. a) Creep life of Ti-6Al-4V at 399oC. b) Fatigue life of Ti-6Al-4V at
316oC.
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5.7 Nickel based super alloys

In nickel based alloys a two phase equilibrium is generated when introducing
a concentration of Al and or Ti up to 10% by weight [4]. It consist of the states,
gamma (γ) and gamma prime (γ’), in which γ’ is mostly responsible of determin-
ing the inherent elevated temperature strength and great creep resistance. The
alloy can be further strengthened at lower temperature by another phase called
gamma double prime (γ”) with chemical composition of Ni3(Nb,V). The ternary
phase diagram for given chemical compositions show a fraction decrease of γ’
when the temperature is increased seen in figure 5.28.

Figure 5.28: The ternary phase diagram for nickel based superalloys [4]

The solid solution phase of γ, has a face-centred cubic structure (FCC). The atoms
of the material compound is randomly distributed in the lattice structure. γ’, has
a primitive-centred cubic lattice (PCC) with a similar lattice parameter to that
of FCC. It differ from FCC by a set arrangement of nickel in the face centers,
and with Al or Ti in each corners of the cube. This has a chemical formula of
Ni3(Al, Ti). But because the phase is not strictly stochiometric, there may be
an excess of vacancies in which nickel atoms might rearrange with aluminum.
γ”, has a body-centred tetragonal lattice (BCTL). This lattice is also of ordered
arrangement. It consist of Nb in each corner and of Ni elsewhere, see figure 5.29.

Figure 5.29: a) Face-centred cubical γ-structure. b) Body centred tetragonal lat-
tice - γ”. c) primitive-centred cubical γ’-structure

γ’ precipitates from the γ-matrix. The precipitation of γ’ in relationship with γ
occurs in a cube-cube orientation because of their similar lattice parameter, cre-
ating perfectly aligned cell edges. γ’ is coherent with γ when the precipitate
size is sufficiently small, but dislocations struggle to penetrate γ’ because of its
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atomically ordered phase. This causes a strengthening affect of the nickel su-
peralloy. Most metals exhibit a decrease in strength at elevated temperatures.
This is because thermal activation makes it easier for dislocations to pass obsta-
cles. Ordinary slip in nickel based super alloys containing γ and γ’ occurs on the
111<110> plane, causing a normal decrease in strength at elevated temperature.
However, dislocations in γ’ tend to cross-slip on to the 100 plane with a lower
anti-phase domain boundary energy because the energy decreases with higher
temperature. This locks the dislocations because it is partly on the close-packed
plane and the cube plane, increasing the strength. Thermal activation is only
sufficiently strong when exceeding about 600oC. Higher strength at lower tem-
perature can be achieved by a coherency and ordered hardening of γ” seen in
figure 5.30 a) because of sufficient amounts of niobium or vadium.

Figure 5.30: a) Circle showing γ′′ and square showing γ′ [45]. b) Fine dispersion
of bimodal γ’. (Image courtesy of R. J. Mitchell) [4].

The microstructure in nickel based super alloys are heavily influenced by the heat
treatment and are often given a solution treatment that determines the amount
of dissolved γ’ and also the grain size of γ. There is no pinning effect of the
movement of γ’/γ boundaries if the precipitate particles of the γ’ are all dis-
solved, thereby making the grains courser. Later they are treated at two different
temperatures. The first treatment at high temperature is to precipitate coarser
particles of γ’, while the next treatment at a lower temperature is to further pre-
cipitate into a finer secondary dispersion of γ’ as shown in figure 5.30 b). Some
less desirable precipitates are called leaves or δ-phase (Ni3Nb). This is more ther-
modynamically stable and under high thermal exposure is converted from γ”. It
has a needle or plate like morphology in figure 5.31 a). Figure 5.31 b) show an
example of a carbide.

Figure 5.31: Leaves and carbides in IN718 [45]. a) Triangle showing a needle
shaped leaves precipitate δ. b) Carbides of TiN and NiC.
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5.7.1 Inconel 718

IN718 is a nickel-based superalloy which exhibits excellent mechanical proper-
ties at high temperatures, even in excess of 70 % of the melting temperature [4]. It
has a high resistance to creep, great resistance to oxidation, and as one of the fist
superalloys, also showed good weldability. It is a popular choice in aerospace
industry and in other appliances where extreme conditions occur. Table 1 show
some material parameters of IN 718

Material property Unit Value Reference
Density [g/cm3] 8.19-8.22∗ [46] [47]
Melting point [Co] 1260-1336 [46][3]
Thermal Conductivity [W/m · k] 6.5∗∗-11.4 [46] [47]
Specific heat [J/kg · K] 435 [47][3]
Coefficient of thermal expansion [µm/m · K] 13.0-13.9 [47]
Electrical resistivity (20Co) [nΩ ·m] 1210-1270∗ [46] [47]

Table 1: General material properties for IN 718. ∗ From annealed to aged condi-
tion. ∗∗ Between (0− 100Co).

5.7.2 Material behavior of conventional IN718

Conventional IN 718 is covered by many standards for production method and
heat treatment. Some of these are: AMS 5596B, AMS 5662, AMS 5663, AMS
5664, AMS 5832, AMS 5962, ASME SB-637, ASTM B637, AWS A5.14 and NACE
MR0175 (ISO 15156-3). A general material composition is listed in table 9.

Weight % Min Max
Al 0.20 0.80
B 0.006
C 0.02 0.08
Co 1.00
Cr 17.00 21.00
Cu 0.3
Fe ∗ 15.00 21.00
Mn 0.35
Mo 2.80 3.30
Nb+Ta 4.75 5.50
Ni 50.00 55.00
P 0.015
S 0.015
Si 0.35
Ti 0.65 1.15

Table 2: Chemical composition in accordance with AMS specifications [3]. ∗ Or
balance.

Conventionally wrought material need δ precipitates to pin the grain boundaries
during forging to achieve fine grains. Some material properties to expect from
IN718 is shown in the following table 3 with values from [3]. (The specimens
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tested was hot-rolled flat heat-treated at 982oC for 1 hr, A.C at 718oC for 8 hour,
F.C. -7oC for hr to 621oC, held for total aging time of 18 hr.)

Material property Symbol Unit -66Co 21Co 649Co 982Co

Young’s modulus E [GPa] 211∗ 200 163 120
Torsional modulus G [GPa] 81∗ 77 63 45
Ultimate tensile strength∗∗ σuts [MPa] - 1241 965 -
Yield strength∗∗ σy [MPa] - 1034 862 -
Poisson’s ratio∗∗∗ ν [-] 0.30 0.294 0.283 0.341

Table 3: Mechanical properties of In 718 at different temperatures. ∗ Cold-rolled
sheet heat-treated in accordance with AMS 5596B. ∗∗927-1010Co anneal with its
corresponding aging treatment and tested according to AMS 5662 transverse for
bars. ∗ ∗ ∗ Calculated from (E− 2G)/2G. Values from [3].

Suggested operating temperatures are from −200oC up to 650oC [48]. IN718 is
little affected by temperature to about 650Co, where the thermally activated dis-
locations eventually dislocate through the lattice. A disadvantage for the mate-
rial is otherwise its advantage, the high strength, toughness and ability to work
harden [49]. This makes ordinary manufacturing methods difficult and expen-
sive. The workpiece can be heated to exceed approximately 540 Co to be ma-
chined for better convenience.

Figure 5.32: Ramberg-Osgood parameters of IN718 compared to Waspalloy at
different temperatures [50]. a) Strain hardening exponent. b) Strain hardening
coefficient.

Vickers hardness to expect ranges from 230 to 410 (HV1.0), with other material
properties compared from the test given in table 4, where strain hardening pa-
rameters are also included. The strain hardening parameters differ slightly from
figure 5.32, with lower H and higher n. The aged IN 718 from table 4 looses
ductility while gaining strength compared with annealed state.

Treatment σy σuts Elong. [%] Hard. (HV1.0) n H [MPa] Ref.
Annealed 430 843 51.4 ± 0.7 236.4 ± 5.2 0.264 1467.8

[51]
Aged 823 1090 41.2 ± 3.9 408.5 ± 3.2 0.119 1482.0

Table 4: Hardness and strain hardening parameters for CM.
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Fracture toughness has been reported to be between 120.5-171.4 MPa
√

m based
on the post production treatment [52]. However values obtained in the same
report suggested possible fracture toughness of 62.5 MPa

√
m of conventionally

treated, though requirements of ASTM E399-74 where not fully met. Heat treat-
ments are explained in [52]. The same test suggested a fracture toughness at 427
oC of 57.7 MPa

√
m. Liu et al. [53] tested the anisotropy of the fracture toughness

in aged IN 718 shown in figure 5.33 where also the material direction of the tests
are shown.

Figure 5.33: Anisotropy of fracture toughness with different aging time [53].

Both heats were given a conventional heat treatment consisting of a solution an-
neal at 950±14oC for 1 hour, air cooling to room temperature, aging at 718±8oC
for 8 hours, furnace cooling to 621oC, and aging at 621±8oC, to give a total pre-
cipitation time of 18 hours. Heat treated pieces from each of the two heats were
exposed to 649oC for times of 0, 500, and 1000 hours.

Fatigue of IN 718 with values from the literature are shown in table 5. Zhong
et al. [54] created a quadratic function with good agreement of the relationship
between σuts and σ−1 from the values in table 5, being: σ−1 = σuts · (0.869− 3.67 ·
10−4 · σuts).

Load type Stress ratio σuts σ−1 Ref.
Axial -1 940 492

[54]
Axial -1 1560 461
Axial -1 1549 420 [55]
Axial -1 1458 440 [56]
Rotating bending -1 1390 500 [57]
Rotating bending -1 1460 460 [58]
Axial 0.01 1369 380 [59]
Axial 0.1 1343 450 [60]

Table 5: Fatigue properties (N f = 107) of IN 718 versus ultimate tensile strength.
Note: approximate fatigue properties obtained from [54], but referring to their
original paper. Fatigue strength approximately 34% of σuts.

Results obtained by Kawagoishi et al. [58] in figure 5.34 of fatigue performance
at different temperatures, shows an increase in fatigue strength up to 500oC. The
strength decreased from 500oC to 600oC, but was still higher than for RT.
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Figure 5.34: Endurance curves for plane specimen at stress ratio, R=-1 [58].

Crack growth rate obtained from NASA [61] seen in figure 5.35 show a crack
threshold value of approximately ∆Kth = 10MPa

√
m.

Figure 5.35: Crack propagation data at load ratio R = 0.1 [61]

The study of Xiao et al. [62] showed an increase in the fatigue crack propaga-
tion threshold, ∆Kth, which in this study was defined as the ∆K corresponding
to a growth rate of 10−10m/cycle. It increased from 7.6 to 8.6MPa

√
m at room

temperature as the boron concentration increased from 12ppm to 29ppm.
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5.7.3 Material behavior of AM IN718

The material composition used for AM by industry is similar to the chemistry of
conventional compound, but have a lower acceptance of Si content of 0.15% [63].
The standard ASTM F3055 - 14a covers the specification for additive manufac-
turing nickel alloy (UNS N07718) with powder bed fusion.

∗ Min Max
Al 0.40 0.70
B 0.006
Bi,ppm 0.3
Ca 0.01
C 0.02 0.08
Co 1.00
Cr 17.00 21.00
Cu 0.3
Fe 15.00 21.00
Mg 0.01
Mn 0.35
Mo 2.80 3.30
N 0.020
Nb 4.75 5.50
Nb+Ta 4.75 5.50
Ni 50.00 55.00
O 0.020
P 0.02
Pb, ppm 5.00
S 0.015
Se,ppm 3
Si 0.15
Ta 0.05
Ti 0.85 1.15

Table 6: Powder lot composition [63]. ∗ All values in weight percent unless oth-
erwise specified.

A strong variability of material properties of IN 718 produced by AM is reported
in the literature. Its inherent strength, stiffness and hardness depends on the
production method, orientation of printing and printing properties such as laser
speed and power. Table 7 show a large number of static material properties ob-
tained by multiple authors at RT.
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Type ∗ Ori. E σy σuts Elong. Hard. Ref.
SMD AP XY NA 473±6 828±8 28±2 NA [64]

DLD
AP

Z NA
650 1000

NA NA [65]
HT 1257 1436

Laser
AP

NA NA
590 845 11

NA [66]
HT 1133 1240 9

EBF AP XY 159 580 910 22 NA [67]

EBF
AP

XY 138 655 978

NA NA [68]
YX 194 699 936

HT
XY 174 986 1114
YX 192 998 1162

DLD HT NA NA 1098 1321 9.8 NA [69]
DLD HT NA NA 1034 1276 12 NA [70]
Laser

HT NA NA 1079 1314 20.4 NA [71]
/wire
SLM AP

NA NA NA NA NA
303

[]
250W HT 446
SLM AP

NA NA NA NA NA
290

[]
250W HT 415

SLM
AP

NA

173±13 668±16 1011±27 22±2 320∗∗

[72]
HT 190±11 875±11 1153±4 17±2 360∗∗

250W
HIP 188±8 645±6 1025±14 38±1 310∗∗

HT+HIP 190±6 1145±16 1376±14 19±1 468∗∗

SLM
AP

NA

113±3 531±9 866±33 21±5 287∗∗

[72]
HT 138±5 668±7 884±80 7±2 338∗∗

950W
HIP 183±19 481±11 788±12 34±3 262∗∗

HT+HIP 188±20 1065±20 1272±12 15±4 451∗∗

Table 7: Static material properties at RT of AM IN718. ∗ As produced or heat
treatment.∗∗ HV1kg f . Specimen orientation according to figure 5.36.

Effect of temperature on mechanical properties of SLM IN718 as produced or
with post production treatment has been tested with values listed in table 8.

Type Treatment Temp. σy [MPa] σuts [MPa] Elong. [%] Ref.

SLM (275W)
AP

20oC 569-646 851-1002 9.8-31.7
[73]

HT 1160 1350 17.6

SLM (250W)
AP

650oC
650±11 845±9 28±4

[72]HIP 626±8 857±14 29±1
HT+HIP 942±11 1078±8 20±2

SLM (950W)
AP

650oC
543±2 782±6 31±6

[72]HIP 479±5 665±7 28±2
HT+HIP 872±13 1005±12 17±4

SLM (275W)
AP

1000oC 112 114 47.5-53.5
[73]

HT 113 116 58.1

Table 8: Mechanical properties of SLM IN718 at different temperatures, before
and after heat treatment.
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It is evident that heat treatment of AM specimen have a strong beneficial effect on
both yield strength and ultimate tensile strength which can increase significantly.
HT does also have a significant effect on material hardness with around 45%
increase. However, the HT give in general a less ductile material.

Figure 5.36: Specimen orientation according to table 7.

IN718 made by SLM have superior creep strength in comparison to convention-
ally wrought. This is due to the higher volume fraction of the strengthening
phases combined with the process induced subgrains.

Data on fracture toughness collected by NASA [74], ranged from approximately
127.7-149.5 MPa

√
m with stress relief: 1065°C for 1.5 hours; furnace cool, HIP:

1165°C, 100 MPa, 3-4 hours, AMS 5664 Solution Treat: 1066°C for 1 hour; air cool
and AMS 5664 Age: 760°C for 10 hours; furnace cool to 650°C; treat for total of
20 hours. Values converted from JIC toughness, with KIC =

√
JICE.

Fatigue of AM IN718 have been the focus of many studies in recent years. How-
ever because the production methods are still progressing, the fatigue properties
will continue to improve. Some studies of fatigue regarding directional- and
notch dependence are included below.
Konečná et al. [75] studied the anisotropic directional fatigue strength of SLM
members in plane bending with three different build orientations. The specimen
where heat treated and notch surface was as produced. Specimen orientation
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and microstructural anisotropy is shown in figure 5.37. σuts = 1406 MPa, yield
stress σy0.2 = 1213 MPa, elongation to rupture A=19 %.

Figure 5.37: Different build orientations in left figure. Right showing microstruc-
tural anisotropy [75].

Figure 5.38: Directional fatigue properties with orientation according to figure
5.37, R=0, P=200W. Cycles to failure in log-scale [75].

Specimen type D showed less fatigue strength than the two others. Witkin et al.
[63] reported in this study the fatigue notch effect of IN718 with three different
notch geometries built in two direction seen in 5.39.

Figure 5.39: Build orientations with arrow indicating build direction. [63].
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Both of AP AM specimen and AM specimen with machined notch, compared
with conventional wrought specimen made from sheet metal. Results obtained
from the fatigue test showed a build orientation dependence on the fatigue strength
of the notch designs. The fatigue results are shown in figure 5.40.

Figure 5.40: Fatigue results of IN718 specimen in log-log. Specimens were tested
at the stress ratio R=0.1 and frequency of f=40Hz, according to the ASTM stan-
dard E466.

Figure 5.41: Different build orientation effect on U-notch surface [63]. a) Lower
notch surface. b) Upper notch surface. c) Vertical notch.

V2 specimen had crack initiation at lower notch of the horizontally oriented V2
notch specimen. The figures in 5.41 show the notch surface roughness of different
build orientations of the U-notch design. Figure 5.41 a) deviates from the others
with a very rough notch root, that may have been created by residual stresses.
The two other figures 5.41 b) and 5.41 c) show a much finer surface. The verti-
cally built U-notch have the smoothest surface finish of these.
Solberg et al. [76] studied the fatigue notch sensitivity. The unnotched speci-
men had a fatigue strength at N f = 2 · 106 cycles, of 26% of the ultimate ten-
sile strength, while the V-notched specimen with radius of 1mm decreased the
strength down to only 12.6%. Results shown in figure 5.42.
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Figure 5.42: Fatigue results of IN718 specimen in log-log scale [76]. Where the
V-notch of radius 1.0 mm being the same specimen as tested in this thesis.

Konečná et al. [77] found that crack growth in SLM specimen have a lower
threshold than conventional ones, as seen figure 5.43. The crack growth’s lin-
ear dependence in a log-log plot well approximates the crack growth rate data in
the interval 1 · 10−6 to 1 · 10−4mm/cycle, according to the Paris equation values
da/dN = 2.25 · 10−7K2.31

a .

Figure 5.43: Crack growth in SLM versus conventional manufacturing. a) SLM
[77], b) Conventional wrought [78], c) Conventional wrought IN 718 [79].

This comparison showed a significantly lower crack resistance of the SLM spec-
imen, which had a crack initiation threshold of Kth = 1.5MPa

√
m. However, the

two different production methods gave a similar crack growth above 10MPa
√

m.
These data are comparable because both specimen material compound had simi-
lar boron content, which is known to heavily influence the threshold crack growth
value. A boron content between 12ppm to 100ppm is known to decrease the crack
propagation rate [62].
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6 Method

6.1 Test specimens

Test specimens was produced by standard processing parameters of SLM (LM) in
Germany by Fit AG. They where produced layer by layer in the build direction
indicated by the arrow in figure (6.1) where the dimensions of the specimen is
showed. The layer height was 50µm with an energy density of 60J/mm3. No
treatment was performed after the production was complete (AP).

Figure 6.1: Specimen design dimensions with left arrow indicating build direc-
tion.

Unnotched V-notch
Height L1 [mm] 100 80
Length 2 L2 [mm] 30 -
Length 3 L3 [mm] 31.056 -
Width W1 [mm] 10 15
Nominal width W2 [mm] 6.0 5.82
Thickness t [mm] 3.0 5.0
Radius ρ [mm] 6.0 1.0
Opening angle 2α [o] - 90
Notch sensitivity factor K∗tnet - 1 2.43
Notch sensitivity factor K∗tgross - 1 6.26

Table 9: Specimen dimensions. ∗ Obtained from FE-analysis.

6.2 Tensile test

A static tensile test was performed in order to investigate the failure assessment
of the mean strain energy density criterion. In total three test was made, with
two unnotched samples and one v-notch. The stress-strain tensile test of two un-
notched specimen was performed with strain gauges to determine the Young’s
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modulus an accurate reading of the on plane specimen. Tensile tests where per-
formed by the MTS Landmark servohydraulic test system with test data listed in
table 10.

Specimen Nr Test speed Failure force Failure elongation SG
[mm/min] [kN] [mm] -

Unnotched 1 0.2 17.05 9.3 yes
Unnotched 2 0.8 16.86 9.2 yes
V-notched 3 0.8 34.02 1.6 no

Table 10: Tensile test data obtained.

Figure 6.2: Static force versus displacement curve for unnotched specimen.

Test nr 1 and 2 had strain gauge (SG) failure during their tests. But the data
collected from the SG was still used to determine the Young’s modulus because
the failure was evident on the data collected long after yielding. A combination
of data from SG and the force versus displacement curve was used to create a
stress-strain curve for the plane unnotched specimen. This was to be able to
obtain Ramberg-Osgood parameters for the material.

Figure 6.3: Static force versus displacement curve for V-notched specimen.
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6.2.1 Ramberg-Osgood

The Ramberg-Osgood model (6), was fitted to the combination of strain gauge
data and the force versus displacement tensile data with the engineering stress-
strain curve seen in figure 6.4. The fit was done of the data from the plastic area,
at some distance away from yield until necking started.

Figure 6.4: Engineering stress-strain curve with last part of curve fitted from
displacement data.

Material properties obtained from the tests are listed in table 11. σy was obtained
from where the curve deviated from the linear elastic area.

E σy σ0.2% σuts εn n K
[GPa] [MPa] [MPa] [MPa] [−] [−] [MPa]

143 650 549 940 0.2 0.1183 1154

Table 11: Material parameters obtained from tensile tests.

A graphic comparison of the fit between the power law data and stress-strain
curve is shown in figure 8.2.
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6.3 ABAQUS model

The analysis was performed using ABAQUS Complete Abaqus Environment
(CEA). The model was drawn as a shell, according to plane condition, of one
quarter of the model of the V-notch design seen in figure 6.5. Only the Young’s
modulus and the Poisson’s ratio of the material properties was needed to do the
linear elastic analysis. The material properties used was the Young’s modulus of
200000MPa and the Poisson’s ratio (ν = 0.3) for room temperature, a simplifica-
tion from ν = 0.294 reported in table 9.

Figure 6.5: a) Boundary conditions and applied stress. b) Abaqus coordinate sys-
tem for FE-analysis with partition geometry near notch tip. c) Stress coordinate
system along notch bisector line to assess σθ .

All analysis was performed with boundary conditions according to figure (6.5 a)
and with a negative pressure on the top edge of 1MPa, giving a higher stress on
the net area on the notch bisector line given in table 12.

Notch Stress on net area [MPa]
Unnotched 1.667
V-notch 2.577

Table 12: Pressure on the notch bisector line (net area) of the specimen analysis
in Abaqus.

The simulation was performed using the mesh type CPE8: An 8-node bi-quadratic
plane strain quadrilateral. All analysis where performed with "plane strain".
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6.3.1 ABAQUS - SED

The function "partition geometry" made it possible to analyze both energy and
volume on several small areas with different radii. The figure 6.6 show the mesh
for the analysis of strain energy. Results of the analysis is shown in figure 6.12,
where the analysis was compared to the parameters from the tensile test which
decided the area of SED and thereby also the radius, R0.

Figure 6.6: Mesh used for analysing strain energy density in ABAQUS.

6.3.2 ABAQUS - stress field

One quarter of the specimen was sketched and meshed with focus on fine mesh
at the tip of the notch. Figure 6.7 below show an example of the mesh in the
analysis. The numerical analysis of the stress field in ABAQUS was used to de-
rive the notch sensitivity factor, Kt, for the V-notch member with results shown
in figure 6.8 and 6.9. It was also used to derive the elastic and plastic NSIF in
figure 6.10 and 6.11.

Figure 6.7: Mesh used for analysing Kt in ABAQUS.
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6.4 Analytical approach to determine stress fields

In the presence of a notched member under traction loading, the maximum stress
at the notch tip can be derived given the assumption that r = r0 and that θ = 0 by
Lazzarin et al. [24]. This gives the following general equation for solving the σθ

for mode 1 loading:

σθ =
σmax

4

(
r
r0

)λ1−1

[((1 + λ1)cos[(1− λ1)θ])

+X1(1− λ1)cos [(1 + λ1)θ]

+

(
r
r0

)µ1−λ1

[(3− λ1)− X1(1− λ1)]cos [(1 + µ1)θ]].

(60)

Where X1 is determined using the equation 61.

X1 = −
sin[(1− λ1)

qπ
2 ]

sin[(1 + λ1)
qπ
2 ]

(61)

For a V-notch with 2θ = 90o and a notch tip radius of ρ = 1mm this equation is
shortened to:

σθ = 0.152σmaxr−0.456(2.383 + 0.609r−0.889) (62)

With r0, λ1 and µ1 given in table 14. The analytically determined stress field is
compared to that obtained using FEM in figure 6.9 where the elastic stress con-
centration factor is obtained by Ktnet = σθ/σnom, see figure 6.8. The same value of
Kt was obtained in the article by Solberg et al. [80]. When regarding the gross sec-
tion area, the stress concentration factor becomes Ktgross = σθ/σgross, being valid
the expression Ktgross = Ktnet(w1/w2). Values used in calculations in table 9.

Figure 6.8: Stress intensity factor from equation of analytical stress field 62 and
FE data.
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Figure 6.9: A comparison of numerical data and the analytical estimations of
stress field with normalized distance in log-log scale.

The NSIF is calculated using equation 63 [81] where the stress field σθ is calcu-
lated from the stress field obtained through FE analysis . X is the distance from
the notch tip on the notch bisector line (x = r− r0).

K1 =
√

2π(r0 + x)1−λ1
(σθ)θ=0

1 + ω1

(
r0+x

r0

)µ1−λ1
(63)

The value of NSIF is given according to normalized distance (r − r0)/ρ with
the values obtained in figure 6.10. Where the value used in calculations was:
KV

ρ,I/σnom = 5.3.

Figure 6.10: Notch sensitivity intensity factor based on numerically obtained
stress field according to equation 63. Distance in log scale.

The plastic NSIF was calculated with values obtained from [35], for plane strain
conditions. The equations is for sharp V-notches. Only the P-NSIF values calcu-
lated from equation 57 was used in calculation of SED. P-NSIF’s are graphically
displayed in figure 6.11.
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Figure 6.11: Plastic notch sensitivity intensity factor based on numerically ob-
tained stress field according to equation (a) 57 and (b) 58.

6.5 Static SED analysis

Some of the necessary material properties is obtained from relevant literature, or
extracted from the tensile test performed.

6.5.1 SED radius

The radius of the crescent shape of the SED area was determined by three dif-
ferent approaches and the values used are listed in table 13. The first approach
determines the radius with the use of equation 31, or 32, depending on if the
specimen is in either in plane stress or plane strain condition. An interpolation
is needed when the condition is in between these two.

Kc−strain = 650MPa
(

0.005m
2.5

) 1
2

= 29.1MPa
√

m (64)

Kc−stress = 650MPa(π0.005m)
1
2 = 81.5MPa

√
m (65)

Assuming a fracture toughness of KIC = 50MPa
√

m gives a condition in between
plane strain and stress condition.

R0s−strain =
(1 + 0.3)(5− 8 · 0.3)

4π

(
50MPa

√
m

942MPa

)2

= 7.58 · 10−4m (66)

R0s−stress =
(5− 3 · 0.3)

4π

(
50MPa

√
m

942MPa

)2

= 9.19 · 10−4m (67)

The interpolated value of R0 is shown in table 13. The second method is by
a calibration of the radius from two different notch designs based on a linear
elastic finite element method model, compared to results from the physical test
of the unnotched specimen, see figure 6.12 and equation 68. R0 shown in table
13.
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Figure 6.12: Calibrating R0 with equation 68 in log-log scale.

WC =
σ2

2E
=⇒ 2E =

σ2
FEA

WC−FEA
=

σ2
test

WC−Test
(68)

A third method was used to determine the critical radius with an arbitrary shoot-
ing technique with radii between 0.01− 1mm for the ductile critical SED value.
This was because the SED from the numerical calibration was lower than this
critical value, thereby making it impossible to determine this radius. Selected
radius, R0, is shown in table 13.

Approach R0 [mm]
Numerical 2.360
Analytical 0.822
Graphic 0.050

Table 13: Radius R0S for SED analysis.

6.5.2 Calculation of SED

The approximation of the strain energy density was performed by different means
in order to assess their different accuracy. Values for the the different parameters
involved in the calculations are given in table 14 and . Parameters in between
those given in the table was interpolated. The notched specimen was determined
previously to be between plane strain and plane stress condition, but to simplify
the calculations will now be assumed to be plane strain.

2α(o) ρ[mm] r0[mm] q λ1 µ1 ω̃1 e1 X1
90 1 0.3333 1.5000 0.5445 -0.3449 0.8100 0.1462 1.841

Table 14: Values for V-shaped notches with ν = 0.3 and plane strain conditions
[81].

Calculation of SED based on NSIF is given in equation 35, for sharp V-notches
and plane strain conditions. It was compared to equation 39 for blunt V-notches.

44



Values of necessary parameters are given in 13 and 14, with parameter H in figure
6.13 according to [28].

Figure 6.13: Parameter, H, for opening angle 2α = 90o and ν = 0.3. Values beyond
1.0 are based on the linear trend.

The P-NSIF is determined under the hypothesis that the amount of energy con-
centration is equal under elastic and plastic conditions already stated based on
the NSIF. The P-NSIF’s are calculated by equation 57 for sharp V-notches. An
approximate equation for blunt V-notches was made by simply introducing the
difference between the equation for sharp and blunt V-notches by the use of NSIF
as seen below in equation 69.The result of these are compared in the discussion.

WP
modi f ied(R) =

H
(

2α, R0
ρ

)
e1

· n
(n + 1)Hn ·

Ip(γ,n)
γ(2− s(n + 1))

·
(

KN
1p

Rs
0

)n+1

(69)

2α(o) γ/π(rad) Ie(γ) Ip(γ,n)
90 3/4 0.7504 2.200

Table 15: Values of the integrals Ie and Ip under plane strain conditions. De-
termined for ν = 0.3 and inverse strain hardening exponent (1/n) = 8.45, for
blunted V-shaped notches [35].

Plastic integral was obtained from values listed in [35] and graphically displayed
in figure 6.14 for sharp V-notches.

Figure 6.14: Plastic integral versus the strain hardening exponent. With ν = 0.3
and 2α = 90o.
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6.5.3 Critical SED

One of the goal’s of this thesis is to compare different failure criteria from the
most basic to a model based on the Ramberg-Osgood material hardening prop-
erties obtained from the tensile test of the unnotched specimen.
Never the less the most used failure criteria used in strain energy density crite-
rion is 6.5.3, which is known to give good accuracy when the failure is brittle or
quasi-brittle [8].

WC−brittle =
σ2

uts
2E

By the use of the same failure criteria as in the equivalent material concept cri-
teria where critical SED is based on the traction stress-strain curve fitted to the
Ramberg-Osgood relation in equation 6. This gives the ductile critical SED in
equation 70 [31].

WC−ductile =
σy

2

2E
+

H
n + 1

[
(εu,True)

n+1 − (0.002)n+1
]

(70)

These failure criteria will be compared to simplified models seen in figure 6.15
b) and 6.15 c) where all the critical SED values are graphically displayed. Values
used from the models are listed in table 16.

Figure 6.15: Different failure criteria models. a) Dark grey: brittle, light gray:
strain hardening. b) Elastic-perfectly plastic. c) Perfectly plastic. Note: Not size
comparable.

By means of WC[Nmm/mm3]
Brittle 2.218
Elastic-perfectly plastic 160.8
Strain hardening 170.5
Perfectly plastic 188.4

Table 16: Failure criteria and their critical SED values.

46



7 Results

Table 17 show all of the estimated failure forces with the different strain energy
density calculation methods and different failure criteria.

Notch W Radius
Failure SED WC[Nmm/mm3]
2.218 160.8 170.5 188.4

Shape By means of R0 [mm] Failure force [kN]

Sharp NSIF (35)
0.050 - 53.9 57.0 58.4
0.822 22.7 - - -
2.360 36.9 - - -

Sharp P-NSIF (53)
0.050 - 39.0 39.5 40.2
0.822 22.5 - - -
2.360 32.8 - - -

Blunt NSIF (39)
0.050 - 27.4 28.3 29.8
0.822 21.6 - - -
2.360 52.1 - - -

Blunt P-NSIF (69)
0.050 - 26.7 27.3 28.4
0.822 21.5 - - -
2.360 38.6 - - -

Table 17: Estimated failure force. Critical radius of 0.05mm was determined as a
good approximation shown in figure 8.7.

Deviation from the experimental result are shown in table 18 with the experi-
mental failure force of 34.02kN.

Notch W Radius
Failure SED WC[Nmm/mm3]
2.218 160.8 170.5 188.4

Shape By means of R0 [mm] Deviation from exp. [%]

Sharp NSIF (35)
0.050 - 58.5 67.4 71.6
0.822 -33.3 - - -
2.360 8.4 - - -

Sharp P-NSIF (53)
0.050 - 14.7 16.0 18.3
0.822 -33.8 - - -
2.360 -3.5 - - -

Blunt NSIF (39)
0.050 - -19.3 -16.9 -12.5
0.822 -36.4 - - -
2.360 53.1 - - -

Blunt P-NSIF (69)
0.050 - -21.4 -19.6 -16.4
0.822 -36.8 - - -
2.360 13.3 - - -

Table 18: Deviation from experimental results.

With critical radius R0 = 0.05mm all equations except for sharp V-notches with
the use of NSIF had accuracy within ±21.4% of the failure force. Both the equa-
tions, NSIF and P-NSIF, for blunt notches underestimates the failure force while
the equations for sharp notches overestimates it.
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8 Discussion

8.0.1 Material properties

The material parameters obtained showed a good correlation to that values al-
ready reported in the literature. ASTM E8 though was not fully met because
there was no length measurement being made before and after testing. The
Young’s modulus was derived by line fitting of the tensile data to approximately
143GPa. A value lower than that of HT IN718, see table 7, but was similar to
the value obtained by for example Popovich et al. [72] compared in figure 8.1.
Elongation exceeded that tested by Popovich with elongation over 20% in both
tensile tests of the unnotched specimen.

Figure 8.1: Comparison of tensile test data.

The speed of which the test was conducted was performed by error and trial. It
may have affected the strength of the V-notched specimen that the speed was to
great, giving that failure happened within two minutes (0.8mm/min). However
Baufeld et al. [64] reported no evident dependency of strain rate on unnotched
specimen produced by SMD and the notch strengthening factor was similar to
that of En3B steel in [82]. The power fit with equation 6 is shown in figure 8.2
with good agreement, but slightly underestimating the stress close to yield.

Figure 8.2: Ramberg-Osgood fit with tensile stress-strain curve of unnotched
data. Values from table 9.
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Critical for the estimation of SED was determining an appropriate fracture tough-
ness. It determines the critical radius in the analytical approach together with σuts
and ν. No or few data are given on the fracture toughness on IN718 members
produced by AM not conducted to heat treatments. An assumption was made
that the fracture toughness might be lower than for conventional manufacturing
methods because of an earlier initiation of stable crack growth in studies per-
formed by Konečná et al. [77]. AM specimen are also known to have higher
porosity and coarser surface finish than by conventional manufacturing, as well
as possible residual stress at perturbations. A fracture toughness of 50MPa

√
m

was assumed also based on values obtained in [52] of 62.5MPa
√

m. This value
would give it a condition between plane-strain and plane-stress according to 33
and 34. Something also the fracture surface indicated of the notched specimen
with shear lips as well as a flat surface between them [10].

8.0.2 SEM

SEM showed that the unnotched specimens had dimples of ellipse-shape and
likely originate from the fracture of δ phases and show definitive signs of a duc-
tile material in both specimen as seen in figure 8.3 a) of specimen test 1 [10].
Small pores can be seen in figure 8.3 b), between the contour- and hatching lay-
ers. Figure 8.3 c) show some shapes of possible striations or signs of print direc-
tion. Specimen in figure 8.3 d) had several cracks similar to that of J. Xu et al.
[83], where the primary failure mode is transgranular fracture deformation. This
specimen with the most distinct cracks failed at lower force.

Figure 8.3: Unnotched specimen failure surface. a) and b) of test specimen 1. c)
and d) of test specimen 2.
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The V-notched specimen showed similar flaws as the unnotched specimens, where
figure 8.4 a) show pores close to the surface. Figure 8.4 b) show similar cracks as
in 8.3 d).

Figure 8.4: Blunt V-notch specimen failure surface. a) showing pores. b) showing
cracks.

The fracture surface of the notched member had 45o inclining surfaces at both
edges with flat surface in between, showing clear signs of a ductile material. The
unnotched specimen failed at similar force.

8.0.3 SED calculations

The approach of estimating SED was based on a linear elastic model to determine
their separate constitutive accuracy. Failure of the members was of course hap-
pening in the plastic regime in an ab-linear manner for the ductile IN 718. The
goal was not to conduct any extensive plastic analysis, but to continue simplify-
ing the approach to give a easy failure assessment also applicable for assessing
AM geometries.
The stress field obtained from analytical analysis correlates well with that from
the numerical analysis seen in figure 6.8 and gave the same value of the stress
intensity factor as in Solberg et al [80]. Figure 6.9 show similar accuracy as re-
ported by Lazzarin et al. in [24]. The stress fields was then used to calculate the
NSIF, which is similar to values obtained by Lazzarin et al. in [84], with K1/σnom
of 5.3.
The analytically determined radius of R0 = 0.822mm is heavily influenced by the
apparent fracture toughness of the material. Figure 8.5 suggest that a greater
value of the fracture toughness would give more accurate results if the critical
radius was between approximately 1− 1.7mm obtained from equation 39.
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Figure 8.5: Critical radius obtained using three different calculating methods.

The numerically obtained radius of 2.360mm is almost covering all of the net
area between the notches. Critical radii reported in [85] for Duraluminium of
R0 = 1.382mm and R0 = 1.54mm, and R0 = 0.53mm for AISI O1 from Strandberg
et al. [86] are smaller than the radius obtained from the numerical analysis in
Abaqus, but similar to that of the analytically obtained radius.

Figure 8.6: Static results from Lazzarin et al. [87] with critical radius.

The results from these test are not entirely comparable because the samples of
Duraluminum had sharp V-notches and the AISI O1 steel was tested at temper-
ature T = −50.0oC causing a more brittle failure. However, the experiments by
Strandberg on AISI O1 steel still showed some contained plasticity and small
rounding of the V-notch tip. Critical radius obtained from the shooting tech-
nique of R0 = 0.05mm was determined from figure 8.7, with the radius being
the approximate closest fit for all four equations, when considering the ductile
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failure criteria of WC = 170.5Nmm/mm3. If only the blunt equations was consid-
ered, giving an radius of approximately R0 = 0.07mm, could have given a more
accurate assessment. This critical radius is however more comparable with the
radii used for brittle materials such as PMMA fro Lazzarin et al. [87].

Figure 8.7: SED versus nominal stress, showing all four calculation methods with
critical SED at 170.5Nmm/mm3.

Equation 69 derived in this thesis for blunt P-NSIF give a reasonable outcome
compared to the difference between the sharp equations for NSIF and P-NSIF.
The SED value from the blunt P-NSIF have similar SED value with blunt NSIF
until a nominal stress of approximately 300MPa where it start to deviate from
values of the blunt NSIF as seen in figure 8.8. The calculations of SED are as-
sumed to be correct by the fact that the calculation method based on NSIF and
P-NSIF are different, but gives the same SED value up to a certain stress.

Figure 8.8: SED versus nominal stress of the four fundamental equations, with
R0 = 0.05mm.
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8.0.4 Accuracy of failure prediction

The analytically obtained radius R0 = 0.822mm, seen in figure 8.9 give the small-
est scatter combined with the brittle failure criteria. But these methods highly
underestimates the failure force of up to 37%. The failure criteria calibration
proposed by Seweryn et al. [85] was not considered. He recommended to substi-
tute σuts to "the maximum normal stress existing at the edge at the moment pre-
ceding the cracking", when unnotched specimens exhibit a non-linear behaviour
whereas the behaviour of notched specimens remains linear. The SED at fail-
ure for the equation for blunt V-notch using NSIF of W1 = 5.466Nmm/mm3 was
close to the critical SED for the Duraluminum in Lazzarin et al. [23], where the
maximum average SED was W1 = 5.257Nmm/mm3.
The brittle failure criteria combined with the critical radius of R0 = 2.360mm de-
rived from numerical analysis gives a good approximation for both of the equa-
tions for sharp V-notch, within range of −3.5 to 8.4%. The blunt equations over-
estimates the force with 13.3− 53.1%.
The most reliable method seems to be the use of blunt approximation of SED for
both NSIF and P-NSIF with the radius calibrated by the shooting technique seen
in figure 8.7, highlighted by the circle. These methods slightly underestimate
the failure force by a margin of 20% and less. However, the notch strengthening
effect may cause a high discrepancy in ductile materials.

Figure 8.9: Synthesis of the data from all ceramic, graphite and PMMA speci-
mens performed by Berto et al. [26], compared with results from this thesis.

Other assessments have been made in the passed where a ductile material has
been thought of as brittle, such as in Glinka et al. [32] and Torabi et al. [31] as
well as the TCD. Though the use of TCD is a crude estimate with no calibration
of the efficient stress. The efficient stress can be derived by experimental tests of
different notch geometries together with linear numerical analysis of the stress
fields of these [88]. Lazzarin et al. [23] saw after several analyses of plastically
deformable Duraluminum under plane strain condition, that a material obeying
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a power hardening law had similar average value of the local energy as materials
with linear elastic behavior.

Reported accuracy of static failure by use of linear elastic TCD is ±15 − 20%
in Madrazo et al. [88] but was overestimating the failure force for bigger radii.
EMC combined with SED was reported with the same accuracy and overestima-
tion with larger radii [89]. An accuracy at approximately 12% with elasto-plastic
analysis was reported by Alena et al. [90]. This is similar values obtained from
this work, however compared to the TCD criteria, the SED criteria have multiple
advantages. TCD needs very refined mesh in order to assess the stress field in
the vicinity of the notch in a satisfying degree. SED on the contrary is mesh in-
sensitive as already reviewed and it also includes the scale effect in the NSIF and
P-NSIF [23].

8.0.5 Notch strengthening effect

The notch strengthening effect in SLM IN718 was significant with failure stress
for the notched specimen at 1169MPa compared to the unnotched ultimate ten-
sile strength of 942MPa. Qu et al. [91] presented in their article a notch strength
ratio (NSR) which is determined by the ratio of the ultimate tensile strength of
the notched specimen divided with the unnotched ultimate tensile strength seen
in equation 71. NSR >> 1 means notch strengthening. The ratio for the given
samples in this article was 1.24, similar to that tested by Torabi et al. [82] at 1.26
of the En3B steel. The specimen from Torabi’s report was a tensile tested double
notch, with radius of 0.1mm, t = 6mm, 2α = 60o, giving a different notch intensity
factor than of the v-shaped specimen of this thesis.

NSR =
M
Kt

=
σuts−unnotched

σuts−notch
(71)

Where M is a an approximate material property and can be derived from 72.

M =
1

n
√
(4kα2 + (1− k)2)

(72)

Materials with a decreased α often have enhanced ability to plastically deform
and also show an increased resistance to normal cleavage fracture.

8.0.6 Suggested failure criteria

Calibrating the critical failure criteria with the NSR could give a better approx-
imation of failure. This would be equivalent to that of the calibration of σe f f in
TCD, where also the notch strengthening effect is included. Multiplying the NSR
with the strain hardening criteria of 170.5Nmm/mm3, and to the perfectly plastic
criteria of 188.4Nmm/mm3, together with the equations for blunt V-notches 39
and 69 gives a better approximation with accuracy in table 19:
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W Failure SED WC[Nmm/mm3]
By means of Equation 211.4 233.6
NSIF (39) -7.8 -3.4
P-NSIF (69) -12.2 -8.9

Table 19: Accuracy with NSR calibrated failure criteria and R0 = 0.05mm and
equations for blunt V-notches.

The discrepancy can be seen in figure 8.10, with the results highlighted in the
circle. Results from these are highly accurate.

Figure 8.10: Synthesis of the data from all ceramic, graphite and PMMA speci-
mens performed by Berto et al. [26], compared with new failure criteria.

With this calibration it may offer a better approximation of failure assessment.
But further testing is needed to validate the result for different materials and
notch geometry. The suggested new failure criteria for ductile materials under
static Mode I tensile conditions is stated as:

WC = σutsεn
M
Kt

(73)
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9 Conclusion

In this thesis the accuracy of different methods of static failure of a notch geome-
try were investigated using strain energy density. The specimen, made of Inconel
718, was produced by selective laser melting without any after treatment. Top-
ics such as structural integrity, theory of critical density, strain energy density,
additive manufacturing and material properties of AM Inconel 718 were investi-
gated.
General conclusion:

• The full advantage of the mechanical properties of IN 718 produced by
conventional or additive manufacturing can only be achieved with heat
treatments.

• Additive manufacturing offers geometry complexity that is not achievable
by means of conventional manufacturing.

• Porosity in additive manufactured components can be decreased by means
of hot isostatic pressing.

• Fatigue strength of additive manufactured IN718 with no after treatment
is reported to be 26% of the ultimate tensile strength, compared to approx-
imately 34% for conventional manufacturing.

• Ductility decreases by HT and increases by HIP.

Answers to research questions:

What is the static mechanical properties of additive manufactured IN 718?

• AM IN 718 shows anisotropy.

• Static properties of heat treated AM IN 718 at room temperature are almost
comparable to those of CM.

• Static properties at room temperature of AM IN 718 which was treated HT
and HIP are comparable to those of CM.

• Static properties at 650oC of AM IN 718 which was treated with HT and
HIP are comparable to those of CM.

• AM IN 718 crack growth threshold is lower than that of CM.

• Hardness of AM IN 718 by HT and HIP is comparable to that of CM.

Is it possible to give accurate estimations of static failure of AM IN 718 with
blunt notch geometry, based on different calculation methods of the strain energy
density criterion with equations for sharp and blunt V-notches using NSIF and
P-NSIF, when the failure criterion is based on brittle, ductile or simplified ductile
materials?

• The equations for blunt V-notch with NSIF and P-NSIF give an underesti-
mation within acceptable limits of 12.5% and 16.4%, respectively.
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• The approach of graphically determined critical radius of R0 = 0.050mm
gives the most accurate estimate with the equations for blunt V-notches.

• The perfectly plastic model with critical SED of 188.4Nmm/mm3 gives the
most accurate estimate of the failure force.

• Equations for sharp V-notches are not suitable for estimating the failure
force of blunt V-notched geometries.

Further work:

• To validate accuracy of SED calculation of blunt notches with both the use
of elastic and plastic notch sensitivity intensity factor for other materials
and notch shapes.

• To validate the suggested failure criterion on other materials and notch ge-
ometries.

• To validate the accuracy of both SED calculations and suggested failure
criteria for mixed mode loadings.
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10 Appendix A

10.1 Mathematical preliminaries of stress field around notch tip

The stress field of an open notch, which becomes a V-crack with a radius of zero,
is to be mathematically determined under plane stress-strain conditions. With
Kolosoff-Muskhelishvili’s [92] method the following analytical potential func-
tions is used:

ϕ(z) = azλ, ψ(z) = bzλ + czµ (74)

Where coefficients a,b and c are complex, exponents λ and µ are real, with λ > µ
within the hypothesis. When the term czµ is neglected in the analysis of open
cracks, we get the Williams’ solution.

Figure 10.1: Coordinate system for the notch system with symbols used for the
stress field components

With the conditions already stated, the polar components result in the stresses:

σθ = λrλ−1[a1(1− λ)cos(1− λ)θ + a2(1 + λ)sin(1− λ)θ

+b1cos(1 + λ)θ − b2sin(1 + λ)θ]

+µrµ−1[c1cos(1 + µ)θ − c2sin(1 + µ)θ],

σr = λrλ−1[a1(3− λ)cos(1− λ)θ + a2(3 + λ)sin(1− λ)θ

−b1cos(1 + λ)θ + b2sin(1 + λ)θ]

+µrµ−1[−c1cos(1 + µ)θ + c2sin(1 + µ)θ],

τrθ = λrλ−1[a1(1− λ)sin(1− λ)θ − a2(1− λ)cos(1− λ)θ

+b1sin(1 + λ)θ + b2cos(1 + λ)θ]

+µrµ−1[c1sin(1 + µ)θ − c2cos(1 + µ)θ],

(75)

The real parameters of (75), λ and µ, as well as the complex components of a,b
and c must be evaluated with appropriate boundary conditions. An auxiliary
coordinate system as seen in figure (10.2), is useful in the means of imposing the
boundary conditions.
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Figure 10.2: An auxiliary coordinate system, with curvilinear coordinates (u,v).

The analytical link between the two coordinate systems is:

x + iy = reiθ = z = wq = (u + iv)q (76)

The parametric curve corresponding to the condition, u = 0, of the curvilinear
system, describes a sharp angle equal to 2α in the (x,y) system with:

2α = π(2− q) (77)

With the free edge of the of a generic smooth notch corresponding to u = u0, give
a radius of curvature in correspondence with the abscissa axis with r0 = uq

0 which
equals to:

q =
q · uq

0
q− 1

=
q · r0

q− 1
(78)

This radius of curvature is equal to the notch radius. When q = 2 the origin of the
coordinate system is centred at half of the notch radius r0 =

ρ
2 behind the notch

tip.

Figure 10.3: The angle (β) between polar and curvilinear systems.
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The components of the stress field in the (u,v) curvilinear system can be derived
from equation (75) by imposing the local rotation of the reference system, with
the angle between the principal directions of the polar and curvilinear systems
being β = − θ

q , see figure (10.3).

σu =
1
2
(σr + σθ) +

1
2
(σr − σθ)cos

2θ

q
− τrθsin

2θ

q
,

σv =
1
2
(σr + σθ)−

1
2
(σr − σθ)cos

2θ

q
+ τrθsin

2θ

q
,

τuv =
1
2
(σr − σθ)sin

2θ

q
+ τrθcos

2θ

q
.

(79)

The boundary conditions below should be fixed along the free edge of the notch:

(σu)u=u0 = 0, (τu,v)u=u0 = 0. (80)

However these BC can not be satisfied all along the free edge of the notch, be-
cause of a small number of free parameters chosen for the definition of the stress
functions. To overcome this problem it should be noted that the BC of (80) should
be satisfied within the necessary distance away from the tip, where ν have no in-
fluence. The stress field should be accurate close to the notch root, giving the two
terms of the series expansions along the free edge, related to the stresses σu and
τuv, a value of zero. With these considerations the general BC of σu is modified
to be:

(σu)v>>u0u=u0
= 0→ lim

r→∞
θ→±qπ/2

(r1−λσθ) = 0, (81)

(σu)u=u0
v=0

= (σr)r=uq
0

θ=0

= 0, (82)(
∂σu

∂v

)
u=u0
v=0

= 0→
(

∂σr

∂θ

)
r=uq

0
θ=0

− 2
q
(τrθ)r=uq

0
θ=0

=

(
∂σr

∂θ

)
r=uq

0
θ=0

= 0. (83)

With three similar BC’s for τuv. It is important, due to the small numbers of BC’s,
that the actual trend of such components along the free edge is verified in order
to state how approximate the solution will be.

10.1.1 Evaluation of parameters and constants

With equation (81) for σu and the similar one for τuv, gives the same conditions
already proposed by William’s for the sharp V-cracks, which is shown below.

(1 + λ)cos(1− λ) qπ
2 cos(1 + λ) qπ

2 0 0
(1− λ)sin(1− λ) qπ

2 sin(1 + λ) qπ
2 (1 + λ)sin(1− λ) qπ

2 −sin(1 + λ) qπ
2

0 0 (1− λ)cos(1− λ) qπ
2 −cos(1 + λ) qπ

2




a1
b1
a2
b2

 =


0
0
0
0

 . (84)
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Only when the determinants are zero, we get nontrivial solutions, which leads
to the following equations to determine λ:

sin(λ1qπ) + λ1 sin(qπ) = 0 first determinant, Mode I fracture, (85)

sin(λ2qπ)− λ2 sin(qπ) = 0 second determinant, Mode II fracture. (86)

Equations (85) and (86) gives multiple solutions or eigenvalues, n. The values of
each constant are given by (87, 88)

b1n = −a1n(1 + λ1n)
cos(1− λ1n)

qπ
2

cos(1 + λ1n
qπ
2

= −a1n(1− λ1n)
sin(1− λ1n)

qπ
2

sin(1 + λ1n)
qπ
2

= a1n(1− λ1n)X1n

(87)

b2n = a2n(1 + λ2n)
cos(1− λ2n)

qπ
2

cos(1 + λ2n)
qπ
2

= a2n(1− λ2n)
sin(1− λ2n)

qπ
2

sin(1 + λ2n)
qπ
2

= −a2n(1− λ2n)X2n

(88)

With Xik equal to:

Xik = −
sin(1− λik)

qπ
2

sin(1 + λik)
qπ
2

(89)

µ1nrµ−λ
0

[
1

1
q − (1 + µ1n)

]
c1n

= λ1na1n

[
(3− λ1n)− X1n(1− λ1n)

[(1− λ1n)
2 − (1+λ

1n)

q ] + X1n(1− λ1n)[(1 + λ1n)− 1
q ]

] (90)

µ1nrµ−λ
0

[
1

1
q − (1 + µ1n)

]
c1n

= λ1na1n

 (3− λ1n)− X1n(1− λ1n)[
(1− λ1n)

2 − (1+λ
1n)

q

]
+ X1n(1− λ1n)

[
(1 + λ1n)− 1

q

] (91)

Values for the parameters µ and of the real and imaginary c, can be obtained
for both modes by imposing that the previous two equations have nontrivial
solutions, giving:

µ1n =
1
q
−


[
(1− λ1n)

2 − (1−λ1n)
q

]
+ X1n(1− λ1n)

[
(1 + λ1n)− 1

q

]
(3− λ1n)− X1n(1− λ1n)

− 1, (92)

µ2n = −
{
[(3− λ2n)(1− λ2n)]− X2n(1− λ2n)2

(1− λ2n) + X2n(1− λ2n)

}
− 1, (93)
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c1n =
λ1n

µ1n
rλ1n−µ1n

0 a1n[(3− λ1n)− X1n(1− λ1n)], (94)

c2n =
λ2n

µ2n
rλ2n−µ2n

0 a2n[(3− λ2n)− X2n(1− λ2n)]. (95)

Figure 10.4: A plot of exponents versus the notch opening angle, 2α.

Finally it is possible with a general formulation of the stress components. For
tension, Mode I the stress field is:


σθ

σr
τrθ

 = λ1rλ1−1a1




(1+λ1)cos(1− λ1)θ
(3-λ1)cos(1− λ1)θ
(1-λ1)cos(1− λ1)θ


+X1(1− λ1)


cos(1 + λ1)θ
-cos(1 + λ1)θ
sin(1 + λ1)θ


+

(
r
r0

)(µ1−λ1)

[(3− λ1)− X1(1− λ1)]


cos(1 + µ1)θ
-cos(1 + µ1)θ
sin(1 + µ1)θ



(96)

And for Mode II:


σθ

σr
τrθ

 = λ2rλ2−1a2




(1+λ2)cos(1− λ2)θ
(3-λ2)cos(1− λ2)θ
(1-λ2)cos(1− λ2)θ


+X2(1 + λ2)


cos(1 + λ2)θ
-sin(1 + λ2)θ
sin(1 + λ2)θ


−
(

r
r0

)(µ2−λ2)

[(1− λ2) + X2(1 + λ2)]


cos(1 + µ2)θ
-sin(1 + µ2)θ
sin(1 + µ2)θ



(97)
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